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Preface

There has been tremendous progress in the engineering of tools designed to
interact with the nervous systems—from signal detection and processing to
restoration and enhancement of function. Neural engineering (or its equiva-
lent, neuroengineering) is a rapidly expanding interdisciplinary field bridging
neuroscience and engineering. It spans cellular, tissue, and systems level
research, and has become a core discipline within biomedical engineering and
beyond. This book is aimed at serving as a textbook for undergraduate and
graduate level courses in neural engineering within a biomedical engineering
or bioengineering curriculum. It is our intent to provide a comprehensive
review of the principles, concepts, theories, methods, and state-of-the-art
research in selected areas of neural engineering. It is also suitable as an
introduction to engineers or neuroscientists who are interested in entering the
field of neural engineering or acquiring knowledge about the current state of
the art in this rapidly developing discipline.

Chapter 1 provides a general introduction to human neuroanatomy and
neurophysiology. The chapter was written mainly for readers with back-
grounds in engineering and physical sciences. While readers who are familiar
with neuroanatomy and neurophysiology may skip this chapter, it will be
useful for those with little to no previous exposure or as a review. The chapter
includes over 60 original figures drawn for educational purposes.

Biopotential measurement, which yields information about the brain and
the peripheral nervous system, remains an important area of research in
neural engineering for the recording of both neuronal and neural circuit level
behavior. Chapter 2 covers the basic principles and techniques for electrodes
that can be used for neural recording and stimulation, as well as the bioelectric
circuits that can be used for various neural measurements. Various types
of electrodes required for measurement, and the most appropriate circuit
architectures needed to amplify and process these signals, are discussed.

An important aspect of neural engineering is to properly analyze and inter-
pret neural signals—a step that plays a vital role for sensing and controlling
neural prostheses and other neural interfacing devices, as well as understand-
ing the mechanisms of neural systems. Chapter 3 provides a comprehensive
review of electroencephalography (EEG) signal processing with a focus on
time and frequency domain analyses. After a general overview of EEG, time,
frequency, and wavelet signal processing techniques are reviewed in detail.

v

http://dx.doi.org/10.1007/978-3-030-43395-6_1
http://dx.doi.org/10.1007/978-3-030-43395-6_2
http://dx.doi.org/10.1007/978-3-030-43395-6_3


vi Preface

Brain-computer interfaces (BCIs) have emerged as a novel technology
that bridges the brain with external devices. BCIs have been developed to
decode human intention, leading to direct brain control of a computer or
device, bypassing the neuromuscular pathway. Bidirectional brain-computer
interfaces not only allow device control but also open the door for modulating
the central nervous system through neural interfacing. Chapter 4 provides
an introduction and comprehensive review of the concepts, principles, and
methods of BCI technology. Using various recorded brain signals that reflect
the “intention” of the brain, BCI systems have shown the capability to
control external devices, such as computers and robots. This chapter reviews
the concepts, principles, and various building blocks of BCIs, from signal
acquisition, signal processing, feature extraction, and feature translation, to
device control, and various applications. Examples of noninvasive BCIs are
discussed to provide an in-depth understanding of the noninvasive BCI tech-
nology. Chapter 5 reviews the intracortical BCI, or brain-machine-interface
(BMI), and discusses the four basic components of an intracortical BMI: intra-
cortical neural recording, a decoding algorithm, an output device, and sensory
feedback. The unique features of intracortical signals and the algorithms
for processing and decoding them are discussed in detail. Brain-controlled
functional electrical stimulation that can directly activate a patient’s own
paralyzed muscles, reanimating their arm, is also reviewed.

Neuromodulation, a principle discipline within neuroengineering research,
has rapidly become an important option in treating a variety of neurolog-
ical and mental disorders. It also represents an encoding technology for
bidirectional neural interfaces. The following three chapters cover three
widely applied neuromodulation techniques in clinical studies: deep brain
stimulation (DBS), transcranial magnetic stimulation (TMS), and transcranial
electrical stimulation (tES). Chapter 6 provides an overview of the principles,
electrodes and instrumentation used, mechanisms, and applications of DBS.
DBS is a neurosurgical technique that consists of the continuous delivery of
electrical pulses through chronically implanted deep electrodes connected
to a neurostimulator, programmable in amplitude, pulse width, frequency,
and stimulation channels. This chapter discusses engineering approaches that
have the potential to improve clinical outcomes of DBS, focusing on the
development of novel temporal patterns, innovative electrode designs, com-
putational models to guide stimulation, closed-loop DBS, emerging clinical
indications, and future noninvasive strategies. Chapter 7 provides an in-depth
coverage of TMS, a noninvasive neuromodulation technique that is based
on electromagnetic induction principles. This chapter explains the principles
of TMS devices including the electrical circuit topologies and efficiency of
the pulse generator, as well as the design of the stimulation coil; reviews
the underlying physics and its modeling, including the magnetic field of the
coil and the impact of the subject’s anatomy on the induced electric field;
and describes the biophysics of neuronal activation due to TMS. The chapter
concludes with an overview of stimulation paradigms encompassing single-
pulse, paired-pulse, and repetitive TMS, along with their applications in basic
research and the clinic. Chapter 8 covers tES neuromodulation, where electric
current is applied to electrodes on the head tomodulate brain function. Various
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Preface vii

tES devices are applied to conditions spanning neurological and psychiatric
disorders, neurorehabilitation after injury, and altering cognition in healthy
adults. All tES devices share certain common features including a waveform
generator, disposable electrodes or electrolyte, and headgear or an adhesive
to position the electrodes. Computational current flow models which support
device design and programming by informing dose selection for a given
outcome are also addressed.

Chapter 9 discusses optogenetic neural stimulation, which has been widely
used in animal models for neuroscientific research. In optogenetics, the
activity of specific cell types, such as neurons or astrocytes, is modulated
by exposing target cells to pulses of appropriate wavelengths. Prior to op-
togenetic stimulation experiments, specific genetic constructs are delivered
to target cells in order to express light activated ion-channels or ion-pumps
and produce light sensitivity. Unique features of optogenetic stimulation,
including specific cell-type targeting or bidirectional control of cellular activ-
ity, have allowed researchers to use this method in studying brain networks,
finding projections, or dissociating circuitries of neurological and psychiatric
disorders.

Chapter 10 deals with peripheral neural interfacing. This chapter examines
the possibility of detecting peripheral nerve signals and using these voluntary
signals to restore function in patients suffering from stroke, amputation,
or paralysis. The ability to obtain signals from peripheral nerves would
have significant benefits such as detection of motor intent in patients with
amputation. Similarly, decoding signals from the autonomic nervous system
would allow continuous monitoring of organ function. In this chapter, various
types of neural interfaces such as cuff electrodes, intra- and extrafascicular
electrodes, as well as regeneration electrodes, are reviewed, with a focus on
the flat interface nerve electrode.

Neuroimaging has played an important role in the understanding of neural
functions and in the aiding of clinical diagnoses and treatments. Recent
developments in functional neuroimaging have led to important tools for
the better understanding of, as well as aiding in the restoration of, neural
functions. Chapters 11, 12, 13, 14, and 15 cover five important approaches in
neuroimaging. Chapter 11 discusses the principles, methods, and applications
of functional MRI, with an emphasis on its biophysical and physiological
basis, experimental design and analysis methods, and applications to human
and animal studies. The use of functional MRI in combination with carefully
designed task paradigms has enabled scientists to map perceptual, cognitive,
and behavioral functions onto brain regions and networks. Spontaneous
activity observed with functional MRI in task-free resting states has also
been used to reveal intrinsic functional networks that collectively depict
the brain’s functional architecture or connectome. Chapter 12 reviews an
emerging neuroimaging technique, photoacoustic tomography (PAT), which
is playing an increasingly important role in brain studies. PAT’s unique
scalability provides an opportunity to examine the brain at multiple spatial
scales using the same contrast mechanism, bridgingmicroscopic insights with
macroscopic observations of the brain. This chapter reviews the principles of
PAT, presents the major implementations, and summarizes the representative
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neuroscientific applications. Existing challenges are also discussed in trans-
lating PAT to human brain imaging, elucidating its potential promise. Chap-
ter 13 reviews the basic principles and applications of electrophysiological
mapping and source imaging. Applying electromagnetic theory and signal
processing techniques, electrophysiological neuroimaging offers high tem-
poral resolution and good spatial resolution in mapping brain dynamics from
EEG or magnetoencephalogram (MEG). Knowledge of the spatiotemporal
dynamics of source distributions associated with neural activity aids in the
understanding of the mechanisms of neural systems, and provides a noninva-
sive probe of the complex central nervous system. Multimodal neuroimaging,
which integrates functionalMRI and EEG/MEG, is also discussed. Chapter 14
covers functional and causal connectivity analysis and imaging, with the
goal of not only discovering where brain activity occurs but also how neural
information processing is performed. The concepts of functional and causal
connectivity are introduced, and mathematic models behind the causality
analysis are presented. Causal connectivity approaches using various signals
are discussed, with focus on translations to human subjects using electrophys-
iological recordings such as EEG, MEG, or electrocorticography. Chapter 15
covers deep learning models and their applications to brain image analysis.
Deep learning has received increasing attention in brain image analysis. In
this chapter, the preprocessing steps for brain images and the fundamental
concepts of deep neural networks are first introduced. After that, four typical
types of deep neural networks used for brain image analysis are discussed,
including (i) convolutional neural networks (CNNs) and their variants, (ii)
recurrent neural networks (RNNs) and their variants, (iii) autoencoders, and
(iv) generative adversarial networks (GANs) and their variants, as well as
their applications in brain image classification, segmentation, registration, and
image synthesis/augmentation.

Computational models of neural systems provide a quantitative perspec-
tive in neurophysiology and neural engineering by coupling experimental
observations to mathematical formulations. Chapters 16, 17, 18, and 19
deal with neural modeling, which is an important tool for understanding
neural mechanisms. Chapter 16 provides an introduction to neuronal mod-
eling, laying the foundation for several basic models and surveying key
topics. These include the properties of electrically excitable membranes, the
Hodgkin–Huxley model, and how such a model can be extended to describe
a variety of excitable membrane behaviors, including axonal propagation,
dendritic processing, and synaptic communication. Chapter 16 also covers
mathematical models that replicate basic neural behaviors through more
abstract mechanisms and explores efforts to extend single-neuron models
to the network level. Chapter 17 overviews the linear systems theory as a
useful tool for capturing biophysically relevant parameters of neural activity
and connectivity, and for analytical and numerical study. This chapter begins
with a brief overview of state-space representations and linearization of neural
models for nonlinear dynamical systems. After deriving core concepts in the
theory of linear systems such as the impulse and controlled responses to
external stimuli, and achieving desired state transitions, controllability, and
minimum energy control, recent advances are discussed in the application of

http://dx.doi.org/10.1007/978-3-030-43395-6_13
http://dx.doi.org/10.1007/978-3-030-43395-6_14
http://dx.doi.org/10.1007/978-3-030-43395-6_15
http://dx.doi.org/10.1007/978-3-030-43395-6_16
http://dx.doi.org/10.1007/978-3-030-43395-6_17
http://dx.doi.org/10.1007/978-3-030-43395-6_18
http://dx.doi.org/10.1007/978-3-030-43395-6_19
http://dx.doi.org/10.1007/978-3-030-43395-6_16
http://dx.doi.org/10.1007/978-3-030-43395-6_16
http://dx.doi.org/10.1007/978-3-030-43395-6_17


Preface ix

linear systems theory to structural and functional brain data across multiple
spatial and temporal scales, along with methodological considerations and
limitations. Chapter 18 focuses on modeling and analysis of neuronal pop-
ulations. This body of work has opened up avenues of inquiry that range
from primarily theoretical (How do neurons represent information?) to highly
practical (How can we design a robust BCI?). This chapter reviews the history
of analytic approaches and neuroscience research aimed at deciphering the
population code, from early work with single neurons and pairs to more recent
approaches leveraging the newest technology to measure tens to hundreds
of neurons simultaneously. Chapter 19 focuses on the clinical applications
of modeling and machine intelligence to forecast seizures in epilepsy pa-
tients. This chapter discusses computational modeling and machine learning
algorithms, in the context of seizure prediction and detection, as well as in
other applications, such as antiepileptic drug efficacy. Also discussed are
common methods of feature extraction––particularly focusing on wavelet
phase coherence, and cross-frequency coupling.

The retina represents an important component of the peripheral nervous
system. Chapters 20 and 21 discuss retinal prostheses and bioengineering.
As a successful neural interface, retinal prosthesis can provide a sense of
sight to people with severe visual impairment due to retinal photoreceptor
degeneration. Chapter 20 discusses the concepts and applications of retinal
prosthesis in patients, and clinical research studies that have shown that while
retinal implants can provide people with improved navigational skills, they
cannot restore normal reading abilities. Improvements in visual acuity may be
possible through denser electrode arrays or image processing strategies that
yield more focused, natural responses from the retina. Chapter 21 provides
a comprehensive review of the neural structure and function of the retina,
including its associated vasculature, major retinal diseases, and the modeling
and engineering approaches to understanding retinal physiology and patho-
physiology. The mathematical modeling of neural responses in the retinal
microenvironment as well as the restoration of retinal function is reviewed.
Because of its simpler structure and lack of significant neurofeedback, the
retina has long served as a model for understanding complex parts of the
nervous system and as a mainstay for the translation of neuroscience discov-
eries to clinical applications, embodying one of the unique features of neural
engineering research.

Tissue engineering is the use of engineering methods to replace, replicate,
or improve biological tissues. Neural tissue engineering involves the inte-
grated use of biomaterials, cellular engineering, and drug delivery technolo-
gies with the purpose of protecting, repairing, or regenerating cells and tissues
of the nervous system. Through the introduction of biochemical, topographic,
immunomodulatory, and other types of cues, tissues can be therapeutically
controlled to direct growth and tissue function toward overcoming biological
constraints on tissue repair and regeneration. These strategies can be applied
when injury or disease occurs in the brain, spinal cord, or peripheral nerves, or
to improve chronic functionality of implantable neural interfaces. Chapter 22
presents an overview of neural tissue engineering using examples of thera-
peutic systems including nerve conduits, implantable hydrogels, the delivery
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of neurotrophic factors and stem cells, genetic approaches to tissue engineer-
ing, immunomodulation, and electrical stimulation.

Through this collection of carefully selected chapters written by world
renowned experts in neural engineering, we wish to provide a general picture
of the field and to outline the fundamental underpinnings that will make
it a core discipline in biomedical engineering, while conveying many of
its exciting aspects. Neural engineering not only represents an interface
between neuroscience and engineering, but, more importantly, has led to great
advancements in basic and clinical neuroscience, many of which would not
have been possible without the integration with engineering principles.

This book is a collective effort by researchers and educators who specialize
in the field of neural engineering. I am very grateful to them for taking the time
out of their busy schedules and for their patience during the entire process.
It should be noted that the field of neural engineering is developing rapidly
and that there are many worthwhile topics that could not be included in this
book, as the book aims to serve as textbook for a semester-long or year-long
neural engineering course. Nevertheless, our intention is to provide a general
overview that covers the basics and important areas of neural engineering
research. A unique feature of this edition is to provide a rich set of homework
problems that can be used for classroom teaching. Instructors may contact the
Publishers for access to the solutions to the homework problems.

I am indebted to Merry Stuber and Murugesan Tamilselvan of Springer
for their support and great effort during this project. I would also like to ac-
knowledge the National Institutes of Health (R01EB021027, RF1MH114233,
R01NS096761, R01AT009263) and Carnegie Mellon University (Trustee
Professorship in Biomedical Engineering) for partial financial support.

Pittsburgh, PA, USA Bin He
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1Introduction to Neurophysiology

Paul A. Iaizzo

Abstract

Neurophysiology is a critical and exciting
topic to study and understand in great detail
for those working in any field associated
with neuroengineering—basic or applied
research, device design and development,
and/or neurology or neurosurgical clinical
subspecialties. The purpose of this chapter
is to provide a general introduction to the
field of neurophysiology, that is, a high-level
overview of the anatomy and workings of
the human central nervous system (CNS).
One can explore other sources to find more in-
depth discussions related to many of the topics
introduced in this chapter as well as learn the
specifics of state-of-the-art neuroengineering
concepts related to each topic.
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1.1 Overview of Neurons,
Synapses, Neuronal Circuits,
and Central Nervous System
Anatomy

Cells within the central nervous system (CNS)
are like most other cells in the human body and
contain various components/organelles, includ-
ing surface membranes (which contain ion chan-
nels and biochemical receptors), nuclei (contain-
ing chromosomes and DNA), mitochondria, ribo-
somes, endoplasmic reticulum, Golgi complexes,
lysosomes, etc. The cell populations defined as
nerve cells (neurons) are considered as the func-
tional units within the human nervous system; see
Fig. 1.1. These cells also typically have dendrites,
axons, and axon terminals. Neurons under rest-
ing conditions have an electrical potential across
their plasma membranes, with the inside of these
cells being negatively charged with respect to
the outside (extracellular spaces). This is defined
as the resting membrane potential, which ranges
between −40 and −90 mV in healthy neurons;
by convention, the extracellular fluid is assigned a
voltage of zero. In general, the resting membrane
potential can be considered to hold steady, unless
altered by changes in local electrical currents.
These potentials exist due to an excess of negative
ions inside the cells and an excess of positive
ones on the outside. One can consider that it is

© Springer Nature Switzerland AG 2020
B. He (ed.), Neural Engineering, https://doi.org/10.1007/978-3-030-43395-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43395-6_1&domain=pdf
mailto:iaizz001@umn.edu
https://doi.org/10.1007/978-3-030-43395-6_1


2 P. A. Iaizzo

Fig. 1.1 Although nerve cells throughout the central ner-
vous system take hundreds of unique forms and shapes,
most of the cells have common cellular components.
Shown here are the major structural features of an ide-
alized neuron: dendrites (receiving synapses from other
cells), the cell body, the axon hillock, myelination, an
axon, and the axon terminals (forming synapses onto other
cells)

the distribution of three major mobile ions across
a neuron’s plasma membrane that sets up the
possibility for a change in potential: (1) Na+ with
145 mmol/L extracellular and 15 mmol/L intra-
cellular concentrations; (2) Cl− with 100 mmol/L
extracellular and 7 mmol/L intracellular concen-
trations; and (3) K+ with 5 mmol/L extracellular
and 150mmol/L intracellular concentrations. The
excess of charged ions collects near the plasma
membrane, and their movement during excitation
of the cell underlies the development of an action
potential, which then propagates from the point
of excitation along the surface membranes (e.g.,
down a neuron’s axon). See Fig. 1.2 for defini-
tions of excitation states.

If the concentration gradient for any ion is
known, then the relative equilibrium potential
across the plasma membrane for that ion can
be calculated by means of the Nernst equation,
that is, one can estimate the electrical potential
necessary to balance a given ionic concentration
gradient across a membrane (the net flux for this
ion is zero). The Nernst equation is

Eion = 61/Z · log (Cout/Cin)

where Eion is the equilibrium potential for a given
ion (mV); Cin is the intracellular concentration
of the ion; Cout is the extracellular concentra-
tion of the ion; Z is the valence of the ion; and
61 is a constant value that takes into account
the universal gas constant, temperature (37 ◦ C),
and Faraday’s electrical constant. If each one of
these three main ions become totally permeable
across a given membrane, then ENa = +60 mV,
EK = −90 mV, and ECl = −80 mV. Note that
nerve cells have negative resting membrane po-
tentials, suggesting that it is primarily determined
by either the chloride or potassium ion distribu-
tions. Yet, by measurements of ion movements,
it has been shown that chloride ions are typi-
cally passively distributed across a given neu-
ron’s surface membrane, and thus, chloride cur-
rents have negligible roles under resting condi-
tions. This leaves potassium as the dominant ion
species in determining the overall resting mem-
brane potentials in most nerve cells. It should
be noted that neurons typically contain a vari-
ety of ion selective channels within their surface
membranes, with differing neuron types having
unique compositions. The term gating is used to
refer to the triggered openings of such channels.
More specifically, voltage-gated ion channels re-
spond to changes in local membrane potentials
of a given cell, and ligand-gated ion channels
are those that respond to specific biochemical
factors (receptor activated by agonists). Note that
spontaneously active ion channels will elicit ran-
dom frequencies of opening and closing, whereas
leak channels seem to be more continuously open
(though only allowing typically low ion flows).
In addition to classifications based on control
mechanisms, channels are also classified by their
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Fig. 1.2 Shown here is a
general action potential
waveform. Depolarizing,
repolarizing,
hyperpolarizing, and
overshoot changes in
membrane potential are
shown in relation to the
resting membrane potential
(horizontal red line)

ion selectivities (e.g., Na+, K+, Ca2+, or cation
nonspecific) and/or the directions in which such
ions pass through them (e.g., inward or outward).
Action potentials are elicited in nerve cells due
primarily to transient changes in the cellular per-
meabilities of both Na+ and K+ ions. An initial
local electrical depolarization (i.e., the surface
membrane reaches a threshold voltage of +10
to +30 mV above the given resting potential)
then causes the transient openings of voltage-
dependent Na channels. This brief (1–2 ms) in-
crease in sodium permeability (conductance) fur-
ther depolarizes the cell and drives the mem-
brane potential toward the sodium equilibrium
potential; shortly (within approximately a mil-
lisecond), these channels are actively inactivated.
This depolarization, in turn, activates voltage-
gated K channels, which allows for efflux from
the cell and thus drives the membrane potential
back toward the potassium equilibrium potential
(more negative); see Fig. 1.2. This excitation can
also be considered as typically self-propagating
(excite adjacent cell membrane areas, e.g., action
potential propagation down the nerve axon); see
Fig. 1.3.

Importantly, neurons form connections
between themselves (e.g., via synapses, chemical,
or electrical), and this is the primary mechanism
for information transfer within the CNS (Figs.
1.4 and 1.5). Nevertheless, there are other cell

populations beyond neurons that make up the
CNS that are known to be vital for its proper
function.

Such cells are grouped into a population
known as glia cells (or neuroglia); as such they
play critical roles to maintain cerebral tissue
homeostasis, form myelin, and provide both
support and protection for the brain’s neurons.
The main purpose of a myelin layer, or a myelin
sheath around a nerve cell’s axon, is to increase
the speed at which generated electrical impulses
propagate (e.g., generator or action potentials).
Myelin is essential for the proper functioning of
the nervous system. The major subpopulations of
glia are (1) astrocytes (or astroglia), which are
star-shaped cells that have been shown to provide
physical and nutritional support for neurons,
clean up brain “debris,” assist in the transport of
nutrients, regulate the contents of the extracellular
space, and/or form a structural scaffolding to
help hold neurons in place; (2) microglia which,
like astrocytes, are important in removing waste
from cellular debris; and (3) oligodendroglia cells
which provide the insulation (myelin) for neurons
that lie within the CNS (i.e., enhance action
potential propagation rates). Note that Schwann
cells provide insulation (myelin) to neurons
that lie within the peripheral nervous system. It
should also be emphasized that cell populations
within the brain are dynamic structures which
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Fig. 1.3 Shown here is the schematic representation of
the one-way propagation of an action potential down a
nerve cell’s axon. Local currents generated within the cell
body subsequently resulted in an action potential being
generated in the far left region of the axon (known as
the axon hillock). This excitation then propagated to the
middle region of the axon which, in turn, activated the

voltage-gated Na channels in the dark blue (far right)
portion of the axon, i.e., the action potentials propagated
rapidly down the axon. As in the initial segments of the
axon membranes, the Na current becomes near zero, and
the initiated voltage-gated K current will allow for repo-
larization back to the original resting membrane potential
(e.g., −70 mV)

continually turn over their structural components
and/or alter their shapes to create new neural
connections; hence, the CNS elicits a high degree
of “plasticity.” In the CNS, the nerve cell body
and dendrites receive most of their inputs from
other neurons. It is the branching of the dendrites
with greatly increases a given cell’s surface area:
some neurons can elicit as many as 400,000
dendrites. In addition, dendritic extensions called
dendritic spines further enhance these surface
areas and are highly dynamic processes. The
presence of ribosomes and protein-synthesis
machinery in these spines allows them to remodel
their shapes in responses to variations within
synaptic activities, which in turn is considered to
play key roles in complex CNS processes such as
memory and learning.

In the average human brain, it is estimated that
there is roughly one glia for every neuron, with a
ratio of about two neurons for every three glia in
the cerebral cortex or gray matter [2]. Therefore,
the brain’s populations of glial cells should be
regarded more as partners to neurons, to optimize
overall brain function. Glial cells surround the
somas, axons, and dendrites of neurons and pro-
vide them with both physical and metabolic sup-
port. Additionally, glia are also considered crucial
for normal nervous system development, as well

as important CNS processes such as synaptic
plasticity and synaptogenesis. Furthermore, it is
believed that glial cells play essential roles in
the regulation of repair of neurons and neural
pathways after injury (i.e., physical injury or an
ischemic event). More recently, it has been shown
that astrocytes can communicate with neurons
and even modify the signals they send or receive.
Therefore, glial cells can affect the processing of
information as well as the signaling that occurs
at a given synapse (i.e., the sites of connections
between neurons).

In humans, approximately one-half of an in-
dividual’s gene pool contributes to building the
brain and its various cell populations. It is esti-
mated that a healthy adult contains 1010 neurons
(10,000,000,000 neurons). Furthermore, the mul-
titude of synapses between these neurons utilize
on the order of 100 different neurotransmitters,
second messengers, and growth factors. Addi-
tionally, one can identify some 300 different re-
ceptor molecules in the brain; to further compli-
cate matters, these receptors can be configured as
receptor complexes (i.e., dimers, trimers, or more
complex heteromers). Thus, one can only imagine
the daunting task it would be to model such a
system from a neuroengineering standpoint.
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Fig. 1.4 Shown here are three different nerve cells that
network together to spread information via their relative
synaptic connections. For example, the arrows indicate
the potential propagation of excitatory information via the
spread of action potential from one cell to the next by
inducing voltage changes within the cell bodies of the
adjacent cell

In general, neurons can be divided into three
main functional classes: afferents, efferents, and
interneurons. Afferent neurons convey informa-
tion (sensory) from the tissues and organs of the
body into the CNS (i.e., the spinal cord and/or
brain). In contrast, efferent neurons convey infor-
mation away from the CNS to the effector cells
(they induce an action or response), that is, within
muscles, glands, or other types of nerve cells.
Interneurons connect the various nerve cells to-
gether within the CNS into networks. It is roughly
estimated that for each afferent neuron bringing
information into the CNS, there are ten associated
efferents and 200,000 interneurons [15].

Simplistically, one can envision the human
brain to be composed of millions of neural cir-
cuits which serve to amplify weak signals, at-

Fig. 1.5 A schematic representation of the general
anatomy of a chemical synapse. Shown is a single presy-
naptic terminal adjacent to the postsynaptic membrane of
the post-somatic neuron. The region between the two cells,
the synaptic cleft, will have typical distances of 200 to
300 angstroms. The presynaptic terminal possesses vesi-
cles containing neurotransmitter molecules which, when
released into the synaptic cleft, will bind to the receptor
protein (ligand channels) of the postsynaptic membrane.
Typically, when activated, this allows for the gating of ions
through these channels and thus focal voltage changes.
This signaling can either be excitatory (i.e., an excitatory
postsynaptic potential, EPSP) or inhibitory (inhibitory
postsynaptic potential, IPSP)

tenuate overly intense activity, emphasize con-
trasts, maintain rhythms (e.g., involuntary control
of respiration), and/or keep a group of neurons
functional in their optimal working range (e.g.,
by feedback adjustments of their gains). These
circuits may be contained within a given region
of the brain or extend throughout the brain; al-
ternately, the circuits may project to various re-
gions of the systemic nervous system. Hence,
such transported information can be considered to
(1) “diverge” to multiple brain regions so to have
a global impact or (2) “converge” on a single cell
or group of similar cells (e.g., nuclei or ganglion)
to activate or inhibit a given neural function.

The concepts of “divergence” and “conver-
gence,” which are interposed via neural networks
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Fig. 1.6 A schematic representation of the concept of
divergence of neural networks, that is, divergence of infor-
mation from afferents to spinal neurons (left). Also shown

is the concept of convergence of excitatory and inhibitory
signals from higher motor centers onto a final common
pathway onto a motor neuron (right)

throughout the CNS, can also be considered to
occur at more global levels relative to overall
CNS function. In other words, information from
multiple brain regions (given sites or from groups
of neurons or nuclei) may have simultaneous/in-
stantaneous function impacts, as divergent or con-
vergent responses, on given neural activities asso-
ciated with specific brain processes. For example,
our ability to wake from sleep results from the
large divergence of neural excitation arising from
the reticular activating system located within our
brain stems.
Divergence of neural information can occur

via axon collaterals, which serve to make such
information accessible simultaneously to various
parts of the CNS (Fig. 1.6, left panel). For exam-
ple, the same sensory information can be utilized
for reflex responses as well as for mediating a
sensory experience. In addition, a single motor
neuron innervates numerous muscle fibers; they
function as a contractile unit.

Regarding convergence, thousands of axon
collaterals can converge onto the cell body of a
single neuron. It then depends on the sum and
directions depolarizing or hyperpolarizing of the
synaptic processes acting at each moment in
time, whether or not that particular neuron will
elicit an action potential and send information
(i.e., its signal) onward (Fig. 1.6, right panel).
Convergence allows a neuron to process or
integrate incoming excitatory and inhibitory
signals occurring at its membrane within a short
period of time (msec).

1.1.1 Temporal and Spatial
Facilitation

Neural discharge patterns and network structures
within the CNS can have unique design properties
that serve to achieve various signaling functions.
Two examples of such known properties are de-
scribed here—temporal and spatial facilitation
(Fig. 1.7):

• Temporal facilitation: Repetitive stimulation
of an axon may subsequently result in the elic-
itation of an action potential. Excitatory post-
synaptic potentials (EPSPs) triggered in rapid
succession are additive, with the accumula-
tive effect eventually becoming suprathresh-
old; this is possible because the durations of
the EPSPs are longer than the axonal refractory
periods; that is, summation of EPSPs resulting
in an action potential is not affected by the
axonal refractory periods.

• Spatial facilitation: The activation of a
single axon produces subthreshold EPSPs,
but several axons innervating the same
neuron triggered simultaneously give rise
to a suprathreshold potential and thus the
elicitation of an action potential.

Neurons in the CNS receive inputs from
dozens to thousands of axons, for example, an
average of 6000 collateral branches terminate
(form synapses) on a single motor neuron. These
inputs can include both excitatory and inhibitory
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Fig. 1.7 Two modes of synaptic facilitation. Temporal
facilitation occurs when multiple stimuli are delivered to
a nerve in rapid enough succession to reach threshold to
initiate an action potential; in this case, three stimuli were

required. Spatial facilitation occurs when multiple excita-
tory inputs (different nerves) are delivered at relatively the
same time point

information (inhibitory postsynaptic potentials
or IPSPs); hence, it is the net amount of overall
positive excitation (depolarization) at a given
point in time that will ultimately determine if an
action potential will be triggered (suprathreshold
response). In other words, if an equal number of
IPSPs and EPSPs occur on a neuron at a given
time, then the net response will not elicit an action
potential. Thus, when there is a higher proportion
of EPSPs that affect the given cell membrane at
a given time such that the cell reaches threshold,
this will in turn causes the elicitation of an action
potential.

In humans, the brain is considered as the con-
trol center of the nervous system. Yet, when one
speaks of the CNS, we typically include the spinal
cord and brain together (Figs. 1.8, 1.9, and 1.10).
The brain is protected by a well-enclosed cra-

nium, and the spinal cord is protected by a verte-
bral column. Relative to other animals, the human
brain has a highly developed frontal cortex (Fig.
1.9), which is associated with executive functions
such as self-control, planning, reasoning, and ab-
stract thought. The portion of the brain devoted
to vision is also greatly enlarged in humans, as
compared to other animals. Viewed outwardly or
via imaging methods such as MRI, the human
cerebral cortex is nearly symmetrical, composed
of left and right hemispheres. Each hemisphere
is then conventionally divided into four “lobes”
including the frontal, parietal, temporal, and oc-
cipital lobes (Figs. 1.8 and 1.9). These lobes are
named after the bones of the skull that overlie
them, with one exception—the border between
the frontal and parietal lobes is shifted backward
to the central sulcus (a deep fold that marks the



8 P. A. Iaizzo

Fig. 1.8 The relative location of a normal brain within the skull; major regional brain areas are also indicated

border between the primary motor cortex and the
somatosensory cortex); see also Fig. 1.9.

From a functional standpoint, a given brain
region may contribute to specific nervous system
activity, for example, the motor cortical areas on
the right side of the brain (anterior to the central
sulcus) control motor functions on the left side
of the body and vice versa. In a second example,
the brain areas primarily responsible for three-
dimensional spatial resolution (i.e., knowledge of
your body relative to the surrounding environ-
ment) in most individuals are attributed to the
right temporal cortex. Much of what we know
about both the anatomy and functioning of the
human nervous system has come from the study
of human motor disorders and experimental stud-
ies of animals in which specific lesions of focal
injuries were placed in a given neuronal tract,
brain nuclei, and/or brain center. More recently,
advances in functional MRI have been used to
associate an individual’s functional neural abili-

ties to a specific brain region and/or to monitor
abnormal functions within a given region.

1.1.2 Special Neural Circuits

As noted above, neural circuitries by their inher-
ent organization can serve to amplify or attenu-
ate incoming signals to a given brain area or a
given neuron itself. Below are several simplified
examples that illustrate various defined neural
circuits:

• Antagonist inhibition: In this example, the Ia
afferents of a muscle spindle (length sensor)
in a given muscle in which the spindle lies
in parallel with the muscle fibers (extrafusal)
make excitatory synapses with the motor neu-
rons innervating that muscle (agonistic excita-
tion), and by way of interneurons, it also has
inhibitory synapses with motor neurons inner-
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Fig. 1.9 Shown here is the gross anatomy of the central
nervous system (brain and spinal cord) in several differ-
ent anatomical planes (horizontal on the left; coronal in

the middle top; sagittal on the right). The various brain
regions and spinal cord regions are indicated: C cervical,
T thoracic, L lumbar, and S sacral)

vating the antagonistic muscles. This process
is also called reciprocal inhibition. The antag-
onistic muscles in this case received forward
inhibition (Fig. 1.11, left panel).

• Feedback inhibition: This occurs when the in-
hibitory interneurons act on the cells by which
they themselves were activated (e.g., Renshaw
inhibition, Fig. 1.11, center panel).

• Lateral inhibition: A form of feedback inhibi-
tion in which the inhibitory interneurons are
connected in such a way that they act not
only on the excited cell itself but also on the
neighboring cells with the same function (Fig.
1.11, right panel).

• Positive feedback: In such circuits, interneu-
rons send excitatory signals back to the cells
which they received the signal from and per-
haps also neighboring cells with similar func-
tions.

• Synaptic potentiation: Repeated use of a
synapse can cause considerable enlargement
of the synaptic potentials; such changes
can be associated with biochemical changes
within that given cell (e.g., phosphorylation of
various proteins).

• Synaptic depression: The situation in which
the postsynaptic potentials during or follow-
ing a tetanic stimulation become smaller than
those initiated by a single stimulus.

1.1.3 Reflexes

Circuits that include both sensory pathways (af-
ferent) and an effector response (efferents) are
typically considered as reflexes. In other words,
reflexes may also denote a complete neuronal
circuit extending from the peripheral receptor
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Fig. 1.10 Shown here is a depiction of how afferent infor-
mation typically enters various levels of the sensory axis of
the nervous system. For example, primary sensory neurons
in three different regions of the body (foot, hand, and
face) carry sensory information (e.g., pain or temperature,
noted by yellow stimulus triggers) into the dorsal parts of
the spinal cord (foot and hand). The cell bodies for these
neurons are primarily located in the dorsal root ganglia.
Note that the afferents carrying sensory information from
the facial regions project through the trigeminal nerves to

the lateral part of the brainstem (into the pontine areas);
their cell bodies are commonly located in the trigeminal
ganglion. Such sensory information will ascend to various
brain regions (divergence) and will also terminate in the
sensory cortical regions on the opposite side of the brain
(i.e., these pathways are considered to be crossed within
the CNS). On the left are three different transverse sections
through the corresponding neuroaxis; on the right is a
coronal section view of the spinal cord and brain

through the CNS and back to the peripheral ef-
fects (Fig. 1.12). In general, it can be considered
that all receptors participate in reflexes of some
kind.

The most basic reflex found in humans within
the CNS is the monosynaptic reflex. This is also
noted as the stretch reflex which is elicited by
a skeletal muscle stretch; in this case, there is
one synapse in the CNS, that is, between the
afferent and efferent neurons. More specifically,
the Ia afferents from the muscle spindle send
collaterals directly onto alpha motor neurons as

an EPSP which, in turn, causes action potentials
(no interneurons are involved). Yet, there are also
synapses on each muscle fiber involved, known
as the neuromuscular junctions (Fig. 1.13).

In the case of reflex facilitation, augmentations
of the stretch reflex within the leg can occur by
increasing the neural gain in that given circuit,
such as by increasing one’s voluntary activities
within one’s arms (i.e., the Jendrassik maneu-
ver). Hence, via excitatory synapses coming from
neurons associated with the arms, the neurons to
be activated in these reflexes to become closer
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Agonist
Muscle
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Muscle

StimulusStimulus Stimulus
Interneurons

Fig. 1.11 A schematic representation of several com-
mon inhibitory circuits within the central nervous system.
Three inhibitory interneuron circuits are shown: those of

antagonistic inhibition (left panel), Renshaw inhibition
(negative feedback; center panel), and lateral inhibition
(right panel)

Fig. 1.12 Shown here is the basic neural circuitry of a
reflex arc (top). The receptor brings information into the
central nervous system (CNS) via an afferent pathway
and then out via the efferent pathway via neurons asso-
ciated with the effector response. The arc shown on the

lower part of the figure is the simplest one in the CNS,
the monosynaptic reflex. The Ia afferents innervating the
muscle spindle fibers (intrafusal) synapse within the CNS
directly on the alpha motoneurons, which, via their motor
axons, project and diverge to innervate the skeletal muscle
fibers (extrafusal)
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Fig. 1.13 Shown here is
the pathway of a
monosynaptic stretch
reflex. A tap of a reflex
hammer on the patella
tendon causes stretch of the
quadriceps muscle as well
as the afferent stretch
receptors within the muscle
spindles; this then elicits an
effector response. The
reaction to the length
changes is a contraction
within the muscle that was
itself stretched. The
afferent to efferent pathway
underlying this reflex is
diagrammed—from
spindle to the alpha motor
neuron to the
neuromuscular junctions
on the muscle fibers
eliciting contractions

to their threshold potentials for extended periods
and fewer additional excitatory inputs (e.g., from
afferent activations) are needed to elicit reflex
responses.

It should be noted that most reflexes within the
human CNS are composed of numerous neural
networks with many interneurons (polysynaptic
pathways) that have both convergent inputs and
divergent projections. In other words, except for
the monosynaptic stretch reflex, all reflex arcs
in humans contain several interneurons in series
(receptor ➔ interneuron ➔ interneuron ➔ effec-
tor); thus, these are called polysynaptic reflexes.
Examples include the following:

• Suckling reflex: The receptors in this highly
complicated polysynaptic reflex include
touch-sensitive structures in the skin of the
lips (mechanoreceptors). The effectors include
the muscles of the lips, cheeks, tongue, throat,
thoracic cage, and diaphragm. The effector
responses within this polysynaptic reflex
involve ingestion movements that are also
coordinated with respiration (i.e., to prevent
aspiration).

• Cough reflex: Stimulation of receptors in mu-
cosa of the trachea and bronchi elicits not only
coughing but also conscious sensations. The
feeling of a slight tickling or scratching will
usually cause coughing, but this response does
not necessarily occur immediately.

• Clonus or tremor: In part, these involuntary
motor responses are due to manifestations of
simple stretch reflexes. Physiological tremors
and/or physiological clonus can be elicited in
normal humans, yet they can become con-
tinuous or more pronounced in pathological
conditions (e.g., due to a spinal cord injury).

• Flexor reflex: In this reflex reaction, there are
contractions of the flexor muscles and relax-
ations or inhibition of the extensor muscles.
Thus, this reflex has the action to pull a body
part away from an acute painful stimulus.

• Crossed extensor reflex: About 0.2–0.5 sec-
onds after stimulation of a given flexor reflex,
extension occurs in the opposite limb. The
primary purpose of this reflex is to push the
entire body away and to prepare to support the
body as another part is flexing. For example,
you step on a piece of glass with your right foot
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and immediately and involuntarily pull your
lower leg away from the glass (flexor reflex),
while this induced an extension of your left leg,
so to prevent you from falling over (stabilizing
your upright position).

• Scratch reflex: This is an example of the com-
bination of several varied reflex components,
which have different functions, for example,
position sensing (location of irritation on the
body) and a subsequent involuntary but appro-
priately located scratching response. It should
be noted that typically you can voluntarily
suppress these reflex responses.

1.1.4 Reflex Time

The concept of measuring reflex times depends
on numerous factors. Briefly, it can be described
as the time between the onset of a stimulus and
the action of the effect, which in turn is chiefly
determined by the overall conduction timeswhich
involve (1) transformation of the sensory stim-
ulus; (2) transmission of information across a
synapse; (3) transmission of information between
(in series) interneurons, if present; (4) transmis-
sion of information from the effector pathway to
the effector organ; and (5) the axon lengths and
conduction velocities of the involved neurons.

1.2 Sensory Systems

We experience our environment and the events
that take place within our bodies not directly, not
in their entirety, but by way of specialized sense
organs (e.g., eyes, ears, nose, etc.). In general,
each receptor organ is constructed so that it re-
sponds to a particular range of environmental in-
fluences, which then transmit the corresponding
information to higher integrating centers within
the brain (CNS).

The human sensory (afferent) systems and the
motor systems (effectors) are intimately inter-
meshed. For movements to be carried out in func-
tionally appropriate ways, all the structures in-
volved in their production require and receive
information from the periphery regarding the mo-

mentary position of one’s body and the progress
of the desired movement. On the other hand,
certain kinds of sensory information can only be
acquired with appropriate motor acts, for exam-
ple, move the head to view a given object or move
your hand to touch something.

1.2.1 Properties of a Particular
Stimulus

Relative features of the sensory systems within
the human body can be described by terms such as
modality, quality and quantity, and/or perception.

In general, a modality can be defined as a
group of similar sensory impressions mediated by
a particular sensory organ or groups of similar
neurons. Modalities (or impressions), which arise
from our external environment, include the clas-
sic five—sight, hearing, touch, taste, and smell.
Additionally, we can detect themodalities of cold,
warmth, vibration, and pain. Modalities are also
mediated by grouped sensory neurons, which re-
flect internal states within our bodies and include
those that we are consciously aware of (equilib-
rium, limb positions, loads, tensions, etc.) and
also those which we typically do not have skilled
awareness of (unconscious internal modalities)
such as osmotic pressure of the blood, blood CO2

tension, lung capacity, and the relative stretch of
one’s stomach. Yet, with training and biofeed-
back, one can learn to perceive these modalities
and perhaps even consciously control or respond
to them.

A sensory quality is defined as a distinctive
property of a given modality. For instance, quali-
ties of vision might include the colors red, green,
and blue or given lightness or hue of a color.
Pitches or tones are specific qualities related to
our hearing, and we are familiar with the qualities
of sweet, sour, salty, savory, and bitter (taste).
Each quality is related to “specific sensory stim-
uli”; it is a reaction to different types of stimuli
by the detecting cells within the same sense or-
gan (i.e., “receptors”). In other words, specific
populations of sensory cells within an organ are
adapted to respond more strongly and/or more
specifically to a given type of sensory stimulus.
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Stimulation of these populations of specialized
receptors causes the generation of one or more
action potentials, which then propagate along the
various afferent nerve axons to the appropriate
CNS sensory centers. It should be noted that the
properties of these generated action potentials are
the same for all types of qualities. Therefore, the
information they contain is determined entirely
by the receptor type fromwhich the relevant nerve
arises and the relative areas of the brain which
become activated.

The quantity of a given modality can be de-
fined as the relative intensity of a specific kind
of sensory impression (i.e., with a given modal-
ity and quality). As the receptor potential in-
creases, typically so does the frequency of ac-
tion potential discharges. A threshold stimulus is
commonly defined as the smallest stimulus that
produces a detectable response (i.e., elicitation of
at least one action potential). Yet, an important
concept related to a sensory quantity is the be-
havior known as accommodation, which means
that in some cases not all receptors generate a
proportional frequencies of action potentials (or
static responses) for a given stimulus intensity.
For example, if a receptor exhibits accommo-
dation, the relative frequency of discharge will
decrease over time. There are two basic types
of accommodation—slowly adapting (tonic) and
rapidly adapting (phasic) responses.

Finally, it is important to define an overall sen-
sory perception. First, any combination of several
sensory impressions is considered as a sensation.
A perception then interprets these sensations with
reference to an individual’s learned experience.
For example, this author prefers a warm, chewy
chocolate-chip cookie with the chocolate slightly
melted. The human body contains hundreds of
different types of sensory receptors, and there
can be multiple types of these specific receptors
within a given tissue or organ. Although some
populations of these receptors serve the same
modality, they can have differing qualities. Listed
below are various types of receptors found within
the human body and some of their associated
modalities:

• Free nerve endings (touch, pressure, pain, and
temperature)

• Merkel’s disks (touch, pressure)
• Hair follicle receptor (touch, pressure)
• Pacinian corpuscles in skin and deep body

tissue (pressure, stretch)
• Meissner’s corpuscles (touch, discriminative)
• Ruffini endings (touch, pressure, internal reg-

ulation, warmth)
• Golgi tendon organ (tension, force)
• Muscle spindles (length)
• Krause’s corpuscles (hot and cold)
• Olfactory neurons (smell)
• Auditory neurons (sound)
• Hair cells in the semicircular canals (accelera-

tions and/or gravitational changes)
• Rod and cone cells in the eyes (light and vari-

ous colors)

1.2.2 Functional Organization
of a Receptor

In general, although receptor populations have
different functions and unique overall structures,
most receptors have similar underlying primary
structures. Each receptor requires a stimulus for
activation (a physical stimulus), which is then
processed by the afferent cells that are commonly
composed of the following: (1) a filter that can
modify the physical stimulus and thus detect a
given quality; (2) a transducer that processes the
stimulus into an electrical response, via ion chan-
nel activities; (3) an encoder that processes the
transduced signal into an ultimate effect, for ex-
ample, a hyperpolarization or depolarization; and
(4) the subsequent generation of action potentials
that typically occurs at the first node of Ranvier of
a given primary sensory cell. Note that secondary
sensory cells do not elicit action potentials them-
selves but, via their induced changes in mem-
brane potential, cause the generation of action
potentials of their innervating cells, for example,
via synaptic activation (see additional examples
below).
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1.2.3 The Relative Distributions
of Receptors Within
the Human Body

One can define the regions within given tissues or
structures that are innervated by various sensory
receptor as its receptive field.More often than not,
innervation areas of adjacent receptors overlap; in
other words, it is typical that there are regions of
overlap of individual receptor fields. Figure 1.14
(left panel) shows one such sensory unit and its
given receptive field.

The concept of spinal dermatomes is important
to understand when, from a clinical/functional
perspective, one attempts to identify the underly-
ing cause of a patient’s sensory ormotor losses. In
general, one can consider that the afferent nerves
from a specific region of the body join together to
form the various peripheral and (eventual) spinal
nerves. It then follows that a loss of sensation
within a specific dermatome likely indicates that
the function of a given peripheral nerve is being
compromised, for example, impinged or dam-
aged (Fig. 1.15). However, to block the sensation
of pain, regional anesthesia can be administered
within a given dermatome during surgery. These
anesthetic agents reversibly block function (i.e.,
the propagation of information) and thus the elic-
itation of action potentials associated with the
modality of pain.

The relative densities of a receptor popula-
tions can vary within the human body. Note that
some receptors are located only in specific sites
within the human body, whereas other receptors
(e.g., touch and pain receptors) can be found in
nearly all tissue. Other receptor populations can
be found in specific tissue types, but in turn they
can have highly varied densities, thus making
one region more sensitive to a given modality
versus another. In humans, the skeletal muscles
with the highest densities of sensory receptors
also elicit more sensitive motor control (see Sect.
1.2.4). For example, we have fine motor control
of the muscles in our hands, extraocular muscle,
lips, and tongue. Another example is our ability
to discriminate pressure; this sensation is more
precise within our fingertips or lips than in the
middle of our backs.

1.2.4 Sensory Input intoMotor
Systems

The human body has incredible abilities to main-
tain posture and perform complex motor tasks
with little or no conscious effort: as well as per-
form highly complex voluntary motions. To do
so, large amounts of sensory inputs (afferents) are
required at all levels of the CNS; thus, there is a
high degree of divergence of this sensory infor-

Fig. 1.14 Shown here is a
typical sensory unit and its
projected receptive field
(left). Note that if a
stimulus point falls within
the overlapping receptive
fields of three different
neurons, then action
potentials may be
generated in each (right).
Yet note that the discharge
rates would likely differ for
each such neuronal
receptor
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Fig. 1.15 Various regions innervated by cutaneous affer-
ents form cutaneous nerves. These afferent fibers congeal
to form the dorsal rootlets that then continue and enter the

spinal cord. There the afferent information (primarily via
interneurons) travels upward in various regions within the
white matter (spinal column) toward the sensory cortex
within the brain

mation. Two sense organs within skeletal muscle
are foremost in these roles—muscle spindles and
the Golgi tendon organs. Therefore, a thorough
appreciation of the properties and functions of
these receptors is essential for understanding nu-
merous principles of motor control.

Muscle spindles within the human body, al-
though quite varied and complex in forms, have
several common features (Fig. 1.16). These sense
organs lie in parallel arrangements with the con-
tractile muscle fibers (extrafusal) that compose a
given skeletal muscle. Importantly, these recep-
tors themselves can contract or shorten (efferent
innervation) to maintain their functional roles in

a contracting muscle (responsiveness), or even do
so before the skeletal muscle contracts in order to
increase their relative sensitivities or gain. These
sense organs also have different types of afferent
innervations which can provide varied length in-
formation including both phasic and static behav-
iors. As noted above, muscle spindles can have
high densities in muscles that require fine motor
control. The general features of muscle spindles
are listed as follows:

• Muscle spindles are composed of intrafusal
skeletal muscle fibers; there are two types—
nuclear-chain and the larger nuclear-bag
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Fig. 1.16 Shown are the two types of intrafusal muscle
fibers that commonly compose muscle spindles. There
are two types of afferent and several types of efferent

innervations within a typical muscle spindle. These multi-
type innervations allow the spindle to have both static and
dynamic sensing properties

fibers—and the numbers of each can also
vary from muscle spindle to muscle spindle.

• There are two types of afferent innervations
of muscle spindles: (1) type Ia afferent fibers
which are primary (annulospiral) endings that
innervate the central regions of each type of
intrafusal fiber and (2) type II afferents which
are considered secondary sensory endings and
are typically located on nuclear-chain fibers.

• The relative lengths of the intrafusal fiber can
shorten in relation to the lengths of the asso-
ciated extrafusal fibers (efferent innervation).
Activation of gamma motor neurons specifi-
cally causes these intrafusal fibers to contract,
whereas beta motor neurons innervate both
intra- and extrafusal fibers which will activate
thesemuscle fiber populations simultaneously.

• The number of spindles per gram of muscle is
highest within small muscles that participate in
fine movements. For instance, inferior rectus
muscle of the eye contains 130 spindles/g, and
the triceps of the arm has 1.4 spindles/g. As a
general rule of thumb, there are approximately
50–80 Golgi tendon organs for every 100 mus-
cle spindles.

• Golgi tendon organs (GTOs) are the proprio-
ceptive sensory receptors that sense changes
within a given muscle tension. They lie within
both the origins and insertions of skeletal mus-
cle tendons. They can also be referred to as
neurotendinous sensory organs.

1.3 Somatovisceral Sensibility

The sensory modalities within the skin and
associated structures as a whole constitute the
category known as somatovisceral sensibility.
These associated receptors andmodalities include
mechanoreception, thermoreceptors, proprio-
ception, and nociception (pain sensitivity). A
common feature of all these modalities is that
the receptors are not grouped within discrete
sense organs and the given densities can vary
throughout one’s skin.

1.3.1 Processing in the Central
Nervous System

Underlying these subjective sensations are objec-
tively measurable events in the nervous system.
Receptors transform stimuli into trains of nerve
impulses (action potentials), which are subject
to modification in various ways and at several
successive levels, for example, by numerous ex-
citatory and inhibitory synaptic projections. Our
conscious perceptions are only a small fraction of
the total role and output of this integrating system.
In other words, the ascension of this afferent (or
sensory) information can be traced through sev-
eral locations within the spinal cord, brain stem,
thalamus, and cortex (Fig. 1.17).
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Fig. 1.17 Shown here are the complexities of the signal-
ing pathways associated with somatovisceral sensibility.
Note the high degrees of both divergence and convergence
of this afferent information. The brain regions/structure

within the human central nervous system and their related
integrative and efferent (effector) systems are shown at a
high level. Note the neural pathways, associated nuclei,
and reflex mechanisms can involve thousands of neurons

When one considers the generalized functions
of the human brain, four different systems can be
globally defined: (1) the associative system, with
primary roles of cognitive functioning and con-
scious recognition; (2) the limbic system which
controls emotions and feelings; (3) the motor
system which includes voluntary and involuntary
movements and postural control; and (4) the veg-
etative system which is primarily the involuntary
control of bodily functions governed by the au-
tonomic nervous system (see Sect. 1.8). It should
be noted that these axons from the complete set
of cutaneous and visceral receptors from the pe-
ripheral sensory surface project to the thalamus
and ultimately to the cortex in a somatotopically
organized manner.

1.3.2 Basic Anatomy
of the Somatosensory System

1.3.2.1 Specific Pathways
The medial lemniscus tract can be considered
as one of the most important ascending sensory

pathways (projecting to the medulla oblongata
and then to the thalamus) which sends afferent
projections to the sensory cortical regions (SI and
SII) of the parietal lobes of the cortex; this is
also known as the lemniscal system. In general,
the SI region receives afferent inputs from the
contralateral side of the body, whereas the SII
regions have directed projections from both sides.
Thesemain ascending pathways track through the
dorsal column of spinal cord, to dorsal column
nuclei in the medulla (first set of synapses), to
medial lemniscus, to ventrobasal nucleus of the
thalamus (second set of synapses), and then to
the areas SI and SII of the cortex (third set of
synapses) (Fig. 1.18).

1.3.2.2 Nonspecific Pathways
Nonspecific sensory pathways make connections
with nearly all regions of the cerebral cortex. This
system, known as the extra-lemniscal system, is
thought to be important in (1) perception, (2)
one’s overall state of consciousness, and/or (3)
orientating responses (Fig. 1.18).
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Fig. 1.18 Shown here is a
simplified overview of the
general features of
somatosensory projection
from the body to the brain.
Two major types of
projections can be
described—specific and
nonspecific pathways. One
can track these pathways
upward to the SI and SI
somatosensory cortical
regions, as well as to other
cortical areas

1.3.3 Somatosensory Projection
Areas in the Cortex

As noted above, the SI cortical area is located
on the postcentral gyrus, immediately posterior
to the central sulcus (a deep furrow lying trans-
versely on the cerebral hemispheres). The SII area
lies on the upper wall of the lateral sulcus, which
separates the parietal and temporal brain lobes.
Interestingly, the SI region represents topographic
organization via projection from the opposite side
of the body, and electrical stimulation of a given
SI cortical region (e.g., with an electrode during
surgery or with superficial magnoelectric coil ac-
tivation) typically elicits known describable per-
ceptions. Additionally, it is common to record
evoked electrical potentials from the skull supe-
rior to the SI area (i.e., using electroencephalo-
graphic or EEG analyses).

1.3.4 Mechanoreception

It is important to define the specific sensory abili-
ties ofmechanoreception, which is comprised of a
number of qualities such as pressure, touch, vibra-
tion, and tickle. Our ability to identify subjective
measurable properties of mechanoreceptors (e.g.,
when a bristle is used to touch the skin at different
locations) is not present throughout the whole
skin but can be ascribed to certain cutaneous
locations or points on the skin (touch points;
Fig. 1.19). Further, one can define simultaneous
spatial thresholds for mechanoreception due to
variations in the density of these receptors. It
should be noted that these receptors have distinct
histological structures and afferent innervations;
many mechanoreceptors are supplied by myeli-
nated afferent nerve fibers (e.g., Group II axons
with diameters of 5–10 μm and conduction ve-
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Fig. 1.19 The somatosensory cortex can be considered
to be somatotopically organized. In other words, one can
define a spatial representation of the human body surface
for mechanoreception on the postcentral gyrus of the

cortex (left). The areas with higher numbers of receptory
contributions are shown as larger body features (right). For
example, our hands and faces have higher mechanorecep-
tion abilities than one’s back

Fig. 1.20 The schematic
representation of the
relative structures and
positions of several types
of mechanoreceptors that
can be identified in both
glabrous (hairless) and
hairy skin
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locities of 30–70 m/s). Listed below are several
identified mechanoreceptors and their general lo-
cations and relative qualities:

• Pacinian corpuscles, which are rapidly adapt-
ing acceleration detectors located in the sub-
cutaneous tissues, tendons, fascia, periosteum,
joint capsules, and/or mesenteries

• Meissner corpuscles, which are moderately
rapid adapting velocity detectors, typically lo-
cated in glabrous (hairless) skin but can also
be positioned as hair follicle receptors

• Merkel’s disks, which are slowly adapting in-
tensity detectors, primarily located in the low-
ermost layers of the epidermis

• Ruffini corpuscles, also known to be slowly
adapting intradermal receptors, but they are
typically located in deep layers of the dermis

Finally, it should also be noted that some
mechanoreceptors are supplied by unmyelinated
afferents. These receptors more typically respond
to low-intensity tactile stimuli, and they are
located most commonly in hairy skin (Fig. 1.20)
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1.4 General Anatomic
and Functional Features
of theMotor System

The following is a brief overview of some of the
key components of the human motor system. To
help understand our complex neural abilities and
the vast networks of neurons that are involved in
controlling movements, it is of value to describe
the human motor system in a functional, hierar-
chical fashion.

1.4.1 Motor Control Hierarchy for
Voluntary Movements

When humans perform a voluntary movement,
we utilize and coordinate the activities first at the
highest level (Fig. 1.21, yellow box). Thus, corti-
cal areas associated with memory and emotion,
the supplementary motor area, and association
cortex will be involved accordingly. These brain
areas, in turn, receive and correlate inputs from
many other CNS structures.

Simplistically, the primary function of this
highest level can be considered to form complex
motor plans according to a person’s intention.
Subsequently, the middle level structures become
activated (Fig. 1.21, blue boxes) including
the sensorimotor cortex, the cerebellum, parts
of basal ganglia, and/or various brain stem
nuclei. Once activated, these areas perform the
generalized functions of converting the complex
motor plans into a number of smaller motor
programs: this then determines the patterns of
neural activations required to perform the desired
movements. Then these programs are further
broken down into subprograms that determine
the movements of, for example, individual joints.
As such, these programs and subprograms are
transmitted via the descending pathways to the
lowest control level of the motor system (Fig.
1.21, white boxes). Hence, the structures involved
in these activities include all levels of the brain
stem and spinal cord from which motor neurons
exit. More specifically, the functioning at this
level coordinates the specific output tensions
within involved muscles and also the resultant
angles of specific joints necessary to carry out

Association Coretx &
Other Higher Centers

Muscle, Tendon, Joint,
and Skin Receptors

(Low)S keletal
Muscles

Spinal Cord

(Highest)

Cerebellum

Brainstem Nuclei &
Subcortical Nuclei

(e.q., basal qanqlia &
thalamus)

(Descending
Pathways)

Sensorymotor Cortex

Fig. 1.21 A block diagram representation of the relative
hierarchical and/or functional organization of the motor
systems in the human body. The yellow box (containing
several cortical regions) is the highest level, the blue boxes
represent the middle level, and the white boxes are the
lowest functional level. This representation describes the

hierarchical pathways associated with voluntary move-
ments, yet it should be noted that sensory input is needed
at the highest level to develop an optimized motor plan
prior to initiation and the subsequent response to potential
perturbations



22 P. A. Iaizzo

Fig. 1.22 Shown here are
the relative anatomical
connections of the spinal
cord to the central nervous
system via the brainstem
which can be further
subdivided into the
medulla oblongata, pons,
and mesencephalon (also
referred to as the
midbrain). The brainstem
is composed of numerous
nuclei and functional
regions

the motor programs and subprograms transmitted
from the middle control levels. The receptors
providing inputs for the control of various
motor programs include the muscle spindles,
Golgi tendon organs, cutaneous receptors, joint
receptors, and/or free nerve endings.

In the following paragraphs, the specific func-
tioning or the major CNS components of the mo-
tor system will be described, starting at the lower
level and moving upward in these pathways.

1.4.2 Spinal Cord

The spinal cord is not only a conduit for
afferent and efferent pathways, but it also
serves numerous critical functions; it can be
considered as a local motor-control system.
In part, this local control system is composed
of various reflex pathways which have inputs
from muscle spindles for length control, Golgi
tendon organ for tension control, stretch reflexes,
flexor reflexes, withdrawal reflexes, crossed-
extensor reflexes, and/or intersegmental reflex
pathways. Furthermore, when an appropriate
signal is received from the periphery or from
a higher area of the CNS, by way of segmental
reflexes (same cord level for input and output) and
intersegmental reflexes (from different regions of
the spinal cord, dermatomes), the spinal cord is
capable of executing complex movements and
adjusting them to one another.

1.4.3 Brain Stem Components

The spinal cord makes its neural connections to
the CNS via its anatomical connections to the
brain stem proper (Fig. 1.22). The brain stem
is composed of multiple nuclei, many of which
have unique roles relative to the overall motor
control system. A number of different brain stem
nuclei play important roles in the posture control
response of the human body. More specifically,
equilibrium is maintained and the body is kept
in the normal upright position in the earth’s field
of gravity by reflexes, that is, with no need for
conscious intervention. It is important to note
that these postural motor functions are largely the
responsibilities of coordinated brain stem motor
centers. A proper movement cannot be performed
without (1) putting the body into a desired posi-
tion in space, (2) having prior knowledge of the
body in space, and (3) then maintaining a proper
posture during the performance of the desired
motor task. As such, the brain stem helps convert
the overall motor plan or goal of an action into
programs that determine the specific muscle/limb
movements. Additionally, these centers provide
important feedback to the motor cortex through
the thalamic pathways.

The brain stem is composed of several dif-
ferent regions—the medulla oblongata, the pons,
and the mesencephalon (Fig. 1.22). Each of these
regions contains various groups of commonly
functioning neurons described either as nuclei,
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centers, or formations. Listed below are several
examples of these grouped functional neural com-
plexes:

• The red nucleus lies primarily within the
mesencephalon; these nuclei give rise to the
rubrospinal tracts (axons that cross sides of
the human brain immediately). Typically,
excitation of these neurons excites alpha and
gamma flexor motor neurons via interneuron
connections (i.e., numerous synapses) and, at
same time, causes inhibition in the extensor
muscles.

• The lateral vestibular nucleus gives rise
to the vestibulospinal tracts (these axons
descend uncrossed) which excites both
alpha and gamma extensor motor neurons
(predominantly monosynaptically). Com-
monly, with activation of these nuclei, nearly
simultaneously the flexor muscles are actively
inhibited.

• The reticular formation gives rise to both the
medial and lateral reticulospinal tracts. The
medial tracts are uncrossed and arise in the
pontine portion of the brain stem; they excite
both alpha and gamma extensor motor neu-
rons. The lateral tracts arise in the medullary
reticular formation and predominantly excite
flexor motor neurons (these axonal pathways
are both crossed and uncrossed).

Importantly, these brain stem nuclei and their
associated tracts, originating within the various
nuclei, are integral for generation of both the tonic
and righting reflexes; in other words, they are
necessary for the maintenance of upright posture.
These motor centers in the brain stem also receive
inputs from the motor cortex and, in turn, send
signals to the cortical regions (also known as
the cerebrum) via connections to and from the
cerebellum (an important feedback mechanism).
More specifically, such pathways serve to coordi-
nate postural and goal-directed movements (Fig.
1.23).

1.4.4 Cerebellum

The middle level motor structure known as the
cerebellum plays crucial roles in (1) aiding in

Fig. 1.23 The relative anatomical locations (middle level
motor structures) of the brainstem, cerebellum, basal gan-
glia, and thalamus

the control of posture and muscle tone; (2) pro-
viding for course corrections during slow goal-
directed movements and the coordination of these
movements with the postural system; and (3)
allowing for the unimpeded performance of rapid
goal-directed movements (those designed by the
motor cortical areas, e.g., motor programs). It
can be considered that the primary role of the
cerebellum is to supplement the activities within
the other motor centers and to coordinate them.
In part, the afferent connections into the cere-
bellum include (1) inputs from vestibular nerves
and nuclei; (2) ascending somatosensory inputs
from the lower body, via the spinal cord; and (3)
descending inputs from the cerebral cortex. More
detailed information relative to the cellular and
molecular aspect of the cerebellar structures has
been described in the literature recently; however,
it is beyond the scope of this chapter. Briefly,
the cerebellar cortex has three primary layers—
the molecular, granular, and Purkinje cell layers.
Further, the cerebellum also has been described
to have specific longitudinal zones including the
vermis, pars intermedia, and the hemispheres.

1.4.5 Motor Cortex

One of the primary brain regions to be defined
within the highest motor level is the motor cor-
tex. This brain region has particular importance
for maintaining goal-directed movements. Like
the somatosensory cortex, the motor cortex is
somatotopically organized, and there are multiple
representations of the periphery in several motor
areas (Fig. 1.23). One general area of the motor
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cortex includes the primary motor cortex in the
precentral gyrus (this is sometimes referred to
as Brodmann areas 4 and 6, that is, originally
defined and numbered by the German anatomist
Korbinian Brodmann, who based this classifi-
cation on the cytoarchitectural organization of
neurons that he observed in the cerebral cortex);
this motor area is needed for motor program
generation. One can also define premotor areas
which are involved in complicated motor func-
tions such as (1) required changes in output forces
or velocities; (2) the decision to change from one
task to another; (3) required motor response to a
visual or auditory input; (4) two-handed coordi-
nated movements; and (5) required high degrees
of postural support needed for some specified
detailed movements. These cortical motor areas
also receive inputs from both the parietal (spatial
input centers) and occipital cortical (visual cor-
tical centers) lobes. Finally, one can also define
a supplementary motor cortex area, from which
one may record readiness potentials, and this area
lies near the limbic (emotions) system.

1.4.6 Efferent Connections
from theMotor Cortex

Corticospinal and corticobulbar tracts (the ma-
jority which have been identified to be crossed)
leave the motor areas in each half of the brain
(note that such tracts are typically named so to
define where they begin and where they termi-
nate). They give off numerous collaterals to the
thalamus, red nucleus, pontine nuclei (which, in
turn, send projections to the cerebellum), dorsal-
column nuclei, and the reticular formation. Pro-
jections that reach the cord predominantly end on
interneurons and are excitatory to flexor muscles.
Corticorubral and corticoreticular tracts are the
main cortical efferent pathways to the brain stem.

1.4.7 Basal Ganglia and Thalamus

These structures are considered important subcor-
tical centers which link the “associative” cerebral
cortex to the motor cortex. The basal ganglia cen-

Fig. 1.24 A block diagram of the major pathways con-
necting the higher brain centers to the ultimate pathways
to induce muscle contractions, the motor neurons

ter includes the following specific nuclei: stria-
tum (caudate nucleus and putamen), pallidum,
substantia nigra, and the subthalamic nucleus. In
humans, damage to these neural tissues, that is,
associated with these ganglia/nuclei, will typi-
cally elicit themselves as defined motor defects
(see Sect. 1.7). Note that efferent synapses from
both the motor cortex and the basal ganglia are
found within the thalamus (Figs. 1.9 and 1.24).

These areas are considered important coordi-
nating centers for goal-directed motor programs
or patterned movements (Fig. 1.25).

1.5 Maintenance of Upright
Posture and Sense
of Equilibrium

Generally, two types of motor functions can be
distinguished—the maintenance of posture and
the initiation of intended body movements. In
practice, these two types of motor functions are
inextricably conjoined. As such, goal-directed
movements can be optimally performed only
if the body and limbs to be moved are first
put into the appropriate positions. Additionally,
for body positions (postures) to be maintained,
it is necessary that any forces which disturb
these body orientations be counteracted by
appropriate movements (muscle contractions).
In other words, movement without postural
control is as impossible as postural control
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Fig. 1.25 Shown here is a schematic representation of
the human motor system in which the roles from plan to
program to execution have various describable functions.
Sensory information diverges throughout this system al-
lowing for feedback before a plan is to be developed

and feedback during execution (for both movement and
posture); then this information can be utilized to update
motor programs so to optimize the future execution of
similar motor plans

without varied muscle activations. In general, the
maintenance of posture and/or a person’s balance
is accomplished by means of complex interacting
postural reflexes. The afferent inputs/pathways
for the initiation and control of these reflexes
arise from the eyes, the vestibular apparatus,
and sensory inputs from the proprioceptors.
Ultimately, these efferent pathways have their
terminal effects on the alpha motor neurons of
our skeletal muscles, and the primary integrating
centers for these reflexes are within both the brain
stem and spinal cord.

1.5.1 Sense of Equilibrium

One of the key sensory systems associated with
a human’s ability to maintain equilibrium is the
vestibular organ. These organs form one part of
themembranous labyrinth lyingwithin the skull’s
temporal bone, which constitutes the inner ear
(the other part of the temporal structure is the
organ of hearing). The membranous labyrinth is
filled with endolymph and surrounded by peri-

lymph. There are two morphological subunits of
these vestibular organs: (1) themacular organs (or
statolith organs) and (2) the semicircular canals.
The receptors within these two organs are hair
cells, which contain both stereocilia (60–80 per
cell) and one kinocilium (Fig. 1.26). Importantly,
these receptors are defined as secondary sensory
cells because they have no neural processes (ax-
ons) of their own but are innervated by afferent
fibers (their cell bodies lie within the vestibular
ganglion).

1.5.1.1 Macular Organs
Themacular organs contain receptors that primar-
ily respond to translational (linear) accelerations
of the head (temporal bone). Further, the cilia of
the sensory cells within these organs project into
adjacent otolith membranes, which are composed
in part of calcite crystals. There are two types
of macular organs—the utriculi which, at rest
with the head erect, is positioned approximately
horizontal and the sacculi which is roughly po-
sitioned vertical when the head position is erect
(Fig. 1.27).
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Fig. 1.26 A diagram of the vestibular labyrinth. The
lymph spaces are in communication with those of the
cochlear labyrinth

Fig. 1.27 A schematic representation of two common
types of hair receptor cells that can be found within the
sensory epithelium of the vestibular organ. These are
secondary sense cells and thus are shown in their asso-
ciated innervating afferent nerves. When the bundle of
cilia (stereocilia) moves toward kinocilium, membrane de-
polarization results, whereas stereocilia movement away
from kinocilium results in membrane hyperpolarization. A
depolarization induces an increased release of neurotrans-
mitters and thus a subsequent increase in the discharge rate
(a higher action potential frequency) in the afferent nerves.
Note the potential for efferent input on the sensory cells;
thus, there is a way to modulate receptor responsiveness.
A relatively high resting activity can be recorded in the
vestibular nerves, i.e., there is the spontaneous generation
of action potentials

Fig. 1.28 A schematic diagram of the left horizontal
semicircular canal which lies in the temporal bone. An
angular acceleration in the direction of the arrow deflects
the cupula as shown by the dashed lines. Such a deflection
of the cupula activates the secondary sensory hair cells
which, in turn, alters activities in the innervating afferent
fibers. Because there is a resting firing rate, movement
in one direction leads to an increase in action potential
frequencies, whereas a movement in the opposite direction
causes a decrease (i.e., a bidirectional receptor system)

1.5.1.2 Semicircular Canals
These vestibular receptors primarily respond to
angular (rotational) accelerations of the head. In
these organs, the cilia of the receptor cells are not
embedded in mineral inclusions (Fig. 1.28). The
cupula in the canals has the exact same density
as the endolymph; hence, they do not respond
to linear acceleration. There are three separate
semicircular canals to receive input from all three
spatial axes of the human head (horizontal, ante-
rior, and posterior).

1.5.1.3 Central Vestibular System
The primary afferent nerve fibers, innervating the
hair cell in the vestibular organ, are collectively
known as the vestibular nerves. They terminate
chiefly in the region of the vestibular nuclei, lo-
cated in themedulla oblongata. There are four pri-
mary vestibular nuclei which have been identified
on each side of the body including the superior,
medial, lateral, and inferior nuclei. Note that be-
cause the angle of the head (movable at the neck
joints) is independent of the trunk, the CNS needs
to determine the position of the head relative to
the trunk. Therefore, the vestibular nuclei receive
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additional inputs from neck receptors, as well as
those from the limbs. There are numerous neural
efferent pathways that leave these vestibular nu-
clei, including the following:

• Vestibulospinal tract (primarily contains
gamma motor neurons to extensors)

• Motor neurons of the cervical cord
• Connections to oculomotor nuclei (e.g., im-

portant for the control of gaze as the head
moves)

• Contralateral connections to other nuclei (al-
lowing for comparisons to better determine
orientation and rates of head movement)

• Cerebellar connections (coordination of fine
head movements)

• Connections to the reticular formation
• Connections and tracts projecting to the thala-

mus and postcentral gyrus
• Connections to the hypothalamus (which can

be associated with motion sickness)

1.5.1.4 Vestibular Reflexes
In general, one can consider that equilibrium
is maintained via reflex mechanisms, without
primary participation of consciousness. The
vestibular receptors and somatosensory inputs,
especially those from proprioceptors in the
neck, are paramount for these reflex activities.
There are two general categories in which such
reflexes can be grouped—static and statokinetic
reflexes. The vestibular inputs for static reflexes
are primarily the macular organs. These reflexes
govern one’s fixed positions of the individual
limbs with respect to one another and/or of
the body in space. Yet, it should be noted that
initial movements are often needed to bring the
body into these patterned positions (postural or
attitudinal reflexes). Postural reflexes include
tonic neck reflexes, tonic labyrinthine reflexes,
and compensatory eye positioning responses.
Examples of righting reflexes include the
labyrinthine righting reflexes and neck righting
reflexes.

The other types of vestibular reflexes are the
statokinetic reflexes. These reflexes become op-
erational in response to given movement stimuli,
which then in themselves take the form of sub-

sequent movements. In such cases, nearly all of
the aforementioned vestibular organs are impor-
tant for these reflex responses/controls. Examples
of such dynamic reflex responses (movements)
include head-turning reactions, eye rotation reac-
tions, and one’s ability for corrective body orien-
tation during a free fall.

1.6 Complex Integrative
Functions of theMotor
System

1.6.1 The ComplexMotor Function
of Speech

Prior to major recent advances in molecular
biology and functional MRI, practically all of
our knowledge related to the physiology of
speech was derived from clinical observations
(i.e., post-mortem neuropathological studies and
electrical stimulation experiments of exposed
brains of awake patients). For example, from
the therapeutic transection of commissural fibers
(split-brain operations), it was shown that, in
general, the left hemisphere in most individuals
contains the necessary centers for speech. Over a
hundred years ago, a French surgeon named Paul
Broca first observed that lesions of the lower part
of the third frontal gyrus on the left side of the
brain caused a failure of speech (aphasia). Yet,
with this specific impairment, speech could be
understood, but the patients rarely said anything
spontaneously; however, on command and with
hesitation, short sentences could be spoken. This
is defined as a motor aphasia involving loss
of coordination of motor programs, and the
associated area of the brain is called Broca’s
speech region (Fig. 1.29).

Later that century, a German neurologist, Carl
Wernicke, described another type of aphasia in
which the understanding of language/speech was
severely impaired, but spontaneous speaking in
such patients was fluent, though often distorted.
This is a sensory aphasia and is highly correlated
to another area of regional damage within the left
temporal lobe (Fig. 1.29).
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Fig. 1.29 In general, speech functions are lateralized to
one hemisphere (left panel). Also defined in the left panel
are Broca and Wernicke speech areas. Cortical speech

areas responsible for articulation and the execution of
speech (motor function) are bilateral, and each half of the
face is represented bilaterally (unlike the rest of the body)

1.6.2 Motor Neuron Recruitment

Motor neuron recruitment is another elaborate ex-
ample of the functional efficiency with which our
brains commonly operate. The primary principles
of motor neuron recruitment are such that muscle
(or limb) forces are increased smoothly and at the
same time overall muscle fatigue is minimized.
In the 1950s, Henneman and coworkers described
the size principle of motor neuron recruitment.
In general, the excitation of motor neurons is an
inverse function of cell size (largest ones last),
and their order of deactivation is also a direct
function of cell size (largest ones first). Recall
that a motor unit is composed of the alpha motor
neuron and all the muscle fibers that it innervates
(an example of divergence). All fibers in a unit are
of the same skeletal muscle fiber type, thus either
slow oxidative (fatigue resistant), fast oxidative
(intermediate type), or fast fatigable. The larger
motor neurons can activate up to 10,000 skeletal
muscle fibers and thus as many synaptic con-
nections (neuromuscular junctions), whereas the
smaller motor neurons typically innervate hun-
dreds (or fewer) of the slow twitch fiber type. A
motor task group can be defined as a population

of motor neurons that becomes activated in an
orderly manner during a given motor act. A phys-
iologically observed task group may or may not
overlap with anatomically defined motor neuron
pools, but within each task group, recruitment of
motor units occurs usually in an orderly fashion,
from small to large. Hence, you can hold small
weights for long periods of time because you
are primarily activating motor units composed
of slow twitch fibers; as you add weights, first
you can increase the firing frequencies to these
units and then add additional smaller ones, but
eventually when greater forces are needed, the
intermediate and fatigable motor units will need
to be recruited. This example of the hierarchical
organization of the motor control system can be
considered, in part, responsible for optimizing
performance under a variety of conditions, that is,
through the coordination of different effector sys-
tems and the anticipation of operating constraints.
For example, reaching and grasping reflect the
outputs of two independent, though temporally
coupled, motor programs (task groups).

One can, in turn, define the development of
motor skill to include (1) components of spa-
tiotemporal precision; (2) one’s adaptability to
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perform a given task; and/or (3) the relative con-
sistency and functional optimization of a given
movement. In other words:

• Motor skill involves activating the right mus-
cles at the right time.

• Skilled activities are efficient (metabolic de-
mand is minimized).

• Skill develops through practice.
• Skill involves the creation of mature motor

programs (i.e., allowing the movement to be-
come more or less automatic).

• With increased skill, there is a marked re-
duction of activity in the auxiliary muscles
(e.g., those originally used for stabilizing or
assisting), while activity in the prime movers
remains constant.

Sensory information received from the periph-
ery is required and processed centrally to deter-
mine limb positions, muscle tensions, etc., so that
adjustments can be made in the brain’s motor
programming before a movement is activated.
Subsequent sensory feedback allows for error
detection, so one can make appropriate ongoing
corrections either during a given movement or
prior to subsequent movements (i.e., by updat-
ing higher motor programs). It should be noted
that a special class of movements, for example,
ballistic (high velocity movements), are consid-
ered to be more or less executed without one’s
ability to optimize them during the action. These
are also known as “feed-forward” programmed
movement; these occur without the active use of
sensory feedback during the action, but rather
with obtained sensory information that the higher
CNS centers received during such, this informa-
tion is then used to set adjustments in advance
for subsequent movements (thus updating future
ballistic motor programs). It should also be noted
that the human brain also controls the limits of
a given movement. Sensory information from the
periphery is processed centrally to determine the
limits of limb position, muscle tension, etc., in
order to limit both errors in movements and/or
potential damage to the body if such movements
were beyond the normal functional ranges.

1.7 Pathophysiology
of theMotor System

Much of what we previously learned about motor
control came from the study of various human
motor disorders and the subsequent observation
of experimental animals in which specific lesions
of focal injuries have been placed in a given
motor tract, brain nuclei, or motor center. Yet, as
noted above, recent work related to the molecular
biology of disease origin (e.g., the use of trans-
genic animals), the implantation of deep brain
stimulation electrodes, and functional imaging of
the brain all have providedmany new insights and
treatments. The following text briefly introduces
several specific examples of motor defects as an
additional means to better understand the hierar-
chical organization of the motor system, as well
as its high degree of functional interdependencies
between the levels of the hierarchy.

1.7.1 Disorders of the Spinal Cord

A transection of the spinal cord can induce a
devastating impairment of motor function below
the site of the lesion. Paraplegia, defined as paral-
ysis of the lower limbs, is a common occurrence
when the spinal cord is severed or damaged in the
thoracic regions (T2 to T12). Further, quadriple-
gia, paralysis of all four limbs, occurs when le-
sions (damage) to the cord are more proximal
(i.e., within the cervical regions of the cord).
When an individual’s spinal cord is completely
severed, two functional disasters become imme-
diately evident: (1) all voluntary movements in
one’s body parts innervated by the isolated spinal
segments are permanently lost, and (2) all sen-
sations from those body regions are abolished.
Spinal shock is defined as a transient condition of
decreased synaptic excitability of neurons lying
distal to a transversed section of the spinal cord.
In other words, initially post-injury, there is a
period of minimal reflex activity typically lasting
from 2 weeks to several months in humans. Next,
there is development of flexor hyperactivity (e.g.,
flexor withdrawal movements which dominate
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for several months). In some patients, mass flex-
ion reflexes are then possible; in these individu-
als, even subtle tactile stimulation is a sufficient
trigger to provoke widespread flexion responses
of the limbs. As early as 6 months post-injury
in humans, extensor activity and tendon reflexes
may become hyperactive, and clonus (a series
of involuntary rhythmic contractions and relax-
ations) may be evident. Interestingly, sometime
after these periods, spinal standing is possible in
some patients. It should also be noted that reflex
flexion is still easily elicited in such individuals
by noxious plantar stimulation, that is, all reflex
pathways become hyperexcitable. Much research
is ongoing so to treat these aforementioned im-
pairments due to spinal cord damage.

In contrast to such spinal cord lesions, periph-
eral paralysis can result from the degeneration of
efferent pathways leaving the cord or the motor
neurons themselves (e.g., in polio). This results
in clinical flaccid paralyses, commonly charac-
terized by (1) reduced muscle tones (hypotonia);
(2) muscle atrophy (muscle wasting, due to the
loss of the trophic influence of nerve on muscle
viability); (3) the diminution (paresis) or ablation
(paralysis) of the forces of gross movements;
(4) the impairment of fine movements; and/or
(5) weakening or abolishment of one’s stretch
reflexes.

1.7.2 Disruption of Functions
Within the Brain Stem

A decerebrate individual is defined as one in
which the brain stem has been damaged or tran-
sected at the level of the tentorium of the cere-
bellum; in such, the spinal cord becomes more or
less isolated from the red nucleus andmore rostral
motor elements (Fig. 1.30). Decerebrate rigidity
soon develops, which is a marked increase in the
tone of the entire extensor musculature (appear-
ance of normal standing); tonic neck reflexes are
present.

In a midbrain individual, the medulla oblon-
gata, pons, and mesencephalon are all consid-
ered to be left in communication with the spinal

cord; as such, one can observe improved and ex-
tended motor abilities over a decerebrate individ-
ual. However, this individual will (1) lack alpha-
gamma rigidity, (2) have righting reflexes that are
intact (labyrinthine and neck righting reflexes),
and (3) elicit an improved postural control.

1.7.3 DisturbancesWithin
the Cerebellum

Alterations in cerebellar activities are manifested
chiefly as disturbances of muscular coordination,
both during movements and associated with rest-
ing muscle tone. Several specific clinical motor
symptoms can be defined, along with the effects
on an individual’s motor abilities. Asynergia (or
dyssynergia) is defined as an inability to supply
the correct amounts of neural activities to the
various muscles involved in a given movement.
Therefore, in such individuals, one can observe
that (1) there is decomposition of movement,
such that movements are no longer simultaneous
but appear to occur in succession (robotic like);
(2) dysmetria may occur, which means that a
given desired movement may go too far or not far
enough (there can be subsequent overcompensa-
tion); (3) ataxia is common, which can be elicited
as an abnormal gait (e.g., walking with feet wide
apart); and (4) adiadochokinesia may occur such
that these individuals are no longer able to carry
out rapid movements.
Intention tremors may be present in such in-

dividuals with cerebellar defects, that is, they
elicit undesired motor oscillations (tremors) dur-
ing goal-directed movements. Also, when gen-
eral muscle tone is too low (i.e., hypotonus is a
symptom), there are also associatedmuscle weak-
nesses and elicited rapid fatigue. Further, because
of the important role the cerebellum plays in the
control of one’s visual gaze, cerebellar defects
may lead to permanent or prolonged nystagmus
(the presence of abnormal eye movements). Simi-
larly, such individuals may also experience a con-
tinual dizziness known as vertigo. Nevertheless,
as a general rule, over time cerebellar defects
often become well compensated for by the CNS.
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Fig. 1.30 Major motor centers within the brainstem and
their connections to the cerebellum and spinal cord. Le-
sions or focal damage that would induce differing motor
abilities include (1) lesion/injury 1, resulting in a so-
called decerebrate human; (2) lesion/injury 2, resulting in
a midbrain individual; and (3) creation of lesion/injury 3,

resulting in a high spinal individual. Also indicated are
excitatory and inhibitory centers. In studying the major
excitatory and inhibitory mechanisms (pathways), one can
begin to understand the differing motor abilities that result
as various control centers on the alpha motoneuron are
modulated

1.7.4 Disorders Within the Basal
Ganglia

Lesions within the basal ganglion associated with
altered motor control can lead to various forms
of movement disturbances. One classic disorder
is Parkinson’s disease, named after the English
physician, James Parkinson, who clinically de-
scribed the condition in the early 1800s. There are
three primary associated symptoms in such pa-
tients: (1) rigidity which can be either widespread
or localized; (2) tremors, typically described as
resting tremors and/or pill rolling hand tremors;
and (3) akinesia which is described as a gen-
eral loss of involuntary and associated move-
ments. Briefly, the functional cause of Parkin-
son’s disease is considered to be a degenera-
tion within the substantia nigra, which normally

sends inhibitory signals to the corpus striatum.
These control signals are normally transmitted
between the involved neurons via synapses uti-
lizing the inhibitory neurotransmitter dopamine.
It should be noted that L-dopa, a dopamine pre-
cursor which can cross the blood-brain barrier, is
often used as an early treatment because it locally
converts to dopamine and activates the terminals
in the corpus striatum. More recently as symp-
toms progress, implantable neurostimulation has
been shown to be a potential effective therapy in
selected Parkinson patients.

1.7.5 ImpairmentWithin theMotor
Cortex

As noted above, damage of the motor cortex can
cause numerous defects in one’s motor abilities.
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One example is the condition known as capsular
hemiplegia, which can be caused by lesions in
the region of the motor cortex, which then leads
to over-excitation (e.g., epileptic attacks) or de-
ficiency syndromes (which are more rare). The
more commonly occurring cortical disorders are
those caused by bleeding or thrombosis in the
medial cerebral artery, hence those resulting in a
stroke. When a stroke occurs in an individual, it
initially leads to a shock stage characterized by
flaccid paralysis of the contralateral side of the
body. Later spasticity in the antigravity muscle
may be observed (extensors in legs and flexors in
arms), commonly referred to as spastic hemiple-
gia.

1.8 The Autonomic Nervous
System

The autonomic nervous system (ANS) mediates
the neuronal regulation of the internal milieu of
the human body (e.g., organ systems) and thus
governs/innervates the smooth musculature, the
heart, digestive organs, and various glands. The
action of this system is generally considered not
under direct cognitive voluntary control, and fur-
ther, the afferent information is usually not acces-
sible to consciousness. Although its main func-
tion is to maintain homeostasis, the ANS also
controls functions not related to this goal (e.g.,
control of the sexual organs and the intraocular
muscles).

In the ANS, the groups of axons between the
CNS and the effector cells consist of a minimum
number of two neurons and one synapse. The
cell body of the first neuron lies within the CNS,
whereas the synapses between the two peripheral
effector neurons are outside the CNS, located in
a cell cluster called the autonomic ganglion (Fig.
1.31).

Anatomical and physiological differences
within the ANS are the basis for its further subdi-
vision into the sympathetic and parasympathetic
components, each having their origins at different
levels of the neuraxis (i.e., the brain stem and
spinal cord).

1.8.1 Sympathetic System

Also known as the thoracolumbar system, the
sympathetic system arises within the thoracic seg-
ments and upper two or three lumbar segments
of the spinal cord (Fig. 1.32). Thus, the cell bod-
ies of the preganglionic sympathetic neurons lie
within the lateral horn of the thoracic and lumbar
cord. These axons are very thin, but many are
myelinated and their average conduction veloc-
ities range between 1 and 20 m/s. More specif-
ically, the axons of these efferents leave via the
ventral roots and white rami and then enter paired
paravertebral ganglia; postganglionic axons are
much longer and more variable in their lengths
than preganglionic axons. Note that there aremul-
tiple intrasegmental interconnections between the
sympathetic ganglia which, in turn, helps to coor-
dinate ANS efferent functions/responses through-
out one’s body.

1.8.2 Parasympathetic System

Also referred to as the craniosacral system, the
parasympathetic system encompasses cell bodies
of preganglionic neurons, which are located both
within the brain stem and the sacral portions of
the spinal cord (Fig. 1.32). More specifically, the
preganglionic axons innervate eye muscles and
the various facial glands and leave the brain stem
in the spinal nerves. Some axons are myelinated
and the cell bodies of the postganglionic neurons
are near or actually within the effector organs.

1.8.3 Neurotransmitters in the ANS

Importantly, many or most of the internal organs
within our bodies receive both sympathetic and
parasympathetic innervations. Note that, in gen-
eral, the physiological influences of these two
systems on a given organ system are antagonistic.
On the other hand, the overall control of the ANS
can be thought to be functionally synergistic. This
combined ANS control is like a braking/acceler-
ating system in a car, which allows for greater
control (quicker accelerations and faster stops).
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Fig. 1.31 Provided here is
a comparison of the major
synaptic connection in the
somatic (innervating
skeletal muscles) and
autonomic nervous systems
(ANS). Note the additional
synapse (with cell bodies
forming ganglion) in the
ANS. Hence, one can
define preganglionic and
postganglionic efferent
fibers in the ANS. CNS
central nervous system

Fig. 1.32 Shown here is the general arrangement of the peripheral component of the sympathetic part of the autonomic
nervous system. This system also innervates vessels, sweat glands, and piloerector muscle (associated with hair follicles)
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Fig. 1.33 The general actions of the catecholamines
noradrenaline (NA or norepinephrine), adrenalin (A or
epinephrine), and isoproterenol (I) on the adrenergic re-
ceptors of a given smooth muscle

All preganglionic synapses in theANS use acetyl-
choline as their neurotransmitter (hence, they are
referred to as cholinergic synapses). However,
two subpopulations of cholinergic synapses can
be distinguished in the ANS and are classified
as two types of macromolecular receptors which
respond preferentially to the presence of various
modulating molecules: (1) nicotinic, the recep-
tors located on the postsynaptic membranes of
postganglionic neurons, and (2) muscarinic, the
receptors located on effector cells.

Further, the parasympathetic postganglionic
synapses are mainly of the cholinergic type
(acetylcholine), whereas those in the sympathetic
system are composed of an additional macro-
molecule, which utilizes norepinephrine as the
primary neurotransmitter—adrenergic synapses
(will also respond to other catecholamine
molecules; see Fig. 1.33). Importantly, more
than one type of adrenergic receptor has
been identified within the sympathetic system
(e.g., alpha, beta 1, beta 2 receptors can be
identified; hence, there are varied targets for
pharmacological therapies).

The general functional role of the sympathetic
nervous system is to respond rapidly to stress
and danger, hence diverting resources from the
viscera to the somatic musculature. Furthermore,
this so-called fight or flight reaction is backed
up by the secretion of catecholamines from the
adrenal medulla (see below). In contrast, the

parasympathetic system predominates during
rest or sleep; it decreases both heart rate and
contractile forces of the heart, increases intestinal
motilities throughout, induces contractions of the
gallbladder, and reduces bronchi diameters.

1.8.4 The Adrenal Medulla

The adrenal medulla lies within the inner cores
of the paired adrenal glands, which lie above
each kidney. These endocrine glands are com-
monly described as modified sympathetic gan-
glion. The adrenal medulla secretes amine hor-
mones (epinephrine and norepinephrine), yet typ-
ically higher levels of epinephrine are released
in humans. Thus, the adrenal cells release cat-
echolamines/hormones into their focal capillary
beds which in turn enter into the general cir-
culation. The circulating hormones, via binding
to receptors on individual cells, act to regulate
metabolic processes throughout one’s body (Fig.
1.34). We are typically aware when there has
been an increased release of catecholamines in
response to various stressful stimuli (“our hearts
are racing”); similarly, catecholamines can be re-
leased from these glands in response to emotional
stresses.

1.8.5 Central Organization
of the ANS

Neurogenic resting activities are a fundamental
property underlying the autonomic control of our
various organ functions. If there are fairly con-
sistent resting discharge rates, system effects can
be modulated by either increasing or decreasing
these neurogenic rates (i.e., discharge rates of
action potentials). The resting discharge rates in
the ANS, for both the sympathetic and parasym-
pathetic neurons, are approximately 2 Hz. Addi-
tionally, it is these resting frequencies of action
potentials throughwhich smoothmuscle tones are
maintained. Note that changes in these discharge
activities are regulated by both afferent inputs
via reflex networks and efferent controls from
the CNS higher centers. Segmental reflexes also
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Fig. 1.34 A schematic of the widespread actions following the release of catecholamines from the adrenal medulla.
These responses would aid an individual’s “fight or flight” response to danger

exist within the ANS, and the minimal number of
synapses in these autonomic reflex arcs is three,
with one lying within the CNS. If an individual
suffers a spinal cord injury, the ensuing spinal
shock also typically results in 1–6months of ANS
hyporeflexia; clinically, the skin below the trauma
appears dry and rosy due to low sympathetic
tone (i.e., vasodilatation), and later hyperreflexia
(e.g., heavy uncontrolled sweating, high blood
pressure) is often present.

1.9 The Hypothalamus
and Homeostasis

The hypothalamus is the so-called brain center
which governs all essential “homeostatic” func-
tions of the human body. These integrative func-
tions include control over (1) the autonomic ner-
vous system, (2) various somatic pathways, and
(3) the body’s hormonal systems. Briefly, home-
ostasis can be defined as the control of the internal
milieu which, in general, is kept nearly constant
within narrow limit, that is, despite potential se-
vere perturbations that our bodies can experience

(e.g., extreme hot and cold temperatures). The
hypothalamus is a small region of the inferior
brain, which is considered as a neuronal con-
tinuum extending from the midbrain through to
the basal regions of the telencephalon. Further,
the lateral hypothalamus can be thought to be
reciprocally connected with both the upper brain
stem and the limbic system (these are the brain
centers which control emotions, learning, etc.,
as described below). As such, the hypothalamus
receives primary sensory inputs from afferents
near the body surface as well as from internal
structures via the ascending spinobulboreticular
pathways (Fig. 1.35).

In contrast, the medial hypothalamus receives
its main inputs from the lateral hypothalamic
regions. These medial regions of the hypothala-
mus also contain specialized neurons important
for sensing the conditions of both the blood and
cerebrospinal fluid. In turn, the medial hypothala-
mus makes numerous connections to the pituitary
gland (or hypophysis). There are two main types
signaling connection between these structures:
(1) neuronal connections to the neurohypoph-
ysis (axonal) and (2) hormonal system to the
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Fig. 1.35 Shown here are the general afferent and ef-
ferent pathways/connections of the hypothalamus (me-
dial and lateral), the pituitary gland (adeno- and neuro-
hypophysis), the limbic system, the thalamus, and the
mesencephalon. Note that the medial hypothalamus, via
the neuroendocrine interface, controls the functions of the
pituitary gland

adenohypophysis (to its anterior region). Thus,
these multimodal connections are often referred
to as a neuroendocrine interface (Fig. 1.35). Also
commonly defined as the hypothalamo-pituitary
system, the activities ofmost endocrine glands are
regulated by hormones released from the adeno-
hypophysis (anterior pituitary). It should be noted
that the hypothalamus releases both stimulating
and inhibitory releasing hormones that, in turn,
can affect the pituitary responses.

The tight control of homeostatic functions
that are modulated via the hormone system
is accomplished by multilevel, multi-hormone
feedback mechanisms. For example, the blood
levels of releasing hormones as well as the
released hormones by the pituitary can both be
sensed by specialized neurons within the medial
hypothalamus itself (Fig. 1.36). Interestingly,
electrical stimulation of nearly any neural region
within the hypothalamus is likely to cause a

Fig. 1.36 There are multilevel feedback loops that are
employed to regulate both hormone levels and neural
responses. For example, the medial hypothalamus can
sense blood levels of releasing hormones, hormone levels
released by the pituitary gland, and also those released by
target endocrine glands

patterned cardiovascular response (change in
function/activity; Fig. 1.37). Yet, as described
above, these hypothalamic effects on the
cardiovascular responses are typically mediated
by appropriate/synergistic parasympathetic and
sympathetic pathways (modulations in firing
rates). Additionally, afferent inputs for this
control are many and include those from baro-,
chemo-, and mechanoreceptors in the atria,
ventricles, aorta, and elsewhere.

It should be emphasized that the hypothalamus
exerts neuronal control over various autoregu-
lation systems within the human body that are
deemed critical for species survival (Fig. 1.38).
Several examples of functions that are modulated
in this way include (1) our ability to thermoregu-
late; (2) the regulation of food intake; (3) our drive
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Fig. 1.37 The body’s cardiovascular responses are more
or less under involuntary control and thus are regulated
by the autonomic nervous system (ANS). For example,
stimulation of any region of the medial hypothalamus
will induce changes in cardiovascular responses. These
patterned responses are commonly associated with innate
behavior responses that are also attributed to the hypotha-
lamus, such as feeding or defensive behaviors which, in
turn, appropriately modulate other body systems under
ANS control

for fluid intake (or thirst); and (4) one’s sexual
drive and associated behaviors (e.g., control of
penile erection and ejaculation). In other words,
like the control of cardiovascular responses, stim-
ulation of small areas of the hypothalamus can
cause an animal to elicit these aforementioned
characteristic behaviors. Note that additional be-
haviors under the control of the hypothalamus
can be even more complex in nature and thus
simultaneously involve intersegmental somatic,
autonomic, and hormonal components. Examples
of such behavior patterns include the initiation
of (1) defense and fighting (facial expression,
assuming a desired posture, etc.); (2) eating and
drinking (searching behaviors); (3) reproductive
behavior (mating rituals); and (4) thermoregula-
tory responses (see below for details). Further-
more, anatomically defined structures (e.g., nu-
clei) have been identified for a number of home-
ostatic functions including satiety, hunger, ther-
moregulation, and sleep. It should be noted that
numerous functional disturbances can therefore
result from damage to the hypothalamus (i.e.,
commonly caused by tumors, trauma, or inflam-
mation).

1.10 Regulation of Body
Temperature:
Thermoregulation

In this section, regulation of body temperature
will be reviewed as a more detailed example of
humans’ extraordinary abilities for homeostasis.
Thermoregulation is similar to many other phys-
iologic control systems, in that the CNS center
uses negative feedback to minimize perturbations
from some predetermined preset “normal” values
(similar to how room temperatures are regulated
via a thermostatic control system; Fig. 1.39). As
such, destruction of associated controls centers
within the hypothalamus will, in turn, cause poor
regulation of one’s body temperature. Yet it
should be noted that sites other than those in
the hypothalamus are also considered important
for contributing to our thermoregulatory abilities
(e.g., both higher brain centers and the spinal
cord). By definition, humans are homeothermic,
or capable of regulating their body temperatures
within very narrow limits. In contrast, body
temperatures in a poikilothermic individual (e.g.,
frog or an anesthetized patient) are commonly
slightly higher than ambient temperatures. Thus,
homeotherms are spared the slowdown of bodily
functions which occurs in poikilotherms when
there is a decrease in environmental temperatures.
However, the advantages obtained by higher body
temperatures come with the greatly imposed need
for regulation and input energy.

When one considers human thermoregulation,
the concept of an optimal temperature needs in-
troduction. Virtually every cell in the human body
functions most efficiently at 37 ◦C (98.6 ◦F). Yet,
heat is also produced within the body by each
individual cell regardless of its primary cellular
function. Some of this heat energy is retained in
the body, and the rest is discharged in a variety of
ways. Nevertheless, if the human body gets ex-
cessively warm or cold, bodily functions become
impaired and when extreme, eventually death will
ensue.
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Fig. 1.38 Diagram of the functional organization of hy-
pothalamic behavior patterns. The limbic system has direct
inputs into the lateral hypothalamus which, in turn, can
activate fixed programs to regulate various behavior re-

sponses, thus affecting the endocrine, autonomic nervous,
and somatic nervous systems appropriately and simultane-
ously

Fig. 1.39 Basic components that make up the negative
feedback control system of body temperature regulation.
Efferent mechanisms will either involve heat loss or heat

production which will be influenced by internal and/or
external parameters
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Fig. 1.40 The temperature profile associated with ther-
moregulation in humans. Shown are changes in core body
temperatures (◦C). At rest, a human’s normal body tem-
peratures can range over 1 ◦C throughout the day. For
example, our core temperatures typically drop while we
sleep and may increase after eating a large meal. It is
quite normal that core body temperature will increase with

moderate to intense exercise, and the rate of increase will
be exaggerated when exercising in a hot environment.
Clinical hypothermia is typically defined as a core body
temperature below 36.5 ◦C, which typically occurs under
the influence of general anesthesia during surgery. In an
uncontrolled situation, if a human’s body temperature gets
too cold or too warm, death will occur

1.10.1 Core Temperature

An interesting feature of thermoregulation is the
fact that the central body (vital organs) or core
temperature (brain, spinal cord, heart, lungs, and
thorax) and the peripheral temperature (limbs and
skin) would ideally both be set at approximately
37 ◦C. Yet, during our normal daily lives, the
peripheral components can vary greatly from this
set point, with minimal consequences to our over-
all human performance, whereas slight changes
in our core temperatures (1–2 ◦C) could have
profound consequences. In general, hypothermia
is defined as significant decreases in core temper-
atures (1–2 ◦C), and hyperthermia is a significant
elevation in core temperature (2–3 ◦C) (Fig. 1.40).
Note that a human’s core body temperature can
vary throughout the day and that some degree of
hyperthermiamay be induced by normal exercise.

1.10.2 Cutaneous Thermoreception

Related to thermoregulation in humans, there are
two objective and subjective demonstrable qual-
ities that an individual can define—the sense of
cold and warmth. As such, there are both specific
warm and cold receptors that are insensitive to

nonthermal stimuli. Like other receptors, each of
these populations can be defined by a specific
receptive area (warm and cold points on the skin),
and their densities vary throughout the human
body, as do their neuronal contributions within
the somatosensory cortex (Fig. 1.19); each af-
ferent fiber usually supplies only one warm or
cold point (an area of 1 mm2 or less). Like other
receptor populations for a given modality, the
qualities of the receptors may also elicit specified
ranges or have a varied temporal responsiveness.
More specifically, some thermal receptors can
be considered to elicit static temperature sen-
sations, that is, temperature changes are related
to alterations in the action potential discharge
rate in the afferent fibers and the discharge rates
are proportional to the skin temperatures. Other
thermal receptors elicit more phasic properties (or
adaptation), for example, their sensation of tem-
perature fades away after a short period of time.
The environmental temperature range in which
complete adaptation occurs is called the neutral
(comfort) zone; its limits are 36 ◦C to 30 ◦C. The
dynamic temperature sensations experienced by
an individual while his or her skin temperatures
are changing are basically determined by three
parameters: (1) the initial temperature of one’s
skin, (2) the rate of regional temperature changes,



40 P. A. Iaizzo

Warm responses

Active vasodilation

Sweating

Vasoconstriction
Nonshivering
Thermogenesis
Shivering

Range

Interthreshold

Hypothalamus

Cold responses

Hypothalamus

Other parts of brain

Skin surface

Spinal cord

Deep central tissues

Thermoregulatory System:

Fig. 1.41 Thermoregulatory responses are based on
mean body temperature, which is a physiologically
weighted average reflecting the thermoregulatory impor-

tance of various tissues. The inputs are integrated within
the hypothalamic centers for temperature control to then
elicit the appropriate warm or cold effector responses

Table 1.1 Body effector responses to cold and warm

Cold Warm

Behaviorala Behaviorala

Vasoconstrictiona Vasodilationa

Non-shivering thermogenesisa Sweatinga

Shiveringa Panting

Piloerectiona Salivation

Fluffing of feathers

Decreasing body temperature
aResponses which typically occur in humans

and (3) the size of the skin areas affected by the
stimuli.

1.10.3 Central Thermoregulation

As noted above, body temperature is regulated
by central structures (primarily by the hypotha-
lamus) that compare integrated thermal inputs
from the skin surface, the neuroaxis, and/or deep
tissues. If an integrated thermal input exceeds
one of the threshold temperatures for heat or
cold, appropriate effector responses to maintain
adequate temperature are initiated (Fig. 1.41).

Table 1.1 lists the primary body effector re-
sponses to thermal perturbations via a variety of
mechanisms that will, in turn, increase or de-

crease metabolic heat production and/or alter heat
losses or gains to or from the environment. It
should be noted that behavioral responses are
primary reactionary responses to an uncomfort-
able thermal environment, for example, you wear
many layers of warm clothes if you plan to go
outside on a cold day, or remove or minimize
clothing in a hot environment. It should be noted
that these behavior effector mechanisms for ther-
mal management in clinical situations (e.g., in
the operating room) are taken over by healthcare
providers.

In the healthy individual, the primary
mechanisms for heat production include (1)
voluntary muscular activities and behavior
changes (e.g., running in place or moving your
limbs around); (2) involuntary tonic (tensing)
and rhythmic skeletal muscle activities (shiver);
and/or (3) non-shivering thermogenesis (not
associated with muscular contraction), including
the increased releases of both epinephrine and
thyroxine. The primary mechanisms to conserve
heat include vasoconstriction of peripheral blood
vessels (via sympathetics) and behaviorally
minimizing one’s body surface area to conserve
heat (e.g., if you fall into cold water, it is
recommended for survival that you assume the
HELP position—heat escape lessening position,
tucking your arms and legs close to your body).
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The primary mechanisms for heat loss include
the following:

• Radiation: Electromagnetic waves are both
emitted and absorbed by the body.

• Conduction: The simple transfer of thermal
energy from atom to atom or molecule to
molecule in contact with each other; heat flows
down a concentration gradient.

• Convection: The process whereby air (or wa-
ter) next to the body is heated, moves away
(convective currents) from the body, and is
replaced by cool air or water.

• Passive evaporation: Evaporation from the
skin and respiratory tract in the absence of
sweat (600 ml/day).

• Active evaporation: Sweat is actively secreted
from sweat glands and extruded into ducts,
which lead to the skin surface. The sweat is
pumped to the surface by periodic contrac-
tions of cells resembling smooth muscle in
the ducts. Production and delivery of sweat to
the surface are stimulated by the sympathetic
nervous system.

So if we now embellish upon the negative
feedback system for thermoregulation to include
the aforementioned mechanisms, such a diagram
can grow in complexity (Fig. 1.42).

1.11 The Limbic
and the Ascending Reticular
Activating Systems

The human limbic system is associated with an
individual’s ability to change moods and innate
incentives to action (a person’s motivational in-
teractions and emotions) but is also important in
the processes of learning and memory (Fig. 1.43).
The concept of a limbic system has primarily de-
veloped from comparative neuroanatomic studies
as well as through neurophysiological investiga-
tions. The following regions, composed of gray
matter (neural cell bodies), are anatomically in-
cluded in this system: the limbic lobe (consisting
of the cingulate and parahippocampal gyri), the
hippocampal formation, parts of the amygdaloid

nucleus, the hypothalamus (including the mam-
millary bodies), and the anterior nucleus of the
thalamus (Fig. 1.43).

In general terms, the limbic system controls
emotional behaviors and thus numerous com-
plex internal factors which motivate human ac-
tions. Changes in one’s limbic systemwill disrupt
emotional behavior patterns (e.g., an amygdalec-
tomized animal is incapable of functioning as a
member of a social group). The expression of
emotions is considered based largely on inherited,
inborn reactions. A complex of neurons known as
the monoaminergic system appears to be of great
importance in the global regulation of such be-
haviors. This group of neurons includes dopamin-
ergic, noradrenergic (norepinephrine), and sero-
tonergic neurons that originate in the brain stem
and innervate practically all regions of the brain.
Brain areas in which self-stimulation has been
reported to occur are also the brain regions in
which there is vast innervation or input from
catecholaminergic neurons.

These responses differ from those described
for the ascending reticular activating system
within the CNS. It has been described that diffuse
electrical stimulation in the mesencephalic
and pontine portions of the reticular formation
can cause immediate and marked activation
of the cerebral cortex and will even cause a
sleeping individual to awaken instantaneously.
This system is considered to extend upward
from the mesencephalic reticular formation in
multiple diffuse pathways, which then terminate
in almost all areas of both the diencephalon
and cerebrum (thalamus and cortical gray
matter). In other words, they are considered
as nonspecific projections, and it is important
to distinguish these from the classical sensory
specific projections. Additionally, one can
subdivide this system into two main ascending
pathways: (1) the first passes upward to the
intralaminar midline, to the reticular nuclei of the
thalamus, and then subsequently through relay
pathways to essentially all parts of the cerebral
cortex and basal ganglia; and (2) the other which
passes upward through the subthalamus, to the
hypothalamus, and then to their adjacent areas.
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Fig. 1.42
Thermoregulation is
similar to many other
physiologic control
systems, in that the central
nervous center uses
negative feedback to
minimize perturbations
from some predetermined
set point. The
hypothalamus, which is the
primary control center,
receives thermal inputs
from numerous body
structures as well as from
sensors within the central
nervous system itself (e.g.,
medial hypothalamus and
spinal cord) and then
integrates a broad range of
functions to maintain
thermal control. The
efferent mechanisms
include the autonomic
nervous system (e.g.,
vasoconstriction,
vasodilation, sweating),
various somatic pathways
(e.g., behavior responses,
shiver), and/or the body’s
hormonal systems (e.g., the
release of thyroxine and
epinephrine)

1.11.1 Function of the Various
Portions of the Reticular
Activating System

In general, one can define two brain regions that
contain structures associated with the reticular
activating system: (1) one being located within
the mesencephalic and brain stem regions and
(2) the other lies within the thalamus (Fig. 1.44).
The reticular formation of the mesencephalon
and upper pons acts as an intrinsic activating
center; damage or a lesion present above this
center will induce coma. In contrast, stimulations
of the reticular areas in the brain stem below the
midline of the pons can inhibit this activating
system and cause sleep. Relative to the thalamic
portion of this system, it has been noted that
selective stimulations of various regions cause
specific activations of only certain areas of the
cerebral cortex. Furthermore, the reticular activat-

ing system itself is subject to stimulation (arousal)
or inhibition (which can lead to sleep). For ex-
ample, sensory stimuli from almost any part of
the body can cause arousal or induced activations.
It should be noted that some signals are much
more stimulatory than others, such as pain and
proprioceptive somatic impulses. The reticular
formation receives tremendous input through a
number of signals via the spinoreticular tracts, the
spinothalamic tracts (collaterals), and the spino-
tectal tracts. Modulation of these reticular centers
can also be retrograde in nature; these activities
are mainly directed at the mesencephalic portion
of the reticular formation. These latter pathways
include those from (1) the somatic sensory cortex,
(2) the motor cortex, (3) the frontal cortex, (4)
the basal ganglia, (5) the hippocampus and other
limbic structures, and (6) the hypothalamus. Con-
sider that one can try to resist the drive to sleep
bymovement, eating behaviors, or focusing one’s
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Fig. 1.43 Primary brain regions which have been asso-
ciated with the so-called limbic system within humans.

These numerous brain regions work together to control
emotional behavior and numerous complex internal fac-
tors related to one’s internal motivation

attention on a topic. The state of wakefulness
can generally be defined as activities in the brain
directed into the appropriate channels to give a
person a sense of conscious awareness. A coma
is defined as the opposite of brain activation. A
coma can result from any factor that diminishes
or stops activities in the mesencephalic portions
of the reticular activating system, for example,
(1) from a brain tumor compression of the brain
stem, (2) due to vascular lesions caused by death
of neural tissue (e.g., due to hypoxia or toxins),
or (3) as the result of infectious processes in the
brain stem (e.g., encephalitis). A coma is distinct
from sleep in that a person cannot be aroused from
a coma.

We are all aware that we can direct our atten-
tion toward certain of our mental activities indi-
vidually. This ability has been assigned to that of
the thalamocortical system, which can apparently
activate small areas of the cerebral cortex. Also
recall that the thalamus is the entryway for all
sensory nervous signals to the cerebral cortex, and
the stimulation of the various thalamic nuclei can
cause transient increases in cortical activity.

1.11.2 BrainWaves

Electrical recordings from the surface of the brain
or from the outer surface of the head demonstrate
continuous electrical activities within various un-
derlying regions of the cortex. Both the intensi-
ties and patterns of these electrical activities are
determined to a great extent by the overall levels
of regional excitations which, as noted above, are
controlled by the reticular activating system. An
electroencephalogram (EEG) can be simply de-
fined as a record of the brain’s regional electrical
activities (changes in the brain’s electrical fields).

An EEG can be recorded as a set of surface
potentials by placing electrodes on the scalp.
The monitored signals can range between 0 and
300 mV, and their frequencies range from 0 to
approximately 50 Hz. The characteristics of the
recorded waves, the EEG patterns, are highly
dependent on the degree of activities within
one’s cerebral cortex. The features of these waves
change markedly between states of wakefulness,
sleep, and coma.



44 P. A. Iaizzo

Fig. 1.44 Brain regions and several of the specific neural
pathways associated with the reticular activating system.
These specific nuclei include (1) the gigantocellular nu-
cleus, neuronal bodies that lie in the medial portions of the
reticular formation in the mesencephalon and upper pons
and are the principal activator portion of the reticular sys-
tem (these neurons release acetylcholine, a normally ex-
citatory transmitter); (2) the substantia nigra, the nucleus
that lies in the anterior portion of the mesencephalon and
contains neuronal cell bodies that secrete dopamine at their
nerve endings (axons of these neurons make connections
to the basal ganglia, hypothalamus, and cerebral cortex);
(3) the locus ceruleus, which is a small area located
bilaterally and posteriorly at the junction point between the
pons and mesencephalon and contains nerves that secrete
norepinephrine with either excitatory or inhibitory effects,
depending on the synaptic receptors (this center is thought
to play a role in REM sleep); and (4) the raphe nuclei,
several very thin nuclei located in the midline of the lower
pons and medulla that secrete serotonin and send fiber to
widespread areas in the diencephalon and spinal cord (the
release of serotonin from these fibers plays an essential
role in causing normal sleep)

Even in a healthy individual, EEG patterns
are irregular much of the time, but under certain
conditions, distinct patterns do appear. Some are
characteristic of certain pathological behaviors
(e.g., epilepsy), and others occur in all normal
individuals (Fig. 1.45). When a regular pattern is
sustained, it is commonly defined as one of the
following waveforms (Fig. 1.46):

• Alpha waves: 8–13 Hz, 50 mV; typically oc-
curring during quiet wakefulness or a rested

Fig. 1.45 Recorded surface potentials from an electroen-
cephalogram (EEG) obtained by an array of electrodes
placed on the scalp. In this case, abnormal activity, perhaps
due to a tumor, was identified between a given pair of
electrodes, hence also identifying the relative location of
the abnormal function

Fig. 1.46 Types of normal EEG waves

state (mainly recorded from occipital cortical
regions).

• Beta waves: 14–25 Hz; activation patterns of
the CNS that typically occur when a person is
under tension (mainly recorded from parietal
and frontal cortical regions).

• Theta waves: 4–7 Hz; typically elicited dur-
ing emotional stress, disappointment, and frus-
tration (associated with parietal and temporal
lobes).

• Delta waves: Less than 3.5 Hz; these typically
occur during deep sleep, in infancy, and/or
in cases of serious organic brain disease
(throughout cortex).

When an individual’s level of activities
changes, so will his or her EEG patterns. For
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Fig. 1.47 Rapid transition in the EEG waveforms due to
the evoked response of simply opening one’s eyes

Fig. 1.48 Typical EEG patterns in various stages of
wakefulness and sleep

example, alpha waves can be elicited while
resting when your eyes are closed, but typically
not detected when they are open (Fig. 1.47).

1.11.3 Sleep

Sleep is defined as a state of unconsciousness
from which a person can be aroused by appropri-
ate sensory or other stimuli. During each night,
a healthy person goes through multiple stages of
two different types of sleep that alternate with
each other (Figs. 1.48 and 1.49): (1) slow wave
sleep, or low-frequency EEGwaves, and (2) rapid
eye movement (REM) sleep, also known as para-
doxical sleep. It is during REM sleep that the eyes
undergo rapid movements despite the fact that the
person is asleep (25% of sleep in this form occurs
roughly every 90 minutes). This type of sleep is
more often associated with dreams that can be
recalled.

Fig. 1.49 Generalized sleep pattern that may occur dur-
ing an 8-hour stay in bed

As an individual passes from a state of wake-
fulness into sleep, one can often observe charac-
teristic changes in EEG patterns. These general
patterns are the following:

• Alert wakefulness: Typically beta waves are
elicited.

• Quiet wakefulness: Primarily composed of al-
pha waves.

• Slow wave sleep (or non-REM sleep): These
stages of sleep are associated with decreases in
both peripheral vascular tones and many other
vegetative functions (blood pressure, respira-
tory rate, and basal metabolic rate). Dreaming
also occurs during these stages of sleep, but
they are not thought to be often remembered.
Slow wave sleep can be divided into four addi-
tional stages: (1) stage 1, very light sleep, elic-
iting low-voltage EEG with “sleep spindles”
(bursts of alpha waves 8–13 Hz); (2) stages 2
and 3, theta waves (4–7 Hz) are common; and
(3) stage 4 sleep, in which the EEG frequen-
cies become progressively slower until delta
waves are often present (< 3.5 Hz). Note that
the elicitation of delta waves probably occurs
intrinsically within the cortex, that is, when
the cortex is not being driven by the reticular
activating system.

• REM sleep: The EEG patterns in this stage
of sleep are similar to that of early stages of
wakefulness. Bouts of REM sleep typically
last between 5 and 30 minutes; in the ex-
tremely physical tired individual, the bouts of
REM can be very short or even absent. REM
sleep is usually associated with active dream-
ing. It has been reported that a person is more
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difficult to arouse by sensory stimuli during
REM sleep, yet, to the contrary, we usually
awaken in the morning during a bout of REM.
Importantly, somatic muscle tone is depressed
during REM sleep due to strong inhibition of
the spinal projections from the reticular system
(thus, we normally cannot physically act out
our dreams). During REM sleep, both heart
rate and respiration may become irregular. In
general, the EEG patterns during REM sleep
appear typical of those during wakefulness.
It is considered that the brain is quite active
during REM sleep, but proper brain channels
are not activated as to allow a person to be
aware of their surroundings.

1.11.4 Mechanisms of Sleep

In broad terms, sleep can be considered as an ac-
tive inhibitory process. Exact sleep mechanisms
are in general not known, but certain factors have
been described. Importantly, it is known that hu-
mans have an essential sleep requirement; in other
words, for the well-being of bodily functions,
sleep is absolutely necessary. Yet, one’s sleep re-
quirement is known to change with age and/or the
rate of body development. A biochemical theory
of waking and sleep has been proposed that postu-
lates decreases in the amounts of serotonin in the
raphe nuclei in the brain stemwill result in insom-
nia. Further, the amount of REM sleep can be re-
duced by decreasing concentrations of serotonin
within one’s brain. Additionally, a decrease in the
concentration of norepinephrine (noradrenaline)
within the neurons of the locus ceruleuswill result
in the disappearance of slow wave sleep only.
Nevertheless, it has been described that

prolonged wakefulness is associated with pro-
gressive malfunction of the human mind and can
also cause abnormal behavioral activities of one’s
nervous system (e.g., irritability and eventual psy-
chosis). It is considered that during sleep, sym-
pathetic nervous system activity decreases while
parasympathetic activity increases. Therefore, as
would be predicted, arterial blood pressure falls,
pulse rate decreases, skin vessels dilate, activ-
ity of the gastrointestinal tract increases, skeletal

muscles go into a relaxed state, and the overall
basal metabolic rates of the body can fall by 10 to
30% (hence, core temperature will decrease).

1.12 Pain

Pain is the sensory modality that one may
consider being of greatest importance in human
medicine, for it is the effects of noxious
stimuli or associated influences that bring
patients to physicians. Recent work in the
field of neuroengineering has focused on
modulating pain. Unlike the other sensory
modalities, pain contributes little or no sensory
information regarding one’s surrounding external
environment. Yet, the detection of pain can be
considered as indispensable for a normal life,
that is, note that the protective functions of pain
receptors (nociceptors) are not available through
other sensorymodalities. Interestingly, it has been
reported that females can withstand a specific
pain longer, but that males can tolerate more
intense transient pain. The qualities of pain can
be roughly categorized according to either the
site of origin or by the nature of the pain itself
(Fig. 1.50).

1.12.1 Intensity of Pain (Quantity)

All tissue-damaging or “noxious” stimuli give
rise to pain, and no particular single adequate
stimulus for pain can be specified. Like other
receptor systems, nociceptors in the skin are not
equally distributed (Fig. 1.51). It is difficult to
quantify pain, and, importantly, it is one’s effec-
tive reactions to pain that are of greater concern
to both patients and physicians than the actual
physiological aspects. Humans have the ability
to redirect their attention to or away from this
modality; that is, by doing so, one can weaken
the sensation of pain and, in extreme cases, can
abolish it.

Numerous injurious stimuli can activate noci-
ceptors and thus be perceived as pain, including
(1)mechanical stimuli, (2) thermal stimuli (which
can also be in the form of radiation which avoids
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Fig. 1.50 Classification scheme of the sensory modality
of pain. Superficial somatic pain arises from the skin
nociceptors. It is felt as an initial or “flash” pain (i.e.,
needle piercing the skin; a readily localized pain that fades
rapidly) or as a delayed pain, with a latency of 0.5–1.0 sec-
onds, which has a dull burning character and dies out
slowly and is more difficult to localize. Deep somatic pain
typically originates from connective tissue, bones, joints,
and muscles. This pain is usually dull in nature, is poorly
localized, and tends to radiate into the surrounding areas.
Visceral pain originates from one’s internal organs: this
pain also tends to be dull or diffuse in character and thus
resembles deep pain accompanied with severe autonomic
responses. For example, spasms or strong contractions of
smooth muscles are very painful, especially when they are
associated with ischemia (e.g., kidney stones)

Fig. 1.51 Specificity of the sense of pain. Theory postu-
lates the existence of special pain receptors which respond
only to high intensity stimuli. Pain points are specific sites
on the skin similar to those of mechano- and thermore-
ceptors. It should be noted that the skin is not uniformly
sensitive to pain

mechanical contact), and (3) chemical stimuli,
which will elicit pain when a given pain ago-
nist is placed in direct contact with skin. There
is no one pain substance, rather several agents

placed in contact with the skin can induce pain re-
sponses, including acetylcholine, serotonin, his-
tamine, H+ ions, K+ ions, and various peptides
(e.g., bradykinin). Importantly, there is a lack
of adaptation to pain, for example, headaches
and toothaches can last for hours. Yet, like other
somatosensory modalities, there is a specificity
theory that applies to the modality of pain (i.e.,
the identification of pain points in various tissues;
Fig. 1.51).
Nociceptors or pain receptors can be of several

types: (1) pure, those that respond to one type
of noxious stimuli (i.e., only respond to a given
thermal, mechanical, and chemical stimulus); (2)
polymodal, or those receptors responding to more
than one type of noxious stimuli; or (3) free
nerve endings, with specific membrane receptors
for molecular activators of pain (e.g., H+, K+,
and/or ATP). Like other receptor populations,
some types of nociceptors may contain filters;
that is, they possess a corpuscular anatomy. The
axons of these nociceptive afferent fibers, via
interneurons, send ascending signals within the
ventral half of the spinal cord to higher CNS
structures. This specific pathway is often referred
to as the ascending spinothalamic tract or the
anterolateral column. Hence, this nociceptive in-
formation from the spinal cord ascends upward to
forebrain projections. Nevertheless, these projec-
tions can be considered to travel to the thalamus
and cortex via multiple sensory pathways (Fig.
1.52).

Special forms of pain can be defined which
include (1) projected pain (Fig. 1.52); (2) neu-
ralgia, a continuous painful irritation; and (3)
referred pain, sensations produced by nociceptors
in the viscera that are felt as having occurred at
a distant site (Fig. 1.53). The underlying mecha-
nisms for this latter form of pain are via interneu-
ronal connections of the same neurons of origin in
the spinothalamic tract (e.g., if you are suffering
a heart attack, you may feel pain in your left arm
and shoulder, or if your esophagus gets too cold,
you detect it as a central headache).

Considerable clinical time and effort are in-
vested in managing an individual’s response to
noxious stimuli, injuries, and/or underlying dis-
ease process, and rightly so. Pain hurts and this in-
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Fig. 1.52 Schematic for projected pain. In this case, pain
is detected because the afferent pathway is activated, but
not normally through a receptor ending activation. This

signaling pathway goes from the periphery, through the
anterolateral column in the spinal cord, and ultimately to
the sensory cortex

Fig. 1.53 Schematic
representation of referred
pain. In this case,
nociceptors in the heart
were activated and synapse
on interneurons which also
have connections to the
nociceptor afferents
associated with the left arm
and shoulder; hence, the
projected pathways that
were activated were then
perceived by an individual
as pain in the arm and
shoulder, even though they
originated in the heart

formation provides important insights regarding
the site(s) of pathologies and/or the degree(s) of
injury. Listed below are several available modes
often employed to control a given individual’s
pain:

• Physical: Immobilization, cold or warm wrap-
pings, diathermy, massage, and/or exercises.

• Pharmacological: Anesthetic agents adminis-
tered via an infusion pump, injection, or topi-
cally.
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• Neurosurgical: Surgical procedures are essen-
tially irreversible and normally reserved for
chronic pain conditions, for example, a chor-
dotomy which is the transection of the antero-
lateral column of the spinal cord or a leuko-
tomy which employs the transection of the
pathways from the thalamus to the frontal lobe.

• Neurostimulation: Use of implantable
electrode stimulation systems to modulate
the activity within ascending pain pathways or
within cortical sites themselves.

1.13 Vision

Electromagnetic radiation with a wavelength
spectrum between 400 and 750 nm can be
perceived, by humans, as light. The longer
wavelength components (750–650 nm) appear
as red light, and the shortest components as blue-
violet light (400–450 nm). All objects in our
surroundings reflect light to different degrees:
monitored as luminescence or luminous intensity
of which the units are candela or cd per unit
area. The luminance of various objects (or parts
of a given object) determines relative contrasts,
defined as C = (Ia − Ib)/(Ia + Ib). Vision is
based primarily on the perception of bright/dark
contrasts. Color contrast enables us to distinguish
surfaces with a C = 0, that is, if they reflect
different portions of the visual spectrum (Fig.
1.54).

1.13.1 Functional Anatomy

As noted above, light waves are propagated in all
directions from every point of a visible object.
These divergent light waves must pass through
the human optical system that focuses them back
onto the sensory detecting region of the eyeball,
before an accurate image of the object is achieved.
In the eye, the image of the object being viewed is
focused upon the retina, which contains the light-
sensitive receptor cells (Fig. 1.55).

1.13.2 The Visual Focusing System

The lens and cornea of the eye are the primary
optical components that focus the image upon the
retina. The cornea plays a larger role than the lens
in focusing light rays because the rays are bent
more in passing from air into the cornea than they
are when passing in and out of the lens. How-
ever, the lens is the primary structure responsible
for making nearly instantaneous adjustments for
viewing objects at various distances, that is, the
structures which allow for the visual accommo-
dation process. The shape of the lens is controlled
by the active contractions and relaxations of the
ciliary muscles and thus the tensions they apply
to the zonular fibers, which attach to the lens (Fig.
1.56). Furthermore, the amount of light entering
the eye is controlled by a ring-like pigmented
(commonly, brown, blue, or green) muscle known
as the iris; the hole in the center of the iris is called
the pupil. Stimulation of sympathetic nerves to
the iris causes these muscles to contract, which
then enlarges the pupil, whereas stimulation of
the parasympathetic nerves causes the diameter
of the iris to get smaller.

There are a number of common disorders of
the focusing system which have been defined,
including the following:

• Presbyopia: Increasing stiffness of the lens that
makes accommodation for near vision more
difficult (e.g., one may need reading glasses as
she or he ages).

• Cataracts: Changes in the lens color or opacity
(replacement surgeries are very common, but
afterward, one loses all accommodation abili-
ties).

• Myopia (nearsightedness): An individual’s
eyeball is too long, and distal objects focus at
a point in front of the retina.

• Hyperopia (farsightedness): An individual’s
eyeball is too short, and near objects are fo-
cused behind the retina.

• Astigmatism: The lens and/or cornea do not
have a smooth spherical surface; thus, the im-
ages to be focused on the retina are distorted
accordingly.



50 P. A. Iaizzo

Fig. 1.54 A schematic diagram of a horizontal-sectional
view through a human eye. The image of the red arrow
passes through the focusing system to be projected on the
fovea of the retina; note that it becomes inverted in doing

so. Our brains then are programmed so that the object is
detected in its correct orientation. The optic nerve is one’s
blind spot, for there are no retinal receptors in this region
in the eyeball

Fig. 1.55 Relative
refractory mechanism
involved in focusing an
image upon the retina. The
cornea induces a great bent
of the light rays relative to
the lens

Fig. 1.56 Shown here are
the relative actions of the
ciliary muscle on altering
the shape of the lens. As
these muscles contract, the
elastic tension in the
zonular fibers is reduced
and the curvature of the
lens increases (right, near
accommodation), whereas
reduction of muscle tone
allows the elastic tension
of the lens capsule to allow
the curvature to decrease
(left, far accommodation)

Dialator
Muscles

Zonal Fibers

Ciliary
Muscle

(relaxed)

LensLens

Sphincter
Muscle
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Ciliary
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• Glaucoma: The aqueous humor is formed
faster than it is removed, resulting in increased
pressure within the eye; this will distort an
eyeball shape and change its overall focusing
abilities.

1.13.3 Visual Receptor Cells

Within the retina, one can define two types of
photoreceptors (which are both secondary sense
cells), commonly known as rods and cones. There
are approximately 120 million rod photorecep-
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Fig. 1.57 A schematic representation of the primary
structures within the retina. The retinal receptors (rods
and cones) are embedded into the pigment epithelium.
Light directed from the focusing system passes through

the neuronal network (horizontal, bipolar, amacrine, and
ganglion cell layers) before reaching and activating the
receptors

tor cells in the human eye (Fig. 1.57). These
cells have primary functional abilities when one
is in dim light or during night conditions: they
provide for scotopic vision. The peak absorption
in the rod’s cell is approximately 500 nm, and
the photopigment (the molecules which absorb
the photons) is known as rhodopsin. The cone
photoreceptors, of which there are approximately
six million in humans, are the receptor popu-
lations most utilized for daytime lighting con-
ditions: they provide for photopic vision. Three
different photopigments can be found in a normal
human’s population of cone cells, and each of
these will absorb light most effectively at a differ-
ent part of the visible spectrum; that is, consider
that there are red, green, and blue cone receptor
cells.

It should be noted that there are more rod
cells than cone cells and they are not equally
distributed in the human retina (Fig. 1.58). More
or less, one can consider that there is a lack of rod
cells in the fovea, which makes this region of the
retina essential for daytime vision. This is also the
region of the retina where the image of an object
of primary interest is being projected; hence, one
controls their gaze toward focusing on the fovea.
The high density of cones in this retinal region
and the fact that only the outputs from few cones
converge onto a single associated ganglion cell
allow for a much greater spatial resolution (visual
acuity). However, visual acuity also depends on
the presence of simultaneous contrasts. Further-
more, color vision or its perception depends not



52 P. A. Iaizzo

Fig. 1.58 Relative distribution of the cones and rods over
the retina. The y-axis is the receptor density, and the x-
axis is the relative distance from the fovea. Note that the
highest density of cone receptors is located in the fovea

and there are no receptors where the optic nerve leaves the
eyeball, thus creating a blind spot. Our peripheral vision is
primarily due to rods; hence, we have minimal abilities to
detect colors in those areas

only on the stimulus and receptors but also on
processing within the higher CNS centers.

1.13.4 The Receptor Transduction
Process

Upon exposure to light and absorption of
photons, the receptor photopigment changes its
shape, which eventually leads to the formation
of a receptor potential; this simultaneously
alters the release of neurotransmitters from the
photoreceptor to the innervating ganglion cells.
The following are the primary steps one can
define in this underlying transduction process
which occurs in these visual photoreceptor
cells:

• Changes within the photoprotein complex
(with opsin).

• A triggered decrease in cGMP levels within
the receptor’s cytoplasm.

• Subsequent decreases in the fluxes of Na+ and
Ca2+ across the plasmalemma.

• A resultant membrane hyperpolarization due
to these altered ion fluxes.

• This hyperpolarization of the membrane po-
tential causes a decrease in neurotransmitter
release.

• Altered responses in postsynaptic neurons
(e.g., decreases action potential discharge
rates).

It is interesting to note that the stimuli in
these receptors (impinging light) ultimately lead
to decreased transmitter releases within the inner-
vating synapses.

Convergence and divergence of connections
within the retina are the basis of the detectable
receptive field of a given retinal ganglion cell, that
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Fig. 1.59 A diagrammatic
representation of the major
visual pathways in the
human brain. The efferent
connections between the
visual cortex and
subcortical structure
induce proper sorting of
the projected information
for optimal processing of
this visual information.
There is divergence of this
visual information to
various visual cortical
areas which have various
known functional abilities

is, the area of the retina which when activated
by appropriate visual stimulus can either excite
or inhibit any given ganglion cell. Subsequently,
the processing of this visual information within
the CNS has a topological organization; that is,
the image of the environment as projected on the
retina is represented in a systematic way within
associated central structures (Fig. 1.59). The optic
nerve sends projections to the lateral geniculate
(in the thalamus) which, in turn, sends projections
to the superior colliculus and eventually the vi-
sual cortex. This representation is not necessarily
linear, for the neural information obtained by
the receptors within the fovea projects onto a
much larger portion of the visual cortex than the
extra-foveal areas of similar sizes. The following
lists important primary structures and pathways
associated with the CNS processing of visual
information:

• Superior colliculi: Some neurons in these
brain centers respond preferentially to moving
visual patterns, and some neurons within are
activated only if the stimulus moves through
the receptive field in a particular direction;
these cells are considered to be primarily

arranged within columns. Note that some
neurons in the deeper layers become active,
shortly before eye movements are even made.

• Lateral geniculate: Axons (fibers) of the op-
tic nerves terminate in size layers within the
lateral geniculate, three associated with the
ipsilateral eye and three with the contralat-
eral eye. Achromatic light/dark patterns reveal
two main classes of neurons—contrast neu-
rons (respond strongly to light/dark contours)
and light/dark neurons (activity depends on
mean luminance). Color-specific neurons are
also present.

• Visual cortex: Neurons in several different ar-
eas of the cortex deal simultaneously with
different aspects of visual information: color,
contours, orientation, movement, movement
direction, etc. They provide for (1) binocular
vision, (2) analysis and reconstruction of the
stationary world from ever-changing retinal
images, (3) the control of gaze, and/or (4)
initiation of sampling movements by the eyes.

The fact that humans have two eyes allows for
greater depth perception abilities (binocular vi-
sion). More specifically, when an object is viewed
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Fig. 1.60 Represented
here is the value of
possessing binocular vision
and the relative
reconstruction of the
cyclopean eye image.
When an object is outside
the homopter, its image is
projected to the right of the
fovea in the left eye and to
the left of the fovea in the
right eye. In this case,
binocular viewing gives an
uncrossed double image,
the position of which can
be found by mapping the
retinas of the left and right
eyes onto the imagined
retina of the cyclopean eye
(our brains perform such
processing continuously)

monocularly versus binocularly in alteration, it
appears basically the same, except that binocular
vision provides a greater impression of spatial
depth. Because eyes are located at different places
on our heads, their geometrical and optical prop-
erties cause the images of one’s surroundings on
the two retinas to be different (Fig. 1.60).

1.13.5 EyeMovements

The control of our eye movements is an extraor-
dinary motor system that involves six muscles
innervated by three nerves, to move each of two
eyes in perfect coordination (Figs. 1.61 and 1.62).
Furthermore, the images of our external world
are constantly being recreated on the retina. For
example, small (few minutes of arc in amplitude)
and fast (between 20 and 150 Hz) eye movements
are present even when we fixate our gaze on

an object. Saccades are defined as fast, small
jerking movements rapidly bringing the eye from
one fixation point to another, thus allowing for
a rapid sweeping search of the desired visual
field. The saccades move the visual image over
the receptors, thereby minimizing adaptation. On
the other hand, slow eye movements are involved
in tracking visual objects as they move through
the visual field, as well as during compensation
of our gaze during movements of the head. It
should be noted that, in part, the control centers
for these compensatory movements obtain their
required sensory information as to our relative
head movements from the vestibular system.

1.14 Sound and Hearing

Sound is defined as an oscillation of the
molecules in an elastic medium (e.g., air, water,
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Fig. 1.61 Relative
positions of the extraocular
muscles as they are
attached to the right eyeball

Fig. 1.62 Shown here are
the relative actions of the
extraocular muscles on
movement of an eyeball.
The arrows indicate the
movement of the middle of
the cornea via contractions
of each of the six muscles
in isolation. Yet, it should
be noted that in nearly
every eye movement, each
of the six muscles is
activated or relaxed in
concert; further, this is
coordinated between the
relative movements of our
two eyeballs to perfectly
coordinate our gaze
between them

etc.), which is propagated through these mediums
as longitudinal pressure waves. These oscillations
of molecules create zones in which the molecules
are either densely or loosely packed. The relative
amplitude of the pressure variation is called sound
pressure; in acoustics, the sound pressure level is
expressed in decibels (dB).

The auditory threshold will depend on the
given frequency of the sound waves, with the
human ear beingmost sensitive in the ranges from
2000 to 5000 Hz. When a sound is composed

of only a single frequency, it is defined as a
tone (Fig. 1.63). Yet, typically, the sounds we
listen to daily are mixtures of several frequencies,
for example, sounds that have a musical quality
consist of several fundamental frequencies and
their harmonics. Noise is a sound comprised of
many unrelated frequencies. Amazingly, humans
can distinguish approximately 400,000 different
sounds. For example, the phone rings, you answer
it and identify the caller as your mother (whomay
even have a stuffy nose).
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Fig. 1.63 Representative sound pressure waves associ-
ated with a single tone (blue), a musical sound which
contains appropriate harmonics and relative fundamental
frequencies (green), and a signal that our brains may detect
as noise (red)

1.14.1 Functional Anatomy

The first step in hearing is the entrance of sound
waves into the ear canal. Thus, the pressure waves
must enter into the external ear (Fig. 1.64). The
shapes of the outer ear (the pinna) and the ear
canal (meatus) help to amplify and direct the
sound. Sound waves reverberate from the sides
and end of the ear canal, filling it with the continu-
ous vibrations of pressure waves (we can dampen
this by the use of ear plugs).

Once the pressure waves are transmitted down
the ear canal, they will reach the tympanic mem-
brane (ear drum). This is a delicate membrane
which closes off the external canal and forms a
partition between it and the middle ear, which
is also filled with air (Fig. 1.64). Also enter-
ing the middle ear are the Eustachian (auditory)
tubes. These tubes connect the middle ear with
the pharynx. The slit-like endings of these tubes
in the pharynx are normally closed, but muscle
movements open their passages during yawning,
swallowing, or sneezing. This, in turn, allows the
pressures in our middle ears to equilibrate with
atmospheric pressure.

Within the cavity of the middle ear is a chain of
three flexibly linked bones called the ossicles—
the malleus (hammer), incus (anvil), and stapes

(stirrup) (Fig. 1.64). The malleus is firmly fused
to the tympanic membrane, and the so-called
footplate of the stapes fits into an opening in the
petrous bone called the oval window. Hence, the
function of these bones is to couple the motions
of the tympanic membrane to those of the inner
ear. Because of size differences, the force per unit
that is transmitted is 15 to 20 times greater at
the oval window. Yet, this transmission process
can be damped by the contraction of two unique
skeletal muscles that are located within the mid-
dle ear; when contracting, they alter the relative
tension of the tympanic membranes and thus the
movements of the stapes on the oval windows.
Without these contractions, the pressure waves
are amplified and projected onto the oval window,
amembrane structure at the beginning of the inner
ear. As noted above, the inner ear is embedded
in the petrous part of the temporal skull bone.
In other words, the inner ear is comprised of
the organs of hearing and equilibrium, of which
there is a continuumwithin the perilymphatic and
endolymphatic fluid spaces.

It is because of its shape that the inner ear’s
auditory organ is called the cochlea (Latin for
“shell”). The cochlea consists of three parallel
canals which are coiled together—the scala tym-
pani, scala media, and scala vestibuli (Fig. 1.64).
Special features of this system are listed below:

• The scala tympani and scala vestibuli commu-
nicate with one another at the helicotrema and
contain perilymph. This fluid resembles extra-
cellular fluid in its composition (i.e., contains
140mMNa+) and is considered an ultrafiltrate
of plasma. At the oval window, the annular
ligament seals off the space around the stapes
so that no perilymph can leak out.

• The scala media is filled with endolymph,
which is rich in K+ (145 mM) and thus resem-
bles intracellular fluid.

• The scala vestibuli is separated from the scala
media by Reissner’s membrane.

• The scala media is separated from the scala
tympani by the basilar membrane.

• The organ of Corti runs along the basilar mem-
brane; within this thickened ridge is where
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Fig. 1.64 A schematic representation of the middle ear
and inner ear of the human. The inner ear sensory struc-
tures are contained within the temporal bone, i.e., both the
vestibular apparatus and organs of hearing. The tympanic

membrane separates the external ear canal from themiddle
ear, and the ossicles (a chain of three flexible linked bones)
are attached to it (via the malleus), as well as last in the
chain to the oval window of the inner ear (the stapes)

the receptor hair cells are located: these are
secondary sensory cells.

• The stria vascularis is a highly vascular struc-
ture which plays an important nutritive role (it
can also be a means by which toxins enter the
inner ear and deafness may result).

The receptors in the modality of hearing are
similar to those in the vestibular apparatus—hair
cells. However, these cells have only stereocilia,
and spatially, there are inner and outer rows of
hair cells. It should be noted that these receptors
are also secondary sense cells, and the afferents
innervating these receptors come from the bipolar
cells of the spiral ganglion, which lies at the
center of the cochlea. There are approximately
3500 inner hair cells in humans, which form
one to two rows. These receptors are, in turn,
innervated by 90% of the approximately 30,000
to 40,000 afferents which make up the auditory
nerve. The outer hair cells form rows of three

or more. Importantly, the inner ear contains a
tectorial membrane, a gelatinous mass attached to
the inner wall of the cochlea which lies over the
organ of Corti; the stereocilia of individual hair
cells adhere to this membrane.

1.14.2 Auditory Sensations

Sound must exceed a certain sound pressure level
in order to be heard. As noted above, auditory
threshold is frequency dependent, the human
ear being most sensitive in the range of 2000–
5000 Hz, but not equally at each frequency.

A tone at any frequency, once the threshold
has been passed, is sensed and becomes louder
as the sound pressure increases. Thus, the fir-
ing frequencies within the innervating afferents
and/or the number of hair cells activated becomes
increased. It is considered that the inner and outer
rows allow for levels of sounds to be precisely
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determined. If the sound pressure level is greatly
increased, the eventual result is a sensation of
pain in the ear. Intense sounds may also cause
reversible loss of hearing, yet if prolonged, these
sounds may cause irreversible damage (i.e., dam-
age of sensory cells).

Airborne sound must be transmitted from the
air to the fluids of the inner ear. The tympanic-
ossicle apparatus effectively matches the acoustic
impedances of air and the inner ear to one an-
other, reducing the reflection of sound that would
have normally occurred. Movement of the stapes
transmits sound energy to the perilymph in the
scala vestibuli. Because the fluids of the inner
ear do not compress, some structure in the inner
ear must compensate for the pressure changes;
this structure is the round window. The pres-
sure changes also set up traveling waves along
the endolymphatic duct to the helicotrema. The
liquid-filled inner ear channels soon attenuate
these waves before they reach the helicotrema.
Between the sites of origin and extinction of the
waves are locations where the wave amplitudes
are maximal. These are at different positions for
each frequency, with higher frequencies closer
to the stapes and lower frequencies closer to the
helicotrema. This spatial relationship is the basis
for the place theory for hearing. In short, the
sensory cells are most excited at the site of the os-
cillation maximum, so that different frequencies
excite different populations of hair cells.

Because the cilia of the hair cells make firm
contact with the tectorial membrane, the resulting
shear forces bend them, which is then considered
to create an adequate stimulus. The ion currents
generated by the bending of the cilia cause the
release of transmitters at the base of the hair cells
which, in turn, excites the associated/innervating
afferent nerves (bipolar cells).

1.14.3 The Central Auditory System

The primary afferent nerves typically are
bifurcated and send their inputs into the ventral
cochlear nucleus and the others to the dorsal
cochlear nucleus (Fig. 1.65). From the ventral
nucleus, a ventral tract runs to the olivary

complexes (bilateral); note that it is at this brain
level that signals from each ear are compared.
From the dorsal cochlear nucleus, a dorsal tract
crosses to the opposite side and terminates in the
nucleus of the lateral lemniscus. After synaptic
relay, these auditory pathways proceed through
the inferior colliculus and further to the medial
geniculate body and onward to the primary
auditory cortex (i.e., in the transverse temporal
gyri). Note that it is considered that only ventral
cochlear neurons have tuning curves similar to
those of the auditory fibers.

The origin of sound in space can be localized
(specified) rather precisely. This capacity requires
information from both ears to be transmitted to
the auditory cortex, where there are population
neurons that are activated only if the sound source
is at a particular location: as there are neurons
which respond exclusively to sounds specific to
vocal communications. The functioning of these
neurons also depends on the level of conscious-
ness of the individual. Interestingly, we also have
abilities for selective hearing such that we can
increase thresholds for some frequencies and de-
crease them for others: there are also efferent
pathways and controls which alter functioning of
our inner ears. In general, sound orientation in
space is based on differences in signal conduc-
tion times and their differing relative intensities
(Fig. 1.66).

1.15 Taste and Smell

The sensory sensations of taste and smell are
derived from a selective and highly sensitive re-
action of specialized sense cells to the presence
of themolecules of certain compounds. Gustatory
(taste) and olfactory (smell) sense cells act as ex-
teroceptors, and their reactions provide important
information about external stimuli. Yet, taste and
smell can also immediately affect a person’s ap-
petite, the flow of saliva, gastric secretions, and/or
avoidance of harmful substances. These senses
can be characterized and distinguished by mor-
phological and physiological criteria. Table 1.2
characterizes these two chemical senses.
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Fig. 1.65 A simplified
representation of the major
pathways/connections
associated with auditory
functions. Here only the
pathways of one side are
shown for simplification,
however note that there is
bilateral activation of
auditory nuclei as well as
projections of activated
pathways. Hence, the brain
readily compares
information obtained from
each ear to aid in
determining the
directionality of the
originating sound

In comparison to other senses, taste and smell
both exhibit high degrees of adaptation (recall
that there is little or no adaption or accommo-
dation to pain). In other words, the excitation in
the afferent pathways declines markedly during
maintained stimuli, and thus, perceptions are cor-
respondingly diminished.

Homework

1. Which of the following is not true concerning
our sensory system?
(1) A threshold stimulus is defined as

the smallest stimulus that produces a
detectable response by the brain.

(2) There are two basic types of receptor
accommodation—slowly adapting and
rapidly adapting (phasic) responses.

(3) Modalities are similar sensory im-
pressions that an individual can be
consciously or unconsciously aware of.

(4) Sensations are used for the interpretation
of a perception, and this is based upon an
individual genetic makeup.

(5) Pitch, sweetness, and lightness are all
examples of qualities.

2. Which of the following in not true of glial
cells?
(1) They play essential roles in the regulation

and repair of neurons and neural path-
ways after injury.

(2) They play little or no role in the plasticity
of neural processing (e.g., synaptogene-
sis).

(3) Glial cells may function to form the
myelin sheath of neuronal axons.
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Fig. 1.66 The brain’s
ability to perform accurate
calculations of
conduction-time
differences in auditory
inputs allows for
directional hearing

Table 1.2 Characteristics of taste and smell

Taste Smell

Receptors Secondary sense cells Primary sense cells; endings of cranial nerves V (IX
and X)

Position of receptors On the tongue Nose and throat

Afferent cranial nerves VII, IX I, V (IX, X)

Stations in central
nervous system

1. Medulla oblongata
2. Ventral thalamus
3. Cortex (postcentral gyrus)
Connections to hypothalamus

1. Olfactory bulb
2. Telencephalon (prepyriform area)
Connections to limbic system and hypothalamus

Adequate stimulus Molecules of organic and
inorganic substances, mostly
nonvolatile. Stimulus source
near or in direct contact with
sense organ

Molecules of almost exclusively organic, volatile
compounds in gas form, becoming dissolved only at
receptor. Stimulus source usually at a distance

Number of
qualitatively
distinguishable stimuli

Small
5 basic qualities: sweet, sour,
salty, savory, and bitter

Very large (thousands), in many poorly defined
quality classes

Absolute sensitivity Relatively low
At least 1016 or more
molecules/ml solution

Very high to some substances (107 molecules per ml
air, as little as 102 or 103 in animals)

Biological
characterization

Contact sense
Used for testing food and
control of food intake and
processing (salivary reflexes)

Long-distance sense
Used to test environment (hygiene) and food, and by
animals in foraging, communication, and
reproduction. Strong emotional weighting
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(4) Some types of glial cells help to create
the blood-brain barrier.

(5) They typically outnumber neurons in the
human brain.

3. In an attempt to increase your core temper-
ature, involuntarily, the body would not ini-
tiate which of the following effector mecha-
nisms?
(1) Initiate rhythmic muscle tensing.
(2) Increase its production of thyroxine.
(3) Vasodilation of its peripheral blood ves-

sels.
(4) An increase of activities within the pre-

optic nuclei in the hypothalamus.
(5) The induction of non-shivering thermo-

genesis.
4. Which is not true regarding reflexes?

(1) Reflexes bring information into the CNS
via afferent pathways and out via efferent
pathways.

(2) An example of a polysynaptic reflex is
the cough reflex, in which receptors in
themucosa of the trachea and bronchi are
stimulated and then chest muscles, your
diaphragm, and others contract automat-
ically.

(3) A neurologist can determine where dam-
aged nerves may occur in spinal der-
matomes by testing your reflex responses
in various body parts.

(4) Reflex time is defined as the time it takes
a betamotor neuron to stimulate amuscle
fiber.

(5) Vestibular reflexes maintain posture and
equilibrium without primary participa-
tion of consciousness, yet if asked, you
can identify where your body is in space.

5. Which is not true concerning the general
functional features of the human motor con-
trol system?
(1) An individual can continue to develop

new motor programs throughout their
life.

(2) The motor cortex, thalamus, and basal
ganglia are important for providing both
innate and continually learned motor
programs.

(3) Reflexes, both monosynaptic (flexion re-
flex) and polysynaptic ones that exist
within the spinal cord, typically play mi-
nor roles in the execution of movements.

(4) One of the brain stem’s important func-
tions is the reflex control of posture.

(5) The association motor cortex and sub-
cortical motivation areas are important in
movement design or the development of
the “plan” of a series of movement.

6. Following a complete human spinal cord
transection, which would likely not occur?
(1) There would be the development of

flexor reflex activity below the lesion,
before there would be reflex behaviors
returned within the extensor muscles.

(2) There would be little or no return of
autonomic system reflexes below the site
of the lesion, such as the control of skin
blood flow.

(3) There would be an initial period of mini-
mal reflex activity, spinal shock, in body
areas below the lesion.

(4) There would be a transient decrease in
synaptic excitability to the interneurons
lying distal to the lesion (e.g., loss of
excitatory inputs from higher motor cen-
ters).

(5) Mass flexion reflexes could be triggered,
by even some subtle degree of tactile
stimulation, below the level of the lesion
(e.g., to cause a person to be thrown out
of a wheelchair).

7. Which of the following statements regarding
vision is not true?
(1) Cataract results from an increase in opac-

ity (clouding) of the lens: this is like
looking through a fogged-up car’s wind-
shield.

(2) Glaucoma, whichmeans that the aqueous
humor is formed slower than it is
removed, results in decrease pressure
within the eye; this has minimal effect
on our visual systems’ overall focusing
abilities.

(3) Contraction of ciliary muscles allows the
tension zonal fibers to reduce and the
curvature of the lens to increase.
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(4) Presbyopia, increasing stiffness of the
lens, is a condition in which the lens
cannot accommodate adequately for near
vision.

(5) Membrane hyperpolarization occurs in
the rod and cone receptor cell when there
is photon activation that then, in turn,
alters action potential frequencies within
the innervating bipolar cells.

8. Which is not true of the hypothalamo-
hypophyseal (hypothalamus-pituitary)
system?
(1) This system uses minimal feedback con-

trol, for example, via detection of blood
concentrations of released hormones
within specialized sensory cell which
lie within the lateral hypothalamus.

(2) The activities of most endocrine glands
are regulated by hormones formed in
the adenohypophysis (anterior pituitary
gland).

(3) Efferent connections to the pituitary can
be both neuronal and hormonal (e.g., us-
ing the portal circulation pathways).

(4) The medial hypothalamus can release
both stimulation and inhibitory releasing
hormones.

(5) A tumor within the pituitary gland may
lead to gigantism, that is, the over-release
of growth hormones.

9. Which of the following is not true relative
to the general functioning of our limbic sys-
tem?
(1) This system is associated with the

process of both learning and memory:
depression could affect one’s ability to
learn.

(2) A lack of sleep may ultimately influence
the proper functioning of this system.

(3) Multiple brain centers/nuclei contribute
to this system, and thus, multiple neuro-
transmitters are utilized within it: more
specifically, the monoaminergic system
includes dopaminergic, noradrenergic
(i.e., norepinephrine), and serotonergic
neurons.

(4) It is associated with an individual’s abil-
ity to change moods and innate incen-

tives to action (a person’s motivational
interactions and emotions).

(5) The parasympathetic nervous system is
minimally altered by intense changes in
your mood.

10. Which of the following statements is not true
concerning the human retina?
(1) There are approximately 120 million rod

cells in the human eye, and these recep-
tors are needed for dim light or night
conditions.

(2) Cone receptor cells are utilized for day-
time lighting conditions (our photopic
vision).

(3) There are no receptor cells located at
the site where the optic nerve leaves the
eyeball, our blind spot.

(4) In colored blindness, an individual is
likely missing certain populations of rod
cells in the retina.

(5) There are approximately 20 times more
rod than cone receptor cells in the eye,
but there is more divergence of neural
information from the cone receptors.

11. You are taking off in an airplane, as there
is also change in cabin pressure, you yawn
to equalize the pressure within your middle
ear. Which of the following would likely not
occur?
(1) The auditory (Eustachian) tubes open as

you yawn.
(2) The activities within the macular organs

within the temporal bone would become
altered with the gravitational changes.

(3) The semicircular canals become
activated because there are detected
slight rotational accelerations.

(4) The ossicle bones in the middle ear be-
come fixed by muscle contractions.

(5) The vestibular ganglia elicit changes in
synaptic activities.

12. Processing of information by our human
brain can be divided into four globally
defined or generalized systems, which of
the following is not one of these?
(1) The motor system: which governs both

voluntary and involuntary movements.
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(2) The associative system: which controls
cognitive functioning and conscious
recognition.

(3) The sympathetic system: which controls
“fight or flight responses.”

(4) The vegetative system: which has invol-
untary control of bodily functions, home-
ostasis.

(5) The limbic system: which governs an
individual’s emotions and feelings.

13. Which of the following in not true when one
compares the senses of taste and smell:
(1) Both can affect one’s perceptions of a

high-quality tasting food.
(2) Only the sense of taste is considered

to have a very small number of
distinguishable qualities.

(3) Like the sense of pain, the sense of
smell is not highly adaptable (i.e.,
both modalities elicit relatively slow
accommodations to a given stimulus).

(4) Only one of these senses employs
secondary sense cells for signal
transduction.

(5) The sense of taste requires larger
amounts of molecules of a given sub-
stance, so to elicit a threshold response.

14. Which is not true concerning the sense of
hearing?
(1) We are able to better determine the direc-

tion of a sound origin because we have
two ears.

(2) The auditory threshold is dependent on
the frequency of sound.

(3) The same tone can be heard if a tuning
fork is held to either the ear or placed on
the temporal skull bone.

(4) The shape of the outer ear is important
for determining the direction and ampli-
tude of a sound.

(5) The round window, which lies between
the middle ear and inner ear, does not
move.

15. One-half of the 100,000 human genes con-
tribute to building the brain; the adult brain
contains >10,000,000,000 neurons; the brain
utilizes over 100 different neurotransmitters;

based on such facts about the brain, which of
the following is not likely to be true?
(1) The brain can elicit a high degree of

plasticity, and thus, one can subsequently
elicit abilities to compensate for an oc-
curred damage or lesion (e.g., a stroke,
head trauma).

(2) Certain pharmacological therapies
(therapeutic drugs) have their primary
beneficial effects by mimicking the
actions of certain neurotransmitters, yet
they may also induce unwanted side
effects on other neural processes.

(3) An imbalance in neurotransmitter release
in various brain regions may cause clini-
cal symptoms.

(4) There are only eight different receptor
molecules in the human brain’s postsy-
naptic terminals, and these are rarely ac-
tivated by specific agonists.

(5) In the human brain, there is a high degree
of divergence of afferent sensory infor-
mation.

16. An acute global damage within the left tem-
poral lobe of an individual’s brain (in an
otherwise healthy person) and this may cause
all of the following symptoms, except?
(1) A difficulty in finding the proper word

for a well-known object (e.g., like a
marker pen).

(2) An impaired comprehension of language
or of a previously known foreign lan-
guage.

(3) An impaired ability to speak desired sen-
tences; yet their motor abilities to do so
have remained intact (your motor cortex
was not affected).

(4) They elicit a decreased ability to read
sentences and/or perform simple math
equations.

(5) They show a dramatic change in their in-
nate abilities to quickly orient themselves
in space, that is, also identify which their
body’s location in 3D space (e.g., where
you are in your chair relative to what
direction you home is).

17. Which of the following would not be con-
sidered a function of “feed-forward” pro-
grammed motor movements, that is, those
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that are normally aided by a proper function-
ing cerebellum?
(1) Adjustments for such movements are

made in advance of motor program
execution based on current sensory
inputs and past learned responses.

(2) It allows for rapid (ballistic) movements,
such as a very rapid hitting of a tennis ball
with a racket.

(3) If the cerebellum is damaged, such
movements might be initially impaired,
but subsequently well compensated for.

(4) Co-activation of muscle spindles (beta
motor neuron become stimulated)
may occur, such that one could detect
mismatches between actual and expected
movements.

(5) This allows for ongoing error detections
and corrections of an ongoing motor pro-
grams during an elicitation of the actual
movement.

18. Which of the following is not an effector
response following the activation of the sym-
pathetic nervous system?
(1) A rapid increase in heart rate.
(2) A decrease in intestine motility.
(3) Relaxation of the bronchi (dilation).
(4) Relaxation of the sphincter muscle

known as the iris (one’s pupil becomes
smaller).

(5) Increased blood flow to skeletal muscles.
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Abstract

Neural biopotentials are electrical signals
generated by the cells of the nervous system.
Recording and monitoring the aggregate
or individual behavior of neurons yields
information about the brain and the peripheral
nervous system frequently used in clinical and
research settings. Many different modalities
of recording neural biopotentials have been
developed. These differ in spatial scale,
temporal resolution, and purpose. In order
to faithfully record and make use of these
neural signals, we must understand the signal
properties, the specific kind of electrodes
required for measurement, and the most
appropriate circuit architecture needed to
amplify and process these signals. Continued
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developments in electrode materials, interface
circuits, and embedded systems for neural
interfaces with tailored instrumentation
solutions at a range of spatial and temporal
scales are driving advances toward future
unprecedented medical therapies and neu-
roscience discoveries.

Keywords

Electrode-electrolyte interface ·
Electrophysiology · Local field potentials ·
Volume conduction · Neural recording and
stimulation · Front-end amplifier · Dynamic
range · Common-mode rejection · Active
grounding · Charge balance · Current clamp
and voltage clamp · Closed-loop
neurofeedback

2.1 Introduction

The ionic currents that traverse the cell mem-
brane of neurons give rise to biopotentials. These
electrical signals can be recorded with special-
ized instrumentation in order to assess physiolog-
ical function, conduct neuroscience research, and
even provide a novel medium of communication
through brain-computer interfaces (BCI). Biopo-
tentials can be recorded from different locations
in the body, according to the organ or system
targeted for examination. Figure 2.1 shows the
location of various signals of interest to neural
engineering.
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Fig. 2.1 Anatomical regions of sources of biopotentials of various modalities measured in neural engineering

Aside from the diversity of locations and
anatomical structures that can be recorded,
these signals also vary significantly in their
spatiotemporal properties. Spatial resolution is
generally dependent on the distance between the
electrodes and the target measurement source,
as well as the spatial diversity of average
electrical activity in the electrode’s vicinity.
Electroencephalography (EEG), which registers
the collective dynamics of neuronal activity over
large regions in the brain as electrical fields
through volume conduction in extracellular
space, is generally measured on and around
the scalp with electrode arrays that exceed
1 cm pitch. At these distances, biopotential
signals from the brain have a bandwidth below
100Hz. Electrocorticography (ECoG) is a
related modality to EEG which measures these
brain biopotentials directly on the surface of
the cerebral cortex. Although it is surgically
invasive, the decreased distance from the neural
sources allows ECoG to distinguish faster and
smaller nuclei of brain activity, at higher spatial
and temporal resolutions. Currently in transla-
tional development, microelectrocortigography
(μECoG) records brain biopotentials with sub-
millimeter pitch, high density electrode arrays.

At these even smaller distances, μECoG can
resolve even smaller and faster brain signals.
The downside to decreasing the spacing of
the electrodes in order to fit more channels is
increased difficulty in covering large areas of the
brain.

Following this trend toward finer, cellular-
scale resolution, electrode arrays can be placed on
the cortex with penetrating shanks that minimize
the distance to cortical neurons. A complemen-
tary realm of neural engineering pursues in
vitro studies using benchtop experimental setups
with brain slices or neural cultures measuring
electrical potentials at and below cellular scale
through fine-pitch multielectrode arrays (MEAs).
Further, intracellular potentials can be recorded
through glass pipette patch clamp electrodes
inserted through the cell membrane. Figure 2.2
compares the scale, coverage, and temporal
resolution of these modalities. Ranging from
whole-body recordings of electromyography
(EMG), measuring the activation of whole
muscle groups, to sub-cellular patch clamp
recordings of single-unit activity, biopotential
signals span many orders of magnitude in spatial
and temporal scale and thus require diverse
specialized instrumentation.
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Fig. 2.2 Spatiotemporal
characteristics of neural
biopotential signals
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The design methodology for a successful med-
ical neuroengineering device is tightly coupled
to a set of well-defined design objectives. For
example, the device may require monitoring the
brain of a patient with epilepsy, during surgery,
through a flexible electrode array to localize a
seizure inducing nucleus. Once the objectives
in the application setting are clearly defined, it
becomes relatively straightforward to determine
the specific engineering requirements. A system-
level description can usually be formulated with
a block diagram describing the major compo-
nents required toward realization in hardware.
Figure 2.3 shows an example block diagram of
a typical neural instrument. Neural biopotentials
are sensed through a specialized electrode and an
analog front-end (AFE), which contains ampli-
fiers and analog signal processing circuits condi-
tioning the signal for subsequent digitization by
an analog-to-digital converter (ADC). Digital sig-

nal processing (DSP) may then be used to further
condition the signal or extract relevant physiolog-
ical information. The digital output data stream
can then be logged for local storage or wire-
lessly transmitted for further external processing.
Other relevant and indispensable blocks include
power management including possible provisions
for power harvesting directly from environmental
sources such as RF incident power and body heat.

Increasingly, neural instruments include neu-
rofeedback capabilities, in which the signals ob-
tained from the sensors are locally processed to
modulate neural activity and function. As such,
the instrument will apply electrical or other mod-
ulatory signals to biological tissue in order to
restore lost function or prevent a pathological
condition. When a medical device applies electri-
cal excitation, or neuromodulation, depending on
information derived from recorded biopotentials,
it is known as a closed-loop neuroprosthesis.
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Having determined a system architecture, it
becomes possible to consider the specific require-
ments of the component subsystems. In this chap-
ter, we will consider the electrode and AFE re-
quirements while keeping in mind their effect on
the rest of the system.

2.2 Electrodes for Neural
Interfaces

An electrode is a component of an electrical
circuit that interfaces with non-metallic media.
They are the primary component in a biopotential
recording or stimulation instrument. In a
recording application, the electrode couples
galvanically to capture the local field potential. In
a stimulating application, the electrode sources
current through ionic transport to affect the
local electric fields. Given their roles, the
dimensions, geometry, and composition are of
utmost importance to design requirements. Signal
degradation due to inferior electrode design
or placement is unlikely to be ameliorated by
design improvements in blocks further down
the signal chain. In this section we discuss the
properties and models of electrodes as they
relate to biopotential measurement and current
stimulation.

2.2.1 Electrode Properties and
Modeling

It is conceptually helpful to consider the
behavior of an electrode by representing its
electrochemical function as an ensemble of
classical lumped circuit elements. Through this
abstraction, we may determine how they affect
the signal as it transduces onto the measurement
circuit. Standard linear circuit and signal analysis
techniques can then be used for experimental
characterization of an electrode, including its
polarization properties as a function of the
material and its impedance and noise properties
as a function of frequency.
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Fig. 2.4 Lumped-element circuit model of the electrode-
electrolyte interface. (a) Polarizable, non-Faradaic elec-
trode. (b) Non-polarizable, Faradaic electrode

2.2.1.1 Electrode-Electrolyte
Double-Layer Interface

The electrode-electrolyte interface serves as an
intermediary between the electronic charge trans-
port in metallic conductors and the ionic charge
transport in the aqueous medium of the elec-
trolyte. On the electrolyte side, a double layer of
ions forms in response to a buildup of electrical
potential. The first layer is composed of ions
that are chemically adsorbed onto the electrode
surface, while the following layer has free ions
electrostatically attracted to the surface charge.
This looser second layer is also influenced by
thermal motion in the solution, and as such is
known as the diffuse layer. Figure 2.4 shows two
main electrode-electrolyte models using lumped
elements. Although more refined models exist
that take into account more detailed physics of
double layers, these two examples suffice to ex-
plain the general behavior of electrodes.

2.2.1.2 Impedance
Two main types of electrodes can be distin-
guished, based on their intrinsic impedance
properties.
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Polarizable, non-Faradaic electrodes have a
mostly capacitive interface to the electrolyte as
shown in Fig. 2.4a. Here CH denotes the surface
charge or the Helmholtz layer. As this capacitor
is in series with the rest of the circuit, it blocks the
flow of DC currents. In series, the diffuse layer
behaves as a parallel capacitance and resistance
pair. The capacitance CD is related to how much
charge can be accumulated in the diffuse layer
and the resistance RD to the work required by
the ions to move through the solution. Further,
the bulk of the solution also presents a series
resistance RS , dependent on geometry, size, and
distance of the electrodes.

Non-polarizable, Faradaic electrodes permit
charge to flow from electronic currents in the
metallic section of the circuit to ionic currents
throughout the solution. Charge transfer between
electrons and ions occurs as part of the chemical
processes of reduction and oxidation. An example
of a non-polarizable electrode widely used for
noninvasive electrophysiology directly over
the skin is the Ag/AgCl (silver/silver chloride)
electrode, in which a layer of silver chloride
over the silver bulk of the electrode provides a
buffer for direct charge transfer through redox-
based one-to-one exchange of electrons on the
electrode side and chloride ions (Cl−) on the
electrolyte side of the AgCl layer. In Fig. 2.4b the
entire double-layer capacitance is represented by
Cd , while dissipative elements Rct and ZW occur
in parallel. Rct is the charge transfer resistance,
and it relates to the kinetics of redox reactions
at the electrode surface. ZW is the Warburg
impedance which is a constant phase element
(with phase +45◦) is related to the frequency
dependent diffusion of charged particles in
the solution. In Faradaic electrodes, we must
also consider the contribution from the bulk
of the solution separating electrodes from each
other.

2.2.1.3 Half-Cell Potential
As the result of the exchange between ionic and
electronic charge at the electrode-electrolyte
interface through the electrochemical redox
(reduction-oxidation) reactions at thermal

equilibrium, complementary charge builds up on
both sides of the interface. This space charge
gives rise to a potential difference, termed
the half-cell potential, which is specific to
the metallic element in the electrode being
reduced to its ionic equivalent in the electrolyte
(e.g., Ag and Ag+). In an electrochemical cell,
the overall potential between electrodes in a
shared electrolyte medium is the total potential
resulting as the difference between two half-cell
potentials. Hence for accurate and reproducible
biopotential measurement, it is advisable to
use the same electrode type for both the
signal and the reference electrodes, eliminating
an important source of electrode voltage
offset.

2.2.1.4 Noise
Thermal noise as stochastic fluctuations in ion
transport naturally arises from random-walk
interactions between the various electrochemical
compounds at thermal equilibrium. The square
magnitude of thermal voltage noise in the
electrode is proportional to temperature,
electrode resistance, and spectral bandwidth:
v2n = 4kT RΔf . Other important sources of
noise include 1/f noise, with square magnitude
inversely proportional to frequency, primarily
due to random fluctuations in mass transport at
the electrical double layer [1].

2.2.1.5 Water Window and Current
Transfer Capacity

An important consideration in the electrode volt-
age range for electrodes used in electrical stim-
ulation is the electrolysis breakdown of water
molecules into oxygen and hydrogen gas above
a critical voltage threshold, which depends on the
electrode material. These gases as by-products of
the electrolysis are detrimental to tissue survival
and electrode longevity. To avoid water break-
down, voltage limiters are usually included in
the control circuits driving the electrodes. The
water window puts a practical limit on the spe-
cific current transfer capacity of a given electrode
depending on geometry, surface roughness, and
material [2].
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2.2.2 Volume Conduction for
Electrical Recording and
Stimulation

The electric potentials induced by neural activity
and recorded by an electrode in the extracellular
space, or generated by the electrodes when used
for stimulation can be, in a first approximation,
modeled analytically using volume conduction
theory [3]. Considering a quasistatic approxi-
mation of Maxwell’s equations and assuming a
conductive, isotropic, homogeneous, linear, and
infinite medium, the electric potential φex (ex
stands for extracellular) generated by a point
current source Is(t) (monopolar current source)
at a position rs can be computed at any point r

(except for rs) as [4]:

φex(r, t) = Is(t)

4πσ | r − rs | (2.1)

where σ is the conductivity of themedium and the
ground reference (φex = 0) is assumed far away
from the current. The extracellular conductivity
of neural tissue is typically in the order of 0.3 S/m,
but this varies depending on brain regions in
vivo or inslice or culture conditions in vitro.

Importantly, Eq. 2.1 applies both to modeling the
electric potential measured on the electrodes
due to currents emanating from electrically
active cells for recording and to modeling
the effect of stimulating currents from the
electrodes on extracellular fields surrounding the
cells.

When neurons are active, ionic currents flow
in and out of their membranes. The dynamics
of a neuron can be computed using the cable
equation [5,6]. From the solution of this equation,
one can calculate the transmembrane currents of
different parts of the neuron. Owing to the linear
nature of volume conduction in the extracellular
medium, the electric potential generated by each
of these currents Ii(t) is simply summed to arrive
at the electric potential at an electrode location re

(Fig. 2.5a):

φex(re, t) = 1

4πσ

∑

i

Ii(t)

| re − ri | . (2.2)

In the general case of bipolar recording, where
a second electrode at position rref is used rather
than a distant electrode for the reference, the
differential potential between the electrodes be-
comes:

φdiff = φex(re, t)− φex(rref, t) = 1

4πσ

∑

i

[
Ii(t)

| re − ri | − Ii(t)

| rref − ri |
]
. (2.3)

Conversely, the electrical potential that arises
from electrical stimulation is derived from Eq. 2.1
by considering an electrode at position re with a
stimulating current Ie. The extracellular potential
at position r reads (Fig. 2.5b):

φex(r, t) = Ie(t)

4πσ | r − re | . (2.4)

Stimulating currents can be also applied in a bipo-
lar fashion to increase the selectivity of stimula-
tion. If two electrodes are used to deliver oppos-
ing currents, then they make up a dipolar current
source. Considering the positive current source
+Ie at position r+ and the negative source −Ie
at position r−, we can define the current dipole

moment p as [3, 9]:

p = Ie(r+ − r−) = Ied (2.5)

where d is the vector between the positive and the
negative current locations. Defining the middle
point of this vector as re (Fig. 2.5c), the extracel-
lular potential generated by the current dipole can
be approximated as:

φex(r, t) ≈ p(t)(r − re)

4πσ | r − re |3 = Ie(t) d cos(θ)

4πσ | r − re |2
(2.6)

where we defined d as the distance between the
current sources and θ as the angle between p
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Fig. 2.5 (a) Modeling electric potential generated by a
neuron. The contribution of transmembrane currents of the
neuron is summed at the electrode location [7]. (b)Model-
ing electric potential from a monopolar current source. (c)

Modeling electric potential from a dipolar current source.
(d) Modeling electric potential from a stimulating current
of a planar device using theMethod of Images [8]

and (r − re). This approximation is valid when
the distance | r − re | is substantially more
than 3d [3]. For closer distances, the two currents
should be summed separately as two opposing
monopolar sources.

So far we have assumed that the medium
surrounding the electrodes is homogeneous
and isotropic, but these assumptions are not
usually fully satisfied. Considering, for example,
microelectrode arrays for in vitro recording
[10, 11], one can clearly observe that the
assumption of homogeneity is not satisfied, as
cell cultures or brain slices are mounted on top of
the electrodes plane. In this case, the potential
generated by a monopolar current source is
obtained directly by the Method of Images (MoI
– Fig. 2.5d) [8]:

φex(r, t) = Ie(t)

2πσ | r − re | (2.7)

Eq. 2.8 differs from Eq. 2.1 only in the scalar that
multiplies the denominator, making the potential
twice as large in the latter case, as current can only
flow in the semi-space facing the electrode plane.
The MoI can also be extended to account for sev-
eral plane interfaces with different conductivities,
for example, a brain slice mounted on a micro-
electrode array and placed in a saline solution, or
an epidural ECoG electrode facing the duramater,
the arachnoid, the CSF, and subsequently the pia
and cortical tissue (see Fig. 2.9b).

So far we have also considered the electrode as
a single point in space (re). However, electrodes
are not points and they have a finite size. A simple
way to include the spatial extent of the electrode
in the calculation of the electric field generated
by a current is called the disk approximation [4].
Considering, for example, an electrode injecting
a current Ie(t) in the tissue, one can randomly
draw N points belonging to the electrode surface
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(rei ) and split the stimulating current into small
contributions (owing to the linearity assumption).
The electric potentials can then be approximated
as:

φex(r, t) =
N∑

e=1

Ie(t)/N

2πσ | r − rei
| . (2.8)

The same approach can be used when computing
the electric potential generated by neural activity
at the electrode locations.

The above-described formulations rely on sev-
eral assumptions. First of all the conductivity
of the medium is assumed to be scalar, hence
neglecting capacitive properties of the tissue. This
assumption seems however to be well justified for
relevant frequencies in extracellular recordings
[3, 4].

Second, the medium is assumed to be
isotropic, but this assumption is harder to relax. In
the neural tissue, in fact, the presence of oriented
pyramidal cells makes conductivity anisotropic
[12]. Anisotropy in the tissue can be accounted
for with analytical solutions [8, 9].

Finally, the extracellular milieu is assumed
to be homogeneous (without discontinuities) and
infinite. This is clearly a stronger assumption,
considering that in order to measure the electric
potentials generated by the neurons, we insert a
probe in their vicinity. As mentioned above, for
planar electrode arrays, one can use theMethod of
Images. For more complicated cases, numerical
solutions, such as finite element methods (FEM),
can be used. FEM approaches are popular to
predict the response of stimulation in the spinal
cord [13, 14] or to study the effect of complex
probe geometries [15].

2.3 Circuit Techniques for Neural
Interfaces

Electrical circuit theory provides a useful tool
to evaluate and design the systems that acquire
and transduce biopotential signals. Once the char-
acteristics of the biopotential signal are under-
stood and the intended acquisition precision is

determined, the requirements for the electrode,
AFE, ADC, and DSP can be derived. Although
the electrode is the first component in the signal
path, and is of critical importance, system design
is not generally focused on optimizing electrode
geometry and composition. Custom electrode de-
sign and optimization require access to special-
ized fabrication tools and facilities, and the de-
sign itself is largely constrained by the available
geometry of the physiological recording space.
In contrast, AFE design has many more design
parameters that can be adjusted and specialized
tools for simulation.

2.3.1 Analog Front-Ends

Biopotential signals vary in their characteristics
across the neuroengineering modalities of inter-
est. Figure 2.2 details the spatiotemporal resolu-
tion of different neural interfaces. Additionally,
we may also consider the amplitude of these
signals to vary, as electrodes are located a finite
distance away from biopotential sources and av-
erage all surrounding electrical activity. It thus
becomes a crucial part of the system’s design
to use an AFE that is appropriate to the signal
characteristics. The role of the AFE is to amplify
the very small biopotential signals with low noise
generation, while filtering out interference and
other irrelevant signals.

Operational amplifiers (opamps) are high-
gain active circuits that can amplify the voltage
difference between two input terminals. When
they are connected in negative feedback either
directly or through some impedance network,
they are able to replicate any analog operation
(i.e., addition, subtraction, multiplication by a
constant, and even nonlinear transformations).
Using the dynamic properties of capacitors
enables frequency domain filtering, such as
low-pass, band-pass, and high-pass filters to
selectively resolve low, intermediate, and high-
frequency content in the signal, respectively. A
simplified analysis of circuits containing opamps
with negative feedback can be accomplished by
making the following two assumptions:
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1. The voltage drop across the input terminals is
zero: V + = V −; and

2. The opamp itself has infinite input impedance:
IIN = 0.

Armed with these two simplifying assumptions,
and verifying the opamp is operating within its
linear regime of design specifications (input/out-
put voltage range, output current, bandwidth), the
behavior of an AFE can be estimated by the stan-
dard node analysis technique, specifying Kirch-
hoff’s current law (KCL) at each voltage node
in the circuit except at the output of the opamp.
The loss of this latter specification is however
compensated by the extra specifications of the
above simplifying opamp assumptions, ensuring
an equal number of equations and unknowns in
the circuit analysis.

Figure 2.6 shows some common configura-
tions of opamp circuits. Figure 2.6a and b both
implement pseudo-differential single-ended am-
plifiers with a single output referenced to a com-
mon ground, while Fig. 2.6c implements a fully
differential amplifier producing a differential out-
put for a differential input signal.

A non-inverting operational amplifier is one
type of configuration for the opamp providing
positive amplification, where the signal input is
connected to the positive input terminal and a
resistive divider provides feedback to the negative
terminal. Figure 2.6a depicts the non-inverting
amplifier. By applying the analysis technique de-
tailed above, we can derive the output as:

VO =
(
1 + RF

RI

)
VI (2.9)

with positive gain strictly greater than unity. A
main advantage of this topology is the (ideally)
infinite input impedance it presents, as current
does not flow into the opamp input terminals. One
specific use of this circuit is as a unity gain buffer,
where RF is zero as a short and RI is omitted as
an open circuit, providing impedance buffering of
a sensitive high-impedance voltage node.

The inverting amplifier is another widely used
configuration for the opamp producing negative
amplification, where the signal input is connected
to the negative input terminal through a resis-
tor, while another resistor provides feedback to
the negative terminal. Analyzing the circuit in
Fig. 2.6b, we obtain the output as:

VO = −RF

RI
VI (2.10)

with negative gain, the magnitude of which
ranges anywhere between zero and infinity by
adjusting RF relative to RI . One drawback
of the inverting topology is that the input
impedance, ZIN = RIN , is considerably low
(kiloohms to megaohms) for any practically
realizable resistance at high-gain settings. This
is undesirable for use in a biopotential recording
AFE as electrodes have high impedances and
may therefore attenuate the signal. The remedy
commonly employed is to precede the inverting

(b)

RF

RI
VI

VO

RF
RI

VI
VO

RF

RI
VI

+ VO
-

RF

RI

VO
+VI

-

(a) (c)

Fig. 2.6 Types of operational amplifier configurations: (a) pseudo-differential non-inverting amplifier, (b) pseudo-
differential inverting amplifier, and (c) fully differential amplifier
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amplified by a voltage buffering amplifier such
as the non-inverting amplifier.

The fully differential amplifier relies on a dif-
ferent kind of opamp which produces dynami-
cally balanced differential voltage outputs ampli-
fying the differential input. This is advantageous
to reject common-mode noise and power supply
interference. Figure 2.6c shows how the dual
differential outputs in this amplifier can provide
negative feedback to both input terminals and
thus present a balanced input impedance at both
terminals. The differential mode gain of the fully
differential amplifier is:

VO = V +
O − V −

O = RF

RI
(V +

I − V −
I ) (2.11)

Notice that although the output expression does
not contain an explicit negative sign, the input
and output polarities of the amplifier topology are
flipped. Thus, we may consider this amplifier to
be the differential form of the inverting amplifier
in Fig. 2.6b. It is not possible to configure a
fully differential amplifier in a non-inverting
mode equivalent to Fig. 2.6a. For this reason,
its input impedance is limited by the input
resistors RI . On the other hand, as the signal is
encoded differentially between two terminals,
the maximum signal output swing range is
doubled.

Instrumentation amplifiers (IA) are used to
measure small differential signals, while rejecting
common mode levels. Another requirement of
IA is high input impedance, to avoid attenuating
signals from sensors with high output impedance.
This requirement is fundamental in biopotential
recording as electrodes frequently present very
large impedance due to their small size or
imperfect contact. Aside from attenuating the
signal of interest, low input impedance greatly
decreases the system’s common-mode rejection
ratio (CMRR), which is a measure of how
well the instrument is able to reject common-
mode noise and interference, equal at both
terminals and hence zero by purely differential
measurement. These and other important metrics

are described in Sect. 2.4. Various strategies
for improving IAs have been devised. Many
of these are specifically for the purpose of
better recording biopotential signals. Figure 2.7
showcases several alternative solution strategies
to recording sensitive differential signals.

The difference amplifier as shown in Fig. 2.7a
is the most basic circuit configuration to record a
differential biopotential. It combines attributes of
the inverting and non-inverting amplifier config-
urations. With matched resistances, the output of
this difference amplifier is:

VO = RF

RI
(V2 − V1). (2.12)

Despite its simplicity, the basic difference ampli-
fier suffers from several disadvantages that pre-
clude its practical use for biopotential recording.
Notably, having the input connect to the negative
feedback terminal results in low input impedance
on the order of RI . Since large voltage gain re-
quires relatively low values for RI leading to
input impedances in the kiloohm range, this con-
figuration is almost never used directly to mea-
sure biopotentials. Additionally, unless the four
resistors in this circuit can be perfectly matched
(or in the correct ratio), this amplifier topology
suffers from low CMRR.

The 3-opamp instrumentation amplifier is the
prototypical architecture for instrumentation am-
plifiers. It is also simply known as instrumen-
tation amplifier (IA) without any additional de-
scription. In Fig. 2.7b, we can see it is indeed
composed of 3 opamps in two stages. In the
first stage, 2 non-inverting opamps amplify the
differenceV2−V1 into a differential output signal.
In the second stage, a difference amplifier like the
one shown in Fig. 2.7a provides further amplifica-
tion and subtracts the common mode signal. Al-
though not typical, it is also possible to implement
this second stage with a fully differential opamp.
The transfer function of the classic IA is:

VO =
(
1 + 2

R1

RG

)
R3

R2
(V2 − V1). (2.13)
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Fig. 2.7 Architectures for differential and instrumenta-
tion amplifiers: (a) difference amplifier, (b) 3-opamp in-
strumentation amplifier, (c) fully differential capacitively

coupled amplifier, (d) switched capacitor instrumentation
amplifier, (e) current balancing instrumentation amplifier,
and (f) differential difference amplifier
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This architecture is favored for its high differ-
ential gain and high common-mode rejection.
Additionally, as the first stage is composed of
output-coupled non-inverting amplifiers, it offers
very high input impedance, allowing for biopo-
tential measurements through non-contact and
high impedance electrodes. One further advan-
tage of this topology, is that changing a sin-
gle resistor, RG, allows for tuning of the differ-
ential gain of the circuit. Despite these advan-
tages, resistor matching is still critical to achiev-
ing very high CMRR in excess of 100 dB, as
needed in highly sensitive application settings
such as EEG recording on the scalp but difficult
to accomplish in an integrated process without
laser trimming. Moreover, the use of three sep-
arate amplifiers results in extra noise and power
consumption.

A fully differential capacitively coupled ampli-
fier is effectively the same topology shown in
Fig. 2.6c, except the passive elements used for
gain ratioing are implemented with capacitors
rather than resistors. Capacitive feedback ratio-
ing, particularly when Fig. 2.7c is implemented
as an integrated circuit, ensures both accurate
gain and lower power consumption for the IA.
Achieving more accurate gain and better CMRR
by accurate matching of pairs of capacitors like
C1 andC2 is relatively straightforward in custom-
designed integrated circuits in standard semicon-
ductor fabrication processes. Low power con-
sumption is also more easily achievable owing
to the ability to accurately integrate very small
capacitances, which in turn give rise to very large
impedances reducing the current draw of the am-
plifier. In order for the amplifier to have a stable
DC operating point despite the infinite impedance
of the capacitive elements lacking feedback at
zero frequency, Fig. 2.7c makes use of very high
resistance pseudo-resistors, which are leak ele-
ments composed of self-biased transistors with
ultrahigh resistance [16]. Without such pseudo-
resistors, implementing the large resistances in
the gigaohm-teraohm range required for the high-
pass filter cutoff frequency of biopotential record-
ing would use prohibitively large silicon area.
On the other hand, just like Fig. 2.7a, low in-

put impedance may be a problem at high sig-
nal frequencies for some implementations where
the input capacitor C1 is very large, possibly
tens of picofarads. Minimizing the size of C1 in
this circuit precludes achieving high gain as the
transfer function within the passband is directly
proportional to it:

VO(jωpass) = V +
O − V −

O = C1

C2
(V +

I − V −
I ).

(2.14)

A switched-capacitor instrumentation amplifier
as shown in Fig. 2.7d is a discrete-time circuit
that works by sampling the instantaneous voltage
at periodic intervals, unlike the continuous-time
amplification in the previous examples Fig. 2.7a–
c. In the sampling phase, the first part of the
interval, the S1 switches closes and charges theC1

capacitors to the input voltage. The second phase
has the S1 switches open, while the S2 closes
setting the output to the product of the input and
the above capacitor ratio. In order for the sampled
voltage to completely settle in the relatively
short phase interval, the effective bandwidth
of the amplifier must be much faster than the
continuous-time signal bandwidth. This results
in increased power consumption and integrated
noise. Additionally, sampling a voltage onto a
capacitor like C1 results in a phenomenon known
as kT /C noise. As the name implies, the mean
square value of this sampling error due to thermal
noise is v2n = kBT /C, where kB is the Boltzmann
constant. Not having any preamplifier, the settling
time of input capacitors is dependent on generally
high-impedance biopotential electrodes. Despite
this architecture’s higher power consumption,
the time discretization it performs can replace
the sample and hold circuit of the subsequent
ADC.

A current balancing instrumentation amplifier
as conceptually demonstrated in Fig. 2.7e
alleviates CMRR issues encountered in practical
implementation of the above amplifier topologies
due to difficulties in matching resistors,
capacitors, and even whole amplifiers. An
open-loop transconductance amplifier first
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stage converts a differential input voltage into
a differential output current I1, which flows
through the balanced resistor R1. The current
I1 is then copied to flow through R2 resulting in
an amplified voltage which is then buffered by
a final circuit. This topology may include some
kind of current feedback to the first stage’s output
to cancel common mode. As is evident, the lack
of duplicated resistors, capacitors, and amplifiers
eliminates the CMRR losses due to matching.
Although Fig. 2.7e has much higher potential
CMRR and input impedance, low noise design
might incur significant power costs in copying
currents and powering all the stages.

A differential-difference amplifier is yet
another type of instrumentation amplifier that
seeks to maintain high input impedance and
high CMRR despite matching challenges. It
behaves like the fully differential amplifier
shown in Fig. 2.6c except without the inverting
amplifier’s low impedance inputs. Within this
grouped amplifier, a first stage with two parallel
amplifiers converts voltage inputs into currents,
which are summed together and amplified by
a second stage. The key in maintaining high
input impedance is using two isolated terminals
exclusively for the input signal and two separate
terminals exclusively for feedback.

Other architectures and topologies are possible
and frequently featured in the scientific literature
of biopotential amplifier design. Combining dif-
ferent features presented in Fig. 2.7 may improve
the performance of a specific design targeting a
particular application.

2.3.2 Intracellular Recording and
Clamping Circuits

A different kind of neural instrumentation has
been developed for the acquisition of intracel-
lular potentials. These measurements of mem-
brane voltage provide the means to study in vivo
neural networks and the behavior of synapses
and even characterize single ion-channel trans-
port proteins. Aside from characterizing the fun-
damental physiological behavior of transmem-

brane proteins, these experiments can discover
the effect of various drugs, genetic manipulations,
and various pathologies on the basic building
blocks of the nervous system.

In order to record the cell membrane voltage,
a very different kind of microelectrode must be
used. Commonly, a Ag/AgCl filament inside
a glass pipette filled with saline fluid and a
sharply tapering tip perforates the cell membrane
probing the intracellular space. A more advanced
technique involves a patch clamp electrodewhich
has a flat tip that can form a seal around a patch
of the cell membrane, through suction on the
electrode fluid. Additional manipulation can
either perforate the isolated membrane region,
forming a longer-lasting intracellular interface
than the sharpmicroelectrode or purposefully tear
off a section of membrane to specifically study
its properties in isolation. Application of these
electrodes to in vitro systems requires specialized
microscopy and mechanical micromanipulation
tools. In vivo measurements of the intracellular
potential require even more sophisticated
optical and mechanical equipment. Beyond
simply recording the intracellular potential, the
following techniques are applied in neuroscience
experiments:

Voltage clamp is a configuration used to mea-
sure the behavior of ionic currents across the
cell membrane while keeping the membrane po-
tential constant. Practically, this is accomplished
through feedback and operational amplifiers. A
potentiostat is a circuit that sets a potential dif-
ference between two nodes while measuring the
current required to maintain such potential. Fig-
ure 2.8a shows a simple voltage clamp potentio-
stat circuit consisting of only one pipette elec-
trode and one return electrode in the solution.
Recalling the properties of opamps in negative
feedback, the circuit will set the voltage at the
inverting terminal to the input control voltage
Vclamp, while the feedback across the amplifier
through the transimpedance elementRF results in
an amplifier output:

VO = Vclamp + Imeas RF . (2.15)
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Fig. 2.8 Basic instantiations of (a) voltage clamp and (b) current clamp instruments making use of a single intracellular
electrode

A second amplifier may be used to subtract the
Vclamp and isolate the term directly proportional
to the membrane current. Unfortunately, due to
RA, the access resistance of the microelectrode,
the membrane voltage is not exactly equal to the
clamp voltage but rather

Vm = Vclamp − Imeas RA, (2.16)

which depending on the magnitude of RA can be
significantly different. One solution to this prob-
lem is to have two different pipette electrodes:
one recording the intracellular voltage and one
injecting current. As there is no current flowing
through the recording electrode (connected to a
different high input impedance amplifier), there
is no voltage difference between the command
voltage Vclamp and Vm. This 3-electrode potentio-
stat, which requires probing the same cell with
two different pipettes, is difficult to use in small
neurons. A different approach toward construct-
ing a voltage clamp with a single penetrating
electrode involves time multiplexing the voltage
sensing and current injection functions. Although
this method manages to record from the electrode
when there is no current (therefore no voltage
drop), the settling time of this feedback control
system must be smaller than the time constant of
the neuronal membrane.

Current clamp is used to investigate the ex-
citability of neurons. Keeping a certain current

injection while monitoring the potential gener-
ated is known as a galvanostat. Figure 2.8b shows
a galvanostatic current clamp instrument imple-
mented by simply measuring the potential on
the intracellular electrode connected to a current
source. A current that discharges or depolarizes
the membrane voltage eventually leads to an ac-
tion potential. This action potential manifests as
a sudden spike in the membrane voltage that is
recorded by the current clamp. Similar to the
voltage clamp, a current clamp composed of a
single intracellular electrode cannot simultane-
ously inject current and faithfully record the exact
membrane voltage. Contrasting from the voltage
clamp case, the clamp current setting Iclamp is
accurately set, and the current dependent term
in the voltage measurement can be eliminated
in post-processing of the data if the electrode
properties of RA are known:

VO = (Vm + Iclamp RA)

(
1 + RF

RI

)
. (2.17)

Dynamic clamp is an advanced rendition of the
above voltage and current clamp techniques,
where the instrument can inject currents
generated with a prescribed algebraic dependence
on the membrane voltage, emulating a variable
conductance on the electrode side of the interface.
The dependence of these currents on voltage can
take the mathematical expression of neurotrans-
mitter receptors and different ion channels that



2 Biopotential Measurements and Electrodes 79

exist in the cell membranes of neurons. Among
other applications, technique can enable investi-
gations of neuronal responses to the uniquely
behaving ion channels, and even simulating
the complex dynamics of chemical synapses in
order to form hybrid biological-neuromorphic
neural networks. Dynamic clamps can be fully
implemented with analog circuit control systems
that enforce the desired I-V relationship, or they
can be implemented through digitization and
digital signal processing (DSP) in the loop.

2.4 Design Considerations and
PerformanceMetrics

Innovations in semiconductor technology
and new circuit design topologies constantly
empower newer, more demanding applications
in neural engineering. Although these advances
have enabled the impressive miniaturization of
modern technology, many functional aspects
of circuit design result in performance trade-
offs. In this section we discuss some design
considerations, and decisions that must be made
in order to optimize performance, and the metrics
that define performance quality.

2.4.1 Power Consumption

One of the primary factors limiting design
choices in instrumentation is power consumption.
Particularly in the case of implantable, portable,
and wearable systems, gratuitous power
consumption is detrimental. These systems are
generally limited by how much instantaneous
power they can harvest and how much total
energy they can store in a battery. As such,
power autonomy is a critical consideration.
Another consequence of high power consumption
is excessive heat generation which can cause
tissue damage and discomfort to users of
biopotential recording equipment. The objective
is minimizing power conflicts with other
design requirements. The level of power used
in the instrumentation, particularly the AFE,

directly affects available bandwidth and signal-
to-noise ratio, equally important as design
considerations in ensuring sufficient signal
quality. Therefore, judicious administration of
a power budget among all the blocks of a neural
recording and stimulation instrument is of critical
importance.

2.4.2 Bandwidth

As discussed in Sect. 2.1 and Fig. 2.2, the
temporal resolution of biopotential signals varies
extensively across specific applications. The
AFE used in a particular application must be
adapted or configured with sufficient bandwidth
to amplify the targeted biopotential signals,
avoiding aliasing and distortion degrading the
signal. Because noise and interference from the
electrode and outside sources can decrease the
signal-to-noise ratio (SNR), amplifier systems are
generally designed to limit undesirable content
outside the frequency band of interest. Even with-
out the need to reject out-of-band interference,
having excessive bandwidth in the AFE can
include more total integrated noise to the final
digitized signal and needlessly consume more
power.

2.4.3 Input Dynamic Range

Large gain amplifiers are required to magnify
biopotentials from the lower- to mid-μV range
to cover the full ADC input range in order to
maximize precision in signal acquisition. This
in turn limits the maximum amplitude of a sig-
nal that can be received without saturating the
output of the first stage AFE. Some types of
instruments require great flexibility in configur-
ing gain and bandwidth settings because they
receive different ranges of signals. For exam-
ple, some MEA systems record intracellular ac-
tion potentials with approximately 100mV peak
to peak amplitude, as well as extracellular lo-
cal fields with μV-range amplitudes. Some com-
mon methods employed to increase input dy-
namic range (IDR) include: AC-coupling or high-
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pass filtering DC-offsets, having programmable
or automatically adjusting gain and predictive
autoranging.

One important reason for increasing IDR is the
possibility of recording biopotentials simultane-
ously with electrical stimulation, enabling appli-
cations such as closed-loop deep brain stimulators
(DBS), closed-loop retina prostheses, and other
emerging therapies. Even in conventional clini-
cally implemented applications, recording biopo-
tentials in the presence of large interference sig-
nals arising from other devices and surgical tools
is not uncommon.

2.4.4 Cross-Talk

Advances in neural instrumentation have allowed
researchers and users of the technology to in-
crease the number of channels that they can si-
multaneously record. This increased throughput
has been made possible due to increasing minia-
turization of electrode arrays, connectors, and
interconnect traces. Cross talk is the presence
of interference signals from other channels in
a particular channel. Cross talk is likely to be
caused by capacitive and other coupling between
electrodes or interconnect traces in the circuitry.
Material selection in the insulation and encapsu-
lation layers must be considered, as well as the
possibility these will degrade over the lifetime of
the device giving rise to even more cross talk.
Beyond actual cross talk, designing electrode ar-
rays with overly fine pitch exceeding the spatial
resolution of the signal of interest (Fig. 2.2) does
not result in a significant increase of information,
while giving rise to many of the problems that
result in cross talk and noise. Although cross
talk is not primarily a circuit architecture issue,
the addition of electrode impedance monitoring
circuits to AFEs can accurately quantify the ex-
istence of cross talk. Most typically, the cross
talk can be adequately compensated throughDSP,
and often the cross talk contributed by the instru-
mentation is negligible to the amount of cross
talk already present in the signal due to vol-
ume conduction such as in EEG recorded on the
scalp.

2.4.5 Noise

Noise is a more fundamental problem in neural
instrumentation, which needs to be managed
through careful design considerations in the
electrodes and the interface circuits. Noise limits
the attainable precision in biopotential recording.
Many design choices can determine how much
noise is added to the physiological signals in the
process of acquisition and digitization. Beyond
the thermal noise and 1/f noise inherent to
the electrode-electrolyte interface discussed in
Sect. 2.2.1, additional noise is contributed by
circuit components in the electronics. The most
significant noise contribution takes place directly
at the input stage of the AFE, where signal
amplitudes are smallest and most susceptible
to the presence of additive noise. In contrast,
subsequent stages in the signal processing
pipeline operate at signal levels substantially
higher than the levels of additional noise sources
present. It is useful to consider the effect of noise
from each stage, as the equivalent input referred
noise by dividing the magnitude of noise by the
total accumulated gain from the AFE input to
the noise source origin. This way the effect of
electronic circuit noise can be directly compared
by computing the signal-to-noise ratio (SNR),
the ratio of the signal power over the noise
power.

2.4.5.1 Front-End Amplifier Noise
Model

The noise contributed by active and passive
resistive components in the AFE circuit can
be minimized through systematic model-based
transistor-level circuit design. The transistors and
resistors that are inside an AFE generate two
major types of noise: thermal noise and flicker or
1/f noise. Like the thermal noise due to ionic
motion at the electrode-electrolyte interface,
thermal noise generated in the AFE results
from the random-walk thermal fluctuations of
electrons or holes in semiconductors. The model
of thermal noise contributed by a single transistor
in saturation and weak inversion depends on drain
current IDS as follows [17]:
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i2n,th = 2qIDSΔf (2.18)

where q is the charge of an electron and Δf is
the signal bandwidth. As evident from (2.18), the
average square noise is linearly proportional to
the average drain current, while the signal power
is proportional to the drain current square. Thus
the SNR linearly improves with the magnitude of
current. Consequently, increasing the current
while maintaining voltage at the same level
directly increases power consumption. This
results in a trade-off between thermal noise
reduction and power consumption. Strategies
to reduce thermal noise without increasing power
consumption involve low voltage and higher
current circuit architectures.

Likewise, flicker noise, also known as 1/f
noise or pink noise, results primarily from trap-
ping and release of charge carriers, at random
time intervals, by lattice impurities at the Si/SiO2

oxide interface surrounding the semiconductor
active element. which contributes a significant
source of noise at low frequency [18, 19]:

i2n,f = g2mK

CoxWL

1

f
Δf (2.19)

where gm is transconductance, K is a process-
dependent constant, W and L are width and
length of the MOS transistor, and Cox is the gate
oxide capacitance. In some processes, PMOS
transistors are known to have less 1/f noise than
NMOS transistors and therefore are often used in
the input differential pair of a front-end amplifier
for low-noise low-frequency applications in
biosensing. Enlarging the MOS device size also
decreases 1/f noise inversely proportional to
area.

An alternative approach to mitigate flicker
noise in area-limited designs involves a high-
frequency chopper that translates the input signal
to a higher frequency for amplification and
subsequently translates it back to the original
frequency [20]. Expectedly, chopping is not
without trade-offs: increased power, decreased
input impedance, and somewhat higher thermal
noise. Another frequently used method to miti-
gate flicker noise, as well as low-frequency drifts

and offsets, is correlated double sampling (CDS)
[21], in which two samples of the amplifier output
are collected in close succession: one measuring
the signal and another measuring a reference such
as ground by bypassing the electrode input with
an external reference or connecting to a separate
reference electrode. The premise of this technique
is that 1/f noise and other low-frequency
noise sources are highly correlated over short
time scales, so that periodic auto-zeroing at
sufficiently high rate eliminates most of it. The
periodic auto-zeroing with the reference deci-
mates the signal bandwidth or requires sampling
at higher frequency to maintain the same signal
bandwidth, which is worthwhile only if the de-
crease in flicker noise power is greater than the in-
crease in thermal noise power, when the 1/f noise
corner lies in the signal band, a condition met at
higher amplifier bias levels maximizing signal-
to-noise ratio rather than minimizing power.

2.4.5.2 Net Noise Contributions
The relative contributions between electrode
noise and circuit noise depend on electrode type
and geometry and on the available power budget
for signal amplification. In general, electrode
noise is strongly correlated with the contact
impedance, but the actual level is significantly
higher than just the thermal noise from the
resistive portion of the impedance, especially
for dry-contact electrodes that are gaining more
widespread use than conventional wet-contact
gel-based electrodes for their greater comfort and
long-term endurance [22]. The aggregate sum of
the electrode noise sources can be quite large,
on the order of μV/

√
Hz at 1Hz, even for wet

electrodes. This far exceeds the noise contribution
of circuit components, illustrating the importance
of proper electrode selection. Due to integrated
current noise, both wet and dry electrodes have
sharp 1/f 2 spectra, which show up as baseline
drifts in the time domain [22].

Non-contact electrodes can pick up additional
noise from the insulating material between the
metal and skin [22]. In particular, acquiring
signals through fabrics can be noisy due to
the intrinsic high resistance of the fabric (>100
MΩ). This amounts to the equivalent of inserting
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a large resistor in series with the amplifier
input and can add significant noise in the signal
bandwidth.

2.4.6 Interference and
Common-Mode Rejection

In addition to the intrinsic noise sources that are
fundamental to the operation of the electrodes
and circuits, external noise and interference due
to parasitic electrical coupling from the environ-
ment as well as biasing and supply variations may
also contaminate the signal. Unlike the intrinsic
noise, the extent of parasitic coupling from the
environment, such as line noise at the 50/60Hz
mains frequency, can be controlled through care-
ful design of the cabling connecting the electrodes
and AFE, as well as the AFE circuits themselves.
In particular, common-mode noise sources, that
couple nearly identically to the positive and neg-
ative leads of the AFE, can be completely elim-
inated with a properly designed truly differential
AFE.

2.4.6.1 Differential Sensing Circuit
Techniques toMitigate
Common-Mode Interference

The most thorough means to eliminate interfer-
ence due to parasitic electrical coupling from the
environment is to completely shield the wiring
between electrodes and AFE, such as by using
coaxial cabling in which the signal is carried
on the inner core surrounded by a solid ground
shield. This solution, adding substantial capaci-
tance on the signal line and incurring extra costs,
is often impractical and unnecessary. A simpler
solution is to ensure that the two wires carrying
the signal and the reference are subject to the
same interfere, which then appears as a common-
mode additive disturbance to the differential sig-
nal between the wires. By physically bringing
the two wires in close proximity along their en-
tire length, any parasitic electrical coupling from
the outside would be nearly identical to both
of them. A practical means to realizing near-
identical parasitic coupling is a twisted pair of
conductors. This strategy can be employed even
on printed circuit boards or integrated circuits by

periodically exchanging sides between pairs of
metal lines carrying signal and reference through
equally spaced via bridges.

To completely eliminate any common-mode
disturbances, it is critical that the AFE fully re-
jects them and purely amplifies the difference
in potential between the non-inverting V +

I and
inverting V −

I inputs. An ideal differential AFE
outputs a voltage VO proportional only to this
difference V +

I − V −
I ; practical limitations in the

circuit implementationmay produce an additional
component in the output that depends on the
common mode (V +

I + V −
I ) / 2:

VO = Ad (V
+
I −V −

I )+Acm
1

2
(V +

I +V −
I ) (2.20)

where Ad and Acm are the differential gain and
common-mode gain of the AFE, respectively.
AFEs with higher common-mode rejection ratio
CMRR = Ad /Acm are proportionally more
effective at suppressing common-mode noise rel-
ative to the differential signal. Most AFE designs
offer a CMRR greater than 80 dB; this implies
that common-mode disturbances at the input will
be attenuated 10,000× more strongly than the
differential signal is being amplified. This is im-
portant as 50/60Hz mains line noise coupling to
the electrodes, and wiring can easily exceed mV-
levels and otherwise inundate μV-level biopoten-
tial signals present between the electrodes.

2.4.6.2 Input Impedance-Boosting
Techniques

Even an AFE with perfect common-mode re-
jection (infinite CMRR) may still suffer from
common-mode leak-through in the presence of
an imbalance in impedances between the signal
and reference paths feeding to the non-inverting
and inverting AFE inputs. These imbalances are
unavoidable despite careful design of theAFE cir-
cuit, because the electrode-electrolyte/tissue in-
terface impedance is highly variable and unpre-
dictable. Due to the finite input impedance into
either or both non-inverting and inverting input
terminals to the AFE, these variations in interface
impedances at the signal and reference electrodes
cause a leakage of the common-mode voltage
from the electrodes, into a differential component
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between the AFE inputs. This differential leakage
cannot be distinguished from the true differential
voltage between the electrodes by the AFE and
hence passes throughwith full magnification. The
effect of this leakage is equivalent to an effective
CMRR of the AFE:

CMRReff(jω) ≈ |Zin(jω)|
|Zsig(jω)− Zref(jω)| (2.21)

where Zin is the AFE input impedance and
Zsig and Zref are the electrode-electrolyte/tissue
impedances for the signal and reference
electrodes, respectively. In addition to their
effect in degrading CMRR, variations and
mismatch in electrode impedances also reduce
signal amplitude and make the system more
susceptible to movement artifacts. Therefore, it
is of paramount importance to mitigate all these
effects by maximizing the AFE input impedance
well beyond the expected range and variation in
electrode impedances.

Although the AFE input resistance Rin is typ-
ically very high (in the teraohm range), the mag-
nitude of its input impedance |Zin(jω)| at higher
frequencies can be substantially smaller due to
AFE input capacitance, in addition to line capac-
itance in carrying the signals from the electrodes
to the AFE. In many cases, the input impedance is
limited by the parasitic switched-capacitor resis-
tance of the input chopper or by the AC-coupled
input capacitors. A positive feedback can boot-
strap the AC-coupled input capacitors to boost the
input impedance, achieving input impedance on
the order of gigaohms. In order to further boost
the input impedance to teraohm levels, a unity-
gain amplifier with active shielding can be used to
bootstrap capacitance of the input transistor and
all other parasitic capacitance [23, 24].

2.4.6.3 Active Grounding: Driven Right
Leg

An alternative to techniques boosting CMMR by
active boosting or active shielding of parasitic
input capacitance is to mitigate common-mode
noise and interference directly through active
grounding. Rather than minimizing common-
mode gain Ad, active grounding operates by
dynamically driving the common-mode voltage

VCM = (V +
I + V −

I ) / 2 close to zero. This is
accomplished by sensing the difference between
the common-mode voltage VCM and ground and
feeding back the amplified difference with large
negative gain to an additional active ground
electrode in contact with body tissue. The
location for this electrode is typically far removed
from signal-carrying electrodes in order not to
interfere with the electrophysiological setup.
For electrocardiography (ECG) applications, this
ground electrode is typically applied to the right
leg, hence the term “driven right leg” (DRL)
commonly used to refer to the active grounding
circuit, no matter where this electrode is applied.
For EEG applications, the DRL electrode is
typically applied on the mastoid behind the ears.

Active grounding is much more effective than
passive grounding by directly connecting the
body to ground due to the impedance of the
ground electrode, causing voltage variations
away from zero due displacement currents
induced by 50/60Hz mains line noise and other
sources of common-mode noise acting on the
body. Active grounding with DRL accomplishes
an effective grounding impedance that is smaller
than the electrode-tissue impedance by a factor
1 + ADRL, where ADRL is the open-loop gain
of the DRL amplifier. Hence large reduction in
common-mode voltage can be obtained by large
DRL gain.

In order to obtain large gain in the DRL circuit,
an open-loop amplifier can be employed. How-
ever, the feedback by the DRL circuit requires
careful design for stability. The DRL amplifier
is typically integrated with the AFE differential
amplifier on the same die and using the same de-
sign principles; for instance, capacitive feedback
with pseudo-resistors around an OTA can realize
a low-power DRL along with the capacitively
coupled AFE implementation in Fig. 2.7c. Typi-
cally, large capacitance up to a few nF is required
to ensure stability due to variation in electrode
impedances. A digitally assisted DRL circuit has
the capability to have larger gain at the mains
frequency for higher rejection and lower gain
elsewhere for stability. In dry-electrode applica-
tions, common-mode feedback to one of the dif-
ferential inputs in the front-end increases CMRR
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and ensures its stability independent of electrode
impedance variations.

For safety, a large (megaohm-range) resistance
is typically connected in series with the DRL out-
put, limiting its range of output current for short-
circuit protection while leaving the DRL open-
loop gain unaffected for precise active grounding.

2.5 Survey of Neural
Engineering Applications

The field of neural engineering has made sig-
nificant progress toward useful and viable tech-
nologies for interfacing with the brain and body.
Tools for neural recording have been developed
to reliably measure everything from the fine de-
tails of action potentials in vivo to wide, body-
area electrophysiological signals. Advancements
in electrode sensor materials, high-performance
integrated circuits (ICs), and precision miniatur-
ization of complex systems have improved exist-
ing applications such as EEG and enabled new
applications such as μECoG and vision-restoring
retinal implants.When exploring neural engineer-
ing concepts for a specific application, consider-
ation is necessary of the particular biopotential
to be investigated (i.e., spikes, LFP, brain waves,
nerve impulses, etc.), the physiological source of
the biopotential signal (i.e., the brain, brainstem,
or peripheral nerves), and the limitations of avail-
able recording technologies.

2.5.1 Electrodes and
Instrumentation

2.5.1.1 Scale and Invasiveness
Sensing biopotentials with large devices external
to the human body produce very different sig-
nals than small implanted devices. In part, this
is because of a trade-off in scale between sur-
face area coverage and location-specific access
(Fig. 2.9). Gel electrodes placed on the surface
of the scalp connected to a biopotential ampli-
fier, for example, could easily cover the entire
projected surface of the brain accessible on the
head but would pick up only faint, low-frequency

signals because of the shear distance of the neuron
sources through the skull to the external elec-
trodes. The obvious advantage of external elec-
trodes like those used for scalp EEG is that they
enable a noninvasive neural interface. On the
other hand, if greater biopotential quality and
neural signal features are desired and invasive
implants are acceptable, electrode sensors can
be placed very close or even through neurons
in the brain. Large-area neural engineering tools
for biopotential measurement include scalp elec-
troencephalography (EEG), magnetoencephalog-
raphy (MEG), electrical impedance tomography
(EIT), and epidural ECoG. Small-area neural en-
gineering tools for biopotential measurement in-
clude subdural ECoG, cortex microelectrode ar-
rays, μECoG, and deep brain microelectrode ar-
rays.

2.5.1.2 Temporal, Spatial, and Spectral
Resolution

Examples of neural engineering applications can
be categorized based on the resolution they are
capable of achieving in the spatial, temporal,
and spectral domains. For applications involving
fast neural signals such as action potentials and
short-wave ripples, an amplifier and analog-to-
digital converter (ADC) with sufficiently high
sampling rate are required to capture the fine
temporal features in the signal. Some signals,
such as those arising from the midbrain and
hippocampus, need to be measured in close
proximity to the source and thus require high
spatial resolution from the recording apparatus.
High-density microelectrodes inserted in the
midbrain are currently required in this setting to
spatially resolve these signals. Perhaps the most
important element of distinction between neural
interfacing tools is spectral resolution. Certainly
the distance between the source and sensor affects
the range of spectral measurable because of the
inherent low-pass filtering nature of biological
tissues, but other factors arguably play a greater
role in determining the spectral resolution of
the system. These factors can include the noise
floor of the acquisition circuitry, the 1/f noise
of the amplifier, impedance of the electrode, and
sampling frequency.
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Fig. 2.9 Types and positioning of integrated electrode technologies for interfacing with the brain at varying spatial
scale and spectral bandwidth, at corresponding varying degrees of invasiveness [30]

2.5.1.3 Experiment Model
Neural engineering tools to be used for a specific
application will also depend on the type of
experiment and biological model to be used.
To measure from the brain in vivo, one could use
any of the above mentioned tools. To measure
from the peripheral nervous system, implantable
nerve cuff or nerve needle electrodes are needed
instead. In experiments involving small animals
such as mice, a head-mounted sensing module
should be considered. Mouse EEG has small
screw-like electrodes that push up against the
skull to measure brain activity, while allowing
the animal to move freely. In other settings a
sample of neural tissue such as a brain slice
will need evaluation in vitro, in which case, a
microelectrode array with high-density recording
units and liquid containment for culture media
is necessary. Finally, in cases where neurons are
being grown in cell culture from either explants
or iPSCs, a multielectrode array with sharp points
or nanowires will enable intracellular recordings,
in addition to extracellular and intercellular
recordings.

2.5.1.4 In-Ear Placement
Applications of neural engineering involving dis-
crete wearable sensors have continued to gain
popularity. A particularly promising unobtrusive
electrophysiology modality is Ear-EEG. Unlike
conventional EEG which has several electrodes
placed on the forehead and scalp, ear-EEG pro-
vides a miniaturized and discrete platform for
electrode placement in the outer ear and in the
ear canal [25–27]. Electrode sensors can be inte-
grated into existing personal audio devices such
as hearing aids and wireless earphones. Signals
recorded from these sensors are comparable in
quality to thosemeasured from conventional EEG
for certain event-related potentials owing, in part,
to the proximity of in-ear electrodes to major
auditory processing centers of the brain, such
as the auditory cortex in the temporal lobe, the
brainstem, and the auditory nerve fibers [25–
27]. Furthermore, the ear canal has been demon-
strated to contain useful biomarkers of overall
health and physiology. These biomarkers include
electrodermal activity (EDA), a biomarker for
overall excitement or stress levels, sodium-sweat
concentration, a representative measure of hydra-
tion, and cerumen conductance, an indicator of
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sebum production and lipid transport [28, 29].
These unique attributes of the in-ear environment
play a role in the dynamics of electrode-skin
impedance, the understanding of which is impor-
tant for high-quality biopotential measurement
and consistency in offset between trails, differ-
ent subjects, and, in extended-period, continuous
health monitoring.

2.5.2 Minimally Invasive
Electrocorticography

EEG recording off the scalp is noninvasive
and relatively low-cost, but limited in its
spatiotemporal resolution. To achieve higher
spatiotemporal resolution and spatial coverage in
interfacing with the brain, the distance between
the electrodes and neural tissue must be reduced.
This implies a need to cross from the regime
of noninvasive modalities to invasive, implanted
technologies. Significant demand by academia,
government funding agencies, and even the
private sector for advanced brain research has
driven the development of such chronically
implantable neural interfaces that leverage
precision material fabrication techniques and
high-performance amplifier and wireless IC
technologies. As elaborated in the following
section, penetrating electrode systems tend to
be of very high resolution, expensive, and very
invasive, causing long-term tissue damage. An
excellent middle ground, electrocorticography
(ECoG), offers superior spatial and temporal
recording resolution compared to EEG, lower
cost of fabrication, and is suitable for chronically
implantable use for practical long-term brain
research, brain-computer interface (BCI), and
cognitive rehabilitation (Figs. 2.10 and 2.11).
A number of technologies are enabling next-
generation fully implantable high-density ECoG
systems, including PEDOT electrodes [31],
signal amplifying and filtering front-end ICs
[32], drivers for voltage and current stimulation
[33], and wireless antennas for power and
communication [34].

One such next-generation ECoG tool known
as ENIAC, or encapsulated neural interfacing

acquisition chip, places small microchips across
the cortical surface of the brain to create a net-
work of sensors covering a broad spatial area
and recording individually at high spatiotemporal
resolution [30]. LikeμECoG, this new form of in-
terfacing being termed modular-ECoG (mECoG)
has a small footprint in regard to both physical im-
planted space and power consumption (Fig. 2.12).

2.5.3 Neurotechnologies for
Penetrating Electrodes

The above technologies provide for measurement
of neural activity in noninvasive (EEG, in-ear
EEG) and minimally invasive (ECoG, μECoG)
manner. However, many applications require to
penetrate neural tissue in order to measure the ac-
tivity of single neurons or the low-frequency os-
cillations of neural populations as local field po-
tentials (LFP). Penetrating electrodes serve this
purpose.

One of the most commonly used designs is
the Utah array (Fig. 2.13a) available from Black-
rock (https://www.blackrockmicro.com/electrode-types/

utah-array/). It includes 100 passive penetrating
electrodes that measure the electric potential at
their tips. Utah arrays are an excellent source
of recordings for brain-machine interface (BMI)
applications. BMI applications using Utah arrays
implanted in motor cortex were used successfully
to enable tetraplegic patients to accurately control
3D robotic arms [50]. The Utah array design
makes it particularly suitable for BMI applica-
tions, as electrodes cover a relatively large area
(2mm2), which makes it likely to find neural
activity tuned to the task of interest (e.g., neurons
tuned to arm/hand movements).

More recently, there has been a large inter-
national effort in designing new neural probes
to advance research in neuroscience. The design
principle of these probes is essentially different
than the Utah array design, as neuroscientists
are usually interested in recording the simultane-
ous activity of different brain regions at different
depths. Moreover, a higher density of the elec-
trodes is desired, as it facilitates the identification
of single neuron activity via spike sorting [51].

https://www.blackrockmicro.com/electrode-types/utah-array/
https://www.blackrockmicro.com/electrode-types/utah-array/
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Fig. 2.10 ECoG integrated neural interface technologies
and applications. (a) Subdural ECoG array with an elec-
trode diameter of 2mm and electrode pitch of 1 cm. The
radiograph image shows the position of the ECoG array
implanted in the subject on the cortex surface, below
the skull [32]. (b) Flexible 252-channel electrode array

fabricated from thin polyimide foil substrate for implanted
ECoG [35]. (c) μECoG electrode array with 3 different
electrode diameters and a total of 124 recording sites
[36]. (d) Electrode array with low impedance electrodes
fabricated for biopotential recording from PEDOT-carbon
nanotube (CNT) composite coatings [31]
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Fig. 2.11 Clinically available neural interface systems
and applications. (a) NeuroVista seizure advisory system
monitors biopotentials in the brain [37]. (b) Neuropace
RNS system monitor biopotential activity of the brain
leading up to and preventing seizures [38]. (c) Spiral nerve

cuff electrode for biopotential measurement of peripheral
or spinal nerves [39]. (d) BrainCon’s BCI system for
general-purpose medical neural interfacing [40, 41]. (e)
WIMAGINE wireless implantable multi-channel neural
interface [42]
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Fig. 2.12 Emerging technologies for next-generation
neural interfaces and applications. (a) High-resolution
retinal prostheses with optical addressing and inductive
telemetry, toward retinamorophic vision restoration in pa-
tients with degenerated photoreceptors in the retina [43].
(b) An implantable nerve cuff for biopotential recordings
of the peripheral nervous system in freely moving animal
subjects [44]. (c) The encapsulated neural interfacing

and acquisition chip (ENIAC) is a completely on-chip
integrated system for ECoG recording, stimulation, and
data transmission [30, 33, 45]. (d) The Neuralink Neu-
ralace implantable BCI platform that offers thousands of
biopotential recording channels [46]. (e) Thin film, high-
density peripheral nerve cuffs for biopotential recording of
the injured nerves used pre- and postoperatively [47]

Fig. 2.13 PenetratingMEAdevices. (a) Utah array. (From [48]). (b) Neuropixels. (From [52]). (c) SiNAPSmulti-shank
probe. (From [49])

The Neuropixels probe [52] (Fig. 2.13b – https://

www.neuropixels.org/) has a single 1mm-long shank
with 960 closely spaced metal electrodes. The
electrodes are around 20μm apart from each
other. Up to 384 simultaneous channels can be
recorded, and the user can choose from which
electrodes to record from. The SiNAPS probe
[53] has a similar design, with 512 channels with

28μm spacing which can be record simultane-
ously at 25 kHz. A newer version of the SiNAPS
probe has multiple shanks (Fig. 2.13c) to measure
more brain regions simultaneously [49].

These newly developed neural probes are rev-
olutionizing the field of systems neuroscience,
enabling high-yield experiments with thousands
of recorded neurons across different regions that
were unimaginable only a few years back.

https://www.neuropixels.org/
https://www.neuropixels.org/
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Homework

1. Cochlear implant system block diagram:
Draw a block diagram for a cochlear implant
and describe, in words, the function of each of
the blocks.

2. EMG dipole traveling wave: The patellar
reflex causes the quadricepsmuscle to contract
in response to the patellar tendon being struck.
You are interested in measuring the magnitude
of the reflex response using EMG. Consider
the propagation of an action potential along a
muscle fiber bundle in the thigh. The action
potential travels at a velocity v = 10m/s.
Model the current entering themuscle from the
extracellular medium at the action potential
onset as a current monopole −I traveling at
v and a second current exiting the muscle
at repolarization as a current monopole +I
following at a distance d = 1 cm. An electrode
on the arm surface at a distance D = 5 cm
from the muscle measures the EMG signal
relative to body ground. Assume a volume
conductivity σ = 0.1 Ω−1m−1. You measure
an action potential magnitude of Vmax = 5 nV.

(a) What value of current I would you ex-
pect for the current monopoles to yield the
given action potential magnitude?

(b) Plot the EMG signal as a function of time
as the action potential goes by.

3. Bioamplifier design to specifications:
Biopotential amplifiers are typically used in
electrophysiological experiments to increase
the amplitude of weak electrical signals of

biological origin. Usually such amplifiers are
in the form of voltage amplifiers, because they
are capable of increasing the voltage level of
a weak biopotential signal picked up by an
electrode in contact with surrounding tissue.
Design a biopotential amplifier for measuring
neural signals that takes in voltage as its input
and has an input impedance greater than 10
GΩ , so as to avoid any loading of the signal
being measured. The output impedance of the
amplifier should be sufficiently low to drive
an external 1 kΩ load with minimal distortion.
The voltage gain should be greater than 100
over the signal frequency band in order to
resolve low-amplitude biopotential signals.
The signal frequency band ranges from 0.1Hz
to 1 kHz, and the voltage gain should attenuate
outside of this range in order to suppress noise
and interference from unwanted signals and
motion artifacts. You have a 3.3V battery
available and can use any number of opamps,
resistors, and capacitors.
Specify all component values and other
parameters to quantify your design, and

explain your reasoning behind design choices
based on the specifications.

4. Electroporation: Often it is necessary to in-
sert genetic material into a cell, crossing its
membrane. Electroporation is one means to
open the membrane for insertion through the
application of a high voltage. Here we study
single cell electroporation, by injection of cur-
rents +I and −I through two nearby elec-
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trodes into the extracellular space, as shown
in the figure below. The voltage across A and
B, on both sides of the cell, should not ex-
ceed 400mV; otherwise the cell may die. The
conductivity of the extracellular medium is
σ = 1Ω−1m−1, the inter-electrode distance is
Xi = 250μm, the cell is midway between the
electrodes centered at distance Xm = 125μm
from either electrode, and the cell diameter is
d = 20μm. Determine the maximum ampli-
tude of the current I you can safely inject.
Hint: Express the voltage VA − VB across the
cell as a difference between two biopotentials
generated by the same current dipole.

+I -I

Xm

Xi

A B

d

5. Intracellular recording: In electrophysi-
ology there are several techniques used to
measure various aspects of electric activity
in single cells. One such technique is the
current clamp, which injects a current into the
cell and measures the resulting membrane
voltage of the cell. Based on the design
specifications below, design a circuit which
accomplishes a current clamp for intracellular
voltage recording.
(a) You are given a variable current source

that is set to the desired current clamp
value.

(b) The reference electrode is located in the
extracellular space, and the recording elec-
trode reaches inside the cell (through a
glass pipette penetrating the cell mem-
brane).

(c) The signal you are trying to measure at
the recording electrode is in the range of
−80 to 40mV.

(d) Amplify the signal so an external
voltmeter measures 1.2V at 40mV and
0V at −80mV. The output voltage should
vary linearly with input voltage. The input

impedance of your amplifier should be
near-infinite.

(e) 60Hz line noise present on the electrode
wires should be reduced in the amplifier
output.

(f) The frequency range of interest in the volt-
age signal is 100Hz to 10 kHz.

(g) [Bonus]: Design a voltage clamp circuit
to the same above specifications for the
current clamp, except the signal you are
measuring is now current into the record-
ing electrode for a fixed voltage across the
electrodes, and the current signal ranges
between −250 and +250 nA, where the

corresponding output voltage should range
from −1 to 1V.

6. Electrode model:A simplified equivalent cir-
cuit model diagram of the electrochemical in-
terface between an implanted electrode and
the surrounding tissue is shown below, with
half-cell potential Ehc, double-layer capaci-
tanceCd , double-layer resistanceRd , and elec-
trolytic series resistance Rs .

Rd
Rs

TISSUEELECTRODE

Cd
Ehc

(a) Write the impedance of the electrode-
tissue interface Z(jω), and find its
magnitude |Z| as a function of radial
frequency ω. What are the minimum
and maximum of this magnitude over the
frequency range, and at what frequencies
are the minimum and maximum attained?
With what time constant does the transient
in the current settle for a voltage step
across the electrode-tissue interface?
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(b) Identify the parameters in the electrode-
tissue model diagram from the follow-
ing experimental observations on the
electrode relative to another reference
electrode in contact with the same tissue in
close vicinity, which has known half-cell
potential −200mV, double-layer capaci-
tance 1 nF, double-layer resistance 20 kΩ ,
and electrolytic series resistance 1 kΩ:
(i) The voltage measured by a voltmeter

between the electrode and the
reference electrode is +300mV.

(ii) The impedance measured by a
multimeter between the two electrodes
at 0.1Hz is 125 kΩ .

(iii) The impedance between the two
electrodes now measured at 100MHz
is 5 kΩ .

(iv) The transient in the current measured
by an ammeter between the two
electrodes, for a 10mV step applied by
a voltage source across the electrodes,
settles with two time constants: the
shortest one is 10μs, and the longer
one is 100μs.

7. Electrodes, redox reactions, and half-
potentials: A pure Ag electrode with 1 cm2

surface area is immersed in a bleach solution.
An electrical current of 5mA is injected
through the electrode into the grounded
solution for 1 minute.
(a) What is the resulting change in mass of the

electrode?
(b) What has changed in the properties of the

electrode?
(c) Show the equivalent circuit model for the

electrode and indicate approximate values
for all parameters from the literature. Cite
all sources.

(d) Sketch a Bode plot for the electrode
impedance.

(e) This new modified electrode and another
electrode of unknown material X are im-
mersed in 1 liter of 1M XCl2 solution.

Assume the activities of X2+ and Cl− are
unity, and the electrochemical cell is main-
tained at room temperature. What are the
chemical reactions that take place at each
electrode?

(f) The two electrodes are connected
to a voltmeter with infinite input
impedance, reading 0.99V. Although
you are not sure about the polarity
of the voltmeter terminals, what can
you say about the half-cell potential of
electrode X?

(g) You find out that X is a very good re-
ducing agent. Can you now guess what
material is X? Hint: a table of standard
electrode (half-cell) potentials will come
handy.

(h) The two electrodes are connected with an
electrical wire. What direction does cur-
rent flow through the wire? Does the XCl2
concentration in solution increase or de-
crease?

(i) After several seconds, the current
subsides. Describe what happened, and
estimate the total charge that was delivered
over the electrical wire.

8. Skin-electrode model: Consider the simpli-
fied circuit model of the skin-electrode inter-
face below:
(a) Find the expression for the impedance of

the circuit when the subject is not sweat-
ing, that is, disregarding the sweat glands
and ducts contribution.

(b) Find the expression for the impedance of
the circuit when the subject is sweating,
that is, including the sweat glands and
ducts contribution.

(c) Using the following parameter values,
sketch or plot the magnitude of the
impedance as a function of frequency,
from 0.1 to 100Hz on a log-log scale.
Make sure to properly label your plot with
values and units.

Eel = 200mV Rgel = 1 k	 Cel = 1 pF Csk = 10 pF Csw = 0

Esk = 430mV RB = 100 k	 Rel = 1M	 Rsk = 10M	 Rsw = ∞



92 A. Akinin et al.

Rel

Rgel

Eel

Cel

Rsw

Esw

Csw
Rsk

RB

Esk

Csk

Electrode

Conductive Gel

Skin

Body

9. Sweat glands model of skin-electrode
impedance: Again consider the above skin-
electrode model.
(a) What is Eel when the electrode is made

of silver coated with a thin layer of silver
chloride?

(b) Ignoring the effect of sweat glands and
ducts in this model, and considering that
the time constant RskCsk of the skin-body
interface internal to the skin is practically
zero on any time scales of interest,
reduce this model to an approximate
standard electrolyte-electrode form with a
single half-cell potential, a single parallel
combination of double-layer resistance
and capacitance, and a single series
resistance.

(c) For Cel = 20 nF, Rel = 50 kΩ ,
Rgel = 2 kΩ , Csk = 10 pF, and
Rsk = RB = 500 Ω , show the Bode
plot (amplitude and phase as a function
of frequency) of the contact impedance
for your reduced model, superimposed
with that for the full model in the absence
of sweat. How good is the reduced
model at frequencies of physiological
interest?

(d) What do you expect the effect of sweat to
be? Does the contact impedance increase,
or decrease, and why?

10. Multi-channel biopotential amplification
with common-mode compensation and
DRL: Consider the four-electrode bioam-
plifier system below:



2 Biopotential Measurements and Electrodes 93

IN1 OUT1

R1 R2

Ri

IN2 OUT2

R1 R2

Ri

IN3 OUT3

R1 R2

Ri

VCM

RL

Rf

Ro

VCM

EEG amplifiers DRL amplifier

(a) Derive the voltage outputs OUT1, OUT2,
and OUT3 in terms of the electrode volt-
ages IN1, IN2, and IN3, respectively. What
are the voltage gains on each of these
leads?

(b) Derive the driven right leg voltage output
RL in terms of the common mode of IN1,
IN2, and IN3. What is the common mode
voltage gain driving the right leg?

(c) Find the effective resistance from body
to ground in terms of the RL electrode
impedance RRL and the resistances of the
circuit.

(d) What purpose do resistorsRi andRo serve
in this circuit?

11. Amplifier common-mode rejection: Con-
sider the following bioinstrumentation
amplifier, where R1 = 1.000 kΩ , R′

1 =
0.999 kΩ , R2 = 1.000MΩ , and R′

2 =
1.001MΩ .
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(a) Calculate the differential gain, the
common-mode gain, and the common
mode rejection ratio (CMRR) in dB for
this amplifier.

(b) For an input differential signal Vsig RMS

and a total output referred noise from the
amplifier and resistors of Vno,AMP RMS

added to Vo, find the input referred noise,
and the signal-to-noise ratio (SNR).

(c) Now consider that the signals VA and
VB in the body are picked up by elec-
trodes with impedances ZA = 900 kΩ ,
and ZB = 1.1MΩ respectively. How
does this affect the differential gain and
CMRR in (a) and the output SNR in (b)?
How would you remedy this situation
in the design of the bioinstrumentation
amplifier?

12. Current source cascoding: Consider the
cascode transistor shown below. The circuit
is normally used as a high-impedance current
source in analog circuits. In this problem,
we will analyze the effect of adding a
cascode transistor to the output noise of the
circuit.

+
–

+
–

+
–

V2

V1

M1

M2

VOUT

i2out

(a) Draw a small-signal model of this circuit,
including all noise generators. Do not
neglect transistor output impedances and
the body effect for this question.

(b) Find an expression for i2out in terms of the
noise generators for each transistor and
necessary small signal parameters. Can
we neglect the noise contribution from
M2 and why?
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3EEG Signal Processing: Theory
and Applications

David L. Sherman and Nitish V. Thakor

Abstract

The electroencephalogram or EEG is intro-
duced in this chapter. Properties of the EEG
time series are discussed as well. These in-
clude individual frequency band descriptions,
and their critical functional properties are dis-
cussed. A variety of measurement tools are
introduced to assist in the frequency-based in-
tensity measure. These include the traditional
strategies of power spectrum and time-domain
analysis for continuous EEG signals, and other
strategies for capturing the power frequency
information about the sporadic events through
the Teager energy operator (TEO). For the
analysis of wave features, we also consider
additional time-frequencymethodologies, par-
ticularly wavelets. Lastly, apparent random-
ness of the EEG signals lends itself to entropy
or information-theoretic analysis. We discuss
an entropy-based model known as information
quantity or IQ which is shown to reflect the
changes in EEG from healthy, to injury, to
recovering states. As a case study, we examine
the use of EEG signal processing methods as a
diagnostic tool in the recovery of the brain af-
ter cardiac arrest which causes global ischemic
brain injury. The corresponding experiments

D. L. Sherman (�) · N. V. Thakor
Johns Hopkins University, Baltimore, MD, USA

demonstrate the importance of spectral meth-
ods to analyze the EEG frequency and ampli-
tude variability assessed through the IQ mea-
sure and TEO as a tool to detect the burst sup-
pression events in the experimental models of
cardiac arrest. Our review of the EEGmethods
and the principled discoveries coming out of
our experiments provide a general introduction
to the basic properties of the EEG data inter-
pretation and clinical translation.

Keywords

Electroencephalogram · Spectral Analysis ·
Parametric · Autoregressive (AR) · Fast
Fourier transform (FFT) · Cardiac arrest ·
Wavelets · Entropy

3.1 Introduction: EEG
Generalities

The electroencephalogram (EEG) is a dynamic
non-invasive and relatively inexpensive technique
used to monitor the state of the brain. A
recent quote from an editorial describing new
IFCN (International Federation of Clinical
Neurophysiology) standards reads “despite the
tremendous progress in structural and functional
brain imaging of the last decades, scalp EEG
has remained an indispensable diagnostic
tool for studying physiologic and pathologic
cerebral activity. EEG recordings offer a direct
measurement of cortical activity with very high
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temporal resolution within the range of studied
cognitive and epileptic processes (milliseconds)”
[1]. EEG has a number of clinical uses that range
from monitoring normal wakefulness or arousal
states to complex clinical situations involving
seizure or coma. The brain signals contain unique
information from different regions at any given
time. An EEG signal recorded with electrodes
placed on the scalp consists of many waves with
different characteristics. To capture the whole
brain activity, arrays of EEG recording electrodes
are distributed over the entire scalp. The large
amount of data recorded from even a single EEG
electrode pair presents a difficult interpretation
challenge. Signal processing methods are needed
to automate signal analysis and interpret the
signal phenomena.

The greatest advantage of EEG is that it is an
instantaneous and continuous indicator of brain’s
function. It is possible to record EEG signals
continuously for longer than 24 hours. From
many channels; depending on the application,
electrode counts can range from single/dual
channels to the 10–20 clinical system using
a montage of electrodes (Fig. 3.1a). We also
show the newly adopted 25 channel montage
for high-density EEG recordings. Response to

stimuli can be observed in EEG and acquired
as evoked or event-related potentials occurring
within fractions of a second of the stimulus.
EEG provides excellent temporal resolution,
significantly better than imaging methods such as
magnetic resonance imaging (MRI) and positron
emission tomography (PET). On the other hand,
since only a fixed array of scalp electrodes can be
used, EEG provides less spatial resolution than
MRI and PET. For better localization of signal
sources within the brain, EEG is often combined
with MRI scans.

3.1.1 Traditional EEG Bands

Normal EEG is not perfectly sinusoidal, but
waxes and wanes and shifts dominant frequency
constantly. The fact that autoregressive models
are used often to model EEG of all types
shows that the signals may be modeled by
variable bandwidth signals. The autoregressive
frequency domain method models signals
with varieties of individual bandwidth. EEG
waves are normally viewed as irregular with
no decipherable pattern. That precipitated an
interest in both nonparametric (e.g., fast Fourier

Fig. 3.1 (a) The layout of common electrodes or mon-
tage. This is called the 10–20 system of standardized elec-
trode locations. Electrodes are located at individualized

fixed distances across the skull. (b) We also include the
newly adopted 10–10 system for high-resolution EEG.
(Reproduced with permission from [2])
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transform (FFT)-based spectral and wavelets)
and parametric (e.g., autoregressive modeling).

The most common approach is the traditional
power spectral analysis that divides EEG into
five spectral bands: delta, theta, alpha, beta, and
gamma bands as follows:

• Delta (0–4 Hz): Delta waves are the lowest
frequency component and include all the
waves in the EEG below 4 Hz. Delta waves
are usually seen during sleep, in infancy, or in
serious organic brain diseases. Dominance
of delta waves in animals that have had
subcortical transections producing a functional
separation of cerebral cortex from deeper brain
regions suggests that these waves originate
solely within the cortex, independent of
any activity in the deeper brain regions.
Intermittent rhythmic delta activity with a
frontal emphasis is generally associated with
destructive or compressive lesions involving
the diencephalon and upper midbrain, with
deep frontal lesions, and with acute metabolite
and electrolyte disturbances [3]. Animals are
known to have more widespread activity in
this range.

• Theta (4–7 Hz): Theta waves have frequencies
between 4 and 7Hz. Thesewaves occurmainly
in parietal and temporal regions of children’s
brains. In healthy and alert adults, such slow
activity is generally inconspicuous or absent,
but it does appear during emotional stress (dur-
ing periods of disappointment or frustration)
or during certain stages of sleep [4, 5]. Dif-
fuse theta and other slower activity are com-
monly encountered shortly after a generalized
seizure, as well as in patients with metabolic
disorders, white matter encephalopathy, or ex-
tensive lesions of the upper brain stem.

• Alpha (8–13 Hz): Alpha waves are rhythmic
waves occurring at frequencies between 8 and
13 Hz. Brain activity in this frequency range
is often recorded from the occipital region
(and sometimes from the parietal and frontal
regions as well) during consciousness and is
attenuated by visual and other sensory stim-
ulus. Alpha waves are typically seen in an
awake but relaxed person and when eyes are

closed. The waves tend to disappear in sleep-
ing or attentive patients. Fig. 3.2 shows the
effect of visual stimulation on waveform shape
and spectral peak sharpness. When eyes are
closed and visual stimulation ceases, the alpha
wave assumes a virtual sinusoidal shape as in
2(a). The accompanying spectrum in 2(b) is
sharply peaked at 10–12 Hz.When the eyes re-
open, the sinusoidal character disappears. This
phenomenon is called alpha desynchronization
as it is believed that neural ensembles are
firing in synchrony during this prior rhythm.
As the eyes open and visual stimulation and
processing ensue, the synchrony among the
neural ensembles is lost, and the alpha rhythm
assumes a more complex shape indicative of
multiple frequency components. A sub-band
of alpha, the so-called mu-band (10–13 Hz),
is affected by imagery, such as imagined limb
movements. The mu-band modulation is used
in building brain-machine interfaces, e.g., for
control of prosthesis [6], for example, by using
the modulation of mu-band power to open or
close a prosthetic hand.

• Beta (13–30 Hz): EEG activity between 13
and 30 Hz (and sometimes up to 50 Hz) is
classified as beta waves. Beta waves tend to be
recorded from the frontal and parietal lobes. It
can be further classified into two subclasses:
beta I (13–20 Hz) and beta II (20–50 Hz). Beta
I, almost twice the alpha wave in frequency,
appears together with alpha wave. It is affected
by mental activity in much the same way as
the alpha wave. Beta II appears only during
intense mental activity and tension. Thus, one
type of beta activity is elicited by mental ac-
tivity, whereas the other is inhibited by it [7].
Figure 3.3 illustrates that the beta band magni-
tude is quite small relative to the alpha wave
amplitude. We examine two subjects’ power
spectral density measurements from an occipi-
tal derivation. One subject has a high beta peak
and the other person has a low beta peak

• Gamma (30–150 Hz): EEG activity in the rela-
tively higher frequencies beyond the beta band
is classified as gamma. Sometimes it is bro-
ken down into the gamma (30–80) and high
gamma band (>80 Hz). The gamma frequency
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Fig. 3.2 The alpha wave: the phenomenon of desynchro-
nization. (a) The EEG wave and (b) the associated spec-
trum. The signals are recorded from posterior electrode
O1 during an “eyes closed” session. The alpha wave is
very distinctive in this picture, and the spectral energy is
concentrated at a single prominent frequency at around
12 Hz. The alpha wave has a strongly sinusoidal shape
but with waxing and waning amplitude. It seems to be
modulated by a low frequency signal perhaps in the low

theta range near 4 Hz, as these sidebands are clearly
visible around the central peak. (c) The EEG wave and
(d) spectrum of desynchronized alpha rhythm examples
from the same subject as in a and b. Now with eyes open,
desynchronization occurs and the subject shows spectral
dispersion in the EEG. Spectral dispersion means there are
several peaks in the spectrum spread out over awider range
of frequencies

Fig. 3.3 Comparative
spectra of two
subjects—one with high
beta during alpha
synchronization and one
with low beta. Though
alpha and beta are
considered independent
phenomena, beta is often a
harmonic of the alpha
wave. Some people simply
have low beta that is not
seen above the spectral
roll-off of the EEG which
maybe artifact of the
spectral analysis
methodology
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power in EEG signals is generally low, and
filtering to remove noise may further attenuate
the gamma power. However, in select research
and clinical applications, gamma frequencies

are used as indicators of cognitive function
and arousal. Signal power or modulation at
these frequencies is also used in brain-machine
interfaces as well as cognitive studies [8–10].
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3.1.2 Paroxysmal Discharges
and EEG Shapes

EEG signals also have shape characteristics that
uniquely characterize neurological disorders.
They belong to one of these three categories:

(a) Nonperiodic (occasional spikes, bursts, and
random noise)—We can track the revival of
the organism through its brain wave signa-
ture waveforms. Early EEG recovers as burst-
ing or burst suppression events (intermittent
bursts and isoelectricity).

(b) Sinusoidal (alpha rhythm, sleep delta, sleep
spindles, halothane rhythm).

(c) Nonsinusoidal and periodic (spike and wave
epilepsy)—see Fig. 3.4 taken from animal
epilepsy experiments—which examines
spike-wave epilepsy recordings from the
cortex as well as two thalamic relay zones
as well.

(d) Symmetry of alpha activity within hemi-
spheres can be monitored. In cases of re-
stricted lesions such as tumors, hemorrhages,
and thrombosis, it is usual for the cortex
to generate lower frequencies. EEG signal
distortion can be manifested by reduction in
amplitude, a decrease of dominant frequen-
cies beyond the normal limit, and production
of spikes or special patterns. Epileptic
conditions produce stimulation of the cortex
and the appearance of high-voltage waves (up
to 1000 μV) referred to as “spikes” or “spike
and wave” phenomena. EEG patterns have
been shown to be modified by a wide range of
variables, including biochemical, metabolic,
circulatory, hormonal, neuroelectric, and
behavioral factors [11]. By tracking changes
of electric activity during such drug abuse-
related phenomena as euphoria and craving,
brain areas and patterns of activity that mark
these phenomena can be determined.

(e) Useful prognostic information may also be
gleaned from generalized characteristics of
the EEG such as variability, reactivity, the
variable sleep and wakefulness states, etc.
Patterns that are usually signs of a poor out-
come are (1) alpha coma which ostensibly is

a mono-rhythmic pattern with little reactivity,
(2) the burst suppression pattern, and (3) dif-
fuse and local slowing and complete slowing,
and (4) generalized periodic discharge [12].

3.1.3 Survey of EEG Applications

A few primary applications of EEG recording and
analysis are briefly mentioned below:

Epilepsy Monitoring The most common clin-
ical reason for getting an EEG by a referring
physician is to detect a suspected seizure disorder.
The EEG can confirm the diagnosis of epilepsy
and depending on the particular pattern of seizure
assist in the particular seizure type that is evident
[13–16]. Beyond the seizure, the EEG is also
useful for assessing a variety of other cerebral
disorders. In disorders of altered consciousness
and potential encephalopathies, the EEG can offer
convincing evidence of the degree of the disorder
and indicate whether it is a local process with
focal effects or something more widespread. The
prognosis can often be determined from the EEG
itself. EEG recording and analysis has found ap-
plications in basic research on origins and local-
ization of seizure origin [17–19], testing epilepsy
drug effects [20], and assisting in experimental
cortical excision of epileptic focus [15, 21–25].
An active area of intense research is the area of
seizure prediction with some important monitor-
ing revisions having been made throughout [26,
27]. Some seizure recordings from cortical and
subcortical (thalamic) sources in a chemocon-
vulsant animal model of epilepsy are shown in
Fig. 3.4.

Sleep Studies The EEG is sensitive to a range of
states spanning from different levels of vigilance
states: stress state, alertness to resting state, hyp-
nosis, and sleep. The area of sleep studies is one of
the success stories of EEG. Sleep staging is very
clearly reflected in a very reactive EEG. During
normal state of wakefulness with open eyes, beta
waves are dominant. In relaxation or drowsiness,
alpha activity rises and if sleep appears, power of
lower frequency bands increases. Sleep is gener-
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Fig. 3.4 Typical
waveforms recorded during
seizures in an animal
model of absence epilepsy
caused by the
chemoconvulsant
pentylenetetrazol (PTZ).
The anterior thalamus is a
subcortical element that
has shown to have strong
association with cortex
during these seizures. The
spike and wave shape is
clearly evident in anterior
thalamic and cortical
derivations

ally divided into two broad types: (1) nonrapid
eye movement (NREM) sleep and (2) REM sleep.
NREM and REM occur in alternating cycles.
NREM is further divided into stage I, stage II,
stage III, and stage IV [28]. The last two stages
correspond to a deeper sleep, where slow delta
waves show up in higher proportions. With these
slower dominant frequencies, responsiveness to
stimuli decreases, and so these are considered
indicative of deep sleep. Stage I sleep is typified
by slowing, disintegration into varying or increas-
ing irregularities. Thus, EEG monitoring finds
extensive use to investigate sleep disorders and
physiology [11, 29].

Brain-Computer Interface As the EEG pro-
cedure is noninvasive and painless, it is being
widely used to study the brain organization of
cognitive processes such as perception, mem-
ory, attention, language, and emotion in normal
adults and children. The brain-computer interface
(BCI) is a communication system that recognizes
a user’s command only from his or her brain-
waves and reacts according to them [30, 31]. For
this purpose, the intervening computer algorithm
and/or subject is trained. Simple tasks can consist
of desired motion of a cursor or a pointer dis-
played on the screen only through the subject’s
imaging of the motion of his or her left or right
hand. As a consequence of imaging process, cer-
tain characteristics of the brainwaves are altered

and can be used for user’s command recognition,
e.g., desynchronization of the motor associated
mu waves (brain waves of alpha range frequency
associated with physical movements or intention
to move), changes in beta or high gamma bands,
or presence or alteration of certain event-related
potentials (ERPs) [32, 33].

EEG Biofeedback Biofeedback machines are
devices for creation of different mind states (e.g.,
relaxation, top performance) by practical manip-
ulation of the brain waves into desired frequency
bands by repetitive visual and audio stimuli. For
making the training more effective, biofeedback
methods can be involved. Originally, changes in
finger skin resistance or temperature were mon-
itored. EEG biofeedback or neurofeedback uses
EEG signals for feedback input. It is suggested
that this learning procedure may help a subject
to modify his or her brainwave activity. One of
themethods involved in neurofeedback training is
the so-called frequency-following response. Neu-
rofeedback involves actively facilitating changes
in the functioning of the brain in desired way,
e.g., to increase the alpha activity, for achieving
behavioral goals such as increased relaxation or
attention (Fig. 3.5).

Figure 3.6 shows reactive μ-rhythm desyn-
chronization or loss of power with the presenta-
tion of selected motor imagery, namely, a hand,
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Fig. 3.5 Absence status epilepticus with generalized, frontally predominant, 3-Hz spike- and slow-wave discharges.
Reprinted with permission from [11]

as a cue for reactive hand grasping. These elec-
trodes are located over the sensorimotor regions
in both hemispheres as shown by Fig. 3.6. Certain
subjects have a high-amplitude alteration in mu-
rhythm after stimulus presentation, while others
have a reduced change in power in this band [34].

There are numerous other applications of EEG
recording and analysis that range from basic sci-
ence of brain organization, development, and cog-
nition to clinical science and applications to man-
age patient disease states, drug, and surgical treat-
ments:

• Observe vigilance states including alertness,
coma, and brain death [35].

• Locate areas of brain damage following head
injury, stroke, tumor, etc. [36, 37].

• Test afferent pathways (by evoked potentials)
[38, 39].

• Monitor cognitive engagement (alpha and
gamma rhythm) [40, 41].

• Produce biofeedback situations, alpha, etc.
[42, 43].

• Monitor and potentially manage anesthesia
depth (e.g., the bispectral index for certain
anesthetic agents such as propofol) [44, 45].

• Monitor human and animal brain development
[46].

• Test drugs for antiepileptic seizure effects [47].
• Monitor the neonatal electroencephalogram

(EEG) [48, 49].
• Monitor psychophysiological variables [50].

Thus, EEG signal is both complex and non-
stationary (varying with time) and rich with in-
formation. It is clearly seen as useful in terms of
interpreting brain states and disease conditions.
Therefore, signal analysis methods are needed to
interpret the rhythms, and they are deployed in
the instrumentation used in the laboratory and the
clinic. Signal analysis refers to digitizing the EEG
signal and then using computational and math-
ematical tools to analyze and interpret the EEG
signals. Broadly speaking, EEG analysis methods
can be divided into two signal categories: time-
domain methods and frequency or spectral meth-
ods. Time-domain measurements include mea-
surements of the raw signal characteristics. Fre-
quency or spectral domain methods are a broad
range of methods that decompose the EEG sig-
nals into their basis set, commonly spectral or
wavelet methods, and then study the components
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Fig. 3.6 The μ-rhythm suppression during motor im-
agery over two sensorimotor regions. This figure illus-
trates the mean power spectrum (±standard error across
subjects) in the μ-band (8–12 Hz) over two groups of
electrodes with locations over sensorimotor regions in the
left (yellow) and the right (purple) hemisphere during left

(on the left) and right (on the right) hand motor imagery.
Power changes in the contralateral cluster with respect to
the imaged hand show a clear μ-rhythm suppression or
stronger in the high-aptitude (upper plots) as compared
to the low-aptitude (lower plots) group. (Reproduced with
permission from [34])

of the signals. Lastly, joint-time frequency meth-
ods, which also include wavelet methods, have
also found considerable utility in EEG analysis
[51, 52].

3.2 Time-Domain
Representation andMethods

The most prevalent time-domain method is sim-
ply the visual inspection. Amplitude distribution
looks at the distribution of the EEG amplitude and

its respective mean, variance, and higher-order
moments [53]. It is typically used to detect and
decipher sleep states. Period or interval analysis
counts the number of incidences where the EEG
crosses the zero voltage line [54, 55]. This tech-
nique is extremely sensitive and nonspecific [56].
Despite its limitations, it is routinely used in in-
traoperative and depth of anesthesia monitoring.
Traces of some waveforms commonly seen in the
EEG are shown below in Fig. 3.7. One method of
depth of anesthesia monitoring uses the detrended
fluctuation analysis [58]. Detrended fluctuation
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Fig. 3.7 Typical EEG
waveforms from humans
during the progressive
steps in anesthesia. Awake,
sedated, fully anesthetized,
and burst suppression
EEG. (Reproduced with
permission from [57])

analysis (DFA) is a measure of variability in
a signal. It looks at the average variance of a
detrended time series within different sized time
apertures [59]. It is a wholly temporal feature that
looks at variability of a time series with linear
trend removal. The variability of the time series is
measured as a function of window size [59]. For
each of the different waveforms shown below, we
see a different DFA parameter. The bispectrum is
another method for discerning anesthesia depth
[45].

Modified versions like the period-amplitude
model are also employed for sleep and surgery
[54, 55]. Segmentation analysis divides the EEG
into quasi-stationary segments. The segments can
be of varying length. The analysis is useful for re-
ducing long EEG recordings into smaller data sets
that can be thoroughly analyzed. There are several
methods that are used to directly parameterize the
EEG signal in the time domain. These include
slope, amplitude, and second derivative measure-
ments. Other measures include moments such as
mean, variance, kurtosis, and skewness, calcu-
lated from the signal in the time domain itself.
Time-domain techniques are usually much faster,
i.e., responsive to instantaneous signal analysis,
than frequency domain techniques. Another set of
time-domainmeasures that has been used for over
a quarter century is the Hjorth descriptors [51,
52]. These methods are discussed in the section
on seizure detection methods. These are quick
assessments of immediately accessible parame-
ters that are available in the raw signal. Time-

domain analysis is often used for detecting epilep-
tic spikes, seizures, bursting, and burst suppres-
sion, which are all complex features of EEG sig-
nals indicative of abnormal brain injury or disease
states.

3.2.1 The Teager-Kaiser Energy
Algorithm: Theory

The Teager energy operator (TEO) is a versatile
tool for measuring instantaneous changes in sinu-
soidal energy [60, 61]. Based on the dynamics of
an oscillating system, it accurately tracks changes
in frequency-dependent energy. Further modifi-
cations of this algorithm allow for the detection
of modulations of this sinusoidal signal [60, 62]
such as the formant frequencies of speech. The
TEO belongs to a class of generalized energy op-
erators possessing optimal time-frequency prop-
erties with low distortion as seen by [62, 63].
Energy operators are the output of the second-
order Volterra operations.

The TEO [61] is actually a Volterra filter [64]
or

Ψ (n) = x2(n)− x (n− j) x (n+ j) ≈ A2ω2

(3.1)

where A and ∗ are the amplitude and radian fre-
quency of an input sinusoid in a pure noise, w(n).
In [60], a class of quadratic detectors is defined
as
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Qkm (x(n)) ≡ x(n)x (n+ k)

− x (n−m) x (n+ k +m)

(3.2)

Energy operators isolate a slowly varying
baseband signal proportional to the amplitude
and frequency of the input signal squared. The
TEO represents the energy of the signal within
a typical frequency band [60]. If x(n) consists
of two components such as a signal, s(t), and
noise, w(n), then the standard TEO output has
cross-terms according to [61]

Ψ (s(n)+w(n))=Ψ (s(n))+Ψ (w(n))

−
[
s (n+1) w (n−1)−2s(n)w(n)

+s (n−1)w (n+1)
]

(3.3)

We assume that the input noise is second order
white or uncorrelated so that its autocorrelation is

Rww(k) = E {w(n)w (n+ k)} = 0, for k 	= 0
(3.4)

Accordingly, for zero mean signal and noise
input signals, the expected value of the TEO is
simply

E {Ψ (s(n)+ w(n))} = ω2A2 + σ 2 (3.5)

One application example of the time-domain
method considered here is burst suppression
(BS) detection. Other time-domain methods are
Hjorth descriptors and the slope detector methods
deployed for seizure detection. Alternating
patterns of bursts and suppression in the EEG
are clinically known as burst suppression or
BS. The history of BS began with Derbyshire’s
observations during his anesthetized cat
experiments [65]. Chatrian first described BS
as a “pattern characterized by theta and/or delta
waves, at times intermixed with faster waves, and
intervening periods of relative quiescence” [66].
Niedermeyer revised this definition to include
single spikes, grouped spikes, and poly-spikes
mixed with delta and theta activity [66]. BS in

humans usually ranges in duration from 100 to
1000msecs, but bursts of shorter or greater length
are also commonplace. They typically range in
voltage from 100 to 1000 μV. BS range from
benign—induced by anesthetics or sedatives—to
severe life-threatening anoxic BS. BS patterns
are the rule with deep levels of anesthesia
stemming from use of ether, barbiturates, or other
anesthetics [35]. BS may also result from global
ischemic brain injury, where they may occur
following anoxic state and subsequent recovery
[67]. Energy operators such as the TEO have
been utilized for burst suppression detection [68,
69].

3.3 Frequency DomainMethods

3.3.1 Nonparametric Spectral
Methods

Spectral Analysis Spectral analysis method is
by far the most prominent form of EEG analysis
method [70]. Contemporary spectral analysis is
the classic and most used nonparametric method.
It takes the EEG and converts it into a power spec-
trum. The power spectrum includes the subdivid-
ing of the waveform into delta, theta, alpha, and
beta bands. The next section covers this topic in
greater depth. Power at these different bands can
correlate with normal bodily function. The power
spectrum is most commonly denoted indirectly as
the Fourier transform of the autocorrelation func-
tion. The power spectrum expression becomes

Pxx(f ) =
T∫

0

rxx (τ ) exp (−j2πf τ) dτ (3.6)

where rxx (τ ) =
T∫

0
x (τ + t) x (τ ) dt is the defini-

tion of the autocorrelation function. The discrete
form of the autocorrelation function is defined as

rxx(n) =
N∑

i=1

x (τ) x (τ + t) (3.7)
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The direct method involves taking the FFT
without an intervening step of first calculating the
autocorrelation. It is directly related to the fact
that the sum of themean square value of the signal
is equivalent to its energy or

E =
∞∫

−∞
|x(t)|2dt

By an extension of Parseval’s theorem, it is
known that

∞∫

−∞
|x(t)|2dt =

∞∫

−∞
|X(f )|2df (3.8)

So, the energy density over frequency is equiv-
alent to |X(f )|2. This is referred to as the energy
spectral density or power spectral density. The
power spectrum is calculated as the magnitude
squared of the Fourier transform or

Pxx(f ) = |X(f )|2 (3.9)

This is the standard periodogram estimator.
Written out in standard format, it is written as

PPer(f ) = 1

N

∣∣∣∣∣

N∑

n=0

x(n) exp (−j2πf n)
∣∣∣∣∣

2

(3.10)

There are several methods to do smoothing
in the frequency domain to curb large variabil-
ity through averaging and windowing methods
[71].

3.3.2 Parametric (Modeling)
Methods

Parametric analysis tries to describe the EEG
based on some parameters derived from the data
itself, or model of a biophysical process (like
alpha rhythms, delta waves, etc.). The drawback
of most nonparametric methods is that it requires
a large data set. Parametric methods build on a set
of standard values and are adapted with a much
smaller data set. Below are some examples of

parametric methods that have been developed to
analyze EEG signals.

The autoregression (AR) model will be cov-
ered in great depth in the next section. It uses past
values of a data set and their respective weighting
factors to predict future values. It is advantageous
since it allows higher resolution, variable fre-
quency settings, and a variable bandwidth. The
autoregressive moving average (ARMA) model
is a generalized form of the AR model. It offers
a more efficient and quicker way of representing
the power spectrum of a particular EEG seg-
ment. Other parametric models include inverse
AR filtering, which attempts to inverse filter a
signal to obtain the generating white noise or
residues. This is useful for detecting transient
non-stationarities present in epileptiform EEG.

The AR model is appropriate for characteriz-
ing short EEG signal segments. The AR model
yields a modified spectrum, which can then be
used to identify its characteristic spectral peaks
(see Fig. 3.8). Dominant frequency analysis is
based on mathematical framework of autoregres-
sive (AR) modeling [71]. Using a fairly stable
EEG time series and the correct model order,
dominant frequency analysis allows a spectral
breakdown of the EEG from the data itself. From
the peaks of the AR spectra, dominant frequen-
cies, or the frequencies in which the power in
EEG signal is concentrated, are identified. AR
analysis has several advantages. It has higher
resolution than the fast Fourier transform (FFT),
variable frequency settings, and variable band-
width capabilities. Unlikemethods employing the
fast Fourier transform (FFT), such as the peri-
odogram, AR methods are strictly parsimonious
and compact, requiring as few variables as nec-
essary for adequately representing a spectrum.
In Fig. 3.8, a comparison of the AR and FFT-
based spectra is shown. Clearly, the AR spectrum
is visibly free of any artifact caused by spurious
peaks in the FFT method [72].

Mathematical Formulation of AR Modeling
Mathematically, an autoregressive or AR model
represents the time series x(n) as the weighted
sum of previous values of itself, offset by an error
in the prediction factor, w(n):
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Fig. 3.8 Comparative contours of (a) a periodogram us-
ing the FFT-based power spectrum and (b) the autore-
gressive (AR) spectrum of the same data. Data was EEG

seizure data from a neonatal EEG database. The contour
of the AR spectrum is a lot smoother than the periodogram

x(n) = w(n)− a(1)x (n− 1)

− a(2)x (n− 2) · · · − a(p)x (n− p)

The weights are given by the AR parameters
a(i), i = 1 . . . p, where p represents the model
order. Thus, AR equation can be broken into two
parts, one that is the estimated value:

x̂(n) = −a(1)x (n− 1)

− a(2)x (n− 2) · · · − a(p)x (p − 2)
(3.11)

and the other which is the error in prediction,
which is obtained when the actual and estimated
value are subtracted:

w(n) = x(n)− x̂(n)

When appropriate model orders and parame-
ters are chosen, w(n) reduces to zero mean white
noise.

Obtaining the AR Parameters Several algo-
rithms have been developed to generate the AR
parameters for a given data sequence and model
order. One method uses the Burg algorithm [73].
It is one of the earliest and the best-known AR
algorithms. The method is based on the Levin-
son recursive solution to Yule-Walker equations
which relates the order p parameters to the order
(p-1) parameters:

ap(n) = ap−1(n)+Kpa
∗
p−1 (p − n) (3.12)

In the above equation, ap(n) are the parameters
for model order p, and ap-1(n) are the parameters
for order p-1. Kp is the reflection coefficient for
order p found by minimizing the arithmetic mean
of the forward and backward linear prediction
error power [71]. A more detailed explanation
and derivation of these equations can be found in
[74].

Obtaining the Power Spectrum and Dominant
Frequency Peaks Once the AR parameters are
obtained, they can be used to create a power
spectrum of the stationary time series. The z-
transform of the original AR equation yields

X(z) = W(z)

1+a(1)z−1+a(2)z−2 + · · · + a(p)z−p

Here, X(z) and W(z) are the z-transforms of
x(n) and w(n). The power spectrum is given by

P(z)=
∣∣∣∣

W(z)

1+a(1)z−1+a(2)z−2+. . . .+a(p)z−p

∣∣∣∣
2

(3.13)

The poles of X(z) are given by the roots of the
denominator of the X(z):

zp + a(1)zp−1 . . . a(p)
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Evaluation of the above expression at the unit
circle (z = exp(jω)) results in the following:

exp (pjω)+ a(1) exp ((p − 1) jω) . . . a(p)

Factoring of the above result yields

(exp (jω)−P1) · (exp (jω)−P2)

. . . . . . (exp (jω)−P3)
(3.14)

Here, the Pi’s are the poles of X(z). Thus, the
values ω (real) for which exp(jω) matches the
phase of Pi represent the real pole of X(z). This
frequency ω is where the dominant frequency of
this particular data set exists:

ωdominant = 	 of roots

And the analog frequencies of the spectral
roots are given by

Fdominant = Fsampling

2π
	 of roots

Once the dominant frequencies are obtained,
the powers at these frequencies need to be tab-
ulated. There are a number of solutions to this
issue. One way is to integrate the power spectrum
between desired frequencies [75].

Power (fk) = 2 · Re [PAR(z) |ARroots ]
PAR(z) = X(z) ·X∗ (1/z∗)

(3.15)

3.3.2.1 Diagnostic Power
of the Autoregressive Method
Is Used as a Dominant
FrequencyMethod to Calculate
Normalized Separation

For our experimental work, we used the AR
power spectrum to develop a new index of EEG
recovery—the normalized separation (NS) [76,
77]. This examines the separation in the power in
different bands that are normalized by baseline
band power. In our conception of normalized
separation, one minute’s worth of baseline data is
averaged to establish baseline power levels: Pbl,
Pbm, and Pbh, where bl, bm, and bh are subscripts

referring to baseline low, baseline medium, and
baseline high band powers, respectively. During
the experiment, AR transformed EEG data is
averaged at subsequent one-minute intervals.
These power levels are then normalized relative
to their baseline levels to produce three power
band measurements as:

Pnlf = Pl/Pbl

Pnmf = Pm/Pbm

Pnhf = Ph/Pbh

(3.16a-b-c)

Now, the information can be reduced to one
quantitative number, the normalized separation
[78]. This study showed that the hypoxic–
ischemic (HI) injury causes a dispersion
or redistribution of power in the dominant
frequencies. NS monitors the rate of recovery
for each band with respect to baseline. A high NS
represents a disproportionate recovery of power,
and vice versa. A high NS implies a poor recovery
of the electrical function.

NS = |Plf − Pmf| + |Pmf − Phf| + |Plf − Phf|
Plf + Pmf + Phf

(3.17)

3.3.3 Parametric Methods of Signal
Processing: TheMUSIC
Algorithm

MUSIC (MUltiple SIgnal Classification) is a very
popular spectral analysis technique that requires
the estimation of the autocorrelation matrix of a
random process assumed to be composed of a
known number of complex sinusoidal signals im-
mersed in white noise [79]. The key to improved
performance of these methods is the division of
information in the autocorrelation matrix into two
vector subspaces, the signal subspace and the
orthogonal (or noise) subspace. They also provide
high-resolution estimates of the sinusoidal fre-
quencies in conventional spectral estimation. The
dimensionality of the signal subspace is deter-
mined by the number of assumed complex sinu-
soids immersed in the noise sequence in question.
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Eigenanalysis allows for removal of extraneous
noise contributions for a much higher signal to
noise ratio in the ultimate calculation of the fre-
quencies of the embedded sinusoids. A compari-
son of the seizure EEG to background in these

R(K) = 1/2
M∑

i=1

cos (μikT )+ ρiδ(k) (3.18)

where ρ i is the noise variance and δ(k)is the
Kronecker delta. The (p + 1) × (p + 1) autocor-
relation matrix where p > 2M can subsequently
be expressed as the sum of corresponding signal
and noise autocorrelation matrices:

Rp = Sp + Wp (3.19)

The signal matrix can be written in terms of
a sum of rank one outer products. The outer
products are of the form

Sp =
M∑

i=1

Pi

2

[
si ⊗ sHi + si ∗ ⊗sTi

]
(3.20)

where si = [1 exp (−jωi) exp (−j2ωi) . . .
exp (−jpωi)]T is the sinusoidal signal vector for
frequency ωi. The signal matrix has a complete
Vandermonde structure.

Likewise, the noise matrix Wp = ρI, where
ρ is the added white noise. Here, SP and Wpare
the signal and noise autocorrelation matrices, re-
spectively. The signal matrix will have the eigen-
decomposition

SP =
p+1∑

i=1

λi
[
vi ⊗ vHi

]
(3.21)

where λ denotes the ith eigenvalue and vi, the re-
spective eigenvector and λ1 ≤ λ2 ≤ λ2 ≤ . . . λ2M .
It is clear that for (p+ 1) eigenvalues of the signal
matrix, SP , there areM nonzero eigenvalues. The
correspondingM eigenvectors known as the prin-
cipal eigenvectors will span the same subspace as
theM real sinusoids comprising the signal portion
of the time series. It can be shown that the signal

matrix will have exactly 2M nonzero eigenvalues.
The eigenvalue/eigenvector decomposition of the
autocorrelation matrix, Rp, is

RP =
p∑

i=1

λi
[
vi ⊗ vHi

]+ ρw

2M∑

i=p+1

[
vi ⊗ vHi

]

(3.22)

The remaining p + 1–2 M eigenvectors of
the signal matrix span the noise subspace. The
spectral estimator makes use of the orthogonal-
ity between both subspaces. The noise subspace
eigenvectors will be orthogonal to any vectors
spanning the signal subspace, e.g., the sine waves
comprising the signal. This property is exploited
by the noise subspace estimator known as the
MUSIC algorithm. The frequency estimator is

P(f ) = 1

sH (ω)Nvs (ω)
(3.23)

where s(ω) = [1 exp (−jω) exp (−j2ω) . . .
exp (−jpω)]T and the matrix of p + 1-2M eigen-
vector is

Nv =
2M∑

i=p+1

vi ⊗ vHi (3.24)

There have been several MUSIC applications
for the EEG. These have been mainly used in
the area of source localization and electric field
specification in the brain [80, 81].

3.3.4 Wavelets

3.3.4.1 TheWavelet Transform:
Variable Time and Frequency
Resolution. The Continuous
Wavelet Transform (CWT)

A decomposition of a signal based on a wider
frequency mapping and consequently better time
resolution is possible with the wavelet transform.
The continuous wavelet transform (CWT) [82] is
defined thusly for a continuous signal, x(t),
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CWTx (τ, a) = 1√
a

∫
x(at)g∗

(
t − τ

a

)
dt

(3.25)

or with a change of variable as

CWTx (τ, a) = √
a

∫
x(at)g∗

(
t − τ

a

)
dt

(3.26)

where g(t) is the mother or basic wavelet, ∗ de-
notes complex conjugate, a is scale factor, and
τ is a time shift. Typically, g(t) is a bandpass
function centered around some center frequency,
fo. Scale a allows the compression or expansion of
g(t) [83]. A larger-scale factor generates the same
function compressed in time, whereas a smaller-
scale factor generates the opposite. When the an-
alyzing signal is contracted n times, similar signal
features or changes that occur over a smaller
time window can be studied. For the wavelet
transform, the same basic wavelet is employed
with only alterations in this signal arising from
scale changes. Likewise, a smaller-scale function
enables larger time translations or delays in the
basic signal.

The notion of scale is a critical feature of the
wavelet transform because of time and frequency
domain reciprocity. When the scale factor, a, is
enlarged, the effect on frequency is compression
as the analysis window in the frequency domain
is contracted by the amount 1/a [84]. This equal
and opposite frequency domain scaling effect can
be put to advantageous use for frequency localiza-
tion. Since we are using bandpass filter functions,
a center frequency change at a given scale yields
wider or narrow frequency response changes de-
pending on size of the center frequency. This is
the same in analog or digital filtering theory as
“constant-Q or quality” factor analysis [85–87].
At a given Q or scale factor, frequency translates
are accompanied by proportional bandwidth or
resolution changes. In this regard, wavelet trans-
forms are often written with the scale factor ren-
dered as

a = f

f0

or

CWTx

(
τ, a= f

fo

)
= 1√

f/f o

∫
x(t)g ∗

(
t−τ
f/fo

)
dt

(3.27)

This is the equivalent to logarithmic scaling
of the filter bandwidth or octave scaling of filter
bandwidth for power-of-two growth in center fre-
quencies. Larger center frequency entails a larger
bandwidth, and vice versa.

The complex-valued Morlet wavelet is often
selected as the choice for signal analysis using the
CWT. The Morlet wavelet [82] is defined as

g(t) = ej2πfot e− t2

2 (3.28)

with its scaled version written as

g

(
t

a

)
= ej

2πfo
a
t e

− t2

2a2 (3.29)

The Morlet wavelet insures that the time-scale
representation can be viewed as a time-frequency
one as in (30). This wavelet has the best repre-
sentation in both time and frequency because it
is based on the Gaussian window. The Gaussian
function guarantees a minimum time-bandwidth
product, providing for maximum concentration in
both time and frequency domains [87]. This is the
best compromise for a simultaneous localization
in both time and frequency as the Gaussian func-
tion’s Fourier transform is simply a scaled version
of its time-domain function.

The example of the scaled versions of theMor-
let wavelet is shown in Fig. 3.9a. The effect of the
scaling factor, a, is illustrated in the time domain
by the changes in width and scale in upper Fig.
3.9a. A smaller scale factor such as 0.25 or 0.5
results in a wavelet with smaller width in the time
domain with more concentrated energy in the
center of the wavelet. In turn, the accompanying
frequency domain content is wider and at higher
frequencies for this smaller wavelet scale factor.
The large wavelet scale factor results reciprocally
in a shorter frequency extent with a wider time
span.
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Fig. 3.9 (a) A mother wavelet (a = 1) with one dilation
(a = 2) and two contractions (a = 0.25 and 0.5). Note the
amplitude changes that keep the area under the wavelet

constant. The figure below (b) shows the respective time
(duration) and frequency ranges covered for the different
dilation factors. (Reproduced with permission from [84])

Also the Morlet wavelet is defined by an ex-
plicit function and leads to a quasi-continuous
discrete version [86]. A modified version of the
Morlet wavelet leads to fixed center frequency, fo,
with width parameter, σ ,

g (σ, t) = ej2πfot e
− t2

2σ2 (3.30)

Once again time-frequency (T-F) reciprocity
determines the degree of resolution available in
time and frequency domains. Choosing a small
window size σ in the time domain yields poor fre-
quency resolution while offering excellent time
resolution, and vice versa. To satisfy the require-
ment for admissibility and G(0)= 0, a correction
term must be added. For ω > 5, this correc-
tion term becomes negligibly small and can be
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omitted. The requirements for the wavelet to be
analytic and of zero mean is best satisfied for
ω0 = 5.3 [82].

Should the CWT cover a wide frequency
range, a computational problem would arise.
For example, if we wish to display the CWT
over ten octaves (a change by one octave
corresponds to changing the frequency by a
factor of 2), the computational complexity (size
of the summation) increases by a factor of
210 = 1024. The algorithm by Holschneider et al.
[88] [89] solves this problem for certain classes
of wavelets by replacing the need to resample
the wavelet with a recursive application of an
interpolating filter. Since scale is a multiplicative
rather than an additive parameter, another way
of reducing computational complexity would be
by introducing levels between octaves (voices).
Voices are defined to be the scale levels between
successive octaves, uniformly distributed in a
multiplicative sense [90, 91]. Thus, the ratio
between two successive voices is constant. For
example, if one wishes to have ten voices per
octave, then the ratio between successive voices
is 21/10. The distance between two levels ten
voices apart is an octave.

The CWT can also be implemented in fre-
quency domain. Eq. (3.25) may be formulated in
the frequency domain as

CWT (τ, a) = √
a

∫
S (ω) G ∗ (aω) ejτω dω

(3.31)

where S(ω) and G(ω) denote the Fourier trans-
formed s(t) and g(t), and j = (−1)1/2. The ana-
lyzing wavelet g(t) has generally the following
Fourier transform:

Gτ,a (ω) = √
a G (aω) ejωτ (3.32a)

The Morlet wavelet (3.29 and 3.30) in fre-
quency domain is a Gaussian function:

Gm (ω) = 1√
2ω

e−(ω−ω0)
2/2 (3.32b)

From (30.33), it can be seen that for low fre-
quencies ω (larger scales a), the width �ω of the
Gaussian is smaller and vice versa. In fact, the
ratio �ω/ω is constant [92], i.e., Morlet wavelets
may be considered filter banks of constant Q-
factor. Figure 3.9a and b shows the principle of
scaling with associated dilation and contraction
in the time domain and their concomitant effects
in the frequency domain.

Based on Eqs. (30.32 and 30.34a,b), the
wavelet transform can be implemented in the
frequency domain. At each scale, the Fourier
image of the signal can be computed as

Y (ω, a) = S (ω) • Gm (ω, a) (3.33)

with S(ω) being the Fourier transform of the
signal, Gm(ω, a) being the scaled Fourier image
of the Morlet wavelet at scale a, and • standing
for element-by-element multiplication (window-
ing in frequency domain). The signal at each
scale, a, will finally be obtained by applying the
inverse Fourier transform:

CWT (τ, a) = {FFT }−1Y (ω, a) (3.34)

This approach has the advantage of avoiding
computationally intensive convolution of time-
domain signals by using multiplication in the fre-
quency domain, as well as the need of resampling
the mother wavelet in time domain [93, 94].

Note that the CWT is in the general case of
a complex-valued transformation. In addition to
its magnitude, its phase often contains valuable
information pertinent to the signal being ana-
lyzed, particularly in instants of transients [84].
Sometimes, the T-F distribution of the nonstation-
ary signal is much more important. This may be
obtained by means of real-valued wavelets. Alter-
natives to the complex-valued Morlet wavelet are
simpler, real-valued wavelets that may be utilized
for the purpose of the CWT. For example, the
early Morlet wavelet, as used for seismic signal
analysis [95], had the following form:

g(t) = cos(5t)e−t2/2 (3.35)



114 D. L. Sherman and N. V. Thakor

It is represented by a few cycles of a sine
wave tapered by a Gaussian envelope. Though
computationally attractive, this idea contradicts
the requirement for an analytic wavelet, i.e., its
Fourier transform G(ω) = 0 for ω < 0. An ana-
lytic function is generally complex valued in time
domain and has its real and imaginary parts as
Hilbert transforms of each other [95, 96]. This
guarantees only positive-frequency components
of the analyzing signal.

The short-time Fourier transform (STFT) has
the same time-frequency resolution regardless of
frequency translations. The STFT can be written
as

STFT (τ, f )=
∞∫

−∞
x(t)g ∗ (t−τ) e−2πjf tdt

(3.36)

where g(t) is the time window that selects the
time interval for analysis or otherwise known
as the spectrum localized in time. The STFT is
often thought to be analogous to a bank of band-
pass filters each shifted by a certain modulation
frequency, fo. In fact the Fourier transform of a
signal can be interpreted as passing the signal
through a multiple bandpass filters with impulse
response, g(t)ej2π ft, and then using complex de-
modulation to downshift the filter output. Ulti-
mately, the STFT as a bandpass filter rendition
simply translates the same low pass filter function
through the operation of modulation. The char-
acteristics of the filter stay the same though the
frequency is shifted.

Unlike the STFT, the wavelet transform imple-
mentation is not frequency independent so that
higher frequencies are studied with analysis fil-
ters with wider bandwidth. Scale changes are not
equivalent to varying modulation frequencies that
the STFT uses. The dilations and contractions of
the basis function allow for variation of time and
frequency resolution instead of uniform resolu-
tion of the Fourier transform.

Both the wavelet and Fourier transform are
linear time-frequency representations (TFRs) for
which the rules of superposition or linearity apply
[97]. This is advantageous in cases of two or more

separate signal constituents. Linearity means that
cross-terms are not generated in applying either
the linear T-F or time-scale operations. Aside
from linear TFRs, there are quadratic T-F rep-
resentations which are quite useful in display-
ing energy and correlation domain information.
These techniques, also described elsewhere in
this volume, include the Wigner-Ville distribu-
tion (WVD), smoothed WVD, the reduced infer-
ence distribution (RID), etc. One example of the
smoothed Wigner-Ville distribution is

W (t, f ) =
∫
s ∗
(
t − 1

2
τ

)
e−jτ2πf

× s

(
∗t + 1

2
τ

)
h
(τ
2

)
dτ

(3.37)

where h(t) is a smoothing function. In this case,
the smoothing kernel for the generalized or Co-
hen’s class of TFRs is

φ (t, τ ) = h
(τ
2

)
δ(t) (3.38)

These methods display joint T-F information
in such a fashion as to display rapid changes
of energy over the entire frequency spectrum.
They are not subject to variations due to window
selection as in case of the STFT. A problematic
area for these cases is the elimination of those
cross-terms that are the result of the embedded
correlation.

It is to be noted that the scalogram or scaled
energy representation for wavelets can be repre-
sented as a Wigner-Ville distribution as [87]

|CWTx (τ, a)|2 =
∫∫

Wx (u, n)Wg

∗
(
u− t

a
, an

)
dudn

(3.39a)

where

Wx (t, f )=
∫
x ∗
(
t−1

2
τ

)
e−jτ2πf x

(
∗t+1

2
τ

)
dτ

(3.39b)
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3.3.4.2 The DiscreteWavelet Transform
In the discrete TFRs, both time and scale changes
are discrete. Scaling for the discrete wavelet
transform involves sampling rate changes. A
larger scale corresponds to subsampling the
signal. For a given number of samples, a larger
time swath is covered for a larger scale. This is
the basis of signal compression schemes as well
[98]. Typically, a dyadic or binary scaling system
is employed so that given a discrete wavelet
function ψ(x) is scaled by values that are binary.
Thus,

ψ2j (t) = 2jψ
(
2j t
)

(3.40)

where j is the scaling index and j = 0, 1, 2,
3 . . . . In a dyadic scheme, subsampling is always
decimation in time by a power of 2. Translations
in time will be proportionally larger as well as for
a more sizable scale.

It is for discrete time signals that scale and res-
olution are related. When the scale is increased,
resolution is lowered. Resolution is strongly re-
lated to frequency. Subsampling means lowered
frequency content. Rioul and Vetterli [87] use the
microscope analogy to point out that smaller scale
(higher resolution) helps us to explore fine details
of a signal. This higher resolution is apparent with
samples taken at smaller time intervals.

Following the definition in (26–27), the dis-
crete implementation of the CWT in time domain
is a set of bandpass filters with complex-valued
coefficients, derived by dilating the basic wavelet
by the scale factor a for each analyzing frequency.
The discrete form of the filters for each a is the
convolution:

S (k, a)= 1√
a

k+ n
2∑

i=k− n
2

s(i) gm ∗
(
i − k

a

)

= 1√
a

n
2∑

i=− n
2

s (k − i) gm ∗
(
i

a

)

(3.41)

with k = τ / Ts, where Ts is the sampling interval.
The summation is over a number of terms n.

Because of the scaling factor a in the denominator
of the argument of the wavelet, the wavelet had to
be resampled at a sampling interval Ts/a for each
scale a.

3.3.4.3 Application of Wavelets
and Entropy: The Definition
of IQ—Information Quantity

From the perspective of the information theory,
the amount of information contained in a signal
can be physically quantified by calculating the
entropy [99]. The classical Shannon entropy is
defined mathematically as

SE = −
M∑

m=1

p(m)log2p(m) (3.42)

where p(m) is the probability of finding the
system in the mth microstate with 0 ≤ p(m) ≤ 1

and
M∑
m=1

p(m) = 1. To analyze nonstationary

signals, the temporal evolution of SE must
be determined. To do so, an alternative time-
dependent SE measure based on a sliding tem-
poral window technique is applied [100]. Letting
{s(i) : i = 1, . . . ,N} denote the raw sampled sig-
nal, we define a sliding temporal window as the
setW(n;w;�) = {s(i), i= 1 + n�, . . . ,w+ n�}
of length w ≤ N. Here, � ≤ w is the sliding step,
and n = 0, 1, . . . , [n/�] − w + 1, where [x]
denotes the integer part of x.

By dividing signals into the predictable part
and the uncertain parts using wavelet transform
(WT), the measure calculates the entropy from
the uncertain parts. The measure is called
information quantity (IQ) [101]. Through the use
of wavelet and subband entropy, we pinpoint and
localize events in a time-frequency entropy space,
which offer temporary diversions from general
entropic trends. To calculate the probability,
pn(m) within each window W(n;w;�), we
introduce intervals such that

W (n;w;Δ) = M∪
m=1

Im (3.43)

Then, the probability pn(m) that the sampled
signal belongs to the interval Im is the ratio be-
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tween the number of the signals found within
interval Im and the total number of signals in
W(n;w;�). Using pn(m), SE(n) is defined as

SE(n) = −
M∑

m=1

pn(m)log2pn(m) (3.44)

Based on the above arguments, we can define
the information quantity (IQ). First, the DWT
coefficients within each window are obtained as

WC (r; n;w;Δ) = DWT [W (n;w;Δ)] (3.45)

To calculate pnwc(m) within each transformed
window WC(r; n;w;�), we define intervals Imwc

in W(n;w;�) such that

WC (r; n;w;Δ) = M∪
m=1

Im
wc (3.46)

As withpn(m) in SE, the probability pnwc(m),
within each window WC(r; n;w;�), is calcu-
lated. Finally, IQ is defined as

IQ(n) = −
M∑

m=1

pn
wc(m)log2pn

wc(m) (3.47)

Thus, we can explore the IQ evolution of the
whole raw EEG signal, {s(i) : i= 1, . . . ,N}. This
is done in the next section along with exploring
ways of improving outcome after cardiac arrest.

3.4 An Application of EEG:
Detecting Brain Injury After
Cardiac Arrest

Cardiac arrest (CA) is a major health problem
in both developed and developing countries. In
the United States alone, it claims over 1000 pro-
ductive lives per day [102]. Worldwide there are
over 130 million deaths due to cardiac arrest, and
cardiac arrest remains the major cause of death
in the United States [103]. In the United States
of the initial 5–8% out-of-hospital CA survivors,
approximately 40,000 patients are admitted to an
intensive care unit [104], where 80% remain co-

matose in the immediate post-resuscitative period
[105]. Half of patients survive the hospitaliza-
tion, but less than half of those recover with-
out significant neurologic deficits [104]. Among
survivors, neurological complications represent
the leading cause of disability [106, 107]. Major
advances have been made to improve the care
of these patients. The importance of early defib-
rillation has been clearly established, and high-
risk patients now frequently receive implantable
cardioverter defibrillators (ICDs). Additionally,
the general population has benefited from the in-
creasing public availability of automated external
defibrillators (AEDs). In short, early resuscitation
and defibrillation have increased survival from
cardiac arrest [108].

However, none of the advances in resuscitation
practice have improved neurological functional
outcome. In fact, an increase in the number of
severe neurological injury cases among cardiac
arrest survivors has been noted [109]. Neurologi-
cal injury remains the leading cause of morbidity
and disability among survivors [106, 107, 110–
113]. Thus, it is not surprising that the American
Heart Association noted in its 2000Guidelines for
Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care:

Although the importance of Cardiopulmonary Re-
suscitation (CPR) and Basic Life Support (BLS)
is undisputed, the efficacy of CPR in prolonged
arrest is modest at best. When CPR and defibril-
lation are delayed or when definitive care is not
closely followed, the Chain of Survival is broken.
The cerebral cortex, the tissue most susceptible
to hypoxia, is irreversibly damaged, resulting in
death or severe neurological damage. The need
to preserve cerebral viability must be stressed in
research endeavors and in practical interventions.
The term cardiopulmonary-cerebral resuscitation
has been used to further emphasize this need. [114]

Several large multi-institutional groups have
been assembled to attack the problem of achiev-
ing meaningful survival from cardiac arrest.
These include the NHLBI Post-resuscitative and
initial Utility in Life Saving Efforts (PULSE)
Initiative and the Resuscitation Outcomes
Consortium (ROC) [102, 115] (https://roc.uwctc.
org/tiki/tiki-index.php) supported by the National
Institutes of Health (NIH), National Heart,

https://roc.uwctc.org/tiki/tiki-index.php
https://roc.uwctc.org/tiki/tiki-index.php
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Lung, and Blood Institute (NHLBI), National
Institute of Neurological Disorders and Stroke
(NINDS), and other related agencies. These
efforts underscore the importance of neurological
monitoring in cardiac arrest, enhancing the focus
on improving outcomes, and highlighting the
importance of early interventions.

Recent clinical trials demonstrated that ther-
apeutic hypothermia after CA can improve sur-
vival and functional outcomes compared to nor-
mothermic controls [116–118]. As a result, the In-
ternational Liaison Committee on Resuscitation
made the recommendation to cool unconscious
patients resuscitated from out-of-hospital arrest
with an initial rhythm of ventricular fibrillation
to 32–34 ◦C for 12–24 hours [119]. After adult
cardiac arrest and infant asphyxic episodes, the
loss of EEG and its particular pattern of recov-
ery prove the need for advanced technologies
to furnish information about the outcome of the
subject. With this diagnostic imperative or need
comes the requirement for proving that a partic-
ular technology or signal processing strategy can
capture all of nuances of the EEG signal. There
are a variety of EEG phenomena. Tracing the evo-
lution of the EEG starts with preclinical animal
models. Traditionally, animal experiments pro-
vide the input to the critically important bench-to-
bedside pipeline. Experiments done on the bench
are highly controlled and tightly structured so that
dependent variables are not influenced unduly by
extraneous or external variables. In the following
section, we describe our investigation to exper-
imental and preclinical work with animal mod-
els. Armed with the information gleaned from
the bench and animal experiments, we transition
these efforts to the “real” or clinical world.

3.4.1 Experimental Methods for
Hypoxic-Asphyxic Cardiac
Arrest and the Use
of Normalized Separation

One-week-old piglets were anesthetized with
sodium pentobarbital. The trachea was intubated
and lungs were ventilated to maintain normal
blood gases. After a post-surgery stabilization

period of 2 hours, hypoxia was induced for a
30-minute period by ventilating the animals
with a gas mixture with an FiO2 of 0.1 (10%
oxygen in nitrogen). Hypoxia was followed by
a 5-minute period of room air. The airway was
then occluded for 7 minutes to produce asphyxia.
At 7 minutes of asphyxia, CPR was provided
by reinstitution of ventilation (100% oxygen)
and sternal chest compression performed at a
rate of 100/min with a 50% duty cycle using a
pneumatically driven thumper (Life Aid—Cardio
Pulmonary Resuscitator, Model 1018, Michigan
Instr., Grand Rapids, MI). EEG was monitored
continuously.

To generate the NS index, digitized data
were divided into overlapping segments that
were 3.3 seconds long and had an overlap of
2.55 seconds. Each one-minute record was
preprocessed for noise reduction. First, the
mean of the segment (DC) was subtracted.
Then a second-order polynomial was fitted to
the remainder and consequentially subtracted.
Finally, the data was bandpass filtered with a sixth
order Butterworth filter with cutoff frequencies
of 0.24 and 26 Hz.

This led us to the following question: does an
altered EEG immediately after injury asmeasured
by high neurological deficit score, NS, predict
poor neurological outcome at 24 hours after in-
jury? To answer this question, a standardized
neurological examination was developed to de-
termine neurological outcome. The examination
included assessment of consciousness, brainstem
function, behavior (motoric, orientation, and ac-
tivity), and incidence of seizure. From these mea-
surements, a neurological deficit score (NDS)
was tabulated, which created an index of the
animal’s outcome against which the EEG results
could be compared. The neurodeficit score and its
component subscores are shown in [120].

The NS shows the progression of recovery of
the EEG. We found that NS holds a strong corre-
lation with the neurological deficit score. Figure
3.10 confirms that an animal with a high NS
(greater spectral dispersion) also has a low neu-
rological deficit score (poor neurological func-
tion), and vice versa. We see that in the first
case, all three frequencies recover in parallel;
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Fig. 3.10 (a) Balanced
recovery in the dominant
frequency, NS and
outcome recovery of the
relative power in the three
dominant frequency bands
for two animals. :
1–5.5 Hz, : 9–14 Hz,
and : 18–21 Hz. Left:
A uniform spectral
recovery resulting in a low
NS confirmed by a high
NDS (good outcome). (b)
Spectral recovery for an
animal with a high NS
indicating spectral
dispersion or unequal
recovery of different
frequency bands. The
neurological deficit score
(NDS) of this animal is
low, indicating a bad
outcome. (Reproduced
with permission from [72])
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this constitutes a balanced recovery and a good
overall outcome. In the second case, the recovery
is unbalanced and leads to a poor outcome.

The recovery of EEG power for all the animals
in the two groups of low and high (bad and
good outcome at 24 hours, respectively) NDS-
behavioral subscore groups is shown in Fig. 3.11.
Univariate t-tests place significant epochs at 45,
60, 80, and 220 min (p < 0.01, p < 0.005, p < 0.02,
and p < 0.05, respectively). Therewere significant
differences between the high and the low behav-
ioral subscore groups across all of the epochs
(p < 0.01) and across all subjects (p < 0.0001).
Thus, this study shows a high statistical corre-
lation between the initial quantitative EEG mea-
sure, NS, and the outcome of the animal as de-

termined by the consciousness and behavioral
neurological deficit score (NDS) at a later time
(24 hours). The specific time epochs identified in
Fig. 3.11 suggest that the EEG recovery spectral
measure, NS, could be used to differentiate the
animals into two subgroups, with good and bad
outcomes.

3.4.2 Detecting and Counting
Bursts

Another very significant component of our in-
vestigation was the observation throughout our
experiments that the EEG recovery was punctu-
ated by periods of electrical silence and bursts in
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Fig. 3.11 NS for groups
having low and high
neurological deficit scores
in the behavioral subscore
category. See text for
details on the results from
statistical tests. Results of
univariate tests of
significance are indicated:
∗, p < 0.05; ∗∗, p < 0.02;
∗∗∗, p < 0.005; ∗∗∗∗,
p < 0.0001. (Reproduced
with permission from [72])
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energy, commonly known as burst suppression or
simply bursting [65]. Initial experiments focused
on the prognostic value of this bursting and devel-
opment of a computational burst counting algo-
rithm. This development led to the employment
of the Teager energy operator (TEO), which we
consequent evaluated versus a clinical “gold stan-
dard” and a more conventional energy operator
[61].

After confirming the prognostic value of burst-
ing, our next step was to develop a burst detection
device. A burst is an abrupt change in energy,
which can be detected by a clear, sharp rapid
increase in energy at its beginning. We currently
employ the Teager energy operator (TEO) to de-
tect burst activity in the EEG. The TEO is a low
distortion method of finding energy of signals.
The TEO provides low interference as compared
to traditional methods of finding energy such
as the square law detector (SLD). The Teager
energy operator removes much of second-order
harmonic distortion that the SLD leaves behind
[77, 121, 122].

3.4.3 EEG and Entropy: A Novel
Approach to Brain Injury
Monitoring

Our past efforts have rewarded us with powerful
measures of assessing the EEG during recovery
from cardiac arrest. We realized that what we
need now is a better-all-encompassing vision of
the evolving EEG prior to burst fusion. At this

juncture, we have an underlying, unifying theme
of bursting in the EEG after cardiac arrest and
wish to quantitate the bursting phenomenon as
an indicator of injury and recovery. The vari-
ous measures that we use, such as burst counts,
have a common umbrella or consistent interpre-
tive framework that focuses on the volatility or
how unpredictable the EEG signal is. Each and
every measure that we have been using can be
reinterpreted within the basis of characteristic en-
tropy. In this fashion, both temporal and spectral
indicators have generated a unique tapestry when
understood as instances of altered entropy dis-
plays by the brain after injury and recovery states.
Examining the bursting phenomenon, we can see
that accompanying highly periodic bursting, en-
tropy is lowered. Bursting that occurs at ran-
dom is less certain and entropy increases. Spiky
bursts display widely varying amplitude levels
transitioning rapidly from baseline to the spike’s
peak. In this case, residual entropy is higher.
Bursts that resemble multilevel continuous EEG
display an amplitude diversity that increases en-
tropy formally. Examples of bursting are shown
in Fig. 3.12. All of our spectral and temporal
evidence accumulated thus far points to entropy
as a unifying concept that incorporates all of
the seemingly diverse elements of EEG parox-
ysms under the same umbrella. Large increases
in entropy deviating from monotonous and mori-
bund, immediate post-ictal EEG are evident in
a healthy resumption of normal EEG. Through
the use of wavelet, multiscale, and subband en-
tropy, we will be able to pinpoint and localize
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Fig. 3.12 Recovering
EEG after 5-min asphyxia
causing cardiac arrest in
experimental animals. This
is an example of EEG with
an animal with poor
outcome recovery. Thirty
minutes after CPR and
return of spontaneous
circulation (ROSC), EEG
exhibits asynchronous
bursting in panels a and b.
This is shown with low
amplitude bursting. One
hour later, the animal still
exhibits bursting with
higher amplitude bursts at
90 min after ROSC
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events in a time-frequency entropy space, which
offer temporary diversions from general entropic
trends [101, 123–125].

We have an underlying, unifying framework
for EEG evolution after cardiac arrest that focuses
on the volatility or how unpredictable the EEG
signal is. This unpredictability can be reinter-
preted within the basis of entropy. The approach
to qEEG analysis is based on the hypothesis that
brain injury results in a reduction in the informa-
tion content of the brain rhythm. From the per-
spective of the information theory, the amount of
information can be quantified by calculating the
entropy [99]. As a preliminary study, we used the
information quantity (IQ) measure to study EEG
during the recovery of brain function from CA
[101, 127]. Complex, random, and unpredictable

component of EEG results in a higher level of
statistical uncertainty and as a result higher en-
tropy. On the other hand, bursting that occurs after
postischemic recovery is less random and more
predictable, and entropy increases. Bursts that
resemble multilevel continuous EEG display an
amplitude diversity that increases entropy. Large
increases in entropy deviating from monotonous
and moribund, immediate post-ictal EEG are ev-
ident in a healthy resumption of normal EEG.

Figure 3.13 shows EEG evolution before and
after CA brain injury and quantitative analysis us-
ing IQ as well as several example EEG segments
from different periods several minutes after return
of spontaneous circulation (ROSC).

Figure 3.14 shows the nature of the EEG signal
(insets) and the qEEG trends, as measured by
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Fig. 3.13 (a) EEG segments extracted from the 4-hr con-
tinuous recording of an ischemic insult experiment with 5-
min asphyxia. (b) The qEEG analysis is shown calculating
information quantity (IQ) in terms of entropy. Rats receive
5 and 7 min of CA insult. IQ clearly distinguishes the

relative severity of the CA injury and consequent effects
on EEG. This establishes our model and method for qEEG
analysis to characterize graded levels of injury. (Repro-
duced with permission from [126])

0 50 100 150 50 100

Time (min) Time (min)

Neuroloaic Deficit Score (NDS): 46 Neuroloaic Deficit Score (NDS): 74

17

2

34
IQ IQ

Isoelectric
phase

Fast
increase

Slow
increase

36

0.22

0.067 0.064

0.50
14

5

31
36

In
fo

rm
at

io
n 

 Q
ua

nt
ity

 (
IO

)

Fig. 3.14 IQ comparisons of good (NDS: 74) and poor
(NDS: 46) outcome animals. The small figure inside each
plot is compressed EEG. We quantify IQ evolution from
various perspectives, mainly in three different phases,

namely, isoelectric phase just after cardiac arrest, fast
increase phase, and slow increase phase. (Reproduced
with permission from [126])

the IQ levels, for two subjects: one has a poorer
outcome (NDS of 46), and another has a better
outcome (NDS of 74). What we discovered is
that the recovery patterns are quite distinctive,
with periods of isoelectricity, fast progression,
and slow progression. In addition, in the poor
outcome case, there is a period of spiking and
bursting, while in the good outcome case, there
is a rapid progression to a fused, more continuous
EEG. The entropy-based analysis, and the derived
measure IQ, captures the trends in EEG evolu-
tion after brain injury. Thus, these derived signal
measures can serve as monitoring tools as well
as hold the potential for prognosticating outcome
after brain injury.

3.4.4 Enhancing Recovery
from Cardiac Arrest: The Use
of Orexin

Orexin is a hypothalamic neuropeptide that en-
hances arousal via scattered synapses in thala-
mus, cortex, and ascending brainstem networks.
Orexin deficiency has been shown to be present
after global ischemia, and orexin receptors are
upregulated in ischemic brain [128, 129]. In past
research, intraventricular injection of orexin-A in
rats with anesthetic-induced burst suppression re-
sulted in rapid desynchronization of EEG activity
and interruption of burst suppression [130–132].
Our initial studies using orexin used an intraven-
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Fig. 3.15 Strong IQ measures through 90 min in the
orexin-treated animals. Mean normalized IQ values with
standard deviation bars in orexin-A and control groups
at baseline, during CA, and at serial intervals after return
of spontaneous circulation (ROSC). The y-axis depicts IQ
values normalized to baseline (range 0–1), and the x-axis

depicts time. Using a General Linear Model to analyze
for repeated measures, IQ was significantly higher in the
orexin-A group compared to controls (p = 0.008) during
the first 120 minutes. IQ values subsequently converged in
the two groups. (Reproduced with permission from [133])

tricular injection of orexin to enable enhancement
or in improved recovery focused on checking
the NDS and IQ measurement of the recovering
EEG.

The orexin-treated animals also exhibited a
higher IQ levels as Fig. 3.15 illustrates. Using re-
peatedmeasures ANOVAon baseline-normalized
IQ levels, we find that IQ levels in the treated
group are higher than the controls for the first
2 hours after recovery begins for these animals.
Later, the scores are virtually the same statisti-
cally. The efficacy of using orexin to help boost
recovery in the near term after cardiac arrest is
seen in the animals’ recovery.

We also examined a novel route for orexin
administration. Intranasal dosing would allow for
medical intervention in the unconscious patient
who has had a cardiac arrest and allow for ad-
ministration without the need for interventional
surgery. In the next set of experiments, orexin
was administered through an atomizer in each an-

imal’s nostrils. At 30minutes post-ROSC, the rats
were randomized to receive saline (vehicle), low
(10 μM) ORXA, or high dose (50 μM) of ORXA
intranasally. Each animal received 10 μl × 3 in
each nostril for a 30-second interval (60 μl total).

Noteworthy we can show a statistical improve-
ment in NDS with the high-dose ORXA group.
Fig. 3.15 shows that there was an average increase
in NDS due to ORXA (p≤ 0.025) with high dose
in comparison to both the low-dose and saline
(control) cases.

The primary EEG effect of the ORXA dosing
is the increase in power of the gamma rhythm
(30–50 Hz). We chart the gamma increase after
drug administration in Fig. 3.16. We describe the
increase with the use of the gamma fractionwhich
is the proportion of gamma power in the total
EEG power. After drug administration, the high-
dose ORXA case shows a statistically significant
difference in gamma fraction when compared to
the saline controls.
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Fig. 3.16 A distinct increase in NDS with the high-dose
ORXA group which averages above 55. The EEG gamma
fraction is plotted for the three phases: (a) baseline, (b)
ROSC, and (c) application of the drug. The effect of the
drug is noteworthy as it exceeds averages for the saline

(control) and low-dose ORXA NDS averages. (p≤ 0.025)
as the asterisk and pound sign flags indicate. Furthermore,
as we compare gamma fraction levels, we see that there
is a significant difference after drug administration which
occurs 35 min after ROSC. (Reproduced with permission
from [92])

3.5 Conclusion

EEG signals offer a window into brain’s electrical
activity. Their clinical utilization is facilitated by
the development of a standard for EEG electrodes
and availability of high-quality clinical instru-
mentation. However, the signals have complex
presentation that does not make it easy to read
and interpret the signals. Therefore, signal pro-
cessing methods have been developed to facilitate
their interpretation and analysis in a quantitative
manner. The simplest approach is to analyze and
interpret the signals in time domain, looking for
features such as seizure spikes or bursts and burst
suppression events. The complexity and the non-
stationarity of EEG signals benefit from paramet-
ric and nonparametric modeling methods, partic-
ularly in research. A range of methods, fromwell-
known EEG frequency bands to more advanced
nonparametric methods such as wavelets, and
parametric modeling and entropy or information
analysis methods, are used to analyze and inter-
pret the trends in EEG in many experimental and
clinical situations. Thus, EEG signal analysis and
monitoring has foundwide acceptance in research
and in clinical studies. This chapter illustrated the
application of EEG signal processing methods by
applying these to the recordings from animal and
clinical models of global ischemic brain injury
after cardiac arrest. With the help of the signal

processing methods reviewed here, phenomena
such as bursting and burst suppression, postis-
chemic recovery, and correlation with neurolog-
ical deficits and outcomes were established. The
key goal is to adopt a set of standards for moni-
toring and clinical use of the EEG. The recently
held ASET Workshop on Neurodiagnostics that
was held in 2018 [134] indicates that questions
will continue to be asked about standards of these
EEG automated systems. Slowly the community
is beginning to adopt system-wide criteria for
testing and evaluation dealing with the clinical
application of these systems. The future should
be interesting indeed for automated EEG.

Homework

1. What are the chief uses of the EEG? Di-
vide these into clinical/diagnostic as well as
purely functional or cognitive and behav-
ioral.

2. What are the different bands of the EEG
and what are their primary uses? Why is the
power spectrum such an important tool for
discovering the state of the EEG at any one
time?

3. Why is the EEG so effective for detecting
epileptic seizures in living beings? What is
the primary characteristic of the seizure sig-
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nal that we measure in different anatomically
connected areas of the brain?

4. What are the differences between parametric
(model based, e.g., autoregressive) and non-
parametric (e.g., FFT-based) spectral meth-
ods?

5. What are the chief characteristics of the MU-
SIC method of spectral analysis?

6. Define the normalized separation of the
EEG? What spectral method is used to
calculate it? How is it calculated? What is
the optimum normalized separation?

7. Define IQ or the information quantity? How
does IQ reflect the total entropy in the EEG?
How does IQ magnitude prognosticate out-
come after cardiac arrest in rats?

8. What are uses of the measurement index that
we call wavelets? Is there any advantage that
we glean from using wavelets from indepen-
dent sinusoidal signals?

9. Why is it so important to monitor the brain
after cardiac arrest occurs? Does the EEG
offer any benefits for monitoring the brain
after cardiac arrest?

10. What are primary effects of the stimulant
and neuropeptide, orexin, on the EEG? What
measures have been utilized to categorize the
EEG after orexin treatment?
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Abstract

Brain–computer interfaces (BCIs) have
emerged as a novel technology that bridges
the brain with external devices. BCIs
have been developed to decode human’s
intention, leading to direct brain control of
a computer or device without going through
the neuromuscular pathway. Bidirectional
brain–computer interfaces not only allow
brain control but also open the door for
modulating the central nervous system
through neural interfacing. We review the
concepts, principles, and various building
blocks of BCIs, from signal acquisition,
signal processing, feature extraction, feature
translation, to device control, and various
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applications. The performance assessment
and challenges of BCIs are also discussed.
Examples of noninvasive BCIs are discussed
to aid readers for an in-depth understanding
of the noninvasive BCI technology, although
this chapter is aimed at providing a general
introduction to brain–computer interfaces.
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4.1 Introduction

Brain–computer interfaces are a new technology
that could help to restore useful function to people
severely disabled by a wide variety of devas-
tating neuromuscular disorders and to enhance
functions in healthy individuals. The first demon-
strations of brain–computer interface (BCI) tech-
nology occurred in the 1960s when Grey Wal-
ter used the scalp-recorded electroencephalogram
(EEG) to control a slide projector in 1964 [1] and
when Eberhard Fetz taught monkeys to control
a meter needle (and thereby earn food rewards)
by changing the firing rate of a single cortical
neuron [2]. In the 1970s, Jacques Vidal devel-
oped a system that used the scalp-recorded visual
evoked potential (VEP) to determine the eye gaze
direction (i.e., the visual fixation point) in humans
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and thus to determine the direction in which a
person wanted to move a computer cursor [3,
4]. At that time, Vidal coined the term brain–
computer interface. Since then and into the early
1990s, BCI research studies continued to appear
only every few years. In 1980, Elbert et al. showed
that people could learn to control slow cortical
potentials (SCPs) in scalp-recorded EEG activity
and could use that control to adjust the vertical
position of a rocket image moving across a TV
screen [5]. In 1988, Farwell and Donchin [6] re-
ported that people could use scalp-recorded P300
event-related potentials (ERPs) to spell words on
a computer screen. Wolpaw and his colleagues
trained people to control the amplitude of mu and
beta rhythms (i.e., sensorimotor rhythms) in the
EEG and showed that the subjects could use this
control to move a computer cursor [7].

The pace and breadth of BCI research began
to increase rapidly in the mid-1990s, and this
growth has continued almost exponentially into
the present. The work over the past 20 years has
included a broad range of studies in all the areas
relevant to BCI research and development, in-
cluding basic and applied neuroscience, biomed-
ical engineering, materials science, electrical
engineering, signal processing, machine learning,
computer science, assistive technology, clinical
rehabilitation, and human factors engineering
[8–10].

The central goal of BCI research and devel-
opment is the realization of powerful new assis-
tive communication and control technology for
people severely disabled by neuromuscular disor-
ders such as amyotrophic lateral sclerosis (ALS),
stroke, spinal cord injury, cerebral palsy, mul-
tiple sclerosis, and muscular dystrophies. This
emphasis has been encouraged and strengthened
by increased societal appreciation of the needs
of people with severe disabilities, as well as by
greater realization of their ability to live enjoyable
and productive lives if they can be provided with
effective assistive technology. In addition, in re-
cent years a number of investigators have begun
to explore possibilities for developing BCIs for
the general population. These include systems
for enhancing or supplementing human perfor-
mance in demanding tasks such as image analysis
or continuous attention, as well as systems for

expanding or enhancing media access, computer
gaming, or artistic expression. Furthermore, BCI
technology has recently begun to be explored as
a means to assist in the rehabilitation of people
disabled by stroke and other acute events. This
chapter provides an introduction to the underlying
concepts and principles as well as the applications
of BCIs.

4.2 BCI Definition and Structure

4.2.1 What Is a BCI?

According to present understanding, the role of
the central nervous system (CNS) is to respond
to occurrences in the environment or in the body
by producing appropriate outputs. The natural
outputs of the CNS are either neuromuscular or
hormonal. Correspondingly, the natural inputs
of the CNS are from different sensory organs,
peripheral nerves, internal hormones, etc. A
brain–computer interface (BCI), which could
interact with the CNS bidirectionally, gives the
CNS new output that is not neuromuscular or
hormonal or provides new inputs to the CNS,
which could be direct stimulations to the CNS
by injecting physical energy, such as deep brain
stimulation (DBS), transcranial electrical stimu-
lation (TES), transcranial magnetic stimulation
(TMS), transcranial focused ultrasound (tFUS),
or other forms of brain signal modulation. A
BCI is a system that measures CNS activity and
converts it into artificial output that replaces,
restores, enhances, supplements, or improves
natural CNS output; it can also be considered as
a system to influence CNS activity and behavioral
performance by injecting physical energy such
as TES, TMS, tFUS, or direct brain signal
modulation and thereby changes the ongoing
interactions between the CNS and its external or
internal environment.

To understand this definition, one needs to
understand each of its key terms, starting with
CNS. The CNS is composed of the brain and the
spinal cord and is differentiated from the periph-
eral nervous system (PNS), which is composed of
the peripheral nerves and ganglia and the sensory
receptors. The unique features of CNS structures
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are their location within the meningeal coverings
(i.e., meninges), their distinctive cell types and
histology, and their role in integrating the numer-
ous different sensory inputs to produce effective
motor outputs. In contrast, the PNS is not inside
the meninges, does not have the unique CNS
histology, and serves primarily to bring sensory
inputs to the CNS and to carry motor outputs
from it.
CNS activity comprises electrophysiological,

neurochemical, and metabolic phenomena (such
as neuronal action potentials, synaptic potentials,
neurotransmitter releases, and oxygen consump-
tion) that occur continually in the CNS. These
phenomena can be monitored by measuring elec-
tric or magnetic fields, hemoglobin oxygenation,
or other parameters employing sensors on the
scalp, on the surface of the brain, or within the
brain. A BCI records brain signals, extracts par-

ticular measures (or features) from them, and con-
verts (or translates) the features into new artificial
outputs that act on the environment or on the
body itself. Alternatively, a BCI system could
also deliver physical energy directly to the brain
through transcranial electrical, magnetic, acoustic
stimulation or direct-current stimulation to the
brain (e.g., DBS or direct cortical stimulation),
to modulate the CNS to change the information-
processing patterns within the brain and affect
human behaviors.

Figure 4.1 illustrates the concepts of
bidirectional BCIs, either controlling a device by
the brain bypassing the common neuromuscular
pathways or modulating and affecting the brain
by injecting external physical energy.

A BCI output could replace natural output that
has been lost to injury or disease. Thus, someone
who cannot speak could use a BCI to spell words

Fig. 4.1 Schematics of bidirectional brain–computer in-
terface (BCI) systems. For a brain-to-device BCI, signals
produced by brain activity are recorded from the scalp,
from the cortical surface, or from within the brain. These
signals are analyzed to extract signal features (e.g., ampli-
tudes of EEG rhythms or firing rates of individual neurons)

that correlate with the user’s intent. These features are then
translated into commands that control application devices
that replace, restore, enhance, supplement, or improve
natural CNS outputs. For a device-to-brain BCI, neuro-
modulation can be exerted on the brain through physical
energy to modulate the CNS activity
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that are then spoken by a speech synthesizer [11]
or someone who has lost limb control could use
a BCI to operate a powered wheelchair [12] or
control a robotic arm [13, 14].

A BCI output could restore lost natural output.
Thus, someone with a spinal cord injury whose
arms and hands are paralyzed could use a BCI
to control stimulation of the paralyzed muscles
with implanted/attached electrodes so that the
muscles move the limbs [15, 16] or someone who
has lost bladder function from multiple sclerosis
could use a BCI to stimulate the peripheral nerves
controlling the bladder so as to produce urination.

A BCI output could enhance natural CNS out-
put. Thus, someone engaged in a task that needs
continuous attention over a long time (e.g., driv-
ing a car or performing sentry duty) could employ
a BCI to detect the brain activity preceding breaks
in attention and then produce an output (such as
a sound) that alerts the person and restores atten-
tion [17]. By preventing the periodic attentional
breaks that normally compromise natural CNS
output, the BCI enhances the natural output.

A BCI output could supplement natural CNS
output. Thus, someone controlling cursor position
with a standard joystick might employ a BCI to
choose items that the cursor reaches [18]. Or a
person could use a BCI to control a third (i.e.,
robotic) arm and hand [19]. In these examples, the
BCI supplements natural neuromuscular output
with another artificial output.

Lastly, a BCI output might possibly improve
natural CNS output. For example, a person whose
arm movements have been compromised by a
stroke damaging sensorimotor cortex might em-
ploy a BCI that measures signals from the dam-
aged areas and then excites muscles or controls
an orthosis that improves arm movement [20].
Because this BCI application enables the produc-
tion ofmore normalmovements, its continued use
might induce activity-dependent CNS plasticity
that improves the natural CNS output and thus
helps to restore more normal arm control.

The first two kinds of BCI application, re-
placement or restoration of lost natural outputs,
are the focus of most present-day BCI research
and development. At the same time, the other
three types of applications are drawing increasing
attention. Furthermore, a BCI changes the ongo-

ing interactions between the CNS and its exter-
nal or internal environment. The CNS interacts
constantly with the environment and the body.
These interactions comprise its outgoing motor
outputs along with its incoming sensory inputs.
Bymonitoring CNS activity and translating it into
artificial outputs that act on the environment or
the body, BCIs modify both CNS motor outputs
and sensory inputs (i.e., feedback). Devices that
only monitor brain activity and do not employ it
to modify the continuing interactions of the CNS
with its environment are not considered BCIs.

In addition to interacting with and control-
ling the environment by the brain, a BCI might
modulate brain signals through direct physical
stimulation such as TES, TMS, tFUS, and DBS
or through neurofeedback trainings. Convention-
ally, such device-to-brain interfacing systems are
referred to as neuromodulation approaches (see
Fig. 4.2 for the illustration of device-to-brain BCI
approaches) and will be treated comprehensively
in Chaps. 6, 7, and 8 for deep brain stimulation,
transcranial magnetic stimulation, and transcra-
nial electrical stimulation. In this chapter, we will
mainly focus on brain-to-device interfacing and
control.

4.2.2 Alternative or Related Terms

BCIs are also called brain–machine interfaces or
BMIs. The choice between these two synony-
mous terms is essentially a matter of personal
preference. One reason for using BCI rather than
BMI is that the word “machine” in BMI implies
a fixed translation of brain signals into output
commands, which does not match the reality that
a computer and the brain are essentially partners
in the interactive adaptive control that is required
for successful BCI, or BMI, function.

The terms dependent BCI and independent
BCI appeared in 2002 [10]. In accord with the
definition of a BCI, both employ brain signals to
control applications; however, they differ in how
they depend on natural CNS output. A dependent
BCI employs brain signals that depend on mus-
cle activity. The BCI developed by Vidal [3, 4]
used a VEP that depended on gaze direction and
therefore on the muscles that controlled gaze. A
dependent BCI is basically an alternative way to

http://dx.doi.org/10.1007/978-3-030-43395-6_6
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Fig. 4.2 A summary of invasive and noninvasive device-
to-brain BCI technologies (also called neuromodulation).
Invasive techniques include DBS, in which a lead is im-
planted into a deep brain structure, and cortical stimu-
lation, in which electrodes are placed on the brain sur-
face. Noninvasive techniques include transcranial mag-
netic stimulation (TMS), transcranial direct-current stim-

ulation (tDCS) via scalp sponge electrodes, or transcranial
focused ultrasound stimulation (tFUS) using pulsed ultra-
sound from a transducer on the scalp. These neuromodu-
lation approaches impact the brain by injecting physical
energy to modulate the neural activation and connectivity
within the brain. (From Edelman et al. [35], licensed under
CC BY 4.0)

detect messages conveyed by natural CNS out-
puts. Thus, it does not give the brain a new output
independent of natural outputs. Nevertheless, it
can still be very useful.

Contrastingly, an independent BCI does not
depend on natural CNS output; muscle activity is
not needed to generate the crucial brain signals.
Thus, in BCIs that measure EEG sensorimotor
rhythms, the user typically employs mental im-
agery to modulate sensorimotor rhythms in order
to produce the BCI output. For those who are
severely disabled by neuromuscular disorders,
independent BCIs are likely to be more effective.

The recent term hybrid BCI is used in two
ways [21]. It can be applied to a BCI that employs
two different types of brain signals (e.g., VEPs
and sensorimotor rhythms) to produce its outputs,
or it can be applied to a system that combines a
BCI output and a natural muscle-based output. In
this second usage, the BCI output supplements a
natural CNS output (as Fig. 4.1 illustrates).

4.2.3 The Components of a BCI

A BCI detects and measures features of brain sig-
nals that reveal the user’s intentions and translates
these features in real time into commands that
achieve the user’s intent or affect the user’s brain
state (Fig. 4.1). In order to do this, a BCI system

has four components: 1) signal acquisition, 2) fea-
ture extraction, 3) feature translation, and 4) de-
vice output commands or neurofeedback training
paradigm. Note that, besides these four traditional
BCI components, a direct physical energy might
be injected to interact with or affect the CNS (also
an approach called neuromodulation). A BCI also
has an operating protocol that specifies how the
onset and timing of operation or physical energy
injection is controlled; how the feature translation
process is parameterized, the nature of the com-
mands that the BCI produces, the neurofeedback
training that the BCI induces; and how errors in
translation are handled. A successful operating
protocol enables the BCI system to be flexible and
to serve the particular needs of each of its users.

The signal acquisition component measures
brain signals using a particular kind of sensor
(e.g., scalp or intracranial electrodes for electro-
physiological activity, functional magnetic res-
onance imaging for metabolic activity, etc.). It
amplifies the signals to enable subsequent pro-
cessing, and it may also filter them to remove
noise such as 60-Hz (or 50-Hz) power line inter-
ference. The amplified signals are digitized and
transmitted to a computer.

The feature extraction component analyzes the
digitized signals to isolate signal features (e.g.,
power in specific EEG frequency bands or fir-

https://creativecommons.org/licenses/by/4.0/legalcode
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ing rates of individual cortical neurons) and ex-
presses them in a compact form suitable for trans-
lation into output commands. Effective features
need to have strong correlations with the user’s
intent. Since much of the most relevant (i.e.,
most strongly correlated) brain activity is tran-
sient or oscillatory, the signal features most com-
monly extracted by present-day BCIs are EEG
or electrocorticogram (ECoG) response ampli-
tudes, power in particular EEG or ECoG fre-
quency bands, or firing rates of single cortical
neurons. To ensure the accurate measurement of
the chosen signal features, artifacts such as elec-
tromyogram (EMG) from cranial muscles need to
be avoided or eliminated.

The signal features are provided to the feature
translation algorithm, which converts them into
commands for the output device, that is, into
commands that achieve the user’s intent. Thus,
a decrease in power in a specific EEG frequency
band might be translated into an upward displace-
ment of a computer cursor, or a particular evoked
potential measure might be translated into the se-
lection of a letter to be added to a document being
composed. The translation algorithm should be
able to accommodate and adapt to spontaneous
or learned changes in the user’s signal features
in order to ensure that the user’s possible range
of feature values covers the full range of device
control and also to make control as effective and
efficient as possible.

The commands that the feature translation al-
gorithm produces are the output of the BCI or
the input of the brain, which has to be modulated
internally [17]. They go to the application and
there produce functions such as letter selection
[17], cursor control [18], robotic arm operation
[13, 14], wheelchair movement [12], etc. The
operation of the device provides feedback for the
user and thereby closes the control loop.

4.2.4 The Unique Challenge of BCI
Research and Development

As noted earlier, the natural CNS function is to
produce muscular and hormonal outputs that act
on the outside world or the body. BCIs give the

CNS entirely new artificial outputs derived from
brain signals. In essence, they ask the CNS, which
has evolved to produce muscular and hormonal
outputs, to produce entirely new kinds of out-
puts. Thus, for example, the sensorimotor cor-
tical areas, which normally act in combination
with subcortical and spinal areas to control mus-
cles, are now required instead to control specific
brain signals (such as neuronal firing patterns or
EEG rhythms). The fundamental implications of
this requirement become evident when BCI use
is considered in terms of two basic principles
that govern how the CNS produces its natural
outputs.

First, the task of producing natural outputs is
distributed throughout the CNS, from the cerebral
cortex to the spinal cord. No one area is entirely
responsible for a natural output. Actions such
as speaking, walking, or playing the piano are
produced by the integrated activity of cortical
areas, basal ganglia, thalamic nuclei, cerebellum,
brain stem nuclei, and spinal cord interneurons
and motoneurons. Thus, while the cortex usu-
ally initiates walking and monitors its course,
the rhythmic rapid sensorimotor interactions that
underlie effective walking are handled primarily
by circuits in the spinal cord [22]. The final re-
sult of this highly distributed CNS activity is the
proper excitation of the spinal (or brain stem)
motoneurons that activate muscles and thereby
produce actions. In addition, while activity in the
different CNS areas that are participating gener-
ally correlates with the action, the activity in a
particular area may vary considerably from one
performance of the action to the next. At the
same time, the coordinated activity in the many
areas involved ensures that the action itself is
stable.

Second, natural CNS outputs (such as speak-
ing, walking, or playing a musical instrument) are
acquired initially and maintained in the long term
by adaptive changes in the many CNS areas that
contribute to them. Throughout life, CNS neurons
and synapses change continually to master new
skills and to maintain those already learned [23,
24]. Referred to as activity-dependent plasticity,
this continuing change underlies the acquisition
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and preservation of both common skills (e.g.,
walking and talking) and special skills (e.g., ath-
letics, singing); and it is guided by its results.
For example, as muscle strength and body size
and weight change during life, CNS areas change
appropriately to maintain these skills. In addition,
the basic CNS features (i.e., its anatomy, phys-
iology, and plasticity mechanisms) that support
this ongoing adaptation are the results of evolu-
tion shaped by the need to produce appropriate
muscle-based actions.

Given these two principles that numerous CNS
areas participate in natural outputs and that adap-
tive plasticity occurs continually in all these ar-
eas, BCI use presents a unique challenge for the
CNS, which has evolved and is continually adapt-
ing to optimize its natural outputs. In contrast
to natural CNS outputs, which are produced by
spinal motoneurons and the muscles they control,
BCI-based CNS outputs are produced by signals
reflecting activity in another CNS area, such as
the motor cortex. Activity in the motor cortex
is normally one of the multiple contributors to
natural CNS output. But when its signals control
a BCI, this activity becomes the CNS output. In
sum, the cortex is given the role normally per-
formed by spinal motoneurons; that is, it produces
the final product, the output, of the CNS. How
well the cortex performs this new unnatural role
depends on how effectively the multiple CNS
areas that normally combine to control spinal
motoneurons (which are downstream in natural
CNS function) can instead adapt to control the
relevant cortical neurons and synapses (which are
largely upstream in natural CNS function).

The available evidence indicates that the
adaptations needed to control activity in the CNS
areas that produce the signals used by BCIs are
possible but as yet very imperfect. As a rule, BCI
outputs are much less smooth, rapid, and accurate
than natural muscle-based CNS outputs, and their
moment-to-moment and day-to-day variability is
disturbingly high. These problems (especially
poor reliability) and the different approaches to
solving them represent major challenges in BCI
research.

4.2.5 BCI Operation Depends
on the Interaction of Two
Adaptive Controllers
and the User Interface

Muscle-based CNS outputs are optimized to serve
the goals of the organism, and the adaptation re-
sponsible for this optimization takes place mainly
in the CNS. In contrast, BCI outputs can be op-
timized by adaptations in the CNS and/or in the
BCI itself. Thus, a BCI may adapt to the am-
plitudes, frequencies, and other basic character-
istics of the user’s brain signals; it may adapt to
improve the fidelity with which its output com-
mands match the user’s intentions; and it may
adapt to improve the effectiveness of CNS adap-
tations and perhaps to guide the CNS adaptive
processes.

In sum, a BCI introduces a second adaptive
controller that can also change to ensure that
the user’s goals are achieved. Thus, BCI usage
requires successful interaction between two adap-
tive controllers, the user’s CNS and the BCI. The
management of the complex interactions between
the concurrent adaptations of CNS and BCI is one
of the most difficult problems in BCI research. In
the past two decades, a majority of studies have
focused on either training subjects’ brain while
fixating the decoding algorithm after each ses-
sion’s calibration or adapting the machine learn-
ing algorithm in real time within each session
while minimizing subjects’ learning effort [25].
Until recently, studies of both invasive and nonin-
vasive BCI [26, 27] showed a piece of converged
evidence that subjects’ learning curve probably
benefits most from collaboration, adapting both
controllers, that is, the brain and the decoder
algorithm. Theoretical analysis also indicates that
adaptation of the BCI system should be at an ap-
propriate rate, not too slow nor too frequent [28].
Studies showed day-to-day variability in perfor-
mance using daily retrained decoder and non-
stable neural ensembles when tracking subjects’
performance from weeks to months [26]. Ors-
born et al. showed that beneficial neuroplasticity
could occur alongside mild and gradual decoder
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adaptation, yielding performance improvements,
skill retention, and resistance to interference from
native motor networks [26]. Similarly, in their
study, Perdikis and colleagues only recalibrated
the decoder of participants twice during the train-
ing periods in multiple months. Sufficient time
was provided to the subject to adapt their brain
rhythms to the fixed decoder. Besides the two
controllers, Perdikis et al. even argue for and eval-
uate the importance of the application interface,
which is one of the three pillars of a successful
BCI system besides the subject and the machine
learning algorithm. The effect of application in-
terface on BCI performance was rarely investi-
gated previously. Some of the previous studies
might assume that using more attractive or more
natural application interface would cause better
engagement of participants [14, 29–31], which
implicitly showed a similar idea along this line
[32]. Future investigations should consider the
application interface as an important factor to the
BCI performance. Various application interfaces
including control of physical apparatus [14, 33],
immersion of virtual reality [34], or switching
the stereotype of center-out trial-based task to
continuous tracking task [13] should be further
explored.

4.2.6 Choosing Signals and Brain
Areas for BCIs

Brain signals acquired by a number of different
electrophysiological and metabolic methods can
be used as BCI inputs for brain-to-device con-
trol. These signals differ in topographical res-
olution, frequency content, area of origin, and
technical needs. The major electrophysiological
methods as applied to BCIs are illustrated in
Fig. 4.3. They range from EEG with its centime-
ter resolution, to ECoG with its few millime-
ter resolution, to neuronal action potentials with
their tens-of-microns resolution. Each of these
electrophysiological methods has been used by
BCIs and deserves continued evaluation, as do the
metabolic methods such as functional magnetic
resonance imaging (fMRI) and functional near-
infrared imaging (fNIRs). Each has distinctive
advantages and disadvantages, while electrophys-
iological signals have gained wide adoption due
to its high temporal resolution and portability.

The role of neuronal action potentials (spikes)
as basic units of communication between neurons
suggests that spikes recorded from many neurons
could provide multiple degrees of freedom and
might therefore be the optimum signals for BCIs
to employ. In addition, the clear relationships
between cortical neuronal activity and normal
motor control provide logical starting points for

Fig. 4.3 Schematic of a
brain-to-device
brain–computer interface.
Signals are acquired from
the brain through the use of
internal or external stimuli.
A computer then decodes
these signals to interpret
the user’s goal and
translates the result into an
action of the output device.
Subjects can often observe
such effects and modulate
their brain signals to
accomplish the desired
task. (From Edelman et al.
[35], licensed under CC
BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode
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BCI-based control of applications such as robotic
arms. On the other hand, the importance of CNS
adaptation for all BCIs and the evidence that
appropriate training can elicit multiple degrees of
freedom from even EEG signals suggest that the
difference between the BCI performance possible
with single neurons and that possible with EEG or
ECoGmay not be nearly as large as the difference
in their respective topographical resolutions.

The most important point is that questions
about signal selection are empirical questions that
can be answered only by experimental evidence,
not by a priori assumptions about the fundamental
superiority of one kind of signal or another. For
BCI usage, the crucial issue is which signals can
best indicate the user’s intent and serve the pur-
pose of applications, that is, which signals are the
best language for communicating to the BCI the
output that the user wants, to achieve the purpose
such a BCI is aimed at.

The choice of the optimum brain areas from
which to obtain the signals is also an empirical
question at the time. The work to date has fo-
cused largely on signals from sensorimotor au-
ditory, and visual areas of cortex. The BCI ca-
pacities of signals from other cortical or sub-
cortical areas are just beginning to be investi-
gated. This is an important aspect of BCI re-
search, particularly because the sensorimotor cor-
tices of many possible BCI users have been com-
promised by disease or injury, and/or their vision
may be impaired. Different brain areas may differ
in their adaptive capabilities and in other factors
that could affect their capacity to function as the
sources of BCI output commands. For example,
reconstructing speech from the neural responses
recorded from the human auditory cortex opens
up the possibility of a speech BCI to restore
speech in severely paralyzed patients [36, 37].
This new speechBCI is different from the conven-
tional P300 speller or SSVEP-based virtual key-
board which translates users’ visual attention into
characters, words, and sentences via special vi-
sual stimulus pattern [38–40]. These conventional
BCI spellers mainly decode brain signals from the
visual occipital cortex. However, the nascent field
of speech BCI directly decodes the brain signals
from the speech production areas in the temporal

lobe [37]. Due to the unique characteristics and
complexity of producing human languages, it is
not possible to do the experiments in animal
models. ECoG, which is vastly used in the clinical
setting, has a high temporal and spatial resolution.
The most common type of intractable epilepsy
is usually caused by the pathological change of
temporal lobe; however, a good number of these
patients with focal epilepsy in the temporal lobe
still preserve intact speech ability. Thus, ECoG-
based speech BCI could be developed and vali-
dated in this population [41]. The advancement
of speech BCI may benefit patients undergoing
ECoG recordings who cannot speak due to, for
example, brain stem stroke and cerebral palsy
[42]. Recent advancement of deep learning neural
network and its application in speech decoding
produce significant progress in decoding the flu-
ent speech directly from the brain signals [11, 36,
41]. The quick development of speech BCI may
be a vital option in clinical treatment for those
who have language disabilities.

4.3 Signal Acquisition

As discussed earlier, translation of intent into
action is dependent on the expression of the in-
tent in the form of a measurable signal. Proper
acquisition of this signal is important for the
functioning of any BCI. The goal of signal ac-
quisition methods is to detect the voluntary neural
activity generated by the user, whether the signals
are acquired invasively or noninvasively. Each
method of signal acquisition is associated with
an inherent spatial and temporal signal resolution.
The choice of the appropriate method to use in
a particular circumstance depends on striking a
balance between the feasibility of acquiring the
signal in the operating environment and the reso-
lution required for proper translation.

4.3.1 Invasive Techniques

The invasive acquisition of brain signals for use in
BCIs is primarily accomplished by electrophys-
iologic recordings from electrodes that are neu-
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rosurgically implanting either inside the user’s
brain or over the surface of the brain. The motor
cortex has been the preferred site for implanting
electrodes since it is more easily accessible and
has large pyramidal cells, which produce measur-
able signals that can be generated through simple
tasks such as actual or imaginary motor move-
ments. Other brain areas such as the supplemen-
tary motor cortex, parietal cortex, and subcortical
motor areas can also serve as candidate sites for
electrode implantation. Information from com-
plementary imaging techniques such as fMRI can
help determine potential target areas for a specific
subject [43]. fMRI measurement of the blood-
oxygenation level dependent (BOLD) response
has facilitated the determination of cortical areas
useful for the recording of brain activity and has
also been shown to provide reliable BCI control
across several cortical areas using different cog-
nitive tasks.

4.3.1.1 Intracortical
With chronic recording using implanted micro-
electrode arrays, the key factors for successful
recording are the spatial/temporal resolution of
the desired signal, the number and placement
of electrodes, and the functional lifetime of the
device. A growing number of electrode technolo-
gies have been developed to meet these require-
ments. Significant advancement has been wit-
nessed in intracortical BCIs research over the
past two decades, demonstrating brain-controlled
robotic arms in nonhuman primates [44, 45] and
human subjects [46, 47]. For a comprehensive
coverage of intracortical BCIs, see Chapter 5 in
this book.

4.3.1.2 Cortical Surface
A less-invasive approach, though still requiring
surgical implantation of the recording device,
is ECoG. This technique, in which an electrode
array is implanted subdurally over cortex, has
been used mainly in preparation for surgery in
people with epilepsy. As is the case for EEG
recording, this technique takes advantage of
the fact that most large cortical neurons are
orientated perpendicular to the cortical surface
and that locally synchronized activity within a

cortical column can sum to yield a detectable
signal. Subdural electrodes are closer to neuronal
structures in superficial cortical layers than EEG
electrodes placed on the scalp, and therefore, the
signals that they record have higher amplitude
(as well as a broader frequency bandwidth).
Whereas scalp electrode recordings represent
synchronized activity from a large number of
neurons and synapses over extended regions of
cortex [48], subdural recordings are sensitive
to smaller sources of synchronized neuronal
activity. Subdural recordings also have a higher
signal-to-noise ratio than scalp recordings and
have increased ability to record and study gamma
activity (i.e., activity >30 Hz). Since gamma
activity has been shown to be well correlated
with the surrounding single-unit activity recorded
by penetrating microelectrodes [49], ECoG
can yield an effective representation of the
underlying cortical electrical activity with less
invasiveness and more stability than penetrating
microelectrodes, albeit still invasive.

The standard clinical electrodes used for
ECoG monitoring in epilepsy patients typically
have diameters on the order of a few millimeters.
Although finer than scalp electrodes, this
dimension is still much larger than that of a
typical cortical column. Therefore, most studies
involving subdural ECoG use gross motor
movements to determine tuning parameters.
It was shown that overt movements as well
as motor imageries are accompanied not only
by relatively widespread mu and beta event-
related desynchronization (ERD), but also by
a more focused event-related synchronization
(ERS) in the gamma frequency band [50]. In
the first closed-loop ECoG-based BCI, study
subjects quickly learned to modulate high-
frequency gamma rhythms in motor cortical
areas and in Broca’s speech area to control a
one-dimensional computer cursor in real time.
Subsequent studies achieved two-dimensional
control of a computer cursor using the upper arm
region of motor cortex for one dimension and
the hand region of motor cortex for the other
dimension [51]. Other investigators explored
distinctly human traits such as speech and
language processing that cannot be analyzed
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in an animal model and have had success using
gamma activity from a speech network to control
a cursor in one dimension [52]. The subjects
used self-selected imagery to modulate gamma-
band activity at one or more specific electrodes.
This represents a new approach in ECoG-based
BCIs.

4.3.2 Noninvasive Techniques

There are many methods of measuring brain ac-
tivity through noninvasive means. Noninvasive
techniques reduce risk for users since they do
not require surgery or permanent attachment to
the device. Techniques such as EEG, magnetoen-
cephalography (MEG), fMRI, and fNIRS have
been used in noninvasive BCIs.

4.3.2.1 EEG
EEG is themost prevalent method of signal acqui-
sition for BCIs. EEG recording has high temporal
resolution: it is capable of measuring changes in
brain activity that occur within a few millisec-
onds. The spatial resolution of EEG is not as
good as that of implanted methods, but signals
from up to 256 electrodes can be measured at the
same time [53]. EEG is easy to set up, portable,
and inexpensive and has a rich literature of past
performance. The practicality of EEG in the lab-
oratory and the real-world setting is unsurpassed.
EEG recording equipment is portable, and the
electrodes can be easily placed on the subject’s
scalp by simply donning a cap. In addition, since
EEG systems have been widely used in numerous
fields since their inception more than 90 years
ago, the methods and technology of signal acqui-
sition with this modality have been standardized.
Finally, and most important, the method is nonin-
vasive.

Many EEG-based BCI systems use an elec-
trode placement strategy based on the Interna-
tional 10/20 system as detailed in Fig. 4.4. For
better spatial resolution, it is also common to use a
variant of the 10/20 system that fills in the spaces
between the electrodes of the 10/20 system with
additional electrodes. Nevertheless, EEG-based

BCI control with several degrees of freedom can
be achieved with just a few electrodes [18, 29].

Over the past few decades, EEG-based BCIs
have been widely investigated in healthy human
subjects, as well as in people with amyotrophic
lateral sclerosis (ALS) and in those with severe
CNS damage from spinal cord injuries and stroke,
resulting in substantial deficits in communication
and motor function.

Compared with invasive BCIs, EEG-based
BCI methods have the advantage of no surgical
risk, signal stability, and low cost. However,
since EEG represents scalp manifestation of
brain electrical activity from a distance, it
has a lower signal-to-noise ratio than many
invasive methods. The spatial resolution of
EEG is also reduced by the volume-conduction
effect [48]. Many noninvasive BCIs are based
on classification of different mental states
rather than decoding kinematic parameters as
is typically done in invasive BCIs. Various
mental strategies exploiting motor, sensory, and
cognitive activity detectable by EEG have been
used to build communication systems. In these
systems, typically one mental state corresponds
to one direction of control and four independent
mental states are generally required for full two-
dimensional control. Therefore, a substantial
period of training is typically required for users
to develop the skill to maintain and manipulate
various mental states to enable the control. This
can be quite demanding for users, especially
disabled users. Other investigators attempted
to directly decode the kinematic information
related to movement or motor imagery and
have reported success in revealing information
about the (imagined) movement direction and
speed from the spatiotemporal profiles of EEG
signals [54–56]. In a closed-loop experiment by
Bradberry et al. [57] using the direct decoding
of kinematic information, subjects were able
to attain two-dimensional control after a short
training (∼40 minutes).

It will also be important to develop better
understanding of the mechanisms of information
encoding in EEG signals. It has been demon-
strated that detailed kinematic information, not
simply gross mental states, is represented in the
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Fig. 4.4 Placement of electrodes for noninvasive signal
acquisition using EEG. This standardized arrangement of
electrodes over the scalp is known as the International
10/20 system and ensures ample coverage over all parts of
the head. The exact positions for the electrodes are at the
intersections of the lines calculated from measurements
between standard skull landmarks. The letter at each elec-
trode identifies the particular sub-cranial lobe (FP: Pre-
frontal lobe; F: Frontal lobe; T: Temporal lobe; C: Central

lobe; P: Parietal lobe; O: Occipital lobe). The number
or second letter identifies its hemispherical location (Z:
denotes line zero and refers to an electrode placed along
the cerebrum’s midline; even numbers represent the right
hemisphere; odd numbers represent the left hemisphere;
the numbers are in ascending order with increasing dis-
tance from the midline). (From [197], http://www.bem.fi/
book/, with permission)

distributed EEG signals [54–56]. Interestingly,
brain signals recorded on the scalp surface
and those recorded intracranially reveal similar
encoding models [58], suggesting that knowledge
gleaned from invasive BCIs could be transferred
to the understanding of EEG-based BCI signals.
This might further advance noninvasive BCI
technology and thereby possibly achieve
high degrees of control and reduce training
requirements.

Source analysis has been widely used to
estimate the sources of the brain activity that
produces noninvasively recorded signals such as

EEG [48]. The rationale behind this approach
is the linear relationship between current source
strength and the voltage recorded at the scalp.
Thus, one may estimate equivalent current
density representations in regions of interest
from noninvasive EEG or MEG recordings. He
and colleagues proposed to use such EEG-based
source signals to classify motor imagery states for
BCI purposes [59]. Such source imaging–based
approach has shown promising results based on
motor imagery paradigm [43, 60–63].

The use of source estimation in BCI applica-
tions involves increased computational cost due

http://www.bem.fi/book/
http://www.bem.fi/book/
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to the need to solve the inverse problem. On the
other hand, such source analysis transforms sig-
nals from sensor space back to source space and
can lead to enhanced performance due to the use
of a priori information in the source estimation
procedure [13].

4.3.2.2 MEG
MEG measures the magnetic induction produced
by electrical activity in neural cell assemblies.
The magnetic signal outside of the head is on
the order of a few femtoteslas, one part in 109

or 108 of the earth’s geomagnetic field. MEG is
commonly recorded using the SQUID (supercon-
ducting quantum interference device), in which it
is also necessary to provide shielding from exter-
nal magnetic signals, including the earth’s mag-
netic field. The SQUID MEG recording requires
a laboratory setting. A modern MEG system is
equipped with an array of up to ∼300 gradiome-
ters evenly distributed in a helmet shape with an
average distance between sensors of 1∼2 cm. Re-
cently the feasibility of a wearable MEG system
was reported for human use [64], although it is
a technology that is still under development and
currently quite expensive.

MEG has similarities to EEG. MEG and EEG
are, respectively, magnetic and electric fields pro-
duced by neuronal and synaptic activity. Both
methods sense synchronized brain activity. MEG
detects only the tangential components of a neural
current source, whereas EEG is sensitive to both
tangential and radial components. Importantly,
like EEG, MEG is also a noninvasive record-
ing technology. Studies using electrophysiologi-
cal source imaging techniques have located com-
mon cortical sources underlying the control pro-
vided by the EEG- and MEG-based BCIs [63,
65]. Meanwhile, other investigators reported that
kinematic parameters are similarly represented in
MEG and EEG recordings, since the key informa-
tion is embedded in the lower frequency ranges
[55]. Nonetheless, the high-frequency informa-
tion in MEG signals is being actively investigated
for neural encoding. Notably, it was found that
in human subjects who are planning a reaching
movement, the 70–90 Hz gamma-band activity

originating from the medial aspect of the poste-
rior parietal cortex (PPC) was synchronized and
direction-sensitive [66]. These results in human
subjects are compatible with the functional orga-
nization of monkey PPC derived from intracranial
recordings. From the viewpoint of BCI research,
these findings may suggest new approaches for
developing control signals utilizing such high-
frequency components inMEG, or in EEG aswell
[67].

A merit of using MEG is that magnetic fields
are less distorted by the skull layer than are elec-
tric fields. However, studies so far have shown
that the performance and training times for EEG-
andMEG-based BCIs are comparable [68]. In ad-
dition, the instrumentation necessary for MEG is
more sophisticated and more expensive than that
for EEG. These factors have tended to discourage
BCI research using MEG recording so far.

4.3.2.3 fMRI
Functional magnetic resonance imaging or func-
tional MRI (fMRI) [69–71] measures changes in
the blood flow (i.e., the hemodynamic response)
related to neural activity in the brain. It sam-
ples very large numbers of spatial locations span-
ning the whole brain and provides an ongoing
stream of information from the many measure-
ment points at the same time. Compared to prior
methods for acquiring brain signals, fMRI there-
fore provides measurements that are highly dis-
tributed and highly parallel, on the order of mil-
limeter resolution. For example, a modern MRI
scanner can currently sample from ∼216 spatial
locations per second, each location (i.e., each
voxel) with a dimension on the order of 3x3x3
mm. In fMRI, the same volume is sampled re-
peatedly at short, regular intervals (e.g., once
per second) using an imaging contrast, such as
the blood-oxygen-level-dependent (BOLD) con-
trast [72], that is sensitive to the hemodynamic
response. The intensities of BOLD contrast are
related to the changes in the deoxyhemoglobin
concentration in the brain tissue. When neurons
are activated, increases in blood flow are associ-



144 B. He et al.

ated with increases in local glucose metabolism
and increases in local oxygen consumption. The
changes in local deoxyhemoglobin concentration
are reflected in the brightness of the MRI image
voxels at each time point. It has also been re-
ported that a strong colocalization of fMRI acti-
vation and electrophysiological sources exist dur-
ing hand movement and motor imagery [43, 73].
fMRI imaging is thought to be quite safe. It does
not use an exogenous contrast agent. Typically,
it does not involve any invasive procedure, injec-
tions, drugs, radioactive substances, or X-rays. It
requires an instrument that provides a strong ex-
ternal magnetic field and radio-frequency energy
pulses.

fMRI images can be processed in real time
as they are collected, namely, as real-time fMRI
(rtfMRI) [74] so that the resulting information
is immediately available and can thus be used
for feedback purpose. For example, the mental
states inferred from the rtfMRI can be used to
guide a person’s cognitive process or a clinician’s
interventions in the case of psychiatric disorders.
The advantage of using fMRI for neurofeedback
is the high spatial resolution and deep penetration.
The direct sampling of three-dimensional volume
information in small voxels enables the detection
of activity in all areas of the brain, including
deep structures such as the amygdala. In con-
trast, EEG/MEG measurements near the surface
of the head are made far from these locations
and the spatial resolution for EEG/MEG source
imaging of deep brain activity is relatively lim-
ited. However, recent studies have suggested the
possibility of detecting deep brain activity from
EEG and MEG as validated from intracranial
recordings (see Chapter 13).

On the other hand, an essential limit of rtfMRI
or fMRI lies in its underlying mechanism: it mea-
sures changes in blood flow rather than neuronal
activity. The technique is therefore inherently in-
direct and noisy. Most importantly, there is an
intrinsic delay of several seconds in the response
of fMRI, no matter how fast the images can be
obtained. This means that the feedback given to
a subject is delayed by several seconds. This
could affect the usefulness of rtfMRI inmanyBCI
applications.

4.3.2.4 NIRS
Functional near-infrared spectroscopy (fNIRS) is
another noninvasive technique. It utilizes light in
the near-infrared range (700 to 1000 nm) to deter-
mine the oxygenation, blood flow, and metabolic
status of localized cortical regions. It is similar
to BOLD-fMRI in terms of the imaging contrast;
that is, it measures the hemodynamic response.
It can produce relatively well-localized signals
with a spatial resolution on the order of cen-
timeters, and it provides information related to
neural activity. However, since the images rely on
the shallow-penetrating photons, NIRS operates
effectively only for brain structures that are on
or near the brain surface. NIRS is also inherently
limited in its imaging contrast (i.e., hemodynamic
responses), which results in a temporal resolution
on the order of seconds and a delay of several sec-
onds for feedback. Thus, in terms of information
transfer rate, fNIRS-based BCIs are likely to be
less effective than BCIs based on electromagnetic
signals. Compared to fMRI, it stands as a com-
promise between imaging capability and practical
usability (i.e., fNIRS is inexpensive and portable).
Its flexibility of use, portability, and affordability
makeNIRS a viable alternative for clinical studies
and possibly for practical use.

4.3.3 Neural Signals Used by BCIs

4.3.3.1 Sensorimotor Rhythms
Electromagnetic recording from the brain at rest
exhibits endogenous oscillatory activity that is
widespread across the entire brain. As shown in
Fig. 4.5, this activity can be split into several
bands. This spontaneous activity consists mainly
of oscillations in the alpha-frequency band (8–
13 Hz), which is called the mu rhythm when
focused over the sensorimotor cortex and the
visual alpha rhythm when focused over the visual
cortex. This idling oscillation is thought to be
caused by complex thalamocortical networks of
neurons that create feedback loops. The synchro-
nized firing of the neurons in these feedback
loops generates observable oscillations. The fre-
quency of oscillations decreases as the number
of synchronized neurons increases. The under-
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Fig. 4.5 Various signal bands present in the EEG signal.
The delta band ranges from 0.5 to 3 Hz and the theta band
ranges from 4 to 7 Hz. Most BCI systems use components

in the alpha band (8–13 Hz) and the beta band (14–30 Hz).
The gamma band, which is just beginning to be applied in
BCI, is >30 Hz

lying membrane properties of neurons, the dy-
namics of synaptic processes, the strength and
complexity of connections in the neuronal net-
work, and influences from multiple neurotrans-
mitter systems also play a role in determining the
oscillations.

Other oscillations detected over the sensori-
motor cortex occur in the beta frequency band
(14–30 Hz) and in the gamma band (>30 Hz).
Together with the mu rhythm, these oscillations
recorded over sensorimotor cortex are called
sensorimotor rhythms (SMRs). They originate
in sensorimotor cortex and change with motor
and somatosensory function. These oscillations
occur continually during “idling” or rest. During
nonidling periods, however, these oscillations
change in amplitude and/or frequency, and these
changes are evident in the EEG or MEG. Task-
related modulation in sensorimotor rhythms is
usually manifested as an amplitude decrease in
the low-frequency components (alpha/beta band)
(also known as event-related desynchronization
(ERD) [75]). In contrast, an amplitude increase
in a frequency band is known as event-related
synchronization (ERS) [75]. For example, it
has been found that the planning and execution
of movement lead to predictable decreases in
the alpha and beta frequency bands [75]. Also,
as illustrated in Fig. 4.6, many studies have
demonstrated that motor imagery can cause
ERD (and often ERS) in primary sensorimotor
areas [75, 77–80]. Such characteristic changes
in EEG rhythms can be used to classify brain
states relating to the planning/imagining of
different types of limb movement. This is the
basis of neural control in EEG-based BCIs

using motor imagery paradigms. Studies have
demonstrated that people can learn to increase
and decrease sensorimotor rhythm amplitude
over one hemisphere using motor imagery
strategies and thereby control physical or virtual
devices [13, 14, 18, 29–31, 63, 81, 82].

4.3.3.2 Slow Cortical Potentials
Acompletely different type of signalmeasured by
EEG is the slow cortical potential (SCP) (see Fig.
4.7) that is caused by shifts in the depolarization
levels of pyramidal neurons in cortex. Negative
SCP generally reflects cortical activation, while
positive SCP generally reflects reduced activa-
tion. SCP occurs from 0.5 to 10 seconds after the
onset of an internal event and is thus considered
a slow cortical potential [83]. People can learn to
control SCPs and use them to operate a simple
BCI [84].

4.3.3.3 The P300 Event-Related
Potential

The P300 is an endogenous event-related poten-
tial (ERP) component in the EEG and occurs in
the context of the “oddball paradigm” [85]. In this
paradigm, users are subject to events that can be
categorized into two distinct categories. Events
in one of the two categories occur only rarely.
The user is presented with a task that can be ac-
complished only by categorizing each event into
one of the two categories. When an event from
the rare category is presented, it elicits a P300
response in the EEG. As shown in Fig. 4.8, this
is a large positive wave that occurs approximately
300 msec after event onset. The amplitude of the
P300 component that is inversely proportional to
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Fig. 4.6 Event-related desynchronization (ERD) and
event-related synchronization (ERS) phenomena before
and after movement onset. ERD/ERS is a time-locked
event-related potential (ERP) associated with sensory
stimulation or mental imagery tasks. ERD is the result
of a decrease in the synchronization of neurons, which
causes a decrease of power in specific frequency bands;

and it can be identified by a decrease in signal amplitude.
ERS is the result of an increase in the synchronization of
neurons, which causes an increase of power in specific
frequency bands; and it can be identified by an increase
in signal amplitude. (From Pfurtscheller and Neuper [76],
with permission, © 2001 IEEE)

Fig. 4.7 Slow cortical
potential (SCP) signals to
convey different intents.
SCPs are caused by shifts
in the dendritic
depolarization levels of
certain cortical neurons.
They occur from 0.5 to
10 seconds after the onset
of an internal event and are
thus considered a slow
cortical potential. (From
Kübler et al. [83], with
permission)
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the frequency of the rare event is presented. This
ERP component is a natural response and thus
especially useful in cases where either sufficient
training time is not available or the user cannot be
easily trained.

4.3.3.4 Event-Related Potentials
Exogenous event-related potentials (ERPs) are
responses that occur in the EEG at a fixed time
after a particular visual, auditory, or somatosen-
sory stimulus. The most common way to derive
ERP from EEG recording is aligning the signals
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Fig. 4.8 P300 ERP component. When the user sees ob-
jects randomly flashed on a screen, the P300 response
occurs when the user sees the flash of the object the user
is looking for (or wishes to select), while the flashes of
the other objects do not elicit this response. The amplitude
of the P300 component is inversely proportional to the
rate at which the desired object is presented and occurs
approximately 300 msec after the object is displayed. It
is a natural response and requires no user training. (From
Kubler et al. [83], with permission)

according to the stimulus onset and then averag-
ing them. The number of stimuli averaged typi-
cally range from a few (e.g., in BCI applications)
to hundreds or thousands in other neuroscience
research. ERPs are sometimes characterized as
“exogenous” or “endogenous.” In general, exoge-
nous ERPs are shorter latency and are determined
almost entirely by the evoking stimulus, while
endogenous ERPs are longer latency and are de-
termined to a considerable extent by concurrent
brain activity (e.g., the nature of the task in which
the BCI user is engaged).

ERPs are related to the ERD/ERS described
above. ERPs reflect in large part activity in the
ongoing EEG that is phase-locked by the stimuli.
Typically, after averaging, the ERP contains in-
formation about very low-frequency components
(i.e., <1 Hz). Other components are canceled out
in the process of averaging across repetitions, and
the information above 1 Hz is poorly represented.
An alternative way to characterize task-related
EEG signals is to examine the rhythmic activity
before averaging, in terms of power (ERD/ERS)

or phase. This method does not require averaging
and thus can be applied to single trials. Therefore,
it is useful for BCI control (although it is still
subject to the limitations of its signal-to-noise
ratio).

The ERP most commonly used in BCIs is the
visual evoked potential (VEP), which occurs in
response to a visual stimulus. One frequently used
VEP is the steady-state visual evoked potential
(SSVEP). SSVEPs and other VEPs depend on the
user’s gaze direction and thus require muscular
control. To produce such signals, the user looks at
one of the several objects on a screen that flicker
at different frequencies in the alpha or beta bands.
Frequency analysis of the SSVEP shows a peak
at the frequency of the object at which the user is
looking. Thus, a BCI can use the frequency of this
peak to determine which object the user wants to
select [86, 87].

4.3.3.5 Spikes and Local Field
Potentials

Both spikes and local field potentials are acquired
from microelectrodes implanted through invasive
techniques. Spikes reflect the action potentials
of individual neurons. Since the CNS appears
to encode information in the firing rates of
neurons, recording spiking activity may be
highly useful. Local field potentials (LFPs)
represent mainly synchronized events (largely
in the frequency range of <300 Hz) in neural
populations. The major sources of LFPs are
synaptic potentials (which are also the major
sources for EEG/MEG/ECoG). Other integrative
somadendritic processes, including voltage-
dependent membrane oscillations and after-
potentials following somadendritic spikes, can
contribute to LFPs. LFPs and their different
band-limited components (e.g., theta (4–7 Hz),
alpha, beta, gamma) are tightly related to
cortical processing. Gamma-band LFP activity
is especially tightly coupled to spiking activity.
Because LFPs reflect signals frommany neurons,
their spatial resolution (and possibly their
functional specificity) is lower than that of
spiking activity. See next chapter for BCIs using
intracortical recordings.
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4.4 Signal Processing

The goal of BCI signal processing is to extract
features from the acquired signals and translate
them into logical control commands for BCI ap-
plications. A feature in a signal can be viewed as
a reflection of a specific aspect of the physiology
and anatomy of the nervous system. Based on this
definition, the goal of feature extraction for BCI
applications is to obtain features that accurately
and reliably reflect the intent of the BCI user.

4.4.1 Feature Extraction

The goal of all processing and extraction tech-
niques is to characterize an item (i.e., the desired
user selection) by discernible measures whose
values are similar for those in the same category
but different for items in another category. Such
characterization is accomplished by choosing rel-
evant features from the numerous choices avail-
able. This selection process is necessary since
unrelated features can cause the translation al-
gorithms to have poor generalization, increase
the complexity of calculations, and require more
training samples to attain a specific level of accu-
racy.

In addition, even though a BCI user is able
to generate detectable signals that convey her or
his intent, signal acquisition methods also capture
noise generated by other unrelated activity in or
outside of the brain. Thus, it is important that
feature extraction maximize the signal-to-noise
ratio.

4.4.1.1 Artifact/Noise Removal
and Signal Enhancement

Artifact or noise removal plays an important
role in EEG-based BCIs. Since signals are often
captured across several electrodes over a series
of points in time, existing methods concentrate
on either spatial-domain processing or temporal-
domain processing or both. To minimize noise
in the signal, it is important to understand its
sources. First, noise can be captured from neural
sources when brain signals not related to the
target signal are recorded. Noise can also be

generated by non-neural sources such asmuscular
movements, particularly of the facial muscles.
This type of noise in EEG is especially important
as signals generated bymuscular movements may
have much higher amplitudes and can easily be
mistaken for actual EEG activity. The problem
is further complicated when the frequencies and
scalp locations of the non-neural noise and the
chosen EEG features are similar.

Typically non-CNS artifacts are the result
of unwanted potentials from eye movements,
EMG, and other non-neural sources. They are
often more prominent in the EEG than brain
signals. Simple instructions to the user to not use
facial muscles can help and trials that contain
such artifacts can be disregarded, but these
approaches are not always adequate to remove
such noise. Mathematical operations such as
linear transformations and component analyses
are also used for artifact removal.

After artifact removal, spatial filtering tech-
niques are useful for enhancing features with a
specific spatial distribution. In BCI systems that
use mu or alpha rhythms, the selection of spatial
filters can greatly affect the signal-to-noise ratio
[88]. A high-pass spatial filter such as the bipolar
derivation calculates the first spatial derivative
and emphasizes the difference in the voltage gra-
dient in a particular direction. The surface Lapla-
cian [89, 90] also acts as a high-pass filter and can
be approximated by subtracting the average of the
signal at four surrounding nodes from the signal at
the node of interest. It is the second derivative of
the spatial voltage distribution and thus is effec-
tively a spatial high-pass filter that emphasizes the
contributions from the neural areas closest to the
recording electrode (node of interest) [91]. Spline
functions can be used to more accurately estimate
the surface Laplacian from EEG recordings [92],
but in most BCI applications finite difference
estimates are used from EEG recordings in a few
electrodes due to computational efficiency.

Temporal-domain processing techniques are
also useful in maximizing the signal-to-noise ra-
tio. These methods work by analyzing the signal
across a period of time. Some temporal-domain
processing methods such as Fourier analysis re-
quire significantly long signal segments, while
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others such as band-pass filtering or autoregres-
sive analysis can work on shorter time segments.
Though all temporal-domain processing methods
work well during offline BCI analysis, some of
them are not as useful as spatial-domain process-
ing methods during online analysis because of the
rapid responses required.

4.4.1.2 Feature ExtractionMethods
The methods for extracting features depend
largely on the type of neural signals used in
the BCI and the characteristics associated with
the underlying neural process. For neural signals
representing mass responses of a large number of
neurons (EEG/MEG/ECoG), defining features by
spatial location is as important as defining them
by temporal/spectral characteristics. In order to
optimize the spatial information, the channels
used for BCI control are usually a selected subset
of a few channels. These can be selected with
methods such as principal components analysis
(PCA), common spatial pattern analysis (CSP)
[93], and independent component analysis (ICA)
[94], or based on a priori knowledge of the
functional organization of the relevant cortical
area(s). Electrophysiological source imaging
(ESI) methods have also been proposed as a
spatial deconvolution approach to extracting
spatial information about the features used in
a BCI [13, 59–63].

In order to define the temporal/spectral param-
eters of the chosen features, the neural signals
are usually subjected to time-frequency analysis.
Frequency-based features have been widely used
in signal processing because of their ease of ap-
plication, computational efficiency, and straight-
forward interpretation. Because these features do
not provide time-domain information, they are
not sensitive to the nonstationary nature of EEG
signals. Thus, mixed time–frequency representa-
tions (TFRs) that map a one-dimensional signal
into a two-dimensional function of time and fre-
quency can be used to analyze the time-varying
spectral content of the signals. A typical example
is the extraction of the ERD feature in senso-
rimotor rhythms, which can be obtained using
a traditional moving-average method (as shown
in Fig. 4.9), an envelope-extraction method (Fig.

4.10), or a TFR method based on wavelets (Fig.
4.11). Parametric approaches are also commonly
used to estimate the time/frequency features, such
as autoregressive (AR) modeling for stationary
signals and adaptive autoregressive modeling for
nonstationary signals, which are widely imple-
mented in online BCI systems due to their com-
putational efficiency. However, it is worth noting
that such parametric modeling approaches usu-
ally require predetermined parameters, such as
the model order [95], which can influence BCI
performance.

Neural network, especially deep neural net-
work (or deep learning), is attracting more and
more attention for feature extraction and feature
translation. An early effort was to use neural net-
works for classifying motor imagery tasks [96].
Several studies using deep learning approaches
showed moderate success on offline analysis of
existed public BCI data sets [97, 98]; however,
the effectiveness has to be further validated by
more extensive online experiments. On the con-
trary to the moderate success in conventional
BCI applications, the neural network approach
seems to be more successful in the speech BCI.
Angrick et al. designed a densely connected 3D
convolutional neural networks to reconstruct the
spoken words from ECoG signals in the auditory
cortex and obtained relatively high-quality speech
[41]. Akbari et al. used a deep neural network
to estimate the parameters of a speech vocoder
directly and achieve relatively high performance
on a digit recognition task [36]. Instead of directly
decoding the parameters of a speech synthesizer
from the ECoG signals, Anumanchipalli and col-
leagues used a two-stage approach to solve the
problem. They first decoded the articulatory kine-
matic features from the continuous ECoG sig-
nals by training a recurrent neural network. Then
they translated the kinematic features into the
acoustic sound via a general model, which map
the recorded speech into the movements of the
vocal-tract articulators via a recurrent neural net-
work by their previously accumulated data [11].
They showed successful reconstruction efficacy
in closed vocabulary tests, and human listeners
could identify and transcribe the reconstructed
speech. Further investigation is needed to delin-
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Fig. 4.9 Techniques used to extract ERD and ERS from
raw EEG signals. First, the raw EEG signal from each
trial is band-pass filtered. Second, the amplitude samples
are squared to obtain the power samples. Third, the power

samples are averaged across all trials. Finally, variability is
reduced and the graph is smoothed by averaging over time
samples. (FromPfurtscheller and Lopes da Silva [75], with
permission from Elsevier)

eate the sources of these successes, that is, due to
the deep learning algorithms or due to the use of
invasive ECoG signals (vs. EEG).

4.4.1.3 Feature Selection
and Dimensionality Reduction

Feature selection algorithms are used in BCI
designs to find the most informative features
for determining the user’s intent. This approach
is especially useful for BCI designs with
high-dimensional input data, as it reduces the
dimension of the feature space. Since a feature
selection block reduces the complexity of the
translation problem, higher translation accuracies
(i.e., higher accuracies of determining the user’s
intent) can be achieved.

As discussed by Blum and Langley [99],
feature selection techniques can be divided into
three major categories. In the first category, called
embedded algorithms, the feature selection is a
part of the translation (also called classification)

method. The feature selection procedure adds or
removes features to counteract prediction errors
as new training data are introduced. Embedded
algorithms, however, are of little use when there
is a high level of interaction among relevant
features.

In the second category, filter algorithms, spe-
cific features are selected prior to, and indepen-
dent of, the translation process. These algorithms
work by removing irrelevant features (those pro-
viding redundant data or contaminated by noise)
prior to training the translation technique. One
approach to filtering involves calculating each
feature’s correlation with the user’s intent and
then selecting a fixed number of features with the
highest scores. Another filtering approach derives
higher-order features based on features from the
raw data, sorts these higher-order features based
on the amount of variance they explain, and then
selects a fixed number of the highest-scoring fea-
tures.
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Fig. 4.10 Steps of feature extraction for sensorimotor
rhythms. It is difficult to detect a coherent component in
the raw EEG signal depicted in the top frame because there
is a lot of noise in the signal. The second frame shows the
signal after being processed through a surface Laplacian
filter that focuses on EEG components in a specific spatial
frequency range. As shown in the third frame, the signal
is then band-pass filtered to isolate the frequencies of
interest. The features become evident in the fourth frame
as they are extracted by using a grand averaging method
over a fixed bin or window size

The final category consists of wrapper algo-
rithms. Wrapper algorithms select features by
using the translation algorithms to rate the vi-
ability or quality of a feature set. Rather than
selecting a feature set based on the results of
the translation, these algorithms use the trans-
lation algorithm as a subroutine to estimate the
accuracy of a particular subset of features. This
type of algorithm is unique to a translation algo-
rithm and particularly useful with limited training
data.

For certain situations, existing signals are not
sufficient for high accuracy feature extraction.
Some methods introduce more signals to cap-
ture additional information about the state of the
brain (e.g., by using 56 electrodes where only 2
were previously used). For example, the increased
spatial data can be processed to derive common
spatial patterns. This is achieved by projecting
the high-dimensional spatiotemporal signal onto
spatial filters that are designed such that the most
discriminative information is inherent in the vari-
ances of the resulting signals [100].

4.4.2 Feature Translation

Translation techniques are algorithms developed
with the goal of converting the input features
(independent variable) into device control
commands (dependent variables) that achieve
the user’s intent [10]. Translation techniques
used widely in other areas of signal processing
are adapted to BCI technology. Ideally, the
translation algorithm will convert the chosen
features into output commands that achieve the
user’s intent accurately and reliably. Furthermore,
an effective translation algorithm will adapt so as
to adjust for spontaneous changes in the features
and will also encourage and facilitate the user’s
acquisition of better control over the features.

There are numerous types of feature transla-
tion algorithms. Some use simple characteristics
such as amplitude or frequency, and some use
single features. Some advanced algorithms utilize
a combination of spatial and temporal features
produced by one ormore physiological processes.
Algorithms currently in use include, but are not
limited to, linear classifiers, Fisher discriminants,
Mahalanobis distance-based classifiers, neural
networks (NN), support vector machines (SVM),
hidden Markov models, and Bayesian classifiers.
A thorough literature review for classification
algorithms of EEG-based BCI has recently
been carried out [101]. Lotte et al. summarized
the newly developed feature translation or
classification methods including the adaptive
classifier, matrix and tensor classifier, transfer
learning and deep learning besides the previously
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Fig. 4.11 Time-frequency representations (TFRs) of sen-
sorimotor rhythms during motor imagery. TFRs were re-
aligned at time = 0 s (dashed line) and the target times

were normalized to be 2 s (solid line). (From Yuan et al.
[63], with permission from IEEE, © 2008 IEEE)

commonly used linear classifier, nonlinear
Bayesian classifier, classifier combinations,
etc. [101]. The adaptive classifier seems to
provide superior performance to static ones
in general. This is intuitive since the EEG
signals are nonstationary signals and adaptive
approaches are better at tracking the changes in
the dynamic process than the static approaches.
However, since BCI systems are a two-learners
system, that is, the human and the machine, the
adaptation frequency might be critical. Either
too fast adaptation or too infrequent adaptation
might be detrimental to the BCI system [26–
28]. A good amount of comparisons between
adaptive and static classifiers in the literature is
offline analysis or comparison within a single
session. Thus, the superiority of using adaptive
classifiers in many studies probably does not
account for the learning process of subjects
[102]. More careful investigation has to be
conducted to clarify the conditions further when
adaptive classifiers improve both the subject’s
learning and the system’s performance. Transfer
learning and deep learning methods also show
improvements in certain cases, but their benefits
remain uncertain yet. Transfer learning might be
good when building a general model from a large
population of participants. It might decrease or
eliminate the tedious or costly training period.
Deep learning showed remarkable success in
the speech BCI recently; however, whether
it provides superior performance in more
general applications needs further investigation.
Particularly, the Riemannian geometry–based
method seems to work very well in a variety

of BCI paradigms including motor imagery,
ERPs, and SSVEP-based BCI. The covariance
matrix of EEG signals during the BCI task
contains abundant task-related information.
The Riemannian geometry–based methods map
the covariance matrix of EEG trials into the
geometrical space and the computation is in a
Riemannian manifold, which is a non-Euclidean
space [103]. The covariance matrix of EEG
signals could be treated as the notion of the
traditional basic data points. Thus, the ideas of
the center of mass and nearest neighbors could
be applied intuitively in the geometrical space.
The previous research result of the Riemannian
approach showed good robustness to noise [104].
Further investigations and especially under real-
time experimental settings are warranted to
validate the efficacy.

Whatever translation algorithm is used, the
outcomes of translation can be control commands
in two ways: continuous or discrete. The follow-
ing section details the difference between these
two ways of translation.

4.4.2.1 Continuous Feature Translation
In continuous feature translation, consecutive
output commands are generated continually
based on the features. Examples of this translation
are the kinematic parameters (arm position,
velocity, etc.) that control a prosthetic arm.
The features are usually derived from short-time
windowed signals and are then continuously fed
into the translation algorithm so that dynamic
outcomes are obtained for BCI control. A fixed
translation algorithm can be used for continuous
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feature translation. Algorithms that adapt can
often yield better performance. Due to the
demands of processing the features in consecutive
short-time windows, the choice of feature
extraction methods and translation methods
should favor those with less computational load,
which may not be those algorithms that perform
best in offline testing. However, the advantage
of using continuous translation is that it allows
the users to adjust their strategies in the course of
control. This is beneficial for learning by the user
as well as by the BCI.

4.4.2.2 Discrete Feature Translation
In contrast, discrete feature translation produces
periodic commands at fixed intervals. An exam-
ple of this type of translation is a BCI that uses
a P300 signal. A P300-based BCI will typically
issue a command every several seconds. Thus,
it is particularly suited for applications such as
word processing, which requires discrete letter
selections, and less suited for applications such
as multidimensional robotic arm control, which is
best implemented by a continuous series of output
commands.

4.5 Major BCI Applications

4.5.1 Replacing Lost
Communication

An important application for BCI technology is
providing a new method for communication so
that a person who has lost normal means of com-
munication can interact with his or her exter-
nal environment. Current BCIs are suitable for
environmental control (e.g., temperature, lights,
television), for answering yes/no questions, and
for simple word processing or e-mailing.

While such communication can be provided
through brain control, there are alternative op-
tions not involving neural signals. Those who
retain the control of only a single muscle can
often use this for communication. For example,
the electric activity associated with finger mus-
cles, eyebrows, or the diaphragm can be used to

build an alternative control channel that may be
faster and more accurate than current BCIs driven
by neural signals. Thus, BCIs are particularly
needed for users who lack all muscle control
or whose remaining control is easily fatigued
or otherwise unreliable. These people include
those who are nearly totally paralyzed but retain
cognitive function (e.g., people with advanced
ALS) and those who have movement disorders
that abolish useful muscle control (e.g., people
with severe cerebral palsy). Although people with
these disorders may have lost the ability to control
any muscle movement, their cognitive function
may still be intact and they may therefore have
the potential to control a BCI and use it to com-
municate. For these locked-in people, conven-
tional communication methods based on muscle
activity may have little to offer them so that
even the simplest BCI-based communication, like
the ability to say yes or no, can be extremely
valuable.

Thus far, most current BCI research has been
carried out in healthy subjects. A few studies have
been conducted to test the feasibility of BCI com-
munication in severely disabled people in labora-
tory settings or even in their homes. The transfer
of current BCI communication systems into use
by severely disabled people for useful purposes
faces several challenges. First, the disease states
that abolish voluntary muscle control may also
impair user control of the signal features used by
a BCI. For example, ALS may lead to loss of
cortical neurons, which might conceivably affect
generation or control of the sensorimotor rhythms
or evoked potentials used for BCI-based commu-
nication. Thus, it may be important to develop
diverse BCI systems that are based on various
types of neural signals so that more options can be
provided for different types of brain impairments.
Furthermore, damage to prefrontal cortex (e.g., in
multiple sclerosis, Parkinson’s disease, or ALS)
can impair attention and thereby adversely affect
BCI use. For these users, a long-duration training
protocol may be problematic. Thus, for these
users, BCI systems that require minimal train-
ing, such as SSVEP-based systems, may be most
suitable.
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4.5.2 Replacing Lost Motor
Function and Promoting
Neuroplasticity to Improve
Defective Function

Perhaps the highest degrees of control achieved so
far in BCI development is with neuroprostheses
developed for restoringmotor function. The state-
of-the-art in movement control is multidimen-
sional and point-to-point (and continuous) control
of a robotic arm. In humans, sensorimotor rhythm
modulation based on noninvasive EEG record-
ings has demonstrated three-dimensional control
of a computer cursor [81, 105] or continuous
real-time flight control of a virtual helicopter
[29, 31] or physical quadcopter [30], or real-
time operation of a powered wheelchair [12], or
continuous control of a robotic arm [13, 14]. A
direct decoding of three-dimensional movement
trajectory from human EEGs has also been re-
ported [54]. Such replacement of motor function
could be valuable for patients who suffer from
various degrees of paralysis. It is estimated that
there are currently over two million people in
the United States alone suffering from paralysis.
Additionally, every year there are approximately
12,000 new cases of spinal cord injury in the
United States. The list of causes of paralysis
is extensive and includes stroke, cerebral palsy,
ALS, multiple sclerosis, muscular dystrophies,
trauma, and other neurodegenerative conditions.
Many individuals suffer from permanent loss of
motor function. A neuroprosthesis, therefore, of-
fers an opportunity to get back a useful substitute
for normal motor control. While conventional
options based on limited muscle activity may
also provide such function, BCI-operated neuro-
prostheses could provide an embodied prosthetic
control that is directly related to the user’s in-
tention. For example, when users want to move
their arms, they could instead move a robotic arm
by communicating with the BCI their intention to
move their own arms. They would not have to use
different muscle activity, such as eye-blinking, to
move a robotic arm.

Another exciting possible application of BCI
technology is promoting neuroplasticity to restore
lost function. Studies have shown that training

for and using BCIs can lead to changes in neu-
ral activity that facilitate the use of prosthetic
devices, especially when combined with func-
tional electric stimulation (FES) [106, 107]. Such
learning-related changes are especially important
for people with brain injuries, such as those who
have suffered from stroke [20, 108]. In a study us-
ing MEG recordings, patients with chronic hand
hemiplegia after stroke successfully learned to
use motor imagery to control their sensorimotor
rhythms, and they were able to use a BCI to
control an orthotic device that opened and closed
their paralyzed hands [109]. As shown in Fig.
4.12, subjects’ performances steadily improved
as they learned to use the device. Comparison
between the early and late training stages re-
vealed enhanced sensorimotor rhythms in the ip-
silesional hemisphere, which was the hemisphere
used to control the device. Several randomized
controlled studies have indicated that assisting
movement with FES coupled to BCI use can
substantially improve upper-limb function in in-
dividuals who have been mildly to moderately
[110] or severely [20, 108, 111] impaired by
stroke. Studies with both invasive and nonin-
vasive BCIs also indicate that learning-related
changes can occur over days to months [26, 102].
Interestingly, once users have learned to operate
a neuroprosthesis with a BCI, they retain this
skill months later without intervening use [18],
suggesting a long-term learning-related change
in neural circuits. Thus, BCIs might be used to
help actually restore motor function by promot-
ing beneficial neuroplasticity in neuromuscular
pathways.

4.5.3 Supplementing Normal
Function

BCI technology may also be used to supplement
normal neuromuscular function. This is particu-
larly true when considering BCI applications for
use in the daily life of healthy individuals for the
purpose of enhancing quality of life or functional-
ity. One potential application is to aid navigation
by means of BCI use. Controlling a computer
cursor represents one such application aimed not
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Fig. 4.12 Patients with chronic hand hemiplegia after
stroke were trained to move a cursor on a screen via mod-
ulation of ipsilesional sensorimotor mu rhythm recorded
by MEG. Successful trials with the BCI resulted in the
opening or closing of the patient’s paralyzed hand via a
mechanized orthosis. This figure shows the results from
three patients. (a) The performance of these patients
across sessions indicates that the proportion of successful
trials increased over time. The statistical maps for the

correlations between sensorimotor mu rhythm amplitudes
from signals recorded from sensors above the ipsilesional
primary motor cortex, and successful performance at b
(early) or c (late) training time points demonstrate mod-
ulation of sensorimotor rhythms with BCI training. Red
and yellow colors identify areas where there was a high
degree of correlation. (d) Single axial MRI scans obtained
for each patient. Each patient’s lesion is highlighted in red.
(From Dimyan and Cohen [198], with permission, © 2011
Nature)

only at helping disabled people to gain control
of external devices, but also serving as a means
for healthy individuals to control external devices
without using normal neuromuscular channels.
Studies have shown promise in accomplishing
navigation in a virtual world, including moving
a computer cursor [18, 81], walking in a virtual
world [112], continuous real-time controlling of
flight of a helicopter in a three-dimensional vir-

tual campus [29, 31] or physical campus [30], and
recently, real-time controlling of a robotic arm
[13, 14].

A challenge in using BCI technology to sup-
plement normal function is the limited informa-
tion transfer rate compared with that of normal
muscular control. A healthy subject will prefer
manual typing over BCI use to accomplish that
task. BCI might provide an additional degree of
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freedom, such as a third arm control [19]. In
some certain cases, BCImight support some tasks
that need more than two hands and the accuracy
is not a critical issue; thus, it might be benefi-
cial to the healthy population. Nevertheless, BCI
technology controls may meet the need for cases
in which high information transfer rate is not
an essential factor and nonmuscular control is
desirable.

4.5.4 Augmenting/Virtualizing
Reality with BCI

The development of virtual reality (VR) and aug-
mented reality (AR) gives researchers better tools
in the end-user interaction [34, 113, 114]. The
combination of BCI with VR/AR might result in
better users’ embodiment and engagement. Espe-
cially in certain conditions such as stroke reha-
bilitation, VR/AR may play a unique and vital
role [115]. Patients who lose their ability to move
might struggle to perform motor imagination like
healthy participants [116]. In VR, an avatar is
easily created and the avatar might induce a per-
ception illusion of the body ownership in certain
conditions [117]. This included perception of im-
mersion might be facilitated to the neural rehabil-
itation since this change of perception alters the
underlying cognitive process. Bermudaz and col-
leagues used a first-person perspectiveVR in their
BCI system, and they combined a personalized
training in the virtual environment as well [118].
Their data showed users’ enjoyment and engage-
ment for the BCI-VR system in a group of healthy
subjects, although Coogan et al. [34] did not ob-
serve improved performance in a group of healthy
subjects with VR setting as compared to a tradi-
tional setting. In their studies, Johnson et al. [115]
showed a substantial improvement of behavior in
motor recovery when using BCI and VR in stroke
subjects. Although the combination of BCI and
VR seems promising in some applications such
as stroke rehabilitation, due to the few numbers of
subjects in previous literature, further studieswith
a larger scale of the subject population need to be
performed.

4.5.5 Providing Neurofeedback

Neurofeedback could be dated back with
experiments showing that humans could self-
control electroencephalographic signals in real
time [119]. An essential part of a typical BCI
system is providing neurofeedback, which
is then translated into a control command
interacting with a peripheral device such as a
computer cursor [18], a quadcopter [30], or
a robotic arm [14]. As a progenitor of BCI
technology, providing neurofeedback could be
used for self-modulating the psychophysiological
signals in the brain for self-regulation instead of
commanding peripheral devices [120, 121]. In
the research field of adaptive neurofeedback, the
brain activation is treated as the independent
variable and the behavior and thought are
treated as dependent variables. It could open an
exciting field of innovative treatment for patients
with psychopathological conditions such as
attention deficit disorder [17, 122], etc. The BCI
technology might enhance the cognitive function
of the aging population [123] or provide novel
approaches to improve the sustained attention
status, for example, providing a more sensitive
feedback signal such that users can learn to sense
upcoming attentional lapses earlier and prevent
them from manifesting in behavior [17].

The long-term effect of neurofeedback and the
transfer benefits in clinical treatment are still un-
known. Furthermore, the causal brain–behavior
relationship, which might help to understand the
underlying neural mechanism of neurofeedback,
is needed. Thus, further investigations of these
questions using a more rigorous experimental
design, for example, excluding the placebo effect,
should be performed [121].

4.6 Examples of EEG-Based BCI
Systems

With the growing kinds and combinations of sig-
nals, feature extraction methods, and translation
techniques, the number and variety of different
BCI systems are increasing rapidly [124]. Basic
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research typically starts using offline analyses,
where signal acquisition is followed by feature
extraction and translation as a separate step. This
type of BCI simulation allows researchers to re-
fine and test extraction and translation algorithms
before testing them in actual online use. On the
other hand, ultimately, any new BCI technique
needs to be tested online to assess its perfor-
mance.

A useful categorization of BCI systems is
external versus internal. External BCI systems,
also known as exogenous BCI systems, classify
based on a fixed temporal context in regard
to an external stimulus not under the user’s
control. These systems use brain signals evoked
by external stimuli, such as VEPs. These BCI
systems do not require extensive training but do
require a controlled environment and stimulus.
Internal BCI systems, also known as endogenous
BCI systems, on the other hand, classify based on
a fixed temporal context with regard to an internal
event. These systems use brain signals evoked by
tasks such as motor imagery and usually require
significant user training.

In another widely accepted BCI categorization
as proposed by Zander et al. [125], the BCIs
are categorized as active, reactive, and passive.
An active BCI is a BCI that derives its outputs
from brain activity that is directly consciously
controlled by the user, independently from exter-
nal events; a reactive BCI is a BCI that derives
its outputs from brain activity arising in reaction
to external stimulation, the user indirectly mod-
ulates that; a passive BCI is a BCI that derives
its outputs from arbitrary brain activity without
the purpose of voluntary control, for enriching a
human–computer interaction with implicit infor-
mation [125].

4.6.1 General-Purpose Software
Platforms for BCI Research

With the advances in BCI research and devel-
opment that have taken place during the past
decades, the number of laboratories conducting
BCI research has grown substantially. However,
when building new BCI systems, problems often

arise in trying to integrate hardware and software
from different sources. As more BCI paradigms
are proposed, it is very useful to have a general
software platform for comprehensive evaluation
of different BCI methodologies.

Such a general platform should readily support
different BCI methodologies and facilitate the
interchange of data and experimental protocols
[126].

BCI2000 Perhaps the most widely used general-
purpose software platform for BCI research is
BCI2000 (http://www.bci2000.org/). BCI2000
was developed and is being maintained by
the BCI laboratory at the Wadsworth Center,
New York State Department of Health, Albany,
New York, USA, in collaboration with the
University of Tübingen in Germany [127]. Figure
4.13 shows the overall structure of BCI2000.
It consists of four modules (Source, Signal
Processing, User Application, and Operator
Interface) that communicate with each other.
BCI2000 supports the incorporation of different
data acquisition hardware, signal-processing
routines, and experimental paradigms. BCI
researchers can use it to start their research
quickly and effectively. The se of BCI2000 is
free for academic and research institutions. A
detailed description of the BCI2000 software
platform and its practical applications can be
found in Schalk et al. [127].

OpenViBE It is another popular open-source
BCI platform that has grown fast in recent years
[128]. OpenViBE is a C++ based software
platform designed for real-time processing
of biosignal data. The key features of the
platform are (i) modularity and reusability. The
platform consists of a set of software modules
devoted to data acquisition, signal processing,
and visualization, as well as to the interaction
with virtual reality (VR). (ii) The platform is
designed for different types of users, including
BCI researchers, clinicians, VR developers, etc.
(iii) The platform operates independently from
different software targets and hardware devices.
(iv) The platform can be integrated with high-
end VR applications. Meanwhile, its graphical

http://www.bci2000.org/
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Fig. 4.13 BCI2000 design. BCI2000 consists of four
modules: Operator, Source, Signal Processing, and Appli-
cation. The Operator module acts as a central relay for sys-
tem configuration and online presentation of results to the
investigator. It also defines onset and offset of operation.

During operation, information (i.e., signals, parameters, or
event markers) is communicated from the Source module
to the Signal Processing to the User Application module
and back to the Source module. (From Schalk et al. [127],
with permission)

language for designing signal-processing chains
is attractive [129].

4.6.2 BCIs Based on Sensorimotor
Rhythms

Wolpaw and coworkers developed a BCI system
that allows users to control to move a computer
cursor in one, two, or three dimensions. The EEG
is recorded as the users actively controlled mu
and/or beta rhythm power (amplitude squared) at
one or several specific electrode locations over
sensorimotor cortex. The EEG power spectra are
calculated by an autoregressive method to gen-
erate the feature vector [18, 81]. This method
provides multidimensional control that is compa-
rable in speed and accuracy to that achieved to
date in humans with microelectrodes implanted
in cortex [130].

Pfurtscheller and coworkers developed a BCI
system that usedmu rhythmEEG recordingsmea-
sured over sensorimotor cortex. The rawEEG sig-
nals were filtered to yield the mu band (8–12 Hz)
and then squared to estimate the instantaneous
mu power. Five consecutive mu-power estimates
during ERD were combined to create a five-
dimensional feature vector that was classified us-
ing one-nearest neighbor classifier with reference
vectors generated by a learning vector quantiza-

tion (LVQ) method. LVQ is a vector quantiza-
tion method in which the high-dimensional input
space is divided into different regions with each
region having a reference vector and a class label
attached. During feature translation, an unknown
input vector is classified by assigning it to the
class label of the reference vector to which it is
closest [131].

He and colleagues investigated the possibil-
ity of using BCI control based on sensorimotor
rhythms for continuous navigation of an object
in a virtual three-dimensional world [29, 31],
or physical world [13, 14, 30]. Control signals
were derived from motor imagery tasks, and in-
telligent control strategies were used to improve
the performance of navigation. By using a con-
stant forward flying velocity, three-dimensional
navigation was reduced to two-dimensional nav-
igation, which allowed human subjects to fly
a virtual helicopter to any point in the three-
dimensional space [31]. Further studies have en-
abled human subjects to perform fast, accurate,
and continuous control of a virtual helicopter in
three-dimensional space [29]. In this BCI sys-
tem, the virtual helicopter’s forward-backward
translation and elevation controls were actuated
through the modulation of sensorimotor rhythms
that were converted to forces applied to the virtual
helicopter at every simulation time step, and the
helicopter’s angle of left or right rotation was
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linearly mapped, with higher resolution, from
sensorimotor rhythms associated with other mo-
tor imaginations. These different resolutions of
control allow for interplay between general intent
actuation and fine control as is seen in the gross
and finemovements of the arm and hand. Subjects
controlled the helicopter with the goal of fly-
ing through rings (targets) randomly positioned
and oriented in a three-dimensional space. After
establishing the technique, He and colleagues
further demonstrated that human subjects could
fly a physical quadcopter to any point in a 3-D
real world using control of EEG signals recorded
from scalp [30]. Figure 4.14 illustrates the study
design where a sitting subject performs multidi-
mensional control of the flight of a quadcopter to
fully explore an unconstrained 3-D space to any
target point in the 3-D space.

In another study, Meng et al. demonstrated
that healthy human subjects could operate a
robotic arm to reach and grasp objects in a
complex 3-D environment using only their
thoughts through motor imagination [14].

Using the combination of two sequential low
dimensional controls, efficient control of a
robotic arm for performing tasks requiring
multiple degrees of freedom was achieved.
Additionally, the participants maintained their
ability to modulate their brain rhythms to
control the robotic arm over multiple months.
It showed the potential of human operation of
prosthetic limbs using noninvasive EEG-based
BCI technology. Later on, Edelman et al. [13]
presented a noninvasive framework using EEG
to achieve the continuous control of a robotic
arm for random target tracking. Their continuous
pursuit task and associated training paradigm
promoted the participant’s engagement; this
enhanced engagement demonstrated nearly 60%
of behavioral improvement for traditional center-
out tasks andmore than 500% improvement in the
proposed continuous pursuit task. Additionally,
the noninvasive electrophysiological source
imaging approach further improved the BCI
control compared to the traditional technique in
sensor space. Such advances in the noninvasive

Fig. 4.14 A diagrammatic representation of an EEG-
based BCI system for control of a quadcopter. The bio-
electric signal generated from motor imaginations of the
hands is represented in the background of the figure. The
signal is acquired through the amplifiers in the subjects’
workstation where it is then digitized and passed to the
computer system. The raw signal is processed in real time
in the computer. Themovement of the quadcopter is driven

by the control signal, which is sent regularly through
WiFi. At the same time, a camera that is mounted in the
quadcopter sends the video images to the computer as
well. The subject adjusts control and adapts to the control
parameter of the system based on the visual feedback
from the video. Restoration of autonomy and the ability
to freely explore the world are the driving factors for the
development of the system. (From LaFleur et al. [30],
licensed under CC BY 3.0)
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Fig. 4.15 EEG BCI control of a robotic arm in humans.
By integrating both the user and machine learning aspects
of BCI technology, continuous control of a robotic arm
has been demonstrated using EEG source imaged signals.

Comparing BCI performance of robotic arm and virtual
cursor control demonstrated the ease of translating neural
control of a virtual object to a realistic assistive device
useful for clinical applications. (From Edelman et al. [13]
with Permission)

robotic arm control promise major impacts on
the eventual development and implementation of
neuroprosthetic limbs. Figure 4.15 illustrates the
BCI control of the robotic arm for continuous
tracking of a computer cursor from EEG source
imaged signals in human subjects.

4.6.3 BCIs Based on P300

The P300-BCI has now become one of the widely
used and successful BCI paradigms. The P300 is
a positive deflection in the ERP, with a latency
of 200 to 700 ms after stimulus onset (see Fig.
4.8). The response is elicited when subjects attend
to a sequence of stimulus events, including an
infrequently presented target (i.e., the “oddball”)
event. The P300 response is typically recorded
over central-parietal areas.

Most P300-BCIs use the visual P300 ERPwith
the row/column paradigm (RCP) [6, 38]. In the
RCP, a matrix (e.g., 6 × 6 cells) containing the
alphabet, numbers, and other items is presented
to the user for selection. The rows and columns
of the matrix flash in a random order (see Fig.
4.16). The subject attends to the desired item
letter and counts how many times the row and
column containing it flashes. Since P300 poten-
tials are prominent only in the responses elicited

by the target stimulus, the computer is able, after
a sufficient number of repetitions, to identify the
row and column that evoke a P300 response. The
item at the intersection of this row and column
is recognized as the target item, that is, the item
desired by the user.

P300-based BCIs have been tested in severely
disabled people [132]. Current research focuses
on improving system performance such as speed,
accuracy, consistency, and user comfort [133–
136]. Hong et al. [137] proposed a new type of
BCI speller (i.e., the N200-speller) that uses a
motion-onset visual ERP component. This sys-
tem has the advantage of lower luminance and
contrast thresholds and thus reduces the discom-
fort of bright stimuli.

4.6.4 BCIs Based on Visual Evoked
Potentials

Among noninvasive EEG-based BCIs, systems
based on visual evoked potentials (VEPs) have
been studied extensively. VEPs recorded over oc-
cipital areas are triggered by the sensory stimula-
tion of a subject’s visual field. VEPs reflect visual
information-processing mechanisms in the brain.
The stimulation of the central visual field evokes
larger VEPs than does peripheral stimulation. A
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Fig. 4.16 Classical visual P300-based BCI: the row/col-
umn paradigm. The rows and columns of the matrix flash
in random order. The infrequent event (i.e., the row or

column containing the item the BCI user wishes to select)
has a 1/6 probability of appearing

VEP-based BCI is a tool that can identify a target
on which a user is visually fixated via the analysis
of concurrently recorded EEG. In a VEP-based
BCI, each target is coded by a unique stimulus
sequence, which in turn evokes a unique VEP
pattern. To ensure reliable identification, VEPs
derived from different stimulus sequences should
be orthogonal, or near orthogonal, to each other
in some transform domain (e.g., the frequency
domain).

Stimulus sequence design is an important
consideration for an SSVEP-based BCI.
Depending on the specific stimulus sequence
(i.e., the modulation approach) used, current
SSVEP-based BCIs fall into four categories:
frequency-modulated VEP (f-VEP) BCIs [138,
139]; time-modulated VEP (t-VEP) BCIs [140,
141]; code-modulated VEP (c-VEP) BCIs [142];
and phase-modulated VEP BCIs (p-VEP) [87,
143].

As shown in Fig. 4.17a [144], each target
in a frequency-modulated (f-VEP) BCI flickers
at a different frequency. This generates a
periodic visual evoked response with the same
fundamental frequency as that of the flickering
stimulus, as well as its harmonics. Because the
flicker frequency of f-VEP BCIs is usually higher
than 6 Hz, the evoked responses from consecutive
flashes of the target overlap with each other.
This generates a periodic sequence of VEPs—a
steady-state visual evoked potential (SSVEP)—

which is frequency locked to the flickering
target. As such, f-VEP BCIs are often referred
to as SSVEP BCIs. Target identification can be
achieved through power spectral analysis. In past
decades, the robustness of f-VEP BCI systems
has been convincingly demonstrated in many
laboratory and clinical tests. The advantages of an
f-VEP BCI include simple system configuration,
little or no user training, and high information
transfer rate (ITR) (30–60 bits/min).

As shown in Fig. 4.17b [144], in time-
modulated VEP (t-VEP) BCIs, the flash
sequences of different targets are mutually
independent. This may be achieved by requiring
that flash sequences for different targets are
strictly nonoverlapping, or by randomizing the
duration of ON and OFF states in each target’s
flash sequence. The briefly flashed stimuli
elicit visual evoked potentials, which have short
latencies and durations.

In a t-VEP BCI, a synchronous signal must be
given to the EEG amplifier for marking the flash
onset of each target. t-VEPs are time-locked and
phase-locked to visual stimulus onset. Thus, since
the flash sequences for all targets are mutually
independent, averaging over several short epochs
synchronized according to the flash onset time of
each possible target will produce VEPs for each
possible target. Since foveal (i.e., fixation point)
VEPs are larger than peripheral VEPs, the target
producing the largest average peak-to-valley VEP
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Fig. 4.17 Examples of stimulations of VEP BCIs. (a)
Left: The stimulus sequences of an f-VEP-based BCI.
Targets flash at different frequencies. Right: The power
spectrum of the VEP derived from a target flickering at
10 Hz. (b) Left: The stimulus sequences of a t-VEP-based
BCI. Target flashes are mutually independent. Right: The
evoked response to a single stimulus. (c) Left: The stimu-

lus sequences of a c-VEP-based BCI. Right: A sample of
time course of the evoked response. (d) Left: The stimulus
sequences of a p-VEP-based BCI. The phase difference
between adjacent targets is 60 degree. Right: The phase
distribution of response signals from stimuli with different
phases. (Revised from Bin et al. [144] andWang et al. [40]
with permission)
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amplitude can be identified as the fixation target.
An accurate target identification in a t-VEP BCI
requires averaging over many epochs. Further-
more, to prevent the overlap of two consecutive
VEPs, t-VEP BCIs usually have low stimulus
rates (4 Hz). Thus t-VEP BCIs have a relatively
low information transfer rate (30 bits/min).

In a code-modulated (c-VEP) BCI, pseudo-
random stimulus sequences are used. The most
commonly used pseudorandom sequence in c-
VEP BCIs is the m-sequence. M-sequences have
an autocorrelation functions that are a very close
approximation to a unit impulse function and
are nearly orthogonal to its time lag sequence.
Thus, in c-VEP BCIs, an m-sequence and its time
lag sequence can be used for different stimulus
targets. Sample stimulation sequences and their
time course of evoked potentials are shown in Fig.
4.17c [144]. At the beginning of each stimulation
cycle, a synchronous signal, which provides a
trigger for target identification, is given to the
EEG amplifier. The template matching method is
generally used for target identification.

A c-VEP-based BCI system was developed
by Sutter in 1984. Bin et al. [142] described a
PC-based c-VEP BCI and tested it in five sub-
jects. The average information transfer rate (ITR)
reached 108 ± 12 bits/min, with a maximum of
123 bits/min for one of the subjects studied.

As shown in Fig. 4.17d [40], in a phase-
modulated VEP (p-VEP) BCI, several targets
flicker at the same frequency but with different
phases so that more targets can be presented
in less time. Jia et al. [143] proposed a coding
method using a combination of frequency and
phase information. With this method, they
developed a BCI system with 15 targets and
only three stimulus frequencies. Through the
optimization of lead position, reference phase,
data segment length, and harmonic components,
the average ITR exceeded 60 bits/min in a
simulated online test with ten subjects.

Wang et al. [40] and Bin et al. [144] summa-
rized the pros and cons of VEP BCIs. The ad-
vantages of VEP BCIs are their simplicity, lower
training time, and high information transfer rate.
The disadvantages of the system are the need
for good gaze control (which people with severe

neuromuscular disabilities may lack) and visual
fatigue from prolonged fixation.

The most significant progress in an SSVEP-
based BCI is the improvement of information
transfer rate (ITR) of the systems. Chen et al.
developed a new joint frequency-phase modula-
tion method in their SSVEP-based BCI speller
(see Fig. 4.18) to enhance the discriminability
between SSVEPs with a very narrow frequency
range. The system obtained an impressive high
ITR of 5.32bits/s or 319.2bits/min [145]. Nakan-
ishi et al. recently presented a novel data-driven
spatial filtering approach for SSVEP detection.
The ITR in this system was as high as 325 bit-
s/min [146].

4.6.5 BCIs Based on Auditory
Evoked Potentials

BCIs that use visual stimuli have been shown
to be effective as we discussed earlier. However,
some severely disabled people may have diffi-
culty using a BCI that requires good vision, due
to compromised vision or loss of eye movement
control. Nevertheless, even in severely paralyzed
patients, such as those suffering from ALS, hear-
ing is usually preserved. Thus, a BCI based on
auditory evoked potentials (AEP-BCI) becomes
an alternative paradigm.

AEPs are the brain’s response to external au-
ditory stimuli. Two types of AEP-based BCIs
have been explored. One uses auditory stimuli
as feedback in order to help subjects learn to
regulate their sensorimotor rhythms [147] or to
regulate the slow cortical potential [148]. The
second type of system uses an auditory “oddball”
paradigm [149, 150]. Most current AEP-based
BCIs use an “oddball” paradigm [149, 150]. As
in the case of the visual P300 described earlier in
this chapter, the auditory stimuli in auditory odd-
ball BCIs are divided into two types: frequently
presented non-targets and rarely presented tar-
gets. For example, spoken digits could comprise
a stimulus sequence. The digits would be pre-
sented in random order and used to represent the
possible selections. In the sequence, all the digits
would be standard non-target stimuli except for



164 B. He et al.

Fig. 4.18 Closed-loop system design of an SSVEP-based
BCI speller with high information transfer rate. (a) System
diagram of the BCI speller, which consists of four main
procedures: visual stimulation, EEG recording, real-time
data processing, and feedback presentation. The 5 × 8
stimulation matrix includes the 26 letters of the English
alphabet, 10 numbers, and 4 symbols (i.e., space, comma,
period, and backspace). Real-time data analysis recog-
nizes the attended target character through preprocessing,
feature extraction, and classification. (b) Frequency and
phase values used for encoding each character in the stim-
ulation matrix. The frequencies range from 8.0 to 15.8 Hz

with an interval of 0.2 Hz. The phase interval between two
neighboring frequencies is 0.35π. (c) Examples of spelling
characters “H” (15.0 Hz, 0.25π) and “I” (8.2 Hz, 0.35π)
with the BCI speller. An intertrial interval of 0.5 s is used
for directing gaze to a target before the stimulation matrix
starts to flash for 0.5 s. The 0.5-s-long EEG epoch with
a delay of τ (∼140 ms) to the stimulation is extracted
for target identification. The target character can be deter-
mined by the decoding algorithm based on the correlations
between the single-trial SSVEP and individual SSVEP
templates. (From Chen et al. [145] with permission)

one target stimulus, that is, the subject’s desired
choice. The subject is instructed to pay attention
to the target digit and perform a mental task when
the target digit is spoken (e.g., count each time
it is heard). The auditory ERPs in response to
the target stimulus are similar to those in visual
P300-based BCIs. An auditory spelling system
was proposed by Furdea et al. [149] and tested
with four ALS patients [151]. To compare a user’s
performance with the auditory and visual modali-
ties, a 5x5 visual support matrix was displayed to
the participants. Rows were coded with numbers
1–5, and columnswith numbers 6–10. The flashes

in a typical visual P300 speller were replaced
by spoken digits. As in a visual P300 speller,
the subjects using the auditory system were in-
structed to first select the row number and then
the column number containing the target letter.
The auditory system was first tested with healthy
subjects. Nine of 13 subjects achieved accuracies
above 70% [149]. In the study by Kubler et al.
[151], four ALS patients used the system and
performed above chance level.

Compared to the visual spelling system, users’
performance with the auditory speller was lower
and the peak latencies of the auditory ERPs were
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longer. However, for severely disabled people
with compromised vision or loss of eye move-
ment control, AEP-based BCIs might provide a
preferred way to communicate with the external
world and thus are worthy of further study. Re-
cently, the research has shown that the proper
training can improve the performance of the audi-
tory ERP-based BCI, specifically the information
transfer rate [152].

4.6.6 Hybrid BCI

The concept of hybrid BCIs was proposed to
further improve the performance of BCIs beyond
that of BCIs with a single approach [153]. The
hybrid BCIs fulfill the following criteria: the ac-
tivity should be directly acquired from the brain;
at least one of themultiple brain signal acquisition
modalities should be employed in acquiring such
activity; the signals must be processed in real-
time/online to establish communication between
the brain and the computer; feedback describing
the outcomes of the brain activity for communi-
cation and control must be provided.

Although BCI shows great promising applica-
tions in the healthy population, stroke patients,
ALS patients, etc., it still faces the challenge of
performance variation, relatively low information
transfer rate compared to the normal body func-
tion, to name a few. It is reasonable to combine the
users’ preserved body movements as one of the
control sources with the traditional BCI output to
fully benefit the daily use or daily rehabilitation
of the end users.

Hybrid BCIs can be configured in two ways:
(i) a combination of two different brain signal ac-
quisition modalities (e.g., EEG and fNIRS) [154,
155]; (ii) a combination of a brain signal acqui-
sition modality with one or more nonbrain sig-
nal acquisition modalities (e.g., EEG and EMG,
EOG, ECG) [156, 157]. Hong et al. presented a
comprehensive review of the recent development
in hybrid BCIs [158].

In addition to combining different signal ac-
quisition modalities, some hybrid BCIs are de-
signed by decoding multiple tasks using a single
modality. For example, SSVEP is combined with

motor imagery or P300-based tasks using EEG-
based signal detection [159].

The main objectives of hybrid BCI develop-
ment are (i) to increase the number of brain com-
mands for control applications; (ii) to enhance the
BCI classification accuracy; and (iii) to shorten
the brain command detection time. In fact, non-
brain signals in hybrid BCIs such as EMG and
EOG are useful either to increase the number of
commands or to remove motion artifacts in EEG
recordings to improve the classification accuracy
of the BCI system.

Hybrid BCI allows the potential patient
candidates to fully utilize their reserved body
movement such as EOG to enhance the imperfect
BCI performance by decoding their brain waves
[160]. Soekadar et al. demonstrated a group of
six naïve individuals performed independent
and self-initiated reaching and grasping activity
outside of the laboratory [161].

Hybrid BCIs are suited to both disable persons
and healthy people. For healthy individuals, hy-
brid BCIs can be useful in the environment with
multiple tasks utilizing several devices [162] or
entertainment [163]. Also, hybrid BCIs may give
better information about the mental workload and
fatigue, cognitive functions, and vigilance of a
person to avoid some accidents.

4.6.7 Attention-Based BCI

Attention-based BCIs could be implemented by
a covert attention or overt attention paradigm.
In a covert attention paradigm, the subject is
instructed to look at a centrally located fixation
point. The subject’s task is to follow another point
without overt eye movement. In contrast, in an
overt attention, the subject’s task is to use overt
eye movements while they attend to a moving
object.

In a conventional SSVEP BCI system, the
subject overtly directs attention to one of the
stimuli by changing his or her gaze direction.
The attended stimulus elicits enhanced SSVEP
responses at the corresponding frequency over
occipital brain areas. This kind of system is
considered a “dependent” BCI since muscle
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activity such as that producing gaze shifting
may be necessary. Therefore, it might not be
usable by people who have lost control of gaze
direction.

A large number of psychophysical and neuro-
physiological studies have shown that people can
covertly shift attention to different spatial loca-
tions without redirecting gaze. In addition, shift-
ing attention to one out of several superimposed
objects can improve behavioral performance (re-
action time and accuracy) and increase neuronal
responses compared to paradigms in which the
object is unattended. This covert attention could
be decoded and applied to build a BCI system
[164]. Kelly et al. [165, 166] reported a BCI based
on spatial visual selective attention. Two bilateral
flickers with superimposed letter sequences were
presented to the subjects. The subjects covertly
attended to one of the two bilateral flickers for tar-
get selection. Greater than 70% average accuracy
was achieved with this system. Zhang et al. [167]
explored a nonspatial visual selective attention-
based BCI. Two sets of dots with different colors
and flicker frequencies, rotating in opposite direc-
tions, were used to induce the perception of two
superimposed, transparent surfaces. Because the
surfaces flickered at different frequencies, they
elicited distinguishable SSVEPs. By selectively
attending to one of the two surfaces, the SSVEP
amplitude at the corresponding frequency was en-
hanced so that the subjects could select between
two different BCI outputs. This systemwas tested
in healthy subjects in a 3-day online training
program. An average online classification accu-
racy of 72.6 ± 16.1% was achieved on the last
training day. Tonin and colleagues used a covert
attention paradigm for a two-class classification
problem [168, 169]. The BCI system operated
based on covert visuospatial attention without
relying on any evoked responses. The mean on-
line accuracy across eight healthy subjects was
70.6 ± 1.5% and 88.8 ± 5.8% for the best sub-
ject. Previously, the covert attention was success-
fully used to build a one-dimensional online BCI
system.

A recent study demonstrated that decoding of
overt spatial attention might be more efficient
and show comparable one-dimensional and two-

dimensional BCI performance compared to the
conventional motor imagery–based BCI [105].
Furthermore, it was shown that overt spatial at-
tention and motor imagery could function inde-
pendently and simultaneously. Thus, a 3-D BCI
control is realized through the solely endoge-
nous modulation of attentions by simultaneously
performing both the overt spatial attentional and
sensorimotor rhythm modulations. Figure 4.19
illustrates high-dimensional cursor control BCI
via the combination of overt spatial attention and
motor imagery modulation. The use of hybrid
control signals allowed achieving as high as 12
targets, leading to a group average information
transfer rate of 29.7 ± 1.6 bits/min in nine human
subjects [105].

Visual selective attention-based BCIs have
thus far provided only binary control. However,
their performance with gaze independence
encourages further study, including the devel-
opment of a multiple-selection system. These
systems may be a good option for paralyzed
people who cannot control well gaze direction.
It might enable them to achieve control of a BCI
by employing covert attention shifts instead of
changes of gaze direction [170].

4.6.8 BCIs for Brain-to-Brain
Communications
and Interactions

BCI has been explored beyond the setting of
a single brain to computer/device. Babiloni
and colleagues have shown multiple brain
communications by simultaneous recordings of
EEG as revealed in functional connectivity that
existed among the multiple brains in a social
setting [171, 172]. Their work demonstrated
brain-to-brain communications and suggested
the possibility of multiple brain interactions.
An interesting approach integrating EEG BCI
with transcranial magnetic stimulation (TMS)
to realize brain-to-brain interface where EEG
BCI was used to decode the intent and TMS was
used to transmit the information into a brain
was reported [173, 174]. Recently, Rao and
colleagues showed brain-to-brain interactions in
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Fig. 4.19 Realization of 3-D BCI for cursor control via
the combination of overt spatial attention and motor im-
agery modulation. (a) A scene of the 8 target 3-D cursor

control task. The highlighted bar indicated the target to hit.
(b) A scene of the 12 target 3-D cursor control task where
the highlighted bar indicated the target to hit. (FromMeng
et al. [105] with Permission, © 2018 IEEE)

Fig. 4.20 Direct brain-to-brain communication and in-
teraction using BCI. Two participants (“Sender 1” and
“Sender 2”) each use an SSVEP BCI to convey infor-
mation about a collaborative task directly to the brain of
the third participant (“Receiver”). Information from each
Sender is transmitted over the internet to the Receiver’s

brain via a computer–brain interface (CBI) based on TMS.
After consciously processing the two inputs from the
Senders, the Receiver uses a BCI based on EEG to execute
an action in the task. (From Jiang et al. [175], licensed
under CC BY 4.0)

a social setting involving SSVEP BCI and TMS
for online transmitting and receiving information
and interacting [175]. In a computer-based game
setting, two senders each used an SSVEP BCI
to convey information to a third individual—
receiver—as coded by transcranial magnetic
stimulation (see Fig. 4.20). Such brain-to-brain
communications and interactions may represent
further applications, especially in the general
population.

4.7 BCI Performance Assessment
and Training

A BCI user controls brain signal features that the
BCI can recognize and translate into control com-
mands. The performance of BCIs can be affected
by the differences among users, by the varying
signal-processing abilities of the BCI systems, or
by the signal acquisition protocols used in the BCI
systems. In order to better understand the impact
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of these factors, researchers usually assess BCI
performance with respect to one factor at a time.

For example, for communication systems, the
traditional unit of measure is the amount of in-
formation transferred in a unit of time. There-
fore, the performance measure can be indicated
by bits per trial and bits per minute. This pro-
vides a tangible measure for making intra-system
and inter-system performance comparisons. For
other systems aimed at replacing motor function,
it is not only the attainment of the goal (i.e.,
reaching a target location) that matters, but also
how well the continuous trajectories are recon-
structed. Therefore, the performance measure can
be indicated by statistical measures for goodness
of fit, such as the coefficient of determination
(r2).

4.7.1 User Performance Assessment

The square of the Pearson product-moment corre-
lation coefficient (PPMCC) is denoted as r2 and
has been widely used in the assessment of BCI
user performance.

The PPMCC between two variables X and Y is
defined as the covariance of the two variables di-
vided by the product of their standard deviations:

ρX,Y = cov (X, Y )

σXσY
= E [(X − μX) (Y − μY )]

σXσY
(4.1)

where μx, μy, σ x, and σ y are the mean and stan-
dard deviation of X and Y, respectively.

Substituting estimates of the covariances and
variances based on samples gives the sample cor-
relation coefficient, commonly denoted by r:

r =

n∑
i=1

(
Xi −X

) (
Yi − Y

)

√
n∑
i=1

(
Xi −X

)2
√

n∑
i=1

(
Yi − Y

)2
(4.2)

where r ranges between +1 and − 1. Its square
(r2) then has a value between 0 and 1. A
value of r2 close to 1 indicates a strong linear

relationship between X and Y, whereas values
close to 0 indicate that there is very little linear
correlation.

In BCI systems, user performance can be de-
fined as the level of correlation between the user’s
intent and the brain signal feature(s) that the BCI
translates into its output commands.

4.7.2 System Performance
Assessment

Many different BCI systems have been studied.
They differ in inputs, outputs, translation algo-
rithms, and other characteristics. To compare and
evaluate the performance of different BCI sys-
tems, an objective measure is required. BCIs pro-
vide the capability of communication between
brain signals and external devices. Therefore, the
information transfer rate (ITR) has been used as
one of the primarymetrics to evaluate BCI system
performance.

Most current BCI systems translate the user’s
brain signal features into output commands by a
regression method or by a classification method.
The former has the advantage of requiring only
one translation function for each dimension of the
matrix of possible output commands, while the
latter requires additional functions as additional
output commands are added.

Currently, the most popular method for ITR
calculation was defined by Wolpaw et al. in 1998
[176] and discussed further in McFarland et al.
[177]. The definition is a simplified computa-
tional model based on the Shannon channel the-
ory under several assumptions. The measure of
ITR is the bit rate B (bits/symbol) as shown in Eq.
(4.3).

B = log2N + P log2P

+ (1 − P) log2 [(1 − P) / (N − 1)]
(4.3)

where N is the number of possible selections,
P is the accuracy (probability that the desired
selection will be selected), and B is the bits per
trial. If the execution time per symbol selection is
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T, then the bits per minute Bt can be calculated as
follows.

Bt = B∗ (60/T ) (4.4)

It is worth noting that the use of Eq. (4.3) and
Eq. (4.4) is conditional, because the following
assumptions were used in the derivation of Eq.
(4.3).

1. BCI systems are memoryless and stable trans-
mission channels.

2. All the output commands (i.e., selections) have
the same probability of selection (p(wi)= 1/N)

3. The translation accuracy is the same for all the
selections (p(yi/xi) = p(yj/xj)).

4. The translation error is equally distributed am-
ong all the remaining selections p

j 	=i
(yj /xi) =

1−p(yi/xi )
N−1 .

5. The translation accuracy is above the chance
level.

The resulting ITR by Eqs. (4.3) and (4.4) de-
pends on both speed and accuracy. Figure 4.21
illustrates the relationship between accuracy and
bit rate for different numbers of selections.

In reality, r2 and ITR are just two factors that
can be used for BCI performance assessment.
Other factors important for BCI evaluation in-
clude invasiveness, training time, ease and com-
fort of use, cost, and others. The significance of

Fig. 4.21 Information transfer rate in bits/trial (i.e., bit-
s/selection) and in bits/min (for 12 trials/min) when the
number of possible choices (i.e., N) is 2, 4, 8, 16, or 32.
As derived from Pierce [195] (and originally from [196]),
if a trial has N possible choices, if each choice has the
same probability of being the one that the user desires, if
the probability (P) that the desired choice will actually be

selected is always the same, and if each of the other (i.e.
undesired) choices has the same probability of selection
(i.e., (1 – P)/(N – 1)), then bit rate, or bits/trial (B), is
B = log2N + P log2P + (1 – P)log2[(1 – P)/(N – 1)]. For
each N, bit rate is shown only for accuracy≥100=N (i.e.,
≥chance). (From Wolpaw et al. [10], with permission)
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these various factors may vary across different
BCI applications.

4.8 Future Perspectives

4.8.1 Expectations

BCI research and development evokes a great
deal of excitement in scientists, engineers, clin-
icians, and the public in general. This excite-
ment is largely in response to the considerable
promise of BCIs. With continued development,
they may replace or restore useful function to
people severely disabled by neuromuscular dis-
orders. In addition, BCIs might augment natural
motor outputs for pilots, surgeons, other profes-
sionals, or ordinary citizens for daily activities.
They might also give new opportunities and chal-
lenges to artists, athletes, and video-gaming en-
thusiasts. Furthermore, BCIs might also conceiv-
ably improve rehabilitation methods for people
with strokes, head trauma, and other devastating
disorders. At the same time, it is clear that this
exciting future can become reality only if BCI
researchers and developers address and resolve
problems in crucial areas including signal ac-
quisition, BCI validation and dissemination, and
reliability.

4.8.2 Signal Acquisition
and Processing

BCI systems depend on the sensors and the
related hardware that record the crucial brain
signals. Improvements in this hardware are
needed. EEG-based (noninvasive) BCIs should:
have electrodes that do not need skin abrasion or
conductive gel (i.e., so-called dry electrodes); be
small and portable; use comfortable, convenient,
and attractive mountings; be easy to set up; work
for many hours without needing maintenance;
work reliably in any environment; use telemetry
rather than connecting wires; and interface
easily with many different applications. Reliable
performance in all relevant environments
may be especially hard to ensure and should

therefore be a major research goal. The biggest
challenge for an EEG-based BCI maybe the
further development of signal processing and
machine learning techniques that can reliably
and accurately decode and delineate the intention
signals from relatively noisy EEG signals. This
would require innovations in machine learning,
signal processing, and classification algorithms,
as well as advancement in systems neuroscience
research.

BCIs that employ implanted electrodes (i.e.,
invasive BCIs) face a number of complex issues,
some of which are not yet fully understood. These
systems require hardware that: is safe and com-
pletely implantable; stays intact, functional, and
reliable for many years; records stable signals for
many years; transmits the recorded signals using
telemetry; is able to be recharged in situ (or has
batteries that last for many years); has external
components that are durable, comfortable, con-
venient, and unobtrusive; and interfaces readily
with a range of high-performance applications.
While considerable progress has been made in
the past several years, it is not yet clear which
possible solutions will be most successful, or how
successful they can be. Fundamental innovations
in sensor technology may be needed for invasive
BCIs to achieve their full promise.

4.8.3 Clinical and Practical
Validation

Various noninvasive and invasive BCIs are being
developed. As this work proceeds and BCIs start
to actually be used clinically, two key questions
must be addressed: how capable and reliable a
particular BCI can get; and which BCIs are the
best choices for a particular clinical or practical
purpose. To address the first question, each can-
didate BCI should be optimized and the limits
on users’ capacities with it should be determined.
Engaging the second question will require some
consensus among researchers concerning which
applications to use for comparing BCIs and con-
cerning how their performance should be mea-
sured. One obvious example is the question of
whether BCIs that use intracortical signals can
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perform better than BCIs that use ECoG signals,
or even EEG signals, and if their performance
justifies the necessary electrode implantation by
surgery. Formany people, invasive BCIswill need
to perform much better to be considered prefer-
able to noninvasive BCIs. Although the degree of
freedom for a neuroprosthetic control increased
from seven to ten [178, 179] and the informa-
tion transfer rate has increased dramatically for
invasive BCIs [180, 181] in the past few years,
significant improvement was also achieved for
noninvasive BCIs as well [13, 105, 145]. It is
as yet unclear whether they can do so. Contrary
to widespread expectations, the available data
seem not to provide a clear answer to this critical
question.

Furthermore, the widespread clinical usage of
BCIs by people with disabilities requires definite
validation of their real-life value in efficacy, prac-
ticality, and effect on the quality of life. Such
validation depends on multidisciplinary groups
able and willing to perform chronic studies of
real-life use in complex and frequently difficult
environments. These studies, which are just be-
ginning, are a critical step if BCIs are to achieve
their promise. The results of these studies could
also shape the development of BCIs for the gen-
eral population. The clear validation of BCIs for
functional rehabilitation after strokes or in other
disorders will be similarly demanding and will
necessarily entail direct comparisons with the
outcomes of conventional methods alone.

4.8.4 BCI Training

The effectiveness of a BCI depends on the capac-
ity of the user to produce brain signals that reflect
intent and that the BCI can decode accurately and
reliably into output commands that achieve that
intent [10, 32, 182]. Control of brain activity is
harder to achieve than control of motor activity
partly because the user can neither identify nor
discern the activity. The user can only compre-
hend EEG activity through the feedback received
from the BCI system. Different BCI systems use
different strategies to help users learn to control
the crucial brain signals.

Many BCIs ask the user to perform specific
cognitive tasks that generate recognizable EEG
components (i.e., components that the BCI can
decode into intent). Motor imagery tasks have
been the most widely used cognitive task. For
each selection, the user imagines or plans one
of the several motor movements (i.e., left- or
right-hand movement) based on visual or aural
cues. Research has shown that this generates brain
signals (e.g., from sensorimotor cortex) that can
be detected by EEG or fMRI [43, 63]. After sev-
eral training sessions, the user is usually able to
produce a specific pattern of signal features (e.g.,
amplitudes in specific frequency bands at specific
locations) by performing a specific cognitive task.

Other cognitive tasks can be used, such as
arithmetic (addition of a series of numbers), vi-
sual counting (sequential visualization of num-
bers), geometric figure rotation (visualization of
rotation of a 3-D object around an axis), letter
composition (nonvocal letter composition), and
baseline (relaxation). Studies have shown that
these tasks produce components detectable in the
EEG [56, 183, 184].

The EEG components produced by cognitive
tasks are vulnerable to the amount of direction
provided to the user. Motor imagery, for exam-
ple, is subject to issues such as first-/third-person
perspective, visualization of the action versus re-
trieving amemory of the action performed earlier,
imagination of the task as opposed to a verbal
narration, etc. Research has yet to prove whether
users can effectively control such fine details to
produce significant change in the components
they produce.

The major focus of BCI development thus far
has been to provide communication for severely
disabled people. It is possible that some poten-
tial users have disorders that are also cognitively
debilitating in ways that preclude their control
of signals from areas of the brain that may be
important for BCI control. The left hemisphere
of the brain, for example, is the center of activity
for tasks involving language, numbers, and logic,
while the right hemisphere is more active during
spatial relations and movement imagery. Users
need to be paired with the cognitive tasks that best
suit their capabilities.
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As indicated earlier, it is possible to discern
different cognitive tasks based on the EEG com-
ponents generated when the task is performed.
When using a set of cognitive tasks during train-
ing, the overlap of EEG signals can occur if the
tasks require similar skills or cortical areas. It is
important to choose tasks with contrasting EEG
components for easy discrimination.

Another factor to consider during training is
the particular EEG component to use. P300 re-
sponses, for example, require less training time
than that needed by a user learning to control sen-
sorimotor rhythms. As mentioned earlier, choos-
ing contrasting cognitive tasks accelerates train-
ing. It is also important to maintain consistent
training regiments to ensure that subjects retain
their ability to control their EEG components.

The tasks used in training carry forward into
general BCI usage. The method of training, there-
fore, is associated with the method of signal ac-
quisition. Neuronal activity generated by specific
cognitive tasks is focused in specific areas of the
brain. This allows signal acquisition to occur over
a few electrodes that encompass these areas.

Studies have suggested the use of mindful
meditation helps subjects to perform better in mo-
tor imagery paradigm BCI and learn faster [185].
Such mindful meditation may be considered as
preprocessing training as they prepare subjects
better for the motor imagery tasks, thus leading
to enhanced performance in the subsequent BCI
experiments.

4.8.5 Recognition of BCI Efficiency
and Inefficiency

Until now, the total number of human patients
recruited in the invasive BCI studies, especially
counting studies with implanted neural chips, is
still a small double-digit number. It is hard to say
whether every subject might be able to achieve
high performance yet. Most of the human BCI
studies are still using noninvasive recording tech-
nology due to its applicability to both the healthy
population and the general patient population (ex-
cept for those with clinical needs of implanting
electrodes). However, there is a certain proportion

of subjects who do not respond to certain BCI
modalities. The proportion of nonresponders for
the P300-based BCI [186] and SSVEP-based BCI
[187] is generally small, that is, less than 10%.
However, there is ample evidence to show that
there is a non-negligible number of subjects (esti-
mated around 20%–30%) who could not generate
reliable brain rhythms to be classified in sensori-
motor rhythm BCIs [188, 189]. They were named
as “BCI illiterate” previously. In recent years,
a lot of work has been done to find novel ap-
proaches improving the BCI performance in order
to reduce the number of BCI illiterates [185, 190]
or to investigate the factors that might predict the
performance of BCI users [188, 191, 192]. The
recognition of BCI efficiency and inefficiency is
an important issue. Because there might not be
a universal BCI paradigm that would be suit-
able for everybody, it is meaningful to find out
what kind of population is suitable for a certain
type of BCI technology. Thus, the BCI nonre-
sponders could be screened out for a particular
paradigm before more intensive experiments are
conducted. It would save both subjects’ and re-
searchers’ time and cost for an inappropriate BCI
technology [102]. On the other hand, exploring
the underlying factors or mechanism that might
affect the BCI performance would be vital to ad-
vance the development of BCI technology itself.
Blankertz et al. suggested that the idling sensori-
motor rhythm during resting state might be an im-
portant predictor of BCI system based on endoge-
nous motor imagination [188]. Grosse-Wentrup
and Scholkopf suggested that performance varia-
tionwithin subjects might be closely related to the
attentional networks in the gamma band (>40 Hz)
[191]. Further, understanding these factors will
help improve the recognition of the BCI ineffi-
ciency. Additionally, some other studies seek to
reduce the numbers of BCI illiterate by designing
various new paradigms. For example, Cassady
et al. recruited participants with/without mindful
meditation experience and found that the medi-
tation practitioners achieve similar good perfor-
mance in shorter training sessions, which sug-
gested that practicing meditation might facilitate
BCI skill acquisition [185]. Yao et al. applied
vibrotactile stimulations on subjects’ both wrists
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and asked the participants to either sense the vi-
bration or performing conventional motor imag-
ination. They found a significant improvement
in BCI performance when using the combina-
tion of sensation and motor imagery compared
to either using motor imagery or sensation alone
[190]. More recently, Meng and He investigated
the effect of training on BCI performance based
on motor imagery paradigm. Their results sug-
gested that training could improve subjects’ per-
formance quickly in three sessions of practice and
the improvement is particularly significant in the
group of low BCI performers, that is, participants
who might be recognized as BCI illiterate using
the conventional standard of 70% accuracy [102].
Therefore, the BCI inefficiency might be depen-
dent on a specific BCI paradigm and the subject
population. Future studies should carefully select
their population of subjects and specify their BCI
experimental design when determining the BCI
inefficient subjects.

4.8.6 Reciprocal Learning Between
theMachine and the Brain

BCIs provide the CNS with the chance to mas-
ter novel skills in which brain signals substitute
for the spinal motoneurons that produce natu-
ral muscle-based skills. Muscle-based skills rely
for their initial mastery and long-term preserva-
tion on continual activity-dependent plasticity in
many CNS areas, from the cortex to the spinal
cord. This plasticity, which can require practice
over many months or even years, allows infants
to learn to walk and talk, children to master
reading, writing, and arithmetic, and adults to
acquire many different athletic and intellectual
skills.

The acquisition and maintenance of BCI-
based skills, such as robust multidimensional
movement control, depend on comparable
plasticity [13, 14, 18, 29, 44, 81, 193]. BCI
operation requires the successful interaction
of two adaptive controllers, the CNS and the
BCI—continuous learning in machine learning
algorithms used in BCIs and in the CNS through
neuroplasticity. The BCI needs to adapt so that its

output commands correspond to the intent of the
user. Concurrently, the BCI needs to encourage
and facilitate CNS plasticity that improves the
reliability and precision with which the brain
signals encode the intent of the user. In summary,
the BCI and CNS need to work together to master
and maintain a partnership that is reliable in all
circumstances. The work required to realize this
essential partnership has just started. It engages
basic neuroscientific questions and may produce
valuable new insights into CNS function. Thus,
BCI research has importance for neuroscience
in general, independent of the practical uses that
are the primary focus of most BCI research and
development.

The fundamental importance of CNS adapta-
tion implies that the key problems in BCI research
are neurobiological. The principles that deter-
mine how the CNS masters, improves, and pre-
serves its natural muscle-based skills are likely to
be the best guide for designing BCI systems. CNS
control of actions is typically distributed among
multiple areas. While cortical areas may define
the goal and the broad outlines of an action, the
details (especially high-speed sensorimotor inter-
actions) are oftenmanaged subcortically. Further-
more, control is distributed in the CNS in accord
with the demands of the task. Piano playing can
require cortical control of every finger individu-
ally, while merely grasping an object may not do
so.

The performance of BCIs is also likely to
benefit from comparable distribution of control.
In this case, the distribution would be between the
BCI’s output commands (i.e., the user’s intent)
and the application that receives the commands
and then converts them into action. The most
effective distribution will probably vary with the
BCI and with the application.

The natural muscle-based CNS outputs are
products of the combined contributions of nu-
merous areas from the cortex to the spinal cord.
This reality suggests that BCI performance might
be improved and stabilized by employing signals
from more than one brain area and by employing
brain signal features that represent relationships
among different areas (e.g., coherences). By per-
mitting the CNS to operatemore in theway it does
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Fig. 4.22 Peer-reviewed BCI articles in the scientific
literature. Over the past 30 years, BCI research, which
was previously limited to a very few research groups,
has become an extremely active and rapidly growing
scientific field. The majority of research articles have

been published in the last 6 years. (The statistics is from
Web of Science Core Collection by using keywords brain
computer interface or brain machine interface, Language
English, Document Types: article. From 1980 to January
21, 2020)

in producing muscle-based actions, this approach
could substantially increase BCI reliability.

Lastly, the feedback that present-day BCIs
give their users is primarily visual and thus
relatively slow and often imprecise. Natural
muscle-based skills rely on multiple types of
sensory input (e.g., proprioceptive, cutaneous,
visual, auditory). BCIs that control applications
that produce complex high-speed movements
(e.g., limb movements) would benefit from
sensory feedback that is faster, more precise,
and more comprehensive than vision alone.
Work seeking to provide such feedback using
stimulators in cortex or elsewhere has begun
[194]. The best techniques will almost certainly
vary with the BCI, the application, and the
user’s disability (e.g., peripheral inputs may
not be useful in many people with spinal cord
injuries).

4.9 Conclusion

Numerous researchers throughout the world are
realizing BCI systems that some years ago might
have been considered science fiction. Figure 4.22

illustrates the publication years of peer-reviewed
BCI articles that have appeared to date according
to the Web of Science database by inputting the
keywords “brain–computer interface” or “brain–
machine interface” and shows that a majority of
all the articles ever published have appeared just
in the past several years. These BCIs use a variety
of different brain signals, recording techniques,
and signal-processing methods. They can operate
a wide variety of different applications, including
communication programs, cursors on computer
screens, drones, wheelchairs, and robotic arms. A
small number of people with severe disabilities
are already employing BCIs for simple commu-
nication and control functions in their everyday
lives. With improved signal acquisition hardware
and sensors, machine learning software, defini-
tive clinical and practical validation, and, better
integration of neuroscience with machine learn-
ing, BCIs could become a major new technology
for people with disabilities, and for the general
population as well.
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Homework

1. Answer the following questions about the
general aspects of BCI.
(1.1) Define brain–computer interface (BCI)

in your own words.
(1.2) Describe at least 3 examples of BCI

according to different signal resources
and explain their pros and cons.

(1.3) Describe what the unique challenges of
BCI research are.

(1.4) If youwant to decode people’s imagery
movement, which brain areas do you
want to choose in order to build an
EEG-based BCI?

2. Answer the following questions about the
BCI signal acquisition.
(2.1) What is the spatial resolution of nonin-

vasive techniques such as EEG, MEG,
and fMRI?

(2.2) What is the spatial resolution of inva-
sive techniques such as ECoG, multi-
unit recording?

(2.3) What is the temporal resolution of
noninvasive techniques such as EEG,
MEG, and fMRI?

(2.4) For EEG-based BCI, does increasing
the electrode number help to improve
the decoding accuracy of motor imagi-
nation? Why?

(2.5) Does the combination of different non-
invasive modalities help to improve the
decoding accuracy such as the simulta-
neous acquisition of EEG and fMRI?
Please explain why?

3. Answer the following questions about the
BCI feature extraction.
(3.1) What kind of features could be ex-

tracted to decode the event-related po-
tentials (ERP)?

(3.2) Is it possible to decode the ERP in
single trials? Please explain.

(3.3) What kind of features could be used
to decode the motor imagery–induced
sensorimotor rhythms?

4. Answer the following questions about the
SSVEP BCI.

(4.1) What is the limitation to use a computer
monitor as the display of the flicker in
a steady-state visual evoked potential
(SSVEP)–based BCI?

(4.2) Download one of the examples (shared
data, e.g., S1.mat, http://thubci.org/
en/index.php?s=/home/index/nr/id/
100/page/1.html) from the shared
data in the ‘Wang et al (2016). A
benchmark dataset for SSVEP-based
brain–computer interfaces. IEEE
Transactions on Neural Systems and
Rehabilitation Engineering, 25(10),
1746-1752.’ Plot the power spectrum
of electrode Oz from any one of the
40 targets in a single block and the
average from all of the six blocks.

5. Answer the following questions about the
motor imagery–based BCI.
(5.1) Download one of the examples (shared

data, e.g., S1_LR_20150130.mat)
from the shared data in [14] and
Readme file to learn the structure of
the shared data.

(5.2) Extract the multichannel signals
of each trial; calculate the average
feedback duration for the example
session.

(5.3) Calculate the average band power (8–
13 Hz) of channel C3 and C4 over all
of the left trials, respectively.

(5.4) Calculate the average band power (8–
13 Hz) of channel C3 and C4 over all
of the right trials, respectively.

(5.5) Compare the above average band
power for left trials and right trials.
Describe the difference.

6. What kinds of classification algorithms are
commonly used in the EEG–based BCI?

7. Answer the following questions about
robotic arm control using BCI.
(7.1) Please explain what are the pros and

cons to control a prosthetic or robotic
arm by using different types of nonin-
vasive BCI, such as SSVEP based and
sensorimotor rhythm based.

(7.2) What is the challenge for control of a
high degree of freedom (DoF) robotic
arm by noninvasive BCIs? Please de-

 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
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scribe your solution of controlling a
high DoF robotic arm.

8. Answer the following questions about BCI
applications.
(8.1) What BCI could be used as a tool?

Please describe at least three examples.
(8.2) Please describe how BCIs could

be used to induce tactile sensation
neurofeedback.

9. Answer the following questions about the
hybrid BCI.
(9.1) Please describe an example of the hy-

brid BCI.
(9.2) Please describe your solution of driv-

ing a wheelchair mounting with an as-
sistive robotic arm to help drinking and
eating via a hybrid BCI.

10. Answer the following questions about infor-
mation transfer rate of BCI.
(10.1) What is the state-of-the-art informa-

tion transfer rate (ITR) of different
types of noninvasive–based BCIs?

(10.2) Please describe a possible solution of
increasing the ITR of a noninvasive
sensorimotor rhythm–based BCI and
explain why it might work.

11. Answer the following questions about BCI
development.
(11.1) Please list three most important ques-

tions to be addressed in order to sig-
nificantly improve the field of BCI.

(11.2) Please discuss the potential of BCI
application in the clinical field.
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5Intracortical Brain–Machine
Interfaces
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Abstract

A brain–machine interface, or BMI, directly
connects the brain to the external world, by-
passing damaged biological pathways. It re-
places the impaired parts of the nervous system
with hardware and software that translate a
user’s internal motor commands into action.
In this chapter, we will discuss the four basic
components of an intracortical BMI: an in-
tracortical neural recording, a decoding algo-
rithm, an output device, and sensory feedback.
In Sect. 5.2 we will discuss intracortical sig-
nals, the electrodes used to record them, and
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where in the brain to record them. The salient
features of the neural signal useful for control
are extracted with a decoding algorithm. This
algorithm translates the neural signal into an
intended action which is executed by an output
device, such as a robotic limb, the person’s
own muscles, or a computer interface. In Sect.
5.3 we will discuss classification decoders and
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how they can be implemented in a BMI for
communication. In Sect. 5.4 we will discuss
continuous decoders for moment-by-moment
control of a computer cursor or robotic arm. In
Sect. 5.5, we will discuss a BMI that controls
electrical stimulation to directly activate a pa-
tient’s own paralyzed muscles and reanimate
their arm. Finally, in Sect. 5.6, we will dis-
cuss ongoing work toward expanding sensory
feedback with the goal of making intracortical
BMIs a clinically viable option for treating
paralysis, as well as other research trends.

Keywords

Neural population activity · Motor cortex ·
Motor control · Neural decoding ·
Probabilistic models · Classifier · Kalman
filter · Functional electrical stimulation

5.1 What Is a Brain–Machine
Interface?

Humans are capable of a nearly endless repertoire
of movements: we can walk, run, skip, reach,
grab, kick, throw, dance, and more. The ease
with which most of us perform these movements
conceals the fact that motor control is one of
the most complex tasks the brain performs. More
brain resources are devoted to the problem of
controlling our movements than are devoted to
any other task we might perform. The primary
motor cortex, as its name indicates, is the area of
the brain chiefly responsible for sending axons to
the spinal cord to exert control over the muscles.
In addition to primary motor cortex, there are at
least six other cortical areas that also send axons
down the spinal cord to help control muscles:
dorsal premotor cortex, ventral premotor cortex,
supplementary motor area, and three separate re-
gions of the cingulate motor area. In addition to
cortex, several subcortical regions are engaged
during motor control, including major parts of the
thalamus, basal ganglia, and the spinal cord. The
cerebellum, which is composed of more neurons

than the rest of the brain combined, is involved
in coordinating movements. Motor control only
seems easy because we don’t tend to think about
it very much: we just do it. In fact, the only time
we really think about motor control is when it is
impaired.

Movements can become impaired for a num-
ber of reasons, including neurological injury or
disorders at the level of the brain, spinal cord, pe-
ripheral nerves, and muscles. The most common
causes of paralysis are stroke and spinal cord in-
jury. There are approximately 291,000Americans
currently living with spinal cord injuries, with
more than 17,500 new cases each year (National
Spinal Cord Injury Statistical Center). About 40%
of these individuals are paraplegic, i.e., their legs
are paralyzed, and 60% are quadriplegic, i.e.,
their arms and legs are paralyzed. Fewer than 1%
of patients fully recover from spinal cord injuries.
Spinal cord injuries disrupt the natural pathway
between the brain and the muscles but leave the
cortical neurons involved in generating the move-
ment signals intact. If we could leverage these
intact control signals, and decode motor intent,
we could create assistive technologies that bypass
the damaged pathway to restore motor control to
those who have lost it. This is the clinical goal of
brain–machine interfaces.

A brain–machine interface, or BMI, directly
connects the brain to the external world, bypass-
ing damaged biological pathways. It replaces the
impaired parts of the nervous system with hard-
ware and software that translate a user’s internal
motor commands into action. BMI technologies
serve as a neural engineering solution to replace
or restore motor or sensory function to patients
with neurological injury or disease.

An intracortical BMI (iBMI) is driven by the
action potentials recorded from individual neu-
rons. Action potentials, or “spikes,” are the elec-
trical signals by which neurons transmit informa-
tion. Intracortical BMIs involve implanting elec-
trodes directly into the cortex. This neural record-
ing method provides greater spatial and temporal
specificity than noninvasive recording techniques
because the electrodes are only microns from
the neurons. The greater specificity increases the
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decoding accuracy and allows for higher degree-
of-freedom control.

5.1.1 History of Intracortical BMIs

In 1969, Eberhard Fetz created what is consid-
ered to be the first modern-day intracortical BMI.
In this first example of an iBMI, he showed
that monkeys could learn to volitionally modu-
late the activity of a single neuron in primary
motor cortex in order to receive a food reward.
To do so, Fetz recorded the spikes from a neu-
ron while providing the monkey with visual or
auditory feedback about the number of spikes
that neuron generated per unit time (i.e., firing
rate). When the monkey increased the firing rate
above a certain threshold, he was rewarded. Fol-
lowing this operant conditioning, monkeys would
quickly and consistently increase the firing rate
of the recorded neuron to earn rewards. Monkeys
were also asked to separately control two neurons,
increasing the rate of one and decreasing the rate
of the other. The independent control of two neu-
rons demonstrated that the control was not simply
achieved by a general increase of all neurons’
firing rates. This early study provided the first
proof of concept that a person might someday
be able to modulate neural activity to control a
computer cursor or robotic arm.

The Fetz study was near the beginning of
several decades of intensive work to define the
nature of the signals encoded in motor cortex. In
1970, Humphrey, Schmidt, and Thompson con-
ducted a set of experiments that addressed the
possibility of using neural signals to make quan-
titative predictions of simple motor behaviors.
Using recordings from a small set of neurons
during a wrist flexion and extension task, they
predicted arm position, velocity, and net force
exerted about the joint. They showed that force
was quite accurately predicted and that arm posi-
tion and velocity could also be predicted, though
typically not as well. In the 1980s, Apostolos
Georgopoulos showed that neural activity dur-
ing whole-arm reaches predicted the direction
of the reach quite well. Together these findings
suggested that motor cortical neural activity was

correlated with extrinsic motor control variables
(e.g., the direction of the arm in space) as well as
intrinsic motor control variables (e.g., the force
exerted by the arm). These results have been the
basis of BMI development since.

Over the following decades, technology devel-
oped that enabled researchers to record from pop-
ulations of tens to hundreds of neurons. In 1999,
neural signals recorded simultaneously from rat
motor cortex were used to control a robotic arm
[1]. Soon after, the hand trajectories of primates
were predicted from the activity of a population
of neurons [2], and monkeys were using neural
activity to control computer cursors [3, 4] and
robotic arms for reaching and grasping [5]. This
was the beginning of a now-flourishing field of
iBMI development and research.

In 2006, a group of researchers at BrainGate
performed the first clinical trial to establish an
iBMI in a human [42]. They recorded neural
population activity from a paralyzed person as he
imagined limb movements and used that activity
to drive the movement of a cursor on a computer
screen. Then, in 2012, the same group demon-
strated that a person who had been paralyzed by
brainstem stroke could directly control a robotic
arm [43]. Specifically, she was able to control
the velocity of the robot’s hand to make reaches,
and she simultaneously controlled a decoder that
could execute one of four hand actions to grasp
objects. With this level of control, she was able to
use the robotic arm to grasp a bottle and bring it to
her mouth for a drink. Compared to natural reach-
ing and graspingmovements, the brain-controlled
robot’s reaching and grasping were slower and
less accurate. However, this result showed that
it is possible to use tens of neurons to control a
robotic device and interact with objects. Shortly
afterward, a team at the University of Pittsburgh
demonstrated that a person could control ten de-
grees of freedom of a robotic arm [6, 7]. The ten
degrees of freedom consisted of three dimensions
of translation, three dimensions of orientation of
the robot’s hand, and four dimensions of hand
shape. By including the hand shape dimensions,
the researchers could increase the repertoire of
possible movements to include dexterous manip-
ulation of objects. Ultimately, the person could
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Fig. 5.1 An iBMI user at the University of Pittsburgh controls a robotic arm to eat a chocolate bar as members of the
research team look on. (Photo credit: UPMC)

perform skillful and coordinated reach and grasp
movements like those that are essential for daily
activities, such as shaking hands or feeding one-
self (Fig. 5.1).

The ultimate goal of iBMI systems for people
with paralysis is to restore the function of their
own arms, hands, and legs. Currently, the best
prospect for this is to use neural commands to
activate the muscles with electrical stimulation.
Two groups have recently shown progress in iB-
MIs to control functional electrical stimulation
(FES) of a user’s own muscles. The electrical
stimulation activates the muscles, causing them
to contract and thus to generate movement. In
2016, a group of researchers at Battelle was the
first to demonstrate successful control of mus-
cle activation using intracortically recorded sig-
nals in a human [8]. Neural activity was de-
coded to control the stimulation of muscles in the
forearm via electrodes in a custom-built sleeve.
With the iBMI-controlled FES, the person was
able to independently control his fingers as well

as six wrist and hand movements, allowing him
to perform some activities of daily living. In
2017, a group of researchers at Case Western Re-
serve University demonstrated that an individual
with a high cervical spinal cord injury could use
his own cortical activity to control a chronically
implanted FES system to perform coordinated
reaching and grasping movements with his own
paralyzed arm and hand [9]. He could volitionally
perform reaches to drink coffee and feed himself
(Fig. 5.2). These studies are a major step toward
a clinically viable BMI for reaching and grasping
after paralysis.

We have been focusing on iBMIs for move-
ment, but the principles of decoding motor intent
can also be applied to solve the problem commu-
nication, allowing users to “type” by moving a
computer cursor to different letters on a screen.
There is a group of patients for whom restoring
communication is crucial. These patients are re-
ferred to as “locked in” because, although they
are awake and aware, they have lost control of
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Fig. 5.2 An iBMI user controls functional electrical stimulation of muscles in his arm and hand to feed himself as part
of the BrainGate2 clinical trials. (Photo credit: Russell Lee; Case Western Reserve University/Cleveland FES Center)

all voluntary muscles, except (in some cases)
those that control vertical eye movements and
blinking, due to brainstem stroke or amyotrophic
lateral sclerosis (ALS). These patients have no
way of speaking or producing facial expressions,
so restoring some form of communication would
dramatically enhance their quality of life. For
people with paraplegia or quadriplegia who can
still speak, a communication BMI could provide
an important means to interact with others via
email or texting. A number of studies have estab-
lished the feasibility of iBMIs for communication
[10, 11]. In 2017, a group at Stanford University
developed a high-performance iBMI for commu-
nication that allows users to control a computer
tablet to perform activities like browsing the web
and texting (Fig. 5.3; [12]). Users were able to
perform typing tasks that simulated real-world
applications such as typing messages at a conver-
sational pace, with a typing rate of 24 characters
per minute.

In this chapter, we will discuss motor iBMIs
for both movement and communication. We will

describe the components of an iBMI, the state-of-
the-art control, and future directions of research
and development.

5.1.2 Components
of an Intracortical BMI

A BMI consists of four basic components: a neu-
ral recording, a decoding algorithm, an output
device, and sensory feedback (Fig. 5.4). Intra-
cortical BMIs begin by recording neural signals
from electrodes implanted in the cortex. Next,
the salient features of the neural signal useful for
control are extracted with a decoding algorithm.
This algorithm translates the neural signal into an
intended action which is executed by an output
device, such as a robotic limb, the person’s own
muscles, or a computer interface. Finally, the
user receives sensory feedback about the action,
allowing them to make corrections if they move
off course and also allowing them to improve over
time with learning.
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Fig. 5.3 Two iBMI users who are part of BrainGate text each other. (Credit: BrainGate Collaboration)
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Fig. 5.4 The components of an iBMI consist of intracortical neural recordings, a decoder to translate the neural input
into a control signal, an output device, and sensory feedback

Building an effective iBMI depends on choos-
ing a brain area for the neural recordings, a de-
coding algorithm, an output device, and feedback
for the desired use. These choices are interrelated.
The most appropriate command signal to control
the output device will depend on the goal of the
task and the particular device being controlled. In

turn, these choices influence whichmotor cortical
area is most appropriate to record from and what
type of signals to record. We will discuss the
considerations related to the neural recordings in
Sect. 5.2.

Once the neural signals have been recorded, a
decoding algorithm (or “decoder”) translates the
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user’s movement intentions into a control signal
suitable for guiding the output device. There are
two classes of BMI decoders: discrete and contin-
uous. A discrete decoder estimates one of several
possible movement goals by solving a classifi-
cation problem. The most common use for this
is a communication device, where patients use
their iBMI to type letters, much as one would if
one were composing a text or an email. Commu-
nication BMIs focus on the speed and accuracy
with which a desired key on a keyboard can be
selected. We will discuss how these devices work
in Sect. 5.3.

A continuous decoder estimates the moment-
by-moment details of a movement trajectory. This
is needed for guiding a computer cursor or robotic
limb along a desired path. For example, a person
may wish to guide a robotic limb to pick up a
glass of milk without knocking over the milk
carton. We will talk about continuous decoders in
Sect. 5.4.

The decoder produces a control signal that is
then fed into an output device. There are a variety
of output devices for BMIs depending on the
particular needs of the user. One common device
is a computer cursor, where a person controls the
cursor by thinking about making a movement,
much as they would control a computer mouse.
Other common output devices for BMI users in-
clude robotic arms and motorized wheelchairs.
Another type of output device is perhaps the most
natural one: the person’s own limb. In Sect. 5.5,
we will talk about recent efforts using electrical
stimulation to directly activate a patient’s muscles
to reanimate their own arm.

The final element of the BMI control loop
is sensory feedback. The most common sensory
feedback is visual: a user can look at the device
they are controlling and see how it is responding,
which allows them tomake correctivemovements
and learn to better control the device. Feedback
has been shown to dramatically improve BMI
performance. Some tasks, however, require more
than just visual feedback to be performed dexter-
ously. Consider putting on a necklace. To fasten
the necklace behind our head, we must rely on
touch to manipulate the necklace clasp. Such
tasks have motivated the inclusion of nonvisual

feedback into BMI systems. Emerging bidirec-
tional technology aims to “close the loop” by
inputting sensory signals conveying naturalistic
proprioceptive or somatosensory information di-
rectly to the nervous system via electrical stim-
ulation. We will discuss recent progress toward
closing the loop with somatosensory feedback in
Sect. 5.6.

5.2 Choosing the Input for iBMIs

The most appropriate control signal for an iBMI
will depend on the goal of the task and the device
being controlled. In turn, these aspects of the
iBMI influence the choice of brain area from
which to record. In this section, we will discuss
the intracortical input signals, the electrodes that
can be used to record these signals, and the motor
neurophysiology that underlies this choice.

5.2.1 Neural Signal Recordings

Intracortical recording techniques provide access
to signals that consist of neural activity, which
can come from individual neurons or groups of
neurons near the electrode. There are three types
of signals that can be recorded with intracortical
electrodes: single-unit activity, multiunit activity,
and local field potentials (LFP). Single-unit ac-
tivity consists of action potentials which emanate
from a single neuron. Multiunit activity consists
of action potentials from a small group of neu-
rons near the electrode tip that are not clearly
discriminable from one another. The LFP signal
is thought to reflect the summation of local neural
activity, mostly changes in membrane potentials,
and is comprised of the activity of perhaps hun-
dreds to thousands of neurons. Single-unit activ-
ity has the most specific information about the
fine details of intended movements, with each
neuron responding uniquely to different aspects
of movement. Multiunit activity and LFPs arise
from averaging over many neurons. Thus, the re-
sulting activity consists of a signal that is common
to the contributing neurons. While multiunit and
LFP signals are correlated with movement, the
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information is not as specific as that obtained
from individual neurons.

Of the three signals, single-unit activity pro-
vides the most specific information about the
fine details of intended movements and has been
shown to lead to good iBMI performance. Single-
unit activity is identified through a process known
as “spike sorting” (Fig. 5.5). The action potentials
recorded with a single electrode can come from
potentially multiple neurons, and in spike sort-
ing, we attempt to classify which action potential
came fromwhich neuron using the neurons’ char-
acteristic waveform shapes. Waveform shapes are
determined by the particular combination of ion
channels expressed by a neuron and the proximity
of that neuron to the recording site and so pro-
vide a “fingerprint” that can be used to uniquely
identify action potentials specific to that neuron.
To identify which action potentials belong to a
given neuron, the recorded voltage trace is typi-
cally first band-pass filtered (e.g., 600Hz–6 kHz).
After that, the waveform snippets are aligned to
the time at which the voltage crosses a prede-
termined threshold. The snippets are then sorted
(i.e., clustered) based on the specific shapes of the
waveforms.

Multiunit activity also leads to good iBMI
performance and does not require the intensive
processing involved in identifying single-unit ac-
tivity. Instead, a voltage threshold is set, and
all waveform snippets that exceed that threshold
(i.e., “threshold crossings,” Fig. 5.5) are counted
with no further assignment to particular neurons.
The type and quality of information that can be
extracted from multiunit activity depend on the
threshold setting, because the threshold impacts
the effective sampling radius of the electrode. A
selective threshold (i.e., a threshold farther from
zero) results in threshold crossings that are likely
due to spikes from individual neurons within a
small sampling radius, close to the electrode,
akin to single-unit activity. A permissive thresh-
old (i.e., a threshold closer to zero) results in
more threshold crossings, because it enlarges the
effective sampling radius of the electrode. The
larger effective sampling radius captures thresh-
old crossings from smaller neurons and neurons

Band Pass Filter
600 - 6,000 Hz

SUA1
SUA2
Noise

Fig. 5.5 Neural signal processing cascade for threshold
crossings (TC) and single-unit activity (SUA). The raw
voltage trace recorded from a single electrode is band-pass
filtered. Then a voltage-based threshold is used to identify
TCs. TCs can be further sorted into activity attributed to a
single neuron or noise based onwaveform shape. (Adapted
from Perel et al. [13])

farther from the electrode than those captured
with a selective threshold.

LFP signals can also be used for iBMIs, but
they do not offer as much specific information
as single- and multiunit activity about the move-
ment. However, LFP signals are not as susceptible
to degradation over time, so there is a trade-
off between resolution and duration in choosing
a neural signal for BMI control. Often, LFPs
can provide an alternative signal if single- and
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multiunit activity is no longer available. LFPs can
be obtained from different band-pass filtering of
the same electrode signal, typically between 0.3
and 300 Hz. Ultimately, the viability of iBMIs
in a clinical setting will depend on the longevity
of the implanted electrodes and their ability to
reliably record signals that are informative about
movement. Using LFP as a secondary input signal
could extend the lifetime of the iBMI.

5.2.2 Multielectrode Arrays

The goal of controlling an output device with
multiple degrees of freedom drove the develop-
ment of multielectrode recording arrays. Record-
ing arrays come in many shapes and sizes and
enable recordings from a large number of neurons
at the same time. Multielectrode arrays are the
primary recording technology used for iBMIs.
Each electrode within the array records from a
small population of neurons close to the elec-
trode tip. There are three main types of multielec-
trode arrays: microwires, flexible polymer-based
microelectrode arrays, and silicon-based arrays.
Microwires are typically made of stainless steel
or platinum–iridium. They can be customized to
include the desired number of electrodes in the
desired configuration and of the desired length.
Flexible arrays are made of polymers that are not
as stiff as microwires and, as such, are a closer
mechanical match to the soft brain tissue into
which they are implanted. This design can lead
to less damage to the tissue, a lower inflammatory
response, and consequently better quality signals.
While microwires and flexible arrays have many
attractive features, they can be fragile. One of
the most popular electrode arrays for iBMIs is a
silicon-based array, the Utah Array (Fig. 5.6). It is
the only array currently approved for clinical tri-
als with human patients by the US Food and Drug
Administration (FDA). It is a silicon-machined
device which permits the simultaneous implanta-
tion of 100 platinum–iridium electrodes in a small
region of cortex (16 mm2). Each electrode array
consists of a silicon base with a 10 × 10 grid
of electrode shanks etched into it. Each electrode

has an impedance of roughly 80–150 k	, and is
separated from its neighbors by 400 μm.

5.2.3 Motor Neurophysiology

Decisions about where to implant multielectrode
arrays and how to design decoding algorithms
to extract movement information are guided by
our understanding of howmovement is controlled
naturally. Let’s consider the multiple processes
involved in picking up a cup for a sip of coffee.
The sight of the coffee cup might inspire a desire
for a sip of coffee, and the desire for coffee is
translated into a plan to reach for the cup. The
hand is then shaped to grasp the cup, and the arm
extends to bring the hand toward the cup. The cup
is then grasped with an appropriate level of force,
and the cup is brought to the mouth. Throughout
this process, visual, tactile, and proprioceptive
feedback are used to adjust the movement to
ensure our actions are successful. For an iBMI
to work as seamlessly as natural movement, we
will likely want to make use of the natural control
signals. For decades, neuroscientists have worked
to understand how the motor cortex produces arm
movements in healthy individuals. Understanding
how movement occurs naturally can inform the
design of technologies like iBMI to improve the
quality of life for individuals with injury or dis-
ease.

Primary motor cortex (M1) has long been
thought to be an ideal location for recording
BMI control signals because it is involved in
generating voluntary movements (Fig. 5.7).
However, other brain areas also have signals
related to aspects of movement. For example,
premotor cortex (PMd) has movement planning
signals, and posterior parietal cortex (PPC) has
been shown to be involved in the transformation
from visual representations of reach goals to the
movement itself. The brain’s “sensory areas”
also often reflect internal representations of
stimuli and movements. Each of these brain
areas is comprised of neurons that modulate their
activity in association with different aspects of
movement. Thus, there are neural signals from
many brain areas that could be used as the input
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Fig. 5.6 The Utah array is a 100-electrode microelectrode array that is commonly used to record neural signals for
iBMIs. (Credit: Utah Array- ©2019 Blackrock Microsystems)
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Fig. 5.7 Lateral (left) and medial (right) views of a human brain with some of the brain areas involved in motor control
highlighted

to an iBMI depending on the type of information
to be extracted and the decoding algorithm.

The desired use of the BMI helps determine
the choice of brain area from which to record
the input signal. Recordings from primary
motor cortex (M1), dorsal and ventral premotor
cortex (PMd and PMv), supplementary motor

area (SMA), posterior parietal cortex (PPC),
and primary somatosensory cortex (S1) can all
contribute information to real-time predictions of
hand position, velocity, grip force, and muscle
activity [5]. However, the different cortical
areas vary in the quality of their predictions
of different aspects of movement. Thus, the
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source of the input signal should be a brain area
which is informative about the desired aspects of
movement.

One way to design a BMI that controls the
movement of a device in a natural way would be
to mimic how the brain controls arm movements.
To do this requires an understanding of how the
brain produces arm movements. However, for the
purposes of a BMI, we can do quite well by
just considering how neural signals are corre-
lated with different aspects of movement. There
is a debate in the field of motor control research
about whether M1 generates arm movements by
directly controlling muscle activity or by signal-
ing aspects of movement like position, velocity,
and acceleration that are then transformed into
muscle activity by downstream neural networks
such as the spinal cord. There is evidence for
both representations, which can be summarized
by the results of two seminal studies. The first
was an experiment performed by Ed Evarts in
awake behaving monkeys [14]. He trained mon-
keys to make wrist flexion and extension move-
ments against opposing or assistive loads while
recording single-neuron activity in M1 and mus-
cle activity (EMG). The experimental design dis-
sociated the movement itself from the force re-
quired to produce it. For example, a given flexion
displacement under an opposing load required
greater activity of the wrist flexor muscles than
under an assistive load. The experimental results
showed that force was reflected in the firing rate
of the M1 neurons he recorded. Thus, activity
in the motor cortex reflects kinetic aspects of
movement, i.e., force or muscle activity.

The second relevant study was an experiment
by Georgopoulos and his colleagues in which
they found that most (75%) of the neurons they
recorded had a firing rate which varied with the
direction of hand movement [15]. Neural sig-
nals in M1 were recorded while a monkey made
reaches from the center of a workspace out to
eight peripheral targets. The relationship between
firing rate and direction looked like a sinusoid and
could be described by the equation

y = b +m cos
(
θ − θ−→p

)
(5.1)

where y is the firing rate of the neuron, b is its
baseline firing rate (i.e., the mean firing rate),m is
the modulation depth (i.e., the difference in firing
rate between the baseline firing rate and the max-
imum firing rate), θ is the direction of movement,
and θ−→p is the direction of movement that elicited
the highest firing rate (i.e., the neuron’s preferred
direction). This study showed that, in addition to
reflecting forces and muscle activity, M1 activity
also reflects the direction of arm movement.

Since these experiments, a number of groups
have reported a correlation between M1 firing
rates and various kinematic variables, including
direction and distance of targets, as well as di-
rection, speed, and spatial path of hand displace-
ment. Other groups have found M1 firing rates
to be related to forces and even to muscle activ-
ity. It appears that M1 includes a heterogeneous
representation of both the kinematics and kinetics
of limb movements. The good news, from the
perspective of designing an iBMI, is that either
representation can be exploited as a BMI control
signal, depending on the intended function of the
device. If we can accurately extract information
about the position, velocity, or acceleration of
the desired movement from the neural activity,
that type of control signal can be used to move
the robotic arm. If we can accurately extract in-
formation about muscle activity from the neural
activity, that control signal can be used to drive
muscle stimulators.

The control signal for a BMI output device
could conceivably be any of the aspects of move-
ment with which neural signals are correlated.
Most current BMIs utilize kinematic signals to
control external actuators such as computer cur-
sors or robotic limbs. We can drive robotic limbs
because kinematics (i.e., position and velocity)
can be directly decoded from neural activity and a
kinematic signal could drive the endpoint position
of the limb (see Sects. 5.3 and 5.4). BMIs could
also take advantage of the kinetic (i.e., force-
related) signals in M1. A demonstration of a
kinetic BMI is cortically controlled stimulation
of paralyzed muscles. We can reanimate the arm
because muscle activity can be directly decoded
from neural activity and a kinetic signal could
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control electrical stimulation of paralyzed muscle
tissue (see Sect. 5.5).

The decision about which brain area one
should record from should take into account
which aspects of movement are best suited for the
intended type of control. A kinetic BMI, like one
to control stimulation of muscles, would benefit
from a muscle-like input signal. Such a BMI is
likely to be implanted in M1, which has shown
strong correlations to muscle activity. On the
other hand, a user who will be engaging primarily
in computer cursor control might benefit more
from an implant in an area of the brain that
strongly encodes kinematic signals, such as the
location of movement goals. Activity in premotor
cortex (PMd and PMv; Fig. 5.7) reflects target
positions [16, 17] and could function as the signal
source for a BMI to be used for a communication
interface involving target selection similar to
typing [18]. For endpoint control of a robotic
limb, it would be advantageous to decode a
kinematic signal such as hand position or velocity.
Although this has been most notably done with
signals from M1 [19], areas PMd, SMA, and S1
also contain information about hand position and
velocity [5].

5.3 Intracortical Spelling
Devices

The goal of a communication BMI is to provide a
means of communication for the user. This might
hold particular value for locked-in patients, who
are no longer able to speak. Ideally, we would
record neural signals from the parts of the brain
responsible for speech, decode the intended mes-
sage, and use that to drive a speech synthesizer
or a speech transcription program. However, the
neural encoding of speech is only now beginning
to be understood. Instead, current devices lever-
age our understanding of the neural representa-
tion of intended movements to design spelling
devices through control of an onscreen keyboard.
Users imagine reaching toward the letter they
would like to type. By decoding the intended
movement from motor and premotor cortex, it is
possible to infer which letter the person is trying

to type. Rather than solving the neural encoding
of speech, we only need to solve a classification
problem: of all the letters on the screen, which
character is the person trying to select?

In this section, we will describe classification
decoders, including an example of how to imple-
ment a classifier. We will discuss how to estimate
the model parameters of the classifier and how to
use the resulting classifier in a BMI context.

5.3.1 Classification Decoders

The goal of classification is to take an input and
assign it to one of K discrete classes (Fig. 5.8).
For an iBMI, the input is the spike counts across
a population of neurons (in Fig. 5.8, two neu-
rons are illustrated). We ask which of K discrete
movements most likely corresponds to the user’s
intended movement. To begin, we need labeled
training data. For example, we could record a
user’s neural activity while he or she imagines
reaching to various letters displayed like keys on
a keyboard, as instructed by the experimenter. As
shown in Fig. 5.8a, the training data consists of
the class label (i.e., the imagined letter, depicted
as different colors) and the value of each data
point (i.e., the activity of two neurons, y1 and y2).
In the training phase, we fit a probability model
to the training data, a process we will describe
in detail below. This training phase defines a set
of decision boundaries between the classes (Fig.
5.8b). Once the classifier has been trained, we can
then use the classifier to predict the label of a new
data point (Fig. 5.8c). We do this by comparing
where the data point falls relative to the classi-
fier’s decision boundaries. In the example shown
in Fig. 5.8c, the new data point would be assigned
to class 3.

Before we describe how a classifier works in
detail, let’s start with a simplified example to
build intuition. In this example, the iBMI user is
typing one of three different letters, either “E,”
“Q,” or “A,” while we record activity from a
single neuron (y). First, we ask the user to re-
peatedly imagine reaching to the letter “E” while
we record the neuron’s spiking activity. Because
neurons are noisy, the neuron’s spike counts will
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Fig. 5.8 (a) To train a classifier, we collect a set of labeled
training data, consisting of a set of data points where each
data point consists of values, y1 and y2, along with their
corresponding class labels, depicted here as the color of
each data point. (b) The classifier uses the training data to
create a set of decision boundaries (black lines) that divide

the different classes of data points into different regions.
(c) Given a new data point (open circle) for which we do
not know the true class label, the classifier will predict the
class of that new data point using its decision boundaries.
In this case, the new data point would be assigned to class 3

not be exactly the same every time (Fig. 5.9a).
Instead, we obtain a distribution that reflects the
conditional probability of measuring a particular
spike count given that the person is intending to
reach to the letter “E” (Fig. 5.9b), here idealized
as a Gaussian distribution. We can repeat this
process for the letter “Q” and again for the third
letter, “A.”

How can we use this spiking activity to build a
classifier that will classify the letter a user intends
from only the neural activity? First, let’s suppose
the neuron spiked 30 times. We would probably
guess that the user was intending to reach to the
“A” because that is the letter that is the most prob-
able for that spike count. Similarly, if the neuron
spiked five times, by comparing the probability
distributions, wewould guess that the user was in-
tending to reach to the “E.” In general, we would
like our classifier to predict the most likely letter
given the recorded spike counts by comparing
the measurement to the conditional distributions
of the neural activity. If we recorded 20 spikes,
what letter would we guess the user intended?
This time it is not obvious because intending
to reach to either the “Q” or the “A” would be
equally likely to generate that measurement. Now
suppose we repeated this exercise for a second
neuron. Neuron 2 will also have spike counts
for which the classification will be unambiguous
and spike counts for which the classification is

ambiguous. In general, the range of ambiguous
spike counts of the two neurons will not overlap
because neurons have different preferred stimuli.
Thus, adding even just one more neuron will
likely enable our classifier to make a more ac-
curate guess about the intended letter. Similar
to the single-neuron example, we can estimate
the distribution of spike counts of two (or more)
neurons conditioned on the user’s intentions to
select each of the three letters (Fig. 5.9c). Now,
the distribution of spike counts corresponding to
each letter is a region in a plane (for two neurons)
or in an N-dimensional space for N neurons. This
looks very much like the scenario depicted in Fig.
5.8 for which classifiers are designed.

Now that we have established some intuition,
let’s talk about how to implement the classifier
using a probability model. Here we’ll suppose
that the user is typing one of K different letters,
which we’ll refer to as c1, c2, . . . , cK . (In the
above example, we had K = 3, with c1 = “E,”
c2 = “Q,” and c3 = “A”). While the user is
intending to type these different letters, we record
the spike counts, y ∈ Rd, from d different neurons.
To build the classifier, we would like to be able to
predict which letter, ck, the user was most likely
intending just from observing the neural activity,
y. In other words, we want to know P(ck | y).
What our training data provides, however, is the
reverse: the distribution of spike counts given the
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Fig. 5.9 (a) A user imagines typing the letter “E” many
times while neural activity is recorded from one neuron.
We can plot the neural activity across time as a raster plot,
in which each row is a trial and each mark represents the
time that a spike occurred. We count the spikes occurring
within a given window (black box) and repeat this process
for other letters (e.g., “Q” and “A”). (b) We can plot the
conditional distribution of spike counts we recorded given
that the user imagined typing the letter “E” (red), “Q”
(black), or “A” (blue). For each letter, we will likely see

a different distribution of spike counts, here idealized as
Gaussians. (c) If we record from a second neuron’s spike
counts simultaneously, we can plot the joint distribution
of spike counts in both neurons for each letter. For each
set of spike counts, we can fit a multivariate Gaussian
to the data by estimating the mean (unfilled circle) and
covariance (ellipse). Adding additional neurons will likely
improve our ability to discriminate which letter the user
was imagining

intended letter,P(y | ck). Additionally, becausewe
know the true letters the user was intending in the
training data, we also know P(ck), the proportion
of data points with a given class label. We can
relate all of these terms using Bayes’ rule:

P (ck|y) = P (y|ck )P ( ck)
P (y)

(5.2)

To predict the letter the subject was intending
given the neural activity y, we will simply choose
the class (k) that has the largest value of P(ck |
y). This is similar to how in our single-neuron
example, we chose the letter that had the highest
probability in Fig. 5.9b. To write this mathemati-

cally, given y, the classifier will predict the class
as follows:

k̂ = argmax
k

P (ck|y) = argmax
k

P (y|ck) P (ck)
P (y)

(5.3)

We can ignore the denominator in Eq. 5.3 because
P(y) is the same for every class k, so it does not
affect which k yields the maximum.

Equation 5.3 tells us how we can predict the
letter the user was most likely intending, given
only the spiking activity, y. The right-hand side of
the equation includes two terms: the conditional
probability of spiking given the intended letter,
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P(y| ck), and the prior probability of each letter,
P(ck). We now discuss how we can use our train-
ing data to estimate these two quantities.

Let’s begin by discussing the first term. What
we would like is to use the training data to de-
scribe the distribution of neural activity observed
for each letter. In Fig. 5.9b, c, we note that a Gaus-
sian captures the first and second moments (i.e.,
mean and covariance) of the distribution of neural
activity. This means when the user is intending a
particular letter (e.g., ck = “E”), the distribution
of observed spike counts (y) can be described by
a Gaussian with a mean and covariance:

P (y|ck) = N (μk,Σk) (5.4)

where y ∈ Rd is a vector of spike counts from
a population of d neurons, μk describes their
mean spike counts, and the covariance matrix �k

describes any correlations that might exist among
neurons. To estimate these mean and covariance
parameters, we seek to find the parameters μk
and �k that maximize the probability of hav-
ing observed the activity that we observed. This
widely used procedure is known as maximum
likelihood estimation (MLE). Let’s suppose we
have N examples (or trials) of recorded neural ac-
tivity, {y1, . . . , yN} when the user was imagining
typing the same letter ck. Then the probability of
recording a particular yi (i.e., on a single trial) is

P (yi |ck) = (2π)−d/2|Σk |−1/2e−(yi−μk)�Σk
−1(yi−μk)/2

(5.5)

Assuming the neural activity recorded across
trials is conditionally independent, the probability
of observing {y1, . . . , yN} is the product of ob-
serving each individual trial:

P (y1, . . . , yN |ck) =
∏N

i=1
(2π)−d/2|Σk|−1/2·

e−(yi−μk)
�Σk

−1(yi−μk)/2

(5.6)

This joint probability indicates the “likeli-
hood” of observing the spike counts given that
the true parameters were μk and �k. For this, we
write

L
(
μk,Σk; y1, . . . , yN,ck

) = P (y1, . . . , yN |ck)
(5.7)

The approach of maximum likelihood estimation
is to choose the parameters most consistent with
the observed data. In other words, we will choose
the parameters that maximize the probability of
the neural activity that we observed:

μk,Σk = argmax
μ,Σ

L (μ,Σ; y1, . . . , yN, ck)
(5.8)

By maximizing the log likelihood function for
each class k, we can find μk, �k for each of the
distributions P(y| ck). We would find (with a few
lines of math, omitted here) that the parameters
μk, �k are the sample mean and sample covari-
ance of the spike counts recorded with class k:

μk = 1

N

∑N

i=1
yi (5.9)

Σk = 1

N

∑N

i=1
(yi − μk) (yi − μk)

� (5.10)

If we had assumed that the covariance of neu-
ral activity was the same across classes (i.e.,
�1 = �2 = . . . = �k), it can be shown that
the resulting decision boundaries between classes
are linear, as shown in Fig. 5.8c. As a variant of
this Gaussian classifier, we could instead describe
the distributions of neural activity P(y| ck) using a
Poisson distribution and perform the same MLE
procedure to estimate its parameters.

The other term we need to know in order
to implement the classifier is P(ck), the prior
probability of each class. This is the probability
that a user is likely to want to type each letter
without having observed any neural activity. For
example, in the English language, “E” is a much
more common letter than “Q,” which means we
should expect to observe “E” more often than
“Q.” Or, imagine that instead of typing letters,
the goal was to select among different icons on
a computer screen. It might be that each icon is
expected to get the same amount of use. In this
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case, P(ck) = 1/K for each k = 1, . . . , K. Using
Bayes’ rule, the classifier accounts for the prior
probability when making its predictions (see Eqs.
5.2 and 5.3).

As an example of using a classification de-
coder in a BMI setting, researchers recorded neu-
ral activity from premotor cortex in monkeys
to predict the intended reach target from neural
activity while a monkey planned a reach [20]. The
researchers assumed that neurons were Poisson
and conditionally independent of one another.
They then decoded themost likely target given the
observed neural activity using a method similar
to the approach described above. In this case, the
monkey made arm reaches to each of eight targets
that were equally likely by design. The classifier
successfully decoded the correct target from the
neural activity on 90% of the trials. This work
was the first demonstration that neural activity
recorded during the movement planning period
could be decoded as a useful control signal for
a classification iBMI.

Performance of classification decoders is as-
sessed based on the speed and accuracy of target
selection. In general, fast and accurate classifica-
tion is difficult because neural activity is variable
(cf. Fig 5.9a). The approach is to average the neu-
ral activity over a longer window of time. Because
neural variability is Poisson-like, averaging over a
longer window reduces the “noise” and results in
a more accurate prediction of the target. However,
with longer time windows, fewer predictions are
made each second, resulting in slower decoding.
There is a speed accuracy trade-off that makes the
choice of the particular duration and placement of
the time window an important design choice.

Rather than evaluating BMI performance on
accuracy alone, one should include somemeasure
of speed as well. One metric that is often used
for this purpose is the information transfer rate
(ITR; [18]). ITRmeasures howmuch information
is conveyed per unit time. ITR increases with
window duration but then decreases (Fig. 5.10).
This is because ITR takes into account both how
accurately and how quickly each target is se-
lected. Accuracy fails to increase rapidly enough
to overcome the slowdown in target selection rate
with longer window durations. An intracortical
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Fig. 5.10 The relationship between single-trial decod-
ing accuracy and information transfer rate (ITR). Per-
formance was measured during iBMI experiments for a
four-target configuration and an eight-target configuration
across varying trial lengths. Each data point represents
performance calculated from one experiment (hundreds of
trials). (Adapted from Santhanam et al. [18])

classification decoder can convey 6.5 bits per
second or 2–3 targets per second with greater
than 90% accuracy. This would allow users to
type at a speed of 15 words per minute. While
this is an improvement over noninvasive BMIs,
this is not yet up to the average typing speed
of 40 words per minute. State-of-the-art commu-
nication BMIs, such as the one shown in Fig.
5.3, combine discrete and continuous decoders.
We will discuss continuous decoders in the next
section.

5.4 Intracortical Control
of Continuous Effectors

In the spelling device, and in classification de-
coders in general, we decode the intended target
(or letter) directly from the neural activity. How-
ever, if we want to control a robotic arm, we need
to specify the path that the arm will take so that,
for example, the user can prevent the arm from
bumping into objects in theworkspace. To specify
the reach trajectory, we need to decode the evolu-
tion of the desired movement at progressive time
steps. In other words, we need a continuous de-
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coder. Accurate decoding of a continuous control
signal is necessary for controlling not only robotic
arms but also computer cursors or a patient’s
own paralyzed limb. In this section, we discuss
three continuous decoders for BMI control: the
population vector algorithm, the optimal linear
estimator, and the Kalman filter. Variations on the
Kalman filter are the current state of the art for
continuous decoders.

5.4.1 Population Vector Algorithm

One of the first continuous decoders was the
population vector algorithm (PVA). The PVA
was proposed by Apostolos Georgopoulos in
the 1980s as a way of decoding movement
direction from a population of neurons. As
mentioned in Sect. 5.2, the firing rates of
neurons in motor cortex reflect the direction of a
reach, as the relationship between a neuron’s
firing rate and the arm’s reach direction is
approximately cosine tuned (Fig. 5.11). This
means that there is a reach direction for which the
neuron fires maximally. We refer to this direction
as the neuron’s “preferred direction,” θ−→p . The
neuron’s firing rate decreases gradually as the
reach direction moves away from this preferred
direction. Different neurons have different
preferred directions, so together the activity of
a population of neurons can uniquely specify the
arm’s direction of movement. Specifically, when
the arm is moving in a particular direction, θ , we
can describe the firing rate, y, of one neuron as
shown in Eq. 5.1. The firing rate is linearly related
to cos

(
θ − θ−→p

)
, and this relationship is the basis

of PVA. In motor cortex, studies have used cosine
tuning to describe movement direction, velocity,
speed, position, force, and torque. Cosine tuning
has also been used to describe neural activity in
other nonmotor brain areas.

The fact that a neuron’s firing rate has a sys-
tematic relationship with reach direction suggests
that we can accurately decode a subject’s in-
tended reach direction from the activity of a single
neuron. However, it is not easy to estimate di-
rection of movement from one cosine-tuned neu-
ron because there are multiple reach directions

associated with a given firing rate. In Fig. 5.11,
suppose that the neuron is firing at 30 spikes
per second. This could correspond to the subject
reaching at 0◦ (yellow) or 135◦ (cyan). As we saw
in the classification example above, the activity
of just one neuron can be ambiguous, but we can
solve this problem by recording from a population
of neurons in order to reduce uncertainty in our
estimate of the reach direction.

As its name suggests, the population vector
algorithm (PVA) utilizes the activity of a popula-
tion of neurons to estimate the desired movement.
Each neuron contributes a “push” in the direction
of its preferred direction. This push is weighted
by the neuron’s normalized firing rate, given by
wi = yi−bi

mi
, where yi is the measured firing rate

of neuron i, bi is the neuron’s baseline firing rate,
andmi is its modulation depth. The algorithm then
averages all of the neurons’ contributions together
to yield the resulting command. Mathematically,
the PVA decoder is a weighted vector sum of
each of the recorded neurons. Taken together, the
prediction of the intended movement direction is
the resulting population vector.

Figure 5.12 shows a simple example of the
PVA using two neurons at one time point. Each
of the neurons has a different preferred direc-
tion (Fig. 5.12a). The preferred direction of the
neuron determines the direction of its push. The
red neuron will push “up,” while the blue neuron
will push “left” (Fig. 5.12b). The measured firing
rates determine the magnitude of the pushes (Fig.
5.12c). Let’s consider the firing rates specified by
the gray shaded box. The red neuron has a firing
rate of yred = 25 spikes per second. Given that this
neuron’s tuning parameters are bred = 35 spikes
per second and mred = 15 spikes per second,
the magnitude of the red neuron’s push is then
wred = − 0.66. This contribution is negative, so
its push is now “down.” Let’s repeat this process
for the blue neuron. The blue neuron has a firing
rate yblue = 45 spikes per second. Given that this
neuron’s tuning parameters are bblue = 35 spikes
per second and mblue = 15 spikes per second,
the magnitude of the blue neuron’s push is then
wblue = 0.66. This contribution is positive, so its
push stays “left.” Taking the weighted sum of the
two pushes, the population vector points down
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Fig. 5.12 A two-neuron example of the population vector
algorithm. (a) Tuning curves of the two neurons (red
and blue). (b) Each neuron contributes a push in the
direction of its preferred direction. (c) The magnitude of

each neuron’s push is determined by its firing rate. (d)
The population vector algorithm outputs a resultant vector
represented by the black arrow that is the weighted sum of
each neuron’s push

and to the left, corresponding to a movement of
around 225◦ (Fig. 5.12d). This procedure repeats
at each time point, as the activity of the neurons
varies over time.

In a BMI use scenario, the goal is to record
neural activity from a population of neurons and
convert it into the position of a cursor on a screen
over time. In contrast to the classification de-
coders of the previous section, here we decode
the cursor position at each point in time. This
provides the user with continuous control over the
trajectory that the cursor takes.

The PVA is a biologically inspired decoder,
where the idea is that perhaps neurons in mo-

tor cortex cause slight contractions of muscles
that push the arm in their preferred directions.
However, PVA suffers from statistical biases: if
there is a nonuniform distribution of preferred
directions in the recorded neural population, the
PVAwill systematically misestimate the intended
reach direction. In practice, it is rare to record a
population of neurons with a uniform distribution
of preferred directions. While this bias can be
mitigated by recording from a large number of
neurons or by sub-selecting neurons that have
a uniform distribution of preferred directions, a
better approach is to use an unbiased decoding
algorithm. The optimal linear estimator and the
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Kalman filter, both of which we will discuss
shortly, are examples of unbiased decoders.

5.4.2 Optimal Linear Estimator

As discussed above, if we do not have a uniform
distribution of preferred directions, we do not
want to use a PVA decoder. Instead, we should
specify a statistical model that describes the re-
lationship between the intended movement and
the activity of each neuron. This encodingmodel,
a probabilistic description of how neural activity
(y) varies based on the intended movement (x),
is written as P(y|x). The encoding model has
parameters which are estimated during a decoder
calibration phase. Applying Bayes’ rule, we can
then use this encoding model to create a decod-
ing model, P(x|y), which is our estimate of the
intended movement given the observed neural
activity.

An example of an unbiased continuous de-
coder is the optimal linear estimator (OLE). The
OLE makes two assumptions: that firing rates
are linearly related to intended movement and
that neural variability is described by a Gaussian
distribution. We can rewrite the cosine tuning
model in matrix form:

yt = b0 + Bvt + εt , εt ∼ N (0,Σ) , (5.11)

where yt is the n × 1 vector of firing rates from n
neurons, b0 is the n × 1 vector of baseline firing
rates, B is the n× 2 matrix of tuning coefficients,
vt is the 2× 1 intended velocity, and εt is the n× 1
noise vector.

We can now ask a question that is very similar
to the classification problem we solved in Sect.
5.3: What is the most likely velocity given a
measurement of firing rates from our population?
From our encoding model (Eq. 5.11), we know
the probability of the firing rates given the in-
tended movement direction:

P (yt | vt ) = (2π)−n/2|Σ |−1/2

exp

(
−1

2
(yt − Bvt − b0)

�Σ−1(yt − Bvt − b0)

)

(5.12)

In theOLE, our estimate of velocity is the velocity
that maximizes the above probability with respect
to the observed neural activity. This velocity is

v̂t = (BTΣ−1B
)−1

BTΣ−1 (yt − b0) (5.13)

Note that this estimate of velocity is a linear
function of the recorded firing rates. Further, the
OLE decoder corrects for any nonuniformity in
the distribution of preferred directions, resulting
in an unbiased estimate of intended velocity. This
is why this decoder is called the optimal linear
estimator.

Which decoder should we implement, a PVA
decoder or an OLE decoder? The PVA decoder is
simpler than statistical approaches like OLE, but
the OLE decoder is optimal given the specified
encoding model. Empirically, if we were to use
each decoder to reconstruct arm trajectories, we
would see that OLE performs significantly better
than PVA and with fewer neurons [21]. However,
both decoders do comparably well in a BMI use
scenario because the users can incorporate feed-
back and correct errors quickly enough to com-
pensate for any theoretical differences in system
performance.

5.4.3 Kalman Filter

Is it possible to do even better? Both PVA and
OLE estimate movement velocity given only the
neural activity. But there is other information we
could also incorporate into our estimates. For
instance, we know that the cursor or arm should
move smoothly. During arm reaches, the arm can-
not teleport from one location to another instanta-
neously. Rather, there are finite constraints to the
accelerations and decelerations that muscles can
produce. We can use this information about the
kinematics of the arm during natural reaching to
influence how we allow our estimate of the de-
sired trajectory to change with time. As a simple
example, if we know where the arm is currently
(current state), and how fast the arm is moving
(state dynamics), we can predict where the arm
will go next (future state). To use this information
to improve our ability to decode arm velocity, we
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need to combine it with the information we have
from the neural activity.

Consider trying to track a satellite. What
sources of information might we use to do so?
We could simply measure its position. But what
if it goes behind a cloud or over a region of
Earth with no sensors? We could potentially use
Newton’s laws to predict the satellite’s trajectory.
But what if something collides with our satellite
and changes its course? Intuitively, the best way
to track a satellite would be to combine our
measurements and our predictions, weighting
each source of information according to how
reliable it tends to be.

These are the intuitions captured by the
Kalman filter: it predicts the current state of a
system based on our estimate at the previous state
combined with new observations of data. The
two key components of a Kalman filter are a state
model that describes how the movement evolves
over time and an observationmodel that describes
how the observations relate to the movement. The
way the state and observation models combine
can be visualized graphically as in Fig. 5.13, with
the red arrows indicating the state model and the
black arrows indicating the observation model.

We outline below how these two models are
combined to update our predictions at each time
step t. The Kalman filter is based on linear-
Gaussian relationships. First, we define the
observation model:

xt-2 xt-1 xt

yt-2 yt-1 yt

Fig. 5.13 Graphical model of a Kalman filter. Each verti-
cal slice represents a time step. The nodes in red represent
the state (e.g., movement velocity), while the nodes in blue
represent the observations (e.g., spike counts). Each arrow
represents a probabilistic relationship between the nodes

yt = Bxt + εt , εt ∼ N (0,Σ) (5.14)

where yt ∈ Rn × 1 is the vector of spike counts
measured from all n neurons at time step t,
B ∈ Rn × d is the matrix of tuning coefficients,
xt ∈ Rd × 1 is the vector of the intended movement
kinematics (e.g., cursor velocity) at time step t, d
is the number of kinematic variables (e.g., d = 2
for a two-dimensional velocity), and εt ∈ Rn × 1 is
the vector of additive Gaussian noise, drawn from
a distribution with mean 0 and covariance matrix
� ∈ Rn × n. Note that this is the same observation
model that the OLE uses (Eq. 5.11), with two
exceptions. First, we have assumed that the
baseline, b0 from Eq. 5.11, is already subtracted
from the spike counts. This just simplifies the
derivations below. Second, we denote the state
as x instead of v, as it is common to incorporate
other kinematic variables in addition to velocity,
such as the position and acceleration, in a Kalman
filter. Though for simplicity, we will assume that
x contains only velocity in what follows.

The state model is defined as

xt = Axt−1 + ωt, ωt ∼ N (0,Q) (5.15)

where A ∈ Rd × d describes how the velocity
evolves from one time step to the next, ωt ∈ Rd × 1

is additive Gaussian noise to the velocity, and
Q ∈ Rd × d is the covariance matrix of the velocity
noise. Notice how in the observation model (Eq.
5.14), the current state is linearly related to the
observed neural activity and in the state model
(Eq. 5.15), the state at time t is linearly related to
the state at time t − 1.

To calibrate the decoder, we estimate the pa-
rameters B, �, A, and Q in the observation and
state models. Typically, in a decoder calibration
session, the neural activity is recorded, while the
states of the arm or cursor are known. This can
be done in a number of ways. Some decoders
are calibrated based on arm movements. Other
decoders are calibrated by moving a cursor on the
screen and having the user intend or imagine that
they are moving the cursor. In this way, the state
of the cursor is known or assumed during decoder
calibration. Because Eqs. 5.14 and 5.15 are linear-
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Gaussian, when both the states and neural activity
are known, we can find the parameters using
multivariate linear regression on the calibration
data. We leave the derivation of the equations
for the parameters from the observation and state
models to homework problem #7.

How do we use these models to decode move-
ment trajectories from neural activity for a BMI?
What we would like to know is P(xt| y1, . . . , yt),
which describes the probability of the intended
movement velocity at a particular time step given
all of the recorded neural activity up to that time
step. The decoded movement is the movement
that maximizes this probability.

To decode the movement velocity at all time
steps, we will compute P(xt| y1, . . . , yt) sequen-
tially starting from t = 1. In order to do this, we
will first need to find P(xt| y1, . . . , yt − 1). This is
called a “one-step prediction” and can be found
from the previous time step and the state model
as follows:

P (xt |y1, . . . , yt−1)

=
∫
P (xt |xt−1) P (xt−1|y1, . . . , yt−1) dxt−1

(5.16)

This equation describes our current estimate
of the movement velocity at time t given all of
our observations up to time t − 1, along with
our knowledge of how the movement kinematics
evolve over time. That is, it’s a prediction of
where the state may have gone since our last
measurement. We then augment this prediction
with a “measurement update” that describes how
this prediction changes when we observe yt:

P (xt |y1, . . . , yt ) = P (yt |xt ) P (xt |y1, . . . , yt−1)

P (yt |y1, . . . , yt−1)

(5.17)

The one-step prediction and measurement
update (Eqs. 5.16 and 5.17) are general. They can
be used for any state and observation model
as long as the graphical model is as shown
in Fig. 5.13.

For the particular state and observation models
defined in our example (Eqs. 5.14 and 5.15), we
can simplify Eqs. 5.16 and 5.17. Because the
relationships in our state and observation models
(Eqs. 5.14 and 5.15) are linear-Gaussian, this
means that all of the relevant marginal, condi-
tional, and joint distributions are also Gaussian.
Thus, all we need to do is compute the mean and
covariance of each distribution.

We start with the state estimate at the
previous time step t − 1, P(xt − 1| y1, . . . , yt − 1).
Let its mean and covariance be μt − 1 and
Φ t − 1, respectively. The mean and covari-
ance of the one-step prediction distribution
are μ−

t = E [xt |y1, . . . , yt−1] and �−
t =

Var [xt |y1, . . . , yt−1]. We can solve for these by
plugging the state model into Eq. 5.16:

μ−
t =AE [xt−1|y1, . . . , yt−1]

+ E [ωt |y1, . . . , yt−1] = Aμt−1

(5.18)

Similarly, for the covariance:

�−
t = Var [Axt−1 + ωt |y1, . . . , yt−1]

= A�t−1A
T +Q

(5.19)

In the measurement update, we use the new
observation yt to update the one-step prediction to
compute the state estimate at the current time step
t, P(xt| y1, . . . , yt). Let its mean and covariance be
μt and Φ t, respectively. To compute μt and Φ t,
we first obtain the joint distribution of xt and yt
given y1, . . . , yt − 1. Using the one-step prediction
and the observation model, we find:

[
yt | y1, . . . , yt−1

xt | y1, . . . , yt−1

]

∼ N

([
Bμ−

t

μ−
t

]
,

[
B�−

t B
T +Σ

�−
t B

T

B�−
t

�−
t

])

(5.20)

Then, using the theorem of conditioning for
jointly Gaussian random variables, we can solve
for
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μt = μ−
t +Kt

(
yt − Bμ−

t

)
(5.21)

�t = (I −KtB)�
−
t (5.22)

where the Kalman gain Kt is the d × n matrix:

Kt = �−
t B

T
(
B�−

t B
T +Σ

)−1
(5.23)

The Kalman gain indicates how much the mea-
surement influences the update. When the uncer-
tainty in the measurement is large compared to
uncertainty in the state estimate, the Kalman gain
is small. On the other hand, when uncertainty
in the measurement is small compared to uncer-
tainty in the state estimate, the Kalman gain is
large.

To summarize, we implement the Kalman fil-
ter by iterating between the one-step prediction
(Eqs. 5.18 and 5.19) and the measurement update
(Eqs. 5.21 and 5.22) for time steps t = 1, . . . ,
T. Using this procedure, we obtain the estimated
kinematics μt that is used to move the computer

cursor or robotic limb at each time step t. Φ t is
the uncertainty around that estimate. These steps
are illustrated in Fig. 5.14.

The Kalman filter and OLE have advantages
over methods such as PVA because their
assumptions are made explicitly and they provide
an uncertainty around the state estimate. Having
explicit assumptions means that we can easily
change our assumptions and derive a different
continuous decoder. In practice, the leading iBMI
decoders in the field today are variants of the
Kalman filter.

An example of a high-performance closed-
loop iBMI [22] using a Kalman filter is illustrated
in Fig. 5.15. This approach involved two key
modifications to the basic Kalman filter. First, the
experimenters assumed that the user intended to
produce velocities straight to the instructed target
at every time step, rather than produce the cursor
velocities that were actually decoded (red vectors
in Fig. 5.15) following the original calibration.
They used this information to improve the de-
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(xt = velocity)
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time t
N(μt, Φt)

N(μt, Φt) N(μt, Φt)
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Fig. 5.14 Implementing a Kalman filter. (a) At each time
step t, we update the cursor’s position (black circles) by
adding to it the cursor velocity, xt, which we estimate
using a Kalman filter (panels b–e). (b) At time step t − 1,
we have an estimate of the previous state of the cursor
velocity, a Gaussian with mean μt − 1 (pink dot), and a
covariance �t − 1 (pink ellipse). (c) At time step t, we
first update the estimated velocity distribution using our
Kalman state model, according to the one-step predic-

tion. (d) When we observe a new measurement of neural
activity, yt, the Kalman observation model provides us
with additional information about the likelihood of the
intended cursor velocity. (e) In the final step, we use
the measurement update to combine the two sources of
information about cursor velocity to arrive at our final
estimate of the cursor velocity μt, which is then used to
update the position of the cursor in panel a
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Fig. 5.15 Top: A series of cursor positions (black circles)
and cursor velocities (red vectors) from an example trial on
which the user was trying to navigate a cursor toward the
target (yellow circle). Axes are the horizontal and vertical
position in the BMI user’s workspace (e.g., as seen on a
computer screen). Bottom: Decoding with a Kalman filter
can be improved by assuming that the user was trying
to produce a velocity straight to the instructed target at
every time step. Rather than calibrating the decoder on
the observed cursor kinematics (red vectors), the assumed
kinematics are obtained by rotating the observed velocities
toward the instructed target (purple vectors). The estimate
of intended kinematics is regressed against neural activity
to obtain the parameters of the ReFIT-KF

coder by rotating the decoded cursor velocities
to point toward the target (purple arrows in Fig.
5.15) and using the resulting velocities in a sec-
ond round of calibration. This requires knowledge
of the intended target during the decoder calibra-
tion phase. The second change was a causal inter-
vention in which the feedback the user received
about the cursor position was taken to be known
with no uncertainty. Doing so meant that the
user’s estimate and the algorithm’s estimate of the
cursor position were the same, effectively remov-
ing the uncertainty in the cursor position. Taking
these changes together, they called their extension
of the Kalman filter the recalibrated feedback

intention-trained Kalman filter or ReFIT-KF [22].
Compared to a standard-velocity Kalman filter,
the ReFIT-KF increased performance by reducing
the time required to move a computer cursor to hit
a target. The ReFIT-KF is currently being used in
clinical trials (Fig. 5.3).

5.5 Reanimating Paralyzed
Limbs

Our vision is that one day paralyzed people will
walk, shake hands, interact with objects, and
overall behave in a manner that is virtually
indistinguishable from healthy individuals.
Although this goal is far from realized, ongoing
research is promising. Consider the development
of the pacemaker over the past 50 years. The
original pacemaker recipient was confined to
a wheelchair due to the extensive externalized
devices and required daily maintenance from
trained care givers. With the assistance of
the pacemaker, he lived another 43 years and
passed away at 86 from causes unrelated to his
heart. These days one would be hard-pressed to
determine who has a pacemaker and who does
not without an X-ray machine. We anticipate a
similar development for iBMI systems.

Most current iBMIs decode kinematic control
signals, such as desired velocity, in order to con-
trol a computer cursor or a robotic arm. As an
output device, robotic arms are most appropriate
for amputees, but many potential iBMI users have
intact limbs. If we could decode desired muscle
activity directly from the brain, we could use
functional electrical stimulation (FES) to directly
activate a patient’s muscles to reanimate their
own limbs. This would allow a person with paral-
ysis to regain the ability to interact with the world
with their own limbs. Although FES applications
have been developed for upper and lower ex-
tremity function, bowel and bladder control, and
respiratory function, here we will focus on FES
for grasping. In this section, we will describe
how to decode desired muscle activity and how
to deliver electrical stimulation to the muscles in
order to match that desired activity.
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5.5.1 Functional Electrical
Stimulation

Functional electrical stimulation (FES) is
neuromuscular stimulation used to restore motor
function to paralyzed limbs. This is possible
because neurons are electrically excitable. There
is an electric potential maintained across the cell
membrane. Physiologically, synaptic inputs to a
neuron cause a change in the membrane potential,
and action potentials are generated when the
membrane is depolarized past a certain threshold.
Electrical stimulation can artificially depolarize
the membrane in a similar way to generate action
potentials.

FES electrically stimulates the neurons that
are responsible for generating movement, called
alpha motor neurons. Alpha motor neurons com-

municate directly with muscles and are ultimately
responsible for generatingmovement. They cause
muscle contractions by releasing the neurotrans-
mitter acetylcholine at the synapse of the alpha
motor neuron onto skeletal muscle. This synapse
is termed the neuromuscular junction. Acetyl-
choline binds to receptors on the muscle fiber
and generates a muscular action potential that
causes the muscle to contract. Although the mus-
cle tissue itself is electrically excitable, most FES
systems target the alpha motor neurons because
they require less current to generate action po-
tentials than activating the muscle fibers directly
(Fig. 5.16). Thus, FES requires the alpha motor
neuron to be intact and the neuromuscular junc-
tion andmuscle to be healthy. These requirements
exclude patients with polio, amyotrophic lateral
sclerosis, peripheral nerve injuries, and muscular

M1

Alpha Motor
Neuron

Corticospinal
Tract

Spinal Cord

Muscle

X
Damage in 

patients with SCI

FES device

Fig. 5.16 Many neurons in M1 extend down the corti-
cospinal tract in the spinal cord and synapse either directly
onto alpha motor neurons or onto interneurons that in turn
synapse onto alpha motor neurons. Alpha motor neurons
synapse onto muscle fibers at a specialized contact known

as the neuromuscular junction. Spinal cord injury (SCI)
interrupts the connection between M1 and the muscles.
Functional electrical stimulation (FES) artificially gener-
ates action potentials at the alpha motor neuron to generate
movement in people who are otherwise paralyzed
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dystrophies. Patients who can benefit from FES
include those with spinal cord injury, stroke, head
injuries, cerebral palsy, or multiple sclerosis.

A single alpha motor neuron makes synapses
onto several (10–100) muscle fibers. These mus-
cle fibers are driven only by that single mo-
tor neuron. Small motor neurons innervate slow-
twitch, fatigue-resistant muscle fibers that pro-
duce low forces. Large motor neurons innervate
fast-twitch, fatigable muscle fibers that produce
large forces. Together, a motor neuron and the
muscle fibers it innervates are known as a motor
unit.

5.5.2 FES Systems

An FES system consists of a controller,
electrodes, and a stimulator. The controller
regulates the timing and intensity of the delivered
stimulation. Stimulation is delivered in the
form of pulses of current with waveform
patterns such as a square wave or a sine
wave. These waveform patterns are described
by their frequency, duration, and amplitude
(Fig. 5.17). Frequency refers to the number
of pulses per second. For FES applications,
typically low frequencies are used to produce
a smooth contraction at low force levels while
minimizing muscle fatigue. The time span of
a single pulse is the pulse duration or width.
Increasing pulse duration tends to recruit more
motor units. Stimulation amplitude describes
the strength of the current applied. The higher
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Fig. 5.17 Square pulse waveform

the amplitude, the stronger the depolarizing
effect. This recruits more neurons and results
in a stronger muscle contraction. Adjusting these
parameters changes the strength of the evoked
muscle contraction. Regardless of the particular
parameters, FES stimulation typically consists of
biphasic, charge-balanced pulses (i.e., the amount
of charge injected into the tissue is balanced by
the amount of charge drawn out of the tissue) to
minimize adverse effects on the tissue and the
electrodes.

FES electrodes are broadly of two classes:
surface electrodes and intramuscular electrodes.
Surface electrodes are positioned on the skin over
the targeted muscles. Intramuscular electrodes
are implanted near the neurons that innervate the
targeted muscles. Implanted electrodes have the
benefit of being able to recruit muscle fibers more
selectively, because they are positioned closer
to the neuromuscular junctions. However, sur-
face electrodes are less invasive and easier to
replace.

The majority of FES systems in use today
do not rely on cortical control signals but rather
rely on signals from intact, residual movements.
For example, quadriplegics can use a sip/puff
tube to control the initiation of a preprogrammed
stimulation pattern. Patients who have spinal cord
injuries at the level of the fifth to sixth vertebrae
of the cervical spinal column retain voluntary
control of the muscles above the injury and can
shrug their shoulders. Some systems detect the
electrical activity when these muscles contract
and use it as a control signal for the FES. This is
known as myoelectric control. One-dimensional
control signals such as these allow the user to
control only one degree of freedom. For example,
shrugging the shoulder might control the stim-
ulation to open or close the hand and control
the degree to which the hand opens and closes.
This ultimately limits the number of movements
to a few preprogrammed grasps. The first FES
system for grasp was developed in the 1960s. It
consisted of surface stimulation to open and close
the hand [23, 24]. Since then, advances in the
electrodes and stimulation paradigms have led to
implantable systems.
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To access a wider repertoire of movements and
ideally greater dexterity, a higher-dimensional
control signal is necessary. Using a cortical
control signal for FES would enable higher
degree-of-freedom control and thus more
complex movements. A cortical control signal is
also more natural because it taps into the neural
activity that controls muscle activity in normal
reaching. The goal is that, when the user thinks
about reaching, the brain-controlled FES would
generate a movement as seamlessly as a normal
reach.

5.5.3 Brain-Controlled FES

For a brain-controlled FES system, neural ac-
tivity is mapped to the stimulation of paralyzed
muscles. A simple way to do this is to have
the firing rate of a neuron directly control the
intensity of the simulation. A group at the Univer-
sity of Washington showed that monkeys could
modulate the firing rate of one or two neurons
to control the stimulation of temporarily para-
lyzed wrist muscles to flex and extend the wrist.
In this demonstration, when the firing rate of
the neuron crossed a certain threshold, current
was delivered through the FES in proportion to
the neuron’s firing rate, allowing the monkey to
produce graded muscle contraction force [25].
Brain control of more complex behaviors requires
more muscles and more neurons. However, it is
not as straightforward as controlling each muscle
with a different neuron because the activity of
neurons in primary motor cortex is correlated.
Instead populations of neurons are used to drive
the coordinated activity of the muscles.

We can measure the electrical activity in a
muscle while it is contracting. This technique is
called electromyography or EMG. The amplitude
of the EMG signal is a measure of motor unit
activity during muscle activation and is propor-
tional to the magnitude of muscle force. Themore
active motor units, the higher the measured EMG
amplitude and the greater the resulting force. For
brain-controlled FES, the goal is to decode the
EMG signal that would have naturally resulted

from the activity of the recorded M1 neurons and
then stimulate the muscles to artificially generate
that EMG.

As a proof of concept, researchers at North-
western University simultaneously recorded
EMG activity and neural activity in M1 from an
able-bodiedmonkeywhile themonkey performed
a reaching task [26]. They then used a linear
filter (Fig. 5.18a) with multiple inputs (i.e., the
recorded neural activity) to predict a single output
(i.e., EMG activity from one muscle). The filter
can be fit by minimizing the squared error of
the predicted EMG. The predicted EMG is a
weighted linear combination of the recent history
of neural responses from many neurons:

EMGlinear(t) =
N∑

k=1

L∑

l=0

wk,lyk (t − l) (5.24)

where l is a time lag, yk is the firing rate of neuron
k, N is the number of neurons in the population,
and wk, l is the weight that characterizes the effect
of neuron k’s firing rate at time (t− l) on the EMG
signal at time t. Typically, the time history is a few
hundred milliseconds in length.

A linear filter of this type does quite well at
predicting force signals and muscle activity but
often fails to capture specific features of EMG
signals. In particular, linear filters often fail to
capture the peaks of activity and adequately
characterize the quiescent periods between
movements. A nonlinear decoder can address
these issues, improving predictions by up to 10%.
One such option is a Wiener cascade, which is a
linear combination of the neural activity passed
through a static nonlinearity:

EMG(t) = P

(
w0 +

N∑

k=1

L∑

l=0

wk,lyk (t − l)

)

(5.25)

Here, P is a nonlinear function (e.g., often a poly-
nomial) and w0 is a bias term. The polynomial is
fit between the output of the linear filter and the
EMG activity (Fig. 5.18b). The static nonlinearity
acts to increase the gain of the peaks and decrease
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Fig. 5.18 Decoding muscle activity from neural activity. (a) Block diagram for a linear filter. (b) Block diagram of a
Wiener cascade. (c) Using a Wiener cascade to predict EMG activity

low-level noise. This is particularly important in
an FES application because it reduces unneces-
sary stimulation during the quiescent periods.

The group at the Northwestern University
further showed that the approach of predicting
EMG activity from neural population activity
could be used in a closed-loop iBMI-FES system
inmonkeys. They simultaneously recorded neural
activity in M1 and EMG activity while the
monkeys performed wrist movements or grasping
movements. They then temporarily paralyzed
the monkeys by injecting lidocaine around
the nerves innervating the forearm and hand
muscles. Temporarily paralyzed monkeys could
use the iBMI-FES system to control stimulation
of muscles in the forearm to flex and extend
the wrist and to grasp and release a ball (Fig.
5.19; [27]). This demonstration showed that a
brain-controlled FES system could allow for
more flexible and dexterous movements than

was possible with the preprogrammed grasps
available through existing FES systems.

Because people who are paralyzed cannot gen-
erate EMG activity, the aforementioned methods
(which require knowing the intended EMG activ-
ity) cannot be directly applied to train a brain-
controlled FES for these people. One way to
overcome this issue is to take advantage of the
fact that the patterns of muscle activity produced
in a given task (e.g., grasping) are stereotyped
between different individuals. To train a decoder
that predicts EMG, it is possible to use the EMG
activity measured from a healthy individual as a
template and record appropriate neural activity by
cueing the user to attempt to generate forces that
correspond to the EMG activity. This approach
was successful in monkeys [28], suggesting it
would be possible to use a similar approach to
train a brain-controlled FES for paralyzed people.

Indeed, a group from Case Western University
showed that a decoder for FES in a person
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Fig. 5.19 Grasp performance during four consecutive
trials in a iBMI-controlled FES ball grasp-and-release
task. (a) Neural activity plotted as a raster colored by
firing rate. (b) Predicted muscle activity (red) for two
muscles involved in flexing the fingers (flexor digitorum
superficialis, FDS; flexor digitorum profundus, FDP). The
predicted muscle activity was translated into stimulus
commands (black) executed by the stimulator. The vertical
dashed lines indicate the progression of successful trials:
a go cue (black dashed), the ball was picked up (blue
dashed), and the ball was released and the monkey was

rewarded (green dashed). When the iBMI-controlled FES
system is working well, the monkey modulates his neural
activity to drive the stimulation of his muscles, success-
fully completing the grasp to earn a reward (green dashed).
In addition, when the FES system is turned off during
“catch” trials, the monkey is unable to complete the trial in
the allotted time (red dashed). Note that during this trial,
the neurons are firing (a) and there is a prediction of EMG
activity (red), but no commands (black) are sent to the FES
stimulator and themonkey fails to complete the taskwithin
5 seconds (red dashed). (Adapted from Ethier et al. [27])

with spinal cord injury can be trained from
the neural activity evoked during attempted
movements (Fig. 5.20; [9]). An initial decoder
was trained from the neural activity recorded
while the participant watched a virtual arm make
goal-directed movements and simultaneously
attempted to make the same movements. This
initial decoder was refined during a virtual reality
condition in which his neural activity controlled
the movements of a virtual arm. Once the decoder
parameters were fixed, the participant performed
volitional multi-joint movements of his own FES-
actuated arm under brain control (Fig. 5.2). He

could perform point-to-point movements with
80–100% accuracy and, in one session, was
successful in 11 of 12 attempts at reaching to
grab a mug of coffee.

5.5.4 Challenges for FES

An important challenge in the development of
FES systems relates to the way motor units are
recruited by electrical stimulation. Henneman’s
size principle states that the natural physiological
order of motor unit recruitment is from small
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Fig. 5.20 A iBMI-controlled FES system for reaching
and grasping. Neural activity was recorded from two ar-
rays implanted into motor cortex. These neural signals
were used to control stimulation of intramuscular elec-

trodes implanted in the biceps, triceps, forearm, and hand
muscles. The neural signals also actuated the mobile arm
support. (Reprinted from Ajiboye et al. [9] with permis-
sion)

to large units (Fig. 5.21). That is, motor units
that generate small amounts of force are recruited
first (allowing for precise control of small move-
ments), and as the force requirements grow larger,
the units that generate larger forces (but are con-
sequently not as finely controlled) are recruited.
This natural recruitment order arises from Ohm’s
law, V = IsynapticRinput, where V is voltage, I is
the synaptic current, and R is the input resis-
tance. Smaller neurons have smaller membrane
surface area, which means they have fewer ion

channels and a correspondingly larger input re-
sistance. Thus, they require less synaptic current
to change the membrane potential enough to fire
action potentials. Similarly, larger neurons have
more membrane surface area, more ion channels,
and a lower input resistance. So, they require
more synaptic current to change the membrane
potential enough to fire action potentials. Given a
common synaptic drive, the smaller motor units
will be recruited before the larger motor units.
This natural recruitment order minimizes fatigue
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Fig. 5.21 Motor units are
naturally recruited from
smallest to largest
according to Henneman’s
size principle. This means
that slow-twitch,
fatigue-resistant motor
units (red) are recruited at
lower activation thresholds
than fast-twitch, fatigable
motor units (purple)
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by recruiting fatigue-resistant muscle fibers first
and only recruiting fatigable fibers when high
forces are necessary. This is why it is possible
to walk for hours but only sprint for minutes at
a time.

By contrast, in an FES system, electrical stim-
ulation recruits motor units in the reverse order of
Henneman’s size principle. With electrical stim-
ulation, the injected current creates an electric
potential across the membrane. The larger neu-
rons have more ions and are easier to depolarize.
Thus, in FES the larger motor units are recruited
before the smaller motor units. This means that
the fatigable motor units are recruited before the
fatigue-resistant motor units, which is the reverse
of the natural physiological order. The reverse re-
cruitment order limits dexterity and it also causes
fatigue. A muscle that is fatigued will produce
less force for the same stimulation than a muscle
that is not fatigued.

There are some ways to counteract the re-
verse recruitment order. One such proposal is
the utilization of a pre-pulse. A pre-pulse is a
pulse several hundred microseconds in duration
which precedes the stimulation and hyperpolar-
izes the neurons, making them less easily ex-
citable. As with other stimulation, a pre-pulse
preferentially affects the larger-diameter motor
units. With the appropriate parameters, the pre-
pulse can be selectively applied so that only the
large-diameter axons are hyperpolarized, leaving
the small-diameter, fatigue-resistant motor units

to be activated by the subsequent stimulation
pulse. This type of pre-pulse paradigm has the
potential to reduce fatigue under FES conditions
by recruiting fatigue-resistant fibers earlier.

Another attempt to mitigate the fatigue prob-
lems encountered with FES is to pretreat the
muscles with low-level stimulation. This has two
benefits. First, the low level of stimulation acts
as exercise for the muscles, counteracting the
observed increase in fatigability of chronically
paralyzed muscles due to disuse [29]. The second
benefit is that motor units can actually be changed
from fatigable to fatigue-resistant through ex-
ercise. Indeed, fatigability profiles can also be
changed with low levels of electrical current [30].
Patients implanted with FES systems are often
pretreated with low-level stimulation to change
muscle fibers toward fatigue-resistant fibers.

5.6 The Future of iBMIs

Brain–machine interfaces have shown promise
for restoring motor function to patients with neu-
rological injury or disease. However, there are
still many improvements before iBMIs become
a widespread treatment for paralysis. In this sec-
tion, we will discuss ongoing work toward mak-
ing iBMIs a clinical reality, such as including
somatosensory feedback and building better elec-
trodes. Finally, we will end by discussing an
emerging new field in which iBMIs are used
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to answer basic science questions about motor
learning and motor control that are currently too
difficult to tackle any other way.

5.6.1 Restoring Somatosensory
Feedback

Thus far, we have discussed motor control from
the perspective of controlling the movements of
our body. A critical component of motor control
is sensory feedback or sensory information about
ongoing movements [31]. All of the iBMIs we
have discussed to this point have relied solely
on visual feedback. For example, when using an
iBMI to control a robotic limb, the user can see
where the limb moves. Another equally (if not
more) important source of sensory information
which we have not yet discussed is somatosensa-
tion, which is the sensation of touch, temperature,
and proprioception (e.g., body position).

Without somatosensation, the everyday move-
ments that many of us take for granted would
be much more difficult. For example, when we
carry a heavy box, the texture receptors in our
fingertips let us know when the box starts to slip,
allowing us to adjust our grip. When we reach to
grab a cup of coffee, the temperature receptors in
our fingertips tell us that the coffee is too hot to
drink. And when we get ready to go outside, our
sense of proprioception lets us slide our arms into
the sleeves of our jacket without having to turn
around. Given the importance of somatosensation
during movements such as these, it makes sense
that a BMI would benefit from incorporating so-
matosensory feedback.

In principle, sensory percepts can be restored
by electrically stimulating the neural structures
responsible for sensation and perception [32].
For amputees, somatosensory feedback could be
provided by stimulating the peripheral sensory
nerves. However, for patients with quadriplegia
due to spinal cord injury, stimulating the nerves
would not work because the pathway between the
brain and the limb has been disrupted. In this case,
the somatosensory cortex could be stimulated
directly with intracortical electrodes [33].

One type of movement that is particularly
aided by somatosensory feedback is grasping.
Grasping an object requires information about
contact forces that is difficult to get from visual
feedback alone. For example, consider the
difference in the forces on the hand when lifting
an egg versus a suitcase. Our hands have a variety
of touch sensors providing information about
shape, weight, size, and texture – information
critical for effective grasping. Incorporating
similar information into a BMI could improve
the degree to which a user could reach and grab
a wide variety of objects. A bidirectional BMI
(i.e., one that incorporates both motor output and
sensory input) could potentially both improve
motor function and restore the sense of touch.

5.6.2 Building Better Electrodes

A major obstacle to building clinically viable iB-
MIs is that the signals recorded from chronically
implanted electrode arrays degrade over time.
This happens because the electrodes trigger an
inflammatory response in the brain that eventu-
ally encapsulates the electrodes with a protective
layer of glia, forming a “glial scar” [34]. This
encapsulation reduces the quality of the recorded
signals because the neurons are pushed farther
away from the electrode tips. Typically, it is pos-
sible to record neural signals from chronically
implanted electrodes for months to a few years
before the signal degrades. However, it would
be unreasonable to expect patients to replace an
iBMI (a process involving brain surgery and the
associated risks) every few years for the rest of
their lives.

There have been a number of attempts to
minimize this problem of signal degradation.
One such approach is to coat the electrodes with
a chemical to minimize scar formation. L1, a
neuronal specific cell adhesion molecule, has
been shown to minimize glial scar formation
[35]. Other neurotrophic chemicals are also being
tested. Another approach is to make electrodes
that have mechanical characteristics that are more
similar to brain tissue. Most electrode arrays
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today are made with rigid materials, such as
tungsten or silicon. The mismatch in the stiffness
of the electrodes and the soft brain tissue can
induce damage and exacerbate the inflammatory
response. To minimize this problem, electrodes
can be made from soft materials that are a closer
match to the mechanical properties of the brain.
Yet another approach is to reduce the diameter
of the electrodes. For example, Neuralink is
developing electrodes the size of neurons that
can be sewn into the cortex with a robot that acts
like a sewing machine [36]. Although this work
is at its infancy, the hope is that with enough
investment, these approaches will lead to longer
lasting, more information-rich neural recordings.

5.6.3 iBMIs for Basic Science

As discussed in Sect. 5.2, the more we under-
stand about natural motor control, the better BMI
systems will be. In turn, the inverse is true: by
studying how the brain functions during con-
trol of a BMI, we can gain new insights into
the natural processes of motor planning, control,
and learning. A BMI is a simplified motor con-
trol system compared to arm movement control.
When we move our arms, there are hundreds of
thousands of output neurons; the mapping from
these neurons to movement is unknown; and the
arm has nonlinear dynamics that are difficult to
measure. All of these characteristics make it dif-
ficult to study sensorimotor control during arm
reaching. By comparison, an iBMI simplifies all
of the features of natural arm reaching, and this

makes motor control easier to study: all the output
neurons are recorded, the mapping from these
neurons to the movement is specified by the ex-
perimenter, and the dynamics of the cursor or
robotic limb are known and can be made to be
simple (e.g., linear). As a result, it is possible to
make scientifically causal statements about the
relationship between neural activity and behavior
(in this case, cursor or robotic limb movements)
that are not currently possible when studying arm
movements. Together these features make iBMIs
a powerful tool for studying sensorimotor control
(Table 5.1).

A key feature of sensorimotor control is the
ability to learn, adapt, and refine motor skills over
time. Our understanding of learning is grounded
in concepts of synaptic plasticity and cortical map
plasticity. However, we lack an explanation for
how such changes give rise to new behavioral
capacities. We can leverage an iBMI to establish
a causal link between learning-related changes
in the brain and new behavioral capacities, be-
cause in an iBMI, we record from all of the
neurons that drive the behavior, and we as the
experimenter define the relationship between the
activity of those neurons and the behavior. As
discussed in the previous sections, we can begin
with a BMI decoder that relates neural activ-
ity patterns to cursor velocities in a way that
provides proficient control without requiring the
user to learn. We can then induce learning by
presenting a novel decoder from neural activity
to behavior (i.e., cursor velocity). This is akin
to giving somebody a flipped computer mouse
and asking them to learn to control the cursor.

Table 5.1 Comparison of BMI control to arm reaching

Arm reaching iBMI

Effector Arm Cursor or robotic limb

Number of non-output neurons Millions Millions

Number of output neurons Thousands
(only a subset are recorded)

Tens to hundreds
(all are recorded)

Neuron-to-movement mapping Unknown Known
Effector dynamics Difficult to measure, nonlinear Known, can be linear
Sensory feedback Tied to the arm Flexibly manipulable

From Golub et al. [37]
Entries in bold indicate components of an iBMI that make it a simplified, well-defined, and easily manipulated system
for studying sensorimotor control
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Through trial and error, the person can learn to
use a flipped mouse. Similarly, through trial and
error, the user can learn to use a novel BMI de-
coder [38]. Because we know exactly how neural
activity relates to cursor movement in the iBMI,
any observed improvement in behavior (e.g., ac-
curacy of cursor movements) can be attributed
to an observed change in the neural activity. We
have found that the way in which neurons are
interconnected can shape learning that occurs on a
timescale of hours [39]. In particular, it is easier to
learn tasks requiring population activity patterns
that are consistent with the underlying network
constraints than tasks requiring novel population
activity patterns. On a time scale of days toweeks,
populations of neurons can produce new patterns
of activity to enable new behavioral capacities
[40]. These findings can inform the design of
future iBMIs in which we can leverage the user’s
ability to learn to create even higher-performance
iBMI systems [41].

Homework

1. Consider designing a BMI to classify move-
ment to the right or left, and we want to test
how well it works with one neuron. If the
BMI user intends to move right, the neuron’s
firing rate is drawn from a Gaussian distribu-
tion with mean μright = 8 spikes/second and
standard deviation σ right = 5 spikes/second.
If the BMI user intends to move left, the neu-
ron’s firing rate is drawn from aGaussian dis-
tribution with mean μleft = 12 spikes/second
and standard deviation σ left = 6 spikes/sec-
ond.
(a) Suppose we make one measurement of

the firing rate, y, and we assume the
prior probability of “left” and “right” are
equal. For each of the cases below, would
we classify “left” or “right”?

y (Spikes/second) 2 5 8 11 14 17

Classification

(b) Suppose we now assume that the
BMI user moves “left” twice as often
as “right” (i.e., P(left) = 2/3 and
P(right) = 1/3. For each of the cases
below, would we classify “left” or
“right”?

y (Spikes/second) 2 5 8 11 14 17

Classification

2. In Sect. 5.3 we showed how to implement
a classifier with Gaussian firing statistics,
where the neural activity for class k is mod-
eled as y∼N(μk,�k), where μk ∈ Rd and
�k ∈ Rd × d are the mean and covariance of
the activity of a population of d neurons. Here
we will assume that the covariance matrix is
the same for each class k = 1, . . . , K (i.e.,
�1 = �2 = . . . = �K).
(a) First, suppose we have a new record-

ing of neural activity, y. Also, suppose
that P(ck) = π k. Using Bayes’rule, find
logP(ck| y), up to the normalizing con-
stant.

(b) Find the decision boundary used for de-
termining whether the point y came from
class j or class k, and simplify the expres-
sion.

(c) Is the decision boundary linear?
3. In this problem we will derive the equations

to implement a classifier based on Poisson
spike counts. The spike count of neuron i
given class k is Poisson-distributed with pa-
rameter λik. We will assume that the D neu-
rons, y1, . . . , yD are conditionally indepen-
dent given the class j. In other words, given
neural activity y ∈ RD, the probability that y
came from class k is as follows:

P (y|ck) =
∏D

i=1
P (yi |ck) , where

P (yi |ck) = exp (−λik)λ
yi
ik/yi !
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(a) Let P(ck)= π k. Find P(ck| y) using Bayes
rule.
Now simplify the expression above by
taking the log: log P(ck | y).

(b) Given a new point y, we want to deter-
mine to which class this point belongs.
Derive the decision boundary that deter-
mines whether we classify a new point
y as belonging to either class j or class
k. Use the expression that you derived in
part a.

(c) Is the decision boundary linear?
4. In Sect. 5.3 we provided the following

expressions for the training phase of a
classifier: μk = 1

N

∑N
i=1yi (Eq. 5.9) and

Σk = 1
N

∑N
i=1

(
yi − μk

) (
yi − μk

)�
(Eq.

5.10), where yi ∈ Rd for all i = 1, . . . , N
is the neural activity recorded with class k,
μk ∈ Rd, and �k ∈ Rd × d. Show that these
values of μk and �k maximize the following
equation for the likelihood:

L
(
μk,Σk |y1, . . . , yN,ck

) = P
(
y1, . . . , yN |ck

)

=∏N
i=1(2π)

−d/2|Σk|−1/2

exp
(
− 1

2

(
yi − μk

)�
Σk

−1
(
yi − μk

))

5. In Sect. 5.4, we considered a two-neuron ex-
ample of the PVA decoder where the neurons
had orthogonal preferred directions (e.g., one
neuron preferred 90◦, while the other neuron
preferred 180◦). Show that if the two neu-
rons do not have orthogonal tuning direc-
tions, the directions decoded by PVA will be
biased.

6. Show that a neuron that exhibits cosine tun-
ing also shows linear tuning to velocity. That
is, suppose that given a reach in the θ direc-
tion with speed s, a neuron’s firing rate can be
written as y = b0 +ms cos

(
θ − θ−→p

)
, where

b0 is the neuron’s baseline firing rate, m is
its modulation depth, and θ−→p is the neuron’s
preferred direction. Show that this means we
can also write y = b0 + bTv, where b and v
are both 2D vectors.

7. Derive the expressions for the training phase
of the Kalman filter in Sect. 5.4:

B =
(∑T

t=1 ytx
T
t

) (∑T
t=1 xtx

T
t

)−1

Σ= 1
T

∑T
t=1 (yt − Bxt ) (yt − Bxt )T (Note

that here we use the B found above.)

A =
(∑T

t=2 x tx
T
t−1

) (∑T
t=2 x t−1x

T
t−1

)−1

Q= 1
T−1

∑T
t=2 (x t − Ax t−1) (x t−Ax t−1)

T

(Note that here we use the A found above.)

8. Consider using a BMI to play Pong with one
neuron. That is, we will use a Kalman filter to
decode position along a one-dimensional axis
from the firing rate of a single neuron. Let the
state model be xt = xt − 1 + ωt, ωt∼N(0, q)
and the observation model be yt = bxt + εt,
εt∼N(0, σ ).
(a) Show that the estimate of the position on

time step t, μt, can be written in the form

μt = (1 − α)μt−1 + α
(yt
b

)

(b) Prove that 0 ≤ α ≤ 1.
(c) When does α approach 0? Under this

case, why does it make sense for
μt = μt − 1?

(d) When does α approach 1? Under this
case, why does it make sense for
μt = yt/b?

9. You decide to speed up the implementation of
your Kalman filter by skipping the one-step
prediction. Whereas normally you would
solve the measurement update (Eq. 5.17) and
one-step predictions iteratively on each time
step (Eq. 5.16).

You instead decide to just iterate the mea-
surement update step, by directly plugging in
the velocity estimate from the previous time
step, P

(
x t−1|{y}t−1

1

)
, without making a one-

step prediction:

P
(
x t |{y}t1

) = P
(
y t |x t

)
P
(
x t−1|{y}t−1

1

)

P
(
y t |{y}t−1

1

)
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Describe qualitatively what will happen to
the velocity estimate over time.

(Hint: when in doubt, try simulating it or
solving the 1D case.)

10. The goal of the measurement update of the
Kalman filter is to find P(xt| y1, . . . , yt).
To do so, we adopted the strategy in

Sect. 5.4 whereby we would first find the
joint distribution P(xt, yt| y1, . . . , yt − 1),
and then use the theorem of conditioning
for jointly Gaussian random variables to
find P(xt| y1, . . . , yt). Here we will derive
the means and covariances of the joint
distribution

[
y t | y1, . . . , y t−1

x t | y1, . . . , y t−1

]
∼ N

([
Bμ−

t

μ−
t

]
,

[
B�−

t B
T +Σ

�−
t B

T

B�−
t

�−
t

])

(a) Find the mean of y t | y1, . . . , y t−1.
(b) Find the variance of y t | y1, . . . , y t−1.
(c) Find the covariance of xt, yt when both

are conditioned on yt, . . . , yt − 1.
11–12. We have provided a dataset (https://
github.com/emilyoby/bmi-data-set) consist-
ing of center-out arm reaches and neural ac-
tivity recorded from a Utah electrode array
implanted inM1. The following describes the
data format. The .mat file has two data struc-
tures: ‘trainTrials’ contains 180 trials to be
used as training data, and testTrials contains
8 trials to be used as test data. Each data
structure contains ‘spikes’, ‘handPos’, and
‘handVel’ variables, representing the spiking
activity, hand position, and hand velocity,
respectively, on each trial in which a mon-
key reached to one of eight different targets.
The ‘spikes’ variable contains, for each trial,
the number of threshold crossings in 50 ms
bins recorded simultaneously from the 91
electrodes and has dimensions (n time steps)
× (91 electrodes), where n is the number
of time steps within a particular trial. For
example, ‘trainTrials.spikes{i}(n,k)’ contains
the number of threshold crossings recorded
on the kth electrode in the nth time step of
the ith trial. The ‘handPos’ and ‘handVel’
variables are structured similarly and contain
the 2D hand position (in mm) and velocity
(in mm/sec), respectively, for the same time
steps as in the ‘spikes’ variable.

For the problems below, use the provided
neural and kinematic data to implement the
continuous decoders discussed in Sect. 5.4.

11. Use PVA decoder to estimate the movement
velocity during a center out task.
(a) Fit the parameters of the decoder using

the 180 trials of training data.
(b) Test the decoder on the eight test trials.

Plot the decoded trajectories and the ac-
tual movement trajectories on the same
plot.

(c) Try improving the decoding by smooth-
ing the firing rates by using a running
average of the firing rates during the pre-
vious 250 ms.

12. Use a Kalman filter decoder to estimate the
movement trajectory for each trial.
(a) Fit the parameters of the decoder using

the 180 trials of training data.
(b) Test the decoder on the eight test trials.

Plot the decoded trajectories and the ac-
tual movement trajectories on the same
plot.
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6Deep Brain Stimulation: Emerging
Technologies and Applications

Aysegul Gunduz

Abstract

Deep brain stimulation (DBS) is a neurosur-
gical technique that consists of continuous
delivery of electrical pulses through chron-
ically implanted electrodes connected to a
neurostimulator, programmable in amplitude,
pulse width, frequency, and stimulation
channel. DBS is a promising treatment option
for addressing severe and drug-resistant
movement disorders. The success of DBS
therapy stems from a combination of surgical
implantation techniques, device technologies,
and clinical programming strategies. Changes
in device settings require highly trained and
experienced clinicians to achieve maximal
therapeutic benefit for each targeted symptom,
and optimization of stimulation parameters
can take many clinic visits. Thus, the
development of innovative DBS technologies
that can optimize the clinical implementation
of DBS will lead to wider-scale utilization.
This chapter aims to discuss engineering
approaches that have the potential to improve
clinical outcomes of DBS, focusing on
the development novel temporal patterns,
innovative electrode designs, computational
models to guide stimulation, closed-loop
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6.1 Introduction

Deep brain stimulation (DBS) is a neurosurgical
treatment option for addressing severe and drug-
resistant movement disorders, such as Parkin-
son’s disease and essential tremor, and is show-
ing promise for the treatment of neuropsychiatric
disorders, such as major depression. Historically,
DBS is a product of the interplay between neu-
roscientific and engineering advances translated
successfully to functional neurosurgery.

In the 1950s, development of stereotaxic at-
lases and frames led the way to ablative surgery
of “malfunctioning” brain areas [1, 2]. Surgical
ablations of the globus pallidus interna (GPi) [3,
4] in Parkinsonian patients and the ventral inter-
mediate nucleus (Vim) of the thalamus [5, 6] in
essential tremor and Parkinson’s disease patients
were used as a therapy for suppressing tremor;
however, the ablations provided little benefit for
bradykinesia in the latter cohort. Moreover, bi-
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lateral ablations led to irreversible side effects
such as speech and swallowing deficits and gait
and balance issues. Electrical stimulation during
stereotactic surgery was being used for the local-
ization of the targeted areas [7], and various stud-
ies demonstrated that high-frequency stimulation
(50–100 Hz) resulted in a reduction of tremor
symptoms, while low-frequency stimulation (5–
10 Hz) exacerbated tremor [8]. Furthermore, both
outcomes were reversible with the termination of
stimulation. Although many studies in this early
era explored the therapeutic effects of DBS [9–
12], the introduction of levodopa as a “miracle
drug” for the treatment of Parkinson’s disease
in the 1960s curtailed surgical interventions for
movement disorders.

The excitement surrounding levodopa lasted
for two decades, but by the 1980s, it became ap-
parent that Parkinsonian patients developed resis-
tance to levodopa after long-term treatment and
experienced dyskinesias as a side effect. In the
meantime, the neurophysiological underpinnings
of movement within the basal ganglia and their
role in Parkinson’s disease were introduced by
Albin [13] and DeLong [14] with the segregated
functional circuit model (Fig. 6.1), paving the

way for new targets for DBS therapy [15]. At the
same time, implantable medical device technol-
ogy had advanced, and chronically implanted de-
vices such as cardiac pacemakers and spinal cord
stimulators for pain treatment were commonly
implanted in patients. These scientific and tech-
nical advances brought the inception of chronic
DBS treatment as it is applied today, which is
widely credited to Benabid and colleagues [16,
17]. Contemporary DBS therapy targets the Vim
nucleus of the thalamus for the treatment of es-
sential tremor, the subthalamic nucleus (STN) or
the GPi of the basal ganglia for Parkinson’s dis-
ease, and the GPi for dystonia. The application of
DBS within these dysfunctional circuits not only
allows alleviation of symptoms but also presents
a unique opportunity for probing the function
of these circuits. DBS offers a portal into the
dynamics of brain circuits in relation to behavior,
not previously possible with lesion surgery, and
thus has grown into a vibrant area of scientific
inquiry.

It has been reported that DBS can bring about
>50% improvement in clinical ratings of mo-
tor symptoms in patients with movement dis-
orders appropriately screened and selected [18].

Fig. 6.1 (a) The segregated functional basal ganglia
(show in blue) circuit model proposed by Albin [13] and
DeLong [14]. (b) Parkinsonian model of the basal ganglia
shows reduced and increased projections along the direct
and indirect pathways that cause decreased excitatory pro-

jections to the cortex. This model led to the STN and GPi
to be utilized as targets for DBS therapy. SNc substantia
nigra pars compacta, GPe globus pallidus externus, GPi
globus pallidus internus, STN subthalamic nucleus



6 Deep Brain Stimulation: Emerging Technologies and Applications 225

These promising clinical outcomes of modern
DBS therapy arise from a combination of neuro-
surgical techniques that rely on imaging, bioin-
strumentation design, and clinical decision mak-
ing regarding the stimulation contact and stimu-
lation pattern. The first stage is functional neu-
rosurgery [19], in which electrodes are implanted
into deep brain nuclei via stereotactic radiological
imaging. Many institutions also perform electro-
physiological recordings to validate the place-
ment of the electrode array in the target structure.
The electrodes are subsequently connected to a
neurostimulator, also known as an implantable
pulse generator (IPG), that is fully implanted in
the patient’s body. The neurostimulator generates
an electrical pulse train that has programmable
variables, namely, the frequency, amplitude, and
pulse width of the pulse train [20]. The implanted
electrode array is a single rod with four to eight
cylindrical ring electrodes (or contacts) at its dis-
tal end. Extension leads or connectors from the
electrode array are tunneled through the neck
and connected to the IPG, which is typically
implanted in the chest cavity (similar to a cardiac
pacemaker). Figure 6.2 depicts all the implantable
components of a unilateral DBS system.

Clinical programming, which is critical for the
success of DBS, requires highly trained and ex-
perienced clinicians to achieve maximal patient-
specific therapeutic benefit (18–36 h per patient
in total [22]). Given that the stimulation param-
eter space is extremely high dimensional, opti-
mization within this space can take many visits
over several months [23]. Newer neurostimula-
tor designs therefore need to be accompanied
by guided and/or automated programming strate-
gies to improve DBS outcomes. In this chapter,
we first introduce the current state of the art
in DBS instrumentation technology. This is fol-
lowed by the current understanding of the mecha-
nisms of DBS therapy. Next, we present the recent
engineering advancements in bioinstrumentation
design and neuromodulation delivery strategies
aimed at improving DBS outcomes. Finally, we
discuss other disorders which can potentially ben-
efit from DBS therapy and close with emerging
noninvasive technologies that may complement
or eventually challenge DBS therapy.

Fig. 6.2 Implanted components of deep brain stimula-
tion (DBS) therapy. A four- or eight-contact electrode
is stereotactically implanted into a target brain structure
through a burr hole. An implantable pulse generator (IPG)
is surgically placed under the collarbone. The electrode
array is connected to the pulse generator via a connector
lead that is surgically tunneled through the neck. (Adapted
from [21])

6.2 State of the Art in DBS
Instrumentation

As introduced earlier, DBS technology was
built on advances in implantable biomedical
instrumentation such as cardiac pacemakers
and spinal cord stimulators for the treatment
of chronic pain. Similar to a pacemaker, neu-
rostimulators are implanted under the collarbone,
and they are connected to the electrode array via
a connector that is tunneled through the neck
(see Fig. 6.1). From a hardware perspective,
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stimulators can be designed to be current- or
voltage-controlled (i.e., regulated current versus
regulated voltage stimulation). Although with
regulated voltage stimulation, nonlinear or
changing impedances of the electrode–tissue
interface lead to varying current flow, commercial
neurostimultors historically have been voltage
controlled. Newer neurostimulators on themarket
are designed to be current-controlled to deliver
constant therapeutic levels [24]; nevertheless,
they still have limits to their output voltage and
other safety measures to prevent tissue irritation
or damage (e.g., in instances of electrode defects).

The standard stimulation waveform is an
asymmetric biphasic pulse train with passive
recharge, i.e., a standard rectangle pulse in
the first phase, followed by a low-amplitude
but long-decaying tail in the second phase.1

This waveform allows for a charge-balanced
stimulation for tissue safety, and passive recharge
provides energy efficiency. Currently, most IPGs
are not rechargeable, and depleted batteries have
to be replaced with a new IPG via surgery.
Though there are some commercially available
rechargeable IPGs on the market today, they also
have a limited shelf life and have a limitation on
the number times they can be recharged.

Stimulation is typically delivered in a cathodic
monopolar fashion, in which the electrode is set
as the cathode (negative pole) and the case of
the IPG is set as the anode (positive pole). Ca-
thodic stimulation requires a lower stimulation
amplitude and/or pulse width than anodic stim-
ulation to achieve equivalent therapeutic benefit
[27–29]. Monopolar stimulation leads to a wide
electric field that is relatively symmetric in all
directions. For a more spatially constrained elec-
tric field, stimulation can be delivered between
two electrode contacts. Different active contact
combinations can be used to direct current flow
through desired target areas or to prevent stim-
ulating undesired areas that may lead to side
effects. Novel waveform patterns and electrode
designs, as well as computational modeling of the
stimulation fields will be discussed I the subse-

1More discussion on waveform shapes will follow. See
Fig. 6.4b for a drawing of this waveform.

quent subsections. But first, we present the cur-
rent understanding in the literature of how DBS
therapy mechanistically provides symptom relief.

6.3 Current Understanding
of the Therapeutic
Mechanisms of DBS

Today, DBS is an established therapy for the treat-
ment of Parkinson’s disease, essential tremor.
In the United States, the use of DBS for these
indications, as well as for dystonia, is approved
by the US Food and Drug Administration (FDA).
Nevertheless, the mechanisms by which DBS im-
proves pathological symptoms remain to elude
both scientists and clinicians [30]. This gap in
knowledge can hinder our efforts to improve the
benefits of DBS therapy and mitigate its side
effects. Moreover, it can hinder its translation into
more complex disorders of the brain. Given that
clinical DBS leads are macroscale electrodes, it is
likely that the electrical fields generated by DBS
nonselectively affects local neurons, afferent in-
puts, and fibers of passage. Thismacroscale effect
limits our ability to study the individual roles
of functionally different cells or cells projecting
onto different nuclei in the overall mechanism
of DBS. In addition, studying the electrophys-
iological effects of DBS modulation is highly
challenging due to large stimulus artifacts [31].

Given that DBS provides outcomes similar
to those of ablative surgery, historically it was
widely accepted that DBS brings about a tem-
porary reversible lesion that reduces its output
[16] (Fig. 6.2). Several animal and clinical studies
have in fact reported inhibited activity within
the target when DBS was delivered to STN or
GPi [32–37]. However, other electrophysiologi-
cal studies put forth contradicting results suggest-
ing excitation at the target as a result of stim-
ulation with increased activity toward projected
nuclei [38, 39]. Functional imaging studies dur-
ing DBS delivery reported increased blood flow
toward and increased blood oxygenation levels
at downstream nuclei consistent with increased
output at the stimulated structure [40–42].
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Overall, the mechanisms bywhich DBSmasks
pathological symptoms most likely rely on a
combination of several phenomena [43–45]. The
pathological neural activity in the basal ganglia-
thalamo-cortical motor network is likely related
to increased neuronal synchronization, which is
reflected in low-frequency rhythmic oscillations
[46–48]. It is possible that DBS masks these low-
frequency pathological oscillations and over-
writes them with tonic high-frequency output.
This “informational lesioning” hypothesis [49]
suggests that tonic high-frequency stimulation,
though devoid of any informational content,
overrides the pathophysiological activity, akin
to a communication jammer. The message
sent downstream is thought to be replaced by
a stimulation-induced regular pattern, which
can be more easily mitigated by the remaining
elements of the network [31, 43, 44]. In fact,
random patterns of DBS in the STN, even
when delivered at a high average frequency
that would be considered therapeutic, were not
effective in relieving bradykinesia in patients
with Parkinson’s disease [50]. These findings
reinforce the importance of regularization of
pathological activity in the network for the
effectiveness of DBS [51]. Local field potential
(LFP) recordings from DBS electrodes in
Parkinsonian STN and GPi nuclei have shown
pathologically elevated amplitudes in the beta
rhythm that reduce with levodopa intake [52]
(Fig. 6.3). DBS has also been shown to reduce
these pathologically high beta rhythms [54],
regularizing the network (Fig. 6.2).

6.4 Novel Temporal Patterns
of Stimulation as
a Therapeutic Innovation

The impact of the temporal pattern of stimulation
(regular pulses versus random pulses) on thera-
peutic outcomes discussed in the previous subsec-
tion inspired researchers to test many other novel

Fig. 6.3 Effects of (a) surgical lesioning versus (b) deep
brain stimulation (DBS) on neuronal firing rates and local
field potentials (LFPs) in the Parkinsonian subthalamic
nucleus (STN). Historically, DBS was thought to cause a
temporary lesion effect, but electrophysiological studies
have demonstrated the target response is rather complex.
(Adapted from [53])

temporal patterns of DBS. Figure 6.4a, third row,
demonstrates a regular pulse train, which were
biphasic pulses with passive recharge (see Fig.
6.4b). The dark lines in Fig. 6.4a represent the in-
stance of the first phase of the pulses. Other rows
in Fig. 6.4a are examples of temporal patterns that
deviate from evenly spaced regular pulse trains,
which have been investigated in DBS treatment
of Parkinson’s disease and essential tremor. In
some of these novel patterns, investigators studied
the absence of pulses (Fig. 6.4a, top row) or in-
troduced higher-frequency short bursts of pulses
in the regular pattern (Fig. 6.4a, second row).
In other cases, the distributions of instantaneous
pulse frequencies were fitted to a log-uniform dis-
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Fig. 6.4 (a) Novel temporal patterns compared to regular
pattern (middle row). Top row: Patterns with short periods
of absence. Second row: Patterns with the presence of
short bursts of pulses. Fourth row: Highly non-regular
pulses with log-normal distribution of instantaneous pulse
frequencies. Bottom row: Pulses consisting of the same
average stimulation frequency as the regular pattern but

with an overall 20% coefficient of variance (CV). (b) A
monophasic active pulse with passive charge. (c) A bal-
anced biphasic pulse with active recharge. (d) Parameter
space of active recharge biphasic pulse design (a1, a2,
amplitudes of the two phases; w1, w2, pulse widths of the
two phases; d, inter-pulse interval). (Adapted from [25,
26])

tribution (Fig. 6.4a, third and fourth rows). These
novel patterns applied to DBS STN stimulation in
patients with Parkinson’s diseases yielded equiv-
alent or improved treatment of symptoms com-
pared to traditional patterns [25]. These clini-
cal outcomes were accompanied by a substantial
reduction in battery consumption, which is an
important consideration for prolonging the life
of a non-rechargeable device. Prolonged battery

life would result in fewer battery replacement
surgeries. A primate study of novel DBS patterns,
on the other, did not yield improved bradykinesia
scores compared to traditional stimulation pat-
ternswhen theGPiwas selected as the stimulation
target [55].

Another study investigated biphasic active
recharge patterns in Parkinson’s disease and
essential tremor and reported improved clinical
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scores [26] (see Fig. 6.4d). These biphasic
pulse patterns expedite the recovery of charge
in tissue at the expense of increased power
consumption, shortening the battery life. Biphasic
active recharge patterns need not be programmed
symmetrically and can be delivered with
asymmetric phase amplitudes and durations,
as well as an inter-phase delay (see Fig. 6.4d).
Other studies are investigating the therapeutic
effects of biphasic stimulation patterns with
active recharge in dystonia [56]. Rechargeable
neurostimulators can compensate for the extra
current drain required by the secondary phase
and may thus facilitate the translation of these
patterns into clinical use. However, the success
of all rechargeable neurostimulators will rely on
patient compliance to maintain sufficient battery
charge levels.

In order to overwrite the pathological syn-
chronization in the Parkinsonian basal ganglia
[57], Tass et al. proposed a spatially distributed
stimulation pattern called coordinated reset [58].
In this stimulation scheme, aimed at desynchro-
nizing an overly synchronous system, brief high-
frequency pulse trains are delivered in the STN
across different electrode contacts with varying
order. The authors report significant improvement
of in clinical motor outcome scores [59].

Although the non-regular patterns discussed
above show promise in Parkinson’s disease, they
patterns did not provide therapeutic benefit in
essential tremor [51]. This result may have been
caused by sufficiently long gaps in the stimulation
patterns that allowed undesired propagation of
pathological tremor activity within the thalamo-
cortical network [60].

Altogether these findings substantiate the
value of novel temporal patterns to increase
the efficacy of the therapy. However, large and
well-powered studies are necessary for them
to be translated into clinical practice, along
with devices that can support them. In the
meantime, computational models can guide
our understanding of the effect of these novel
patterns. In fact, computational models will be
essential in the design and optimization of novel

stimulation patterns. Computational modeling
will be discussed further in this chapter.

6.5 Innovations in DBS Electrode
Design

The most widely used DBS electrode arrays con-
sist of four cylindrical electrode contacts at their
distal ends (see Fig. 6.5a). The neural tissue that
is affected by an electrical field generated by a
set of stimulation parameters is called the volume
of tissue activation (VTA). If an electrode array
is not positioned optimally, a wider VTA may be
necessary to activate the target. This may come
at the cost of activating other areas that may lead
to undesired side effects [62]. To mitigate this
problem, novel electrode designs have been pro-
posed that aim to directionally steer stimulation
currents toward the target, while avoiding other
areas. This method of controlling the shape of the
VTA can personalize and optimize therapies. Fig-
ure 6.5b shows four novel lead designs [63–65].
Three of these designs (Abbott Infinity™, Aleva
directSTNAcute™, and Boston Scientific Ver-
cise™ Systems) have segmented ring electrodes.
Two of the cylindrical contacts have equidistant
90◦ angular segments. An intraoperative study
involving 11 Parkinsonian and 2 essential tremor
patients with the Aleva lead revealed directional
stimulation required 43% lower stimulation mag-
nitudes to achieve equivalent therapeutic benefits
[63]. A fourth electrode that is in preclinical trials
(from Medtronic-Sapiens) has 8–10 rows of 4
electrodes per row, and with an offset of 45◦ per
row. This creates a total of eight radial directions.
A desired VTA can be shaped with various com-
binations of independently active electrodes [64].
However, having a high number of electrodes and
their combination would significantly complicate
clinical programming and prolong the clinical
visit [23]. Fast computational modeling for vi-
sualization of the VTA based on patient-specific
imaging may reduce this burden [66] but would
still increase the amount of required training on
the clinician’s part.
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Fig. 6.5 (a) Current clinical DBS leads (Adapted from
Abbott, Aleva, and Medtronic DBS brochures). (b)
Emerging DBS electrode lead designs (BSN, Boston Sci-

entific Neuromodulation; SJM, Abbott-St. Jude Medical;
MDT, Medtronic). (Adapted from [61])

6.6 Imaging and Computational
Tools for Personalized DBS

Clinical DBS programming is typically per-
formed without visualization tools to observe

the spatial spread of stimulation, or the VTA,
relative to the anatomical structures surrounding
the electrode implant. If the electrode placement
is suboptimal, or if the VTA spreads across
nontarget areas without immediate overt side
effects, clinical programming and interpreting the
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Fig. 6.6 (a) Implanted electrode overlaid on patientMRI.
(b) Extracted 3D thalamic and subthalamic nuclei (in
yellow and green, respectively). (c) The computational
model of the volume of tissue activation. (d) The voltage

distribution in the tissue medium determined from a finite
element model with the total current amplitude divided
between adjacent electrode contacts (Adapted from [68])

outcomes can be challenging. Software platforms
that would enable the dynamic visualization
of the VTA as a function of the stimulation
parameters and electrode location within the
brain as yielded by imaging could provide
an engineering solution to this problem [67,
68]. Figure 6.6a depicts three-dimensional
subcortical structures constructed from a patient’s
preoperative MRI using a brain atlas. Figure
6.6b highlights the implanted electrode array’s
location with reference to the subthalamic
nucleus and the thalamus (the green and yellow
structures, respectively). The electric field that
can be generated by this extracted location of
the electrode and specific shape of electrode is
modeled using finite element models. Moreover,
tissue conductivity properties can be derived
from diffusion tensor imaging. Altogether these
imaging and modeling techniques yield the
VTA as a function of stimulation contact(s),
amplitude, pulse width, frequency, as well as
electrode shape, electrode, and tissue impedance
(see Fig. 6.4d). Computational models will
be essential in guiding the optimization of
stimulation parameters of high-density electrode
arrays (as discussed in the previous subsection).
Recent studies utilizing computational models in
guiding clinical parameters report significantly
reduced programming time [69, 70], reduced
power consumption [69], and reduced side effects
(e.g., stimulation induced cognitive decline) [71].
In addition, computational modeling can also
assist in the design of novel temporal patterns,
prior to conducting long and expensive clinical
trials [72].

Finally, these models can help us understand
the mechanisms of DBS. For instance, a recent
computational study [73] shed light on the
mechanisms of cathodic and anodic stimulation,
demonstrating that cathodic stimulation prefer-
entially activates axon segments passing adjacent
to the electrode, whereas anodic stimulation
preferentially activates orthogonal axon segments
approaching or leaving the electrode. Hence,
anodic stimulation, which has been traditionally
excluded from DBS practice without a complete
understanding of its mechanism, can now be
adopted to target fiber orientation selectively.

6.7 Development
of Closed-Loop DBS Systems

Although DBS is a widely used treatment option
for medication refractory movement disorders,
the stimulation is delivered in an “open-loop”
fashion, meaning no feedback regarding the pa-
tient’s current symptom(s), medication status, or
the side effects they are experiencing are pro-
vided back to the DBS system. A “closed-loop
DBS” system, on the other hand, would be able
to identify a biomarker reflective of a patient’s
current disease state and adapt the delivery and
parameters of stimulation. Such a smart system
may yield improved patient outcomes due to its
tailored approach and increased battery life as
unnecessary stimulation would be avoided when
symptoms are manageable without DBS. Figure
6.7 depicts a block diagram of a closed-loop DBS
system.
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Fig. 6.7 A closed-loop DBS system that is utilizing
biomarkers from the DBS leads, from additional subdural
ECoG strips, and/or from wearable sensors. A controller

responsively activates and terminates stimulation or adap-
tively changes the stimulation parameters based on the
extracted biomarkers. (Adapted from [74])

The first step toward achieving closed-loop
DBS is the characterization of biomarkers asso-
ciated with disease symptoms. Such biomarkers
can be studied during DBS implantation surgery
with consent, as patients remain awake. Other
short-term studies can be performed with
externalized leads, while patients are closely
being monitored in hospital surgical care units.
Next-generation neurostimulators enable chronic
recording of brain signals directly from the
implanted electrodes (the NeuroPace RNS [75],
the Medtronic Activa PC + S [76], the Medtronic
Summit RC + S [77], and the CorTec Brain
Interchange [78]). With regulatory approvals
(such as investigational device exemptions),
these systems can allow the translation of disease
biomarkers into closed-loop therapies and may
provide groundbreaking discoveries in human
neuroscientific research.

Figure 6.8 presents a summary of biomarkers
that have been shown to correlate with disease
symptoms. The most extensively investigated
DBS biomarker intraoperatively and through
externalized leads is the Parkinsonian beta band
(11–30 Hz) amplitude in the local field potential

(LFP) recordings in the STN and GPi. Increased
power in beta activity in the basal ganglia
has been correlated with Parkinsonian motor
symptoms, and this exaggerated beta power is
reduced with medication (levodopa) and with
DBS in responders [52]. More recent studies
have also reported on the shape and duration of
beta oscillations. Cole et al. [79] demonstrated
that beta oscillations in the human primary motor
cortex have sharp, asymmetric, non-sinusoidal
features, specifically asymmetries in the ratio
between the sharpness of the beta peaks compared
with the troughs. These beta oscillations become
more symmetric with optimal DBS therapy.
Other studies showed that Parkinsonian beta
activity is not continuously elevated but fluctuates
to give beta bursts in the STN [80] and GPi
[81]. Incidence of prolonged beta bursts is
shown to be positively correlated with clinical
impairment in Parkinson’s disease patients.
Similar short-term studies in dystonia patients
lead to the discovery of theta oscillations as a
correlate of mobile dystonic symptoms, which
could be suppressed with DBS therapy [82].
GPi peak theta activity has also been shown
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Fig. 6.8 Pathological oscillations in disorders repre-
sented in power spectral densities are potential biomark-
ers for closed-loop DBS development. (a) In Parkinson’s
disease, pathologically high power in the beta (11–30 Hz)
frequency range has been recorded in several areas in the
basal ganglia and even cortex. (b) In dystonia patients,
increases in theta rhythms (4–7 Hz) were reported in the

GPi during dystonic movements (c). Similarly, patients
with Tourette syndrome have increased activity in lower
frequencies (1–10 Hz) within the GPi and Cm-Pf complex
of the thalamus. (d) In essential tremor patients, oscilla-
tions within the Vim and cortex have been coherent with
peripheral tremor frequency as recorded by electromyog-
raphy (EMG). (Adapted from [53])

to significantly correlate with preoperative
symptom severity in cervical dystonia subjects
[83]. Next, intraoperative and chronic studies
have reported that elevated low-frequency power
(<10–13 Hz) in the centromedian-parafascicular
(Cm-Pf) complex of the thalamus coincides
with involuntary tics in patients with Tourette
syndrome [84, 85]. Finally, patients with essential
tremor experience tremor within 4–8 Hz as
measured by inertial sensors or electromyography
(EMG). Electrophysiological studies have
reported coherence between thalamic (Vim) and
primary motor cortical field potentials and EMG
activity at the tremor frequency [86, 87].

Many researchers are translating these
biomarkers to closed-loop DBS systems. Little
et al. (2013) [54] have shown intraoperatively
that closed-loop DBS is possible by increasing
stimulation amplitude in response to increased
beta power. They report 28% improvement in
motor scores and 56% reduction in stimulation
time compared to standard DBS. Rosa et al.
[88] presented a case report of a freely moving
patient on closed-loop DBS via externalized
leads. They observed that closed-loop DBS
significantly improved the subject’s main
symptom, bradykinesia, in comparison to open-
loop DBS. Other groups are working toward
chronic implementation of closed-loop DBS [88,
89]. A case study using a NeuroPace device
with bilateral responsive stimulation of the Cm-

Pf thalamus reported similar improvements in
tic severity scores, with 36% improvements in
expected battery lifetimes, again in comparison
to open-loop DBS [90].

Recording and stimulating from the same elec-
trode array, however, inject stimulation artifacts
into the recorded signals that confound the detec-
tion of biomarkers, evenwhen the stimulation and
recordings are performed on different electrodes.
This is mainly because stimulation amplitudes
are significantly larger than the neural biomarker
amplitudes. Another confounding factor in the
neural signal is the subharmonics of the stimula-
tion frequency caused by aliasing during analog-
to-digital conversion. Some mitigation methods
for these artifacts include front-end filtering of
stimulation frequencies, heterodyning the spec-
tral range of the biomarker, and common-mode
rejection via recording differentially from the two
adjacent electrodes surrounding the stimulation
electrode [76]. Additional electrodes implanted in
other nodes of the pathological network can also
provide a solution. If these electrodes are placed
far from the stimulation area, they will not be
significantly contaminated. For movement disor-
ders, electrocorticography (ECoG) strips may be
placed subdurally on the surface of the primary
motor cortex to extract disease biomarkers. This
additional electrode strip can be placed through
the same surgical burr hole used for the DBS elec-
trode. Cortical signals yield with much greater
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amplitudes compared to deep brain structures. A
chronic study with five PD patients reported a
fourfold root-mean-square (RMS) difference be-
tween cortical ECoG recordings and subthalamic
nucleus recordings [91]. A cortical biomarker for
dyskinetic events has been reported in Parkinso-
nian patients [92]. Dyskinesias are hyperkinetic
activity in multiple body regions that manifest
when dopamine levels of patients who are on both
medication and stimulation cannot be properly
regulated. This dyskinesia marker could termi-
nate or decrease stimulation to prevent dyskine-
sias in a closed-loop fashion. Two research groups
are studying ECoG biomarkers to detect intention
of movement from motor cortices to deliver DBS
responsively in essential tremor patients with in-
tention tremor [93]. This patient population does
not suffer from rest tremor and experience tremor
only when they make a goal-directed movement.
Opri et al. [94] demonstrated the first fully em-
bedded closed-loop system for intention tremor.

In addition, cortical electrodes enable the net-
work study of basal ganglia- or thalamocorti-
cal interactions. In intraop and chronic studies,
Opri et al. [95] showed that low-frequency phase
from the Vim couples to the broadband high-
frequency amplitude of the primary motor cortex
when subjects are at rest. This coupling dissolves
with volitional movement, suggesting a gating
mechanism from the thalamus to the cortex that
needs to be released for movement execution. The
coupling is not present between the Vim phase
and the somatosensory cortex amplitude, suggest-
ing a functional role for the coupling (i.e., gating
motor function). Malekmohammadi et al. [96]
also reported the same phenomena with patients
at rest but additionally showed that the coupling
dissolved under general anesthesia.

For movement disorders, motor symptoms
could be detected with wearable sensors. Case
studies in Parkinson’s disease [97] and essential
tremor [98] provide initial evidence for the
feasibility of using wearable sensors for closed-
loop DBS. Wearable sensors, however, will yield
symptom biomarkers after they manifest. Hence,
any adjustments to DBSwill come after symptom
manifestation. Neural signals, on the other hand,
likely modulate and yield biomarkers prior to

a clinical manifestation. Another challenge of
wearable sensor-based DBS is establishing the
communication channel between external sensors
and the implanted neurostimulator without
draining the implanted battery. Still, there is
notable utility for wearable sensor technology
for movement disorders. For instance, wearable
sensors could yield objective clinical measures
of motor symptom severity. Continuous wear
of these sensors can provide a highly sampled
record of patient symptoms [99]. Current clinical
scales are assessed by scoring a video recording
(examination by a specialist), who then assigns a
categorical rating to each item. This approach is
highly subjective and can only be implemented
completely during patient visits. The use of
wearable technologies could yield continuous
scoring of hypokinetic or hyperkinetic symptoms
through inertia measurements, which can capture
tremor, rigidity, and bradykinesia. It will also be
important to create telemedicine solutions that
will make it easier for patients to obtain DBS
devices and to be programmed and managed
from remote locations.

Overall, Hoang and Turner [100] summarize
that an optimal biomarker for closed-loop DBS
should have the following general characteristics:
(i) directly correlated to clinical symptoms, (ii)
able to dynamically reflect symptom improve-
ment, (iii) stable in real-world settings and daily
activities, (iv) differentiable from background
noise, and (v) consistent across patients, yet
tunable to account for patient variability.
Although this is a comprehensive list, it is also
important to consider that long-term plasticity is
necessary for symptom relief in disorders such
as dystonia and depression. It is therefore highly
possible that a biomarker capable of reflecting
or predicting clinical improvement may be
present in a different part of the network than
the stimulation target. Such a biomarker could
guide clinical programming in these disorders,
which is very challenging and can take many
months, as symptom relief is not immediate. In
paroxysmal disorders such as Tourette syndrome
or epilepsy, since tics or seizures are not
always present, the absence of a tic or seizure
biomarker may not be reflective of whether



6 Deep Brain Stimulation: Emerging Technologies and Applications 235

stimulation parameters are optimized. In such
cases, a biomarker that directly correlates with
observable symptoms may not reflect whether
stimulation settings are optimally selected.
Nevertheless, the field of neuromodulation is
rapidly uncovering biomarkers of disorders and
biomarkers of treatment efficacy with the goal of
developing smarter implantable neurostimulators
for improved symptom relief.

In the previous four sections, we discussed the
emerging technologies in DBS. As DBS tech-
nology advances, it will be important to develop
easy-to-use tools for clinicians and end users. One
danger in the field is to develop solutions that
are too complex to implement on a large scale.
As engineers, we need to remind ourselves that
input from stakeholders (patients, clinicians, and
caregivers) is the most important component of
any design and optimization process.

6.8 Emerging Indications

Other advances in the field of DBS therapy
arise not from technological advancements
but our understanding of the mechanisms of
disorders. This leads the way for new brain
areas to be investigated as potential targets for
DBS therapy in emerging indications. Table 6.1
summarizes current and potential indications
that are being treated by DBS. As discussed
previously, essential tremor and Parkinson’s
disease are indications that are approved for DBS
in the United States by the FDA. For emerging
indications, DBS is a last line of surgical
treatment, when all other options fail. Dystonia
and obsessive compulsive disorder (OCD) have
humanitarian device exemption (HDE) approval
for DBS. In OCD, the most common targets are
the nucleus accumbens (NAcc) [101], which is
known to be part of the brain’s reward circuit, and
the intersection of the ventral capsule and ventral
striatum (VC/VS) [102]. These areas are thought
to have an effect in the impulsive behaviors of
these subjects.

Emerging neurological indications range from
freezing of gait in Parkinson’s disease, which
does not respond to DBS therapy (and in some

cases to levodopa), to minimally conscious states
due to traumatic brain injury (TBI). Freezing of
gait is a debilitating Parkinsonian symptom that
leads to falls and significantly limits the inde-
pendence of patients. Traditional high-frequency
STN or GPi DBS does not resolve this symp-
tom. However, new clinical trials are targeting
low-frequency STN [103] and pedunculopontine
nucleus (PPN) of the brain stem [104]. Tremors
in multiple sclerosis (MS) are targeted with Vim
or dual Vim and ventral oralis (VO) nucleus of
the thalamus [105]. Another emerging indication,
Alzheimer’s disease, is the most common form
of adult-onset dementia. Electrical stimulation of
the fornix, a node in the Papez memory circuit
[106, 107], was targeted in a Phase I clinical
trial for improving working memory and cogni-
tive function in patients with Alzheimer’s-type
dementia with mixed results. DBS is also being
investigated as a potential treatment option for
patients in minimally conscious state following
traumatic brain injury [108]. The surgical target is
the central thalamus, which is interposed between
brain stem and basal forebrain arousal systems
and frontal cortical supervisory attentional sys-
tems during wakefulness. Another layer of ethi-
cal challenges surrounds this therapy, as subjects
cannot provide informed consent. Moreover, pa-
tients may gain an “awareness of a situation to
which [they] had previously been unaware, strip-
ping away a protective veneer that spared [them]
knowledge of the severity of [their] injury and its
associated burdens” [109]. Hence, it is important
for engineers and clinicians to work closely with
neuroethicists as these new treatments are being
studied.

Furthermore, many neuropsychiatric disorders
are emerging as potential targets for DBS.
Chronic pain, which is more traditionally treated
with spinal cord stimulation, may be treated with
DBS of the anterior cingulate cortex (ACC). The
dorsal ACC has been implicated in the affective
aspect of pain, emotional reward processing, and
addiction [110]. For the treatment of refractory
depression, cingulate white matter tracts near
Brodmann’s area 25 have been targeted [111], as
positron emission tomography (PET) in patients
with major depression showed increased blood
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Table 6.1 Current and emerging indications for DBS therapy

Indication Surgical target(s) Regulatory approvalsa

Essential tremor Vim Approved

Parkinson’s disease STN, GPi Approved

Dystonia GPi Humanitarian device exemption

Obsessive compulsive disorder NAcc, VC/VS, anterior limb of
internal capsule, STN

Humanitarian device exemption

Freezing of gait in Parkinson’s disease STN, PPN Investigational

Multiple sclerosis Vim, Vim + VO Investigational

Tourette syndrome Cm-Pf, GPi, NAcc Investigational

Dementia in Alzheimer’s disease Fornix Investigational

Minimally conscious state Central thalamus Investigational

Chronic pain ACC Investigational

Major depression BA 25 white matter tracts

Post-traumatic stress disorder BLA Investigational

Morbid obesity LH, VMH, NAcc Investigational

Addiction NAcc Investigational

ACC Anterior cingulate cortex, BA 25 Brodmann’s area 25 (subgenual cingulate cortex), BLA Basolateral amygdala,
Cm-Pf Centromedian-parafascicular complex (thalamus), GPi Globus pallidus internus (basal ganglia), LH Lateral hy-
pothalamus, NAcc Nucleus accumbens (basal ganglia), PPN Pedunculopontine nucleus (brain stem), STN Subthalamic
nucleus (basal ganglia), VC/VS Ventral capsule/ventral striatum (white matter/basal ganglia), Vim Ventral intermediate
nucleus (thalamus), VMH Ventromedial hypothalamus, VO Ventral oralis nucleus (thalamus)
aRegulatory approvals in the United States as granted by the Food and Drug Administration (FDA)

flow into that region compared to matched
controls [112]. Post-traumatic stress disorder
(PTSD) is another indication that is under
investigation for DBS. The amygdala is involved
in the neurocircuitry of fear conditioning, and
thus the basolateral amygdala is the most
commonly used target for investigational studies
of DBS for PTSD therapy [113]. Halpern et al.
[114] identified three potential neural targets
that are believed to be associated with excessive
food consumption: the lateral hypothalamus
(LH), the ventromedial hypothalamus (VMH),
and the NAcc through animal lesioning studies.
Respectively, these three areas have been
implicated in feeding behavior and energy
expenditure, appetite regulation, and the value of
food regardless of appetite [115]. The NAcc, as a
key structure in the mesolimbic reward pathway,
is a potential DBS target for the treatment of
drug addiction [116]. Overall, large-scale clinical
trials need to be conducted to establish DBS as
a viable treatment for any new indication. Our
neuroscientific understanding of these disorders,
as well as the mechanism of DBS in treating

them, will be critical for the success of these
trials.

6.9 Nonsurgical Approaches for
Deep Brain Stimulation

6.9.1 Focused Ultrasound

While effective, stereotactic lesioning of the brain
for the treatment of movement disorders has been
largely abandoned with the development of DBS
[117]. However, progress in transcranial MR-
guided high-intensity focused ultrasound (HIFU)
technology has renewed an interest in stereotactic
lesioning due to the potential for continuous
MRI guidance of a sharp focus “incisionless”
thalamotomy [118]. As a propagatingwave, ultra-
sound can penetrate biological tissues including
the skull, and its energy can be concentrated
in a small target. Early feasibility trials have
demonstrated significant improvements in hand
tremor in patients with severe essential tremor
following HIFU thalamotomy [119–121], and
further clinical trials are ongoing. These studies
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have suggested functional improvements in
activities, disabilities, and quality of life with
minimal morbidity. Proponents of HIFU further
highlight that an incision and burr hole are not
required to perform the procedure, offering a
“lower-cost, less invasive” alternative to DBS
that eliminates both the risks of penetrating the
brain and the inconvenience and costs imposed
by implanted hardware [122]. Furthermore,
transcranial ultrasound at low intensities can be
used to manipulate deep brain circuitry through
noninvasive brain mapping prior to lesioning.
On the other hand, patients must remain awake
during the procedure and must lie flat within the
MRI scanner for a few hours while the target is
localized. The MRI environment, while offering
the potential for procedural monitoring, can be
difficult to work in, and some patients cannot
tolerate these image-guided procedures. More
importantly, HIFU is an ablative and irreversible
lesion and can result in adverse effects especially
when used bilaterally.

When delivered at low intensities and short
durations, focused ultrasound can be used to ma-
nipulate deep brain circuitry, facilitating nonin-
vasive brain mapping with high spatial precision.
Focused ultrasound can excite or inhibit cellular
activity, depending on specific stimulation pa-
rameters [123], and stimulate a volume of sev-
eral millimeters when applied through the human
skull [124]. Furthermore, low-intensity focused
ultrasound can induce long-term changes in neu-
ral activity of the stimulated circuits when applied
for periods longer than 10 seconds [125, 126].
The mechanisms underlying these short-duration
or lasting effects are not well understood. Still,
focused ultrasound has the potential to become
a new tool for causal mapping of brain func-
tion, and further studies will show whether it
has potential to become a noninvasive treatment
for neurological and psychiatric disorders without
the need for ablating the target focus.

6.9.2 Temporal Interference

Grosmann and colleagues [127] recently intro-
duced a practical nonsurgical method to apply

DBS by exploiting the effects of high- and low-
frequency oscillating electric fields on neuronal
activity and temporal interference. The technique
employs two sinusoidal delivered from noninva-
sive electrodes placed on the skull at frequencies
higher than 1 kHz. These fields are low-pass
filtered by the neural membrane and therefore
can pass through the superficial cerebral cortex
without affecting the neuronal firing within their
field. In contrast, low-frequency sinusoidal fields,
which are in the dynamic range of neural firing
activity, promote neuronal discharges. The ab-
sence of neuronal firing was verified in mouse
hippocampal cells, whereas a 10 Hz neuronal
bursting was reported in response to 10 Hz stimu-
lation. The latter, however, also activates overly-
ing cortical cells.

Selective activation of hippocampal neurons
without activating cortical neurons was achieved
by exploiting the temporal interference of two
high-frequency sinusoidal electric fields. To de-
scribe temporal interference, we will borrow the
concept of interference patterns of beats from
simple acoustics. A high-frequency sine wave at
2 kHz produces an audible tone (red trace in Fig.
6.7). If we add to this tone another sine wave
that differs slightly in frequency (yellow trace
in Fig. 6.7), for example, by 10 Hz, the waves
follow each other closely, amplifying each other,
but over time they drift out of phase and begin
to attenuate each other (blue trace in Fig. 6.7).
Thus, their sum oscillates between high and low
volume. If we listen to this signal, we perceive this
periodic variation of volume as a beat. Moreover,
the beat frequency happens to be the difference in
frequency between the two original waves (pur-
ple trace in Fig. 6.7). Grossmann and colleagues
show that they can temporally interfere 2 kHz and
2.01 kHz waves within the mouse hippocampus,
creating a beat frequency at 10 Hz, the difference
between the two. The result is hippocampal neu-
ronal firing at 10 Hz (Fig. 6.9).

Using this technique, high frequencies are
low-pass filtered so as not to affect the overlying
cerebral cortex. This can be seen by looking at
expression of the gene c-fos – a marker of neural
activity in mice cortex and hippocampus [129] –
which verified that ipsilateral hippocampal
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Fig. 6.9 Model of temporal interference and its effects
on neuronal activity as delivered from two noninvasive
electrodes on the skull. The interference of two oscillating
electric fields with slightly varying frequencies (f1 and
f1 + 10 Hz) creates a beat at 10 Hz (where f1> > 1 kHz; not
drawn to temporal scale). When the same high-frequency
field is applied from both electrodes (e.g., f1 from both

electrodes), no neural recruitment is observed. The in-
terference field (blue trace) and a 10 Hz field (purple
trace) both lead to 10 Hz neural firing but with selective
recruitment at the interference locus and with broad re-
cruitment on the path of the low-frequency electric field,
respectively. (Adapted from [128])

neurons were activated. The contralateral
hippocampal and ipsilateral cortical neurons,
however, did not express c-fos, substantiating this
technique’s selective activation. Moreover, the
locus of interference can be changed by merely
modulating the ratio of the two electric field
amplitudes, while keeping the amplitude sum
constant. Furthermore, by moving the locus of
the interference to the sensorimotor cortex, the
authors were able to evoke movements in the
contralateral forepaw.

Although the proposed methodology of this
technique seems practical, a necessary next step
would be to test the clinical effectiveness in an-
imal models of movement and neuropsychiatric
disorders. The selection of a beat frequency in
the range of theta bursts was a suitable choice for
the hippocampus; however, DBS is typically de-
livered in the thalamus and basal ganglia around
100–180 Hz. Thus, the functional spectral range
of themethodology should be investigated.More-
over, the volume of tissue of activation will need
to be delineated to identify the specificity of the
interference effect. If the noninvasive methodol-
ogy is not specific in its neural activation, the
unintended spread of DBS current could lead to a
range of motor and non-motor side effects, which

are commonly observed in DBS studies with hu-
man participants. Furthermore, the fixation of the
noninvasive electrodes and the calculation of the
interference loci must be reliable. These factors
could be limiting in clinical translation, especially
for patients requiring continuous DBS. Finally,
longer durations of safety testing should be con-
ducted prior to human studies. Overall, the tech-
nique did not induce seizures or increase tissue
temperature, and histology showed preservation
of neuronal density without DNA damage. How-
ever, the interfering fields were only applied in
short bouts, and the histological effects were only
investigated at a single time point, 24 h post stim-
ulation. The technical issues, practicality, safety,
and effectiveness will need to be addressed in
order to translate this finding into a treatment for
human beings.

6.10 Discussion

Though DBS has become a widely used ther-
apy over the last two decades, no significant ad-
vancement in DBS device technology has been
demonstrated. Clinical programming of DBS still
requires the involvement of highly experienced
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clinicians to yield maximal therapeutic benefit
in each patient. Progress in imaging will enable
better specificity in brain circuit targeting. Novel
stimulation patterns, novel electrodes, computa-
tional modeling for current steering, and closed-
loop DBS have the potential to transform DBS
therapy by improving the therapeutic benefit-to-
side effect ratio. We will likely see many more
feasibility studies on closed-loopDBS enabled by
next-generation DBS devices capable of chronic
recordings and supported by public–private part-
nerships. Chronic brain recordings from humans
will bring about improved scientific understand-
ing of the neurophysiology of movement disor-
ders and other indications. The collective knowl-
edge will inform the DBS mechanisms of action
and guide the path for new design goals in future
devices. Advances in these areas will better serve
patients, as well as clinicians.

Homework

1. Assume you want to do a controlled experi-
ment between low-frequency DBS at 50 Hz
and high-frequency DBS at 100 Hz by de-
livering the same amount of charge into the
tissue. If you keep your pulse width the same,
what would be the ratio of amplitudes in
these two stimulation schemeswith a current-
controlled pulse generator?

2. In the scenario above, how would you adjust
your pulse width if that was the only param-
eter you could change?

3. If in the above scenario (question 1), safety
limits only allow you to increase your ampli-
tude by 25%, what kind of adjustment would
you have to make to your pulse width?

4. A recent study [86] determined the total
electrical energy delivered (TEED) by
nonrechargeable implantable voltage-
controlled pulse generators based on the
stimulation parameters as given below:

TEED =
(
amplitude (V )2×frequency (Hz)

)×pulse width

impedance

× 1 sec

Redo Problem 1 to attain equal TEED for
the two different stimulation frequencies.

5. Redo Problem 2 to attain equal TEED for the
two different stimulation frequencies.

6. Redo Problem 3 to attain equal TEED for the
two different stimulation frequencies.

7. What would be the amount of current drain
off of a voltage-controlled pulse generator if
the tissue impedance is reduced by an aver-
age of 10% across time?

8. What would be the amount of current drain
off of a voltage-controlled pulse generator
if the tissue impedance is increased by an
average of 10% across time?

9. What would be the amount of current drain
off of a current-controlled pulse generator if
the tissue impedance is reduced by an aver-
age of 10% across time?

10. What would be the amount of current drain
off of a current-controlled pulse generator
if the tissue impedance is increased by an
average of 10% across time?
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7Transcranial Magnetic Stimulation:
Principles and Applications

Lari M. Koponen and Angel V. Peterchev

Abstract

Transcranial magnetic stimulation (TMS) is a
noninvasive method for focal brain stimula-
tion, with applications in research, diagnostics,
and treatment. In basic research, TMS can help
establish a causal link between a brain cir-
cuit and a behavior. Clinically, repetitive TMS
can alter the long-term excitability of specific
brain regions to treat psychiatric and neuro-
logical disorders. This chapter aims to support
engineers and researchers to understand and
innovate TMS technology. It introduces the
basics of TMS spanning engineering, physics,
biophysics, paradigms, and applications. First,
the principles of TMS devices are explained
including the electrical circuit topologies and
efficiency of the pulse generator as well as the
design of the stimulation coil. Ancillary effects
such as heating, electromagnetic forces, and
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interactions with other devices are considered.
Then, the underlying physics and its mod-
eling are presented, including the magnetic
field of the coil and the impact of the sub-
ject’s head on the induced electric field. This
is followed by a description of the biophysics
of neuronal activation due to TMS, includ-
ing the cable equation, leaky integrate-and-fire
neural membrane dynamics, and morphologi-
cally realistic neuronmodels. Variousmethods
to measure the responses to TMS are sum-
marized, spanning observations of behavior,
electromyography, epidural recordings, elec-
troencephalography, functional near-infrared
spectroscopy, functional magnetic resonance
imaging, and positron emission tomography.
The chapter concludes with an overview of
stimulation paradigms encompassing single-
pulse, paired-pulse, and repetitive TMS, along
with their applications in basic research and
the clinic. The chapter includes ten problems
that cover the presented material.

Keywords

Brain stimulation · Transcranial magnetic
stimulation · TMS · TMS pulse generator ·
TMS coil · Electric field · Physics of TMS ·
Biophysics of TMS · Neuron model · TMS
stimulation paradigm · TMS applications
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7.1 Introduction

Transcranial magnetic stimulation (TMS) is a
noninvasive brain stimulation method. In TMS, a
rapidly changing magnetic field (B-field) is used
to induce an electric field (E-field) inside the
brain, mostly limited to the superficial parts of the
cortex. The E-field drives ionic currents causing
local hyperpolarization or depolarization of the
excitable membrane of the neurons. Sufficiently
large membrane depolarization results in firing
of action potentials. Thus, despite its name, TMS
is essentially electrical stimulation, where the de-
livery of an E-field to the brain is mediated by a
magnetic field.

The basic understanding of the physics
underlying magnetic stimulation dates back
to late nineteenth century. In 1896, in the
first documented TMS experiment, D’Arsonval
observed that “phosphenes [brief flashes of light
in the visual field] and vertigo, and in some
persons, syncope [fainting]” can be induced by
sending current through a large stimulation coil
surrounding the whole head [1]. It is possible,
however, that these early observed effects were
not of cortical origin, as phosphenes are more
readily observed due to retinal stimulation and
vertigo may be due to stimulation of the inner ear.
After the early experiments, magnetic stimulation
had a long hiatus, mostly due to lack of suitable
power electronics to reach the required intensities
with brief, controlled pulses. The first modern
experiments on pulsed magnetic stimulation of
peripheral nerves were carried out in the 1970s.
Finally in 1985, Barker and his collaborators
demonstrated the first device capable of evoking
motor responses by transcranially stimulating
the human cortex [2]. The other key component
of modern TMS devices followed soon after
when Ueno and colleagues proposed the figure-
of-eight (figure-8) coil capable of focal brain
stimulation [3].

In terms of required energy, TMS and mag-
netic nerve stimulation in general are very ineffi-
cient methods to activate neurons. The current in
a multi-turn TMS coil must reach several kiloam-
peres (>1000 A), corresponding to about 100 J of

energy, in order to produce suprathreshold stimu-
lation of the cortex. In contrast, noninvasive elec-
trical stimulation through the skull—transcranial
electrical stimulation (TES)—requires currents
less than an ampere (<1 A), corresponding to
energy on the order of 0.01 J, to evoke direct
motor responses. From an engineering point of
view, the energy and power levels required in
TMS remain somewhat challenging, limiting the
range of possible stimuli.

TMS, however, has the critical benefit that it
is tolerable. The skull has low electrical conduc-
tivity and presents a barrier for the current flow
in TES, resulting is very strong E-field in the
scalp relative to the brain. This makes TES at
near-threshold current levels very painful, due to
massive activation of sensory nerves and muscles
in the scalp. In contrast, the skull is essentially
transparent to the magnetic field, and therefore
TMS results in markedly lower scalp stimulation.
Consequently, TMS is usually painless—a typical
TMS pulse feels like a gentle tap on the head.
The tolerability advantage of TMS is the main
reason for its widespread adoption, despite the
relatively high energy and power requirements of
the equipment.

This chapter begins with a discussion of the
principles and types of TMS devices. We then
build a basic understanding of the TMS physics
and biophysics. Subsequently, we introduce
methods suitable for simultaneous measurements
of the effects of TMS. Finally, we present the
typical uses of TMS in research and clinical
applications—to probe the brain without lasting
changes in its function and to modulate its
function with repetitive stimulation.

7.2 Devices

TMS devices are comprised of two main compo-
nents illustrated in Fig. 7.1: a pulse generator and
an electromagnetic coil placed over the subject’s
head. The pulse generator controls the tempo-
ral waveform and amplitude of the TMS pulse,
whereas the coil shape and placement determine
the spatial distribution of the E-field induced in
the brain.
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Fig. 7.1 ATMS device comprises twomain components:
a pulse generator (a) and an electromagnetic coil (b). The
coil is held on the scalp of the TMS subject (sitting) by
an operator or, alternatively, a static or robotic mechanical

arm. A full TMS setup usually includes other devices, such
as a stereotactic neuronavigation system (c) with optical
trackers both on the coil (d) and on the subject’s head—
here attached to a pair of goggles (e)

7.2.1 Pulse Generators

7.2.1.1 Circuit Topology
The principle of TMS devices is to generate a
magnetic pulse by rapidly transferring energy
from a capacitor in the pulse generator to the coil.
Three representative TMS device circuit topolo-
gies are shown in Fig. 7.2. The conventional
monophasic stimulator (in the left column) uses a
high-voltage power supply to charge capacitor C
to a high voltage (typically <3000 V). To generate
a TMS pulse, a high-power semiconductor switch
Q is triggered, and the energy of capacitor C
is transferred to the TMS coil L. Switch Q is
typically implemented with a silicon-controlled
rectifier, a type of thyristor. The silicon-controlled
rectifier is turned on by a trigger pulse applied
to its gate terminal, but it cannot be turned off
in a controlled way—it stops conducting only
when the coil current IL drops to zero. During
its discharge, capacitor C forms a resonant circuit

with the coil L. Therefore, the coil current has a
dampened sine shape:

IL(t) = VC(0)

ωL
sin (ωt) exp (−αt) , t ≥ 0 (7.1)

where t is time, VC(0) is the initial capacitor
voltage, α = r/2L characterizes the damping from
the circuit series resistance r, ω = √

1/LC − α2

is the damped resonance frequency of the pulse,
and L and C are, respectively, the coil inductance
and energy storage capacitance. The maximum
peak coil current of a conventional TMS device
is several kiloamperes (typically <8000 A). In
the circuit diagrams, the resistor r lumps the
resistance of the coil windings, cable, connector,
switch Q (when turned on), and capacitor. The
coil voltage is proportional to the derivative of the
coil current:

VL(t) = LdIL(t)

dt
. (7.2)
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Fig. 7.2 Circuit topologies of representative TMS de-
vices producing coil a current (IL) and a proportional
magnetic field pulse that is monophasic sinusoidal (left),
biphasic sinusoidal (middle), and nearly triangular (right).
The induced E-field is proportional to the coil voltage, VL,
and results in estimated neuronal membrane polarization
change�Vm. (The y-axes units are arbitrary.) To make all
three stimulators deliver strongest neural activation in the
same direction, the polarity of the coil has been reversed
for the middle column. The power supply charging the

energy storage capacitor C, the power switch gate drives,
and the system controller are common to all topologies
but shown only in the left column for concision. The
circuit component values for the shown waveforms are
C = 185 μF, C1 = 370 μF, C2 = 1,500 μF, L = 16 μH,
r= 50m	,R= 100m	,VC1 =VC , andVC1/VC2 = 4. The
pulse duration of the initial rising current for themonopha-
sic nearly triangular pulse is 51 μs, which produces iden-
tical membrane depolarization, �Vm, as the 81-μs-long
initial rising current for the monophasic sinusoidal pulse
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Therefore, for the underdamped sinusoidal
current of Eq. 7.1:

VL(t) = VC(0)
[
cos (ωt)− α

ω
sin (ωt)

]

× exp (−αt) , t ≥ 0.
(7.3)

For the monophasic stimulator, Eqs. 7.1 and
7.3 hold until the capacitor discharges to zero,
i.e., for VC(t) ≥ 0. When VC reaches zero, the coil
current is at its (positive) peak and continues to
discharge VC into negative values. This results in
diode D turning on, which adds a damping resis-
tor R in parallel with the capacitor. The damping
effect of R now dominates that of r, and the
circuit configuration becomes mostly a parallel
LCR resonant circuit, with R selected to produce
an overdamped response. Representative shapes
of the coil current and voltage waveforms for the
monophasic sinusoidal pulse are illustrated in the
left column of Fig. 7.2. Note that the coil B-field
is proportional to IL(t) and the E-field induced by
the coil is proportional to VL(t) (see Eq. 7.8).

The circuit topology of the conventional
biphasic stimulator is represented in the middle
column of Fig. 7.2. Unlike the monophasic
stimulator discussed above, there is no deliberate
damping of the pulse energy, and the capacitor
and coil are allowed to resonate for a full period
of T = 2π /ω seconds. This is achieved by
connecting diode D in antiparallel to Q to allow
the coil energy, minus circuit losses, to return
back to the capacitor. The resulting underdamped
sinusoidal coil current is biphasic, and the coil
and capacitor voltages have an underdamped
cosine triphasic waveform.

The right column of Fig. 7.2 illustrates an
advanced circuit topology that allows more flex-
ible shaping of the TMS pulse waveform [4]. It
deploys two energy storage capacitors, C1 and
C2. By turning on switch Q1 or Q2, the coil is
connected across capacitorC1 orC2, respectively.
This allows independent control of the rate of
rise and fall of the coil current and therefore the
amplitude of the positive and negative phases of
the induced E-field. The coil current and voltage
still follow Eqs. 7.1 and 7.2 with appropriate
initial conditions that change each time the coil is

switched between the two capacitors. Moreover,
C1 and C2 have significantly larger capacitance
than those in the conventional stimulators dis-
cussed above, enabling slower discharge of the
capacitors, which results in more linear slopes of
the coil current and therefore more rectangular
shape of the induced E-field. Finally, instead of
thyristors, the capacitors are connected to the
coil with transistors (specifically, insulated-gate
bipolar transistors) which can be not only turned
on but also turned off by driving their gate—this
allows control over the duration (width) of the
pulse phases. Like the silicon-controlled rectifiers
used in conventional devices, insulated-gate bipo-
lar transistors can conduct current in only one
direction, whereas diodes D1 and D2 allow cur-
rent to flow in the opposite direction. This device
can generate monophasic, biphasic, or polyphasic
magnetic pulses by appropriate switching of the
coil between the two capacitors. A monophasic
pulse and a biphasic pulse are illustrated in Fig.
7.2. The monophasic pulse is generated by con-
necting the coil first to C1 and then to C2. In the
biphasic pulse, the coil is first connected to C2,
then to C1, and finally back to C2.

7.2.1.2 Energy Efficiency
and Repetitive TMS

The total electric energy stored in the TMS device
capacitor(s) is

WC(t) = 1
2

∑
i CiV

2
Ci
(t) (7.4)

where the summation is over all capacitors in the
circuit—one for conventional monophasic and
biphasic devices and two for the advanced topol-
ogy shown in Fig. 7.2, right column. The B-field
energy stored in the coil is

WL(t) = 1
2LI

2
L(t). (7.5)

To produce neural depolarization in the brain,
TMS pulse energies in the 50–200 J range are
typically required. For rTMS pulse trains, the
average power circulated through the coil is the
product of the pulse energy and the repetition
frequency. This power is substantial—for exam-
ple, 0.5–2 kW for a 10 Hz pulse train. Presently,
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many rTMS devices can deliver pulse trains with
frequencies up to 50 Hz, and some can exceed
100 Hz. Energy efficiency is therefore important,
especially for rTMS devices. The energy recovery
efficiency of an rTMS device can be quantified by
the ratio of the capacitor energy at the end of a
pulse (t = T) to that at the beginning of the pulse
(t = 0):

ηrecov = WC(T )

WC(0)
(7.6)

where T is the pulse duration. For example,
T = 2π /ω is the period of the sine wave for a
conventional sinusoidal biphasic stimulator. If
resistance r is the only loss mechanism in the
circuit, then the energy loss can be calculated
from the coil current (Eq. 7.1) by integrating the
power loss

Wloss = WC(0)−WC(T ) =
T∫

0
rI 2L(t)dt. (7.7)

The circuit topologies in Fig. 7.2 are ordered
by increasing energy efficiency. The conventional
monophasic stimulator deliberately dissipates all
energy returning from the coil into resistor R.
Therefore, ηrecov = 0 and capacitor C has to be
fully recharged by the power supply before each
pulse. For this reason, conventional monophasic
stimulators are not well suited for high-frequency
pulse trains (>1 Hz). In contrast, the conven-
tional biphasic stimulator in the middle column
recharges capacitor C with the coil energy re-
maining at the end of the pulse. The energy losses
in this topology are from nonidealities of the
circuit components, especially the effective series
resistance r. Consequently, the power supply has
to only top off the capacitor charge, reducing
significantly the power requirements of the de-
vice. The topology in the right column of Fig.
7.2 recycles pulse energy by transferring it be-
tween the two capacitors. Moreover, it requires
less energy for stimulation, since rectangular E-
field pulses are more efficient at depolarizing
neurons than conventional cosine pulses [4, 5]. In
conventional sinusoidal biphasic rTMS devices,
typically ηrecov = 50 – 70%, whereas in devices

with briefer and more rectangular E-field pulses,
ηrecov can reach 90%.

7.2.2 Coils

The simplest TMS coil type is the round coil
which has a single circular winding (Fig. 7.3a).
The round coil induces a circular E-field pattern
in the brain. Therefore, the resultant stimulation
is nonfocal. In the figure-8 configuration (Fig.
7.3b), two round coils are placed next to each
other with current flowing in opposite directions
in the two windings, creating a focal E-field peak
where the two loops meet. Because of its fo-
cality, the figure-8 coil is the most commonly
used TMS coil. A variation of the figure-8 coil
is the double-cone coil (Fig. 7.3c), in which the
two loops are larger in diameter, increasing the
depth of stimulation in the brain and angled with
respect to each other, improving the magnetic
field coupling to the brain. Hence a double-cone
coil requires 53% less energy than a figure-8 coil
to evoke comparable responses [6]. The increased
depth and energy efficiency, however, cost re-
duced focality [7]. Another variation involves
adding a ferromagnetic core into the figure-8 coil
(Fig. 7.3d). The ferromagnetic material has high
magnetic permeability and consequently focuses
the magnetic field energy toward the subject’s
head. Consequently, a ferromagnetic core coil
has been shown to require 73% less energy to
stimulate neurons and heats up less compared to
air core coils [8]. Another approach to increase
the coil efficiency is to optimize computationally
the winding pattern, with a reported gain of 41%
(Fig. 7.3e) [9]. Finally, coils with steerable locus
and direction of the E-field can be implemented
by layering windings with orthogonal field char-
acteristics and controlling them with independent
pulse generators (Fig. 7.3f) [10]. A general trade-
off in TMS coil design is that larger coils generate
deeper but less focal E-field than smaller coils
[11, 12]; this is discussed further in Sec. 7.3.3.2.

The coil induces a magnetic field B propor-
tional to the total current flowing through the
coil cross section, NIL, where N is the number of
winding turns. The E-field induced by the TMS
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Fig. 7.3 TMS coil types: (a) round, (b) figure-8, (c)
double cone, (d) figure-8 with ferromagnetic core, (e)
computationally optimized winding, and (f) multi-locus

coil. The induced E-field distributions are shown for a
spherical head model

pulse is proportional to the rate of change of the
magnetic field, therefore, using Eq. 7.2:

E(t) ∝ dB
dt

∝ N dIL(t)
dt

= N
L
VL(t). (7.8)

Thus, the induced E-field waveform is directly
proportional to the voltage of the coil inductor.

The inductance of the coil is given by

L = μrμ0N
2 SL
lL

(7.9)

where μr is the effective relative permeability of
the magnetic flux path (μr = 1 for air-core coils)
and μ0 = 4π × 10−7 H/m is the permeability of
free space. Parameters SL and lL are, respectively,
the average cross-sectional area and length of the
magnetic flux path and are related to the spatial
profile of the coil B-field. Section 7.3 discusses
how to calculate the spatial distribution of the
TMS coil magnetic field, which determines SL
and lL. The ratio SL/lL scales proportionally to
the coil radius. For a given size and shape of the
coil, the SL/lL ratio is fixed, and the inductance is

determined by N. Typical TMS coil inductances
range from 10 to 25 μH.

7.2.2.1 Coil Heating
In the absence of coil cooling, the coil winding
temperature rises at a rate proportional to the
product of the energy loss in the coil, Wloss, and
the pulse repetition frequency. This can result
in substantial increases of the coil temperature,
especially for rapid pulse trains. Therefore, the
majority of rTMS coils have forced air or liq-
uid cooling. Strategies discussed above such as
ferromagnetic cores, computationally optimized
windings, and rectangular E-field pulse shape can
be used to increase the energy efficiency and
hencemitigate coil heating and the need for active
cooling.

7.2.2.2 Coil Forces
The high currents in TMS coils result in substan-
tial internal coil forces. The strongest of these
is the net outward radial force acting on circular
windings:
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F(t) = dWL(t)

dρ
= 1

2
dL
dρ
I 2L (t) ∝ N2I 2L(t), (7.10)

where ρ is the coil radius [13]. The second
strongest force is the compression of neighboring
turns within the coil: despite the net radial force
pointing outward, the force on the outermost turns
points inward. These forces produce mechanical
deformation and oscillation of the coil surface
that generate an audible clicking sound and
tapping on the subject’s scalp. The peak sound
pressure of this sound can exceed 120 dB,
necessitating TMS subjects to wear hearing
protection.

7.2.3 Device Safety

TMS devices must be designed to operate
safely. Specific safety considerations include
appropriate insulation from high voltages in
the device, mechanical integrity of the coil for
repeated high electromagnetic forces in the
windings, safe operating temperature of the
coil, mitigation of the coil clicking sound, and
protections from erroneous delivery of high
amplitude and/or frequency pulse trains that
could induce a seizure. For example, as medical
electrical equipment, commercial TMS devices
have to meet safety standards such as the IEC
60601.

7.2.3.1 Interaction with Other Devices
Implants that have wires placed in the scalp
and/or the brain can be adversely affected
by voltages and currents induced by TMS.
These include cochlear implants which have an
inductive coil implanted under the scalp as well
as deep brain stimulation (DBS) implants which
can have looping of lead wire under the scalp. The
induced voltage in a wire loop can be estimated
using Faraday’s law:

Vind = − dΦ
dt

(7.11)

where�= Sind • B is the magnetic flux associated
with magnetic field B through a loop of area Sind.
Other hardware that can be adversely affected by

induced currents includes highly conductive EEG
electrodes and metal plates on the skull, which
can form low-resistance conductive paths for the
current, resulting in heating.

7.3 Physics

Electrically excitable cells, such as neurons and
muscle cells, can be activated by imposing an E-
field across them. In TMS, this E-field is applied
across neurons in the brain by means of a time-
varying electromagnetic field. The electromag-
netic field is governed by Maxwell’s equations,
namely, Faraday’s law of induction

∇ × E = − ∂B
∂t

(7.12)

and Ampere’s circuital law

∇ × B = μ0
(
J + ε0

∂E
∂t

)
, (7.13)

where E is the electric field, B is the magnetic
field, J is the current density, μ0 is the permeabil-
ity of free space, and ε0 is the permittivity of free
space. Equation 7.13 is strongly coupled to Eq.
7.12 as, in addition to the so-called displacement
current (ε0∂E/∂t), the E-field determines the in-
duced current density through Ohm’s law

J = σE, (7.14)

where σ is the electrical conductivity, for exam-
ple, of tissue.

For modeling TMS, Eqs. 7.12 and 7.13 can
fortunately be approximately decoupled. First, as
seen in Sec. 7.2, a typical biphasic TMS pulse
lasts about 300 μs, corresponding to a charac-
teristic frequency of 3.3 kHz. This is a very low
frequency for an electromagnetic field, having a
wavelength of about 90 km. Therefore, we can
safely perform a few approximations: the TMS
coil current is in phase in all parts of the coil, and
the B-field in the volume of interest is in phase
with the coil current, the displacement currents
are negligible, and no tissue exhibits apprecia-
ble magnetization. This electromagnetic regime
is referred to as “quasi-static” [14]. Further, the
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magnetic field generated by the currents induced
in the subject’s body by TMS is insignificant.
Even for the most conductive biological tissues,
such as the cerebrospinal fluid, the conductivity
is only on the order of 2 S/m. Thus, the induced
currents in Eq. 7.14 are tiny: At its maximum
output, a typical TMS device induces peak E-
fields less than 250 V/m [15], resulting in current
densities of at most 0.5 mA/mm2. In contrast, the
current density in the windings of a typical TMS
coil is about 200,000 mA/mm2. Therefore, we
only have to consider the magnetic field of the
TMS coil. With these approximations in place,
we can first compute the B-field of the coil from
Eq. 7.13 usingmagnetostatics and use that B-field
to solve the E-field induced in the subject’s head
with Eq. 7.12.

7.3.1 Magnetic Field

According to Ampère’s law (Eq. 7.13), a current
density gives rise to a B-field. Under the quasi-
static approximation, the B-field can be obtained
from the Biot–Savart law

B (r, t) = μ0

4π

∫∫∫
V

J(r ′,t) dV ′×(r−r ′)
|r−r ′|3 , (7.15)

where B(r, t) is the magnetic field at point r and
J(r

′
, t)dV

′
is a differential volume current element

at point r
′
. Given the magnetostatic assumption of

no induced volume currents, for an air core TMS
coil, Eq. 7.15 further simplifies to

B (r, t) = μ0

4π I (t)
∮
p

dr ′×(r−r ′)
|r−r ′|3 , (7.16)

where I(t) is the coil current, p is the closed
path formed by the coil windings, and r

′
is the

integration variable following this path. For fer-
romagnetic core coils, we also need to include
the magnetization currents in the core for the
integration, which requires a numerical solver in
most cases. Figure 7.4 illustrates the magnetic
field of a circular coil computed using Eq. 7.16.
The peak magnetic field strength near a TMS coil
is typically on the order of 1 tesla (see Problem 1).

Fig. 7.4 Magnetic field of circular coil. The direction of
the magnetic field is related to the direction of the current
by the right hand rule

7.3.2 Induced Electric Field

The E-field induced by TMS in the subject’s head
can be obtained from Faraday’s law of induction
(Eq. 7.12). We can solve the E-field by splitting
it into a primary E-field, which is a direct result
of the change in the B-field and which would
be present in an infinite homogeneous medium,
and a secondary E-field originating from electric
charge accumulation at tissue interfaces in the
head due to the primary E-field. To obtain this
split, we must express B and E in terms of an
electric scalar potential ϕ and a magnetic vector
potential A

B = ∇ × A (7.17)

and

E = −∇ϕ − ∂A
∂t
. (7.18)

These two potentials are not uniquely defined,
as the divergence of the magnetic vector potential
(∇ · A) can have any value [16]. By fixing the
divergence with the Coulomb gauge (∇ · A = 0),
we isolate the primary and the secondary fields to
correspond to the two terms of Eq. 7.18

Eprimary = − ∂A
∂t

(7.19)

and
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Esecondary = −∇ϕ. (7.20)

With the Coulomb gauge, Eq. 7.16 can be
rewritten as

A (r, t) = μ0

4π I (t)
∮
p

dr ′
|r−r ′| . (7.21)

Thus, we obtain a closed-form solution for the
primary E-field

Eprimary (r, t) = − μ0

4π
dI (t)

dt

∮
p

dr ′
|r−r ′| . (7.22)

Equation 7.22 can be interpreted as the pri-
mary E-field being a smoothed mirror image of
the coil current. For example, a circular coil in-
duces a circular E-field pattern with largest mag-
nitude under the coil winding annulus. The minus
sign in Eq. 7.22 represents Lenz’s law, which
states that direction of the induced current, and
hence Eprimary, is such that the magnetic field cre-
ated by the induced current opposes the changing
field B.

The secondary E-field partially cancels out the
primary E-field, as illustrated in Fig. 7.5. The
secondary field arises from charge accumulation
at conductivity boundaries, which, from the TMS
point of view, happens near instantaneously in

at most a few microseconds [17]. As we will
learn in Sec. 7.4, the stimulation is proportional
to the sustained component of the E-field. Con-
sequently, we are not interested in this transient
behavior, and the easiest way to obtain the sec-
ondary currents is fromOhm’s law (Eq. 7.14) and
the conservation of charge

∇· J = − ∂ρ

∂t
, (7.23)

where ρ is the charge density. The quasi-static
steady state does not allow for a time-dependent
charge accumulation, which further simplifies
Eq. 7.23 to

∇· J = 0. (7.24)

Consequently, the scalar potential for the sec-
ondary E-field in Eq. 7.18 satisfies Laplace’s
equation

0 = ∇· E = 0 + ∇· Esecondary = ∇2ϕ, (7.25)

within each region of uniform conductivity, since
the divergence of the primary E-field is zero.
Eq. 7.24 also gives us the boundary conditions
for the total E-field: using Gauss’s law, e.g., the

Fig. 7.5 Left: The primary E-field of a typical figure-8
coil (Magstim 70 mm Double Coil) when its current is
increasing at a rate of 100 A/μs (corresponding to 1600 V
applied across the coil with inductance of 16 μH). The
combination of two circular loops with current rotating
in opposite directions produces a focal E-field peak of
about 240 V/m at 15 mm from the intersection of the
two loops. Middle: The secondary E-field in a spherically

symmetric volume conductor (approximating a human
brain) centered 85 mm below the coil surface. Right: The
total E-field is the vector sum of the primary and secondary
fields. The E-field distribution is more superficial than the
primary field alone, and the peak magnitude is reduced to
about 150 V/m. As a special property of the spherically
symmetric geometry, the secondary field cancels the nor-
mal component of the primary field everywhere inside the
volume
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divergence theorem [16], we can convert Eq. 7.24
into an integral form

0 =
∫∫∫

Ω

0dV =
∫∫∫

Ω

(∇· J ) dV

=
∫∫

∂Ω

(
J · n̂) dS ,

(7.26)

where	 is any arbitrary volume, dV is a differen-
tial volume element in it, ∂	 is the closed surface
of the volume 	, and n̂ and dS are, respectively,
its surface normal vector and differential surface
element. Following the classical textbook deriva-
tion of the boundary condition for E- or B-fields
with a “very shallow pillbox” [16], we obtain the
boundary condition at tissue interfaces

J 1· n̂ = J 2· n̂, (7.27)

where J1 and J2 are the current densities in adja-
cent tissues 1 and 2, respectively. Substituting Eq.
7.14 into Eq. 7.27, we obtain

σ1E1· n̂ = σ2E2· n̂, (7.28)

where σ 1 and σ 2 are the conductivities of tissues 1
and 2 and E1 and E2 are the total E-fields in these
tissues, respectively. At the scalp–air interface,
this simplifies to Escalp· n̂ = 0. Consequently,
near the head surface, the secondary field will
have to cancel out any normal component of
the primary field so that the total E-field has no
normal component near the outside surface of the
head (see Fig. 7.5). In the typical case of a focal
figure-8 coil, the secondary E-field also reduces
the magnitude of the tangential component of the
total E-field to about two-thirds of that of the
primary field.

With the exception of a few special cases,
such as spherically symmetric geometry [18] or
cylindrical or semi-infinite geometry [19], there is
no closed-form solution for the secondary E-field
and hence the total E-field. Rather, the secondary
field is usually computed with numerical methods
discussed in the next section.

7.3.3 Electric Field Models

In the two previous sections, we derived the
physics controlling the total E-field induced by
TMS, namely, Eq. 7.22 to obtain the primary E-
field, Eq. 7.28 to obtain the boundary conditions
for the secondary E-field at tissue interfaces, and
Eq. 7.25 to obtain the secondary E-fieldwithin the
tissues. These three equations form a basis for the
direct approach for computing the E-field inside
a volume conductor model of the subject’s head,
combining the head geometry and conductivity
information at each point inside the head. Once
the head model has been formed, the E-field can
be solved by discretizing the head model and
computing the E-field distribution with finite
element, finite difference, or boundary element
methods, all of which can be made sufficiently
accurate by appropriately dense discretization of
the head and coil models [20].

The head model is usually made by segment-
ing a magnetic resonance imaging (MRI) dataset,
containing at least a T1-weighted scan, into the
major tissue types present in the head, and giv-
ing these tissues conductivity values from the
literature. A simple head model comprises a sin-
gle volume defined by the head surface and as-
signed uniform and isotropic conductivity. A typ-
ical anatomically detailed model contains sev-
eral different tissues, for example, scalp, compact
bone, spongy bone, cerebrospinal fluid, gray mat-
ter, and white matter. For a list of conductivity
values of these tissues, see Table 7.1. The lim-
iting factor in the accuracy of the head model
is the accuracy of the segmentation and the un-
certainty associated with the tissue conductivity
values [21]. For example, the common estimates

Table 7.1 A typical range of conductivity values for the
tissues present in the head [21]

Tissue Conductivity (S/m)

White matter 0.1–0.4

Gray matter 0.1–0.6

Cerebrospinal fluid 1.2–1.8

Compact bone 0.003–0.012

Spongy bone 0.015–0.04

Scalp 0.2–0.5
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of the conductivity of the gray matter have a
sixfold range. Further, as the cerebrospinal fluid
is about 100 times more conductive than the sur-
rounding compact bone, any geometrical error in
the shape of the inner skull segmentation may
have large effects on the predicted secondary E-
field inside the head. Accurate skull segmentation
may require the combination of several types of
scans, for example, T1- and T2-weighted images
with and without fat suppression [22].

In the notation for Ohm’s law in Eq. 7.14 and
consequently in the boundary conditions in Eq.
7.28, we implicitly assumed a linear homoge-
neous tissue. For the finite difference and finite
elementmethods, however, we can simply replace
the scalar conductivity with a conductivity ten-
sor to model linear anisotropic tissue [23]. The
anisotropy of tissue conductivity can be estimated
with MRI diffusion tensor imaging.

7.3.3.1 Reciprocity
to Magnetoencephalography

Magnetoencephalography (MEG) is a functional
brain imaging technique that is essentially the
inverse of TMS: a coil placed on the subject’s
scalp is used to detect the tiny magnetic fields
generated by the electrical activity of cerebral
neurons. Deploying again the quasi-static approx-
imation introduced in the beginning of Sec. 7.3,
we can derive a reciprocal relationship between
the induced E-field in TMS due to the changing
current in the TMS coil and the magnetic flux
through the pickup coil in MEG due to the source
currents in the brain [24]

Q· E (rQ
) = − dI (t)

dt

∫∫
S

(
B· n̂) dS, (7.29)

where B is the magnetic field due to a current
dipole Q at a location rQ in the brain, I(t) is coil
current at time t, S is a surface limited by the
coil windings, and E is the resulting induced E-
field in the brain at location rQ. As with the direct
approach to TMS E-field computation, for most
head models computing B due to Q requires a
numerical approach, for example, the boundary
element method [25]. The reciprocal approach,
however, allows obtaining closed-form solutions
of semi-infinite, cylindrical, and spherically sym-

metric head geometries. The latter is used to
approximate the E-field in real-time neuronavi-
gation systems [26]. The reciprocal approach can
also be used to speed up the computation in a
realistic head geometry to suit real-time E-field
computation [27].

7.3.3.2 Fundamental Limitations
of Induced Electric Field

The maximum magnitude of the TMS-induced
E-field is always superficial, since the peak E-
field in each tissue must be on its surface [24].
This fundamental limitation of the E-field spatial
distribution has two important implications to
TMS.

First, the TMS-induced E-field diminishes
very rapidly as the distance from the coil is
increased. The primary E-field of a figure-8
coil attenuates as 1/r3 with increasing distance
from the coil surface, and the total E-field in a
volume conductor attenuates even faster with
increasing depth (see Fig. 7.5). Indeed, in a
spherical conductor, the total E-field in the center
of the sphere is exactly zero for all coils. Further,
the E-field from focal coils attenuates faster than
that of nonfocal coils, which results in a strict
limit in penetration depth at a given focality, as
demonstrated in Fig. 7.6.

Second, there is an optimal coil size that de-
pends on the size of the stimulated head. An
overly large coil has limited coupling to a small
head, resulting in the lack of focality and reduced
peak E-field compared to a larger head despite the
short distance between the coil and the brain (see
Fig. 7.7). Unfortunately, this limitation cannot be
circumvented simply by miniaturization of the
TMS coil: the required coil current does not scale
down linearly with coil size, and thus smaller
coils have larger power losses and overheat con-
siderably faster than larger coils. Consequently,
even the smallest practical figure-8 coils cannot
achieve focality in small animals similar to that
of regular figure-8 coils for humans.

Finally, a fundamental limitation of the tem-
poral waveform of TMS induced E-fields is that
it must always have both positive and negative
phases, with the total area under the curve for all
positive phases being equal to that for the negative
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Fig. 7.6 Trade-off between depth and spread of the E-
field. More focal (smaller spread) coils have lower pen-
etration depth. The numbered dots correspond to specific

coil designs [11], and the red curve is the computationally
optimized limit [12]. (Reproduced with permission from
Gomez et al. [12])

Fig. 7.7 Induced E-field distribution in mouse, monkey,
and human from figure-8 TMS coils with 25-mm or 70-
mm-loop diameter for matched stimulator output (capac-
itor voltage). The large coil loses its efficiency advantage

when the size of the head is decreased and is very inef-
ficient for the stimulation of a small animal. Both coils
produce nonfocal stimulation in the mouse. (Reproduced
with permission from Alekseichuk et al. [28])

phases. Another way to state this is that the time
integral over the E-field pulse waveform must
equal zero. The reason is that the electric field is
proportional to the derivative of the coil current
and the coil current must drop back to zero at the

end of the pulse. Consequently, there can be no
monophasic E-field pulses in TMS: monophasic
magnetic pulses produce biphasic E-field pulses
(see Fig. 7.2).
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7.4 Biophysics

As already mentioned, TMS is not really
magnetic stimulation but electric stimulation
mediated by the magnetic field. Consequently,
much of the biophysics of TMS is common
with that of electrical stimulation. The two
stimulation modalities have, however, a few
notable differences in the E-field characteristics
relevant for neural activation. First, in TMS the
maximum E-field magnitude and the maximum
E-field gradient are in different spatial locations,
whereas in electric stimulation, both occur next
to the stimulating electrode. Second, TMS pulses
are always relatively brief, typically between
150 and 1000 μs, whereas electrical stimulation
pulses can be from a few μs to dc stimulation.
Third, TMS pulses are always “charge balanced”
since the circulated charge is proportional to
the temporal integral of the E-field which
is always zero, as discussed above, whereas
electrical stimulation can inject a nonzero net
charge, for example, with monophasic electrical
pulses. Finally, the E-field induced by TMS is
mostly tangential to the scalp surface, whereas
transcranial electrical stimulation can generate
E-field with a strong component normal to the
scalp surface.

7.4.1 Neuronal Membrane
Depolarization in Response
to Electric Field

A TMS pulse induces an E-field, which drives
electric currents into the cell membranes of
neurons in the brain. At the small spatial scale
of an excitable neuronal membrane, we can no
longer assume the quasi-static approximation and
omit capacitive effects. Rather, at the level of the
neuronal membrane, the capacitive effect of the
membrane is dominant, and will cause a time-
dependent charge accumulation requiring us to
consider the coupled dynamics in the temporal
and spatial domains. For a thin, long straight
axon, these result in the famous cable equation
[29], which for TMS is

λ2
∂2(ΔV )

∂x2
− (ΔV )−τ ∂(ΔV )

∂t
= λ2

∂(E·x)
∂x

=f (x, t) ,
(7.30)

where �V is the membrane depolarization mea-
sured as a difference from the resting membrane
potential, λ = √

rm/ (ri + re) is the length con-
stant of the axon, and τ = rmcm is its time con-
stant [30]. Parameter cm stands for the membrane
capacitance per surface area, and the three lower
case rs represent the membrane resistivity (re-
sistance pre unit surface area) of the membrane,
intracellular space, and extracellular space, re-
spectively.

The cable equation, Eq. 7.30, suggests that the
stimulation occurs at the maximum gradient of
the E-field, rather than its maximum magnitude.
For peripheral neurons, which are generally long
and straight, this does indeed hold true [31]. In
the brain, however, the experimentally observed
site of activation is near the strongest E-field
underneath the center of a figure-8 coil [32–34].
This apparent discrepancy results from violation
of one of the basic assumptions in Eq. 7.30, as
cortical axons are not long and straight (see Fig.
7.8). Rather, in the cortex (gray matter), axons
begin from the soma (cell body), have bends
and branches, and—with the exception of pyra-
midal axons which pass into the white matter—
terminate at synapses with neighboring neurons.
All of these conditions result in effective gradi-
ents of the E-field along the axon, leading to sites
of local depolarization of themembrane due to the
external field (observed experimentally by Amas-
sian et al. [35]). The strongest depolarization
occurs at axonal terminals (synapses), resulting
in lowest threshold activation there [36]. If we
assume that such site of activation is small com-
pared to the length constant, the second spatial
derivative of the membrane depolarization along
the cable will be tiny, and we can approximate the
cable equation as

ΔV + τ ∂(ΔV )
∂t ≈ −f (x = 0, t) ∝ E(t)· n,

(7.31)

where n is the unit vector aligned with the
fiber direction at the terminal. This model fits
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Fig. 7.8 A simplified drawing of the brain geometry rel-
evant to cortical activation by TMS. Illustrated are two
pyramidal neurons in the cortex (not to scale). They com-
prise a dendritic tree to which axons from other neurons
are terminating via synapses, a pyramidal soma that nar-
rows down towards the axon hillock, and an axon with two
short lateral branches terminating in greymatter and a long
main branch passing into the white matter. The somato-
dendritic axis of the pyramidal neurons is perpendicular
to the pial surface. The sites of lowest threshold activation
by TMS appear to be axonal terminals (synapses) in the
lip and crown of gyri

experimental data qualitatively. In most cases,
the stimulation outcome has a strong dependency
on the E-field direction: for example, in primary
motor cortex, we observe largest responses when
the E-field is pointing toward the frontal wall of
the central sulcus [37]. In some cases, however,
no directional dependency is observed: with
suitable paired-pulse protocol (such protocols are
discussed in more detail in Sec. 7.6), inhibition
shows no orientation dependency [38]. Thus,
more than one kind of neurons may be activated
by TMS: Pyramidal neurons have asymmetric
axonal arbors and are therefore sensitive to the
direction of the E-field. In contrast, interneurons
have more symmetric axonal arbors and are
largely insensitive to the E-field direction [36,
39].

For a given E-field direction, Eq. 7.31 results
in the famous leaky integrator model of the neural
membrane response [40]. Solving this first-order
differential equation, the membrane depolariza-
tion is proportional to the “leaky” temporal inte-
gral of the E-field

ΔV (t) ∝ ∫ t0E(t) exp
(
− t−t ′

τ

)
dt ′ . (7.32)

Essentially, the time course of this model’s
membrane voltage follows the E-field waveform
filtered by a first-order low-pass filter with a time
constant τ . For a rectangular E-field pulse, where
the induced E-field is approximately constant for
the duration of the initial rising coil current (Fig.
7.2), Eq. 7.32 further simplifies to

ΔV (t) ∝ ∫ t0 exp
(
− t−t ′

τ

)
dt ′ ∝ 1 − exp

(− t
τ

)
.

(7.33)

Thus, in response to a step in the E-field, the
neural membrane voltage changes exponentially
to a new level.

7.4.2 Neural ActivationModels

In the previous section, we derived the basic
physics behind the membrane depolarization due
to TMS. The passive membrane (with capaci-
tance and leakage resistance) gave rise to first-
order linear dynamics. Besides linear resistance,
the neuronal membrane has active ion channels
that have a strongly nonlinear resistance and are
responsible for the generation and propagation of
action potentials. Here, we discuss a few different
approaches to this and the pros and cons of each
of these approaches.

First, we discuss the simplest approach that
is capable of providing a decent amount of ex-
planatory power. By assigning a sharp “firing”
threshold for the membrane depolarization aris-
ing from the model of Eq. 7.32, we get a sim-
ple integrate-and-fire neural model which can be
used to predict the E-field amplitude required for
neural activation as a function of the E-field pulse
waveform. The rheobase is defined as the lowest
E-field amplitude to activate a neuron. For the
integrate-and-fire neuron model, Erheobase is the
amplitude of an infinitely long rectangular E-field
pulse at the neuronal activation threshold. Thus,
based on Eq. 7.33, a rectangular pulse of duration
T requires an E-field amplitude of

Ethreshold = 1−exp(− ∞
τ )

1−exp(− T
τ )
Erheobase = Erheobase

1−exp(− T
τ )

(7.34)
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to activate a neuron with a rheobase Erheobase and
membrane time constant τ . For non-rectangular
pulses, the principle is the same, but the integral
in Eq. 7.33 has to be evaluated for the specific E-
field waveform [41]. This model is indeed what
we have implicitly assumed several times in this
chapter so far. For example, in Fig. 7.2, we used
this approach to explain why biphasic stimulation
has higher energy efficiency than monophasic
stimulation and why rectangular E-field pulses
were more efficient than conventional sinusoidal
pulses. Specifically, the increased efficiency is
contributed by a larger membrane depolarization
for a given amount of energy in the TMS pulse.
In Fig. 7.9, we use the integrate-and-fire model to
derive the relationship between the length of the
TMS pulse and the required peak stimulation cur-
rent and voltage. These predictions match quan-
titative experimental results quite well for such a
simple model [42]. Because of its simplicity and
relatively good accuracy, the integrate-and-fire
model is often used when simulating large net-
works of neurons. This simple model, however,
provides no insight into the site of activation in the
brain, as it contains no mechanism for spatially
coupling the neuron to the E-field.

Fig. 7.9 Peak E-field, B-field, and energy to stimulate
a neuron as a function of the duration of a TMS pulse
with a rectangular E-field waveform. The E-field and B-
field are proportional to the TMS coil voltage and current,
respectively. The results are from a leaky integrate-and-
fire neuron model with a 200μs time constant. The dashed
vertical line shows the duration of a typical monophasic
TMS pulse. The E-field is normalized to its rheobase—
the stimulation threshold for an infinitely long pulse. The
B-field and energy (proportional to the square of the B-
field) are normalized to those of an arbitrarily brief pulse

In order to study the site of activation and
to compare different kinds of neurons, we need
to model the effects of the cell geometry. Mam-
malian axons are typically myelinated—the axon
is wrapped in a myelin sheath with relatively high
resistance and low capacitance. There are only
narrow openings called nodes of Ranvier between
myelinated segments of the axon. By discretiz-
ing the cable equation (Eq. 7.30) at these nodes,
the second-order partial differential equation be-
comes an ordinary finite difference equation [43]

τ
∂

∂t
[ΔVn]+In,ion=λ2

l2
[ΔVn+1−2ΔVn+ΔVn−1]

−ΔVn − λ2

l
[En+1 − En] ,

(7.35)

where In, ion models any additional ion channels at
node n, E is the E-field component tangential to
the axon, and the subscripts index the node. This
formulation makes it relatively straightforward
to construct a set of equations to model the full
geometry of the axon, including the hillock, initial
segment, bends, branches, and terminations [44].
The current In, ion is typically a summation of
the contributions of various ion channels. These
include channels with complex nonlinear dynam-
ics described by Hodgkin–Huxley-type equations
that support the generation and propagation of
action potentials [45–47]. For complex neuronal
morphologies and membrane dynamics, Eq. 7.35
can be solved numerically using simulation pack-
ages such as NEURON [36, 45, 48].

7.5 Measuring Responses
to Stimulation

In most applications, TMS is paired with a quan-
tification of a physiological, behavioral, cogni-
tive, or emotional response. Depending on the
research question or clinical protocol at hand,
these approaches span visual observation of mus-
cle twitches or other behavioral changes; tests
of memory, task performance, or mood; elec-
trophysiological recording of neural or muscle
responses; and imaging of changes in related sig-
nals such as brain blood oxygenation.
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7.5.1 Characterization of Behavior,
Cognition, or Emotional State

TMS can cause changes in behavior, cognition,
or emotional state that can be detected by obser-
vation, task performance quantification, or sub-
jective reports. For example, the TMS intensity is
usually normalized to the subject’s (or patient’s)
individual motor threshold, defined as the low-
est pulse amplitude that will consistently evoke
a motor response from a peripheral muscle. A
typical choice for such muscle is either the ab-
ductor pollicis brevis (one of the muscles mov-
ing the thumb) or the first dorsal interosseous
(one of the muscles moving the index finger).
While maximizing the sensitivity and precision of
the motor threshold measurement requires elec-
tromyography (EMG; see next section), finding
the corresponding cortical representation area of
the desired muscle usually benefits from visual
observation of twitching in the target and ad-
jacent muscles when the coil is moved around.
Moreover, visual observation of the evoked mus-
cle contractions is commonly deployed to deter-
mine the TMSmotor threshold in clinical settings
[49]. In a more complex example of behavior
observation, a subject is asked to perform an
object-naming task and the TMS coil positions
that disrupt this ability form a map of speech
areas [50]. A similar approach can demarcate
regions related to speech but not singing [51]
or to recognition of objects [52]. The effect of
rTMS on working memory can be quantified,
for example, with a mental alphabetization and
recall task [53]. Finally, standard clinical rat-
ings can be used to quantify the therapeutic ef-
fects of rTMS, for instance, on mood [54] or
compulsivity [55].

7.5.2 Electrophysiological
and ImagingMethods

Electromyography (EMG)
The most common quantitative physiological
measure combined with TMS is EMG. TMS–

Fig. 7.10 Typical motor-evoked potentials (MEPs) re-
sulting from TMS of the primary motor cortex and
recorded from the abductor pollicis brevis finger muscle
with electromyography (EMG). The TMS pulse was de-
livered at time zero (most EMG systems would record
a stimulation artifact when the TMS pulse is delivered;
in this case the amplifier had a sample-and-hold cir-
cuit to disable the measurement during the TMS pulse).
EMG has very high signal-to-noise ratio: a typical maxi-
mum MEP amplitude is several millivolts (peak to peak)
compared to a noise level of less than 10 μV. TMS
MEPs originate from the cortex and have large ran-
dom variability, illustrated by the four responses to TMS
pulses of identical strength (120% of the resting motor
threshold). In contrast, magnetic stimulation of the pe-
ripheral nerves produces responses with little variation
in amplitude. Besides peak-to-peak amplitude (ranging
from barely measurable to about 10 mV), the MEP on-
set latency (usually between 20 and 25 ms for finger
muscles) is also of interest as it provides information
about the specific activated neural elements in the cor-
tex and the neural conduction speed in the corticospinal
tract

EMG is fairly simple to use, has a high signal-to-
noise ratio (SNR), and a high temporal resolution
(<1 ms). However, it is limited to studying the
cortical areas that impact motor output. EMG
is typically used to measure the amplitude
and latency of the muscle response elicited by
TMS, the motor-evoked potential (MEP). Figure
7.10 illustrates that the MEPs due to identical
consecutive TMS stimuli can vary drastically in
their amplitude, latency, and/or waveform. This
variability originates from the central nervous
system, as magnetic peripheral nerve stimulation
produces markedly more stable responses.
Therefore, to estimate the MEP response for a
given TMS pulse amplitude, one must average
the observed amplitudes and latencies of several
MEPs.
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Epidural Recordings
Whereas EMG quantifies noninvasively the mus-
cle response to TMS, epidural recordings from
the spinal cord provide an invasive “upstream”
measurement of the descending volley of neural
signals that ultimately trigger the muscle. Similar
to EMG, epidural recordings provide high tem-
poral resolution. The amplitude of a descending
volley, however, is just a few tens of microvolts,
and consequently the SNR for epidural record-
ings is much smaller than that of EMG. Epidural
spinal recordings reveal that TMS behaves much
like invasive cortical electrical stimulation. The
result of primary motor cortex TMS is a volley
of potentials that can contain both direct (D) as
well as indirect (I) waves. Whereas D-waves are
thought to originate from direct activation of the
pyramidal axon forming the white matter (see
Fig. 7.8), I-waves are thought to originate from
activation of neurons feeding into the output pyra-
midal neurons. For TMS, generating D-waves re-
quires a considerably higher stimulation intensity
than I-waves [39]. The epidural recordings allow
distinguishing between effects due to central ver-
sus peripheral processing. For example, voluntary
muscle contraction has much larger effect on
MEPs than on the descending volleys suggesting
that muscle activity causes larger changes “down-
stream” in spinal excitability than “upstream” in
cortical excitability [39].

Electroencephalography (EEG)
Moving away from motor regions, we can no
longer observe responses from the periphery
but must instead measure them directly from
the brain. With currently existing functional
imaging methods, this increases the complexity
of the measurements considerably. One common
method is to combine TMS with electroen-
cephalography (EEG). EEG recordings have
a very high temporal resolution (<1 ms) but
somewhat limited spatial resolution (of a few
centimeters). Unlike EMG, the EEG signals are
tiny, on the order of a few microvolts. In ordinary
EEG, this issue can be mitigated by averaging
multiple trials. In contrast, averaging does not

help with EEG artifacts specific to TMS, such as
electromagnetic interference, induced voltages in
the scalp, scalp muscle contractions, and auditory
activation by the TMS clicking sound, since they
are synchronous and overlap in time with the
directly evoked brain response [56]. The scalp
muscle artifact alone can be on the order of one
millivolt. Fortunately, there are plenty of regions
of the brain that can be targeted with TMS with
limited scalp-muscle activation [57].

Functional Near-Infrared Spectroscopy
(fNIRS)
Functional near-infrared spectroscopy (fNIRS)
allows measuring the hemodynamic responses
to TMS with pulsed red and near-infrared
light, similar to pulse oximetry. fNIRS has
limited spatial resolution of a few centimeters,
comparable to EEG. Like fMRI (which will
be discussed next), the temporal resolution of
fNIRS is limited by the rate of the underlying
hemodynamic signal. Unlike EEG and fMRI,
fNIRS is immune to the electromagnetic artifacts
of TMS, although the physiological artifacts of
scalp activation remain.

Functional Magnetic Resonance Imaging
(fMRI) and Positron Emission Tomography
(PET)
For high spatial resolution, TMS can be combined
with simultaneous functional magnetic resonance
imaging (fMRI) or positron emission tomography
(PET). Both of these techniques provide informa-
tion on changes of the brain metabolic activity,
which correlates with neural activity. For both
modalities, the high spatial resolution renders
them virtually immune to some of the artifacts
in the TMS–EEG signal, like muscle activation.
PET and fMRI, however, have their own sets
of limitations. The high spatial resolution comes
at the cost of significantly lower temporal res-
olution, on the order of seconds for fMRI and
minutes for PET. In TMS–fMRI, there are a few
engineering challenges related to mitigating the
effects of electromagnetic noise, stronger elec-
tromechanicalforces, and louder sound emission
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of the TMS coil in the scanner. Finally, PET
requires the injection of radioactive tracers.

7.6 Stimulation Paradigms
and Applications

7.6.1 Single Pulses

A sufficiently strong single TMS pulse can evoke
action potentials in a population of neurons. Even
for very focal TMS, the relevant population of
neurons spans about 1 square centimeter of cortex
and contains on the order of ten million individual
neurons. The neuronal response depends on the
amplitude and waveform of the induced E-field
pulse, as well as on the endogenous excitability
state of the neuron and the circuits it is embedded
into. The most common TMS activation measure
is the amplitude of a hand-muscle MEP evoked
by stimulation of the contralateral primary motor
cortex [58]. The MEP is often characterized as a
function of the stimulus location and/or intensity,
comprising input–output (or recruitment) curves.
TheMEP amplitude is also used to assess cortical
excitability changes, for example, as a result of
a neuromodulation intervention, such as rTMS,
or another manipulation of the brain state. For
instance, to quantify the change of excitability
resulting from an rTMS protocol, the MEP am-
plitude resulting from a series of single TMS
pulses is first measured, then the rTMS protocol is
applied, followed by remeasurement of the MEP
amplitude for single TMS pulses. Importantly,
the MEP amplitude fluctuates significantly even
when the same TMS pulse amplitude is applied,
due to variations of the endogenous excitability
state of the motor cortex (see Fig. 7.10). For
this reason, a sequence of several TMS pulses
has to be acquired with inter-pulse interval of
about 10 s, and the resultant MEP amplitudes
have to be averaged to obtain a stable estimate.
The reason to wait for 10 s between pulses is
that each pulse modulates the cortical excitability
for several seconds, which would confound the
measurement from the subsequent pulse [59].

Another common measure is the motor thresh-
old. The motor threshold is typically defined as
the TMS pulse amplitude that elicits, on aver-

age, an MEP of a specific amplitude, commonly
50 μV peak to peak. If the targeted muscle is at
rest during the measurement, the result is called
resting motor threshold, whereas if the muscle is
partially contracted, the result is referred to as ac-
tive motor threshold. The active motor threshold
is lower than the resting motor threshold since the
underlying motor circuits are pre-activated. The
most common TMS dosing strategy, not only for
motor cortex but for other cortical targets as well,
is to set the TMS pulse amplitude relative to the
resting or active motor threshold of the individ-
ual subject. This adjustment of the stimulation
intensity can account, in part, for both individual
anatomical features such as scalp-to-cortex dis-
tance as well as for individual differences in the
physiological excitability of the cortex. However,
since these factors can vary across the cortical
sites, motor-threshold-based dosing is likely sub-
optimal outside motor cortex.

7.6.2 Paired Pulses

Paired-pulse paradigms involve the delivery
of two TMS pulses that are closely spaced in
time, with interstimulus time ranging from 1 to
250 ms [58]. This method allows characterization
of connectivity within and between cortical
regions. For example, a subthreshold stimulus
can decrease the amplitude of an MEP generated
by a test pulse delivered to motor cortex through
the same coil 1–5 ms later. This paradigm is
known as short-interval intracortical inhibition,
and it is likely mediated by local inhibitory
interneurons. If the test pulse is delivered 7–20ms
after the first pulse, then the MEP amplitude
is increased—intracortical facilitation. These
two short-interval effects are illustrated in Fig.
7.11. If two suprathreshold pulses are delivered
100–150 ms apart, then a strong inhibition of
the second (test) MEP is observed. This effect
is called long-interval intracortical inhibition,
and it results likely from activating additional
cortical inhibitory mechanisms compared to
short-interval intracortical inhibition. Applying
two suprathreshold pulses with interstimulus
interval in the range of 1–5 ms reveals on
oscillatory pattern of intracortical facilitation.
Delivering the two pulses to two separate coils
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Fig. 7.11 Short-interval intracortical inhibition and facil-
itation. Left: TMS stimulation waveforms, right: the sizes
of typical resulting MEPs. Top two rows show, respec-
tively, a subthreshold TMS pulse, which alone would elicit
noMEP, and a suprathreshold pulse. If these two pulses are
delivered consecutively, separated by 1–5ms, the resulting
MEP will be decreased in amplitude (third row). If the two
pulses are separated by 7–20 ms, the resulting MEP will
be enhanced (bottom row)

positions over different brain regions, paired-
pulse approaches can be extended to investigate
the connectivity between the two brain regions.

7.6.3 Pulse Trains

To produce lasting neuromodulation effects, TMS
has to be applied in trains of pulses referred to
as repetitive TMS (rTMS). Low-frequency (1 Hz)
rTMS trains tend to produce lasting inhibitory
effects, whereas higher frequencies (5–20 Hz) are
excitatory. Patterning the pulse train with more
than one frequency can produce powerful in-
hibitory or excitatory effects. For example, theta
burst stimulation is comprised of bursts of three
pulses at 50 Hz, repeated at 5 Hz. A short train
(40 s, 600 pulses) of continuous TBS produces
inhibition lasting for nearly an hour, whereas
turning the TBS train on for 2 s and off for 8 s
for the same total number of pulses produces
excitatory effects lasting about 20 min [60]. The

rTMS pulse amplitudes are usually in the vicinity
of the motor threshold, typically ranging from
80% of the active motor threshold to 120% of the
resting motor threshold. Safety guidelines have
been developed to ensure that the pulse train
parameters used in rTMS protocols do not induce
a seizure [61].

7.6.4 Clinical Applications

The clinical applications of TMS are either di-
agnostic or therapeutic. One diagnostic use is to
assess noninvasively the conduction of signals
through the corticospinal tract. The simplest form
of this test is to apply single TMS pulses to the
primary motor cortex and use EMG to measure
the threshold, amplitude, duration, and latency
of MEPs in various muscles. For example, the
MEP threshold is higher, latency is larger, and
duration is prolonged in individuals with multiple
sclerosis [62]. Remarkably, MEPs with normal
latency have been detected in paralyzed forearm
muscles of individuals with spinal cord injury,
suggesting rehabilitation opportunities [63]. An-
other diagnostic application uses single pulses or
short-pulse trains tomap cortical function. For ex-
ample, by mapping the brain regions where TMS
activates muscles or the regions where speech
is disrupted, these motor and language areas of
cortex can be spared during resection surgery for
intractable epilepsy or tumor removal [64].

Therapeutic applications are usually pred-
icated on the lasting neuromodulatory effect
of rTMS. rTMS is currently cleared by the
US Food and Drug Administration (FDA)
for the treatment of depression and obsessive
compulsive disorder [55]. For depression, there
are three FDA-cleared protocols based on 10 Hz,
18 Hz, or theta burst (50 Hz bursts repeating
at 5 Hz) pulse trains, all targeting the left
prefrontal cortex. The pivotal clinical trials of
these protocols demonstrated response rates
of 15%–49% (patients getting significantly
better) and remission rates of 14%–33% (patients
considered recovered from depression) [54, 65–
67]. An example of a depression treatment rTMS
paradigm is shown in Fig. 7.12. There is research
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Fig. 7.12 rTMS pulse train parameters of a depression
treatment protocol [49]. The pulse train is applied with a
focal figure-8 coil daily for 5 days per week, and a typical
treatment lasts 4 to 6 weeks. In the top row, a single TMS
pulse at 120% of resting motor threshold is delivered to
left dorsolateral prefrontal cortex. The second row shows
a train of 40 such pulses given at interstimulus intervals
of 0.1 s (i.e., at 10 Hz). On the third row, the 4 s train is
repeated every 30 s (i.e., there is an inter-train interval of
26 s). The daily treatment consists of 75 such trains for a
total duration of 37.5min and a total of 3000 pulses per day
(bottom row). The treatment is thought to increase neural
excitability of the targeted brain region

on the therapeutic application of rTMS in many
other neurologic and psychiatric disorders,
including pain, schizophrenia, substance use
disorders, epilepsy, and tinnitus. Interestingly,
single-pulse TMS can also have therapeutic
effects: single-pulse TMS targeted to the occipital
cortex is FDA-cleared for mitigating migraine
episodes [68].

7.6.5 Research Applications

There is a wide and expanding range of research
applications of TMS in disciplines spanning psy-
chology, cognitive neuroscience, psychiatry, and
neurology. Single pulses are commonly used to
test neural excitability and circuit connectivity.
Single pulses or short bursts with specific timing
relative to a task can produce temporary disrup-

tion of cortical processing resulting in “virtual
lesions.” By disabling specific nodes in cortical
circuits, this approach can provide causal infor-
mation about the brain function, as opposed to
the correlational information provided by imag-
ing. Curiously, if TMS is applied with the right
coil location, stimulus parameters, and timing, it
can also enhance the subject’s performance on
tasks involving perceptual, motor, and executive
processing [69].

TMS can be combined with imaging modal-
ities including EEG, fMRI, PET, and fNIRS, as
discussed in the previous section. Both sequential
(offline) and simultaneous (online) combinations
of TMS with imaging provide information about
the effects of TMS on the brain. Brain connectiv-
ity inferred from imaging can be used for effective
targeting of deeper brain structures that are not
directly accessible to the TMS-induced E-field.
This approach leverages the fact that the brain is
interconnected, so activating a particular superfi-
cial cortical region with TMS sends action poten-
tials through synapses to other brain regions.

7.7 Conclusions

TMS uses electromagnetic induction to bypass
the poorly conductive skull, allowing noninva-
sive, focal, and tolerable activation of superficial
brain structures. TMS is a versatile brain stimula-
tion method with applications ranging from basic
brain research to characterization and treatment
of neurological and psychiatric disorders.

This chapter introduced the basic mechanisms
and applications of TMS, from both engineering
and biological points of view. An engineer has to
understand both to develop new uses for existing
TMS devices or new devices with enhanced ca-
pabilities.

Homework

Some of the problems require the use of physics
equations, parameters values, and computer pro-
grams that are not covered in this chapter. There-
fore, like a real-world engineer, the student may
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need to consult other resources. Problems 3, 5,
and 7 involve integrals that can be evaluated nu-
merically. These problems can be solved analyti-
cally as well for an extra challenge and deeper un-
derstanding of the underlying scaling laws. Prob-
lems with increased difficulty are denoted by an
asterisk (∗).

1. The peak magnetic field of a TMS pulse is
about 1 tesla. Verify this claim by computing
the maximum magnetic field of a circular
TMS coil.
(a) The coil has 13 turns, with a mean di-

ameter of 90 mm, and is driven with a
peak coil current of 5000 A. You may
further assume that the peak B-field is in
the center of the coil.

(b) (∗ ) Each turn in the coil windings is
7-mm-tall and 2-mm-wide (i.e., inner
winding diameter is 64, and outer
winding diameter 116 mm). The current
density in the wire is uniform due to
the use of litz wire. The windings are
surrounded from all sides by 3 mm
of nonmagnetic plastic. Compute the
maximum B-field at the surface of the
coil. Were the approximations made in
part (a) reasonable?

2. Electrical safety implications of TMS:
(a) A monophasic TMS device has a maxi-

mum capacitor voltage of 2800 V and a
185 μF capacitor. Compute the amount
of energy stored in such a system. Com-
pare this energy to (1) the battery in your
smartphone and (2) the energy stored in
a men’s Olympic javelin (mass of 800 g)
thrown at 100 km/h. What implications
does such energy storage system have for
safety?

(b) Compute the dielectric breakdown dis-
tance for such a voltage (in air). Consider
the high-voltage breakdown of typical
insulation materials (e.g., polyethylene
film); does a 0.18-mm-thick polyethy-
lene electrical tape provide adequate in-
sulation at TMS voltages?

3. Compute the required power level to sustain
biphasic rTMS at 10 Hz when the required

coil voltage is 800 V. The coil has an induc-
tance of 16 μH, the stimulator has an energy
storage capacitance of 185 μF, and the total
series resistance of the pulse generator and
coil is 50 m	. You can assume that the high-
voltage power supply used to recharge the
capacitor is 80% efficient and that it can be
operated at all times (even during the pulses).
Hint: Evaluate theWloss integral of Eq. 7.7.

4. A person has a deep brain stimulator (DBS)
to control the motor symptoms of Parkin-
son’s Disease. The DBS electrode in the sub-
thalamic nucleus and the implanted pulse
generator (IPG) in the chest are connected
with a lead that is coiled between the scalp
and the skull, forming three loops of 5 cm di-
ameter. The impedance through the person’s
body between the DBS electrode contact and
the IPG can be approximated as a 1 k	 resis-
tor. Other impedances in the DBS circuit are
negligible, unless otherwise indicated. The
person needs to receive rTMS treatment for
depression. For the coil placement used for
this treatment and at maximum device out-
put, each DBS lead loop encircles a uniform
magnetic flux density of 0.5 T. The mag-
netic pulse is sine shaped with a period of
300 μs.
(a) Assume that during the TMS procedure,

the IPG is turned off but can still conduct
current. Calculate the current induced by
TMS through the electrode contacts at
maximum device output. How does this
compare to the typical DBS electrode
current of 1 mA.

(b) Repeat part (a) under the assumption that
the IPG does not conduct any current
until the voltage across it reaches 5 V.

(c) What can the neurosurgeon implanting
the DBS system do to reduce the current
induced by the TMS pulse in the DBS
electrode?

5. Reusable solid silver EEG cup electrodes are
considered for a TMS–EEG study. Each elec-
trode is approximately a disk of 10 mm diam-
eter and 0.5mm thickness. In the center of the
disk, there is a circular hole of 2 mm diame-
ter. (In reality, such cup electrodes are dome-
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shaped with a height of about 3 mm, but for
this problem such details can be omitted.)
The TMS protocol delivers a peak magnetic
field of 0.5 T perpendicular to the electrode.
The magnetic pulse is sine shaped with a
period of 300 μs. These pulses are delivered
at 1 Hz for a total of 1000 pulses.
(a) Calculate the worst case peak current

density induced in the EEG electrodes.
(b) (∗ ) Calculate the corresponding average

power dissipation in the EEG electrode
during the TMS pulse train.

(c) (∗ ) Calculate the increase in temperature
of the EEG electrode by the end of the
TMS pulse train.

(d) Would the electrode temperature exceed
41 ◦C which is considered the safety
limit?

(e) Suggest ways to mitigate the electrode
heating.

6. The circular coil of Problem 1 is placed inside
a 3 T MRI device. Compute the worst-case
torque that the coil undergoes during a TMS
pulse. Hint: The TMS coil orientation in the
MRI magnet affects the torque.

7. A TMS device designer aims to increase the
device efficiency. The existing device uses a
185 μF energy storage capacitor with a peak
voltage of 1600 V and a 16 μH coil with 18
turns. The neural membrane time constant is
assumed to be 200 μs.
(a) The designer evaluates an alternative ap-

proach in which the inductance of the
coil is reduced to about 10 μH, while
the shape and size of the coil are pre-
served. What is the new number of turns
in the coil? Assuming the same capacitor,
how should its voltage be changed to
maintain the original range of stimula-
tion strength relative to the neural acti-
vation threshold? What would be the rel-
ative energy savings resulting from this
design change? For this part you can ig-
nore the resistance of the pulse generator
and coil and assume a purely sinusoidal
pulse waveform.

(b) (∗ ) Keeping the original 16 μH coil that
has resistance of 50 m	, the designer

decides to reduce the capacitance to
100 μF. How should the capacitor volt-
age be changed to maintain the original
range of stimulation strength relative to
the neural activation threshold? What
would be the relative energy savings
resulting from this design change?
How does this change the resistive
losses in the coil, ignoring eddy current
effects? Compute also the numbers for
an idealized coil with zero resistance
(similar to part (a)), and compare the
results. Where does the additional
efficiency come from, and what other
changes would you suggest as a designer
for the next coil?

8. (∗) The cable equation (Eq. 7.30) indicates
that, for straight nerve fibers, the site of max-
imum membrane depolarization is where the
E-field gradient, rather than the E-field mag-
nitude, is maximum. This is relevant for mag-
netic stimulation of long straight nerves in
the periphery but not for TMS. To see why
this is the case, compare (1) the peak E-
field gradient in the cortex and (2) the peak
effective E-field gradient along an axon due
to a rounded bend of the axon. Hints: In Fig.
7.5, the E-field drops to 70% in 1.5–2.5 cm
depending on direction. In Fig. 7.8, the bend
in axon must fit inside a gyrus that is about
1 cm wide.

9. The action potential conduction velocity
of the myelinated nerve fibers in the
corticospinal tract is approximately 7 cm/ms.
Considering the latency between the time
a TMS pulse is applied to the primary
motor cortex and an MEP is detected in
a finger muscle, what difference do you
expect between a subject who is 190 cm
tall compared to one who is 155 cm tall?

10. A researcher wants to optimize the depres-
sion treatment protocol illustrated in Fig.
7.12. Considering the TMS safety guidelines
for a Class 2 study [61], how much should
the following rTMS pulse train parameters
be decreased from their default values (given
in parentheses) so that the stimulation is still
considered safe?
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(a) Duration of each short train (4 s) when
increasing intensity from 120%of resting
motor threshold (RMT) to 130% RMT.

(b) Number of pulses per short trains (40
pulses) when increasing pulse repetition
rate from 10 Hz to 20 Hz.

(c) Intensity and total number of trains
(120% RMT and 75 trains) when
decreasing the interval between short
trains from 26 s to 5 s.
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Abstract

Transcranial electrical stimulation (tES)
includes a range of devices where electric
current is applied to electrodes on the
head to modulate brain function. Various
tES devices are applied to indications
spanning neurological and psychiatric
disorders, neuro-rehabilitation after injury,
and altering cognition in healthy adults. All
tES devices share certain common features
including a waveform generator (typically
current controlled), disposable electrodes or
electrolyte, and an adhesive or headgear to
position the electrodes. tES “dose” is defined
by the size and position of electrodes and
the waveform (current pattern, duration, and
intensity). Many subclasses of tES are named
based on dose. This chapter is largely focused
on low-intensity (few mA) tES. Low-intensity
tES includes transcranial direct-current
stimulation (tDCS), transcranial alternating-
current stimulation (tACS), and transcranial
pulsed-current stimulation (tPCS). Electrode
design is important for reproducibility,
tolerability, and influences when and what
dose can be applied. Stimulation impedance
measurements monitor contact quality, while
current control is typically used to ensure
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consistent current delivery despite electrode
impedance unknowns. Computational current
flow models support device design and
programming by informing dose selection
for a given outcome. Consensus on the safety
and tolerability of tES is protocol-specific, but
medical-grade tES devices minimize risk.

Keywords

Transcranial · Electrical · Stimulation · tES ·
tDCS · tACS · tPCS · Neuromodulation ·
Electrode design · Noninvasive · Medical
devices

8.1 Basics of tES Devices
and Dose

tES dose is defined as the current waveform ap-
plied to the body and the number, shape, and
location of electrodes placed on the scalp. The
electrodes guide the waveform into the head and
serve as the interface between the device and the
body. A tES device should be designed to reliably
deliver the target dose, including any operator
controls, safety features, and instructions for use.
The electrode number, shape, and location are
collectively the montage. There are minimum of
two electrodes. The waveform is produced by a
powered device that can be directly attached to
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Fig. 8.1 Example of a tES device and material used for
electrical stimulation with sponge electrodes. Shown are
conventional sponges (yellow) soaked with a controlled
volume of saline using a syringe. Each electrode is made
of two layers of sponge. Conductive rubbers (electro-

chemical electrodes) are placed inside the sponge layers.
Lead wires connect the device to the conductive rubber
electrodes. Sponge electrodes are then secured on the
scalp using a headgear. For the case of tDCS, the rubber
electrodes are energized using corresponding anode and
cathode wires connected to the stimulator

the electrodes using connector leads (Fig. 8.1).
A headgear is used to hold the electrodes in the
desired positions, or the electrodes are adhesive.
If the device is small, it may be attached to the
headgear, but more typically it is a handheld or
benchtop device. Electrode design is key for tol-
erability (side effects) and what doses can be ap-
plied; as such electrodes are a key consideration
in device design and considered in this chapter in
detail.

Subclasses of tES are defined by a specific
dose. For example, a form of tES that delivers
high intense stimulation (1000 mA) to intention-
ally produce a seizure in a anesthetized patient is
called electroconvulsive therapy (ECT) [1]. This
chapter is largely focused on low-intensity ap-
proaches that are well below the intensity needed
to produce seizures, typically only a few mA [2].
These low-intensity approaches are comfortable
when applied to alert individuals, who may be en-
gaged in different activities during stimulation. In
fact, low-intensity tES typically does not provide
an overt response related to brain stimulation –
with any changes in brain function subtle – but
can produce overt sensations such as tingling that
are not related to direct brain modulation. In most

cases stimulation is applied for several minutes
(e.g., 10 min) using two electrodes (typically a
few cm2) on the head. Often the distinguishing
feature of different subclasses of tES is the wave-
form – the peak intensity, options for electrode
placements, and period of use are often compara-
ble across low-intensity tES approaches.

When the waveform generated by the device
is sinusoidal alternating current (AC) stimulation,
tES is classified as transcranial alternating current
stimulation (tACS) (Fig. 8.2d). The frequency is
varied typically in a range below 100 Hz, though
higher frequencies have been tested. When the
waveform generated by the device is a train of
pulses, tES is called transcranial pulsed current
stimulation (tPCS) (Fig. 8.2a). There are many
further subclasses (variations) of tPCS waveform
including in duration of each pulse, pulse fre-
quency, and if pulses are monophasic or bipha-
sic (Fig. 8.2a,b,c,e,f). Pulses are typically ap-
plied repetitively in a train, where the inverse
of the time between pulses equals the stimula-
tion frequency. Individual pulses are typically
rectangular with a pulse duration and amplitude.
A monophasic waveform has pulses of a single
polarity, while a biphasic waveform has pulses
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Fig. 8.2 Different types of waveforms used in tES and
their parameters. (a) The pulse shape includes the pulse
duration and amplitude. In biphasic stimulation, pulses
are applied in pairs of opposite polarities. The opposite
polarity pulses may have the same or different duration
and amplitude. The pulses are delivered in trains with a
frequency. (b) Pulse trains may be continuous or applied in

bursts, typically on the scale of hundreds of ms. (c) On/off
protocols indicate when stimulation is applied intermit-
tently, typically on the scale of minutes. (d) Non-pulse
waveforms that are applied include DC, AC, square wave,
and various forms of noise. (e) and (f) show examples of
how all the waveform features in aggregated define dose
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that invert polarity, typically in paired opposite-
polarity pulses (i.e., positive, negative, positive,
negative, etc.) [3].

When the waveform is a sustained direct
current (DC), tES is classified as transcranial
direct-current stimulation (tDCS) (Fig. 8.2d).
Additional terminology refers to further
variations in waveform such as transcranial
random noise stimulation (tRNS) and cranial
electrotherapy stimulation (CES). A single tES
device may be programmable to deliver different
waveforms, e.g., a tDCS mode and a tRNS mode,
or a device may be designed to provide a single
waveform. Devices made for research typically
provide more flexibility, while those made for
treatment, especially self-application by patients,
provide one or a limited number of waveforms.

Many tES devices will include an intensity
ramp up and ramp down. The ramp up and down
is considered to increase the tolerability of tES,
as skin sensation can accommodate over time, for
example, a 30-second linear increase in amplitude
at the start of a session. Some tES devices include
an interface for subjects or operators to adjust
intensity in real time based on sensation, which
then reduces the intensity if the subject reports
high levels of discomfort [4].

A tES device is essentially a (medical-grade)
powered current-controlled stimulator that gener-
ates the stimulation waveform. tES devices that
deliver low-intensity stimulation, such as tDCS,
tACS, and tPCS, are typically battery powered.
tES devices used for ECT and devices that apply
brief high-intensity stimulation for neurophysio-
logical evaluation (e.g., a single 1000 mA pulse)
are wall powered. In addition to waveform, elec-
trode number and shape determine dose and in
some cases further inform the subclass of tES
classification. For example, the use of small elec-
trode arrays is classified as high definition (e.g.,
high-definition tDCS [5–7], high-definition tACS
[8]).

The anode electrode is defined as the elec-
trode where current enters the body, and at the
cathode electrode, current exits the body [3]. At
any instant of stimulation, there must be at least
one active anode and one active cathode. For tES
devices where the waveform polarity is fixed,

such as tDCS and monophasic tPCS, each elec-
trode has a fixed assignment of either anode or
cathode. For tES devices where the waveform is
biphasic, such as tACS and biphasic tPCS, each
electrode alternates between functioning as an
anode or cathode. When there are two electrodes,
the current at one electrode is always the opposite
of the other (1 mA at a single anode indicates
−1 mA at a single cathode). When there are more
than two electrodes, the summed current across
anode electrodes must equal the summed current
across the cathode electrode [9] – that is because
of conservation of current where the total current
entering the body must equal the total current
exiting the body.

8.2 General Design Aspects
of tES Electrodes

Key technical contributors to the broad adap-
tion of tES are the portability and ease of use,
along with the tolerability profile of most tES
techniques. For limited-intensity tES techniques,
adverse events are largely limited to effects that
occur at the skin such as transient skin sensations
(e.g., perception of warmth, itching, and tingling)
and redness [10]. Because adverse events are
limited to the skin, the design and preparation
of tES electrodes are considered central to tol-
erability. Electrode design, in turn, can govern
which waveforms will be tolerated. When es-
tablished electrode protocols are not followed or
poor electrode design used, tES produces unnec-
essary significant skin irritation and burns. Elec-
trode design also underpins reliable dose delivery.
In addition, electrode design should also address
ease and robustness of use (e.g., potential for
home use). For clinical trials, since sensations
also determine effective blinding, tES electrodes
also impact blinding reliability. Finally, to the ex-
tent tES electrode design (separate frommontage)
shapes current flow through the brain [11], and
electrode selection and preparation are critical for
the reproducibility and efficacy.

The typical tES devices uses just two elec-
trodes, of comparable size, each positioned on the
head [12]. However, strategies with asymmetric
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electrode size, an electrode at or below the neck
[13], or increasing number of electrodes (using
high-definition electrodes) have been investigated
to alter tES spatial focality.

Electrodes can be positioned based on head
anatomical landmark. These can be modestly
sophisticated requiring a trained operator, for
example, using the EEG 10/10 system (e.g.,
anode on C3), while more simplistic placement
techniques are based on gross anatomical
landmarks (e.g., over the eyebrow). When a
headgear is used, it is either designed to support
the determination of specific electrodes positions
(e.g., a cap or marked straps [14]), or the
headgear is used for generic mechanical support
(e.g., rubber bands [15]), and so independent
measurement is used to position the electrodes.
More sophisticated placement techniques such
as neuronavigated [16–18], functional [19], non-
neuronavigated [20], or image-based approaches
(e.g., EEG reciprocity [21]) have been developed.

tES electrodes include two essential compo-
nents: (1) a conductive rubber or metal separated
from the skin by (2) a saline-soaked sponge,
gel, or paste – which are collectively called the
electrolyte [12]. Additional components of the
electrode are often intended to provide mechan-
ical support to the conductive rubber/metal or
electrolyte or otherwise facilitate use (e.g., facil-
itate connection). In electrochemistry terms, the
conductive rubber or plate would be the elec-
trode, while the saline, gel, or paste would be
the electrolyte [3], but in tES literature, the en-
tire assembly is called the electrode. Here, we
refer to the electrochemical electrode as metal or
conductive rubber which includes the interface
between the metal/rubber and the electrolytes.
This interface is where electrochemical reactions
(e.g., pH changes) occur. As noted, in tES when
electrode size is described (e.g., 5 x 5 cm2), it is
the interface (surface) between the skin and the
electrolyte. Nonetheless, the configuration of all
electrolyte and electrochemical-electrode dimen-
sions and materials is important to control and
document as this affects tolerability [12, 22–25].
The thickness of the sponge or paste essentially
controls the minimum distance between the con-
ductible rubber or metal and the skin. Contact

of conductive rubber or metal with skin during
tES is avoided as this compromises tolerability
and introduces risk of significant skin irritation.
This is the main reason why the more involved
an electrode preparation technique is, and so the
more prone it is to set up error (e.g., insufficient
electrolyte thickness in a free-paste electrode),
the less deployable it is, while electrodes intended
for wide or deployed use should require mini-
mum preparation (e.g., adhesive electrodes, pre-
saturated sponge electrodes).

There are two essential functions of the elec-
trolyte and by extension materials used to sup-
port the electrolyte shape such as sponge, hy-
drogel polymer, and/or other support materials
that contain a viscous electrolyte (such as the
HD case). Both functions of the electrolyte relate
to preventing direct contact between metal/con-
ductive rubber electrode and the skin. The first
function relates to electrochemical products, in-
cluding changes in pH, that occur only at the
metal/rubber and electrolyte interface [26] such
that a “thick” electrolyte (e.g., realized by a thick
sponge, gel, or holder) minimizes these reactions
from reaching the skin. The second function re-
lates to normalizing current flow patterns through
the skin; related to this, the saline, conductive
paste, or conductive gel is used to maintain good
contact quality at the skin [5, 27, 28]. If as result
of poor electrode design (e.g., conductive met-
al/rubber not fully protected from the skin) or
preparation (e.g., a metal/rubber electrode pushed
through paste) the metal/rubber contacts the skin,
these electrochemical changes or poor current
density patterns can adversely impact the skin,
and aggravated skin irritation is likely.

The overall cardinal functions of electrodes
used in tES is to (1) support reliable delivery of
the desired dose and (2) protect the skin from
electrochemical reactions occurring at the surface
of the metal/rubber including normalizing current
density across the skin (e.g., minimize hot spots)
and preventing any electrochemical reactions (oc-
curring at the electrochemical electrode) from
impacting the skin. Because electrochemical con-
cerns are key concern, all electrodes designed
for tES include some mechanism to separate the
metal/rubber from the skin. The electrolyte being
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Table 8.1 Categories of tES electrodes and usability features

Electrode type On the hair? Preparation? Headgear required? Focal optimization? Electrode sizes

Sponge Yes Yesb Yes No Large

Self-adhesive Noa Noa Noa No Variable

HD Yes Yesc Yes Yes Small

Handheld Yes Yesc No No Large

Free paste Yes Yesc No No Large

Dry Unknown No Yes No Variable
aExcept if supplement with additional preparation adding liquid gel
bExcept single-use pre-saturated snap design
cAnd gel or paste residue cleanup

the conductive element contacting the skin thus
takes on importance in general performance. As
expanded on it in the following sections, the
design of the electrolyte (any by extension all
support materials used around it) thus features
centrally in the classification of electrode types:

1. Sponge electrode: A sponge saturated with
the fluid electrolyte, typically saline, with a
metal/rubber inside the sponge (sponge pocket
design) or on the sponge surface opposite the
skin. The sponge sets the electrolyte shape and
conductive path.

2. Self-adhesive integrated electrode: A hydrogel
electrolyte that has sufficient rigidity not to
flow or spread and with the gel or material
around the gel including an adhesive compo-
nent.

3. HD electrode: A stiff mechanical support
(short tube/cup) material that contains the
electrolyte, typically gel, and also controls
position of the metal. Used for smaller
electrodes and so suitable for arrays.

4. Free electrolyte on handheld conductor:
“Free” indicates application by the operator
without strict control of thickness by the
electrode assembly. Reused solid metal
electrode, covered per-use with a thin
electrolyte layer, and an operator handle to
manually press down. Used in some forms of
ECT and not considered further here.

5. Free paste on conductive rubber electrode:
The paste may also provide adhesion. Used in
some investigational forms of tDCS/tACS and
not considered in detail here.

6. Dry electrodes: Novel designs that that are
not adhesive and leave no residue (not liquid
or paste). Experimental and not discussed in
detail here.

These choices between these general design
approaches also create restrictions (Table 8.1) on
(1) the size of the electrode (e.g., small HD vs
large sponge) which can impact ability to lever-
age electrode arrays for targeting, (2) how much
preparation is required and need for headgear, and
(3) if the electrodes can be applied on the hair.

8.3 tES Electrodes: Sponge
Electrode

The sponge-based electrode is the most common
type of electrode in some forms of tES such as
tDCS, tACS, and tRNS (Fig. 8.3, [29]); notably in
these techniques, electrode positions over hairline
is common for which the sponge electrode is
well suited [30]. Sponge electrode require a
headgear to hold them in place (as opposed to
self-adhesive electrodes) which can take the form
of a headband. Sponge electrodes increase the
contact quality even in the areas of the scalp
with thick hairs because the electrolyte (saline)
penetrates under the hair and saturates the skin
surface skin [31]. A related concern of using
sponges is that sponge is prone to leaking which
distorts the “effective” electrode size making
stimulation not reproducible [27] – for this
reason, the volume of saline added to the sponges
should be carefully calibrated (to the sponge
model, size, and application), and caps (e.g.,
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Fig. 8.3 Architecture of sponge electrode and its varia-
tions. (a) Example of electrodes positioned on the scalp
with the intention to stimulation transcranially the brain.
(A1a, A1b) Examples (CAD) of minor variations in
sponge electrode design that can make significant differ-
ences in usage. Both 5× 5 cm2. In both cases, a conductive
rubber electrode is placed between saline-soaked sponges
(top sponge for illustration), but in one case, a metal snap
is attached to the conductive rubber electrode. (A2a, A2b)
Renders of same sponges positioned over the skin surface.

(b) For sponges without the metal rivet, a wire needs to be
inserted inside the sponges to connect to the conductive
rubber electrodes. A rubber band is then used to hold the
electrodes to the scalp. (c) For sponges with a metal rivet,
a lead with a snap connector may be used. In this case,
the snap connector can be integrated into a head gear. This
example is intended to show how seemingly small changes
in electrode deign can have significant impact on overall
usability

neoprene) may be avoided since it both obscures
and supports fluid spread. There are important
methodological and design details in sponge
electrode design and preparation [27].

As used in tDCS, tACS, and tRNS protocols,
sponge electrode pads have a rectangular skin
contact area of 25 cm2.The contact area is the
interface between electrolyte-saturated sponge
and skin. For sponge electrodes, selection and
positioning of the conductive carbon rubber
sheath or metal can be varied. For example,
Soterix Medical (EasyPad, Soterix Medical Inc.,
NY, USA) provides rubber electrode embedded
inside a rectangular sponge pocket and uses
plastic rivets to hold the rubber in place. In

the NeuroConn sponge electrode (neuroCare,
Munich, Germany), the rubber sheath is inserted
into a sown rectangular sponge pocket. In both
cases, the rubber electrode is smaller than the
outer dimensions of the sponge. In the Amrex-
style sponge electrode (Caputron, NY, USA) a
metal electrode is placed behind the rectangular
sponge, and an insulating rubber encases the
metal and sponge, except on the skin contact
side. These reusable conductive rubber electrodes
typically include a female port which is connected
to a male banana clip or pin-terminated wire
from the stimulator. CES devices can use circular
sponges soaked in tap water (Fisher Wallace
electrode, New York, USA). Relatively small
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Fig. 8.4 Example of sponge electrode headgear for auto-
matic electrode positioning. (a) The components include
the headgear with integrated snap leads and two snap
sponge electrodes. (b) The two snap sponge electrodes are
connected to the two available positions on the headgear.
(c) The headgear assembly can then be placed on the head.

(d–f) Different views of head-strap placement on a subject
head. The headgear with fixed-position sponge locations
ensure the electrodes are placed in the desired positions.
Using different headgear electrodes can be placed in dif-
ferent locations. Having one position per headgear reduces
the possibility for setup errors

disposable felt electrodes that are saturated
in saline are used in some CES devices with
ear clip electrodes (Alpha-Stim, Texas, USA).
Nonsalinized water is less common and for some
applications like tDCS, it is contraindicated [27].
When water is used, residual electrolyte must
be present either as impurities (tap) or absorbed
from the skin.

There are updated variants on the sponge
electrode design. The conductive rubber may
be semipermanently embedded into a circular
(Sponstim, Neuroelectrics, Spain) or rectangular
(EasyPad-2, Soterix Medical Inc., NY, USA)
sponge with a male metallic connector attached
to the rubber and emerging through the sponge
(on the side opposite the skin contact). The male
connector can be affixed to a female connector
on the headgear directly. As with other sponge
electrodes, the electrodes can be reused or are
single use – for a single use, electrodes are
further available as pre-saturated so requiring

no preparation (Soterix EasyPad-2, Fig. 8.4).
A further variation is a more rigid sponge with
bristles that enhances penetration through hairs
and sponge materials embedded with salt in
a manner that only water can be added over
multiple uses (Halo Neuroscience, San Francisco,
CA). Along with new types of associated head-
gear (e.g., home use) [32] and connectors (e.g.,
magnetic), these examples illustrate that even
with the conventional sponge electrode paradigm,
there is an ongoing innovation often focused on
ease of use (e.g., preassembled and saturated) or
reliability (e.g., sponge surface shape).

8.4 tES Electrodes: Self-Adhesive
Electrode

Self-adhesive electrodes adhere to the skin sur-
face and typically require minimal preparation –
this makes them easy to use at locations without
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Fig. 8.5 Illustration of adhesive hydrogel electrode (a, b)
placement of rectangular anode on the subject’s right
temples. Generally, adhesive electrodes or restricted to
placement below the hairline. In this case, a square cathode
electrode positioned about 1 cm to the right of the subject’s

midline on the back of the neck. (c, e) Representation
of analogous electrode positioning as a and b on a head
model. (d) Image of the adhesive electrode is in the middle
column. The bottom of the electrode has an adhesive
hydrogel for adherence with the skin, whereas at the top,
there is electrochemical metal mesh electrode

significant hair [33] but do not work well on
hairline. Self-adhesive electrodes are often used
with tPCS waveforms (Brainpod, Caputron, NY,
USA) and also with ECT (Thymapad, Somatics,
FL, USA). In their simplest design, the bottom
of the electrode has a layer of conductive hy-
drogel along with an adhesive material; over this
layer is a conductive wire, rubber, or metal; and
over either of them is a layer of insulation (see
Fig. 8.5D2). In some designs, the metal may be
connected to a short cable with a female pin
connection (the cable from the stimulator can be
connected to this female pin), or the metal may
be connected to a snap connector that protrudes
through the insulation layer. When the device is
handheld, the lead wire from the device extends

to the connector on the electrodes. When the de-
vice is “wearable,” it may connect directly to the
adhesive electrode, and the adhesionmay, in some
cases, be sufficient to hold the device to the head.

Because DC stimulation is electrochemically
demanding [5], adhesive electrodes have been
used only in a limited number of tDCS trials
[33] and devices (Zendo E-Meditation), but self-
adhesive electrodes are common in other applica-
tions where biphasic pulses and AC stimulation
are used such as cranial nerve electrical stimula-
tion [34]. Self-adhesive electrodes designed and
validated for one stimulation dose may not be
tolerated for other doses.

Many approaches that use adhesive electrodes
for head stimulation are intended to activate cra-
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nial nerves (or peripheral nerves) so as such are
not “transcranial” and are, therefore, outside the
scope of this chapter. Still, insights from cranial
stimulation devices can inform tES devices. Cra-
nial nerve stimulation devices have used hand-
held device form factors (Monarch, NeuroSigma,
CA, USA) but also compact device that snap
directly the adhered electrodes (Thync pad, CA,
USA, and Cefaly, CT, USA) – making the en-
tire system wearable. Technologies intended to
stimulate cranial nerves can have electrodes of
varied separation, ranging from distant electrodes
across the head to proximal (adjacent) electrodes.
The latter case produces local superficial current
flow-suited stimulation of cranial nerves at the
skin, but not transcranial. In the former case, the
two distant electrodes are presumably stimulat-
ing two targets – though this is also increased
current through the head (transcranial). For this
reason, transcranial systems with adhesive elec-
trodes avoid adjacent electrode placement (e.g.,
placed as a distance across the forehead) [33].
These last points relate to a broader debate within
the noninvasive neuromodulation [35]; regard-
less of whether a system is called “transcranial”
or claimed to target cranial nerves, there can
be significant overlap in dosage between such
systems. With verification of target engagement

(what nervous system element is activated and
correlated with outcomes), the targets of these de-
vices can be speculative. For CES devices which
include models of adhesive electrodes (Caputron,
Mindgear, NY, USA), there may be indefinite
target engagement (cranial nerve, brain [36], or
a combination of both).

8.5 tES Electrodes:
High-Definition Electrode
(HD Electrode)

High-definition (HD) electrodes are electrode as-
sembly with a skin contact area of less than 5 cm2.
The HD electrode includes a cup that sits on the
skin and determines the skin contact area. The
cup is filled with conductive gel or paste [5]. Sus-
pended inside the gel is ametal ring, disk, or pellet
made from Ag/AgCl. The gel and metal are thus
positioned by the interior dimensions of HD cup.
The design of the HD cup controls the important
factors of gel contact area with the skin and the
distance between themetal and the skin (Fig. 8.6).
As with conventional tDCS using sponge elec-
trodes, there are different montages of HD-tDCS,
but HD electrodes, by the virtue of being smaller,
can be deployed in significantly higher number

Fig. 8.6 High-definition (HD) electrodes. (a) In contrast
to other types of tES electrode, HD electrodes are rela-
tively small. (Render) An HD cup is placed on the skin and
contain the metal electrodes (Ag/Agcl) and the electrolyte
gel. (b) Because HD electrodes are smaller, they can be
arranged in variation configurations on the head. Shown is
the 4 × 1 ring configuration of electrode placement where

four electrodes of matched polarity are positioned around
a central electrode of opposite polarity. The render shows
placement of the electrodes over the targeted brain region.
(c) Image of 4 × 1 HD electrode assembly on a subject
head. Electrodes are secured in a 4× 1 configuration using
a specialized head cap
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and/or precise placement [9, 37, 38]. A com-
mon HD montage is the 4 × 1 ring montage
where a ring/circular fashion using four “return”
(cathode) disk electrodes is arranged around an
“active” (anode) electrode at the center [6, 7, 39,
40]. The active electrode is positioned over the
scalp (coinciding with the center of the active
tES sponge pad) and surrounded by four return
electrodes: each at a disk distance (from center to
center of the disk) of 3 cm from the active elec-
trode. The HD electrodes are held in place using
a cap headgear, and a conductive electrolytic gel
is filled into the electrode holders. Note that in
contrast to sponge electrodes, here a cap does not
introduce issues related to electrolyte spread since
the gel is well confined by the HD cup.

Various waveforms can be applied in HD-tES.
HD-tDCS uses tDCS waveforms [37, 38, 41, 42].
HD-tACS uses AC waveforms [8]. Still other
waveforms are specific to the use or arrays such
as interferential stimulation [43] or high-intensity
pulses [44].Multiple brain regions can be targeted
with HD-tES [8].

The form factor of HD-tES cups superficially
resembles EEG electrodes (though EEG elec-
trodes cannot be reliably used for stimulation),
and indeed it is possible to combine HD-tES and
EEG systems. However, while EEG recording
before HD-tES (e.g., to measure baseline state of
inform stimulation strategy; [45]) or after HD-tES
(to measure outcomes; [46]) is valuable, record-
ing of EEG during tES is confounded by artifacts
[47, 48].

8.6 Electrode Resistance

Monitoring of electrode resistance before and
during tES is considered important for repro-
ducibility and tolerability [29, 49], specifically
around issues related to electrode setup. An un-
usually high electrode resistance can indicate un-
desired electrochemical changes and/or poor skin
contact conditions. tES devices will therefore in-
clude a resistance measurement circuit. However,
monitoring of electrode impedance in no way
reduces the need and importance of proper elec-
trode selection and setup in the sense that poor
electrode conditionsmay be associated with a low

resistance and, conversely, in some cases (e.g.,
subjects with high-resistance scalp), good contact
may be associated with a moderately high resis-
tance. Skin irritation and discomfort may be as-
sociated with high resistance but not necessarily.
Thus, monitoring of resistance is an adjunct tool
to detect not only ideal conditions at the electrode
skin interface but also a substitute for quality
electrode design and strict protocol adherence
[27, 49].

The resistance measured by the device will
be the sum of both electrodes including the un-
derlying electrode-skin resistance and the body
resistance. Body resistance is typically a few K	
but will vary depending on electrode position on
the body and the conditions of the skin (e.g., cal-
loused skin). Electrode-skin resistance will vary
depending on the electrode design and waveform
applied [50]. For any given tES device, there
will therefore be a specific total resistance range
that is considered typical, and a resistance above
this range may suggest not ideal electrode setup,
in which case the operator may adjust the elec-
trode setup to reduce the skin-electrode resis-
tance. Some device will deactivate if the resis-
tance is atypically high.

8.7 Current Control, Voltage
Limits

Electrodes play a central role in why current con-
trol (as opposed to voltage controlled) is broadly
preferred across electrical stimulation applica-
tions [26], including tES. Voltage limits, and pro-
tocols to address voltage compliance, and settings
then reflect device specifications. When stimu-
lation is applied to a body from a tES device,
the current must pass through electrodes before
reaching the body; therefore, the electrodes are
always in series between the device output and the
body. For the simplest case of two electrodes, the
total impedance is the sum of the impedance of
the two electrodes and the impedance of the body.
The impedance of each electrode is unknown,
variable over time, and changes with current ap-
plied [51] and can be significant compared to
body impedance [26].
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First, we consider why voltage control is not
preferred: If one used voltage-controlled stimu-
lation, the total voltage provided by the device
will be distributed across the two electrodes and
the body. But since the electrode impedances are
unknown and changing, the voltage across the
body is unknown and changing. The total current
(which reflects the voltage divide by impedance)
is also unspecified and changing. Though in tES
we’re not aware of modern devices that use volt-
age control in other brain stimulation applica-
tions, there may be situations where voltage con-
trol is practical such as stimulation of the vagus
nerve through electrode on the neck (Gamma-
Core, Electrocore, NJ, USA) or traditional inva-
sive stimulation technologies such as SCS and
DBS (Medtronic, Fridley, MN, USA).

We can now contrast this with current con-
trolled stimulation. Here the current output of the
device is controlled. The current is passed through
the two electrodes and body, all in series, so the
current across the body is controlled. The voltage
output of the device is therefore adjusted to keep
the current controlled at the target level. This
voltage divided by the current is the impedance
of the system – also called dynamic impedance
to specify impedance during stimulation as op-
posed to static impedance prior to stimulation
(see resistance below). Current control therefore
accommodates for the unknown, variable, and
significant impedance presented by electrodes.
Arguably with current control, one does not know
the voltage generated across the body, but this
can be predicted knowing the body’s resistive
properties (see modeling). Moreover, the voltage
across the body will not depend on electrode
impedances during current control and rather will
be set by the controlled applied current times the
body impedance.

The analogy for why current control provides
more specificity can be extended to accidental
electrical exposure. An individual contacting a
high-voltage line but wearing insulative rubber
gloves would be protected, since the gloves pro-
vide a high resistance path in series with the
body, hence the expression “it’s the current, not

the voltage, that kills you.” While the stimula-
tion intensities used in neuromodulation aremuch
lower than hazardous accidental exposure, and
electrodes are designed to be conductive (met-
al/rubber and electrolyte), the analogy is valid in
the sense that they dampen the voltage at the body
under voltage-controlled stimulation.

Since under current control, the voltage will
increase with total path resistance, under situ-
ations of unusually high resistance, the voltage
may increase to the limit of the current control
device, also called device voltage compliance.
For limit intensity tES devices, this voltage com-
pliance is typically on the scales of tens of volts
(e.g., 40 V).

The voltage compliance is conventionally set
to accommodate passing the maximum target
current under expected maximum resistance
(e.g., with a target of 2 mA, and maximum
resistance of 20 K	, 40 V is sufficient). In
practice, the impedance may increase outside
of expected or desired ranges, for example, as a
result of poor electrode setup (see Resistance).
In such cases the device output may reach
voltage compliance, and the device will not be
able to provide the desired current. Depending
on design, devices may respond to voltage
compliance in different ways. Some devices may
simple abort stimulation, while other devices
may continue to stimulate with reduced current.
Because current passage itself reduces current,
maximum impedances are often encountered
at the start of stimulation. Therefore, voltage
compliances are often increased to accommodate
this higher initial impedance. However, given that
impedance would drop, one proposal for limited
voltage stimulation was to provide output with
moderate voltages, expecting voltage compliance
to be reached at the start of stimulation, but for
gradual impedance reduction to then reduce
voltage, allowing target current to be reached
[50]. There are various reasons to minimize
voltage from simplifying circuitry or power
requirements, reducing stimulation energy, or
providing redundant tolerability measures in
susceptible populations or use cases [52].
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8.8 Indications for tES Use

tES spans many clinical and behavioral
interventions, and as noted, many sub-techniques
[53], such as transcranial direct current stimu-
lation (tDCS), transcranial alternating current
stimulation (tACS), and transcranial pulsed
current stimulation (tPCS). What relates these
different techniques is that they apply current
through electrodes on the scalp with the intention
of directly stimulating the cerebrum, rather than
the periphery [27, 36, 54]. Research that uses
tES focuses on direct cortical modulation as an
explanation for changes in behavior, cognition,
neurophysiology, and imaging studies [6, 55].

From the perspective of the device, the dose is
deigned and selected to achieve specific changes
in brain function and so clinical or cognitive out-
comes. As described above, while this is a large
parameter space, it can be reduced to features
of the electrode montage (e.g., how many, what
size, where) and features of the waveform (e.g.,
intensity, frequency). The electrode montage is
generally considered to determine which brain
regions are influenced, whereas waveform de-
termines how they are influenced – though in
practice, montage and waveform will integrate to
determinewhere and how the brain is influenced).

For example, tDCS is applied as a possible
treatment for major depressive disorder (MDD).
A brain region of interest in MDD research is the
dorsolateral prefrontal cortex (DLPFC), which is
targeted with tDCS by placing electrodes bilat-
erally on the forehead [20, 56–59]. tES clinical
trials intending to treat pain disorders – e.g., mi-
graine [60], fibromyalgia [61], craniofacial pain
[62, 63]) – often target themotor cortex (M1)with
an “active” electrode, while the “return” electrode
is placed on the contralateral forehead (called the
“supraorbital” or SO position) (Fig. 8.4) [64].

8.9 Current FlowModeling
Informs Device/Electrode
Design and Setup

Electrode size and position on the scalp along
with the current applied to each electrode define

tES dose [65]. tES dose, along with head
anatomy, determines the resulting current flow
(intensity and spatial pattern) in the brain [66,
67] and so resulting neurophysiological and
behavioral changes [68]. However, the current
flow pattern in the head is complex and is not
simply “under” the electrodes and will vary
across individuals. The task of current flow
models is to relate dose (as controlled by the
device) and the resulting brain current flow
intensity and spatial pattern. While dose is what
is specified, it is brain current flow that underpins
interpretation of outcomes.

For current flow models, also known as vol-
ume conductionmodels, to be accurate, theymust
correctly represent the shape and resistivity of
head tissues (e.g., skin, skull, CSF, brain). The
physics governing volume conduction models of
tES mirror those used in electroencephalography,
though more anatomically detailed variants have
been developed over time. Computational models
have been developed [9, 11, 69–74] and repeat-
edly validated [66, 75–78] over a decade. Ap-
proaches invented using computational models,
such as HD-tDCS, have been validated [6, 44, 54,
75, 77] and applied [8, 41, 42].

Models support the optimization of montages
to target specific brain regions [9, 79] which can
be done at the population average or individual
level [80]. Different montages and electrode de-
signs can be tested [81–83]. The effect of invasive
scenarios such as skull burr holes, lesions, or
weight gain on brain current flow can be tested
hypothetically [70, 84, 85]. Because the same
dose will produce different brain current flow
patterns across subjects, models can also support
individual analysis [44, 86, 87]. The intensity of
brain current flow can also vary across individu-
als, susceptible populations (e.g., age, stroke, tu-
mor), or species in the case of animal experiments
[88]. Current flowmodels can be used to compare
the effect of stimulation protocols. Current flow
models can also be compared with imaging data
[89].

Thus, computational models are ancillary soft-
ware used to inform the design, setup, and pro-
gramming of tES devices. Device specifications
limit the dose range that can be explored by a
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model, while conversely, models can encourage
the creation of new device technology. As exam-
ples, a home-based system relying on adhesive
electrodes would restrict explorable electrode lo-
cations in models to locations below the hairline
[90], which in turn simulate the development
of simple-to-use electrodes that can go over the
hairline [91]. The potential for focal transcranial
stimulation was suggested first by models [71],
but it was not until practical HD electrodes were
developed [5] that approaches to optimize tran-
scranial stimulation using HD arrays could be
tested.

Some important aspects of computational
models are to investigate the role of parameters
such as electrode assembly, current directionally,
and polarity of tES and use them to optimize
therapeutic interventions for improving their
risk/benefit ratio. A computational modeling
pipeline of tES starts with segmentation of
an exemplary magnetic resonance imaging
(MRI) scan of a head into multiple tissue
compartments, namely, scalp/skin, fat, skull, csf,
gray matter, white matter, and air, to develop
a high-resolution (<1 mm) MRI-derived finite
element method (FEM) model. Electrodes of
variant shapes, dimensions, and materials are

then positioned over the brain target (e.g., a
35 cm2 scalp contact area electrode positioned
over inferior frontal gyrus (Fig. 8.7)) and meshed
at different mesh densities using appropriate
mesh refinement procedures (e.g. Simpleware
Synopsys, CA, USA). The final volumetric
mesh of the head with electrodes comprising
>10,000,000 degree of freedom (DOF) and
>12,000,000 tetrahedral elements, specific to this
exemplary head model (DOF and no. of elements
are inter-individual variant), is then imported into
an FEM solver (i.e., COMSOL Multiphysics
5.1 MA, USA). For electrical stimulation, a
quasistatic approximation [67] (steady-state
solution method) is implemented and solved for
electric current physics. The boundary conditions
are applied as normal current density at the top
exposed surface of the anode and ground (0 V)
at the top exposed surface of the return electrode
(cathode). The remaining other external surfaces
of electrode are electrically insulated, and the
model is solved. Predicted results are represented
as electric field/current density streamlines
to show the current flow trajectories across
different brain regions or volume plot of field
intensity/current density at desired brain tissue
(Fig. 8.7).

Fig. 8.7 Computational FEM head models and predicted
field intensity of dual-hemisphere tES montage. (A1) 3D
image of a segmented brain generated from an MRI scan
of a healthy adult and different views (F, L, R) of electrode
placement over the inferior frontal gyrus. (A2) repre-
sent an orientation of magnitude controlled electric field

streamlines inside the head tissue layers during tES. (A3)
Volume plot of predicted field intensity and different views
of brain under stimulation conditions. Predicted results
plotted at same color range (peak = 0.3 V/m) indicated
comparable field intensity under both anode and cathode
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8.10 tES Biophysics/Mechanisms

Neurons in the brain have a potential across their
membranes (polarization) where changes in this
polarization (most dramatically action potentials)
underpin brain function. Given the brain is an
“electrical organ,” it is not surprising that brain
function is responsive to tES. While there are
open questions about the mechanisms and effi-
cacy of tES for varied indications, the biophysics
of tES related to current delivery to the brain (see
current flowmodeling) and the resulting polariza-
tion of neuronal membranes are well established
[92, 93]. The polarization produced by tES is the
initial mechanism of action, with subsequently
more complex changes in excitability and plas-
ticity secondary to this polarization [94, 95].

Current that is passed through tES electrodes
takes a path through the head determined by the
head anatomy and the resistivity of each tissue
type. A fraction of the current never crosses the
resistive skull (cranium) instead shunting across
the relativity conductive (lower resistivity) scalp
[77]. Of the current fraction that crosses the skull,
a further portion of this is shunted by the highly
conductive cerebrospinal fluid. The remaining
current component that reaches the brain and
crosses the gray and then white matter. As current
crosses brain tissue, it generates an electric field
on the local tissue. Neurons are exposed to and
so stimulated by local electric field. For low-
intensity tES, the current intensity is not uniform
across the brain, and so the electric field intensity
is also distributed. For conventional tES using two
large pad electrodes, this peak may be in a brain
region between electrodes [20].

The peak electric field in the brain during 2mA
tES is 0.5–1 V/m based on intracranial recording
in subjects and validated current flow models
[66, 75, 78]. In contrast ECT applies 700 mA
or current producing electric field of 300 V/m
[96]. This contrast is important. Whereas ECT
and most invasive brain stimulation techniques
produce high-intensity electric fields in the
brain (>100 V/m), low-intensity tES approaches
produce weak electric fields (<1 V/m). This is
well known and directly support a “subthreshold”

modulation mechanism of low-intensity tES
technique such as tDCS [94] and tACS [97–99].

The neurophysiological and so behavioral con-
sequences of tES will depend on how this next
polarization (across neurons and their compart-
ments) influences excitability and plasticity [94].
Because low-intensity tES produces only incre-
mental membrane polarization, the cellular ef-
fects of low-intensity tES on brain function will
further depend on ongoing activity [99–102] and
may be amplified over time (tens of minutes
[103–105]). The organization of neurons in ac-
tive networks with emergent properties like os-
cillations will influence the aggregate effects of
tES [99, 106–110]. The ultimate consequences
of low-intensity tES on macroscopic measures of
neurophysiology (e.g., TMS) and behavior (e.g.,
therapy) will be complex, but ongoing research
[80, 111, 112] about such changes should not be
conflated with the well-established biophysics of
current flow and resulting membrane polarization
of low-intensity tES. As with any single aspect
of brain function and disease, and every inter-
vention, “open questions” remain – and, again,
open questions should not be conflated with the
lack of scientific basis for tES. Specifically, there
is currently enough basic science supporting tES
to inform how devices can be designed and pro-
grammed in order to test hypothesis related to
brain function and therapy.

8.11 Tolerability of tES Devices

The tolerability of any intervention depends not
simply on the device and dose but on protocol
including subject inclusion/exclusion (e.g., age,
preexisting condition), operator training and cer-
tification, ongoing monitoring, and parallel inter-
ventions. For example, the scientific consensus
that tDCS is safe and tolerated [12, 33, 113–116]
is explicitly limited to those protocols tested. In
the same vain, human trials of tDCS in the USA
are almost always considered nonsignificant risk
(risk comparable to daily activities). But this risk
designation – whether made by the FDA or by an
institutional IRB – must be made on a protocol-
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specific basis, emphasizing that recommendation
on safety and tolerability cannot be made on any
device but must also specify the methods of use.

tES device design may be considered to min-
imize risk to the extent that they reliably control
dose and allow consistent electrode setup, when
used within the limits of established protocols.
Medical-grade tES devices and accessories that
are designed and manufactured to internation-
ally recognized medical standards – regardless
of region-specific approval for treatment [2, 114,
117] – provide the highest standard of control in
regard to reliability.

Tingling is a common adverse effect reported
in low-intensity tES studies [118, 119]. For low-
intensity techniques like tDCS, the severity of
adverse events is low across all conditions [59];
however, the frequency of tingling is significantly
higher under thin vs. thick sponge stimulation
(88% vs. 64% incidence, respectively) [5]. As
discussed above, electrode size and salinity of
sponge electrodes may influence sensation [120].
In principle, electrode design must be optimized
to reduce the frequency and intensity of tingling
and related sensations in clinical trials, which
enhances blinding effectiveness. For this same
reason, studies which have focused on the ef-
fectiveness of tES (tDCS) blinding technique but
provide little attention to the electrode design and
preparation techniques (including document op-
erator training) are of limited generalized value.
There is a dissociation between erythema and
tingling – tingling being higher under thin sponge
stimulation than thick electrodes [121]. A poten-
tial reason may be that the thick sponge produces
more uniform current density at the skin surface,
resulting in evenly diffused erythema distribution
and, hence, lower tingling sensation.
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Homework

1. What stimulation parameters define tES
dose?

2. Name at least three tES device types. What
distinguishes them from each other?

3. A tES device provides a DC current through
three electrodes. One electrode is an anode
and provides 2 mA. A second electrode is
a cathode and collects 0.5 mA. Is the third
electrode an anode or cathode? How much
current does it provide or collect?

4. Approximately how much current is used to
produce a seizure during ECT? How much
current is used in techniques such as tDCS
and tACS?

5. In a tES setup, the body resistance is 2 kOhm,
one electrode-skin resistance is 1 kOhm, and
the second electrode-skin resistance is 10
kOhm.What is the total impedancemeasured
by the tES device? If the second electrode is
adjusted such that the second electrode-skin
resistance is now 1 kOhm, what is the new
total impedance measured by the tES device?

6. In tES with two electrodes, what is the rea-
son for not placing the electrodes proximal
(almost touching) each other? For what kind
of head electrical stimulation devices is prox-
imal placement rational?

7. A tES electrode assembly is made from a
cylindrical gel compartment contacting the
skin with a circle interface of 1 cm radius.
The gel is encased in a hard plastic material
of 0.5 cm thickness and held inside a cap
with a circumference of the head. The side of
the gel opposite from the skin makes contact
with a metal disk of 0.5 cm2 radius. When
this is used in a tES publication, what is the
“electrode area” that is practically reported in
describing the stimulation dose?

8. If one knows the dose and head anatomy,
what is the use of computationalmodels (e.g.,
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what aspects of brain current flow are models
used to predict)?

9. What are the two essential functions of the
electrolyte used in tES?

10. Only a fraction of current reaches the brain in
tES. Given that current is conserved, where
(what tissues) does the remainder of the cur-
rent go?
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9Optogenetics: Novel Brain Interface
Technology That Originates
in Bioprospecting
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Abstract

Optogenetics is a brain stimulation technique
in which the activity of stimulable cells, such
as neurons or astrocytes, is modulated by
exposing target cells to pulses of appropriate
wavelengths. Prior to optogenetic experi-
ments, we deliver specific genetic constructs
to target cells to express light-activated ion
channels or ion pumps and produce light
sensitivity. Once these proteins are produced,
we can precisely modulate cellular activity
by exposing such cells to sequences of
light pulses. Optogenetics, combined with
recording methods, is widely used to develop
complex brain computer interface platforms.
Unique features of optogenetic stimulation,
including specific cell-type targeting or
bidirectional control of cellular activity, have
allowed researchers to use the method in the
study of brain networks, finding projections,
or in dissociating circuitries of neurological
and psychiatric disorders. Here, we briefly
review the essence of the technology, pros and
cons of the method, major applications of the
technique, and some potential directions for
future research.
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9.1 Introduction

Understanding the dynamics of the brain and the
mechanisms that this biological computational
paradigm uses to process high-throughput data
and generate complex outputs, such as perception
or cognition, has brought scientists from a wide
range of backgrounds into this field. In recent
years, many mathematicians, physicists, and en-
gineers have concentrated on neuroscience prob-
lems and used their computational mindsets and
system development skills to implement novel
brain interface platforms. This generation of neu-
roscientists contributed to the development of
new treatments for mental disorders based on
interfering with the brain networks by speaking
the electrical language of neurons. This approach,
currently known as the interventional psychia-
try, was in contrast to the traditional point of
view which assumed that any mental disease is
the result of some form of chemical imbalance
in the brain. Therefore, such disorders can be
cured by an appropriate dosage of medicine to
restore the chemical balance in the central ner-
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vous system. The first step for the development
of interventional procedures was to learn how
healthy neurons encode information and commu-
nicate to achieve certain goals. For this purpose,
a wide range of recording technologies were in-
vented which includes the development and test-
ing of multiple penetrating or surface-mounted
electrode array configurations. Once better un-
derstanding of neural codes was achieved, re-
searchers initiated the effort to reverse the process
and use recording devices this time to stimulate
neurons with pulse sequences, similar to recorded
patterns, to establish two-way communications.
Improvements along these lines led to the devel-
opment of brain stimulation devices which soon
found bold clinical applications helping many pa-
tients suffering from brain diseases or injuries that
disrupted the nervous system’s normal functions.
Good examples are the deep brain stimulation
(DBS) used in Parkinson’s or electrode arrays im-
planted on the visual cortex or retina to partially
restore vision for blind people [1].

Despite immense enthusiasm in early days,
most interventional therapeutic procedures faced
major limitations that restricted the application of
such technologies. Electrode-based stimulation
systems particularly suffer frommultiple inherent
limitations. Brain networks are complex mixtures
of many different interconnected cell populations
where each cell type has a set of functions. Elec-
trode arrays which are designed for stimulation
application are not capable of targeting any spe-
cific cell population, and all networks in the vicin-
ity of each electrode are influenced whenever
a current pulse is injected [2]. Consequently, in
many cases where brain stimulation is used for
treatment, patients report mild, moderate, or even
severe side effects. For instance, implanted elec-
trodes in Parkinsonian patients cause side effects
including depression, mood alteration, or sensory
and motor control problems. All such side effects
disappear the moment the stimulation is disabled.
A second limitation of electrode arrays stems
from the significant difference between the num-
ber of electrodes in each array and the number
of cells that contribute to recorded signals. With
such a small number of electrodes in each array,
in comparison with the cell numbers, we can

generate only simple stimulation patterns, and
imposing complex modes of activity is almost
out of reach. On the recording side, the limited
number of electrodes makes source identification
or source localization problems (mathematical
inverse problems) highly ill-posed. Implanting
arrays that embed a large number of penetrating
electrodes is not practical in many cases since
larger arrays can cause irreversible damage to
the sensitive brain tissue. Further integration will
not necessarily help either since recorded data
from electrodes that are geometrically closer than
certain distances is highly correlated and the ac-
quired data is redundant. A third limitation of
electrode arrays is that such interface platforms
cannot bidirectionally (increase or suppress) con-
trol cellular activity. In most applications, elec-
trodes are used only to stimulate neurons, whether
excitatory or inhibitory.

These technological limitations encouraged
scientists to search for more potent brain
stimulation methods. One technology that
emerged and addressed these restrictions was
optogenetics [2–8].

In the early 2000s, a group of researchers
introduced a new brain stimulation technology by
combining tools of optics with advanced methods
of molecular genetics. Prior to optogenetics, for
several decades, biochemists studied the struc-
ture and dynamics of light-sensitive proteins for
applications like energy harvesting [9]. Through
these studies, they learned that in many micro-
scopic species, including certain types of bac-
teria or algae, light-sensitive proteins that form
membrane ion channels or ion pumps provide
essential tools that help these species survive in
harsh environments and satisfy their basic vital
needs. These studies proved that the structure
and dynamics of such proteins are similar to ion
channels and ion pumps that we find in the mem-
brane of mammalian neurons. These proteins are
the most essential elements in the generation and
conduction of electric signals between excitable
cells including neurons [6–8]. By introducing
these proteins to cultured neurons, which were
harvested from mammalian brain cells, one could
effectively stimulate the cells simply by exposing
them to appropriate wavelengths. It was shown
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that the sequence of action potentials in such
excitable cells closely follow the sequence of
exposing light pulses.

The genetic element of this neuro-modulation
technology provided an effective mechanism to
target cell populations of interest and potentially
avoid common side effects of interventional
procedures [10]. Furthermore, the inherent
parallelism of optics makes it possible to target
a larger population of cells for stimulation. By
combining optogenetics with optical recording
techniques, like calcium imaging or voltage-
sensitive dye recording, we can implement
all-optical brain interface platforms that are
more versatile in their applications. It was also
shown that bidirectional control of cellular
activity can be achieved by co-expressing
light-activated proteins that depolarize or
hyperpolarize excitable cells [2]. Then, switching
thewavelength of the exposuremodulates cellular
activity in each direction. Optogenetics addressed
the main challenges of electrode-based brain
interface systems and the technology transformed
into an ever-growing field of research [11].

In the following, we discuss some widely
used tools of optogenetics and salient features
of the dynamics of these light-activated proteins.
We summarize major advances in the field of
gene delivery and light delivery for optogenetics.
Next, we review examples of hybrid brain
interface platforms that combine optogenetics
with other brain interface or imaging modalities,
like electrophysiology, two-photon microscopy,
coherence tomography, and magnetic resonance
imaging. Finally, we discuss potential applica-
tions and pitfalls of optogenetics in therapeutic
applications.

9.2 Tools of Optogenetics

9.2.1 Opsins for Excitation
and Inhibition

In optogenetic brain stimulation, we first deliver
the genetic constructs to express light activated
ion channels or ion pumps in target cells of re-
cipient species [2, 3, 8]. Once proteins are ex-

pressed, one can modulate the activity simply by
exposing target cells to appropriate wavelengths.
First, photosensitive optogenetic proteins were
the naturally occurring channelrhodopsin (ChR)
and halorhodopsin (HR) [12]. ChR and HR were
used to induce excitation or inhibition in neurons
harvested from small rodents.

In the late 1970s, researchers discovered
proteins of the microbial rhodopsin family
which are single-component units that transform
pulses of light into electric currents. Some
single-celled microorganisms, including Archaea
Halobacterium salinarum, take advantage of
microbial rhodopsins, e.g., bacteriorhodopsin
(BR) and HR, to harvest the energy of photons
[6]. These spices use the acquired energy, for
example, to generate the electrochemical gradient
required for anaerobic glycolysis which is a vital
process for surviving in a high osmatic pressure
environment. Another example is the HR found
in Archaea which functions as a light-activated
ion pump and transports chloride across the
membrane against the electrochemical gradient.
Later, in the early 2000s, a new form of microbial
rhodopsin, aka ChRs, was isolated from the
freshwater algae Chlamydomonas reinhardtii.
These proteins function as selective light-gated
cation channels. When exposed to light, the pore
of the channel opens to let specific cations (in
this case, sodium ion) pass across the membrane
along the direction of the diffusion force.

The light sensitivity of all microbial rhodopsins
comes from the isomerization of the retinal
molecule which embeds within the protein
structure (see Fig. 9.1). When a retinal molecule
absorbs light energy, it transforms from all-trans
conformation to the higher-energy 13-cis state.
This conformational change of retinal applies
force to the protein structure and opens the
pore. Channel opening can happen in less than
1 millisecond. However, soon after and with no
other photon interaction, the molecule returns to
its low-energy stable state, and the channel closes.
In this sense, microbial rhodopsin has mono-
stable dynamics. The time constant of closing
is usually in the order of tens of milliseconds.
Therefore, when the exposure is sufficient, we
can modulate the activity of excitable cells, like
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Fig. 9.1 ChR2 protein functions as a light-gated cation
channel. The electron-photon interaction in one chemical
bond of retinal changes the conformation of the molecule

from the all-trans to 13-cis isomer, and this process opens
the pore of the channel. Under no further photon interac-
tion, the molecule returns to its low-energy state, and the
channel closes

neurons, or heart and muscle cells, and force
them to follow the sequence of pulses produced
by a light source like a computer-controlled laser
module (see Fig. 9.2).

Successful initial experiments led to a new
effort of discovering and/or engineering other
photosensitive molecules. Two approaches were
considered in this endeavor. The first approach
was based on bioprospecting and searching
nature for new forms of similar photosensitive
proteins. In the second approach, researchers
tried to use tools ofmolecular genetics to engineer
photosensitive proteins with different parameters
(such as opening/closing time constants, light
amplitude sensitivity, spectral sensitivity, and
even ionic selectivity) to expand the scope of
this new method [12]. For example, spectral
sensitivity of the first excitatory opsin, e.g.,
ChR2, was mostly around shorter wavelengths
from 400 nm to 500 nm with the peak sensitivity
occurring around 445 nm [2]. This spectral

sensitivity was problematic when researchers
tried to use optogenetic stimulation in in vivo
experiments. High-energy blue wavelengths
within this spectral bandwidth cannot penetrate
deep into the tissue due to the high absorption
rate of these wavelengths. The penetration depth,
for effective optogenetic stimulation at these
wavelengths, is limited to 100–200 um [13]. This
limited penetration makes it difficult to reach
deeper layers of the cortex without implanting
light guides. Implanting a light guide in the
brain is an invasive process. Targeting a large
neural network requires implanting multiple
light guides which is not acceptable in many
experiments. The need to find opsins which
offer red-shifted spectral sensitivity led to the
discovery of other optogenetic tools such as
Volvox ChR which was isolated from spheroidal
algae Volvox carteri and offered about 50 nm
shift in spectral response compared to ChR2 [14].
Several novel approaches were tested to make the
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Fig. 9.2 Example of in vitro optogenetic stimulation:
First cultured hippocampal neurons, harvested from new-
born rat pups, were transfected with lentivirus vector to ex-
press ChR2 proteins. Seven days after transfection, whole-
cell current clamp experiment was conducted. Beam of
a computer-controlled 473 nm laser diode was used to

generate optical stimulation patterns including individual
10 ms light pulses (top) or train of 10 ms pulses with the
repetition rates of 5 pulses (middle) and 15 pulses (bottom)
per second. Sufficient depolarization was achieved, and
the stimulated cell generates action potentials in response
to every laser pulse

spectral sensitivity closer to the ideal form. For
example, it was hypothesized that algae living
at different depths in open waters may provide
opsins of different spectral sensitivity since the

penetration depth of sunlight varies as a function
of wavelength.

To address the penetration depth problem
for in vivo applications, researchers even tried
to discover new ion channels that respond to
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other forms of energy such as heat [15] or
acoustic waves. Genetic engineering methods
were also used to artificially produce opsins with
red-shifted spectral sensitivity. For example, a
new class of opsins called SFO (step-function
opsin) was produced that offers long closing
time constants going well beyond 1 minute [16].
While the temporal response is compromised in
this class of opsins, light sensitivity of the host
cell is improved. The reason is that we need
to open fewer channels to generate the same
depolarization level since each SFO channel
remains open for a longer period. One benefit
of achieving better light sensitivity is improving
the depth of stimulation. Interestingly, it was
also shown that SFO channels can be closed
at any point simply by exposing the protein to
green light [16]. In this sense, SFO proteins
have bi-stable dynamics. Discovery of SFO
had a major impact in neuroscience research
since SFOs opened the path for two-photon
optogenetic stimulation [17]. It was also shown
that by inducing point mutations in genetic codes
of opsins, we could produce channels with much
faster kinetics. For example, the opsin ChETA
(ChR2/E123T) allows targeted mammalian
neurons to generate bursts of action potentials
that closely follow laser pulses up to 200 Hz [18].
Nonetheless, light sensitivity is less in ChETA
compared to SFO or even ChR2 proteins. A good
compromise between temporal response and light
sensitivity is the opsin ChR2/ H134R which is
two to three times more sensitive compared to
the wild-type ChR2, and it is widely used in
optogenetic experiments in vivo or in vitro.

We can also improve the light sensitivity by
overexpressing opsins in host cells. Nonetheless,
further research showed that overexpression can
cause intracellular accumulation of molecules
which potentially leads to membrane trafficking
complications. A good example is the light-
activated electrogenic Cl − pump known as
microbial halorhodopsin NpHR. Molecular
engineering of NpHR led to the development
of the enhanced version of this protein, known
as eNpHR, which offers potent optical inhibition
without the aggregation and toxicity [19]. It was

also shown that certain mutations can change
the ion selectivity of optogenetic proteins. For
example, conduction of divalent cations, e.g.,
Ca2+, significantly increases in the ChR2
L132C/T159C mutants [20]. Therefore, in this
case, we can use optics to manipulate intracellular
concentration of Ca2+ and trigger signaling
cascades that are modulated by this cation.

Crystallography of the ChR2 molecule has
provided valuable information about the structure
of the protein [21]. This information can help ge-
netic engineers make informative decisions when
selecting sites to impose point mutations. With
this information, they can engineer proteins that
offer kinetic parameters closer to desired values
for arbitrary applications.

One main advantage of optogenetics, com-
pared to other optical stimulation paradigms, is
that optogenetic tools are genetically encoded
photoactuators. As a result, specific cell-type tar-
geting can be achieved by choosing the right
promoter and incorporating that in the genetic
construct that we deliver to the host [10].

Optogenetics is also successfully used to ac-
tivate astrocytes [22]. Since astrocytes play a
crucial role in the coupling of neural and vascular
networks in the brain, optogenetic stimulation can
significantly contribute to our understanding of
the dynamics of neurovascular units.

9.2.2 Mechanisms of Gene Delivery

For gene delivery, researchers have successfully
tested several strategies. For in vitro applications,
when a high rate of successful transfection is
not required, simple gene delivery procedures,
like the calcium phosphate protocol or electro-
poration, are reasonable choices. For in vivo ap-
plications, genetically engineered viral vectors,
such as the lentivirus vectors (LV) or the adeno-
associated viruses (AAV), are the most popular
gene delivery vehicles. LVs integrate into the
host’s genome which leads to the permanent ex-
pression of the protein [23, 24]. On the other
hand, AAVs are less immunogenetic, and they can
deliver the genetic construct to larger tissue vol-
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umes. Both methods offer high expression rates
and minimal side effects. Since AAVs do not inte-
grate into the host’s genome, they are considered
as safer choices in regular lab applications and
used more frequently in optogenetic experiments
[25].

Several lines of optogenetic transgenic
animals are also developed [26]. A good example
is the optogenetic transgenic mice in which ChR2
protein is expressed under the control of the
mouse thymus cell antigen 1 (Thy1) promoter.
These animals are widely used in studies where
uniform light sensitivity is needed in large-
scale networks of cortex or even in optogenetic
stimulation of nerves in the peripheral nervous
system [27].

9.2.3 Target Species for
Optogenetic Experiments

Optogenetic tools are used in many species to
study the basic function of neural circuits or to un-
derstand dynamics of diseases that affect the ner-
vous system. Simple creatures such as transgenic
optogenetic Caenorhabditis elegans (C. elegans)
are good candidates to study neural networks
that control animal motion. By expressing both
inhibitory and excitatory optogenetic proteins and
using spatial light modulators (SLM) to pattern
light over the body, researchers demonstrated the
power of optogenetics in controlling and even
programming the movement of the worm [28].
Flies, such as Drosophila, are selected spices
to investigate the neural basis of nociceptive re-
sponses and pain receptors [29]. In optogenetic
experiments with worms and flies, we should
deliver sufficient amount of retinal to cells, for in-
stance via food supplements, to retain the normal
function of optogenetic proteins. Unlike mam-
mals, the level of endogenous retinal is not suf-
ficient in these species.

Zebrafish are used widely in optogenetic ex-
periments [30]. Due to their transparency, this
animal has provided the opportunity to test op-
togenetics together with optical recording meth-
ods, such as calcium imaging, to implement all-
optical interfaces with the animal’s nervous sys-

tem. Small rodents, specifically mice and rats, are
perhaps the most frequent subjects of optogenetic
experiments. Many brain circuitries, from corti-
cal tissue to thalamus, amygdala, or hippocam-
pus, of small rodents were selected for optoge-
netic experiments to study fear, anxiety, sleep, de-
pression, Parkinson’s, etc. Transgenic mice were
even used for their light sensitivity in peripheral
nerves. For instance, optogenetic stimulation of
sciatic nerve was successfully tested to achieve
enhanced and physiologically more natural mus-
cle recruitment compared to conventional electri-
cal stimulation [27].

Some of the most interesting optogenetic
experiments with rats are related to the integration
of optogenetics with functional magnetic
resonance imaging (fMRI). It was shown
that optical stimulation of ChR2 proteins is
sufficient to trigger blood oxygenation level-
dependent (BOLD) signals which are detectable
by high-resolution animal fMRI machines. These
experiments specifically opened a new era of
combining advanced technologies for brain
mapping or finding projections in the brain
noninvasively. Optogenetics was also tested in
nonhuman primates to activate specific circuits
[31]. However, up to this point, no change in
behavior as a result of optogenetic interference
has been reported in primates. As discussed
later in this article, a main target for optogenetic
stimulation in primates, including humans, is the
retina with the goal of retaining visual perception
for those who have lost vision as a result of
photoreceptor deterioration.

9.3 Mechanisms of Light
Delivery

9.3.1 Light-Tissue Interaction

In addition to gene delivery, the second con-
trol mechanism in optogenetic stimulation comes
from the way we deliver light to brain tissue.
Depending on the application, the target area of
the brain can change in depth or size. We also
occasionally change the stimulation pattern based
on our experimental protocol and/or the feedback
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we receive in real time from cells or the animal
behavior in closed-loop control procedures [32,
33]. The light delivery mechanism that we choose
in each case should address needs of that specific
application.

When light enters tissue, injected photons
bounce from one molecule to another until
they get absorbed or find a way out of the
tissue [34]. Using electromagnetic theory to
model light propagation in a complex random
environment, such as tissue, is overwhelmingly
complicated and not practical. As a result,
most mathematical models of light-tissue
interaction are phenomenological models. These
models attempt to formulate an equation that
determines the collective destiny of photons
that enter the tissue, without concentrating
on details like the exact phase of photons
and diffraction/interference effects. A good
example of this approach is the radiative transport
equation (RTE) which is used as an acceptable
mathematical framework for the development
of several optical tomography scanners [34].
For instance, it is shown that under given
conditions, the RTE equation transforms to a
less complex format known as the diffusion
equation. Diffusion of photons is conceptually
similar to the well-known heat transfer process,
and diffusion approximation (DA) has become
the mathematical framework for the development
of diffuse optical tomography (DOT) systems.

Statistical methods are also used to find rea-
sonable estimations of how the light emitted from
a given source propagates inside tissue. In these
statistical methods (e.g., Monte Carlo simula-
tion), we use our computational power to trace the
optical path of a large number of photons to find
an approximation for the distribution of light in a
given tissue with specified parameters.

For all models, we need to parameterize the
medium in which the light is propagating. When
biological tissue is the substrate for light propaga-
tion, we usually assign two parameters to define
the complexity of such a random medium. These
two parameters are the reduced scattering coef-
ficient and the absorption coefficient. The scat-

tering coefficient defines the number of times a
given photon is scattered in a unit of length, while
the absorption coefficient determines the chance
of a photon to be absorbed in a unit of length along
its optical path [34]. Both parameters are highly
wavelength-dependent and can change signifi-
cantly from one tissue to another. Many research
groups have conducted experiments to extract
these two parameters for different tissue sam-
ples over a wide range of the optical spectrum.
The advent of optogenetics also inspired many to
develop more detailed databases of brain tissue
optical properties, particularly for small rodents
[35–37]. While none of these models provides
a high-precision estimation for light distribution,
it is proven experimentally that predictions of
these models are reasonable and beneficial. For
example, we can use these models to predict the
required intensity of light to achieve effective
stimulation within a given volume and yet avoid
heating the tissue to unhealthy levels.

9.3.2 Light-Guiding Systems

The most common method of light delivery
for optogenetic stimulation, particularly when
the target is a deep brain object, is implanting
optical fibers in the tissue (see Fig. 9.3) [13, 38].
Optical fibers act as guiding structures for light
and provide a reliable mechanism to steer the
beam from the source to the stimulation site.
Optical fibers are highly stable and relatively
flexible, and the power loss along the fiber, after
the coupling, is negligible. In most experiments,
electronically controlled laser diodes (LD)
or super-luminescence light-emitting diodes
(SLED) are sources of light. Usually a simple
lens mechanism couples the beam of a light
source to the fiber, and the achieved coupling
efficiency, depending on the source parameters
and the numerical aperture (NA) of the fiber, is
more than 50%.

A simple yet practical formulation was devel-
oped to estimate how deep the beam of light that
leaves the tip of an optical fiber penetrates into
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Fig. 9.3 (Left) Optical fiber fixed on the skull while the tip is delivering optical power to a target area inside the brain;
(right) the optical fiber assembly installed on the head of a rat

the brain tissue. This equation follows the simple
approximation known as Kubelka-Munk model.
Parameters of the model were adjusted for blue
light and the scattering in the brain of small ro-
dents [13]. In this model, we assume that the brain
is a highly scattering homogeneous medium with
no absorption. The no-absorption assumption is
quite a stretch for bluewavelengths, but themodel
still provides acceptable numbers. In this model,
the intensity of light at depth z(mm) from the
surface of the fiber and along the fiber’s optical
axis, I(z), is estimated by the following equation:

Here, ∅(mm) is the diameter of the core of

the optical fiber, NA =
√
n21 − n22 is the fiber’s

numerical aperture, and n1 and n2 are the refrac-
tive indices of the core and clad of the fiber,
respectively. These variables are available in the
manual of any optical fiber. For example, if we
choose a multimode optical fiber of core diameter
and numerical aperture of∅= 200 um= 0.2 mm,
NA = 0.22, to guide 10 mW of optical power of a
473 nm blue laser to the brain of a Dawley rat,
in about 300 um from the fiber tip, the optical
power drops to 1 mWwhich is close to the thresh-
old for effective stimulation of ChR2 proteins.
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Obviously, in case we use the more sensitive
ChR2(H134R) opsin instead, we can stimulate a
larger volume perhaps up to 500 um from the fiber
tip.

Figure 9.4 shows curves of normalized light
intensity as a function of penetration depth for
different values of fiber numerical aperture and
fiber core diameter. Increasing the fiber numerical
aperture or fiber core diameter causes some
reduction in the penetration depth since light
spreads more horizontally inside the tissue.
Therefore, if the light intensity remains the
same, by changing the numerical aperture and
fiber core diameter, it is possible to achieve
the same volume of activation (VoA) with
shorter penetration length [39]. To achieve longer
penetration depths, we need an optical fiber with
smaller core diameter and numerical aperture.

In many experiments, we need to dynami-
cally change the stimulation site and deliver light
at different depths. Researchers have developed
several devices to address this need. For exam-
ple, it is possible to use a micro-actuator and
move the fiber up and down as needed inside
the brain tissue [40, 41]. We can insert a thin
glass-made capillary into the tissue and move the
fiber to minimize damage. Instead of moving one
single fiber, we can use an array of integrated

light guides where the tip of each light guide
delivers light at a different depth [42, 43]. In a
different approach, researchers have considered
using the wide spectral sensitivity of optogenetic
proteins to build a light guide which radiates
different wavelengths of light at different depths
along the fiber axis. For example, by integrat-
ing tilted gratings inside the fiber, and tuning
each grating to radiate over a small portion of
the spectrum, we can stimulate opsins along the
fiber by switching the wavelength from outside
[44]. The use of micro-electromechanical sys-
tems (MEMS), electro-optic, and acousto-optic
light switching methods was also studied for op-
togenetic applications. In such configurations, the
user controls the delivery of light to different
depths simply by sending electronic commands to
an array of switches. Considering the complexity
of such assemblies, it is usually the best practice
to choose the simplest technology that is just
enough for a given application.

9.3.3 Spatial Light Modulators

When the cortex is targeted for optogenetic stim-
ulation, it is possible to use more complex optics
to stimulate large-scaled networks with spatial-

Fig. 9.4 Normalized light intensity as a function of depth for different fiber numerical apertures (a) and different fiber
core diameters (b)
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temporal patterns of light delivered from surface.
For such applications, we can use matrices of
light sources, such as LED arrays, or we can use
high-resolution spatial light modulators (SLM).
Spatial light modulators are optoelectronic de-
vices that spatially and temporally modulate a
uniform beam of light. By using SLMs, we can
modulate the amplitude or phase of the beam. A
good example of amplitude modulation SLM is
the digital micro-mirror device (DMD) which is
aMEMS composed of a two-dimensional array of
bistable programmable micro-mirrors [45]. The
state of each mirror is independently determined
to reflect the incident beam toward a target or an
absorber. Therefore, DMD can spatially modulate
a uniform beam of light to project binary patterns
on a sample. Since the mirrors are electronically
controlled, a user can apply pulse-width modu-
lation to program the period of time that each
mirror projects light on the corresponding sample
area to generate gray-scaled patterns. In other
words, a DMD does not change the amplitude of
light but instead modulates the exposure which is
what we need in optogenetic experiments. DMD
systems are fast, reliable, and relatively easy to
assemble. Nonetheless, the DMD chip plus the
controlling electronics are bulky, and it is hard to
install such systems directly on the head of small
rodents. However, in head-fixed in vivo experi-
ments, DMDs are good choices to pattern light on
the brain surface and generate complex stimula-
tion patterns [32, 46]. Obviously, a pair of orthog-
onal mirrors, aka galvanometers, that rapidly scan
the beam of a collimated light source over the tis-
sue is another mechanism of patterning light over
the brain. Once synchronized with the source,
the system can project arbitrary spatial-temporal
patterns on the tissue. Many fast, miniaturized
and even MEMS-based galvanometers were de-
veloped in recent years. These devices are great
choices for the development of complex optoge-
netic stimulation platforms for freely behaving
experiments.

Phase modulation SLMs are another attractive
choice for optogenetic stimulation. When
photons go through multiple random scatterings
inside tissue, phase information is almost
lost even if we use highly coherent lasers

as the source. Nevertheless, in two specific
applications, phase modulation SLMs are useful
for optogenetic experiments. By combining a
phase modulation SLM with a femto-second
laser, we can produce holograms in the cortex
to generate three-dimensional optogenetic
stimulation patterns [47]. The two-photon effect
is necessary to increase the wavelength of
optogenetic stimulation and reach deeper into the
tissue. We use computer-generated holography
(CGH) to calculate the two-dimensional phase
modulation pattern that we need to upload on
the SLM. When we illuminate the SLM with
the collimated beam of a coherence laser, the
reflected (or transmitted) beam produces a
three-dimensional distribution of light. Such
three-dimensional light distribution patterns
allow us to stimulate neurons with specific
spatial-temporal patterns which are essential
when we intend to produce perception through
optogenetic stimulation. To generate perception,
we need to precisely control the way we stimulate
individual cells within the network. Therefore,
phase modulation SLMs can open a new era
in the study of brain circuits. Unfortunately,
most phase modulation SLMs that are available
today use liquid crystals, and as a result, they
cannot deliver stimulation patterns with temporal
resolution that we need for many neuroscience
experiments. Also, generating three-dimensional
patterns of light with a two-dimensional device
is inherently an ill-posed mathematical problem.
Therefore, we cannot produce high-resolution
holograms with this approach. Moreover,
computer-generated holograms are in many cases
different in reality than what computers predict.
The reason is once again the ill-posedness of the
problem of CGH, and uniqueness of the solution
is almost never guaranteed. Development of more
advanced phase modulation SLMs is currently an
active area of research in many micro- and nano-
fabrication labs.

The second application of phase-modulating
SLMs is in the recently explored approach in
which the exposing light is phase modulated in
a certain way to compensate the scattering effect
of the tissue. In this method, which is known
as digital optical phase conjugation (DOPC), we
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first scan the sample to learn how light is scattered
by particles of the tissue [48–50]. This is usually
achieved by using a combination of acousto-optic
and interferometry methods. What we learn from
this step is then used to calculate a phase mod-
ulation pattern. A coherent beam that is modu-
lated by this pattern follows the preplanned tra-
jectory inside that tissue sample. For example,
DOPC can be used to focus light much deeper
within the brain tissue. Currently, researchers are
trying to advance this methodology, for exam-
ple, to stimulate hippocampus of a mouse with
the phase-modulated beam that is delivered from
the surface. While this technology has brought
significant excitement to the community, several
advances are necessary before considering this
approach as a powerful tool for optogenetic stim-
ulation. Reading the scattering of the sample in
DOPC is quite complicated. In addition, the setup
needs meticulous effort for precise calibration.
Any vibration or misplacement can make the sys-
tem completely dysfunctional. Therefore, using
this method in vivo, even in head-fixed experi-
ments, is currently a major challenge.

9.3.4 Biological Sources for Light

A novel idea to solve the problem of light de-
livery in optogenetic applications is to use light-
producing proteins that already exist in nature.
We can use the same gene delivery and target-
ing method that we use in optogenetics to coex-
press light-producing proteins together with op-
togenetic opsins in the same stimulable cell. A
good example of light-producing protein is the
firefly luciferase which emits yellow light in the
presence of its substrate, Luciferin. Fortunately,
mammalian cells can tolerate luciferase with no
noticeable side effect. The light emitted from
luciferase can stimulate NpHR pumps and hyper-
polarize target cells without using any external
source of light [51]. Obviously, in this approach
we are not stimulating or inhibiting cells with
any engineered light pulse train. Therefore, no
temporal neural coding can be applied in this
method. However, this approach is potentially

useful, for example, in treating mental disorders
such as depression.

9.4 Hybrid Platforms

Optogenetic stimulation is occasionally com-
bined with other optical or nonoptical recording
or imaging methods which help better understand
the effect of induced stimulations or to dissociate
neural circuitries and study their dynamics in
health or disease condition. Good examples
of such hybrid brain interface platforms are
applications where optogenetics is combined
with electrophysiology, two-photon microscopy,
optical coherence tomography, or functional
magnetic resonance imaging.

9.4.1 Optogenetic Neural Probes

Electrophysiology is perhaps the most popular
technique for implementation of brain interface
platforms.Whether we use penetrating electrodes
or surface-mounted arrays, electrophysiology
provides the means to stimulate and record from
the cells. When researchers started developing
optogenetic tools for in vivo applications, they
immediately considered combining optical fibers
or other light-guiding structures with electrodes.
Electrodes are mainly included to simultaneously
record from the cells and monitor the effect of
laser pulses on the activity of cells. Electrodes
that are attached to the fiber can also help
guide the fiber inside the tissue and position
the tip to expose the intended brain target.
For example, in the optogenetic mouse study
of Parkinson’s disease, one target area for
stimulation was the subthalamic nucleus (STN)
[52]. STN is surrounded by the silent zona incerta
(ZI) and internal capsule (IC). Therefore, for
cannula placement, virus injection, and fiber
implantation, simultaneous electrophysiology
was performed. When they attached the electrode
to the fiber, they specifically measured the
distance between the fiber tip and the electrode
recording site so that when the electrode was
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reaching the silence area, the fiber tip was right
on top of the STN. This is a great example of
using electrophysiology as a guidance to deliver
optogenetic pulses effectively to the preplanned
coordination.

Many different configurations of fiber-
electrode assemblies, aka optorodes, were
fabricated and verified. For example, invention of
lithography methods for curved surfaces allowed
researchers to micro-fabricate electrode arrays
right on the body of optical fibers.

Development of transparent electrocorticog-
raphy (ECoG) devices also provided new op-
portunities to combine optogenetics and optical
imaging with electrophysiology. In this attempt,
first the substrate of the ECoG device was re-
placed by the biocompatible transparent polymer
parylene C, while platinum and gold were used
to fabricate electrodes (see Fig. 9.5) [53]. Such
platforms achieve close to 90% transparency. The
next stepwas the development of fully transparent
ECoGs. For this purpose, the main candidate for
electrode fabrication was indium tin oxide (ITO)
which is widely used in industry and fabrica-
tion of transparent electronic circuits. ITO does
not remain fully transparent over a wide range
of spectrum and particularly in the near-infrared
(NIR) and infrared (IR) range, the transparency
of ITO drops. These wavelengths are important
in neuroscience and many optical imaging se-
tups, such as multiphoton microscopy systems
or optical coherence tomography scanners which
exclusively use these wavelengths. To solve this
problem, graphene was used for the fabrication

of transparent electrodes. An example of this
fabrication procedure is the ultra-flexible carbon-
layered electrode array ECoG (CLEAR-ECoG)
which remains fully transparent over a wide range
from ultraviolet (UV) to IR wavelengths [54,
55]. Usually, these transparent ECoG devices are
implanted epidurally on the brain, and the bone is
replaced by a cranial window. This combination
has provided the opportunity to combine ECoG
recording with optogenetic stimulation and opti-
cal imaging techniques.

Graphene electrodes have been used success-
fully for stimulation applications as well, and it
is shown that current pulses delivered by these
electrodes can trigger calcium waves in the un-
derneath neural circuit [56].While graphene elec-
trodes solved the transparency problem, the con-
ductance of these electrodes is far from optimal.
As a result, the signal-to-noise ratio of recordings
is compromised when the data is recorded by
graphene electrodes. Development of better trans-
parent electrode arrays that can effectively com-
bine optogenetic stimulation and optical imaging
with electrophysiology is currently an ongoing
line of research.

9.4.2 Two-Photon Optogenetic
Stimulation

Reaching deeper into the brain tissue noninva-
sively for optical stimulation was a necessity par-
ticularly in the study of the cortical tissue. The
advent of two-photon microscopy (TPM) opened

Fig. 9.5 Transparent ECoG implanted epidurally under cranial window to provide optical access to the tissue for
stimulation and imaging parallel to electrophysiology recording
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new opportunities to record from different lay-
ers of cortex and provided the opportunity to
study the dynamics of data manipulation in these
circuits or to find projections from one cortical
region to another. Therefore, from early days
after the development of optogenetic stimulation,
many researchers tried to use their TPM setups
and laser pulses of near-infrared femto-second
lasers to stimulate ChR2-positive neurons. Most
efforts at that time were not successful since
the cross-section of the retinal molecule for NIR
wavelengths is too small to form an effective
electron-photon interaction. As a result, pulses of
these lasers, statistically speaking, could not open
enough number of channels to depolarize the
cell and generate action potentials. Some people
tried to increase the energy of laser pulses to see
whether it is possible to trigger action potentials
by exposing cells to light with larger flux of
photons which increases the chance of electron-
photon interaction. Increasing the laser power
was helpful, and action potentials were generated
in close correlation with light pulses. Nonethe-
less, the required optical energy was so high that
the normal function of cells was disrupted by the
generated heat or phototoxicity effects. To find
a viable method for in vivo experiments, some
researchers tested different scanning techniques
and showed that when the laser follows spiral
trajectories on the cells, the chance of generating
action potentials increases, while the energy of
the laser pulses was reduced marginally.

A better solution to this problem was using
molecular genetic methods to change kinetic pa-
rameters of the opsins. The basic idea in this
approach was relatively simple. By reducing the
closing time constant of the channel, it was pos-
sible to depolarize the cell further, even when
the cell is exposed to less intense laser pulses
of longer wavelengths. In other words, the tem-
poral resolution of optogenetic stimulation was
compromised to achieve better light sensitivity.
When each open channel remains open for longer,
more ions can pass through the pore to contribute
to the depolarization. Hence, we need to open a
smaller number of channels to generate an action
potential, and light pulses can be less intense. The
first successful test came from the two-photon

stimulation of step function opsins (SFO). Soon
after, it was shown that the chimeric red-shifted
opsin C1V1 is a better option for two-photon
stimulation experiments [17]. Usually, 10–15 ms
after the onset of such laser pulses, the cells under
test generate action potentials. It is possible to use
more effective scanning methods, as discussed,
to further reduce the energy of laser pulses or
decrease the average exposure time-before-spike
periods. By integrating liquid crystal SLMs, peo-
ple have used CGH to generate three-dimensional
patterns of light produced by femo-second lasers
to target multiple cells following some prede-
fined spatial-temporal stimulation patterns. Two-
photon optogenetic tools for inhibition were also
developed later and added to this toolbox.

9.4.3 Optogenetic Stimulation
and Coherence Tomography

Optical coherence tomography (OCT) is another
optical imaging method that is used for brain
imaging. The main application of OCT in brain
imaging is perhaps in imaging the vascular net-
work of the brain and generating high-resolution
micro-angiograms [57]. OCT systems can mea-
sure dynamic changes in the physical dimensions
of vessels, including dilation or contraction, and
estimating the velocity of blood in vessels and
capillaries via Doppler coherence tomography
(DCT). Therefore, OCT systems are useful plat-
forms for measuring cerebral blood flow (CBF)
noninvasively [39, 58].

A combination of optogenetic stimulation
and coherence tomography is highly useful for
many studies where the feedback from the hemo-
dynamic signals is necessary in experiments.
A good example of such applications is the
study of neurovascular coupling. We can use
optogenetics to stimulate or suppress the activity
of neurons or even astrocytes as we record the
dynamics of the vascular network and changes in
the CBF in real time. Since inmany diseases (e.g.,
stroke, hypertension, or Alzheimer’s) the normal
process of neurovascular coupling is disrupted, by
combining optogenetics with OCT angiography,
we can study the source and extent of changes
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under these disease conditions in unprecedented
detail.

Multiple signaling pathways are involved in
the process of coupling the dynamics of the vas-
cular networks to neural circuits. One main path-
way starts at neurons and goes to astrocytes and
then the smooth muscle cells or pericytes that
control the dilation of vessels and capillaries.
With optogenetics, we can stimulate neurons as
we record from astrocytes (e.g., via two-photon
calcium imaging) and monitor vascular dynam-
ics by an OCT scanner. We can directly acti-
vate astrocytes, without interfering with neurons,
and measure the difference between the vascular
dynamics in this condition versus the previous
scenario. We can even use optogenetics to sup-
press astrocytes as we stimulate neurons while
monitoring vascular dynamics via coherence to-
mography. This test shows to which extent the
vascular dynamics is suppressed as a result of
astrocyte silencing. This example clearly displays
the advantage of optogenetics in clarifying the
role of astrocytes in the mechanisms that mediate
the coupling between the neural and the vascular
networks.

9.4.4 Optogenetic Functional
Magnetic Resonance Imaging
(ofMRI)

By combining the cellular control capability of
optogenetics with the whole brain imaging power
of fMRI, we can form a new setup which offers
remarkable potential in finding brain long-range
projections [59, 60]. It is possible to stimulate the
cortical tissue via optogenetics and look at the
induced activity in thalamus or hippocampus and
vice versa. Since optical fibers are magnetically
inert, distortion of the field remains negligible
when we install the fiber in the brain of the animal
prepared for fMRI imaging (see Fig. 9.6). Also,
the effect of the intense magnetic field within the
core of the MRI machine on the performance of
optical fibers is negligible. As a result, optogenet-
ics and fMRI are compatible technologies. Since
the applications of optogenetics is moving from
small rodents to primates, combination of opto-

genetic and fMRI can become more important in
the future.

Optogenetic fMRI has significant potential in
neuroscience research. Nonetheless, some obsta-
cles and practical challenges have limited the
application of this new technology. For example,
it was shown that the BOLD signal can appear in
fMRI recordings at the site of light delivery (tip of
the optical fiber) in animals with no optogenetic
protein expression. Some researchers believe that
such signals are artifacts that are the side effect of
the heat we generate in the tissue when we inject
significant amount of optical power. Observations
of this nature make it clear that recorded fMRI
data in response to optogenetic stimulations needs
to be interpreted cautiously.

It is possible to add the power of optical
coherence tomography or multispectral [61,
62] imaging as parallel technologies to this
combination to better understand details of
the hemodynamics responses that are recorded
by the fMRI machines following optogenetic
stimulations. Coherence tomography and
multispectral imaging can demonstrate the
hemodynamics and metabolic responses of the
tissue in fine details and noninvasively (through
thinned skull in small rodents) in the superficial
areas of the brain. It is possible to arrange
experiments in which cortical areas of the brain
is stimulated by optogenetics and imaged by
coherence tomography andmultispectral imaging
technique, and then use the same animal to repeat

Fig. 9.6 A rat placed in theMRImachine with the optical
fiber assembly to stimulate the brain during the functional
imaging session
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the experiment with fMRI. The comparison
between these two datasets can help researchers
better understand the nature and origin of the
BOLD signal.

Laser pulses that are delivered for optogenetic
stimulation generate heat in the tissue. The
material that absorbs light and generates heat
the most in the tissue is blood. However, blood
moves, and this motion helps dissipate the heat
at the same time. Finding some reasonable
estimation of heat generation and dissipation in
the brain is necessary and even essential for many
applications. Ongoing studies that concentrate
on light absorption and heat generation in the
brain tissue will ultimately help unravel some
of these mysteries and will open the field for
more advanced optogenetic fMRI applications in
future.

9.5 Optogenetic Stimulation for
Therapy

An important question is whether optogenetics
has the potential for application in clinics and
treatment of mental diseases. Optogenetics of-
fers some unique features that make the method
highly desirable for therapeutic procedures. For
example, the cell-type targeting aspect of op-
togenetics can be used to minimize some po-
tential side effects of many interventional ther-
apeutic procedures in which we currently use
electrodes that stimulate all cells in the region
without specificity. In theory, optogenetics can
replace electrode-based brain interface platforms
similar to the deep brain stimulation assemblies
used in Parkinsonian patients. Nonetheless, the
main obstacle for pushing optogenetics toward
clinical translations is the requirement for gene
delivery. Most patients, quite understandably, do
not want to be the recipient of viral injections in
their brain or other parts of the nervous system.
Before pushing for clinical applications, side ef-
fects of such gene therapy procedures should be
studied extensively so that healthcare providers
know when to avoid such procedures or provide
some assurance for patients when the condition
allows.

Another troubling feature of gene delivery for
optogenetic applications is that the expression
of the protein usually remains limited to the
immediate area surrounding the injection site.
Therefore, to target a large area for effectively
intervention in human brain, the virus should
be injected at multiple locations, which adds
to the invasiveness of the method. Therefore,
we need appropriate gene delivery mechanisms
to make the method of optogenetics more
acceptable for human trials. Fortunately, the rate
of progress in the field of molecular genetics is
significant nowadays, and many other genetic-
based methods with potentials for therapeutic
applications are introduced every year. A
good example of such methods is the gene-
editing technology known as CRISPR (clustered
regularly interspaced short palindromic repeats).
CRISPR and other parallel technologies will help
in opening the field for human trial of optogenetic
stimulation in future.

A third challenge is the need for advanced light
delivery mechanisms. In many applications of
optogenetics, we only need to stimulate one area
of the brain without any major concern regarding
the exact spatial-temporal stimulation pattern. An
example of that is the treatment of depression or
anxiety. However, if we want to use optogenetic
stimulation in the visual cortex to generate arti-
ficial vision, which is currently one of the most
exciting applications of the technology, we need
to develop methods to stimulate a large number of
neurons by precisely engineered spatial-temporal
stimulation patterns. In other words, we need to
generate high-resolution and dynamically chang-
ing holograms within the visual cortex which is
a major engineering challenge. It is possible to
target less complicated neural networks to restore
vision with optogenetics and avoid the complex-
ity of the brain stimulation if the patient condition
allows. For example, currently the main target for
the first application of optogenetics in humans is
the retina. Blindness in many eye diseases is the
result of losing a large number of photoreceptor
cells. Since three other major cell populations
(ganglion, bipolar, and Amacrine cells) relay the
signal from photoreceptors to the optic nerve, one
possibility is to express ChR2 in one of these
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other cell populations and make them function as
receptors of light.We can use the rest of the visual
system to generate the perception. Currently, we
use electronic retinal implants in humans, and
the number of photodetectors in such implants
is very limited. The acquired vision remains less
than 10% of the normal state. The new approach,
based on optogenetics, can potentially generate
vision with much better quality. This is an area
of ongoing high-risk yet high-reward research.

Optogenetics can also contribute to medicine
indirectly by helping researchers study neurolog-
ical and psychiatric disorders and dissociate the
circuitry involved in such diseases and better un-
derstand the contribution of each cell population
in the dynamics of each disease. Since human
trials are complicated and need to be conducted
with ultimate attention to details and following
many scientific and ethical rules, studying the
neural circuitry of diseases in animal models is
the area that ismoving forward rapidly these days.
Ultimately, when safer gene and light delivery
methods are invented, the result of these research
endeavors will contribute to the development of
new procedures in clinics.
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Homework

1. What is the main aspect of interventional
psychiatry?
(1) The science and practice of using neuro-

technologies to identify dysfunctional
brain networks and utilizing neuro-
modulation methods to help restore
normal functionality of the circuits

(2) Prescribing appropriate dosage of
medicine or chemicals to help restore
normal function of brain circuits

(3) Using personalized medicine technology
to make interventional procedures more
effective

(4) Compensating or bypassing dys-
functional brain circuits by utilizing
prosthetic devices

2. What item is not a main limitation in
electrode-based stimulation?
(1) Targeting specific cell population(s)
(2) Stimulating without causing significant

side effect(s)
(3) Spatial resolution for generating com-

plex stimulation pattern(s)
(4) Stimulate inhibitory neurons

3. Which statement is accurate about optoge-
netic technology?
(1) Optogenetic stimulation can only gener-

ate low-frequency firing patterns
(2) Better light sensitivity for optogenetic

stimulation was achieved mainly by sac-
rificing the temporal resolution of well-
known optogenetic proteins

(3) Optogenetics does not offer any strategy
to reduce side effects of interventional
procedures

(4) Optogenetics is a method in which op-
tics andmolecular genetics are combined
to develop a versatile method for neural
stimulation and recording

4. In in vivo optogenetic stimulation:
(1) Shorter visible wavelengths (e.g., blue

light) can penetrate deeper into the brain
tissue compared to longer wavelengths
(e.g., red or infrared light)

(2) It is not possible to coexpress excitatory
and inhibitory opsins in the same cell
population for in vivo experiments

(3) The heat generated by light absorption is
negligible and cannot affect the outcome
of experiments

(4) Gene delivery is one challenge that has
limited the application of optogenetics in
primates

5. Which statement is not correct?
(1) By overexpressing opsins, we can

achieve better light sensitivity
(2) Engineering opsins with red-shifted

spectral sensitivity can allow stimulating
deeper areas of cortex optogenetically
without implanting light guides into the
tissue
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(3) Expression of opsins always leads to
membrane trafficking complications in
host cells

(4) ChR2 mutants are introduced which al-
low influx of Ca2+, and one can use
these proteins to trigger signaling path-
ways optically

6. What is the main advantage of adeno-
associate virus (AAV) compared to Lentivirus
(LV) for gene delivery in optogenetics?
(1) Permanent expression of protein
(2) Integration to the host genome
(3) AAV is less immunogenetic
(4) Higher expression rate

7. How can we increase light penetration depth
in the cortex for optogenetic stimulation?
(1) Increase fiber’s numerical aperture but

reduce fiber’s core diameter
(2) Reduce fiber’s numerical aperture and

reduce fiber’s core diameter
(3) Increase fiber’s numerical aperture and

increase fiber’s core diameter
(4) Reduce fiber’s numerical aperture but in-

crease fiber’s core diameter
8. In in vivo light delivery:

(1) Holographic optogenetic stimulation
provides the opportunity to generate
precise spatial-temporal stimulation
patterns which is an important step
toward generating perception via
optogenetic stimulation

(2) A single optical fiber can deliver many
wavelengths but only one wavelength at
a time

(3) Amplitude-modulated spatial light
modulators combined with femto-second
lasers are used to generate holograms
inside cortical tissue

(4) Amplitude and phase modulation spa-
tial light modulators are used to gener-
ate complex stimulation patterns on the
surface of the brain, and the spatial reso-
lution of the pattern is preserved as light
penetrates into the tissue

9. For effective two-photon optogenetic stimu-
lation, the acceptable solution comes from:
(1) Producing opsins with longer closing

time constants
(2) Increasing the optical power of the light

pulses
(3) Use spatial light modulators to illuminate

cells with complex patterns
(4) All the above

10. What are some of the motivations for pro-
ducing or discovering opsins with diverse
spectral sensitivity?
(1) Combining optogenetic stimulation with

optical recording methods such as cal-
cium imaging.

(2) Expressing opsins of different spectral
sensitivity in different cell populations
and using the wavelength diversity to
individually target each population for
stimulation

(3) Producing opsins with sensitivity to
longer wavelengths to minimize the
effect of light scattering inside the tissue

(4) All the above
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10Selective Chronic Recording in the
Peripheral Nervous System

Dominique M. Durand and Thomas Eggers

Abstract

Reliable interfacing with the peripheral ner-
vous system has been and still remains a dif-
ficult problem to solve. Yet the ability to ob-
tain signals from peripheral nerves would have
significant benefits such as detection of motor
intent in patients with amputation. Similarly
decoding signals from the autonomic nervous
system would allow continuous monitoring of
organ function.

However, there are many problems that pre-
vent reliable signal detection in chronic ani-
mals and human patients. One of the problems
is that axons are arranged in tightly packed
bundles surrounded by membranes that are
difficult to penetrate. Therefore, access to the
signals is challenging, and neural engineers
have designed many types of electrodes to ad-
dress this issue. In this chapter, we will review
the various types of neural interfaces such
as cuff electrodes, intra- and extrafascicular
electrodes, as well as regeneration electrodes.

We will focus in one particular type of
electrode, the flat interface nerve electrode
(FINE), which has been shown to be reliable.
It has been implanted in human patients for
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several years and can provide safe nerve stimu-
lation for sensory substitution and has not been
shown to record signals useful for functional
recovery.

There are many issues specific to chronic
recordings that will be discussed. One major
problem is EMG contamination, and several
approaches to deal with this high amplitude
signal will be discussed. Another major is-
sue is the signal-to-noise ratio. The design
of ultralow-noise amplifiers particularly well
suited for ENG recording will be discussed.
Another important issue deals with the recov-
ery of fascicular signals from mixed signals
generated by multiple fascicles active simul-
taneously. Various algorithms capable of ex-
tracting and separating fascicular signals will
be discussed.

Finally, the combination of finite element
modeling and computation neuroscience al-
lows accurate models of nerve bundles and
recording electrodes. These models can pro-
vide important information about the band-
width required for accurate ENG detection
and the effect of the axonal diameter on the
recorded signals and can lead to the design of
improved peripheral nerve interfaces.

Keywords

Neural interfacing · Cuff electrodes · Neural
recording · Separation algorithm · Low-noise
amplifier · Computer modeling
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Abbreviations

Beam Beamforming
BF Biceps femoris
BSFE Bayesian spatial filter extraction
BW Bandwidth
CC Correlation coefficient
DoFs Degrees of freedom
EEG Electroencephalogram
EMG Electromyogram
ENG Electroneurogram
FEM Finite element model
FINE Flat interface nerve electrode
GN Gastrocnemius
HBSE Hybrid Bayesian signal extraction
ICA Independent component analysis
PNS Peripheral nervous system
SIR Signal-to-interference ratio
SNR Signal-to-noise ratio
ST Semitendinosus
TA Tibialis anterior

10.1 Introduction

Interfacing directly with the nervous system of-
fers the ability to recover motor intent as well as
restore sensation with a single device to people
who have amputated limbs. Early work in the
field showed that residual nerves (and thus cor-
tical areas) retained functional motor and sensory
connections even years after amputation [1]. Di-
rect cortical interfacing has been explored, but it
is mostly limited to para- and quadriplegics due
to its surgically invasive nature. Peripheral nerve
interfacing is less invasive and has been studied
extensively [2]. Extrafascicular approaches such
as nerve cuffs have demonstrated long-term sta-
bility and have been used in human trials [3],
most notably for stimulation to restore sensation
[4]. Cuff electrodes are the most widely used
neural interface type based on their safety com-
pared to other neural interface implementations,
ease of implantation, and clinical results from
nerve stimulation trials [4, 5]. A true, feedback-
based neuromodulation system must be able to
successfully record and process neural activity
with a high signal-to-noise ratio (SNR), which
requires a stable, low electrical impedance be-

tween the recording electrode and the neural tis-
sue. However, it is not known if extrafascicular
cuff electrodes can produce neural recordings
that are highly selective for multiple fascicles
with high SNR because they detect weak, local
field potentials outside the electrically insulating
perineurium layer [6]. Intrafascicular techniques
could also provide additional capability if shown
to be safe and reliable. The three most preva-
lent designs for intrafascicular interface are as
follows: (1) the longitudinal intrafascicular elec-
trode (LIFE) [7], which is sewn into the nerve
along its length; (2) the transverse intrafascic-
ular multichannel electrode (TIME) [8], which
penetrates through the nerve’s cross-section; and
(3) the Utah Slanted Electrode Array (USEA)
[9], which is an array of multiple, cone-shaped,
needle structures that penetrate the fascicles. Al-
though these intrafascicular electrodes can ini-
tially record high SNR neural signals [10, 11]
and can be quite selective [12], they have yet
to demonstrate chronic implant reliability, possi-
bly because the electrode flexural rigidity is at
least five orders of magnitude greater than the
surrounding neural tissue [13, 14]. In particular,
the TIME implanted through the epineurium does
not easily penetrate the perineurium of the fasci-
cles and settles between fascicles [15]. It can be
implanted inside fascicles but requires a needle
insertion method similar to the LIFE electrode
[12, 16]. Another approach to neural interfacing is
to take advantage of the regeneration potential of
cut axons. Axons are induced to regrow near the
electrodes placed within a nerve, and the system
is designed to provide intimate contact between
many axons for recording and stimulation [17].
Several groups have designed electrode interfaces
with severed nerves with so far promising but lim-
ited success. Two such approaches are the TEENI
[18] and microchannels [19]. These approaches
are quite promising as they provide access to
many axons simultaneously. Another promising
approach is the reinnervation of a nerve or nerve
fascicle into a muscle (targeted muscle reinner-
vation) [20] or small parts of muscle (regenera-
tive peripheral nerve interfaces) [21]. Although it
can be difficult to control which and how many
fibers will innervate successfully and make func-
tional connections to the muscle, the SNR of the
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Fig. 10.1 Interfacing with peripheral nerves: Peripheral
nerves aremade up of large numbers of axons (ax) grouped
into fascicles each surrounded by a perineurium mem-
brane (p) and bundled by epineurium (epi) membrane. (a)
Cuff electrodes can be placed around the nerve to record

or stimulate. Interfascicular electrodes can be placed either
longitudinally (b) or transversely (c). (d) The flat interface
nerve electrode is a cuff with multiple contact that main-
tains the nerve into a flat shape. (d) Silicon probe can be
placed directly into the nerve

recorded signal is high since it is obtained from
the muscle fibers.

One of the goals of the development of these
technologies is to detect motor intent in order to
control motor prostheses (Fig. 10.1).

10.2 Movement Intent Recovery

Recording from peripheral nerves has long been
motivated by the field of prosthetic control, i.e.,
recovering motor signals from residual nerves
in order to control a prosthetic limb. For the
remainder of this chapter, we will focus on the
cuff electrode approach since it has generated the
longest chronic results for both selective stimula-
tion and selective recording [4, 22]. In particular,
we will review below some of the advances for a
specific type of neural interface, the flat interface
nerve electrode (FINE), as used to chronically
record this information. We will focus on the ap-
plication of extracting motor signals from nerves
from the FINE with special emphasis on low-
noise amplification, signal processing algorithms,
EMG contamination, bandwidth consideration,

and computer modeling of the nerve-electrode
interface.

Severe limb injuries have highlighted the need
for more robust upper limb prosthetic systems.
Despite having developed advanced upper arm
prostheses capable of replicating most of the
arm’s natural range of movement, many patients
today still use the traditional passive or cosmetic
prostheses [23]. The reason the currently adopted
prostheses lag behind the state of the art is that
a robust control mechanism for such limbs is yet
to be established [24]. In order to control such
prostheses, a neural interface must be able to
estimate the motor intent of the patient reliably
over long periods of time (i.e., years to decades).

The most advanced commercial interface for
upper limb prostheses is the EMG-controlled or
myoelectric device. This technique records mus-
cle activity of residual muscles which drives the
prosthesis. This approach works well for trans-
radial amputees, as many of the muscles which
once innervated the missing hand are still intact in
the forearm. However, as the level of amputation
increases, the systemmust replacemore functions
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with fewer available control sources. Researchers
have attempted to use advanced signal process-
ing techniques, such as pattern recognition and
machine learning, to map the low number of
muscles to the higher number of degrees of free-
dom (DoF) of the prosthesis [25]. While showing
some promise, these control schemes have proved
unsuccessful in clinical acceptance, as they gener-
ally only produce state-based control and may not
be robust enough for at-home use [26]. The more
widely utilized control scheme for such high-
level amputee patients involves using the biceps
and triceps to sequentially control each DoF;
this scheme is highly robust but produces slow,
disjointed movements. Thus specifically for the
trans-humeral amputee population, an alternative
control source is desirable.

The ideal motor interface would be intuitive
to learn and allow simultaneous and proportional
control of many DoFs. The brain naturally gen-
erates these types of signals and sends them to
the arm via the peripheral nerves. However, the
peripheral nervous system carries the processed
motor commands and is easier and less risky to
surgically access. Previous studies have shown
that both the natural sensory and motor fibers
which once innervated the amputated limb re-
main intact and functional, even many years after
the amputation [1]. Several studies since have
demonstrated the ability to restore sensation of
the missing hand as well as control a three-grip
hand prosthesis [4, 27, 28].

The least invasive technique for directly inter-
facing with peripheral nerves involves wrapping
electrodes around the nerve without penetrating
any neural tissue. Standard cuff electrodes have
shown great stability over time with both record-
ing and stimulating in humans [3, 4, 29, 30],
although they offer limited selectivity and small
signal amplitudes for recording. The flat interface
nerve electrode (FINE) is a nerve cuff devel-
oped to address these issues [31–33]. The FINE
aims to reshape or maintain the nerves in a flat
configuration, increasing the surface area to vol-
ume ratio. The decreased distance between fibers
and contacts with this configuration increases the
recorded SNR as well as the selectivity of stimu-

lation/recordings by spatially separating the fasci-
cles. Previous research has demonstrated the abil-
ity of the FINE to selectively record from differ-
ent fascicles in in silico studies and in acute prepa-
rations in rabbits, as well as two recent chronic
studies in canines in which successful binary
classification of fascicle activity was achieved
[22]. The information transfer of the peripheral
interface was also measured [34]. The cuff ability
to record selectively over long periods of time
has been established and can be modeled to pro-
vide an improved understanding of its capabil-
ity. However, the combination of low-amplitude
signals and higher electrode source resistance
requires novel amplifier designs.

10.3 High SNR Amplification
of Neural Signals

Peripheral nerves carry neural signals that could
be used to control hybrid bionic systems. Cuff
electrodes provide a robust and stable interface,
but the recorded signal amplitude is small
(<3 μVRMS 700 Hz–7 kHz), thereby requiring
a baseline noise of less than 1 μVRMS for a
useful signal-to-noise ratio. Flat interface nerve
electrode (FINE) contacts alone generate thermal
noise of at least 0.5 μVRMS; therefore, the
amplifier should add as little noise as possible
[22]. Since mainstream neural amplifiers have
a baseline noise of 2 μVRMS or higher, novel
designs are required. The concept of hardware
averaging to nerve recordings was applied
to obtain high SNRs from cuff electrodes.
Optimization procedures have been developed
to minimize noise and power simultaneously
(Fig. 10.2).

The novel design implementation is based on
existing neural amplifiers (Intan Technologies,
LLC) and has been validated with signals ob-
tained from the FINE in chronic dog experiments.
It was shown that hardware averaging leads to a
reduction in the total recording noise by a factor
of 1/

√
N or less depending on the source resis-

tance. Chronic recording of physiological activity
with FINE using this design showed significant
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Fig. 10.2 Noise model of hardware averaging for FINE
recording. (a) A cartoon of FINE structure and placement
around a flattened nerve. The potential difference between
the center contact (we) and the shorted outer reference
contacts (re) corresponds to the activity generated inside
the cuff. (b) Equivalent noise model of FINE connection

to N parallel instrumentation amplifiers. Averaging the
outputs can be performed by a cascaded averaging stage
or off-line. Zwe is much smaller than Zin (<10 k	 in com-
parison to 13 M	 for the investigated devices); hence, the
portion of in passing throw Zin is negligible, and virtually
all of it will pass through Zwe andZre

improvement on the recorded baseline noise with
at least two parallel operation transconductance
amplifiers (OTAs) leading to a 46.1% reduction
at N = 8 [35]. The functionality of these record-
ings was quantified by the signal-to-noise ra-
tio improvement and shown to be significant for
N = 3 or more. This design was shown to be
capable of generating <1.5 μVRMS total record-
ing baseline noise when connected to a FINE
placed on the sciatic nerve of an awake animal
[22, 35]. An algorithm was introduced to find
the value of N that can minimize both the power
consumption and the noise in order to design
a miniaturized ultralow-noise neural amplifier.
These results demonstrate the efficacy of hard-
ware averaging on noise improvement for neural
recording with cuff electrodes and can accommo-
date the presence of high source impedances that
are associated with the miniaturized contacts and
the high channel count in electrode arrays. This
technique can be adopted for other applications
whereminiaturized and implantablemultichannel
acquisition systems with ultra-low noise and low
power are required [35]. Another major source
of noise is biological and arises from the large

EMG signals, and its removal relies on different
techniques.

10.4 EMG Interference
and Rejection

One of the common problems with ENG record-
ings in awake animals is the contamination of
the recorded signals with EMG. EMG can be
several orders of magnitude larger than ENG,
and so the electrode was specifically designed to
reject external signals. This EMG rejection was
accomplished by a combination of the tripolar
recording setup and external shielding. Ideally,
the tripolar design alone eliminates any interfer-
ence [36], but the precise conditions for perfect
rejection are never met in practice [37]. To further
reduce interference, an external shielding scheme
was utilized [38], in which a conductive surface
(gold) is exposed on the outer surface of the cuff
in order to create an equipotential field around the
cuff. In simulation as well as benchtop testing,
this shielding has been shown to reduce EMG
interference by 80% [39]. It is important to note
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that rejection also likely depends on the fit of the
cuff around the nerve and the degree of closure
or poorly closed cuffs being potentially more
susceptible to interference. In this study, the cuffs
were designed to fit closely to the nerve, with the
cuff perimeter to nerve circumference ratio from
approximately 1.1 to 1.5.

To investigate the possibility that EMG con-
tributes to the ENG recordings, twomethods were
applied: recordings from large muscle near the
ENG recording site and recording from a dummy
cuff positioned near the recording site. Potential
EMG interference could come from the muscles
directly surrounding the cuff, the biceps femoris
(BF), and/or semitendinosus (ST) muscles and
would correlate in time with the neural record-
ing (the semimembranosus [SM] is also near the
sciatic nerve, although the bifurcation level in
the animals implanted occurred between only the
BF and ST). Neural activity is shown (Fig. 10.3)
in two bandwidths, one high-pass filtered above
1 kHz (“classic BW”) and again with a high-
pass filter above 200 Hz (“open BW”). The neural
signals were acquired from 100 to 9000 Hz, and
additional filtering was performed with a zero-
phase digital filter. The EMGs are largely out

of phase with the neural signals, with near-zero
correlation coefficients. A “dummy” cuff was im-
planted and placed near the implant site. Another
single channel FINE was implanted on the tibial
nerve alongside the dummy cuff. Figure 10.3 also
shows the open BW for these two signals. The
dummy cuff recorded some activity, although it
was out of phase with the tibial signal. Post-
processing revealed that a 2 kHz (not 1 kHz) high-
pass filter was necessary to remove all signals
from the dummy cuff. Subsequent recordings (not
shown) show a similar trend. To determine po-
tential interference in the 16 channel FINEs, the
correlation coefficients between the raw neural
and BF/ST EMG were calculated for two band-
widths, with a high-pass filter at 200 Hz and
2 kHz. The correlation coefficients for the two
bandwidths are shown in Fig. 10.3c, d. These
traces represent two different animals, as only a
single hamstring EMG was recorded in each of
these two animals due to limitations in the number
of percutaneous connections. Neither correlation
was statistically greater than 0 nor was there
any difference between the two (paired t-test,
p > 0.05) indicating that there is no interference
between the large muscle (hamstring surrounding

Fig. 10.3 Interfering EMG/ENG shows no correlation.
(a). Example recording during gait, showing ENG with
the classic and open BW as well as the nearby bicep
femoris (BF) and semitendinosus (ST) EMG. BF EMG
is clearly out of phase with both neural plots, while ST
EMG shows both in-phase and out-of-phase activity. (b)
Example of a dummy cuff recording with a tibial nerve

recording with two different high-pass filters used, 200
and 2000 Hz. The dummy cuff shows a similar out-of-
phase trend as the recorded EMG and disappears once
the lower bandwidth (200–2 kHz) is removed. (c) and (d)
Correlations between the ENG and recorded EMG (BF
and ST, respectively) with the two bandwidths over the
first 2 months of recordings
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Fig. 10.4 SNR of neural signals over the first 2 months
in three animals (SNR calculated over the same datasets).
The low-pass filter is set at 8 kHz for all three scenarios.
Increasing the bandwidth below 2 kHz increases the raw
recorded SNR for both the 1–8 kHz and 0.2–8 kHz band-
widths

the cuff electrode) and the neural signals recorded
from the cuff located within the muscle.

10.4.1 Increasing SNRwith Open
Bandwidth

With low levels of interference from EMG, one
can then ask the question of the optimal band-
width for the ENG. In particular, can the band-
width be extended to improve the SNR? To char-
acterize the effect of increasing the BW on the
recorded signal’s SNR, the SNR of the raw neural
signals was calculated for each recording for both
BWs for all three legs in the first 2 months and is
shown in Fig. 10.4. A small although significant
(paired t-test, p < 0.05) increase of 2.9 dB in SNR
is observed for the open vs. classic BW. SNR was
measured as the ratio of the average stance phase
RMS to a baseline (i.e., standing) RMS.

With multiple channels of low-noise neural
activity obtained, the various source signals from
each fascicle can be recovered using separation
algorithms.

10.5 Separation Algorithm
Derivation

Recovering fascicular activity with extrafascic-
ular electrodes shares many characteristics with

electroencephalogram (EEG) source localization,
in that the inverse problem can be solved to es-
timate source activity [40]. Various algorithms
from the source localization literature, including
sLORETA and FOCUSS, have been investigated
by other researchers to solve this problem in rat
nerves [41], utilizing the known cuff/nerve geom-
etry to create a lead field matrix [42]. Another
early study investigating the FINE in rabbits used
beamforming, in which a transformation matrix
was created by inverting the lead fieldmatrix [43].
A Bayesian algorithm (BSFE), based on an MEG
source localization method [44] which utilized
knowledge of baseline and interfering sources,
was then implemented [45] to create improved
spatial filters. Both methods were tested on acute
data and showed promising results, and in a recent
chronic study, binary state gait classification was
achieved [22]. However, an end goal of the sep-
aration is to predict proportional motor activity
in order to control a prosthetic limb. The BSFE
algorithm did improve the SNR sufficiently for
accurate classification of ankle movement but
could not predict dynamic activation.

To address this shortcoming, a novel hybrid
algorithm was recently developed to extract the
command signals from the noisy, mixed neural
recordings from the cuff. This algorithm com-
bines elements of two previous algorithms [31,
32]; briefly, recordings are first fit to the simple
model of Eq. 10.1, which learnsAi for each source
Si, and then the cost function in Eq. 10.2 is itera-
tively estimated over a fixed time step to estimate
neural activity after training:

Y = Ai ∗ Si + V (10.1)

C(i) = ∣∣1/2(Y − L ∗ S)2 + PS
∣∣
ΣN

(10.2)

for each of i sources, where Y is the recorded
signal (16 channels), L is the lead field matrix
[31], S is the estimate of source activity (i.e.,
variable of interest), and PS is the power of S and
represents a penalty term for the complexity of
S; finally, �N represents the noise and interfer-
ence, i.e., �N = BBT + V, where B represents
other sources (i.e., Aj 	= i) [46]. The beamform-
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ing algorithm created the initial estimate of Y,
while the BSFE iteratively improved upon this
estimate to generate dynamic source activity in
real time (<10 ms). This algorithm was compared
directly to the other algorithms and was capable
of separating several sources within the nerve
[39] and was subsequently tested in chronic dog
preparation.

10.6 Chronic Nerve Recordings

Chronic electroneurogram (ENG) recordings
from the sciatic nerves of canines were
conducted; the methods have previously been
published [22]. Canines were chosen due to
their unique physiology in that the sciatic nerve
is largely composed of two large fascicles
instead of many smaller ones, simplifying the
task of localizing neural activity. Figure 10.5
demonstrates this setup, with an example of
the FINE and picture showing an implanted
cuff on the sciatic nerve. Briefly, FINEs were

implanted on the sciatic nerve of canines just
proximal to the bifurcation of the tibial and
peroneal fascicles. These fascicles control plantar
flexion and dorsiflexion of the lower limb. These
motions in turn are predominately controlled
by the gastrocnemius (GN) and tibialis anterior
(TA) muscles, respectively; EMG signals from
these muscles were simultaneously recorded
and compared to the extracted neural signals.
Figure 10.5 shows the experimental procedure.
Recordings were taken as the animal walked
freely on a treadmill at a moderate pace. Figure
10.6 shows some raw data as well as the envelope
of the average gait cycle from a single recording
session from each of the three legs, 2–4 weeks
post-implant. Figure 10.6a shows approximately
5 s of raw neural activity from one animal.
Amplitude differences between channels are used
by the algorithm to localize activity for signal
extraction. In Fig. 10.6b, envelopes were created
by taking the root mean square (RMS) of the
signals over 100 ms segments. Gait cycles were
normalized to allow direct comparison between

Fig. 10.5 Chronic recording experimental design. (a)
Example of implanted FINE, with 16 channels arranged
longitudinally across the cuff, with gold shielding attached
and exposed on the exterior of the cuff [28]. (b) Example
of previous FINE (no shielding) on sciatic nerve, just

proximal to bifurcation of tibial and peroneal fascicles.
(c) After implant, canines were trained to walk on a
treadmill while ENG and EMG recordings were taken
(percutaneous connector/wires to amplifier not shown)
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Fig. 10.6 ENG from two electrodes obtained from a
FINE implanted for 9 months. (a) Raw recording from
two channels on opposite sides of the cuff. Amplitude
differences between channels are used to localize activity
within the cuff. (b) Average waveform envelope for all

three study animals. Blue and green bars represent the
expected gastrocnemius/tibialis anterior activations, while
the vertical line represents foot strike. X-axis represents
normalized portion of the gait

animals and show the approximate time the foot
lifts off the ground (vertical line) as well as the
activation times of the two target muscles, the
tibialis anterior (TA) and medial gastrocnemius
(GN). The SNR ranged from 4 to 7 dB across
animals and the impedance of each contact from
2 to 4 k	, with no downward trend over the
implant duration.

Figure 10.7 shows an example of signal re-
covery from two fascicles in one animal (left
leg) 2 weeks post-implantation (the first record-
ing from this animal). Figure 10.7b shows the
recovered neural signals (solid lines) alongside
the corresponding EMG signals (dashed lines),
both normalized to 1. Figure 10.7c shows the
collective data from the three animals under study
for the first 2 months of recordings. The grouped
recovery correlation coefficients for the GN were
0.76 ± 0.05 and 0.52 ± 0.09 for the TA. Over
this 2-month period, no downward trend in cor-
relation coefficients is seen (t-test for regression
line, p > 0.05). The information transfer rate
was also calculated for these neural signals [34].
This calculation was performed by converting
the neural and muscle signals into discrete bits
based on amplitude and calculating the informa-
tion transfer between those signals. Using the
methodology described, the information transfer
rate (ITR) can be calculated as 5.2 ± 1.3 bits
per second (bps) while encoding 2 bits of infor-
mation in the transmitted symbols, which was

significantly higher than using 1 bit (paired t-test,
p < 0.05) [34].

10.7 Computer Model of Neural
Recording Properties
of a FINE

Although is it clear that the FINE can record
activity from within the nerve and activity from
different fascicles can be detected and recov-
ered, more information can be gained by com-
bining these experimental results with compu-
tational modeling. ENG amplifiers normally re-
move activity below 1 kHz to limit the possibil-
ity of EMG contamination. However, the results
in the previous sections show that neural activ-
ity exists in this lower bandwidth. By modeling
the electrode and neural signals, it is possible
to compare the recorded open bandwidth neural
spectrum with a computational simulation to de-
termine the origin of this low-frequency activity.
This problem can be investigated by generating
a finite element model of the FINE/nerve and
inserting nerve action potential currents to sim-
ulate the waveform generated by a single fiber
action potential. Motor neural activity can then be
simulated with the firing of many fibers – specifi-
cally alpha and gammamotor neurons to replicate
the frequency spectrum from experimental neural
recordings.
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Fig. 10.7 Source localization. (a) Example of nerve with
overlaid source localization (3198). Hot/cool colors corre-
spond to peroneal/tibial nerves. Extra fascicles likely cor-
respond to cutaneous sural nerves. (b) Example recording
showing recovered neural signals (solid) and correspond-
ing EMG (dash) during 10 s of gait. Data taken 2 weeks
post-implantation. (c) Combined correlation coefficients
over 2 months for three animals. Week 9 has only one
data point as the other two lost either EMG (3198) or
percutaneous connector (3219RL)

10.7.1 Finite Element Model

A three-dimensional model of the FINE and
canine sciatic nerve was created in ANSYS
Maxwell 3D software. The internal transverse
dimensions of the cuff were 6 × 2 mm, with a
hexagonal shape on the hinges as seen in Fig.
10.8. Sixteen contacts measuring 0.5 × 1 mm
were placed circumferentially around the nerve,
and four large references measuring 5 × 1 mm
were placed on the ends of the cuff and externally
connected. The cuff was silicone, 200 μm thick,
and 20 mm long. The nerve was designed

Fig. 10.8 Finite element model of the nerve. The cuff
(blue) perfectly fits around the nerve, which consists of
three layers – epineurium, perineurium, and endoneurium,
each with unique conductive properties

Table 10.1 Tissue conductivities

Material Conductivity (1/	.m)

Epineurium 0.0826

Perineurium 0.0021

Endoneurium:

Transverse 0.5714

Longitudinal 0.0826

to fit perfectly against the cuff, consisting of
several layers. The outermost layer was the
epineurium, which contained two fascicles.
The larger fascicle used in this study measured
1 × 2 mm with hexagonal shape and was
used to generate the simulated recordings. Each
fascicle was surrounded by a perineurium layer
with a thickness of 50 μm which contained
the endoneurial tissue. The conductance of the
electrode materials used the default values in
Maxwell 3D, while the conductivities used for
each tissue type are detailed in Table 10.1 [47].
The entire model was surrounded by saline
solution with boundaries 250% of the nerve size.

10.7.2 NEURONModel

NEURON was employed to simulate membrane
currents for single fiber action potentials (AP)
of a myelinated axon. The currents were simu-
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Fig. 10.9 Membrane
current for simulated
currents in NEURON.
Current density was
calculated for an axon and
scaled for various fiber
sources, which correspond
to fiber diameters found in
the dog sciatic nerve
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Table 10.2 Model parameters in NEURON

Parameter Value

Axon diameter 10 μm

Node length 1 μm

Nodal capacitance 2 μF/cm2

G_Nap 0.01 S/cm2

G_Naf 3.0 S/cm2

G_Ks 0.08 S/cm2

G_l 0.007 S/cm2

E_Na 50 mV

E_K −90 mV

E_l −90 mV

Vrest −80 mV

lated using the model MRG axon [48], which has
been shown to mimic mammalian motor fibers
(original model can be found online). The AP
was initiated at the proximal end of the axon,
and the membrane current was recorded for the
propagating AP, 50 nodes downstream. Mem-
brane currents were calculated as the sum of all
sodium, potassium, and leakage currents through
the membrane; these currents represented the cur-
rent density of the membrane. Total currents for
axons of different sizes were calculated by mul-
tiplying this current density by the correspond-
ing area of the node of Ranvier, or active mem-
brane, for each size. Figure 10.9 shows an ex-
ample of the nodal current for axons of vary-
ing sizes. The parameters for modeling the fiber
current with the NEURON model are shown in
Table 10.2.

Table 10.3 Parameters used to simulate propagating
action potential in MATLAB implementation

Parameter Value

Nodal gap width 1 μm

Internodal length to
fiber diameter ratio

100

AP speed to diameter
ratio

6

Firing rate Fiber dependent

10.7.3 Single Fiber Action Potential
Through FINE Simulation

To generate the recorded potential from a
single AP, a transfer function of the cuff was
generated. A 10-μm-diameter cylindrical fiber
was placed within the fascicle of the FEM, and
an outward current was generated, with the return
current at both ends of the fiber. This active
site, mimicking a node of Ranvier, was then
moved along the length of the cuff in 1 mm
steps to generate the recorded response to a
current source moving through the cuff. This
transfer function represents the response to a
static current. To generate the recorded signal
from an AP, this function was convolved with
the membrane current signal from the NEURON
simulation. Figure 10.10 shows the resulting
tripolar recording of a single fiber action potential
traveling through the cuff, which matches
previously simulated AP [47]. Table 10.3 shows
the parameters used for the propagating action
potential.
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Fig. 10.10 Comparing SFAP to previous model. (a) Sim-
ulate SFAP with FEM and NEURON in this work. (b)
Previously simulated SFAP using NEURON and FEM,
which looks similar to the simulation in this work and
validates this modeling work

10.7.4 Generating Representative
Spectra of ENG

To generate realistic neural recordings, many dif-
ferent fibers of different sizes were simulated
simultaneously and combined. The distribution
and number of fibers in the cuff were based on
the actual distribution of fibers in the dog sci-
atic nerve, as measured via histology [22]. Fig-
ure 10.11 shows the measured distribution from
several nerves which was used as a representa-
tive fiber population. The highlighted areas cor-
respond to the fiber diameters associated with
gamma and alpha fibers, which comprise the ef-
ferent motor drive to the muscle. To simulate mo-
tor activity, these fibers were simulated together
to create the spectra. A train of pulses about 1 s
long was created for each fiber size. The firing
rate was 50 Hz and 20 Hz for the gamma/alpha
fibers with a 1 ms refractory period for each fiber
size, which is based on previous studies of these
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Fig. 10.11 Fiber distribution of sciatic nerve. High-
lighted portions correspond to the sizes associated with
two aspects of the efferent motor system, the alpha and
gamma fibers, which were used to simulated neural motor
activity

fibers [49, 50]; Gaussian noise was added to the
inter-pulse interval to introduce a more realistic
stochastic firing rate. The offset of the nodes
of Ranvier was also randomly varied for each
fiber; the transfer function from the FINE was
interpolated from 1 mm to 125 μm steps to allow
placement of nodes for the smallest fiber (2 μm
diameter) and random offsets for larger fibers.
Final simulated neural recordings were created
by adding the pulse trains of all fibers together,
and the resulting spectrum is shown below in Fig.
10.12 along with an example spectrum from a
chronic recording trial.

Both spectra exhibit peaks in activity in the
lower-frequency band, 0.5–1 kHz, with activity
trailing off beyond 5 kHz. The peak in the lower
band represents the contribution from the smaller
fibers, as can be seen below in Fig. 10.13. These
frequency differences are due to the speed of the
AP through the tripolar cuff electrode, with faster
fibers creating a more distributed “wideband”
spectrum. The “zeros” seen on the left-hand side
of Fig. 10.13 are also related to fiber diameter
and specifically are due to the cuff acting as a
spatial filter. This relationship can be mathemat-
ically predicted using the cuff transfer function
displayed in the following equation:

H(s) =
√

2 − 2 cos

(
ω ∗ d

v

)
(10.3)

These zeros occur when the term ω ∗ d
v
equals

0, 2π, etc., where ω is the frequency, d the dis-
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Fig. 10.12 Simulated and
recorded spectra. (a)
Simulated motor neural
spectra using alpha and
gamma fibers. (b)
Recorded spectrum from
sciatic recordings in
canines

Power Spectral Density of Simulated ENG

Power Spectral Density of Recorded ENG
M

ag
ni

tu
de

 (
dB

)
M

ag
ni

tu
de

 (
dB

)

–20

–40

–60

–80

0 1000 2000 3000 4000
Frequency (Hz)

5000 6000 7000

–20

–40

–60

–80

0 1000 2000 3000 4000
Frequency (Hz)

5000 6000 7000

(A)

(B)

D=3.0 D=15.0

|Y
 (

f)
|

Freq (kHz)

Simulated Single Fiber Spectra
0.06

0.04

0.02

0

0.06

0.04

0.02

0
00 2 4 6 8 0 2 4 6 8

Fig. 10.13 Simulated spectra from two fibers, 3 μm
and 15 μm, which correspond to the approximated sizes
of gamma and alpha motor neurons, respectively. These
fibers exhibit different spectra largely due the difference

in conduction velocity through the FINE. The “dips” seen
in the 3 μm are due to filtering effects of the FINE and can
be predicted using Eq. 10.3

tance between contacts, and v the velocity of the
AP; the first zero thus occurs when the frequency
equals 100∗v since d = 0.01 m for our cuff
(1.8 kHz for the 3μm fiber traveling 18m/s) [37].
This computational study does have some limita-
tions.Most importantly, fibers not associatedwith
the motor system, which make up a large portion
of the total fiber count, are ignored. The simulated
ENG thus represents pure efferent activity, which
is not realistic. However, this simulation does
provide evidence that significant neural activity

is present in the lower bandwidth, which validates
the claim that increasing the bandwidth by adding
lower-frequency power in the chronic recordings
can improve the representation of the neural ac-
tivity in the nerve.

10.8 Summary and Conclusions

Experiments using chronic animal experimen-
tation show the ability to reliably recover dy-
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namic motor information from an intact nerve
in a freely moving animal using an extraneural
electrode for long periods of time. The technol-
ogy requires ultralow-noise amplifier [35] and
appropriate algorithms [34] to extract the high-
fidelity motor intent from individual fascicles to
obtain independent signals. A hybrid algorithm,
utilizing two previously developed approaches,
improved recovery metrics compared to previous
methods. Analysis of the recorded signals showed
that two neural signals were present using si-
multaneous recordings of potentially interfering
muscles. Subsequent analysis demonstrated that
dynamic motor signals which matched the target
EMG could be reliably recovered. The informa-
tion transfer within a nerve can also be calculated
and allows for the quantitative assessment of in-
formation recovery with the FINE.

Homework

1. Review and compare the various methods
for interfacing with the peripheral nervous
system. Provide a comparative list of
advantages and disadvantages of these various
techniques.

2. Simulate the effect of hardware averaging
for input thermal noise reduction in Multisim
or other circuit simulation software (see Fig.
10.2). Determine the relationship between the
noise amplitude and the number of amplifiers.

3. List three other methods to decrease the input-
referred noise of a bioamplifier. Compare to
hardware averaging using simulation.

4. Choose three of the neural interfacingmethods
in Question 1. From the literature, determine
the value of the source resistance of the elec-
trode in each case and find the amplifier design
with the optimum S/R.

5. Simulate in NEURON (or other simulation
software) a single axon action potential and
calculate the transmembrane current along the
axon (compare your results to Fig. 10.9).

6. Calculate the voltage generated by a point
current source to simulate an axon. Assume
the current source moves in a straight line

for 40 mm with a single recording electrode
placed 1 mm above the line in the middle.

7. Simulate a monopolar recording of an action
potential using the current calculated in Ques-
tion 5 and the potentials found in equation six.

8. Simulate an electroneurogram signal by
summing a large number of the units signals
obtained from the solution of Question
7) with a random delay. Compare your
results to real signals shown in Fig. 10.6.
Note that hundreds to thousands of units
are required to generate a realistic ENG
signal.

9. Calculate the power spectra of the simulated
signal in Question 8. Are there any differ-
ences? Can you explain why?
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11Functional Magnetic Resonance
Imaging

Zhongming Liu and Jiayue Cao

Abstract

Functional magnetic resonance imaging has
become a primary tool for psychological
and cognitive studies or preclinical brain
research. As a technique tomap brain function,
fMRI measures the blood oxygenation level–
dependent signal as a collective effect of
changes in cerebral blood flow, cerebral blood
volume, and cerebral metabolic rate of oxygen
following changes in neural activity. The
use of fMRI in combination with carefully
designed task paradigms has enabled scientists
to map perceptual, cognitive, or behavioral
functions onto brain regions and networks.
Spontaneous activity observed with fMRI in
task-free resting states has been used to reveal
intrinsic functional networks that collectively
depict the brain’s functional architecture
or connectome. Naturalistic paradigms for
fMRI are increasingly used to map brain
activation, address neural representation and
coding, and characterize brain networks
while humans are engaged in a realistic
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and dynamic environment similar to daily
life experiences. In this chapter, we discuss
the principles, methods, and applications of
fMRI, with emphasis on its biophysical and
physiological basis, experimental designs and
analysis methods, and applications to human
and animal studies. Example data or results
from empirical studies are presented to help
illustrate methods or support scientific views.
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11.1 Introduction

To study how the brain works, it is desirable to
image neural activity throughout the brain while
being able to see every neuron and detect every
neuronal spike. This requires an imaging tech-
nique to have high spatial resolution, high tem-
poral resolution, and whole-brain coverage. Un-
fortunately, such a technique is unavailable to
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date for human brain imaging, in part because for
human applications it is also desirable to refrain
from using any invasive procedure.

Every technique has its pros and cons and
continues to progress on its own or in combina-
tion with other techniques [1]. Among all that
is currently available, functional magnetic reso-
nance imaging (fMRI) stands out with notable
advantages by providing sub-millimeter spatial
resolution, sub-second temporal resolution, and
whole-brain coverage. In the past three decades,
fMRI has undergone rapid development and has
become a primary tool for human psychological
and cognitive studies, as well as preclinical (ani-
mal) brain research.

In this chapter, we discuss fMRI with special
emphasis on its biophysical and physiological ba-
sis, experimental designs and analysis methods,
and applications to human and animal studies.
To facilitate discussions, we include, as relevant
examples, some data from our prior studies. In
addition, this chapter is not intended to serve as
a comprehensive literature review, and the ref-
erence list is only meant to provide additional,
but not inclusive, materials to guide interested
readers.

11.2 Magnetic Resonance
Imaging

As the name suggests, fMRI uses magnetic res-
onance imaging (MRI) to measure brain activity
and map brain functions. The physics underlying
MRI is nuclear magnetic resonance (NMR). It
describes the magnetic behavior of any atomic
nucleus that has an odd number of protons. Be-
cause the human brain has high water content, the
hydrogen atom (1H), which consists of a single
proton and carries a positive charge, is the most
abundant nucleus for MRI. Although other nu-
clei, e.g., 13C, 31P, 23Na, and 19F, are also visible
to MRI, fMRI is nearly all based on 1H MRI.
Hereafter, we refer to hydrogen atoms simply
as protons, unless they are explicitly specified
otherwise.

A proton spins about itself and creates a mag-
netic moment. It is perhaps convenient to think
of a spinning proton (or a spin in short) as a

Fig. 11.1 Hydrogen protons in the absence of external
magnetic field. (a) The spin of a single 1H generates a
small magnetic field −→μ . (b) Spins are randomly oriented

tiny magnet (Fig. 11.1a). Spins in a spatial ele-
ment, typically referred to as a voxel, form a spin
system. In the absence of any external magnetic
field, the spins in a spin system behave like many
small magnets oriented in random directions (Fig.
11.1b). The magnetic fields generated by individ-
ual spins sum to zero.

When an external magnetic field B0 is present
or applied, the spins in a spin system exhibit
a weak tendency to precess (i.e., a gyroscopic
motion) along the direction of the external field,
giving rise to very small net magnetization in a
direction parallel to B0 (Fig. 11.2). Such preces-
sion has a characteristic frequency ω0, called the
Larmor frequency, which is proportional to B0 by
a fixed ratio γ , called the gyromagnetic ratio. For
1H, the gyromagnetic ratio is 42.58 MHz/Tesla.
The precession (or Larmor) frequency is about
128 MHz for an MRI system operating under
a 3 Tesla static magnetic field, and it is about
300 MHz for 7 Tesla MRI. Under typical field
strengths, the precession frequency is always in
the radio frequency (RF) range. As a spin is pre-
cessing, it creates a rotating magnetic field in the
transverse plane, which is perpendicular to B0.
However, spins precess with random phases; as a
result, the sum of their transverse magnetization
is still equal to zero (Fig. 11.2).

For a spin system to generate detectable mag-
netic fields in the transverse plane, it needs to
receive a brief RF excitation – a rotating magnetic
field applied to the transverse plane by using an
RF transmitter (Fig. 11.3). When the RF excita-
tion uses the same frequency as the precession
frequency, i.e., on resonance, the spin system
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Fig. 11.2 Spins in an external magnetic field B0. Every
spin precesses at the same frequency but with a different
phase. More spins align parallel to B0 than antiparallel to

B0. Of the bulkmagnetization, the longitudinal component
is non-zero, but the transverse component is zero

Fig. 11.3 Spins given on resonance excitation. An RF
excitation B1 is an applied magnetic field rotating in
the transverse plane (left). The excitation flips the bulk
magnetization toward the transverse plane by a flip angle θ

effectively absorbs the energy from the excita-
tion and progressively synchronizes the phases
of individual spins while progressively reduc-
ing the longitudinal magnetic field. During the
course of the excitation, the bulk magnetization
that arises from the spin system is flipped down
toward the transverse plane while rotating about
B0 (Fig. 11.3).

Once the excitation is off, the longitudinal
magnetization progressively returns to its thermal
equilibrium, showing an approximately exponen-
tial recovery, namely, the longitudinal relaxation.
The recovery of longitudinal magnetization is
governed by a time constant T1. A shorter T1
means a faster longitudinal relaxation (Fig. 11.4).
In the meantime, the spin system progressively
desynchronizes the phases of individual spins.
During dephasing, the transverse component of
the bulk magnetization can be detected by an RF
receiver. The detected signal shows an approx-
imately exponential decay to zero, namely, the
transverse relaxation. The transverse relaxation

is also governed by a time constant, namely, T2
when the magnetic field is homogeneous within
the spin system or T2* when it is inhomoge-
neous. A shorter T2 or T2* means a faster trans-
verse relaxation (Fig. 11.4). As T1, T2, and T2*
are all tissue-specific properties, the signals de-
tected by the RF receiver can report various tissue
contrasts, depending on the pulse sequence used
to transmit, encode, and receive the RF signals
to/from spins in the brain.

For the scope of this chapter, it only covers the
basic physics ofMRI as the prerequisite for learn-
ing fMRI. For more comprehensive discussions
about MRI, we refer the readers to other materials
[2–4].

11.3 Blood Oxygenation
Level–Dependent Contrast

One type of tissue contrast observable with MRI
is blood oxygenation level dependent (BOLD)
[5]. In the brain, cerebral vasculature circulates
blood to supply oxygen, glucose, and nutrients.
Hemoglobin (i.e., red blood cell) is the primary
carrier of oxygen. Arteries deliver oxygenated
hemoglobin. Oxygen is extracted from capillar-
ies and consumed by brain tissues, creating de-
oxygenated hemoglobin. Veins drain the deoxy-
genated hemoglobin, along with other metabolic
products.

Hemoglobin is diamagnetic when oxygenated
but paramagnetic when deoxygenated [6]. With
only oxygenated hemoglobin, the magnetic
susceptibility of blood is nearly identical to that of
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Fig. 11.4 Longitudinal
(left) or transverse (right)
relaxation as an
exponential recovery or
decay characterized by a
time constant T1, T2, or
T2*

Fig. 11.5 Deoxygenated blood distorts the static mag-
netic field, but oxygenated blood does not. Deoxygenated
blood causes a shorter T2* than does oxygenated blood.

Large circles indicate blood vessels. Small circles indicate
oxygenated (red) or deoxygenated (blue) hemoglobin

brain tissue. As a result, a voxel that contains
blood and tissue tends to experience a homoge-
neous magnetic field. With only deoxygenated
hemoglobin, the blood susceptibility mismatches
the tissue susceptibility, distorting the magnetic
field into an inhomogeneous distribution.
The blood in a voxel includes a varying
mixture of oxygenated and deoxygenated
hemoglobin. Higher concentration of deoxy-
genated hemoglobin results in greater distortion
to the magnetic field and causes the spins in
the voxel to experience more distinct magnetic
fields such that they precess with more distinct
frequencies [7]. As a result, spins tend to run out
of synchronization faster, while faster dephasing
results in shorter T2* and faster transverse
relaxation (Fig. 11.5).

When reading out the T2*-weighted signal at
an echo time close to T2*, the signal magni-
tude is negatively dependent on the concentra-
tion of deoxygenated hemoglobin or positively
dependent on the concentration of oxygenated
hemoglobin. The latter has been more commonly
used for interpretation of fMRI and has been con-
ventionally termed as BOLD since a seminal pa-
per by Ogawa et al. [5]. In short, the BOLD signal
is higher when the concentration of oxygenated

hemoglobin increases or when the concentration
of deoxygenated hemoglobin decreases [8].

11.4 BOLD Response to Neural
Activity

Functional MRI uses the BOLD signal to localize
neural activity [9–11]. The precise relationship
between the BOLD signal and neural activity is
not fully understood and still under active re-
search. Nevertheless, evidence from prior studies
has shed light onto the biophysical basis and
physiological origin of the BOLD signal [12,
13]. Here, we discuss the understanding that has
received general consensus.

Neural activity requires energy and consumes
oxygen. Elevation of neural activity (or activa-
tion) triggers a cascade of metabolic and hemo-
dynamic events, collectively contributing to the
BOLD signal. As illustrated in Fig. 11.6, at an
activated region, more oxygen is extracted and
consumed, giving rise to an increase in the cere-
bral metabolic rate of oxygen (CMRO2). The
brain reacts to the increasing demand and con-
sumption of oxygen by actively dilating arterioles
and capillaries to allow more oxygenated blood
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Fig. 11.6 Neural activation causes oxygen consumption
to increase, arterioles to dilate, capillaries and veins to
expand, both blood flow and volume to increase, and
the BOLD signal to rise. Solid and dashed lines indicate
the blood vessels before and after neural activation, re-
spectively. OEF, oxygen extraction fraction, indicates the
fraction of oxygen extracted from the bloodstream and
supplied to brain tissue

to flow into the activated region. The upstream
increase in blood flow causes a passive expansion
of the downstream venioles or veins, similar to
draining water through a balloon [14]. As such,
both cerebral blood volume (CBV) and cerebral
blood flow (CBF) increase given elevated neural
activity.

Importantly, the increase in CBF overcompen-
sates for the increase in CMRO2 [15]. The brain
supplies more blood to deliver more oxygen than
is consumed by neural activity. This effect leads
to increase in the concentration of oxygenated
hemoglobin or decrease in the concentration of
deoxygenated hemoglobin, causing the BOLD
signal to increase. To capture this signal with
MRI, such pulse sequences as echo-planar imag-
ing [16] or spiral imaging [17, 18] are often used
for fast imaging with T2*-weighted contrast. Re-
cent advances in RF coils, pulse sequences, and
image reconstruction have contributed to further
acceleration to enable whole-brain fMRI within
1 s [19, 20].

How neural activity drives hemodynamic
changes (i.e., neurovascular coupling) is not
precisely understood [21]. Evidence suggests
that active dilation of blood vessels is not directly
controlled by neurons but mediated through
astrocytes [22]. Hemodynamic responses are
more driven by and coupled to synaptic inputs to
neurons, rather than spiking output from neurons
[23]. In part for this reason, the BOLD signal
is more observable in the brain’s gray matter

than in the white matter, although findings from
recent studies suggest the feasibility of using
BOLD fMRI to map white matter functions
[24–26].

11.5 Hemodynamic Response
Function

Although the physiological mechanism of neu-
rovascular coupling is not fully clear, models have
been derived from empirical data in an attempt to
mathematically describe the relationship between
neural activity and its resulting hemodynamic
response [23, 27, 28]. Neurovascular coupling is
considered as a linear time-invariant system, for
which neural activity is the input and vascular
response is the output. In line with the estab-
lished notion of linear systems, the model of
neurovascular coupling is often described as a
hemodynamic impulse response function, which
describes the system’s output given an impulse
input, i.e., a delta function. In literature, the hemo-
dynamic impulse response function is called the
hemodynamic response function (HRF). Despite
the omission of “impulse”, it is worth empha-
sizing that the HRF should be interpreted as the
vascular response to an impulse neural input.

The HRF is typically modeled as the sum of
two gamma functions. Many software tools for
fMRI analysis have implemented the HRF, e.g.,
the MATLAB-based SPM software. Parameters
that control the shape of the HRF include the
latencies and durations. With the default param-
eters, the HRF is called the canonical HRF (Fig.
11.7), in which the impulse response reaches the
positive peak at 5 s, returns to baseline (zero)
at 12 s, undershoots at about 15 s, and again
returns to baseline at about 25 s. Clearly, the HRF
is very slow and behaves like a low-pass filter
with an (arguably conservative) cutoff frequency
at 0.2 Hz. For this reason, the BOLD signal is
not rapid enough to follow fast modulation of
neural activity – a notable limitation of fMRI.
That said, the bandwidth of the BOLD signal
is still debatable, as recent findings demonstrate
the feasibility of detecting neurogenic BOLD re-
sponses as fast as 0.8 Hz [29, 30].
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Fig. 11.7 Canonical hemodynamic response function

11.6 Event-Related and Block
Design

The HRF can be used to predict how the BOLD
response should look like at a location engaged in
processing a stimulus (e.g., a flash of light) or per-
forming a task (e.g., tapping a finger). The BOLD
signal at each voxel can be compared with the
HRF predicted response. If they are similar, the
voxel is considered “activated”; otherwise, not.
This strategy to localize brain activations, known
as statistical parametric mapping [31], requires a
careful experimental design alongside a rigorous
statistical analysis. This section is focused on
the experimental design, and the next section is
focused on statistical analysis. We further confine
the context of discussion to stimulus processing,
while the same notion is readily generalizable to
task performance.

Recall that HRF is the BOLD response to an
impulse neural input. In other words, HRF itself
is the prediction of the BOLD response given an
impulse stimulus. A stimulus that lasts no more
than 2 s is brief enough to be considered as an
“event” or impulse, because HRF is slow and lasts
over 25 s. To measure the event-related response,
it is intuitive to design an experiment that includes
discrete stimuli applied for many repetitions.
Averaging the BOLD signal across the repeated
events excludes the event-unrelated signal or

noise and only yields the event-related response.
Since the BOLD response is slow, the response
to one event may overlap with the response to the
next event, if they are not adequately separated in
time. To avoid overlapping responses, the events
should be repeated with an interval greater than
25 s or longer. This design, however, is inefficient
because it has to prolong the experiment in order
to include a sufficient number of events to obtain
the event-related response with a high signal
to noise ratio. An alternative design is to repeat
events at random times such that the event-related
response can be obtained by deconvolution, while
the interval between adjacent events does not
have to be long [28, 32]. For this type of event-
related design, a specific strategy is to set the
event timing according to an M-sequence [33],
which is a pseudorandom sequence of ones and
zeros with one indicating the presence of an
event and zero indicating the absence of an
event. The fact that the M-sequence has zero
autocorrelation at any (non-zero) integer time
shift prepares a nice precondition for the ease of
deconvolution.

More common than the event-related design
is the block design. In a block-design paradigm,
stimuli are typically presented for a sustained pe-
riod (or block), followed by a resting (or control)
period that contains no stimulus (or only control
stimuli). The stimulus-on block alternates with
the stimulus-off block for multiple cycles. The
ON block is often designed to have the same
duration as the OFF block (but not always or nec-
essarily the case), such that the paradigm can be
described by a periodic boxcar function in which
1 means stimulus-on and 0 means stimulus-off.
Prediction of the BOLD response is derived by
convolving the boxcar function with the HRF.
Typically, the on or off block lasts around 30 s
such that the boxcar function has a characteristic
frequency close to the peak frequency of the
HRF in order to elicit the BOLD response with a
relatively high signal to noise ratio. If the boxcar
function has a much shorter period (i.e., a shorter
ON or OFF block), the spectral characteristics of
HRF limit the response amplitude and lower the
signal to noise ratio.
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11.7 BOLD Time Series Analysis

It follows that mapping brain activations is often
achieved by analyzing the time series of each
voxel with a model that depends on the experi-
mental paradigm and HRF [31]. Specifically, the
problem of activation mapping is formulated as
a hypothesis test addressed separately for each
voxel. For a given voxel, the null hypothesis is
that the voxel is not activated by the stimulus/task
paradigm; the alternative hypothesis is that it is
activated. Herein, “activation” means the ability
to predict the voxel time series with a response
model (or design matrix), while the predictability
is evaluated for statistical significance.

To elaborate, let us use a simple example in
which visual stimuli are presented in a block-
design paradigm (Fig. 11.8). This paradigm in-
cludes four resting blocks interleaved with three
stimulation blocks; the resting and stimulation
blocks are both 30 s. Given this paradigm, the
response model sets up a prediction as to how
the BOLD response should look like at a voxel
activated by the stimulation. As aforementioned,
the response model assumes that neurovascular
coupling is a linear time-invariant system that
can be described by the canonical HRF for every
voxel in the brain. Given this assumption, the
predicted response should look like a time series
that results from temporal convolution of the 30 s-
off-30 s-on boxcar function with the HRF.

Mathematically, let s(t) be the function with
which stimulation is applied, h(t) be the HRF,
and x(t) be the regressor used to predict the fMRI
response to the stimulation.

x(t) = s(t) ∗ h(t) (11.1)

The response model is simply a linear regres-
sion model, in which the same regressor is used to
explain the BOLD signal at every voxel, denoted
as yi(t) where i is the voxel index.

yi(t) = βix(t)+ bi (11.2)

The bias term, bi, can be eliminated, if prepro-
cessing is applied such that both yi(t) and x(t) have
their average (over time) equal to zero.

To address how well yi(t) is predictable by
x(t), one can simply evaluate the temporal corre-
lation between yi(t) and x(t) and test its statistical
significance. The use of this simple correlation-
based method can be dated back to a seminal
paper by Bandettini et al., who were among the
first to use fMRI to map activations (with a motor
task) [9]. Although it is simple and effective, the
correlation-based activation assessment is not ap-
plicable when the response model includes mul-
tiple regressors.

The need to use multiple regressors may arise
in several scenarios. Perhaps the most intuitive
one is when the experimental paradigm includes
more than one type of stimuli. For example, we
can use visual stimuli selective for the magno-
cellular (M) visual pathway in one stimulation
block but the parvocellular (P) visual pathway in
another stimulation block (Fig. 11.9). Then we
need to include two regressors: one for M, x1(t),
and the other for P, x2(t). The response model
should be rewritten as below (note that the bias
term is eliminated by preprocessing as mentioned
earlier).

x1(t) = s1(t) ∗ h(t) (11.3)

Fig. 11.8 Typical
response model (bottom)
given an ON-OFF
block-design paradigm
(top)
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Fig. 11.9 Mapping magnocellular and parvocellular
pathways. (a) A block-design paradigm involves two types
of visual stimulation: one with high spatial frequency at
10 cycles per degree (c/deg) and low temporal frequency
at 1 Hz and the other with low spatial frequency at 1 c/deg
and high temporal frequency at 10 Hz, to selectively
activate the magnocellular (M) and parvocellular (P)

pathways in the visual system [34]. (b) The response
contrast between the M- and P-selective stimuli is shown
both on the cortical surface and in the brain volume.
The contrast map segregates the M and P divisions in
lateral geniculate nuclei (LGN) and their extensions onto
(presumably) the dorsal and ventral streams on the cortex

x2(t) = s2(t) ∗ h(t) (11.4)

yi(t) = βi1x1(t)+ βi2x2(t) (11.5)

The regression parameters (or beta values) can
be estimated by least-squares estimation – an
established method that has been implemented
in many statistical analysis tools and has been
elaborated in many statistical textbooks. Herein,
we skip the details about the least-squares esti-
mation and refer the readers interested to existing
literature [31]. The estimated beta values, β̂i1
and β̂i2, can be further divided by their standard

errors, SE
(
β̂i1

)
and SE

(
β̂i2

)
, yielding the t

statistics and the p values used to evaluate sta-
tistical significance regarding the BOLD activa-
tion associated with each stimulation condition
or the contrast between conditions. See Fig. 11.9

for an example of using this strategy to sep-
arate the magnocellular and parvocellular divi-
sions of the visual thalamus (i.e., lateral genic-
ulate nuclei) and their extension onto the visual
cortex.

In another scenario, one may use multiple re-
gressors even when the experimental paradigm
only includes one type of stimulation. Let us
revisit how a regressor is defined. As in Eq.
(11.1), the regressor results from convolving the
boxcar function and the HRF, and it is assumed
to be identical across voxel. What if the HRF
is different from one location to another? This
question is valid because the HRF is heuristic and
neurovascular coupling may indeed vary across
different brain regions (between the gray matter
and the white matter, or between regions with
distinct vascular density).
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To accommodate the possible variation in
HRF, one can express the HRF at each voxel as a
Taylor’s series of the canonical HRF.

hi(t) = h(t)+ αi1h
′(t)+ αi2h

′′(t) (11.6)

Here, hi(t) is considered as a model of neu-
rovascular coupling specific to the i-th voxel, and
h

′
(t) and h

′ ′
(t) are the first and second derivative of

the canonical HRF. The coefficients, αi1 and αi2,
are unknown and assumed to be variable across
locations in order to account for spatial variation
in the HRF. Convolving the boxcar function with
this voxel-wise HRF generates three regressors in
the response model, as shown in Fig. 11.10.

x1(t) = s(t) ∗ h(t) (11.7)

x2(t) = s(t) ∗ h′(t) (11.8)

x3(t) = s(t) ∗ h′′(t) (11.9)

yi(t) = βi1x1(t)+ βi2x2(t)+ βi3x3(t) (11.10)

Note that the unknown coefficients, αi1 and
αi2, are considered as parts of the unknown beta
values, which can be estimated from data by us-
ing least-squares estimation as discussed earlier.
To evaluate the statistical significance, one only
needs to evaluate the significance of the model
as a whole (based on the F statistic) instead of
the significance of each regressor (based on the t
statistic), because all three regressors correspond
to a single stimulus condition.

Lastly, let us place the problem in a differ-
ent scenario, which has been overlooked in most
fMRI studies but should, arguably, be considered.
To understand this problem, let us recall that
the HRF is a model of neurovascular coupling,
describing how the neural response transforms to
the BOLD response, given the external stimuli.
Regressors used to predict the BOLD response
should consider how neurons may differentially
respond to the stimuli. In fact, evidence from neu-
rophysiological studies suggests neural responses
to a sustained period (e.g., 30 s) of stimulation
may manifest themselves as a transient response
at the onset of stimulation, a sustained response
across the entire period of stimulation, a slow
adaptation over the course of the stimulation pe-

Fig. 11.10 Multiple regressors resulting from convolving the boxcar function with the canonical HRF, its first-order
derivative, and its second-order derivative
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Fig. 11.11 Multiple
regressors resulting from
convolving sustained,
onset, offset, and
adaptation neural responses
with the HRF, given a
block-design paradigm

riod, a transient response at the offset of stimula-
tion, or a mixture of these response features [35]
(Fig. 11.11).

Equation (11.1) implies that we only consider
the possibility of sustained neural response,
which can be modeled as a boxcar function
identical to the function that describes the
stimulation. If we consider all four types of neural
response that reflect the aforementioned onset,
sustained, adaptation, and offset response, the
response model should be revised as below.

x1(t) = s(t) ∗ h(t) (11.11)

x2(t) = s(t)δ (t − onset) ∗ h(t) (11.12)

x3(t) = s(t)δ (t − offset) ∗ h(t) (11.13)

x4(t) = s(t)

(
1 − t − onset

offset − onset

)
∗ h(t)
(11.14)

yi (t) = βi1x1(t)+ βi2x2(t)+ βi3x3(t)+ βi4x4(t)

(11.15)

Although this model is more complex, it ac-
commodates the variation of neural response and
likely localizes different types of responses to
different brain regions. See the example in Fig.
11.12.

The models discussed in this section are ap-
plicable to univariate analysis of BOLD time
series. Being univariate means that the model is
used to explain or predict the time series signal
observed at each single voxel. It is in contrast to
multivariate pattern analysis [36], for which the
focus is on the activity pattern that spans mul-
tiple (typically neighboring) voxels. Moreover,
the analysis discussed above is also limited to
the signal observed from each single subject. The
subject-level statistic can be used as the input to
a second-level statistical test for evaluating the
group-level significance.
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Fig. 11.12 BOLD activations corresponding to sustained, onset, offset, and adaptive responses to full-screen checker-
board stimulation in a block-design paradigm

11.8 Task fMRI for Functional
Mapping

Based on the aforementioned experimental
design and model-based analysis, fMRI has
been widely used for functional mapping or
localization. A function is exemplified by a
specific task or stimulus. For example, pictures
of human faces can be used as the visual
stimulus presented in an event-related or block-
design paradigm. The model-based time series
analysis can be used to map the stimulus-evoked
activation. The activation presumably highlights
the brain regions involved in face recognition.
One may also stimulate different body parts
and map the resulting activations in the brain.

This provides a way to localize the neural
representation of each specific body part (see Fig.
11.13 for an example) and to further reveal the
somatotopic organization. This strategy has been
highly effective in mapping sensory, motor, and
cognitive functions. The neuroscientific impact of
task-based fMRI is significant, perhaps surpass-
ing any prior method for functional mapping or
localization for its noninvasiveness, ease of use,
and high resolution. Clinical applications of task
fMRI, however, remain challenging and limited,
in part because interpretation of fMRI activations,
although established in terms of statistics, is not
straightforward as to how fMRI provides quan-
titative evidence to support neuropathological
diagnosis or treatment planning.
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Fig. 11.13 In rats, BOLD fMRI activations with electrical stimulation applied to the forepaw

The value of fMRI has been most recognized
for human psychological and cognitive sciences.
It is worth noting that fMRI is also increasingly
used in preclinical animal models. Animal fMRI
has its unique value. With animals, it is much
easier (and of less ethical concern) to combine
fMRI with other invasive procedures. Combining
fMRI with invasive neural recording or stimula-
tion is desirable to reveal the relationship between
fMRI and neurophysiology, uncover the physio-
logical mechanism of fMRI, guide neuromodu-
lation techniques for optimal effects on the brain,
and evaluate the interaction between the brain and
visceral organs, e.g., the gut. Therefore, animal
fMRI plays an important role in brain research
much beyond a backward translation from human
fMRI and continues to be an area under active
research.

11.9 Resting State fMRI

Even in the absence of any overt task, the brain is
still active with spontaneous activity observable
with BOLD fMRI [37]. The use of fMRI to mea-
sure and characterize brain activity in the resting
state is referred to as resting state fMRI. As the
name suggests, the resting state is not controlled
by any task. Spontaneous activity is not driven by
any predefined experimental paradigm, and it is
thus not predictable by any task model that bears

a simple functional interpretation. The statistical
parametric mapping as described earlier is not
readily applicable to resting state fMRI.

For resting state fMRI, an established method
is so-called the seed-based correlation. It begins
with selecting a region as the seed region and then
calculating the correlation between the BOLD
signal extracted from the seed region and the
BOLD signal from every other voxel in the brain.
The distribution of the resulting correlation coef-
ficients highlights where in the brain spontaneous
activity is temporally correlated with that at the
seed region. Since temporal correlation is simply
interpreted as functional connectivity, a term orig-
inally coined by Biswal et al. in his seminal paper
[38], the map of correlation to a seed region is in-
terpreted as a network, which includes all the re-
gions that interact with the seed region. This seed-
based correlation method is simple and effective
and has been widely used to evaluate functional
brain networks. To use this method, however, it
requires one to select a seed region, presumably
based on a specific question or hypothesis of
interest.What if one does not have any question or
hypothesis in mind? In this case, the seed region
is likely subject to a somewhat arbitrary choice.
In this case, such tools as InstaCorr implemented
in AFNI would be helpful, since it allows one to
explore any location as the seed region, while it
calculates and visualizes the seed-based network
nearly in real time.
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Alternatively, an entirely data-driven method
can be applied to uncover functional networks
all at once without necessarily selecting any seed
region as driven by a predefined hypothesis. Per-
haps the most established method of this type is
independent component analysis (ICA), or spatial
ICA to be more specific [39]. For ICA, all voxels
are considered altogether as elements of a high-
dimensional input variable (or vector), and every
time point is considered as a sample of this vari-
able. The goal of ICA is to identify around tens
of components, which are high-dimensional vec-
tors that are mutually independent, while pushing
their linear combination to be able to explain any
sample of the input variable. In other words, any
spatial pattern of resting state activity reflects an
unknown but linear mixture of some fixed spa-
tial patterns, each represented by an independent
component. Collectively, these independent com-
ponents capture the networks onto which voxels
are organized (see Fig. 11.14 for an example).
Learning algorithms to identify independent com-
ponents from data, e.g., the Infomax algorithm
[41], have been implemented in software tools,
e.g., MELODIC in FSL. When ICA is applied
to resting state fMRI data from a single sub-
ject, the resulting independent components can
be inspected to identify and remove artifacts from
signals in order to denoise the data. ICA can also

be applied to data concatenated across a group of
subjects, yielding group-level independent com-
ponents that reflect functional network patterns
consistent across subjects [42].

Although seed-based correlation and ICA are
seemingly distinctive methods, they often end up
with showing comparable spatial patterns [43].
These patterns are generally referred to as rest-
ing state networks and collectively depict the
brain’s functional organization, or brain connec-
tome [44]. It is worth noting the resting state
networks arising from spontaneous activity are
consistent with patterns of brain activation with
various tasks [45]. This consistency lends sup-
port to the functional relevance of resting state
networks. However, the specific function of a
resting state network is not always easy to elu-
cidate, since it may or may not be associated
with exteroceptive processes or human conscious
cognition, for which one may design a relevant
task for fMRI experiments. Some networks, such
as the default-mode network [46], are intrinsic
and preserved across brain states (wakefulness,
sleep, anesthetized) and across many species (rat,
monkey, human). Mapping resting state networks
has become a mainstream focus for fMRI and
holds the unique promise to facilitate further un-
derstanding and effective diagnosis of neurologi-
cal disorders.

Fig. 11.14 Resting state networks obtained by applying ICA to fMRI data in rats. (Data are from Cao et al. [40])
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11.10 Naturalistic Paradigm

Functional MRI is also increasingly used with
naturalistic paradigms. Unlike event-related or
block-design paradigms as discussed above, nat-
uralistic paradigms set up a behavioral context
much closer to our daily life experiences. For
example, a natural visual paradigm may require a
subject to watch a movie typically for 5–10 min-
utes. The movie often includes realistic scenes
and objects, human or animal activity, and so-
cial content. Such a movie attracts attention, en-
gages cognition, and activates the brain to a much
greater extent than otherwise overly simplified vi-
sual stimuli as used in conventional fMRI studies.
Similarly, a natural auditory paradigm may use
continuous music or speech as stimuli [47, 48].

Natural visual or auditory stimulation is
complex, because it involves many elements or
features entangled in space, time, and frequency.
Disentangling such features is seemingly
unapproachable. The model-based analysis as
used for event-related or block-design fMRI is
not readily applicable to fMRI data obtained with
naturalistic paradigms. Given natural stimuli,
the fMRI signal appears nearly as irregular
as spontaneous activity observed with resting
state fMRI. Seemingly, no tangible clue is easily
accessible to separate stimulus-driven responses
from spontaneous activity.

The dilemma is resolved, partially, with the
finding first reported by Hasson et al. In their
seminal paper [49], evidence reported suggests
that naturalistic stimuli, either a movie or an
audio story, elicit highly reproducible responses
within and across subjects. When a human sub-
ject watches the same movie twice (in two re-
peated sessions), the responses observed in the
first session and the second session are signifi-
cantly correlated for each voxel involved in pro-
cessing the information from the movie. When
two subjects watch the samemovie, the responses
observed from the first and second subjects are
also highly correlated for each activated voxel.
This finding lends support to a simple method
that allows us to map brain activation with natural
stimuli by evaluating the voxel-wise intra/inter-

subject reproducibility of the fMRI signal. The
high reproducibility is unique to the fMRI signal
during natural stimuli and not observable given
seemingly complex and irregular stimuli that are
perceptually meaningless [50]. This method is
robust, effective, and model-free, extending the
application of fMRI to ecologically relevant sce-
narios.

The fact that brain responses to natural
stimuli are significantly reproducible within and
across subjects can be utilized to map functional
networks engaged in processing natural stimuli.
For this purpose, we may use inter-session or
inter-subject functional connectivity analysis
[51]. Specifically, when a human subject watches
the same movie twice, we can choose a seed
region, extract its signal from the first session,
and calculate its correlation with the signal
from every voxel in the second session [52].
The inter-session functional connectivity is only
attributable to stimulus-driven responses instead
of spontaneous activity, which is unrelated to
stimuli and thus unlikely to be correlated between
two separate sessions. Similarly, one may apply
this analysis to data from two subjects watching
the same movie, yielding inter-subject functional
connectivity also indicative of stimulus-driven
functional networks.

The methods described above are compelling
because of their simplicity. Nevertheless, it
should be noted that the correlation-based mea-
sures of inter-subject/inter-session reproducibil-
ity reveal only where in the brain is involved
in processing natural stimuli, but not how an
activated voxel is involved or what information
it encodes. To answer these questions, we should
address the stimulus-response relationship (or
neural coding) at each voxel [53]. As mentioned
earlier, the complexity of natural stimuli requires
a model to be able to unpack the stimuli into can-
didate features, which are individually or collec-
tively represented by a voxel. Although it remains
to be fully developed, a promising method, as ad-
vocated in recent studies [54–56], is to use brain-
inspired deep neural networks as feature models
to address neural coding with natural stimuli.

The use of natural visual or auditory stimuli is
emerging as a new paradigm for fMRI. It places
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new challenges and opportunities for using fMRI
not only to assign functions to regions (functional
localization) but also to uncover the computa-
tional role of individual locations, regions, or
networks (i.e., neural coding or representation) in
a realistic and dynamic condition being one step
closer to our daily life.

11.11 Summary

To recap, we list the following points in sum-
mary.

• fMRI is based on MRI of hydrogen protons.
• Transverse relaxation following on-resonance

RF excitation depends on T2*.
• Hemoglobin is diamagnetic when oxygenated

but paramagnetic when deoxygenated.
• Increase in the concentration of deoxygenated

hemoglobin shortens T2*.
• The bold oxygenation level–dependent signal

is the vascular response to neural activity.
• Neural activation increases regional cerebral

metabolic rate of oxygen (CMRO2), triggers
vessel dilation, and increases regional cerebral
blood flow (CBF) and cerebral blood volume
(CBV).

• Increase in CBF overcompensates CMRO2

and raises the blood oxygenation level.
• Neural activation increases the BOLD signal.
• fMRI uses the BOLD signal to localize neu-

ral activations, despite the incomplete under-
standing of the BOLD mechanism.

• HRF describes neurovascular coupling as a
linear time-invariant system.

• HRF reflects the BOLD response to an im-
pulse neural response, or an impulse stimulus.

• Task fMRI typically uses event-related or
block-design paradigms.

• Tomap or localize activation, the BOLD signal
is compared against a response model derived
from the experimental paradigm and the HRF.

• A voxel is activated by a stimulus or task, if
its time series is predictable by the response
model.

• Resting state fMRI measures spontaneous
brain activity in the absence of any overt task.

• Seed-based correlation or independent compo-
nent analysis can be used to map resting state
networks.

• Brain activation evoked by naturalistic stim-
uli can be mapped by evaluating intra/inter-
subject reproducibility of the BOLD signal
observed during two separate sessions of the
same stimuli.

• Brain networks evoked by naturalistic stim-
uli can be mapped by evaluating intra/inter-
subject functional connectivity with the BOLD
signal observed during two separate sessions
of the same stimuli.

Homework

Please mark all the correct answers for each of
the following questions. Note that each ques-
tion may have one or more than one correct
answer.

1. Which of the following nuclei is the most
abundant for functional magnetic resonance
imaging?
(A) 1H
(B) 13C
(C) 31P
(D) 19F

2. Hydrogen protons spin at about 300MHz in a
7 Tesla MRI system. Which of the following
is close to the gyromagnetic ratio (MHz T−1)
of 1H spins?
(A) 42.6
(B) 6.53
(C) 40.1
(D) 11.3

3. Which of the following are true about on-
resonance RF excitation?
(A) It transmits an oscillating magnetic field

along the longitudinal direction.
(B) It transmits an oscillating magnetic field

in the transverse plane.
(C) It transmits an oscillating magnetic field

with a frequency that matches the Lar-
mor frequency of the target spin sys-
tems.
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(D) It transmits energy to be effectively ab-
sorbed by the target spin systems.

4. Which of the following contribute to
the blood oxygenation level-dependent
contrast?
(A) Cerebral blood flow
(B) Cerebral blood volume
(C) Cerebral metabolic rate of oxygen
(D) Myelin density

5. Which of the following regional changes oc-
cur accompanying local neural activation?
(A) Arterioles dilate
(B) Blood flow increases
(C) Oxygen consumption increases
(D) Blood oxygenation level increases

6. What happens when the concentration of
deoxy-hemoglobin increases?
(A) Transverse relaxation becomes faster
(B) Transverse magnetization decays faster
(C) Longitudinal relaxation becomes faster
(D) Longitudinal magnetization recovers

faster
7. Which of the following are TRUE about the

hemodynamic response function (HRF)?
(A) It indicates the hemodynamic response

given an impulse input stimulus
(B) It indicates the hemodynamic response

given a sustained block of input stimulus
(C) In HRF, the peak response delays from

the time zero
(D) In HRF, the peak response precedes the

time zero
8. How fast is the fMRI signal typically sam-

pled?
(A) Every millisecond
(B) Every second
(C) Every minute
(D) Every hour

9. To derive the response model (or design ma-
trix) for the BOLD time series analysis, one
needs to
(A) Convolve the stimulus paradigm with

the hemodynamic response function
(B) Multiply the stimulus paradigm with the

hemodynamic response function
(C) Add the stimulus paradigm with the

hemodynamic response function
(D) None of the above

10. In the block design, what would be a typical
block duration?
(A) 30 seconds ON vs. 30 seconds OFF
(B) 30 milliseconds ON vs. 30 milliseconds

OFF
(C) 30 minutes ON vs. 30 minutes OFF
(D) None of the above

11. Which of the following are TRUE about rest-
ing state fMRI?
(A) It is used to report instrumental noises

from the MRI scanner
(B) It is used to measure spontaneous brain

activity in the absence of overt tasks or
stimuli

(C) It is used to measure fluctuations in
membrane potentials around −70 mV

(D) None of the above
12. Functional connectivity as observed with

resting state fMRI refers to?
(A) Temporal correlations between the sig-

nals observed from different brain loca-
tions

(B) Anatomical connections between differ-
ent brain locations

(C) The relationship between neural and
vascular signals in the brain

(D) None of the above
13. When applied to resting state fMRI data,

independent component analysis
(A) Separates brain networks without speci-

fying a seed location
(B) Assumes brain networks are spatially

independent of one another
(C) Shows where in the brain is at rest
(D) None of the above

14. To map brain activations with a continuous
period of naturalistic stimuli, one can
(A) Calculate the voxel-wise correlation be-

tween the fMRI signals from a subject
during two repeated sessions of the same
stimuli

(B) Calculate the voxel-wise correlation be-
tween the fMRI signals from two sub-
jects during the same stimuli

(C) Use a response model derived from
convolving a boxcar function with the
canonical HRF
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(D) Calculate the seed-based correlation
based on the fMRI signals recorded
from a single session
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12Photoacoustic Tomography of Neural
Systems
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Abstract

Neuroscience has become one of the most
exciting contemporary research areas with
major breakthroughs expected in the coming
decades. Modern imaging techniques have
enabled scientific understanding of the
neural system by revealing anatomical,
functional, metabolic, and molecular in-
formation about the brain. Among these
techniques, photoacoustic tomography (PAT),
drawing more and more attention, is playing
an increasingly important role in brain
studies, thanks to its rich optical absorption
contrast, high spatiotemporal resolution, and
deep penetration. More importantly, PAT’s
unique scalability empowers neuroscientists
to examine the brain at multiple spatial
scales using the same contrast mechanism,
bridging microscopic insights to macroscopic
observations of the brain. In this chapter, we
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review the principles of PAT, present the
major implementations, and summarize the
representative neuroscience applications. We
also discuss challenges in translating PAT to
human brain imaging and envision its potential
promise.
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12.1 Introduction
to Photoacoustic
Tomography

Photoacoustic tomography (PAT), also known as
optoacoustic tomography (OAT), refers to cross-
sectional or three-dimensional (3D) imaging of
a target, based on the photoacoustic (PA) effect.
Although Alexander Graham Bell firstly reported
the PA effect in 1880 [1], the development of PAT
took off in the early 2000s following the advances
in ultrasonic transducers, computers, and lasers.
Typically, in PAT, non-ionizing laser pulses (ps–
ns pulse width) are directed to the target (when
microwave or radio-frequency pulses are used,
the technology is referred to as thermoacoustic to-
mography). Some of the delivered optical energy
is absorbed by the target and converted into heat.
The heat then induces a pressure rise through
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Table 12.1 Comparison of PAT with deep-tissue (>2 mm) imaging modalitiesa [27–29]

Modalityb
Temporal
resolution

Spatial
resolution Throughput

Sensitivity
(moles of
detected
substance)

Soft-tissue
contrast

Functional
contrast

Ionizing
radioactivity

X-ray CT 0.1 s 30–
100 μm

Low 10−6 Low Low Yes

MRI Seconds to
minutes

50–
200 μm

Low 10−9–10−6 High Moderate None

PET/SPECT 0.3 s 1–2 mm Low 10−15–
10−14

NA High Yes

US
(operating
at 5 MHz)

ms 100–
200 μm

High 10−8 Moderate Moderate None

DOT ms Poor:
One-third
of imaging
depth

High 10−12 Low High None

PAT
(operating
at 5 MHz)

50 μs 100–
200 μm

High 10−12 High High None

aThe high-resolution optical imaging techniques, such as multiphoton microscopy and optical coherence tomography,
cannot penetrate more than 2 mm and thus are not listed in the table
bX-ray CT X-ray computed tomography,MRI magnetic resonance imaging, PET positron emission tomography, SPECT
single-photon emission computed tomography, US ultrasound, DOT diffuse optical tomography

thermoelastic expansion. The pressure rise propa-
gates as an ultrasonic wave, which is referred to as
a PA wave. The PA wave is detected by ultrasonic
transducers to form an image by a computer.

PAT is a hybrid imaging technique that relies
on two forms of energy—optical and acoustic
energy. PAT combines the rich contrasts of op-
tical absorption with the high spatial resolution
of ultrasound detection for deep imaging in the
optical quasidiffusive and diffusive regimes. In
Table 12.1, PAT is compared with other major
biomedical imaging modalities, including both
optical and non-optical approaches.

PAT inherits the advantages of both optical
imaging and ultrasound imaging. First, PAT is
sensitive to the optical absorption of molecules.
By preferentially exciting different molecules
with carefully selected optical wavelengths,
PAT reveals optical contrasts based on the
chemical compositions. Taking advantage of
the endogenous absorption of hemoglobin,
cytochrome, and DNA/RNA, for example,
PAT offers anatomical,functional, metabolic,

and histologic imaging [2–13]. By exploiting
exogenous contrasts, including organic dyes,
proteins, and nanoparticles, PAT can perform
molecular imaging [14–26]. Second, PAT directly
detects acoustic waves induced by the optical
excitation, regardless of whether the photons
are ballistic or scattered/diffused; thus PAT
achieves far greater penetration than pure optical
microscopy. More importantly, acoustic waves
are much less scattered inside biological tissue
(about three orders of magnitude weaker than
optical scattering on a per unit path length basis);
therefore, PAT can provide orders of magnitude
higher spatial resolution in deep tissue (>2 mm)
than pure optical imaging technology. In addition,
the image resolution and imaging depth of
PAT are scalable with the ultrasonic frequency
within reach of diffuse photons. As the ultrasonic
central frequency and bandwidth increase, spatial
resolution improves at the expense of penetration.
PAT has demonstrated high-resolution imaging
at scales ranging from organelles to small-animal
whole bodies and human organs.
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12.2 Photoacoustic Generation
and Propagation

12.2.1 Initial Photoacoustic Pressure

In optical excitation, there are two important
timescales—thermal relaxation time and stress
relaxation time. The thermal relaxation time
characterizes the heat dissipation of the absorbed
optical energy by thermal conduction, which can
be approximated by

τth = d2c

αth
, (12.1)

where αth is the thermal diffusivity of the material
(1.4 × 10−3 cm2 s−1 for soft tissue) and dc is
the targeted spatial resolution. If the laser pulse
width is much shorter than τ th, the excitation
is said to be in thermal confinement, where the
heat conduction is negligible during the optical
excitation. For example, for a laser pulse width
of 20 ns, the thermal diffusion length during
the pulse period is less than 0.1 μm, which is
much less than the spatial resolution that most
PAT systems can achieve. Therefore, the thermal
confinement condition is easily satisfied in PAT.

The stress relaxation time characterizes the
pressure propagation, which can be estimated by

τs = dc

vs
, (12.2)

where vs is the speed of sound (1480 m s−1 in
water). Similarly, if the laser pulse width is much
shorter than τ s, the excitation is said to be in stress
confinement, where the stress propagation is neg-
ligible during the laser pulse. Under the stress
confinement condition, thermoelastic pressure in
the object can build up rapidly [30]. For example,
for PAT with a spatial resolution of 150μm, τ th is
0.16 s and τ s is 100 ns. Typically, the laser pulse
width in PAT is 1–20 ns, and thus both the thermal
confinement and stress confinement are satisfied.

Upon a laser pulse excitation, the fractional
volume expansion of the object dV/V can be
expressed as

dV

V
= −κp + βT , (12.3)

where κ is the isothermal compressibility
(5 × 10−10 Pa−1 for soft tissue or water); β
is the thermal coefficient of volume expansion
(4 × 10−4 K−1 for muscle); p is the pressure
change in Pa; and T is the temperature change in
K.

When both the thermal and stress confinement
conditions are satisfied, the fractional volume ex-
pansion is negligible and the initial pressure rise
p0 can be derived from Eq. (12.3):

p0 = βT

κ
. (12.4)

The local temperature rise can be calculated as

T = ηthAe

ρCV
, (12.5)

where Ae is the local energy deposition density
(J m−3), ηth is the percentage that is converted
to heat, ρ is the mass density (1000 kg m−3 for
soft tissue and water), and CV is the specific heat
capacity at a constant volume (4000 J (K Kg)−1

for muscle). The isothermal compressibility κ can
be expressed as

κ = CP

ρv2sCV
, (12.6)

whereCP is the specific heat capacity at a constant
pressure in J (K Kg)−1. We define the Grüneisen
parameter (dimensionless) as

Γ = β

κρCV
= βv2s

CP
. (12.7)

Then Eq. (12.4) can be rewritten as

p0 = Γ ηthAe, (12.8)

or

p0 = Γ ηthμaF, (12.9)
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where μa is the optical absorption coefficient
(cm−1) and F is the local optical fluence (J cm−2).

12.2.2 General Photoacoustic
Equation

The acoustic pressure,p
(
⇀
r , t
)
, at location

⇀
r and

time t, in an acoustically homogenous medium is
described by the following general photoacoustic
equation:

(
∇2 − 1

v2s

∂2

∂t2

)
p
(
⇀
r , t
)

= − β

κv2s

∂2T
(
⇀
r , t
)

∂t
,

(12.10)

where T is the temperature rise. The left-hand
side of Eq. (12.10) describes the wave propaga-
tion, and the right-hand side represents the source
term.

In thermal confinement, the temperature

change caused by a heating source, H
(
⇀
r , t
)
,

follows the thermal equation

ρCV

∂T
(
⇀
r , t
)

∂t
= H

(
⇀
r , t
)
, (12.11)

where H
(
⇀
r , t
)
is the heating function defined

as the converted thermal energy per unit volume
per unit time; thus it is related to the local optical
power depositionAp byH= ηthAp and to the local
optical fluence rate ∅ by H = ηthμa∅.

Substituting Eq. (12.11) into Eq. (12.10), we
can get the photoacoustic equation below:

(
∇2 − 1

v2s

∂2

∂t2

)
p
(
⇀
r , t
)

= − β

CP

∂H
(
⇀
r , t
)

∂t
.

(12.12)

The source term on the right-hand side of Eq.
(12.12) is related to the first time derivative of the

heating source, H
(
⇀
r , t
)
; thus only time-variant

heating produces a pressure wave, whereas time-
invariant heating does not.

12.2.3 General Forward Solution

The forward solution for the general photoacous-
tic equation, shown in Eq. (12.10), can be ob-
tained through the Green function approach. In
general, the solution to Eq. (12.10) can be ex-
pressed as

p
(
⇀
r , t
)

=
∫ t+

−∞
dt ′
∫
d
⇀
r

′
G
(
⇀
r , t;⇀r ′

, t ′
)

β

κv2s

∂2T
(
⇀
r , t
)

∂t
,

(12.13)
where

⇀
r

′
and t

′
are the source location and

time, respectively. The Green function, in infinite
space, is given by

G
(
⇀
r , t;⇀r ′

, t ′
)

=
δ

(
t − t ′ −

∣∣∣
⇀
r−⇀

r
′∣∣∣

vs

)

4π
∣∣∣
⇀
r − ⇀

r
′∣∣∣

,

(12.14)

which describes an impulse diverging spherical
wave. Please note that a temporal delta function
is translated to a step heating function, because
the source term of the photoacoustic equation
is proportional to the first time derivative of
the heating function, as shown in Eq. (12.12).
A spatial delta function in the source term
simply represents a point acoustic source. In
other words, the Green function describes the
response of a point absorber to a step heating
function.

In thermal confinement, substituting Eqs.
(12.11) and (12.14) into Eq. (12.13) yields

p
(
⇀
r , t
)

= β

4πCP

∂

∂t

∫
d
⇀
r

′ 1∣∣∣
⇀
r − ⇀

r
′∣∣∣

H

⎛

⎜⎝
⇀
r

′
, t −

∣∣∣
⇀
r − ⇀

r
′∣∣∣

vs

⎞

⎟⎠ .

(12.15)

The heating function can be written as the
product of a spatial absorption function and a tem-
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poral illumination function under the condition of
thermal confinement as in Eq. (12.16):

H
(
⇀
r

′
, t ′
)

= Hs

(
⇀
r

′)
Ht

(
t ′
)
. (12.16)

If Ht(t
′
) = δ(t

′
), the delta heating response of

an arbitrary absorbing object can be expressed as

p
(
⇀
r , t
)

= 1

4πv2s

∂

∂t

[
1

vst

∫
d
⇀
r

′
p0

(
⇀
r

′)

δt

⎛

⎜⎝ t −
∣∣∣
⇀
r − ⇀

r
′∣∣∣

vs

⎞

⎟⎠

⎤

⎥⎦ .

(12.17)

12.3 Photoacoustic Detection
and Image Reconstruction

12.3.1 Photoacoustic Detection

The propagating PA waves can be detected by
an ultrasonic transducer or transducer array for
image reconstruction. Because the ultrasonic
transducer serves only as an acoustic receiver
while the transmission efficiency is not important,
the detector for PA measurement can be specially
designed for optimized detection sensitivity and
bandwidth. Till now, a variety of piezoelectric
ultrasonic transducers and optical-acoustic
detectors have been used for PA measurement.
The piezoelectric-based detectors, which are
most widely used in PAT, have low thermal noise
and good sensitivity and provide a wide range of
frequency selection ranging from low megahertz
to hundreds of megahertz. The piezoelectric
transducers are also flexible for fabrication
into arrays with different geometry, including
linear, planar, circular, and spherical shapes.
Optical-acoustic detectors are often based on
PA-pressure-induced displacement or refractive
index changes. Optical-acoustic detectors, such
as Fabry-Perot ultrasound sensors and microring
resonators, are easy to be miniaturized for
endoscopic PA applications. Typically, optical
sensors have lower sensitivity per unit area

than the piezoelectric transducers. However, the
sensitivity of the piezoelectric transducer drops as
its element size decreases, whereas the sensitivity
of an optical detector is generally independent of
the element size. The optical sensors can offer
higher sensitivity when the element size is below
a breaking-even point. For example, given the
sensitivity of Fabry-Perot sensors and PVDF-
based transducers reported in the literature, it
shows that the breaking-even point lies at 1 mm
diameter for a 20 MHz bandwidth.

12.3.2 General Image Reconstruction

According to the PA generation theory, the ini-
tial PA pressure at position −→

r , excited by a
temporal delta pulse δ(t)H

(−→
r
)
, is p0

(−→
r
) =

Γ
(−→
r
)
H
(−→
r
)
. Then Eq. (12.12) can be written

as

(
∇2 − 1

v2s

∂2

∂t2

)
p
(
⇀
r , t
)

= −p0
(−→
r
)

v2s

dδ(t)

dt
.

(12.18)

As shown in Fig. 12.1, here we use the
spherical geometry (ultrasonic detectors are
arranged on a spherical shell) as an example.
The pressure received by the ultrasonic detector
at −→

r0 is p
(−→
r0 , t

)
. For three common imaging

geometries—spherical, planar, and cylindrical
surfaces—the initial pressure p0

(−→
r
) =

p
(−→
r , t = 0

)
can be recovered using a universal

back-projection (UBP) formula:

p0
(−→
r
) =

∫

Ω0

b
(−→
r0 , t = ∣∣−→r − −→

r0
∣∣) dΩ0

Ω0
,

(12.19)

where b
(−→
r0 , t

) = 2p
(−→
r0 , t

) − 2t
∂p(−→r0 ,t)

∂t
is the

back-projection term related to the measurement
at position −→

r0 , 	0 is the solid angle of the whole
surface S, and d	0 is the solid angle subtended
by the detection element. A rigorous proof of Eq.
(12.19) for the three common geometries can be
found in Ref. [31].
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Fig. 12.1 In the measurement, an ultrasonic transducer
at position −→

r0 on the surface S receives PA signals emitted
from the source at−→r ′

. In reconstruction, a quantity related
to the measurement at−→r0 projects backward on a spherical
surface with respect to position −→

r0

The Eq. (12.19) reconstruction back projects
the quantity b

(−→
r0 , t

)
to a spherical surface cen-

tered at position −→
r0 . The first time derivative

term 2t
∂p(−→r0 ,t)

∂t
is a ramp filter k in the frequency

domain, which suppresses the low-frequency sig-
nals and amplifies the high-frequency signals. In

practice, when k
∣∣−→r − −→

r0
∣∣ � 1, t

∂p(−→r0 ,t)
∂t

�
p
(−→
r0 , t

)
; thus we have b

(−→
r0 , t

) ≈ −2t
∂p(−→r0 ,t)

∂t
.

In other words, the high-frequency components
of the PA signals are the major components in
the reconstruction of the initial acoustic pressure
inside the tissue.

In practice, the space around the tissue sample
is sometimes limited for ultrasound detection, i.e.,
limited-view PAT. For example, we can only use a
half-spherical coverage to image a human breast,
where the solid angle for each detector on the
half-spherical surface with respect to a location
inside the breast is less than 4π and may also
vary at different positions. For sources at different
positions but with the same initial pressures, the
reconstructed signal amplitudemay vary at differ-
ent positions, resulting in reconstruction distor-
tion. A straightforward way to compensate for the
reconstruction distortion due to the limited view
is to normalize the reconstruction at each position

by a total solid angle as shown in Eq. (12.23). A
detailed study on the reconstructions in limited-
view PAT can be found in Ref. [32].

Equation (12.19) is a unified and exact time-
domain back-projection algorithm for the three
common measurement geometries with the as-
sumption of constant speed of sound (SOS) prop-
agation from the sources to the detectors. It has
to be pointed out that significant acoustic inho-
mogeneity in the acoustic propagation path may
introduce reconstruction artifacts. To date, many
approaches, such as iterative SOS corrections and
reconstructionwith two different speeds or amea-
sured SOS map, have been developed to address
the SOS heterogeneity. Details regarding these
methods can be found in Refs. [29, 33, 34].

Other inverse reconstruction methods, includ-
ing time-reversal reconstruction and iterative re-
construction, have also been widely used, and the
details can be found in Refs. [35–46].

12.4 Implementations
of Photoacoustic
Tomography

PAT system can be classified according to
different attributes, as shown in Fig. 12.2 [47].
Based on the image formation methods, PAT has
two primary incarnations: inverse-reconstruction-
based photoacoustic computed tomography
(PACT) and focused-scanning-based photoacous-
tic microscopy (PAM). Initially, single-element
ultrasonic transducers were used in both PACT
and PAM [48–50]; later multi-element ultrasonic
transducer arrays were introduced to improve
the system performance [51–55]. PAT has
demonstrated anatomical, functional, metabolic,
molecular, and histologic contrasts of the
vasculature, hemodynamics, oxygen metabolism,
neural activities, biomarkers, and gene expression
[9, 12, 56–65]. PAT can be implemented with
various footprints, including benchtop, handheld,
endoscopic, and intravascular systems [66–72].
PAT offers multi-dimensional imaging, covering
space, time and excitation wavelengths [73–75].

Moreover, in most PAT implementations, the
spatial resolution is determined by the central
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Fig. 12.2 Classification of PAT systems [47]

Fig. 12.3 PAT scales its spatial resolution with the desired penetration depth [28, 47]

frequency and bandwidth of the acoustic detec-
tion, which are selected mainly according to the
desired penetration and hence the expected fre-
quency range of the PA signals that have survived
the tissue’s acoustic attenuation. The higher the
central frequency and the broader the bandwidth,

the better the spatial resolution but the shallower
the penetration. Thus, as shown in Fig. 12.3,
such high scalability enables PAT to scale spatial
resolutions with the desired penetration depths
in tissue, while a high can be maintained. As
a rule of thumb, the desired depth-to-resolution
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ratio is on the order of 200. PAT has achieved a
penetration up to 7 cm in depth [76]. The finest
resolution that PAT has demonstrated is 90 nm
[77].

PAT provides multiscale imaging from
organelles to human organs with consistent
optical absorption contrast. By detecting the
optical absorption of biomolecules, PAT has
revealed versatile contrasts including both
the endogenous and exogenous contrasts.
Endogenous contrasts are naturally presented
inside the tissue, which do not perturb the
original microenvironment and are nontoxic.
The absorption spectra of the major endogenous
absorbers are summarized in Fig. 12.4 [47].
Thanks to their unique absorption features,
label-free PAT has so far successfully imaged
DNA/RNA, cytochromes, bilirubin, hemoglobin,
myoglobin, melanin, lipid, water, and glucose.

Hemoglobin is the most important and most
commonly used endogenous contrast in PAT,
which provides more than 100:1 contrast between

Fig. 12.4 Absorption spectra of common endogenous
contrast agents in biological tissue at normal concentra-
tions [47]. DNA and RNA, 1 g L−1 in cell nuclei; bilirubin,
12 mg L−1 in blood; oxy-hemoglobin (HbO2) and deoxy-
hemoglobin (HbR), 2.3 mM in blood; oxy-myoglobin
(MbO2) and reduced myoglobin (MbR), mass concentra-
tion 0.5% in skeletal muscle; lipid, volume concentration
20% in tissue; water, 80% volume concentration in tissue;
melanin, 14.3 g L−1 in medium human skin

blood vessels and background tissue in the
visible light region. Hemoglobin has two forms:
oxy-hemoglobin and deoxy-hemoglobin, which
have different absorption spectra (Fig. 12.4). By
measuring the optical absorption of hemoglobin
at two wavelengths, we can estimate the relative
concentrations of the two forms of hemoglobin
in blood based on the following equations:

μa (λ1) = ln 10 [εox (λ1) Cox + εde (λ1) Cde ] ,
(12.20)

μa (λ2) = ln 10 [εox (λ2) Cox + εde (λ2) Cde ] ,
(12.21)

where μa is the measured optical absorption; λ1
and λ2 are the two wavelengths used in the
measurement; εox and εde are the molar extinction
coefficients of oxy-hemoglobin and deoxy-
hemoglobin, respectively; and Cox and Cde are
the molar concentrations of oxy-hemoglobin and
deoxy-hemoglobin, respectively.

Then the concentrations of oxy-hemoglobin
and deoxy-hemoglobin can be computed as

Cox = 1

ln 10

εde (λ2) μa (λ1)− εde (λ1) μa (λ2)

εde (λ2) εox (λ1)− εde (λ1) εox (λ2)
,

(12.22)

Cde = 1

ln 10

εox (λ2) μa (λ1)− εox (λ1) μa (λ2)

εde (λ2) εox (λ1)− εde (λ1) εox (λ2)
,

(12.23)

Thus, the oxygen saturation of hemoglobin
and total hemoglobin concentration are

sO2 = Cox

Cox + Cde
, (12.24)

CHb = Cox + Cde, (12.25)

By imaging the hemoglobin in red blood cells,
PAT has measured important hemodynamic pa-
rameters, such as total hemoglobin concentration,
the oxygen saturation of hemoglobin, blood flow
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velocity, and metabolic rate of oxygen [56, 78–
89]. Therefore, PAT is capable of functional and
metabolic imaging.

The near-infrared (NIR) light (from 700 to
1100 nm, the tissue’s “NIR optical window”) is
least attenuated by biological tissues, because
of the relatively low optical absorption of
hemoglobin, melanin, and water. Optical scat-
tering in biological tissues decreases with longer
wavelengths. Therefore, NIR light provides PAT
with the deepest penetration. According to Eq.
(12.9), the low optical absorption reduces PA
signals if the optical fluence is held constant,
resulting in a low detection sensitivity at depths.
However, exogenous contrast agents, such as
micro/nanoparticles, have much larger absorption
cross sections in the NIR region, which leads to
stronger optical absorption and thus stronger
PA signals. So far, a great variety of exogenous
contrast agents have been explored by PAT,
including dye-loaded microbubbles, organic
dyes, micro/nanoparticles, and reporter gene
products. These agents have been used in PAT for
molecular, genetic, and chemical imaging. Com-
pared with endogenous molecules, exogenous
contrast agents provide several advantages [90].
First, the structures and chemical and optical
properties of exogenous contrast agents can
be specifically engineered to enhance imaging
contrast and detection sensitivity and to suppress
the background signal with optimal excitation.
Second, conjugated with targeting agents (e.g.,
antibodies), exogenous contrast agents can
selectively bind to cell surface receptors for
tumor cell detection. Third, exogenous contrast
agents can be engineered to be light or ultrasound
sensitive for targeted drug/chemical delivery and
therapy. When selecting a contrast agent for a
specific application, one must carefully consider
its absorption spectrum, toxicity, optical stability,
size, shape, composition, surface chemistry, and
targeting moieties [91].

12.4.1 Photoacoustic Computed
Tomography

When PAT is implemented in the form of com-
puted tomography, a broadened laser beam illu-
minates the tissue surface. An ultrasonic trans-
ducer array is typically placed outside the tissue to
receive the emitted acoustic waves. The received
PA signals are then amplified and digitized by
a data acquisition system. Finally, inverse re-
construction yields a tomographic image, which
maps the original optical energy deposition of the
tissue. PACT has been primarily configured in
four detection geometries: linear, circular, spheri-
cal, and planar geometry, or their scanning equiv-
alents (Fig. 12.5).
Linear array-based PACT (LA-PACT) is

widely used for pre-clinical imaging and clinical
translations [93–97]. The linear ultrasonic trans-
ducer array is relatively low cost, commercially
available with a wide bandwidth selection, and
convenient to use with handheld operations. The
pre-clinical or clinical ultrasound imaging system
can be converted into LA-PACT by adding a
laser excitation source, and then it can provide
both ultrasonic and optical contrasts. LA-PACT
(1–5 MHz frequency range) has imaged tissues
deep to 7 cm [76] (Fig. 12.6a) and noninvasively
detected sentinel lymph nodes in breast cancer
patients [98] (Fig. 12.6b). A key drawback of the
LA-PACT is the limited detection view, which
could result in missing detecting features that are
perpendicular to the linear array. This problem
can be addressed by either adding acoustic
reflectors [99–101] or rotationally scanning the
linear array to increase the view angle coverage
[102, 103].
Circular/ring array-based PACT (RA-PACT)

or its scanning equivalent was first explored in
2003, which demonstrated the functional PA
imaging of the rodent brain functions through an
intact scalp for the first time [48]. Following
this first functional PACT, the PA field has
experienced rapid growth. RA-PACT provides 2π
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Fig. 12.5 Implementations of PACT [92]. (a) A linear
array-based PACT system, where optical fiber bundles
flank a linear ultrasonic array for light delivery. (b) A
circular/ring array-based PACT system, where the laser
beam is broadened and homogenized by an engineered
diffuser for illumination and the PA waves are received

laterally with 2π in-plane coverage. (c) A hemispherical
array-based PACT system. (d) A planar array-based PACT
system, where a 2D Fabry-Perot interferometer is used as
the planar ultrasonic detector array. The PA signals are
detected by raster scanning an interrogation beam over the
sensing plane of the interferometer

Fig. 12.6 (a) PA imaging of a blood-containing tube
in chicken tissue, where the overlaid PA and ultrasound
image reveals the tube at 7 cm depth. Laser fluence,
19 mJ cm−2 at 650 nm [76]. (b) Dual-modality PA and

ultrasound imaging for noninvasive sentinel lymph node
(SLN) detection in patients with breast cancer, where the
co-registered PA-ultrasound image shows the SLN and
biopsy needle. Laser fluence, 10 mJ cm−2 at 650 nm [98]

angular in-plane coverage, effectively eliminating
the limited-view artifacts [51, 104–109]. The
state-of-the-art RA-PACT, equipped with a 512-
element full-ring ultrasonic transducer array, one-
to-one mapped amplification and digitization,
and advanced reconstruction algorithm, yields
superior performance with deep penetration, high
spatiotemporal resolution, and full-view fidelity
[29]. It has imaged in vivo whole-body dynamics
of small animals (Fig. 12.7a) and revealed 3D
angiographic structures and tumors in human
breasts within a single breath hold (Fig. 12.7b)
[29, 110].

Spherical array-based PACT (SA-PACT) or
its scanning equivalent has also been developed
for imaging both small animals [111, 112] (Fig.
12.8a, b) and human organs [113, 114] (Fig.
12.8c, d). The key advantage of RA-PACT is
that it can provide near isotropic resolution in
all directions within the field of view (FOV), if
dense spatial sampling is satisfied [114–119].
Due to either the limited number of elements or
limited view coverage of the array itself, SA-
PACT scans the array around the tissue object
to achieve dense spatial sampling, sacrificing the
temporal resolution [119, 120]. Typically, SA-
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Fig. 12.7 (a) Small-animal whole-body PACT of the mouse. Scale bar, 5 mm [29]. (b) Single-breath-hold PACT of
cancerous breasts, where the tumors are identified by dashed circles. Scale bar, 1 cm [110]

Fig. 12.8 (a) In vivo whole-body SA-PACT of a mouse.
Scale bar, 3 mm [111]. (b) In vivo whole-body SA-PACT
showing the internal organs of a mouse. Scale bar, 5 mm

[112]. (c) SA-PACT of a human palm. Scale bar, 2 cm
[113]. (d) SA-PACT of human breasts (back-to-back im-
ages, left breast on the right). Scale bar, 5 cm [114]

PACT requires an open aperture on the spherical
detection surface for light delivery; thus, the
solid angle of detection is slightly less than
4π . Particularly for human breast imaging, the
detection surface is in a hemispherical form with
a solid angle of at most 2π .
Planar array-based PACT (PA-PACT) has

been implemented using a 2D Fabry-Perot (FP)
interferometer as the acoustic sensor [121–128].
The focused interrogation beam raster scans over
the surface of the FP interferometer to record

the PA waves reaching the sensing plane. This
configuration is equivalent to scanning a single-
element transducer over the detection planewith a
sensing area equaling the size of the interrogation
beam. The FP sensor is transparent and can be
placed directly above the tissue without blocking
the excitation laser. The frequency spectrum of an
FP sensor is primarily determined by the sensor
thickness. Moreover, the FP sensor has a much
higher sensitivity to measure the low-frequency
PA signals than that of the resonant piezoelectric



360 L. Li et al.

Fig. 12.9 (a) PA-PACT images of a tyrosinase-
expressing K562 tumor-bearing mouse. The tumor is
shown in yellow, and the blood vessels are shown in gray.
Top, x-y projection image; bottom, y-z projection image
[127]. (b) PA images of the vasculature in the mouse
brain. A, superior sagittal sinus; B, transverse sinus; C,

inferior cerebral vein. Top, x-y projection image; bottom,
y-z projection image [130]. (c) PA-PACT images of human
peripheral limb vessels. Top left, y-z projection image;
top right, x-y projection image; bottom, slice image as
indicated by the dashed line in the top right panel [129]

detectors. For planar geometry implementation,
the FP sensor is preferred over a 2D piezoelectric
transducer array, providing a larger number of
elements and higher detection sensitivity. The
state-of-the-art PA-PACT has demonstrated high-
quality imaging of both small animals [127]
(Fig. 12.9a, b) and human extremities [129] (Fig.
12.9c).
Spatial resolution of PACT with an ideal full-

view detection configuration is bandwidth lim-
ited. Assuming that a system has a rectangular-
shaped bandwidth with a cutoff frequency fc, the
corresponding point spread function (PSF) can be
expressed as [131]

PSF(R) = k3c

2π2

j1 (kcR)

kcR
, (12.26)

where R is the radial coordinate from the point
of observation, kc = 2πfc

vs
= 2π

λc
, λc is the cor-

responding wavelength at the cutoff frequency,
and j1 is the spherical Bessel function of the first
kind. The full width at half maximum (FWHM)
of the PSF is typically used to quantify the spatial
resolution. It can be obtained that 3j1(x)

x
= 0.5,

when x= 2.5. Then the FWHM can be computed
as

WFWHM = 2 × 2.5

kc
= 2 × 2.5

2π
λc ≈ 0.8λc,

(12.27)

For the planar and spherical geometry, the
resolutions are nearly isotropic at the center of the
FOV, which can be estimated using Eq. (12.27).
For the linear and circular geometry, the axial
and lateral resolutions in the imaging plane can
be derived from Eq. (12.27). And the elevational
resolution for linear and circular geometry, deter-
mined typically by cylindrical acoustic focusing,
can be written as

FWHMele ≈ 0.71λ0
NA

, (12.28)

where λ0 is the acoustic wavelength at the central
frequency and NA is the numerical aperture of the
acoustic lens. Typically, the NA of the acoustic
lens is small (0.1–0.2) to offer large enough depth
of focus. The elevational resolution for linear
and circular geometry is worse than the in-plane
resolution.
Spatial sampling in PACT should satisfy

the spatial Nyquist sampling theorem for
reconstruction. Nyquist sampling theorem
requires that the spatial sampling frequency
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Fig. 12.10 Reconstructed
images with different
numbers of spatial
sampling channels. The
images show a mouse liver
acquired using a circular
array-based PACT system

should be at least twice of the highest detected
acoustic frequency. In other words, the sampling
at the edge of the FOV should be dense enough to
guarantee that the spatial sampling interval is no
more than half of the acoustic wavelength. Figure
12.10 shows, for the same FOV, how the number
of spatial samples affects the reconstruction.
For the circular geometry, if the designed FOV
is D in diameter and the central frequency of
the circular/ring transducer is f0, the minimum
number of channels for in-plane sampling can be
computed as

Nmin = πD

λc/2
, (12.29)

where λc is the corresponding wavelength at the
cutoff frequency fc and λc = vs

fc
. For example,

if D = 24 mm, fc = 5 MHz, then the mini-
mum number of channels for in-plane sampling is
Nmin = 502. For an array-based PACT system, if
the number of element is fewer than Nmin, spatial
scanning is necessary to provide a dense spatial
sampling.

For the spherical geometry, the minimum
number of channels for spatial sampling can
be estimated by

Nmin = 4πD2

λ2c
, (12.30)

where D is the diameter of the FOV in 3D and
λc is the corresponding wavelength at the cut-
off frequency fc. For example, if D = 24 mm,
fc = 5 MHz, then the minimum number of chan-
nels for spatial sampling isNmin ≈ 8× 104. Due to
the large number of samples, spherical geometry
PACT typically rotates the transducer array for
dense spatial sampling.

12.4.2 Photoacoustic Microscopy

In PAM, typically, a focused (spherical or cylin-
drical) transducer is employed to receive PA sig-
nals primarily from the transducer’s focal zone.
The focused transducer is used for analog image
reconstruction, by directly projecting the received
time-domain PA signals back into the space do-
main [50, 83, 132, 133]. To maximize the detec-
tion sensitivity, a confocal design of optical illu-
mination and acoustic detection is preferred (Fig.
12.11). The acoustic focusing can be achieved
either by an acoustic lens (spherical or cylindri-
cal) affixed to a flat ultrasonic transducer or by
a curved ultrasonic element surface. With each
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Fig. 12.11 Schematics of representative (a) AR-PAM and (b) OR-PAM

laser pulse, PAM receives a depth-resolved 1D
(A-line) image. Linear scanning across the tissue
surface yields a 2D (B-scan) image. Raster scan-
ning over the tissue yields a 3D image [28, 92,
134, 135]. The axial resolution (depth-resolved
resolution) is determined acoustically. Based on
the lateral resolution, PAM can be further clas-
sified into acoustic-resolution PAM (AR-PAM,
Fig. 12.11a) and optical-resolution PAM (OR-
PAM, Fig. 12.11b).
AR-PAM was first developed in 2005 [49],

providing tens of microns resolution over a
3 mm penetration. As shown in Fig. 12.11a, the
reflection-mode AR-PAM has been implemented
using dark-field illumination and tightly focused
ultrasonic detection. The laser light is firstly
expanded by a conical lens and then focused
through an optical condenser. The light focus
overlaps with the focal spot of the ultrasonic
transducer, forming a confocal configuration.
The laser beam on the tissue surface has a
donut-shaped profile, which effectively reduces
the PA signals from the superficial paraxial
areas. In AR-PAM, the diffused light beam
is broader than the acoustic focus, which
defines the lateral resolution of AR-PAM. AR-
APM has demonstrated functional, anatomical,
and molecular imaging on small animals and
subcutaneous microvasculature imaging on
humans (Fig. 12.12).

OR-PAM was first developed in 2008 [132],
showing single-cell resolution with 1 mm
penetration. As shown in Fig. 12.11b, the
reflection-mode OR-PAM uses tightly focused
laser beam and confocally aligned acoustic
detection, where the optical focus is much tighter
than the acoustic focus. The light beam passing
through the optical-acoustic combiner forms a
diffraction-limited spot on the tissue surface.
The generated acoustic waves are reflected by
the optical-acoustic combiner to the ultrasonic
transducer. Different configurations of OR-
PAM have been implemented for improved
detection sensitivity and imaging speed [74, 83,
138, 139]. OR-PAM is capable of quantitative
imaging of total hemoglobin concentration,
blood oxygen saturation, blood flow velocity,
and metabolic rate of oxygen using hemoglobin
as the endogenous contrast (Fig. 12.13) [6, 56,
85]. OR-PAM has demonstrated anatomical,
functional, molecular, and histological imaging
(Fig. 12.13), using endogenous contrasts (e.g.,
hemoglobin, DNA/RNA, melanoma, etc.) and
exogenous contrasts (e.g., organic dyes, proteins,
and nanoparticles).
Spatial resolution in the axial direction (depth

direction) for both AR-PAM and OR-PAM is
determined by the acoustic bandwidth of the ul-
trasonic detector, which can be expressed as [141]
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Fig. 12.12 In vivo AR-PAM image of (a) the cortical
vasculature of an adult mouse with both the scalp and
skull intact [136], (b) a subcutaneously inoculated B16-

melanoma in a nude mouse [50], and (c) the vasculature
of a human palm [137]. Scale bar, 1 mm

Fig. 12.13 OR-PAM images of (a) the total concentra-
tion of hemoglobin, scale bar, 500 μm, (b) the oxygen
saturation of the hemoglobin in the area indicated by the
dashed box in (a), and (c) the blood flow in the area
indicated by the dashed box in (b) [56]. (d) OR-PAM

image of a thin slice of mouse connective tissue, showing
the erythrocytes (bright red), cytoplasm (pinkish purple),
and collagen (blue) [140]. (e) Label-free histology-like
OR-PAM image of a thin slice of cancerous breast tissue
[62]

Raxial ≈ 0.88vs
B

, (12.31)

where vs is the speed of sound of the tissue and
B is the one-way acoustic detection bandwidth.
Here we assume that the frequency response of
the ultrasonic detector has a Gaussian profile. The
lateral resolution of AR-PAM is defined by the
acoustic focal spot size, which can be estimated as

RARlateral ≈ 0.71λ0
NA

, (12.32)

where λ0 is the central acoustic wavelength and
NA is the numerical aperture of the focused ultra-
sonic detector. The tight optical focus determines
the lateral resolution of OR-PAM. If illuminated
with a diffraction-limited optical focus, the lateral
resolution of OR-PAM can be expressed as

RORlateral ≈ 0.51λ

NA
, (12.33)

where λ is the excitation laser wavelength andNA
is the numerical aperture of the optical focusing
lens.

12.5 Photoacoustic Tomography
for Neural Imaging

Studying how the brain works is a grand chal-
lenge, which will not only benefit fundamental
science but also provide the key to understand-
ing and treating neurological diseases, such as
Alzheimer’s and Parkinson’s disease. Optical mi-
croscopy can only penetrate the first 1–2mm even
in a mouse brain and face a grand challenge for
deep brain imaging. To date, most deep brain
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studies have been based on non-optical imaging
modalities, such as functional MRI (fMRI) and
Doppler ultrasound. With acoustic penetration
and optical contrast, PAT opens a new possibility
for multiscale brain imaging.

12.5.1 Photoacoustic Tomography
of the Brain

12.5.1.1 PAM of the Brain Vasculature
at Single-Cell Resolution

Leveraging the high spatial resolution and high
sensitivity, PAM has provided multi-parametric
images of the mouse brain cortex at single red
blood cell resolution [84, 139, 142]. With the
ultrasonically assisted extraction of the mouse
skull contour, PAM can dynamically focus on the
cortical vessels when raster scanning across the
uneven brain surface. Thus, by one raster scan,
PAM achieves simultaneous quantification of to-
tal hemoglobin concentration (CHb), oxygen sat-
uration of hemoglobin (sO2), and cerebral blood
flow (CBF) at the microvascular level through the
intact skull (Fig. 12.14) [143].

12.5.1.2 Label-Free Histology-Like
PAM of theMouse Brain
and Peripheral Nerves

PAM has 100% sensitivity to optical absorption.
By utilizing the peak absorption wavelengths,
PAM can image biomolecules of interest with
good sensitivity and specificity without label-

ing. With ultraviolet (UV) illumination (266 nm),
label-free PAM has provided histology-like im-
ages of the brain structures, resolving single cell
nuclei, single capillaries, and single axons based
on the DNA/RNA, hemoglobin, and lipid absorp-
tion, respectively (Fig. 12.15) [4, 63]. With NIR
illumination (1210 nm), PAM has imaged pe-
ripheral nerves without any labeling (Fig. 12.15)
[144].

12.5.1.3 Label-Free PACT of theMouse
Brain Structures

Based on the endogenous contrast of hemoglobin,
cytochrome, lipid, and DNA/RNA, label-free
PAT has revealed detailed brain vasculature and
other structures [145]. Taking advantages of the
strong optical absorption of hemoglobin and
deep penetration of low-frequency ultrasound
waves, PACT has imaged the whole mouse
brain vasculature (coronal plane) at 50 μm
spatial resolution in vivo (Fig. 12.16a) [102].
After removing the blood from the brain via
saline perfusion, label-free PACT has revealed
detailed whole brain structures with MR image
quality. Spectral PACT, using visible light,
has clearly identified different brain structures
(horizontal plane), including the olfactory bulb,
neocortex, corpus callosum, hippocampus,
inferior colliculus, and cerebellum, based on the
cytochrome and lipid absorption contrast (Fig.
12.16b) [2]. Using NIR light, a wealth of detailed
brain structures have been revealed in 3D ex vivo
(Fig. 12.16c) [146].

Fig. 12.14 Simultaneously acquired multi-parametric
PAM images of the mouse cortical vasculature through
the intact skull, which map (a) CHb, (b) sO2, and (c)
CBF (both speed and direction) at high spatial resolution,
respectively. The arrows in (b) show a pair of cortical
arteriole and venule with distinct sO2 values. The red and

blue arrows in (c) represent the blood flow directions along
the B-scan axis, and the white arrow shows an arteriole
whose orientation is nearly perpendicular to the B-scan
axis. Imaging wavelengths, 532 nm and 559 nm. Scale bar,
0.5 mm [143]
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Fig. 12.15 Image gallery of features from label-free
PAM images of the mouse brain and peripheral nerves,
based on (a) DNA/RNA absorption at UV light, (b)

hemoglobin absorption at UV light, (c) lipid absorption
at UV light, (d) lipid absorption at NIR light, and (e) both
DNA/RNA and lipid absorption at UV light [63, 144]

Fig. 12.16 (a) PACT image of the whole mouse brain
vasculature (coronal plane, bregma, −1.0 mm). Scale bar,
2 mm [102]. (b) PACT image of the saline-perfused mouse
brain (horizontal plane) at 2.8 mm depth, clearly resolv-
ing the structures of the brain. Illumination wavelength,
620 nm; scale bar, 1 mm; OB, olfactory bulb; Nc, neocor-
tex; CC, corpus callosum; Hp, hippocampus; IC, inferior
colliculus; Cb, cerebellum [2]. (c) 3D PACT images of

the adult mouse brain ex vivo. Illumination wavelength,
740 nm; scale bar, 1 mm; V2MM, secondary visual cortex,
medio-medial; CA1, hippocampal CA1 area; DG, dentate
gyrus; D3V, dorsal third ventricle; ZID, zona incerta dor-
sal; SNr, substantia nigra reticulata; VTA, ventral tegmen-
tal area; IFN, inter-fascicular nucleus; M1, motor cortex
1; CG, cingulum; MCLH, magnocellular lateral hypotha-
lamus; MCPO, magnocellular preoptic nucleus [146]
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12.5.1.4 Spectral PAT for
Neuroimaging

In PAT, employing exogenous contrast agents
can effectively improve the detection sensitivity
and specificity and enhance the imaging contrast
by suppressing the background signals. Labeled
by Congo red, amyloid plaques in an Alzheimer
diseased mouse brain can be visualized by OR-
PAM in vivo through intact skull (Fig. 12.17a,
b) [147]. Assisted by immunochemistry staining
of Tuj1, OR-PAM has imaged densely packed
neurons (Fig. 12.17c) and resolved single neuron
cell bodies, dendrites, and nuclei (Fig. 12.17d)
[148]. PACT has identified U87 glioblastoma
tumors in the rodent brains labeled either by iRFP
or by IRDye800 and peptide (Fig. 12.17e–h) [21,
146, 149]. Combining differential imaging or
frequency lock-in detection with photoswitchable
proteins can significantly improve PACT’s
detection sensitivity (Fig. 12.17i, j) [150–152].
Further, using two different photoswitching
proteins, PACT also achieved quantitative multi-
contrast molecular imaging in the brain (Fig.
12.17j) [150].

12.5.2 Photoacoustic Tomography
of Neural Activities

12.5.2.1 Monitoring Brain
Hemodynamic Responses
at Multiple Scales

First published in 2003, functional PACT im-
aged brain functions of rats through intact scalp
(Fig. 12.18a). Figure 12.18a shows that one-sided
whisker movement activated the hemodynamic
responses in the contralateral side of the brain
[48]. The advanced OR-PAM with a high volu-
metric imaging speed has imaged the brain re-
sponses to the electrical hind paw stimulation
at single capillary resolution in real time (Fig.
12.18b) [139]. Employing two different wave-
lengths, functional OR-PAM has measured the
transient responses to a single visual stimulation
and visualized the process of single RBCs re-
leasing oxygen in the mouse brain (Fig. 12.18c)
[153].

AdvancedOR-PAMwith a head-restrained an-
imal imaging platform has been implemented to
assess cortical hemodynamics in the awake ro-
dent brain at the microscopic level. OR-PAM can
quantitatively characterize the hemodynamic re-
sponses of the mouse brain to isoflurane, includ-
ing diameter-dependent arterial dilation, elevated
blood flow, and reduced oxygen extraction (Fig.
12.19) [58].

12.5.2.2 Mapping Large-Scale Neural
Activities

The high spatiotemporal resolution and whole
brain imaging capability enable PACT to capture
large brain compartments of small animals to
assess large-scale neural activities. PACT has im-
aged the resting-state functional connectivity of
the mouse cortex to map the distributed activity of
cortical circuits (Fig. 12.20a, b) [154]. PACT has
monitored the whole rat brain spontaneous hemo-
dynamic responses and studied the whole brain
functional connectivity (Fig. 12.20c–e) [29]. This
demonstrated the potential of PACT as a high-
resolution imaging tool for studying large-scale
networks of the entire brain.

12.5.2.3 Imaging Brain Diseases
at theWhole Brain Level

Despite the remarkable progress in visualizing
cellular and molecular processes, neuroscience is
still looking for a general theory about how brain
circuit dysfunction can lead to neurological and
neuropsychiatric diseases. With the capability of
monitoring neuronal activity and hemodynamics
at multiple scales, photoacoustic neuroimaging
has shown encouraging results in studying a va-
riety of brain disorders and diseases, including
brain tumors [18, 149–151], traumatic disorders
[155], stroke [156–158], and seizures of various
etiologies [102, 159–161]. For example, PACT
has visualized the propagation of the epileptic
waves during a seizure (Fig. 12.21a–d) [102] and
simultaneously monitored the blood oxygenation
responses at multiple locations inside the brain
(Fig. 12.21e, f) [159].
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Fig. 12.17 (a) OR-PAM image of a mouse brain with
Alzheimer’s disease, acquired at 570 nm. (b) The pro-
cessed dual-contrast OR-PAM image showing the amyloid
plaques in green and the blood vessels in red. Scale bar,
100 μm [147]. (c) OR-PAM image of embryoid body-
derived neurons, stained with anti-neurofilament/HRP-
secondary antibody/DAB. Scale bar, 200 μm. (d) The
close-up image of the dashed box region in (a) showing
clearly resolved nucleus and dendrite. Scale bar, 50 μm
[148]. PACT of iRFP expressing U87 glioblastoma in
the subcortical brain overlaid on (e) histological and (f)
anatomical PA images. Scale bar, 1 mm [21]. (g) Photo-
graph of the excised tumor-bearing mouse brain, where

U87 glioblastoma is highlighted by the dashed circle. (h)
PACT image of the tumor-bearing mouse brain showing
the blood vessels in red and U87 glioblastoma in yellow.
Scale bar, 1 mm [149]. (i) PACT images of the RpBphP1-
expressing U87 tumor in the mouse brain. By subtracting
the OFF image (photoswitchable protein is in the OFF
state) from the ON image (photoswitchable protein is in
the ON state), the tumor is highlighted and background
signals from blood have been suppressed. Scale bar, 2 mm
[151]. (j) Two tumors are differentiated based on the
photoswitching rates of two different photoswitchable
proteins. Scale bar, 2 mm [150]

12.5.2.4 Imaging Brain Glucose
Metabolism

Similar to positron emission tomography (PET)
that is widely used for imaging metabolic rate
of glucose in the brain, PACT can noninvasively
measure the glucose consumption in the mouse
brain at high spatiotemporal resolution. Using

a glucose analog, 2-NBDG, which can diffuse
across the blood-brain barrier and provide exoge-
nous PA contrast, spectral PACT has simultane-
ously imaged both hemodynamic and glucose re-
sponses of a mouse brain to forepaw stimulations
(Fig. 12.22) [57]. Unlike PET, PACT can be used
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Fig. 12.18 PATof brain hemodynamic responses to stim-
ulations. (a) PACT of rat hemodynamic responses to vi-
brational stimulations on the whiskers, showing the in-
creased total hemoglobin concentration in the contralateral
somatosensory cortex [48]. (b) OR-PAM of mouse brain
responses to electrical hind paw stimulations. LH, left
hemisphere; RH, right hemisphere; LHS, left hind paw
stimulation; RHS, right hind paw stimulation [139]. (c)

OR-PAM of single RBC responses to the visual stimu-
lation in the visual cortex. A flashing LED was used to
stimulate the eye (left panel), and transient responses to
a single visual stimulation were measured. The magnitude
of oxygen saturation gradient (‖∇sO2‖), blood flow speed
(vf), and oxygen uploading rate (rO2) increase upon stim-
ulation (right panel). Scale bar in the middle panel, 10 μm
[153]

to monitor brain metabolism over a long period of
time without the ionizing radiation.

12.5.2.5 Visualizing Neural Activities
Using Voltage-/Calcium-
Sensitive Indicators

Previously demonstrated functional PAT of
the brain responses and neural activities is
primarily based on the hemodynamics via the
neurovascular coupling, which is an indirect
measurement of the activities of brain neuron
circuits. Employing voltage-/calcium-sensitive

indicators, such as voltage-/calcium-sensitive dye
or proteins, PAT can image the action potentials
that are direct reflections of neural activities.
Using a voltage-sensitive dye, dipicrylamine
(DPA), spectral OR-PAM has successfully
separated the voltage responses from the
hemodynamic responses in a mouse brain
to the electrical stimulations (Fig. 12.23a–c)
[162]. Combining PACT with transgenic animal
models, such as GCaMP5G zebrafish, high-
resolution imaging of Ca2+ dynamics in neural
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Fig. 12.19 (a) Schematic of functional OR-PAM with a
head-restrained animal imaging platform. PBS, polarizing
beam splitter; NDF, neutral density filter; BS, beam sam-
pler; SMF, single-mode fiber. (b) Hemodynamic and oxy-
gen metabolic responses of the normoxic mouse brain to
isoflurane. CHb, sO2, and blood flow speed in the absence

(OFF) and presence (ON) of isoflurane have been mea-
sured. The white arrows indicate the isoflurane-induced
changes in sO2 and blood flow speed. Scale bar, 500 μm.
(c) Quantitative analysis of the isoflurane-induced changes
in the average CHb, sO2, and flow speed of the feeding and
draining vessels [58]
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Fig. 12.20 (a) PACT of the functional resting-state con-
nectivitymaps in amouse brain cortex, correlationmaps of
the main functional regions (top row), the four subregions
of the somatosensory cortex (bottom row, left panel), and
the three subregions of the visual cortex (bottom row,
right panel). The white circles indicate the seed locations
for the correlation computation. (b) Correlation maps
of functional regions with the corresponding segmented
regions (inset). Dashed black lines are shown for added
visualization. OB, olfactory bulb; L, limbic cortex;M,mo-
tor cortex; SS, somatosensory cortex; PA, parietal cortex;

VI, visual cortex; TE, temporal cortex; RS, retrosplenial
cortex [154]. (c) PACT of the functional resting-state
connectivity maps in a rat whole brain (coronal plane). (d)
Segmentations of different functional regions of the brain.
(e) Correlation matrix of the segmented functional regions
labeled in (d). Hip, hippocampus; M1, primary motor
cortex; M2, secondary motor cortex; RSD, retrosplenial
dysgranular cortex; RSGc, retrosplenial granular cortex;
S1Sh, primary somatosensory-shoulder region; S1HL, pri-
mary somatosensory cortex-hindlimb region; Thal, thala-
mus [29]

circuits across the entire zebrafish brain has been
achieved (Fig. 12.23d, e) [163].

12.5.2.6 Outlook
Overall, PAT is a powerful tool for imaging brain
functions, complementary to other brain imaging
modalities in its contrast mechanism, spatiotem-
poral resolution, speed, and penetration. The in-
creasing applications of PAT in brain reserch and
clinical translations provide strong momentum
for PAT’s development. The exciting research
and translational capabilities of PAT come with
several technical challenges, but none are beyond
reach [1]. For imaging neural activities in the
deep brain, novel voltage-/calcium-sensitive in-
dicators of action potentials need to be found
or engineered. Most of the currently available
voltage/calcium indicators operate in the visible
wavelength range, which limits tissue penetration

[164, 165]. Strong optical absorption of indicators
in the red and NIR spectral ranges is preferred.
In addition, the other characteristics of indica-
tors, such as the voltage-/calcium-sensing mech-
anism, lifetime, and response time, need to be
tailored for optimized PA contrast. NIR bacterio-
phytochromes could be candidates for reporting
action potentials [2]. The major barrier of trans-
lating PAT to adult human brain imaging is the
skull. The adult human skull (5–11 mm thick)
severely attenuates the excitation light and the
emitted PA waves (beyond 1 MHz) and strongly
distorts the PAwaveforms, resulting in low image
quality. A potential solution is to combine PACT
with X-ray CT or MRI, which can provide accu-
rate skull information to correct for the wavefront
distortion [3]. NIR light is still attenuated strongly
by the skull, which hinders imaging the whole
human brain using PACT. As another source of
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Fig. 12.21 (a–d) PACT imaged epileptic activities of
a mouse brain during a seizure at different times after
the injection of 4-aminopyridine solution. The fractional
changes in the PA amplitude are overlaid on the anatomic
image (bregma −1.0 mm). The arrow indicates the in-
jection site and the dashed green arrows indicate the

epileptic wave propagation directions. Scale bar, 2 mm
[102]. (e) PACT images of a mouse brain in horizontal
and coronal planes, respectively. Colored outlines specify
different brain regions. TA, thalamus; PC, parietal cor-
tex; FL, frontal lobe. (f) Changes of the oxy-hemoglobin
and deoxy-hemoglobin concentrations from locations in-
dicated in (e) [159]

non-ionizing radiation, microwaves can also heat
tissues by producing molecular rotations and tor-
sions [166, 167]. The human skull is more trans-
parent to microwaves than to photons. Thermoa-
coustic tomography (TAT) [168–171], utilizing
microwave pulses instead of laser pulses, can
potentially extend the penetration depth beyond
10 cm and enable deep human brain imaging.

Homework

1. Show that the units of the pressure and the
energy density are the same.

2. Estimate the temperature and the initial pres-
sure rises upon short-pulsed laser excitation
of whole arterial blood at the body tempera-
ture, with an optical fluence of 10 mJ cm−2

at 532 nm.
3. Estimate the local initial pressure rise per

one-degree local temperature rise at the body
temperature.

4. Inwater, estimate the fractional PA amplitude
change upon one-degree local temperature
risewith the baseline temperature of (a) 20 ◦C
and (b) 37 ◦C.

5. Given dc = 1 mm or 0.01 mm, compute τ th
and τ s in muscles.

6. Derive the photoacoustic equation shown in
Eq. (12.10).

7. Show that the time reversal of the temporal
function is equivalent to the complex conju-
gation of the temporal spectrum.

8. Use Eq. (12.17) to derive and plot the PA
pressure wave as a function of time observed
outside a sphere excited by (a) a delta pulse
and (b) a Gaussian pulse.

9. Use Eq. (12.17) to derive and plot the pres-
sure wave as a function of time observed
outside a line object excited by (a) a delta
pulse and (b) a Gaussian pulse.

10. The line in Question 9 has a finite length;
please simulate the PA pressure wave de-
tected by (a) a linear transducer array and
(b) a ring array (see the geometry below).
Please reconstruct the PA image using the
forward data from the linear array and the
ring array. Hint: please use the MATLAB k-
wave toolbox for both the forward and recon-
struction simulations. Please download the k-
wave toolbox from http://www.k-wave.org/.

http://www.k-wave.org/
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Fig. 12.22 (a) Chemical structure of 2-NBDG
(C12H14N4O8). (b) Molar extinction coefficients of
2-NBDG, oxy-hemoglobin, and deoxy-hemoglobin.
Fractional changes of the PA amplitudes (shown in color)
acquired at (c) 478 nm and (d) 570 nm in response to
the right paw stimulation (RPS) and left paw stimulation
(LPS), overlaid on the resting-state image (shown in gray).
(e) Spectrally unmixed images showing the fractional

changes of 2-NBDG concentration (shown in blue) and
total hemoglobin concentration (shown in red), overlaid
on the resting-state image at 570 nm (shown in gray).
(d) Relative changes of 2-NBDG and total hemoglobin
concentrations averaged over three mice. Error bars:
standard deviation. The p values were computed from
the paired Student’s t-test between stimulated states and
resting states [57]
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Fig. 12.23 (a) OR-PAM image of the DPA-stained
mouse brain. (b) Time sequence for electrical stimulation.
(c) Voltage (red) and hemodynamic (black) responses of
the brain in the frequency domain. The signal-to-noise
ratios (SNRs) of the voltage and hemodynamic response
peaks are quantified, respectively [162]. (d) Absorption

spectra of calcium-bound and calcium-free GCaMP5G.
(D) PACT (left) and planar epi-fluorescence (right) images
of the zebrafish brain before (15.0 s) and after exposure to
the neurostimulant agent (78.0 and 95.0 s), showing both
PA and fluorescence detected calcium responses [163]

11. For the circular geometry, if the designed
imaging FOV is 25 mm in diameter, to sat-
isfy the spatial Nyquist sampling require-
ment, what is the minimum number of sam-
pling channels for detection at a cutoff fre-
quency of (a) 2.25 MHz and (b) 15 MHz?

12. Under the same conditions in Q.10, please
calculate the minimum number of sampling
channels for the full spherical geometry.

13. Derive Eq. (12.31), assuming the frequency
response of the detector has a Gaussian pro-
file.

14. Assuming you are engineering a “perfect” PA
contrast agent for molecular imaging, please
list all the desired key characteristics and
explain the reasons.
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Abstract

In this chapter, we present the physical and
physiological basics behind EEG and MEG
signal generation and propagation. We first
start by presenting the biophysical principles
that explain how the coordinated movements
of ions inside and outside neuronal cells
result in macroscale phenomena at the scalp,
such as electric potentials recorded by EEG
and magnetic fields sensed by MEG. These
physical principles enforce EEG and MEG
signals to have specific spatial and temporal
features, which can be used to study brain’s
response to internal and external stimuli.
We continue our exploration by developing
a mathematical framework within which EEG
and MEG signals can be computed if the
distribution of underlying brain sources is
known, a process called forward problem.
We further continue to discuss methods that
attempt the reverse, i.e., solving for underlying
brain sources given scalp measurements

B. He (�) · A. Sohrabpour
Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA
e-mail: bhe1@andrew.cmu.edu; sohrab@cmu.edu

L. Ding
Stephenson School of Biomedical Engineering,
University of Oklahoma, Norman, OK, USA
e-mail: leiding@ou.edu

such as EEG and MEG, a process called
source imaging. We will provide various
examples of how electrophysiological source
imaging techniques can help study the brain
during its normal and pathological states.
We will also briefly discuss how combining
electrophysiological signals from EEG
with hemodynamic signals from functional
magnetic resonance imaging (fMRI) helps
improve the spatiotemporal resolution of
estimates of the underlying brain sources,
which is critical for studying spatiotemporal
processes within the brain. The goal of
this chapter is to provide proper physical
and physiological intuition and biophysical
principles that explain EEG/MEG signal
generation, its propagation from sources in
the brain to EEG/MEG sensors, and how
this process can be inverted using signal
processing and machine learning techniques
and algorithms.
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13.1 Introduction

13.1.1 Generation andMeasurement
of EEG andMEG

Although electrical activity recorded from the
exposed cerebral cortex of a monkey was re-
ported in 1875 [1], it was not until 1929 that
Hans Berger, a psychiatrist in Jena, Germany,
first recorded noninvasively rhythmic electrical
activity from the human scalp [2], which has
subsequently known as electroencephalography
(EEG). Since then, EEG has become an important
tool for probing brain electrical activity and aid-
ing in clinical diagnosis of neurological disorders,
due to its excellent temporal resolution in the
order of millisecond. The first recording of mag-
netic fields from the human brain was reported in
1972 by David Cohen at the Massachusetts Insti-
tute of Technology [3], which led to the develop-
ment of magnetoencephalography (MEG). Like
EEG, MEG also enjoys high temporal resolution
in detecting brain electrical activity. EEG and
MEG have become two prominent methods for
noninvasive assessment of brain electrical activ-
ity, providing unsurpassed temporal resolution, in
neuroscience research and clinical applications.

EEG and MEG are considered to originate
from, in principle, the same brain electrical activ-
ity, which are current flows caused by neuronal
excitation. The discharge of a single neuron or
single nerve fiber in the brain generates an ex-
tremely small electric potential or magnetic field,
which cannot be observed over the scalp due to
the background noise.

Instead, the externally recorded EEG and
MEG represent the summation of the electric
potentials and magnetic fluxes generated by
many thousands or even millions of neurons or
fibers when they fire synchronously [4]. In other
words, the intensities of EEG and MEG signals
are determined mainly by the number of neurons
and fibers that fire in synchrony. An anatomic
structure in the human brain, which favors the
neuronal synchrony and summation of electric
potentials or magnetic fields from neuronal
synchrony, is the cortex, which is also in the

vicinity to the scalp where electrical or magnetic
sensors are placed. Due to the separation of the
apical and basal dendrites in pyramidal cells, a
considerable distance exists between the current
sources and sinks, resulting in strong current
dipoles as perceived by EEG and MEG [5].
Additionally, these cells are arranged in parallel
to each other and perpendicular to the cortical
surface, in an arrangement referred to as the
palisade which constructively adds the effect
of smaller current dipoles from individual cells
together, to effectively constitute a strong current
dipole [6]. It is thus believed that EEG and MEG
predominantly detect synchronized current flows
in the cortical pyramidal neurons, which are laid
out perpendicularly to the convoluted cortical
sheet of gray matter [7]. This is schematically
shown in Fig. 13.1.

Dipole models are used more frequently (com-
pared to monopoles and multipoles [7, 8]) to
describe the underlying biophysics of neural ac-
tivity, as they provide an easier physical interpre-
tation of the underlying phenomenon and can be
viewed as an approximate discrete representation
of current density at a mesoscopic level. Fur-
thermore, the electromagnetic fields generated by
multipoles attenuate much faster with distance,
compared to dipoles, inadvertently resulting in
dipole fields dominating EEG and MEG mea-
surements [8, 9]. This is supported by the fact
that the distance between current sources and
sinks is almost neglectable as comparedwith their
distances to the locations where EEG and MEG
signals are being recorded.

The intensities of the scalp EEG range from
0 to 200 μV, which fluctuate mainly in the fre-
quency range of up to 50 Hz. The EEG recording
involves the application of a set of electrodes to
standard positions on the scalp. The most com-
monly used electrode placement montage is the
international 10–20 system, which uses the dis-
tances between bony landmarks of the head to
generate a system of lines which run across the
head and intersect at intervals of 10% or 20%
of their total length. Additional electrodes can
also be introduced according to expanded 10–
20 systems as proposed by the American EEG
Society. Most clinical EEG recordings are up to
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Fig. 13.1 Electrophysiological principles of current
dipoles. Macroscopic phenomena, such as the electric
potential recorded at scalp EEG or magnetic field recorded

at MEG sensors, are due to the summation of many
microscopic quantities such as postsynaptic potentials
of pyramidal cells

32 electrodes, while merits of high-density EEG
recordings have been reported by multiple studies
[4, 10]. A recent recommendation from the work-
ing group of the International Federation of Clini-
cal Neurophysiology suggests using 64 electrodes
or more for source imaging and localization [11].

The difficulty in recording magnetic fields
from the human brain is its strengths that are
weaker than couple of pico-Tesla (pT), which is
about 108 times less than the earth’s geomagnetic
field. MEG recordings were made available due
to the invention of a sensitive magnetic flux
detector, known as the superconducting quantum
interference device (SQUID) [7] (Fig. 13.2). The
frequency range ofMEG is similar to EEG, which
is between 0 and 50 Hz.

While most analysis performed in EEG and
MEG is within the 0–50 Hz band due to the high
concentration of energy within these bands, high-
frequency oscillations (HFOs) have been success-

fully detected and analyzed in scalp recordings
[12–14]. HFOs are typically observed in intracra-
nial recordings and can span a frequency band
of 30–600 Hz and are thought to be involved in
physiological processes such as attention, learn-
ing, and memory, as well as pathological pro-
cesses such as ictogenesis [13]. HFOs, typically
in the range of 80–250 Hz, have been ubiqui-
tously and reliably observed and reported in scalp
recordings, in the recent years [15, 16]. Not only
have these events been reliably detected in non-
invasive scalp measurements, but also HFOs are
traced back to the source space and shown to
correlate well with clinical findings determining
the seizure onset in epilepsy patients [15], en-
couraging researchers and clinicians to consider
HFOs as a potential biomarker for ictogenesis
[17]. While this view has been modified recently
[18], HFOs can be reliably detected in EEG and
MEG, emphasizing that broad spectral informa-
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Fig. 13.2 Schematics ofMEG instrumentation. A single-
channel axial gradiometer and associated SQUID inside a
dewar filled with liquid helium. The bottom depicts the
sensor array of a 306-channel MEG helmet where each
sensor unit contains two orthogonal planar gradiometers
and one magnetometer. (From [20], licensed under CCBY
4.0)

tion can be extracted in noninvasive recordings as
well [6].

In recording systems, while the number of
MEG sensors used is usually different from EEG,
the spatial coverage and layout of MEG sensors
are similar to those for EEG,which are distributed
over a surface in parallel to the scalp surface
(Fig. 13.2). MEG sensors are not necessary to
touch the scalp due to the magnetic permeability
of air, which is also different from EEG. On the
other hand, since the magnetic fields from the
human brain are extremely weak compared with
ambient magnetic fields, MEG recording systems
are much more complicated than EEG recording
systems. The SQUID system is commonly de-
signed not to be sensitive to uniform background
magnetic fields using gradiometers, and MEG
recordings are usually conducted in a magneti-
cally shielded room. Recently the feasibility of a
wearable MEG system was reported for human
use [19], although this technology is still under
development and is currently quite expensive.

In both EEG and MEG signals recorded over
the human head, the major constituents are those

contributed by spontaneous brain electrical activ-
ity and potentials and/or magnetic fields evoked
by external stimuli/events, known as the evoked
potentials and/or (magnetic) fields or event-
related potentials and/or fields (ERPs/ERFs).
Since external stimuli/events can be specifically
designed to evoke targeted functional areas, such
as visual, auditory, and somatosensory cortices,
associated measurements have thus been widely
practiced to study the functions of these areas.
Correspondingly, evoked potentials and/or fields
are the visual evoked potential/field (VEP/VEF),
auditory evoked potential/field (AEP/AEF),
and the somatosensory evoked potential/field
(SEP/SEF).

13.1.2 Spatial and Temporal
Resolution of EEG andMEG

Brain electrical activation is a spatiotemporal pro-
cess, which means that its activity is distributed
over three dimensions and evolves in time. The
most important merit of EEG and MEG is their
unsurpassed millisecond-scale temporal resolu-
tion. This feature is essential for resolving rapid
change of neurophysiological process, consider-
ing the typical temporal scale of neuronal elec-
trical events which is from one to several tens of
milliseconds. However, both EEG and MEG are
limited by their spatial resolutions.

The conventional EEG has limited spatial res-
olution mainly due to two factors. One factor is
the limited spatial sampling. A remarkable devel-
opment in the past decades is that high-resolution
EEG systems with 64–256 electrodes have been
commercially available. For example, with up to
124 scalp electrodes, the average inter-electrode
distance can be reduced to about 2.5 cm [10, 21].
The multichannel SQUID system was challenged
initially due to the complexity of superconduc-
tive coils that were necessary to be sensitive to
weak brain magnetic signals [7]. Nowadays, mul-
tichannel SQUID systems have been commer-
cially available too. The second factor is the head
volume conduction effect. The electric potentials
generated from neural sources are attenuated and
blurred as they pass through the neural tissue,
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cerebrospinal fluid, meninges, low-conductivity
skull, and scalp [9]. While the magnetic fields
are also suffered from the volume conduction
effect as for its attenuation and spatial smooth-
ness, MEG is practically unaffected by the low-
conductivity skull.

Advanced EEG and MEG imaging techniques
are highly desired in order to compensate for
the head volume conduction effect and enhance
the spatial resolution of scalp EEG and MEG.
The solutions of two separate but closely related
problems, EEG/MEG forward problem and
EEG/MEG inverse problem, are required for
imaging of brain electric activity based on
external potential and/or field measurements.

13.2 Electrophysiological
Mapping

13.2.1 EEGMapping

Due to the fast response of EEG/MEG to neu-
ral events, a major use of EEG/MEG signals
is to make observations in their time courses
[22, 23]. Plenty of temporal components have
been well defined and widely accepted in various
paradigms. For example, N100 component is a
negative-going deflection from baseline in AEPs
(its equivalent in MEG is the M100 [7]), which
peaks at the latency of about 100 ms after the
onset of an auditory stimulus. In VEP, multi-
ple temporal (either positive- or negative-going)
components at different latencies have been iden-
tified in a sequence after a visual stimulus. The
dynamics of these temporal components and their
latencies indicate the important information about
the timings and sequences of neuronal processes
in response to specific stimuli.

Other than time information, efforts have been
made to obtain spatial information with regard
to the underlying brain electrical activity. Figure
13.3 shows an example of scalp EEGmaps during
a binocular rivalry paradigm [22]. Strong coun-
terphase modulations are revealed in EEG maps
for attended rivalry, and the scalp EEG maps also
suggest occipital origin of sources responsible
for the scalp EEG during binocular rivalry. EEG

mapping is to visualize potential values from
different electrodes measured at the same time
instance on the scalp surface. Since EEG record-
ings can only be obtained in locations where
electrodes are placed, potential values in inter-
electrodes areas are usually interpolated, mainly
using linear methods, for higher-resolution vi-
sualization. The assumption behind linear inter-
polations is the smooth transition of potential
values among neighbored electrodes. However,
the accuracy of interpolations also depends on
the number of electrodes. Figure 13.4a, b illus-
trates an example of scalp EEGmaps interpolated
using measurements from 32 channels and 122
channels, respectively. The scalp EEG map in
Fig. 13.4a is smoother with reduced peak values
and sharper transitions than the scalp EEG map
from Fig. 13.4b. These problems are caused by
the low-density samples from a fewer number of
electrodes, which leads to large inter-electrode
distances. Nonlinear interpolations can also be
used, such as spline interpolation [24]. An ex-
ample of spline interpolation can be found in
applications where a continuous function of an
EEG map is necessary, such as for the calculation
of a surface Laplacian EEG map.

To illustrate EEG maps, two visualization
tools are usually used, contour lines, in which
each line connects isopotential points on
the scalp, or pseudo-colors (which are more
common), in which each color represents a
potential value. Figure 13.4 shows EEG maps
using pseudo-colors. Along the direction of
current flow within the brain source area
(indicated by the red arrow in figures), potentials
are positive. A symmetric negative pattern is
usually accompanied in the opposite direction
of current flow (Fig. 13.4a, b). Note that
EEG measurements are usually made against a
reference. While the symmetric pattern along the
direction of current flow always exists, whether
potential values are positive or negative also
depends on the selection of reference.

The scalp EEG maps in both Fig. 13.4a, b are
generated by a simulated current dipole source
(Fig. 13.4b, right column) via solving the forward
problem. A scalp EEG map generated by a small
brain source (modeled by a current dipole) can ex-
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Fig. 13.3 Time courses of scalp EEG power maps. These
scalp topographies show power at the tagged frequencies
at each electrode, as averaged over a group of subjects.
Seven maps were drawn for each 6 s epoch. In each of the
four panels, the upper row shows power for the aligned
eye’s frequency, and lower row shows power for the time-

locked signal from the other eye. Inset line graphs show
the results from occipital electrodes. Both line graphs
and topographies show strong counterphase modulations,
except in the unattended rivalry condition. (From Zhang et
al. [22] with permission)

tend about centimeters in diameters over the scalp
surface, which is caused by the so-called volume
conductor effect. Although the head volume con-
ductor effort causes a smoothed version of spatial
distribution of EEG corresponding to the brain
electric sources, EEGmapping represents an easy
and fast tool to assess the global nature of brain
electric activity (e.g., frontal lobe vs. occipital
lobe, see also Fig. 13.3 for visual events).

13.2.2 MEGMapping

The concept of MEG mapping is similar to EEG
mapping except that MEG signals are used in-

stead of EEG signals. In MEG, positive values
indicate the outflow of magnetic flux coming at
the recording sensor location and negative val-
ues indicate the inflow of magnetic flux at that
particular location. It is worthwhile to note that
MEG signals do not depend on references like
EEG and have different sensitivity profiles [25]
compared to EEG. Examples of MEG maps are
shown in Fig. 13.4b, c (the middle columns)
using the same simulated brain sources as for
EEG in the same figure. MEG maps also suffer
from the volume conductor effect. However, since
the magnetic permeability of the skull is simi-
lar to other brain tissues, the low-conductivity
skull layer affects MEG less. Another property
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a b

c

EEG 32 channels

EEG
20 uV

–20 uV

MEG
75 fT

–75 fT

EEG 122 channels MEG 152 channels current sources

Fig. 13.4 Simulated EEG data and MEG data under dif-
ferent conditions. (a) The scalp EEG map generated by
a tangential dipole using low-density 32 electrodes. (b)
The high-density scalp EEG (left) from 122 electrodes and

MEG (middle) from 151 sensors generated by a tangential
dipole on the cortical surface (right). (c) The high-density
scalp EEG (left) from 122 electrodes and MEG (middle)
from 151 sensors generated by a radial dipole on the
cortical surface (right)

of MEG is that it is not sensitive to radially
oriented cortical sources [7]. Figure 13.4 illus-
trates an example of MEG map generated by
a brain source on the ridge of a cortical fold
that is close to radial orientation. Its MEG sig-
nals are ten times less than MEG signals from
a tangential source (Fig. 13.4b). Both EEG and
MEG are less sensitive to deeper sources, with
MEG being notably insensitive to deeper sources
[26]. However, these structural limitations do not
necessarily mean EEG, and MEG cannot detect
any deep sources. Recent studies with concurrent
intracranial and EEG/MEG recordings have pro-
vided evidence to the contrary; electromagnetic
activity from subcortical regions in the thala-
mus, amygdala, and hippocampus was unequiv-
ocally recorded at EEG and MEG [27, 28]. See-
ber et al. showed that the envelope of alpha-
wave activity from sources as deep as the cen-
tromedian nuclei of the thalamus (direct electri-
cal recordings from deep brain stimulation elec-
trodes placed in these regions) can be recorded
in high-density scalp EEG recordings (256 chan-
nels) [27]. Furthermore, it was shown that these
activities can be traced back to deep source re-
gions by solving the inverse problem. Addition-
ally, Pizzo et al. showed that interictal spikes
observed by stereo-EEG (sEEG) electrodes im-
planted near the amygdala and hippocampus can
be detected in MEG recordings by means of blind

source separation techniques [28]. Additionally,
signals reaching the surface measurements from
these deep sources can still be localized to these
subcortical structures using source imaging tech-
niques [27, 28].

It is important to understand the difference
between EEG and MEG maps since both reflect
the common brain activity while each of them
has better sensitivity on different aspects of the
common brain activity. The electrical field gra-
dient reaches the highest along the direction of
current flow of the brain source (indicated by the
red arrow in figures), while the magnetic field has
the highest gradient across the direction of current
flow. Thus, the symmetric field pattern of MEG is
on the both side of the arrow, while the symmetric
field pattern of EEG appears on the tail and head
of the arrow. It is therefore expected that the trans-
verse features of brain sources are more precisely
estimated withMEG and the longitudinal features
of brain sources aremore precisely estimatedwith
EEG. Furthermore, MEG is not sensitive to radial
brain sources as discussed earlier, whereas EEG is
sensitive to brain sources of all orientations (e.g.,
comparing Fig. 13.4).

In summary, while the EEG and MEG map-
ping can provide spatial patterns about brain ac-
tivity on the scalp, they are limited by their inher-
ited low spatial resolution. The spatial locations
of those temporal components of interests can
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only be referred at the scalp surface according
to beneath lobular or sublobular organizations.
Significant improvement of spatial resolution of
EEG/MEG can be accomplished by source imag-
ing from scalp EEG or MEG.

13.2.3 Surface LaplacianMapping

In parallel to the development of the source imag-
ing methods to enhance spatial resolution of EEG
and MEG, another surface mapping technique,
surface Laplacian (SL), has been developed for
the similar purpose. The SL does not need to
solve the inverse problem as discussed below,
nor does it require a forward volume conductor
model. Instead, it applies a spatial Laplacian filter
(second spatial derivative) to compensate for the
head volume conduction effect and achieves high-
resolution surface mapping directly over the scalp
surface.

The SL has been considered as an estimate
of the local current density flowing perpendic-
ular to the skull into the scalp; thus it has also
been termed current source density or scalp cur-
rent density [29]. The SL has also been con-
sidered as an equivalent surface charge density
corresponding to the surface potential [30]. Com-
pared to the EEG source imaging approaches, the
SL approach does not require exact knowledge
about the source models and the volume conduc-
tor models and has unique advantage of reference
independence.

Since Hjorth’s early exploration on scalp
Laplacian of EEG [31], many efforts have
been made to develop reliable and easy-to-use
SL techniques. Of note are the developments
of spherical spline SL [29] and the realistic
geometry spline SL [24, 32]. Bipolar or tripolar
concentric electrodes have also been used to
measure the SL. He and colleagues proposed to
use the bipolar concentric electrode to record
the SL [30] under the assumption that the outer
ring of the concentric electrode would provide
reasonable estimate of the averaged potential over
the surrounding ring [30]. A tripolar concentric
ring electrode has also been used to measure
SL [33]. The SL has been widely used in

EEG-based brain-computer interface to improve
signal quality of measurements associated with
intentions.

13.2.4 Multivariate Pattern Analysis
of EEG andMEG Signals

The brain encodes the information it receives and
processes into neural codes, which, inadvertently,
manifest themselves as neural patterns of activity.
The neuronal activity, consequently, leaves an
electromagnetic footprint that gets picked up by
EEG and MEG [4]. A great deal of studies and
investigations are conducted to decode these pat-
terns and extract such information. Multivariate
pattern analysis or MVPA is the general term
used to describe the process of analyzing signals
gathered from many neurons and brain regions
to differentiate between different brain states to
ultimately understand how the brain encodes in-
formation [34]. MVPA can be thought of as su-
pervised learning, to put in machine learning lan-
guage, which learns spatial patterns of neuronal
activity over different cognitive conditions or ex-
ternal stimuli. This technique has been applied to
MEG and EEG measurements at scalp, prior to
solving the inverse problem [35], and at source
space, after solving the inverse [36]. MVPA can
be thought of as a systematic approach to map-
ping spatiotemporal neural activity to brain states
and cognitive conditions, in continuation of what
was discussed above.

MVPA is capable of detecting complex spatial
neural patterns as experimental conditions or ex-
ternal stimuli can be repeated many times to en-
sure the statistical integrity of the data. This tech-
nique has been applied recently toMEG and EEG
measurements for studying object recognition,
face perception, and memory [35]. These studies
not only benefited from spatially rich information
contained in EEG and MEG measurements but
also took advantage of the high temporal resolu-
tion of the aforementioned modalities to further
understand when different brain processes occur
in the brain with respect to each other; for in-
stance, Linde-Domingo et al. showed that during
seeing objects, low-level visual features could be
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decoded faster than high-level conceptual fea-
tures [35]. The reverse was true for associative
memory recall. Therefore, applying MVPA to
EEG and MEG could provide a spatiotemporal
decoding scheme which ultimately leads to the
better understanding of the brain.

13.3 EEG/MEG ForwardModeling

Given the known information on brain electric
source distribution (i.e., source models) and head
volume conduction properties (i.e., volume con-
ductor models), EEG and MEG forward prob-
lems determine the source-generated electric po-
tential and magnetic field (Fig. 13.4). Note that
while the EEG forward solution mainly refers
to electric potentials, such as the cortical poten-
tial or the scalp potential, it can also be other
metrics, for example, the surface Laplacian. In
MEG, the forward solution is usually referred
to as magnetic fields. Since magnetic fields are
vector fields, the forward solution can be referred
as a component of magnetic fields, such as ra-
dial or tangential component. Furthermore, since
most MEG systems use gradiometers, the MEG
forward solution can be magnetic gradient fields
or second-order gradient fields. Both EEG and
MEG forward problems are well defined and have
a unique solution, governed by the quasi-static
approximations of Maxwell’s equations, that is,
Poisson’s equation [8, 9, 37].

By solving the EEG and MEG forward prob-
lems, the relationship between neuronal sources
and external sensor measurements can be estab-
lished. In particular, for a given source distribu-
tion, EEG and MEG measurements and underly-
ing brain electric sources can be related by the so-
called transfer matrix or lead field matrix, which
is only dependent on the geometry and electrical
properties of the head volume conductor.

13.3.1 Source Models

Several source models have been proposed to
equivalently represent brain electric sources. The
primary bioelectric sources can be represented as

an impressed current density J, which is driven by
the electrochemical process of excitable cells in
the brain. In other words, it is a nonconservative
current that arises from the bioelectric activity of
nerve cells due to the conversion of energy from
chemical to electrical form [37].

The simplest brain electric source model is
a monopole source. In the monopole model, a
volume source with ignorable size is considered
as a point current source of magnitude Iv lying
in a conducting medium, with its current flow
lines radially directed in all directions. However,
in a living system, only a collection of positive
and negative monopole sources is physically re-
alistic as the total sum of currents is zero due
to electrical neutrality. The simplest collection
of monopole sources is a dipole, which consists
of two monopoles of opposite sign, but equal
strength, separated by an infinitely small distance.
In such a dipole model, its current flow lines start
from the positive pole of the source and end at the
associated negative pole. The dipole model is the
most commonly used model in EEG/MEG source
imaging techniques.

Until now, we have only considered the equiv-
alent source models for the impressed current
density, which are generated by excitable cells.
In order to solve the EEG/MEG source imag-
ing problems, a global equivalent source distri-
bution model should also be determined which
can account for the electric activity within the
entire brain. State-of-the-art source models usu-
ally consist of a source distribution to reflect the
distributed nature of electric sources associated
with neuronal excitation. Once such a source
distribution model is defined, the source imaging
solutions can only be searched over the space con-
fined to the distributionmodel, hence, also known
as the source space or solution space. Source
models, including the dipole model (which can be
viewed as a special case of a source distribution)
and the source distribution model, are generally
used for both EEG/MEG forward and inverse
problems. There are mainly two types of source
models, i.e., parametric dipole models [38] and
distributed source models [39–41]. The paramet-
ric dipole models use the ideal equivalent dipole
model (ECD) to represent focal electrical activity.
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In parametric dipole models, multiple ECDs are
also used to model multiple focal sources over
different brain regions. The distributed source
models are more suitable in characterizing ex-
tended sources in which the source space is rep-
resented by continuously distributed dipole ele-
ments over a volume (i.e., the brain) [39, 41] or a
surface (i.e., the cortical surface) [40].

The source models are not limited to model
electrical currents but may be electric potentials
over the cortical surface [21, 42] or within the 3D
brain volume [43].

13.3.2 Volume Conductor Models

The volume conductor models are developed to
model the human head, which sits between brain
sources and EEG/MEG sensors. In order to build
these models, the geometry and conductivity
or permeability profiles are crucial for EEG
or MEG. Early works used spherical head
models as closed solutions for EEG/MEG
forward problems. The single-sphere model
represents the simplest approximation of the head
geometry. The three-layer concentric spherical
model [44] has been well used to represent
compartments of the skin, the skull, and the
brain in head volume conductor. Such a model
was essentially developed to consider the skull
layer since it has significant low-conductivity
layer as compared with the skin and the brain.
An important development in the field was to
incorporate anatomic constraint into EEG/MEG
source imaging by developing approaches which
could take the realistic head geometry into
consideration. He et al. proposed the use of
realistic geometry head models for EEG source
localization by applying the boundary element
method (BEM) [38]. Hämäläinen and Sarvas
[45] further developed BEM-based approach to
model the head volume conductor for MEG/EEG
incorporating the low-conductivity skull layer
in addition to the scalp and brain. Several BEM
approaches have been developed to solve the head
forward problem using a multiple layer realistic

geometry model [45, 46]. Here, the multiple
layers again refer to the interfaces between the
skin, the skull, and the brain, which are similarly
represented in three-layer concentric spherical
model, but of realistic geometries. The realistic
geometries can be obtained by segmenting brain
tissues from magnetic resonance (MR) structural
images. In addition to the boundary element
method, the finite element method (FEM) has
also been used to model the head volume
conductor [47, 48] in which each finite element
can be assigned with a conductivity value or even
a conductivity tensor that represents different
conductivity values along different directions
in a 3D space (known as the anisotropy)
[49, 50].

While the aforementioned discussion applies
to MEG, as well, in practice, the volume conduc-
tor models for MEG are much simpler than those
for EEG. The major reason is that the perme-
ability profile for MEG is almost uniform for all
brain tissues including the skull. Thus, a volume
conductor model with realistic shape for the brain
may be sufficient for the forward calculation of
MEG signals [7]. In practice, one-sphere model
with a similar size to the subject’s head is used,
occasionally.

13.3.3 Forward Solutions

Once the volume source model and volume
conductor model are selected, the forward
solutions can be calculated uniquely. Here
we discuss two cases of forward solutions:
monopoles and dipoles in infinite homogeneous
medium.While these represent the simplest cases
for the calculation of forward solutions, which
might not be quite realistic in real applications,
it can help readers understand the concepts such
as the volume conductor effect. Other advanced
methods in calculating forward solutions, such
as piece-wise homogeneous realistic geometry
models or inhomogeneous realistic geometry
models, can be found in the literature [45, 48].
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If the volume conductor is infinite and homo-
geneous with conductivity of σ, the bioelectric
potential obeys Poisson’s equation under quasi-
static conditions [37]:

∇2Φ = ∇ ·
⇀

J i

σ
= −Iv

σ
(13.1)

Equation 13.1 is a partial differential equation
satisfied by the electric potential � in which Iv is
the source function. The solution of Eq. 13.1 for
the scalar function � for a region that is uniform
and infinite in extent is [37]:

Φ = − 1

4πσ

∫

V

(
1

r

)
∇ ·

⇀

J idv (13.2)

where r refers to the distance from the source to
the observation point. Since the source element

∇ ·
⇀

J i dv in Eq. 13.2 behaves like a point source,
in that it sets up a field that varies as 1/r, the

expression Iv = −∇ ·
⇀

J i can be considered as
an equivalent monopole source [8, 37, 51].

Using the identity ∇ ·
(
⇀

J i/r

)
= ∇ (1/r) ·

⇀

J i + (1/r)∇ ·
⇀

J i and the divergence (or Gauss’s)
theorem, Eq. 13.2 can be transformed to [8]:

Φ = 1

4πσ

∫

V

∇
(
1

r

)
·
⇀

J idv (13.3)

Here, the source element
⇀

J i dv behaves like
a dipole source, with a field that varies as 1/r.
Therefore, the impressed current density may
be interpreted as an equivalent dipole source.
Although higher-order equivalent source models
such as the quadrupole can also be studied to
represent the bioelectric sources, the dipole
model has been so far the most commonly used
brain electric source model.

Similar to electric potential, the magnetic field
due to a monopole or dipole current source in
an infinite homogeneous medium can be derived
based on Poisson’s equation. Interested readers
can consult the details in [8].

If the three compartments (the brain, skull,
scalp) are considered and their surfaces are of
realistic shapes, it becomes a realistic geometry
piecewise homogeneous model. This is a reason-
able approximation for the electrical conductivity
profile of the human head modeling the scalp,
skull, and brain. The forward solution becomes
a sum of the electric potential/magnetic field in
the infinite homogeneous medium with a sec-
ond term that reflects the effect of conductivity
inhomogeneity between different compartments
[8]. The piecewise homogeneous model and its
solution can be generalized to more complicated
inhomogeneous model since an inhomogeneous
volume conductor can be divided into a finite
number of homogeneous regions. A boundary
element method algorithm [45] has been intro-
duced to accurately calculate electrical potential
and magnetic fields in piecewise homogeneous
head volume conductor model.

13.4 EEG/MEG Source Imaging

Given the known electrical potential or magnetic
field (e.g., scalp EEG or MEG measurement)
and head volume conductor properties, the
EEG/MEG source imaging reconstructs the
distribution of electric sources within the
brain (source space) corresponding to the
measured EEG/MEG (Fig. 13.5). A solution to
the EEG/MEG source imaging problem thus
provides desirable information with regard to the
brain electric activity, such as locations or extent
of current sources, which can be directly related
to the underlying neural activation. Although
the EEG/MEG inverse problem is technically
challenging, work conducted in the past few
decades has indicated that the EEG/MEG source
imaging problem can be solved with reasonable
resolution and accuracy by incorporating various
a priori information, such as anatomic constraints
on the sources [40, 41], on volume conductor
[38, 45], or functional constraints provided by
other imaging modalities such as functional MRI
[52–54].

EEG/MEG source imaging solutions require
a source model. The choice of source models
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Fig. 13.5 Schematic diagram of EEG/MEG electrophys-
iological neuroimaging. The scalp EEG/MEG is recorded
using multichannel data acquisition system. The realis-
tic geometry head volume conductor model can be con-
structed from the structureMRI of the subject, and the lead
field matrix can be modeled using numerical techniques

such as BEM or FEM, i.e., forward problem. By solving
the inverse source imaging problem, brain electric sources
are estimated over the cortex or throughout the brain
volume with substantially enhanced spatial resolution as
compared with scalp EEG/MEG. (From He et al. [4] with
permission)

depends on particular applications, while the pri-
mary goal of EEG/MEG source imaging prob-
lems remains the same: to find an equivalent
representation of brain electric sources that can
account for external EEG/MEG measurements.

13.4.1 Dipole Source Localization

The most commonly used brain electric source
model is the equivalent current dipole (ECD)
model, which assumes that the scalp EEG or
MEG is generated by one or a few focal dipole
sources. Each of the focal sources can bemodeled
by an ECD with six parameters: three location
parameters and three dipole-moment parameters.
InMEG, since it is less sensitive to radial sources,
parameter for radial orientation might be omitted,
which leads to five parameters for an ECD.

The simplest and representative ECD model
is the single moving dipole, which has varying
magnitude and orientation, as well as variable
location. The location of the single moving dipole

estimates the center of gravity of brain electric
activity, which can be informative for focal brain
activation, such as origin of focal epileptic activ-
ity. The multiple dipole model includes several
dipoles, each representing a certain anatomical
region of the brain. These dipoles have vary-
ing magnitudes and varying orientations, while
their locations could be either fixed or variable
(i.e., multiple moving ECDmodels). Due to finite
signal-to-noise ratio of the EEG/MEG record-
ings, the number of multiple dipoles that can be
reliably estimated is limited, usually nomore than
two dipoles in moving dipoles model [55].

Given a specific dipole source model, the
dipole source localization (DSL) solves the EEG
or MEG inverse problem by using a nonlinear
multidimensional minimization procedure, to
estimate the dipole parameters that can best
explain observed scalp potential or magnetic
field measurements in a least-square sense [38,
55–58]. Further improvement of the DSL can
be achieved by combining EEG with MEG data
which may increase information content and
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improve the overall signal-to-noise ratio [59,
60]. Generally speaking, there are two DSL
approaches. One approach is the single time-
slice source localization, in which the dipole
parameters are fitted at a time instance, based
on single time “snapshots” of measured scalp
EEG or MEG data [38, 58]. For example, scalp
potentials or magnetic fields at a single time-slice
could be controlled into column vector φ, each
row of which is electric potential or magnetic
field data recorded from one sensor. The problem
then is to find a column vector X, the collection of
potentials or magnetic fields at the same sensor
sites but generated by assumed sources inside the
brain. In practice, an initial starting point (also
termed seed point) is estimated, and then using an
iterative procedure, the assumed dipole sources
are moved around inside the brain (the source
space) in an attempt to produce the best match
between φ (measured scalp potential/field) and
ψ (scalp potential/field generated by X). This
involves solving the forward problem repetitively
and calculating the difference between measured
and estimated data vectors at each step. The most
commonly used measure is the squared distance
between the two data vectors, which is given by:

J =
∥∥∥∥
⇀

φ − ⇀

ψ

∥∥∥∥
2

(13.4)

where J is the objective function which is to
be minimized. From Eq. 13.3, it can be known
that the relationship between the dipole loca-
tion (r) and electric potential is nonlinear, and
thus the problem expressed in Eq. 13.4 needs to
be solved via nonlinear optimization. Different
methods could be applied to solve this nonlin-
ear optimization problem, such as the simplex
method [38], due to its simplicity and relative
robustness to local minima. The nonlinear nature
of DSL holds for MEG source localization, as
well.

Another approach is the multiple time-slice
source localization, also termed spatiotemporal
source localization, which incorporates both the
spatial and temporal components of the EEG
in model fitting [56]. In this approach, multiple
dipole sources are assumed to be fixed on un-

known locations inside the brain during a certain
time interval, and the variations in scalp potentials
or magnetic fields are due only to variations in
the strengths and orientations of these sources.
The dipole sources S can be related to the scalp
potentials or magnetic fields, denoted as �, by
the lead field matrix A, which is only dependent
on the head volume conductor properties and the
source-sensor configurations:

⇀

Φ = A
⇀

S (13.5)

Here, � is the N channels by T time-slices
EEG/MEG data matrix, and S is the M dipoles
by T time-slices source waveform matrix. The
task of the spatiotemporal DSL is to determine the
locations of multiple dipoles [56], whose parame-
ters could best account for the spatial distribution
as well as the temporal waveforms of the scalp
EEG/MEG measurement. Similar to Eq. 13.4, an
iterative procedure is needed to adjust source pa-
rameters with the aim to minimize the following
objective function:

J =
∥∥∥∥
⇀

Φ − A
⇀

S

∥∥∥∥
2

=
∥∥∥∥
(
I − AA+)⇀Φ

∥∥∥∥
2

(13.6)

where I is the identity matrix and A+ is the
pseudo-inverse of matrix A. At each iterative step,
locations and orientations of sources are updated
which subsequently causes the update of J. Once
the product between A and its pseudo-inverse
becomes close to I, optimal source locations and
orientations are found since the objective func-
tion is minimized. With the incorporation of the
EEG/MEG temporal information in the model
fitting, the spatiotemporal DSL is more robust
against measurement noise and artifacts than the
single time-slice DSL.

All DSL algorithms need an a priori knowl-
edge of the number and class of the underlying
dipole sources. If the number of dipoles is under-
estimated for a given model, then the DSL inverse
solution is biased by the missing dipoles. On the
other hand, if too many dipoles are specified, then
spurious dipoles can be introduced, which maybe
indiscernible from the true dipoles. Moreover,
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since the computational complexity of the least-
squares estimation problem is highly dependent
on the number of nonlinear parameters that must
be estimated, too many dipoles also add needless
computational burden andmay not lead to reliable
solutions.

In practice, the principal component analysis
(PCA) and multiple signal classification (MU-
SIC) algorithms have been used to approximately
estimate the number of field patterns contained
in the scalp EEG/MEG data [61]. For example,
the MUSIC algorithm scans through the 3D brain
volume (solution space) to identify sources that
produce potential patterns that lie within the sig-
nal subspace of the EEG/MEG measurements
[61]. To localize brain electric sources, a linearly
constrained minimum variance (LCMV) beam-
former approach [62] has been developed for
EEG/MEG source localization, by designing a
bank of narrow-band spatial filters where each
filter passes signals originating from a specified
location represented by a dipole within the brain
while attenuating signals from other locations.
Furthermore, statistical parametric maps based on
beamformers can be created by looking at output
changes of spatial filters’ comparing conditions,
such as between the resting and the task, over the
entire brain.

13.4.2 Cortical Potential Imaging

The cortical potential imaging (CPI) technique
employs a distributed source model, in which
the equivalent sources are distributed in two-
dimensional (2D) cortical surface, and no ad
hoc assumption on the number of source dipoles
is needed as in dipole source localization. This
group of techniques is mostly deployed with EEG
signals. Using an explicit biophysical model of
the passive conducting properties of a head, the
CPI attempts to deconvolve a measured scalp
potential distribution into a distribution of the
electrical potential over the epicortical surface
[21, 42, 63, 64].

The CPI techniques are of clinical relevance
because cortical potentials are invasively
recorded in current clinical routines for the

presurgical evaluation of epilepsy patients, which
is known as electrocorticography (ECoG). Work
on CPI has suggested the similarity between
measured ECoG signals and noninvasively
reconstructed cortical potentials [21, 42, 64]
which suggests the potential clinical application
of CPI in providing a noninvasive alternative of
ECoG. Correcting the smearing effect of the
low-conductivity skull layer, CPI techniques
offer enhanced spatial resolution in assessing
the underlying brain activity as compared to the
blurred scalp potentials. The CPI is also referred
to as downward continuation [21], in which the
electric potentials over the epicortical surface are
reconstructed from the electrical potentials over
the scalp surface.

State-of-the-art cortical potential imaging has
used a multilayer boundary element method ap-
proachwhich links the cortical potential and scalp
potentials via a linear relationship with inclu-
sion of the low-conductivity skull layer. By solv-
ing the inverse problem, cortical potentials were
estimated during somatosensory evoked poten-
tials [42] and interictal spikes in epilepsy patients
[64], which illustrate the potential clinical ap-
plication of CPI approach. The CPI approach to
estimate cortical potential maps can also be real-
ized with the finite element method (FEM) rather
than BEM [21]. A benefit of using FEM is that
it can handle local inhomogeneity and anisotropy
in electrical conductivity profile, which cannot be
handled by BEM. An example of such a tech-
nique has been implemented in Zhang et al. [48]
to reconstruct cortical potential distributions in
the existence of low conductive ECoG grid pads
in a configuration of simultaneous scalp EEG
and ECoG recordings. The reconstructed cortical
potentials were directly compared with recorded
ECoG signals from the same session.

13.4.3 Cortical Current Density
Source Imaging

While dipole source localization has been
demonstrated to be useful in locating a spatially
restricted brain electric event, it has a major
limitation in that its simplified source model may
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not adequately describe sources of significant
extent. Therefore, distributed current density
source imaging has been aggressively studied
in the past decades. Cortical current density
source imaging techniques are distinguished
from cortical potential imaging techniques in two
aspects: (1) it uses electrical current density as a
variable instead of electric potential; (2) the cor-
tical surface is convoluted which is different from
the epicortical surface used in cortical potential
imaging.

13.4.3.1 Cortical Current Density
Source Model

Unlike the point dipole source models, the
distributed source models do not make any ad
hoc assumption on the number of brain electric
sources. Instead, the sources are distributed in
two-dimensional (2D) sheet such as the cortical
surface or 3D volume of the brain. In this
section, we will discuss the current sources
distributed over the convoluted cortical surface
(Fig. 13.6), known as the cortical current density
(CCD) model [40, 53, 65–67]. The rationale in
implementing the CCD model is based on the
observation that scalp EEG and MEG signals are
mainly contributed by electrical currents flowing
through cortical pyramidal neurons along the
normal direction of the cortical surface [68]. The
cortical surface is highly folded (Fig. 13.6) and
has to be represented numerically in order to
conduct computations, such as calculating the
lead field matrix, over it. A common approach in
numerical representation of the cortical surface
is to triangulate the surface into many small
triangles, on which a current dipole is assumed
representing the cortical patch.

Since the CCD model is formed by a num-
ber of dipoles (usually several thousands), the
forward solution for the dipole is still applied
here. Assuming quasi-static conditions, and the
linear properties of the head volume conductor,
the brain electric sources and the scalp EEG/MEG
measurements can be mathematically described
by the following linear matrix equation:

⇀

φ = A
⇀

X + ⇀
n (13.7)

where
⇀

φ is the vector of scalp potential or mag-

netic fieldmeasurement,
⇀

X is the vector of current
source distribution,

⇀
n is the vector of additive

measurement noise, and A is the transfer matrix

relating
⇀

φ and
⇀

X. So the cortical current den-

sity source imaging is to reconstruct
⇀

X from
⇀

φ

with the known transfer function A, by solving
the inverse problem from Eq. 13.7. The same
relationship is also applied to volume current
density source imaging techniques, which will be
discussed later. Reconstruction problems in both
cortical current density and volume current den-
sity imaging techniques belong to distributed cur-
rent density imaging and can be solved with simi-
larmathematic algorithms andmethods. Thus, the
imaging estimation algorithms discussed below
apply to both cortical current density and volume
current density source imaging problems in gen-
eral.

13.4.3.2 Linear Inverse Filters
The aim of the distributed current density imaging
is to reconstruct source distributions from the
noninvasive scalp EEG/MEG measurements or,
mathematically speaking, to design an inverse

Fig. 13.6 An illustration of the cortical surface, segmented from MRI data of a human subject, in side, back, and top
views



394 B. He et al.

filter B, which can project the measured data into
the solution space:

⇀

X = B
⇀

φ (13.8)

This linear inverse estimation approach,
however, is intrinsically underdetermined,
because the number of unknown distributed
sources within the brain is usually much larger
than the limited number of electrodes/sensors
over the scalp. Additional constraints have to
be imposed in order to obtain unique linear
inverse solutions. Below we discuss different
imaging estimation solutions based on the
different selections of additional constraints or
assumptions. Readers may skip the following
detailed treatment of imaging estimation
techniques till Sect. 13.4.4, without affecting
the understanding of the concepts. The interested
reader can also refer to He et al. for a detailed
treatment of various source imaging estimation
algorithms [4].

General Inverse
The general inverse, also termed the minimum-
norm least-squares (MNLS) inverse, minimizes
the least-square error of the estimated inverse

solution
⇀

X under the constraint
⇀

φ = A
⇀

X in
the absence of noise. In mathematical terms, the
MNLS inverse filter BMNLS is determined when
the following objective function is minimized:

JMNLS =
∥∥∥∥
⇀

φ − A
−→
X

∥∥∥∥
2

(13.9)

For an underdetermined system, if AAT is non-
singular, we have:

BMNLS = AT
(
AAT

)−
(13.10)

where ()T and ()− denote matrix transpose and
matrix inversion, respectively. The general in-
verse solution is also a minimum-norm solution
among the infinite set of solutions, which satisfy
the scalp potential or magnetic field measure-
ments [39, 69].

However, when the rank of A is less than the
number of its rows,AAT is singular, and its inverse
does not exist. In such a case, the general inverse
can be sought by the method of singular value
decomposition (SVD) [70]. For an m×n matrix
A, its SVD is given by:

A = UΣV T (13.11)

where U = [u1, u2, . . . , um], V = [v1, v2, . . . , vn],
� = diag (λ1, λ2, . . . λp), λ1 > λ2 > . . . > λp,
and p = min (m, n). The vectors ui and vi are
the orthonormal eigenvectors of AAT and ATA,
respectively. The λi are the singular values of
matrix A, and � is a diagonal matrix with the
singular values on its main diagonal. Based on the
SVD of matrix A, the general inverse of matrix A
can be solved by:

A+ = VΣ−1UT =
p∑

i=1

1

λi
viu

T
i (13.12)

where ()+ is also known as theMoore-Penrose in-
verse or the pseudo-inverse. For the linear system
of Eq. 13.7, the inverse solution estimated by Eq.
13.12 is given by:

⇀

X = A+⇀φ = VΣ−1UT
⇀

φ =
p∑

i=1

1

λi
vi

(
uTi

⇀

φ

)

(13.13)

Truncated SVD
Although the general inverse leads to a unique
inverse solution with smallest residual error giv-
ing constraint in Eq. 13.9, it is often impractical
for real applications due to the ill-posed nature of
the EEG/MEG source imaging problem. In other

words, the small measurement errors in
⇀

φ can be
amplified by the small or near-zero singular val-
ues, leading to large perturbations in the inverse
solution.

A technique called truncated singular value
decomposition (TSVD) can be used to address the
issue of small single values in the general inverse,
which is simply carried out by truncating at an
index k < p in the evaluation of A+ given by Eq.
13.13 or mathematically [71]:
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BTSVD = V

−1∑

k

UT =
k∑

i=1

1

λi
viu

T
i (13.14)

The effects of measurement noise on the in-
verse solution are reduced because the significant
amplification effect from small singular values is
removed by truncating the k + 1 small singular
values. Meanwhile, the high-frequency spatial in-
formation contributed by the small singular val-
ues is also lost as a trade-off, which also leads
to smooth reconstructions of source signals. The
balance between the stability and accuracy of the
inverse solution is controlled by the truncation
parameter k.

Tikhonov Regularization
A common approach to overcome the numeri-
cal instability caused by the ill-posedness is the
Tikhonov regularization (TIK), in which the in-
verse filter is designed to minimize an alternative
objective function [72]:

JTIK =
∥∥∥∥
⇀

φ − A
⇀

X

∥∥∥∥
2

+ λ

∥∥∥∥G
⇀

φ

∥∥∥∥
2

(13.15)

where λ is a small positive number known as
the Tikhonov regularization parameter and G can
be identity, gradient, or Laplacian matrix, corre-
sponding to the zeroth-, first-, and second-order
Tikhonov regularization, respectively. The under-
lying concept of this approach is to minimize both
the measurement residual error and the inverse
solution (either source distribution, gradient, or
curvature) together with a relative weighting pa-
rameter λ, in order to suppress unwanted ampli-
fication of noise on small singular values in the
inverse solution. The corresponding inverse filter
is given by [72]:

BTIK = AT(AAT + λGGT)− (13.16)

It can be observed that large values of λ make
the solution smoother because the second term
in Eq. 13.15 dominates, while for a small value
of λ, the first term in Eq. 13.15 dominates, and
the influence from noise might not be sufficiently
suppressed if λ is too small. For instance, the

MNLS is a special case of the filter described in
Eq. 13.16, when λ = 0, explaining why MNLS
solutions are extremely sensitive to noise. In
summary, the Tikhonov regularization parameter
is used to balance the details in reconstructions
(lost because of the emphasis onG) and influence
from noise.

13.4.3.3 Regularization Parameters
As noted earlier, in order to improve the stability
of the source imaging problem, a free regular-
ization parameter λ in TIK [Eq. 13.15] or k in
TSVD [Eq. 13.14] is introduced and should be
determined. Proper selection of this parameter is
critical for the inverse problem to balance the
stability and accuracy of the inverse solution. In
theory, optimal regularization parameters should
be determined by minimizing relative error (RE)
or maximizing correlation coefficient (CC) be-
tween the true source Xtrue and the inversely re-
constructed source Xinv:

RE =

∥∥∥∥
⇀

Xtrue − ⇀

Xinv

∥∥∥∥
∥∥∥∥
⇀

Xtrue

∥∥∥∥
(13.17)

CC =
⇀

Xtrue · ⇀Xinv∥∥∥∥
⇀

Xtrue

∥∥∥∥ ·
∥∥∥∥
⇀

Xinv

∥∥∥∥
(13.18)

Unfortunately, in real applications, the true
source distribution is unknown, and alternative
methods that do not depend on a priori knowl-
edge of Xtrue should be used. Here we introduce
two types of methods in estimating regularization
parameters, while more methods can be found in
the literature [73].

L-Curve Method
Hansen [74] popularized the L-curve approach
to determine a regularization parameter. The L-
curve approach involves a plot, using a log-log
scale, of the norm of the solution, on the ordinate
against the norm of the residual, on the abscissa,
with λ or k as a parameter along the resulting
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Fig. 13.7 Illustration of the L-curve approach. By plot-
ting the norm of the inverse solution versus the norm of
the residual as functions of regularization parameter (λ or
k), an “L” shaped curve occurs, and the optimal parameter
is placed near the “corner” of the curve

curve. In most cases, the shape of this curve is in
the form of an “L,” and the λ or k value at the
corner of the “L” is taken as the optimal regu-
larization value (Fig. 13.7). At the corner, clearly
both ||X|| and ‖φ − Ax‖ attain simultaneous indi-
vidual minima that intuitively suggests an optimal
solution. A numerical algorithm to automatically
compute the site of the L-curve corner, when it
exists, has been given by Hansen and O’Leary
[75]. The algorithm defines the corner as the point
on the L-curve with maximum curvature.

Statistical Methods
Statistical methods have been proposed for the
regularization parameter determination. For ex-
ample, if the expectations of noise and measure-
ment are both available, the truncation parameter
of TSVD in Eq. 13.14 could be determined by
[71, 76]:

k = max
i

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i|λ
2
i

λ21
≥
E

(∥∥∥
⇀
n

∥∥∥
2
)

E

(∥∥∥∥
⇀

φ

∥∥∥∥
2
)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13.19)

Another popular method for choosing the reg-
ularization parameter is the generalized cross-
validation (GCV) method proposed by Golub et
al. [77]. The GCV technique is based on the sta-
tistical consideration that a good value of the reg-
ularization parameter should predict missing data
values; therefore, no a priori knowledge about the
error norms is required.

13.4.3.4 Interpretation of Linear
Inverse in Bayesian Theory

The linear solutions discussed earlier can also be
understood in a Bayesian perspective [78, 79].
Consider the forward problem in Eq. 13.7. From
Bayes’ theorem, the posterior probability for the
inverse solution x conditioned on the data φ is
given by:

P (x|φ) = P (φ|x) P (x)
P (φ)

(13.20)

which onewould like tomaximize as the posterior
probability for the inverse solution given the data.
P(φ| x)is the conditional probability for the data
given the inverse solution, and P(x) is a prior
distribution reflecting the knowledge of the statis-
tical properties of the source model. To maximize
the posterior probability, the cost function could
be formulated, usually, using the log-posterior
probability as:

x̂ = argmax
x

P (φ|x) P (x)

≡ argmax
s

(ln (P (φ|x))+ ln (P (x))) (13.21)

If Gaussian white noise with variance of σ 2 is
assumed, the likelihood is denoted by P (φ|x) ∝
e
− 1

2σ2
‖φ−Ax‖22 . If the prior distribution is given

by P(x) ∝ e−(θ f (x)), where θ is a scalar constant
and f (x) is a function of the inverse solution x,
by applying the log operation, the cost function
yielding the maximum a posteriori estimate could
be written as:

C(x) =‖ φ − Ax‖2 + λ · f (x) (13.22)

where λ= 2θσ 2. If f (x) = ‖Gx‖22, cost function
here is exactly same as the objective function (Eq.
13.15) obtained through Tikhonov regularization.

One benefit in discussing linear inverse solu-
tions in the Bayesian perspective is that the theory
can be extended to include the understanding of
some nonlinear inverse solutions. If f (x)= ‖Gx‖1,
the cost function becomes the objective func-
tion using L1-norm methods in the framework of
Tikhonov regularization. Furthermore, from the
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Bayesian theory, it is known that a Gaussian a
priori likelihoods, such as those implemented in
linear inverse methods, usually result in smooth
solutions, while an exponential a priori likeli-
hoods, such as those in nonlinear L1-norm meth-
ods, lead to sparse solutions. This explains the
characteristics of inverse source reconstructions
from both types of methods. Sparsity-enforcing
regularizations can also be cast as convex opti-
mization problems and can be solved efficiently
with accurate numerical techniques [80, 81].

The major advantage using the Bayesian the-
ory in developing different EEG/MEG inverse
solutions is that this framework provides the flex-
ibility to incorporate different a priori likelihoods
through f (x). For a more mathematical treatment
of Bayesian methods in source imaging, refer to
Sekihara and Nagarajan’s book [82].

13.4.4 Volume Current Density
Source Imaging

13.4.4.1 Challenges of the 3D Source
Imaging

Tremendous progress has been made during the
past decades for the 3D source imaging, in which
the brain electric sources are distributed in the 3D
brain volume. Similar to the CCD source imaging
problem, the 3D source imaging approach is also
based on a distributed source model, i.e., volume
current density (VCD) source model, and is im-
plemented by solving the linear inverse problem
as detailed in Sect. 13.4.3. The source space of
the VCD model usually consists of the entire
human brain, including the deep structure such as
hippocampus. Since the white matter is believed
of no generators for EEG/MEG, it can be removed
in some applications. A common approach in
numerical representation of the human brain is to
divide the brain volume into many small voxels.
Each voxel is modeled by a current dipole similar
as in the CCD source model. However, the orien-
tation of the dipole at each voxel is not fixed as in
CCD models. The dipole at each voxel is usually
decomposed into three orthogonal components
with each having fixed orientation. The selection
of orientations of these three components is usu-
ally dependent on the utilized coordinate system.

Then, the forward solution for VCD is the same
as the forward solution for CCD with the only
difference in the definition of source space. On
the other hand, the 3D source imaging approach
faces greater technical challenges: by extending
the solution space from 2D cortical surface to 3D
brain volume, the number of unknown sources
increases dramatically. As a result, the source
imaging problem is even more underdetermined,
and the inverse solution is usually smeared due
to regularization procedures. In addition, it be-
comes more important to retrieve depth infor-
mation of sources in 3D source imaging. While
the cortex can be modeled as a folded surface in
cortical source imaging approach so that sources
in sulci and gyri have different eccentricities,
deeper sources probably exist below the corti-
cal layer, such as in amygdala and hippocampal
formation.

13.4.4.2 Inverse Estimation Techniques
in Volume Current Density
Imaging

The most popular 3D linear inverse solution is the
minimum-norm (MN) solution, which estimates
the 3D brain source distribution with the smallest
L2-norm solution vector that would match the
measured data [39, 69]. It is equivalent to select
G as an identity matrix in Eq. 13.15. Different
regularization parameter selection techniques as
detailed in linear inverse filters can be used here
to suppress the effects of noise.

However, the standard minimum-norm
solution has intrinsic bias that favors superficial
sources because the weak sources close to the
sensors can produce scalp EEG/MEG with
similar strength as strong sources at deep
locations. To compensate for the undesired
depth dependency of the original minimum-
norm solution, different weighting methods have
been introduced. The representative approaches
include the normalized weighted minimum-norm
(WMN) solution [76, 83] and the Laplacian
weightedminimum-norm (LWMN) solution, also
termed LORETA [41, 84].

The WMN compensates for the lower gains of
deeper sources by using lead field normalization.
In the absence of noise, the inverse source esti-
mates can be given as:
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⇀

φ = AW−W
⇀

X (13.23)

The concomitant WMN inverse solution is
given by [76, 83]:

⇀

XWMN = WWTAT
(
AWWTAT

)−⇀
φ (13.24)

where W is the weighting matrix acting on the
solution space. Most commonly,W is constructed
as a diagonal matrix [76, 83, 84]:

W = diag (‖a1‖ , ‖a2‖ , · · · , ‖an‖) (13.25)

where A = (a1, a2, · · · , an). Thus, by using the
norm of each column of the transfer matrix as the
weighting factor for the corresponding position
in the solution space, the contributions of the
entries of the transfer matrix to a solution are
normalized.

The LWMN approach defines a combined
weighting operator LW, where L is a 3D discrete
Laplacian operator acting on the 3D solution
space and W is defined the same as in Eq. 13.24.
The corresponding LWMN inverse solution, or
the LORETA solution, is then [41, 84]:

⇀

XLWMN=(WLTLW
)−
AT
(
A
(
WLTLW

)−
AT
)−⇀
φ

(13.26)

This approach combines the lead field nor-
malization with the spatial Laplacian operator,
thus giving the depth-compensated inverse solu-
tions under the constraint of smoothly distributed
sources.

Many variants of the minimum-norm solution
were also proposed, by incorporating a priori in-
formation as constraint in a Bayesian formulation
or by estimating the source-current covariance
matrix from the measured data in a Wiener for-
mulation. All these efforts were made to improve
certain aspects of 3D source imaging techniques;
however, they are not universally suitable for all
3D volume current density imaging applications.

In addition, both the MUSIC algorithm
[61] and beamformer techniques [62], which
have been discussed in sections for dipole
source localization methods earlier, can be used
to reconstruct 3D brain source distributions.
However, it should be noted that bothMUSIC and
beamformer techniques are scanning techniques,
which are not based on distributed source models.
Beamformer techniques utilize the spatial filter
designed for each scanned point in a 3D source
space, while the MUSIC algorithm computes
the correlation between field vectors originated
by a dipole at the scanned position against the
covariance structure of measurements.

Figure 13.8 shows an example of 3D source
imaging of seizure activities by using a combined

Fig. 13.8 Seizure onset zones (SOZs) and the source
time frequency representations estimated from a typical
seizure in two patients. The estimated SOZ (left and mid-
dle panels, 60% threshold, yellow to orange color bar)

is co-localized with surgically resected zones (shown in
green) in patients 1 and 2. (From Yang et al. [85] with
permission)
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approach consisting of independent component
analysis and LORETA [85]. Yellow color refers
to volume sources, and green color refers to surgi-
cally resected regions. The patients were seizure-
free after 1-year follow-up from the surgery.

Solving the inverse problem for 3D source
space using ECoG or sEEG measurements has
also been attempted [86–88]. Given the surge in
using sEEG recordings to determine the epilep-
togenic zone in epilepsy patients, such studies
indicate the value of using source imaging tech-
niques even with invasive recordings. Hosseini
and colleagues studied the potential advantages
and disadvantages of this approach and proposed
to combine scalp and intracranial EEG measure-
ments to eliminate the potential disadvantages
[88].

13.4.4.3 Nonlinear Inverse Techniques
Because the 3D EEG/MEG inverse problem is
highly underdetermined, the linear solutions ob-
tained by the minimum-norm inverse and its vari-
ants are usually associated with relatively low
spatial resolution. To overcome this problem, sev-
eral nonlinear inverse approaches have been in-
troduced to achieve more localized imaging re-
sults.

One recent popular method in reconstructing
focal sources is to solve the inverse problem using
the L1-norm instead of commonly used L2-norm
[89–93] on the penalty term of inverse solutions
in Eq. 13.15 or on the a priori likelihood function
in Eq. 13.22. The L1-norm methods prefer sparse
solutions since the L1-norm of a sparse solu-
tion vector is usually less than the L1-norm of a
smooth solution vector on the condition that both
generate the similar scalp EEG/MEG signals. On
the contrary, the L2-norm methods prefer smooth
solutions since the L2-norm of a smooth solution
vector is usually less than the L2-norm of a sparse
solution vector on the condition that both gen-
erate the similar scalp EEG/MEG. The L1-norm
methods, thus, providemuchmore focal solutions
and a more robust behavior against outliers in the
measured data [94]. However, the use of the L1-
norm requires solving a nonlinear system of equa-
tions for the same number of unknowns as the
L2-norm inverse approach; therefore, much more

computational effort is needed. Different nonlin-
ear optimization approaches have been suggested,
including the iteratively reweighted least-squares
method and the linear programming techniques
[81, 94, 95].

Imposing sparsity on the current density is
the direct result of using L1-norm regularization
terms or priors, which can lead to overly focused
solutions. On the other hand, such focal solu-
tions do not seem to be physiologically viable;
thus, recent studies have imposed the sparsity
priors on other mathematical domains such as
the wavelet transform [96, 97], spatial gradient
[98–100], and Laplacian of underlying current
densities or multiple mathematical domains [80].
These regularization priors encourage solutions
which are sparsely represented in those math-
ematical domains, which in turn determine the
solutions’ characteristics and features. For in-
stance, a solution sparsely represented in the spa-
tial gradient domain encourages piecewise ho-
mogeneous solutions [98]. These studies indicate
that by enforcing sparsity to transformations of
the current density, such as the spatial gradient,
as opposed to the current density, the obtained
solutions are not overly focused and demonstrate
more desirable and realistic features more in line
with our physiological intuitions.

A question that might be raised is that how
are such improvements possible, given the limited
measurements at hand? The reason lies in the fact
that sparse signals only contain a limited amount
of information, as such signals only contain a lim-
ited number of nonzero elements. Once a signal
itself, or its representation in another domain, can
be represented in a sparse fashion, this indicates
that its redundancies are discovered and, conse-
quently, fewermeasurements are needed to recon-
struct. Hence, with limited MEG or EEG mea-
surements, much better signal reconstructions can
be achieved. Furthermore, combining MEG and
EEG signals improves the performance of sparse
source imaging algorithms, as more measure-
ments are at dispense [67]. Figure 13.9 shows
widely distributed cortical sources from multiple
time points for face perception and recognition
obtained with the use of sparse source imaging
on combined MEG and EEG data. The spatial
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Fig. 13.9 Dynamic patterns of sparse source reconstruc-
tions using combined EEG and MEG within P100/M100
and P170/M170 components from a face recognition task.
(a) An EEG waveform from one channel (red electrode
shown registered with the head) and an MEG waveform
from one channel (green sensor), both of which show the

maximal difference between faces and scrambled faces.
(b) Cortical current density maps reconstructed within
P100/M100. (c) Cortical current density maps recon-
structed within P170/M170. (From Ding and Yuan [67]
with permission)

distributions of these cortical sources and their
temporal dynamics further revealed similarities
and differences at different stages of neural pro-
cesses for different conditions. Consistent spatial
patterns in the visual cortex between actual faces
and scrambled faces are observed during the time
window of P100/M100 for perception. During
N170/M170 for face recognition, it is observed
that bilateral fusiform (i.e., 150–160 ms) and
lateral ventral occipital regions (i.e., 160–175ms)
are more active to actual faces than scrambled
faces, which has been similarly reported using
fMRI data [101].

Through a different approach, a nonparametric
algorithm for finding localized 3D inverse
solutions, termed focal underdetermined system
solution (FOCUSS), was proposed by Gorodnit-
sky et al. [83]. This algorithm has two integral
parts: a low-resolution initial estimate of the

inverse solution, such as the minimum-norm
inverse solution, and the iteration process that
refines the initial estimate to the final focal
source solution. The iterations are based on
weighted norm minimization of the dependent
variable (similar as the weight process used in
weighted minimum-norm inverse solutions) with
the weights being a function of the preceding
iterative solutions. Similarly, a self-coherence
enhancement algorithm (SCEA) has also been
proposed to enhance the spatial resolution of
the 3D inverse estimate [102]. This algorithm
provides a noniterative self-coherence solution,
which enhances the spatial resolution of an
unbiased smooth estimate of the underdetermined
3D inverse solution through a self-coherence
process.

Following these lines of investigation,
Sohrabpour et al. proposed a new inverse source
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imaging technique that not only was capable
of imaging the location of underlying brain
sources using scalp EEG/MEG measurements
but also was capable of estimating the underlying
sources extent, i.e., size [81]. Determining
the size of underlying brain activity is of
particular importance in many applications
such as determining the seizure onset zone
in epilepsy patients, as such information is
necessary for optimizing treatments. One of
the features of this work was to use an iterative
re-weighting approach to, ultimately, eliminate
the need for applying thresholds to solutions
to separate background activity from desirable
signals. Sohrabpour et al. validated their proposed
technique by comparing it to clinical findings
derived from invasive measures (in addition
to comprehensive Monte Carlo simulations).
This approach has inspired other researchers
to introduce these ideas in Bayesian algorithms
as well [103].

In addition to applying L1-norms instead
of L2-norms, more elaborate mathematical
constructs, such as the mixed-norm, have also
been proposed [104]. The mixed-norm operator
is basically the generalization of the Lp-norm
to multiple dimensions of a high-dimensional
matrix, where each dimension can be measured
(or regularized) distinctly. One of the issues
associated with pure L1-norm estimates is that
the reconstructed time course of activity is
not smooth and random location of the cortex
gets activated for brief moments of time. In
order to alleviate this issue, mixed-norm was
introduced into source imaging algorithms. The
general intuition behind the mixed-norm operator
is that each dimension of a high-dimensional
matrix can be regularized uniquely to induce a
specific structure in the solution; for instance, the
spatial dimension might be regularized with an
L1-norm type regularization to induce sparsity
in the spatial domain where only a limited
number of sites get activated but an L2-norm
type regularization on the temporal dimension to
induce smooth activity over time.

13.4.5 Multimodal Source Imaging
Integrating Electromagnetic
and Hemodynamic Imaging

Until now, we only discussed the source
imaging problems and methods using single
modality data, such as EEG or MEG. Efforts
have been made to attempt to improve the
performance of EEG/MEG source imaging by
integrating electromagnetic and hemodynamic
measurements [54, 105]. Neuronal activity
elevates electrical and magnetic field changes
(the primary effects) as well as hemodynamic
and metabolic changes (the secondary effects).
The observation of electrical and magnetic
field changes is mainly made using EEG and
MEG, respectively, as what have been discussed.
Furthermore, both EEG and MEG have high
temporal resolution at sub-millisecond scale but
limited spatial resolution. On the other hand,
functional magnetic resonance imaging (fMRI)
[106–108], based on the endogenous blood
oxygenation level-dependent (BOLD) contrast
[109], is another well-established technique
in mapping human brain function (see Chap.
11 of this book). The benefit of fMRI is,
conversely, its high spatial resolution to the level
of millimeters but of slow response time and
thus low temporal resolution. In combination,
these two complementary noninvasive methods
would lead to an integrated neuroimaging
technology with high resolution in both space
and time domains that cannot be achieved by any
modality alone. Such superior joint spatial and
temporal resolution would be highly desirable
to delineate complex neural networks related
to cognitive function, allowing answering the
question of “where” as well as the question of
“when.” It can also permit delineation about
the hypotheses of top-down versus bottom-up
processing with the temporal resolution provided
by electrophysiology. The integration of EEG,
MEG, and fMRI is thus of significant interest
to provide enhanced spatiotemporal imaging
performance.

http://dx.doi.org/10.1007/978-3-030-43395-6_11
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Fig. 13.10 Illustration of multimodal imaging ap-
proaches based on the spatial and temporal integrations.
Waveforms of a typical EEG event-related potential and
a block-designed BOLD change are shown. Notice the

disparate temporal scales of the responses in the EEG and
BOLD fMRI signals. Also, responses of both modalities
are widely distributed in the brain. (From He et al. [105]
with permission, © 2011, IEEE)

As illustrated in Fig. 13.10, integration of
fMRI with EEG/MEG has been pursued in two
directions, which either relies on (1) the spatial
correspondence or (2) the temporal coupling of
fMRI and EEG/MEG signals. The first approach
of spatial integration typically utilizes the fMRI
maps as a priori information to inform the
locations of the electromagnetic sources [52,
65]. In these methods, fMRI analysis yields
statistical parametric maps with several fMRI
hotspots, which each constrains the location
of an equivalent current dipole or collectively
produces weighting factors to evenly distributed
current sources. With the spatial constrains, the
ill-posedness of the EEG/MEG inverse problem
is moderated, and continuous time course of
electromagnetic waveforms can be resolved from
the fMRI hotspots, thus allowing inferences about
the underlying neural processes [65].

A major limitation of the spatial integration
approach is that fMRI yields relatively static
maps compared to dynamic evolution of
electromagnetic signals, owing to the highly
different temporal scales in which the signals in
these two modalities are generated and collected
[54]. Additionally, the spatial difference between

the vascular and electrophysiological responses
may lead to fMRI displacement. Thus, the
mismatch between a single static fMRI map
and consecutive snapshots of EEG/MEG during
the same period can lead to biased estimates
such as the fMRI extra sources (seen in fMRI
but not EEG/MEG), the fMRI invisible sources
(seen in EEG/MEG but not in fMRI), and the
displacement sources (see detailed discussion
in [54]). New methods have been proposed
toward overcoming this limitation, by means
of a time-variant spatial constraint estimated
from a combination of quantified fMRI and EEG
responses [53] or estimating regionally fMRI-
informed models by allowing model parameters
jointly computed from electrophysiological
source estimates and fMRI data rather than
exclusively dependent on fMRI [110]. Examples
of applying EEG/MEG-fMRI integration in the
investigation of visual processing function have
demonstrated how the subtle spatiotemporal
dynamics revealed from electrophysiological
imaging were able to delineate the hypotheses
with regard to the underlying neural processes
[53]. Figure 13.11 [53] shows an example of time-
varying fMRI/EEG integration to mapping visual
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Fig. 13.11 fMRI-EEG multimodal neuroimaging. (a)
The pattern-reversal checkerboard visual stimulation, (b)
fMRI activation map with a corrected threshold p <0.01,
and (c) the global field power of VEP and the dynamic
cortical source distribution at three VEP latencies (76, 112,
212 ms after the visual onset) imaged from EEG alone

(1st row) or fMRI-EEG integration using our proposed
adaptive wiener filter (2nd row) and the conventional
90% fMRI weighted algorithm (3rd row). Both the source
images and the fMRI activation map are visualized on an
inflated representation of cortical surface. (From Liu and
He [53] with permission)

information processing pathways. In response to
the unilateral visual stimulation (Fig. 13.11a),
the activated cortical areas at the contralateral
hemisphere were revealed in the fMRI activation
map (Fig. 13.11b). The fMRI activation map
indicated a dorsal visual pathway covering V1,
V2, dorsomedial areas (such as V3 and V7),
intraparietal sulcus (IPS), as well as medial
temporal (MT) area (also known as V5). The
top row of Fig. 13.11c shows the time course of
global field power of VEP, which indicates three
VEP peak latencies (76, 112, and 212 ms). The
second through fourth rows of Fig. 13.11c show

the reconstructed contralateral CCD distribution
using three imaging algorithms, respectively.
From the CCD images reconstructed by only
using the VEP data, the dorsal pathway was
seen gradually extending from lower-tier visual
areas to high-tier visual areas. By using an
adaptive Wiener filter to integrate the fMRI and
EEG data, a consistent sequence of activities
was observed with a much enhanced spatial
resolution, showing the pathway starting from
V1/V2 and then V3/V3a and finally V5/V7 and
IPS. The observed cortical visual pathway was
generally in agreement with the well-known
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hierarchical organization of the visual system.
In contrast, the imaging results obtained by using
the conventional 90% fMRI-weighted approach
also had an improved spatial resolution compared
to the EEG-alone source imaging. However,
it shows a false positive source region in and
around V1/V2 at the latency of 212 ms, whereas
a more likely high-tier EEG source around V5,
observable from the EEG data, is missed.

On the other hand, the second approach of
temporal integration utilizes the EEG/MEG dy-
namic signatures in the time or frequency domain
to inform the statistical mapping of fMRI. These
quantities obtained from electromagnetic record-
ings are typically convolved with a canonical
hemodynamic response function and then corre-
lated to BOLD signals on a voxel-by-voxel basis
to identify the statistical fMRI maps correspond-
ing to the electromagnetic temporal signatures of
interests. In this way, the integration method can
recover the neural substrates by answering the
question of “where” in joint with the question of
“when.” An intriguing example is the study of
nonrepeatable effects in epileptic patients, i.e., the
interictal activities. Correlates of the dynamics
of interictal discharges with the BOLD have led
to insights into the problem of localizing the
epileptic foci from fMRI [111].

13.5 Getting Started
with Electrophysiological
Imaging andData Processing

EEG and MEG data processing and source
imaging algorithms have a far wider reach than
the research community. There are, fortunately,
many publicly available and free-of-charge
analysis toolboxes available on the internet. We
intend to introduce a few of the more popular
ones, in this section, merely as a guide to the
readers. This list is by no means a comprehensive
list of available EEG/MEG analysis toolboxes
available to date. All of the software and
toolboxes we introduce here are developed by
active research groups and include extensive
online tutorials and/or online help communities
and can be achieved freely on the web.

As mentioned in this chapter, EEG and MEG
signals need to be analyzed and pre-processed
before use. EEGLAB is one such toolbox particu-
larly specialized in time series analysis and blind
source separation techniques [112]. CARTOOL is
a toolbox tailored for topographical data analysis
and clustering, highly useful when performing
electrophysiological mapping studies (Sect. 13.2)
[113].

Subject-specific head models are necessary
for accurate reconstruction of sources, and these
models are usually built from subjects’ ownMRI,
when available. Some of the toolboxes designed
for this purpose include FreeSurfer [114],
BrainSuite [115], and BrainVISA anatomist
[116]. OpenMEEG can also be used to generate
subject-specific BEM models [117].

There are many toolboxes that specialize on
source imaging. Among these toolboxes, some
are capable of analyzing functional connectiv-
ity such as eConnectome [118], FieldTrip [119],
MNE [120], and Nutmeg [121], while some fo-
cus more on source imaging such as Brainstorm
[122].

The availability of these computational tool-
boxes means that students, researcher, and clini-
cians (and even interested members of the public)
can have easy access to these programs for learn-
ing purposes or to follow their own line of inquiry.

13.6 Discussions

The ultimate goal of the electrophysiological
source imaging is to image brain electric
activity with high resolution in both time and
space domains based on noninvasive EEG and
MEG recordings. Such noninvasive and high-
resolution brain mapping technique would
bring significant advancement in the fields of
clinical neurosurgery, clinical neurology, neural
pathophysiology, cognitive neuroscience, and
neurophysiology. For example, it will facilitate
epilepsy presurgical planning, noninvasive
localization, and delineation of the epileptic
zone in seizure patients; characterize the
brain dysfunction in schizophrenic, depression,
alcoholics, and Alzheimer’s patients; localize and
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image cortical regions contributing to cognitive
tasks; and even assist in neural decoding in brain-
computer interfaces.

During the past decades, numerous techniques
have been developed for brain electric source
imaging by solving the EEG and MEG forward
and inverse problems. Dipole source localization
is particularly useful for localizing descrete
focal brain electric sources, while the distributed
source imaging has the capability of imaging
spatially distributed sources and multiple areas
of activities, such as the 2D cortical imaging and
the 3D brain tomographic imaging. The choice of
using which inverse imaging approach depends
on the particular application, since each inverse
imaging algorithm has its own advantages and
limitations.

The major limitation of the dipole source
localization is that it requires a priori knowledge
on the number of dipole sources. The distributed
source imaging, on the other hand, makes no
assumption on the number of neural sources,
whereas it has to deal with a highly underde-
termined inverse problem. The cortical imaging
technique has the potential to compensate for
the head volume conduction effect and achieve
high-resolution mapping of cortical activities,
whereas the 3D neuroimaging approach has the
capability of retrieving the depth information of
the distributed brain electric sources. A recent
trend in the 3D distributed source imaging is
to use the realistic geometry volume conductor
model constructed from the MR or CT images of
individual subjects, throughwhich the anatomical
constraints become feasible and the obtained
results can be interpreted more meaningfully
and in line with clinical intuition. Another major
trend in the 3D neuroimaging is the development
of novel techniques that aim to overcome the
smoothing effect of the inverse imaging solution,
either by reducing the under-determination of
the inverse problem [43] or by some nonlinear
inverse approaches [80, 81, 83, 93, 104].

The performance of the distributed source
imaging depends on the linear inverse filter and
regularization technique being selected. The
regularization technique is critical to suppress
noise and obtain stable inverse solution. Although
many regularization techniques have been

proposed [71, 73, 77], none of them has been
demonstrated to be universal, and different meth-
ods should be considered depending on different
applications. On the other hand, different inverse
filters have been developed for specific applica-
tions based on various assumptions, such as the
presence or absence of noise, the availability of
statistical information on signal and noise, and
so on. Not surprisingly, more robust and accurate
inverse imaging solutions can be obtained by
incorporating more a priori information as con-
straints, for example, the anatomical constraint,
the temporal constraint, and the functional
constraint. The anatomical constraint can be
easily implemented by the co-registration of
EEG andMEG inverse imaging solutions with the
structural brain images obtained fromMR images
[40]. The temporal constraint can be achieved by
selecting an epoch of EEG or MEG data as input
to the inverse imaging procedure with assumption
that the underlying bioelectric sources remain
relatively invariant. The functional constraint has
shown great promise by combining the electro-
magnetic and hemodynamic imaging modalities
that were recorded using the same paradigm in
the same subjects [52, 53]. The rationale for this
multimodal integration is that neural activity
generating EEG and MEG signals increases
glucose and oxygen demands [123]. The growing
body of evidence suggests that there is close
spatial coupling between electrophysiological
signals and hemodynamic response [4]. However,
many technical challenges still exist, and caution
must be taken when interpreting multimodal
studies [124].

In conclusion, the electrophysiological source
imaging, by means of reconstructing the under-
lying brain sources from the EEG and MEG,
has great potential for noninvasively mapping
the brain activation and function, with high spa-
tiotemporal resolution. Despite many challenges,
with the integrated effort of algorithm develop-
ment, computer simulation, experimental explo-
ration, clinical validation, and the availability of
more powerful computing resources, it can be
confidently foreseen that the electrophysiological
source imaging will become an important neu-
roimaging tool for imaging neural abnormalities
and understanding the human mind.
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Homework

1. What is the Nyquist frequency? How is it
related to the sampling frequency of a band-
limited signal?

2. If we believe that our signals of interest in the
EEG/MEG recordings arewithin the 1–50Hz
frequency bands, what would be the mini-
mum sampling rate you propose that will al-
low the recovery of the full information con-
tent within this particular frequency band?

3. Could you think of a way to define the min-
imum number of EEG/MEG sensors neces-
sary to avoid aliasing the spatial frequency
content of surface recordings?

4. We only record from two EEG electrodes,
say C3 and C4, for two conditions A and
B. These two conditions are elicited when
stimuli A and B are presented to our exper-
iment subject. Each stimuli is presented 100
times, and the voltage recorded from C3 and
C4 at 100 ms poststimulus is recorded in a
vector, Vφ = [

φC3(100), φC4(100)
]T

where
φC3(100) and φC4(100) are the recorded sig-
nals from C3 and C4 electrodes at 100 ms
poststimulus, and is plotted below:

(i) How could you distinguish between
condition A and B if you were only
given Vφ?

(ii) Let us assume that Vφ under conditions
A and B has the same exact distribution
except that for condition A the distribu-
tion is centered around the point (1,1)T

and for condition B around the point
(−1,−1)T. Let us denote this probability
distribution with p(x, y) and also let us
assume symmetry with respect to origin,
that is, p(x, y) = p(−x,−y), and indif-
ference to input variables’ order, i.e.,
p(x, y) = p(y, x). Now if we want to fit
the line y − αx − δ = 0, such that any
point lying on one side of this line is
designated as condition A and the other
side as condition B, how should we find
(α, δ)?

(iii) Based on your answer in (ii), find the
optimal set of (α, δ), if any.

5. If we assume that a dipole is placed at coordi-
nates (x, y, z), the distance between the dipole
source and field space, (x ′, y ′, z′), is defined
as r =

√
(x − x ′)2 + (y − y ′)2 + (z− z′)2.

(i) Calculate ∇ ( 1
r

)
, where ∇ is the

gradient operator defined as ∇f =(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T
.

(ii) Calculate ∇′ ( 1
r

)
, where ∇′

is the gradi-
ent operator with respect to (x ′, y ′, z′),

i.e., ∇′f =
(
∂f

∂x ′ ,
∂f

∂y ′ ,
∂f

∂z′

)T
.

(iii) Show that ∇ ( 1
r

) = −∇′ ( 1
r

)
.

6. Assuming that a current dipole is placed
at the origin of an infinitely homogeneous
space pointing toward the z-direction, i.e.,
(x, y, z)T = (0, 0, 0)T and J i = (0, 0, 1)T,
using Eq. 13.3:
(a) Can you calculate the potential field

generated by this dipole in any point
(x ′, y ′, z′)?
Hint.

∫
v

∇ ( 1
r

)
.J i (x, y, z) dv =

∇ ( 1
r

)
.J i , whereJ i is the current dipole

moment at the origin and∇ ( 1
r

)
.J i is the

inner product of the dipole moment and
the gradient of the reciprocal of field
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point distance to dipole. This equality is
due to the fact that we assumed the dipole
source to be a point source at the origin.
This basically is the impulse response of
the Poisson’s equations, more generally
referred to as the Green’s function. The
inner product between vectors A = (Ax,
Ay, Az)T and B = (Bx, By, Bz)T is defined
as follows: A. B = AxBx + AyBy + AzBz.

(b) Assuming that the EEG sensor is located
at (0, 0, 1)T, what number would it read
as the potential (ideal conditions, noise is
nonexistent)?

(c) What if the sensor is located at (1, 0, 0)T?
(d) What if the sensor is located at (0, − 1,

0)T?
7. Repeat problem 6 to calculate the magnetic

field an MEG magnetometer would
sense at the same locations. Use (B =
μ

4π

∫
J i × ∇ ( 1

r

)
dv) and the Green’s

function hint given before. The cross product
between vectors A = (Ax, Ay, Az)T and
B = (Bx, By, Bz)T is defined as follows:
A× B= (AyBz − AzBy,AzBx − AxBz,AxBy −
AyBx).

8. Based on problems 6 and 7, can you explain
[and provemathematically] why EEG signals
are less sensitive to tangential sources and
MEG signals to radial sources?

9. Let us simply assume that the lead field ma-
trix A, of an MEG recording system with two
recording channels and 3 possible sources, is
given as follows:
(i) Assuming that the given lead field

matrix models the relationship between
source current density and the magnetic
field in z-direction, what is the relation-
ship between the recorded magnetic
field (in z-direction) B at these sensors
and the current density S= (S1,S2,S3)T?
Assume ideal conditions where no
noise exists.

(ii) What would the MEG sensors record if
S = (1,1,1)T?

(iii) What if S = (2,−1,2)T?
(iv) What if S = (3,0,3)T?
(v) What if S = (1,1,1)T + t(2,−1,2)T,

(t∈ R)?
(vi) Can you calculate the null space of ma-

trix A, that is, all vectors x such that
Ax = 0?

(vii) Can you briefly explain why the inverse
problem is not unique? You can math-
ematically prove this using the concept
of null space of a matrix.

10. Combining Eqs. 13.5 and 13.8:
(i) Can you formulate the relationship be-

tween estimated, X, and true source, S?
(ii) Based on the relation derived in (i), what

should be the relationship between A
and B, for the estimated source to be
exactly the same as the true source?

(iii) Can linear methods, as studied in this
problem, ever truly estimate the true
source without any further priors or
assumptions?

11. Can you derive Eq. 13.16 from Eq. 13.15
by differentiating Eq. 13.15 and setting it to
zero?

12. Let us study the Bayesian approaches inmore
detail (Eqs. 13.20, 13.21, and 13.22). Let us
assume that φ = Ax+n and that n is a white
Gaussian noise, n ∼ N

(
0, σn2

) :
(a) What is the probability distribution func-

tion (pdf) of n?
(b) What does p(φ| x) mean? Convince

yourself that p (φ|x) = p(n) ∝
e
− 1

2σn2
‖φ−Ax‖2 .

(c) If we assume x∼ N(0, σ s2), what is p(x)?
(d) Using Bayes’ rule (Eq. 13.20), formulate

the posterior distribution p(x|φ).
(e) Define the likelihood of a distribution as

L(x) = lnp(x). Derive the posterior
likelihood calculated in (iv).
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(f) Formulate x̂ = argmax
x

L (x|φ) and

derive a similar formula to Eq. 13.15,
showing that weighted minimum-norm
(WMN) solutions are a form ofmaximum
a posteriori (MAP) estimators.

13. The L2-norm of a 2D vector, (x, y), is defined
as
√
x2 + y2, and the L1-norm is defined as

�x � + � y�. The level sets of norm functions are
closed curves partitioning the space to inside
and outside. On the other hand, some func-
tions, such as lines or hyperplanes, partition
the space to above and below.Wewill explore
the level sets of these functions in simple
cases and in a two-dimensional space. We
will examine how these simple functions can
be combined to form optimization problems,
in later questions.
(a) Can you plot

√
x2 + y2 = 1 and

|x| + |y| = 1?
(b) Can you plot and describe the set of lines

described by y + 2x = K0 for K0 ∈ R?
If K0 decreases, which direction will the
line move toward? What happens when
K0 increases?

14. Assuming x, y ≥ 0, how would you describe
the following optimization problem?
(a) argmin

x,y

(y + 2x)

Subject to |x| + |y| = 1 x, y ≥ 0
Hint. Basically, you want to minimize

K0 (where y + 2x = K0) for nonnegative
x, y with L1-norm of 1.

(b) Can you graphically depict this optimiza-
tion problem, by varying the values of
K0?

(c) Based on (b), can you propose a system-
atic way to solve this type of an opti-
mization problem? What are the optimal
values of x∗ , y∗ , and K0

∗ in this problem?
15. Repeat problem 6 for the following optimiza-

tion problem:

argmin
x,y

(y + 2x)

Subject to
√
x2 + y2 = 1 x, y ≥ 0

16. From problems 14 and 15, can you explain
why you would expect L1-norm regulariza-

tions to induce sparsity in the solution? Spar-
sity in case of a 2D signal means only 1
nonzero element!
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Abstract

Functional and causal connectivity is widely
used in basic and clinical neuroscience. This
chapter reviews the basic principles of func-
tional and causal connectivity analysis and il-
lustrates the concepts using numerical and ex-
perimental examples. The theory, implemen-
tation, and application of Granger causality
are reviewed. Also covered is functional and
causal connectivity imaging from electrophys-
iological recordings such as electrocorticogra-
phy, electroencephalography, and magnetoen-
cephalography.
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14.1 Introduction

Normal operations of the brain are achieved
through cooperative neural computation.
Multielectrode recording and functional imaging
are the key technologies that afford us the op-
portunity to study neuronal mechanisms of brain
functioning and its breakdown in disease from
a network perspective. Analytically, the main
statistics for assessing functional connectivity
between different neurons and between different
brain areas are cross correlations and ordinary
coherence spectra. More recent advances
have begun to emphasize effective (causal)
connectivity measures that yield information on
the direction of neural signal transmission [1–
7]. One of the most commonly applied causal
connectivity measures is Granger causality [8, 9].
It has been shown that the directional influence
derived from Granger causality can be used to
indicate the direction of neural transmission and
information flow between cortical areas [2, 3].
Because Granger causality is a method based on
stochastic processes, we begin in this chapter
by reviewing the essential ideas of stochastic
processes and then proceed to define methods
for functional and causal connectivity analysis.
We illustrate the various methods by applying
them to multimodal neuronal data recorded
from both animal preparations and humans
under normal and pathological conditions.
Finally, we introduce the readers to open-
source software packages for causal connectivity
analysis. These packages have been applied
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to electrophysiological measurements such as
local field potentials (LFP), electrocorticogram
(ECoG), electroencephalogram (EEG), and
magnetoencephalogram (MEG), as well as
functional imaging data.

14.2 Basics of Functional
and Causal Connectivity
Analysis

14.2.1 Stochastic Processes
and Their Characterization

In many neurophysiological and neuroimaging
experiments, the data are collected in the form
of time series. Some examples are shown in Fig.
14.1. These time series often have a random ap-
pearance and can be described mathematically as
realizations of stochastic processes. A stochas-
tic process, denoted X(t), is a family of random
variables indexed by time t. Mathematically, X(t)
can be characterized by three quantities: mean,
variance, and autocovariance function, defined as
μ(t) = E(X(t)), σ 2(t) = E((X(t) − μ(t))2), and
Rxx(t1, t2) = E((X(t1) − μ(t1))(X(t2) − μ(t2))),
respectively.

Here E stands for mathematical expectation.
When analyzing actual data, E can be replaced by
sample averaging.

A class of stochastic processes that have found
wide applications in real-world problems is called
stationary stochastic processes or simply station-
ary processes. For a stationary process, the mean
and variance are both constant, i.e., μ(t) = μ,
σ 2(t) = σ 2, and the autocovariance function has
the form Rxx(t1, t2) = Rxx(τ ), where τ = t2 − t1
is referred to as the time lag or lag. From these
definitions, it is clear that σ 2 = Rxx(0). Because
the autocovariance function depends on the mag-
nitude of the time series, making the comparison
between different experimental conditions diffi-
cult, we typically normalize the autocovariance
function by Rxx(0), to yield the autocorrelation
function, ρxx(τ ) = Rxx(τ )/Rxx(0). The autocor-
relation function measures the degree of linear
dependence between two variables separated by
the time lag τ . For stochastic processes encoun-
tered in applications, such as those in Fig. 14.1,
ρxx(τ ) → 0 as τ → ∞, meaning that when the
two random variables are sufficiently separated in
time, they are no longer correlated.

The autocorrelation function can provide
many insights into a stochastic process. For
example, by measuring how fast ρxx(τ ) decays to
zero, we get the correlation time, which gauges
the memory effects in the times series. If ρxx(τ )
approaches zero like a damped sinusoid, we
can infer that the system contains stochastic
oscillatory activity. As such, it is not surprising

Fig. 14.1 Example of neural time series. (a) Local field potential data from the brain of a macaque monkey. (b) EEG
data from the occipital cortex of a human subject
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that this method has been used extensively to
study neuronal oscillation phenomena in local
field potential (LFP), ECoG, and EEG/MEG
recordings [10].

A more systematic way to study the frequency
content of a time series is through spectral analy-
sis. The power spectrum of a stationary stochastic
process is defined as

Γxx(f ) = Rxx(0)+ 2
∞∑

τ=1

Rxx (τ ) cos (2πf τ) .

A power spectrum tells us how energy is dis-
tributed in different frequency bands. This is very
useful in neuroscience because ensembles of neu-
rons are known to produce oscillatory activity
in a variety of frequency bands, including alpha
(8–12 Hz), beta (15–30 Hz), and gamma (30–
80 Hz) bands [10]. Oscillations in the brain play
an instrumental role in mediating many cognitive
and autonomic functions, and abnormal oscilla-
tions are found to be associated with various brain
disorders like schizophrenia and epilepsy [11,
12].

Amore intuitive way to estimate power spectra
is the periodogram method. Let’s use X(t) to
denote a discrete-time stochastic process of finite
duration where t= 1, 2, . . . ,N. LetX(f ) be the dis-
crete Fourier transform of X(t). The periodogram
is defined as Γ̂xx(f ) = E

(|X(f )|2) /N . The
expectation operation E means averaging over
multiple realizations in actual data analysis. What
is the relation between Γ̂xx(f ) and  xx(f )? It can
be shown that lim

N→∞Γ̂xx(f ) = Γxx(f ). This result

is sometimes referred to as the Wiener-Khinchin
theorem [13].

For two neuronal time series X(t) and Y(t), the
cross-covariance function is defined as

Rxy (τ ) = E
(
(X (t1)− μx)

(
Y (t2)− μy

))

where τ = t2 − t1. Normalizing the cross-
covariance function gives us the cross-correlation
function, that is,

ρxy (τ ) = Rxy (τ ) /
√
Rxx(0)Ryy(0).

This is an essential function in quantifying the
functional connectivity between two time series
in the time domain. In particular, the zero-lag
cross-correlation, ρxy(0), is widely used to char-
acterize intrinsically connected brain networks in
resting-state functional MRI data [14].

Functional connectivity analysis can also
be done in the frequency domain. The key
quantity is the cross-spectrum Γxy(f ) =

∞∑
τ=−∞

Rxx (τ ) e
−i2πf τ . Normalized cross-spectrum

is the spectral coherence function:

Cxy(f ) =| Γxy(f ) | /√Γxx(f )Γxy(f )

which sometimes is also called the ordinary
coherence function or simply coherence function.
There is a similar periodogram approach to
compute this function. Let X(f ) and Y(f ) be
the Fourier transform of X(t) and Y(t). Let
Γ̂xy(f ) = E (X(f )Y ∗(f )) /N where ∗ is
complex conjugate. Normalizing the cross-
spectrum by the power spectra, we obtain

Ĉxy(f ) =| Γ̂xy(f ) | /
√
Γ̂xx(f )Γ̂yy(f ).

According to the Wiener-Khinchin theorem,
lim
N→∞Ĉxy(f ) = Cxy(f ). The coherence function

is an essential function in functional connectivity
analysis in the frequency domain. It has been
widely used to study oscillatory neuronal net-
works [2, 3, 15].

14.2.2 Granger Causality

Interactions between different neurons and dif-
ferent brain areas are mediated by the transmis-
sion of action potentials and are inherently di-
rectional. Functional connectivity measures such
as cross-correlation function and ordinary co-
herence may yield directional information only
under very ideal conditions. Recent work has
shown that Granger causality is a robust method
to furnish the direction of neuronal interactions
[1–4, 16 –18, 46]. At the heart of this causal
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connectivity method is the idea of time series
prediction [9].

Consider two simultaneously recorded station-
ary time series. According to Wiener [19], if
the prediction of one time series is improved by
incorporating the knowledge of a second one,
then the second series is said to have a causal
influence on the first. Wiener’s proposal lacks the
machinery for practical implementation. Granger
[9] later formalized the prediction idea in the
context of linear regression models. Specifically,
if the variance of the autoregressive prediction
error of the first time series at the present time is
reduced by inclusion of past measurements from
the second time series, then the second time series
is said to have a causal influence on the first one.
Reversing the role of the two time series gives
the causal influence in the opposite direction. The
interaction discovered this way could be either
reciprocal or unidirectional.

The mathematical formulation of Granger
causality is based on the autoregressive
representation of time series [5, 8]. Let two
stationary time series be denoted by X(t) and
Y(t). Individually, under general conditions, X(t)
and Y(t) can each be written as the following
autoregressive models:

X(t) =
∞∑

j=1

a1(j)X (t − j)

+ ε1(t), var (ε1(t)) = Σ1

(14.1)

Y (t) =
∞∑

j=1

d1(j)Y (t − j)

+ η1(t), var (η1(t)) = Γ1.

(14.2)

Jointly, they are represented as the following
bivariate autoregressive model:

X(t) =
∞∑

j=1

a2(j)X (t − j)

+
∞∑

j=1

b2(j)Y (t − j)+ ε2(t)

(14.3)

Y (t) =
∞∑

j=1

c2(j)X (t − j)

+
∞∑

j=1

d2(j)Y (t − j)+ η2(t)

(14.4)

where ε2(t) and η2(t) are uncorrelated over time,
and their contemporaneous covariance matrix is

Σ =
(
Σ2 γ2
γ2 Γ2

)
. (14.5)

Here, �2 = var (ε2(t)),  2 = var (η2(t)),
and ϒ2 = cov (ε2(t), η2(t)). Intuitively, the linear
combination on the right-hand side of (14.1),
∞∑
j=1

a1(j)X (t − j), can be thought of as a pre-

diction of X(t) using past measurements of X,
namely, X(t − 1), X(t − 2), X(t − 3), . . . etc.
The noise term is then the prediction error whose
variance, var(ε1(t)) = �1, gauges the quality of
the linear predictor. Similarly, in (14.3), the term
∞∑
j=1

a2(j)X (t − j) +
∞∑
j=1

b2(j)Y (t − j) can be

thought of as a prediction of X(t) by combin-
ing the past measurements of both X and Y. In
this case, the variance of the prediction error is
�2. According to the idea explained above, the
Granger causality from Y to X can be defined as

FY→X = ln
Σ1

Σ2
. (14.6)

If the prediction of X(t) is improved by in-
cluding the past measurements of Y, we have
�2 < �1, which means FY → X > 0, and there is
causal influence from Y toX. On the other hand, if
there is no improvement in prediction, �2 = �1,
FY → X = 0, and there is no causal influence from
Y to X. Using the same reasoning, we can define
the Granger causality from X to Y as

FX→Y = ln
Γ1

Γ2
. (14.7)

The interaction between two neuronal
ensembles can be unidirectional or can be
reciprocal. Both types of interaction patterns have
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been found in experimental recordings. Examples
in the subsequent sections will illustrate both
possibilities.

The derivation of frequency domain Granger
causality is quite involved although the basic
idea is straightforward to appreciate. Geweke
[8] showed that the spectral power at a given
frequency f can be written as the sum of two
terms: power(f ) = intrinsic power(f ) + causal
power(f ). The intrinsic power can be thought
of as the power generated locally near the
recording site, whereas the causal power term
is the power brought about by the input from
the other time series. The spectral Granger
causality is then conceptually defined to be
W(f ) = ln(power(f )/intrinsic power(f )). From
this definition, it is clear that when the causal
power is zero, namely, there is no causal input
from the other time series,W(f ) = 0. With causal
power greater than zero, W(f ) > 0, signaling
nonzero causal influence from the other time
series at frequency f. A crucial result proven
by Geweke [8] is that the spectral measure
defined this way can be related to its time-domain
counterpart through the following integration:

FY→X = ∫ 1/2
−1/2WY→X(f )df,

FX→Y = ∫ 1/2
−1/2WX→Y (f )df.

The conditions necessary for these equalities
to hold are expected to be met in practical appli-
cations.

Before we conclude this section, we make two
remarks. First, for three or more time series, pat-
terns of connectivity can become more intricate.
To illustrate, consider three time series X, Y, and
Z. A pairwise analysis will not be able to resolve
the two patterns shown in Fig. 14.2. In this case,
the concept of conditional Granger causality will
become necessary [20, 21]. Second, the Granger
causality spectra defined above is but one ap-
proach to the frequency representation of Granger
causality. There are other spectral representations
of Granger causality, including directed trans-
fer function [22, 46], partial Granger causality
spectra [23], and partial directed coherence [29].

YY

X

(a) (b)

X

ZZ

Fig. 14.2 Two different connectivity patterns between
three recording channels. A bivariate Granger causality
analysis cannot distinguish the two patterns in (a) and (b),
but a conditional Granger causality analysis can

All these methods have been used in neural data
analysis.

14.3 Numerical and Experimental
Examples

Below we present numerical and experimental
examples to illustrate the application of some of
the methods discussed above. Coupled autore-
gressive models of varying network complexity
are used to generate the simulation data.

Example 1 A two variable model is

x(t) = ε(t)

y(t) = 0.5y (t − 1)+ x (t − 1)+ η(t)

where ε(t), η(t) are independent Gaussian white
noise processes with mean of 0 and variance of
1 and 0.09, respectively. From the model, we
see that there is causal influence from X to Y
but not from Y to X. Assume a sampling rate of
200 Hz. The coherence can be derived analyt-
ically to be 0.92, which is independent of fre-
quency. For Granger causality, one can show that
FY → X = 0 and FX → Y = 2.49 which corresponds
to the pattern of connectivity in the model. We
simulated the model to generate a dataset of 500
realizations each consisting of 100 time points.
An AR model is fit to the data and coherence and
the Granger causality spectra are derived from
the model shown in Fig. 14.3. The agreement
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Fig. 14.3 Simulation results of a two-variable model. (a) Coherence and (b) Granger causality

between the numerical results and the theoretical
results is excellent.

Example 2 Consider a 5-node oscillatory net-
work. The network configuration is shown in Fig.
14.4a. The mathematical equations are:

x1(t) = 0.55x1 (t − 1)− 0.7x1 (t − 2)+ ε1(t)

x2(t) = 0.56x2 (t − 1)− 0.75x2 (t − 2)
+ 0.6x1 (t − 1)+ ε2(t)

x3(t) = 0.57x3 (t − 1)− 0.8x3 (t − 2)
+ 0.4x1 (t − 2)+ ε3(t)

x4(t) = 0.58x4 (t − 1)− 0.85x4 (t − 2)
+ 0.5x1 (t − 3)+ ε4(t)

x5(t) = 0.59x5 (t − 1)− 0.9x5 (t − 2)
+ 0.8x1 (t − 4)+ ε5(t)

,

(14.8)

where ε1(t), ε2(t), ε3(t), ε4(t), ε5(t) are in-
dependent Gaussian white noise processes with
zero means and variances σ 2

1 = 1.0, σ 2
2 =

2.0, σ 2
3 = 0.8, σ 2

4 = 1.0, σ 2
5 = 1.5, respectively.

The intrinsic dynamics of each node is chosen in
such a way that it exhibits a prominent spectral
peak. From construction, the signal from the first
node (the source) is propagated to the other four
nodes with differential time delays. A pairwise
analysis will reveal nonzero Granger causality
from the nodes that receive an early input from
the source node to the nodes that receive a late
input (e.g., node 3 ➔ node 4). Clearly, this does
not depict the true connectivity of this dynami-
cal network. A conditional Granger causality can
help to resolve this problem [20, 5].

A dataset of 500 realizations each with 50 time
points was generated. The sampling rate is taken
to be 200 Hz. Assuming no knowledge of the
model equations, Eq. (14.8), we fitted a 5th order
MVAR model to the simulated dataset and calcu-
lated power, coherence, and conditional Granger
causality spectra from it. The power spectra are
given in the panels along the diagonal direction
in Fig. 14.4b. All five oscillators have a spectral
peak at around 40 Hz. The conditional Granger
causality spectra are shown in the off-diagonal
panels of Fig. 14.4b. Only the first column has
nonzero conditional Granger causality values, re-
flecting the driving influence emanating from
node 1. The conditional Granger causality among
other pairs of nodes is uniformly zero. This cor-
responds precisely to the structural connectivity
pattern in Fig. 14.4a. One noteworthy feature
about Fig. 14.4b is the consistency of spectral
features (i.e., peak frequency) across both power
and Granger causality spectra. This is important
since it allows us to link local dynamics with that
of the global network.

Example 3 Laminar organization of cortical al-
pha rhythm. Hans Berger is the first to coin the
term alpha rhythm or alpha oscillations to de-
scribe the 8–12 Hz oscillations observed over
human occipital-parietal cortex [24]. More than
90 years since this initial discovery, the phys-
iological mechanisms of alpha rhythm and its
function remain a topic of intense investigations
[25]. Prior to the 1970s, the thalamus was thought
to be the pacemaker of cortical alpha [26]. More
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Fig. 14.4 Simulation
results of a five-variable
mode. (a) Schematic
illustration of the network
topology. (b) Power
(diagonal) and conditional
Granger causality
(off-diagonal) results from
a multivariate parametric
analysis. Causal influence
is from the horizontal axis
onto the vertical axis
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recent studies using lesion techniques have tested
the role of infragranular layer pyramidal cells in
alpha pacemaking in cortical slice preparations
[27]. Here we demonstrate that Granger causality
can be used in lieu of the lesion technique to
identify the cortical pacemakers of alpha activity
in behaving monkeys [2, 3]. Because the lesion
techniques commonly used in in vitro prepara-
tions are not available in in vivo experiments, a
computational method that can accomplish the
same goal will represent a major advance.

A macaque monkey was trained to perform
an auditory discrimination task so that in the
visual cortex we can examine spontaneous neural
activity under verifiably alert conditions. Local
field potential (LFP) was sampled (2 kHz) with
a linear array electrode with 14 contacts span-

ning all 6 cortical layers in visual area V4. The
intercontact spacing was 200 μm. To examine
the laminar organization of alpha oscillations, we
followed a two-step analysis protocol [2, 28].
First, laminar generators of LFP oscillations at
the alpha frequency are identified by calculating
the current source density (CSD) using the phase
realigned averaging technique (PRAT). Second,
the patterns of interaction between different lam-
inar alpha generators are identified using Granger
causality. Figure 14.5a, b displays the schematic
of the linear multielectrode and 200 ms unfiltered
single-sweep LFPs. Oscillations around 10 Hz
are apparent. Current source density analysis re-
veals alpha current generators in granular (G),
infragranular (IG), and supragranular (SG) layers.
Applying Granger causality to these alpha current
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Fig. 14.5 Laminar organization of alpha oscillations. (a)
Schematic of a multicontact electrode capable of sampling
neuronal activity from all six layers. (b) Local field poten-
tial data demonstrating alpha oscillations (10 Hz). (c, d)

Granger causality results. SG supragranular, G granular,
IG infragranular. (Figure adapted from Ding et al. [28]
with permission)

generators, we found that IG➔SG and IG➔G
causal influences in the alpha band are large,
whereas the SG➔IG and G➔IG causal influences
are close to zero (Fig. 14.5c, d). This finding is
consistent with the in vitro result mentioned ear-
lier demonstrating that alpha frequency pacemak-
ers are located in infragranular layers. In a sense
this study can be seen as providing a validation of
Granger causality as a method to infer direction
of synaptic transmission in neuronal circuits.

14.4 Brain Causal Mapping
from Electrophysiological
Measurements in Humans

14.4.1 Analysis of Directed Cortical
Interactions

There are a variety of connectivity estimators
based upon the principle of Granger causality [9].
A shortcoming of bivariate causality, however, is
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that the estimation of the connectivity is limited
to pairwise systems and may incorrectly estimate
the causal interactions in a multivariate setting.
Several techniques have been developed to pro-
vide estimates of connectivity in multivariate sys-
tems. Many of these techniques, such as the di-
rected transfer function (DTF) [46] and partial di-
rected coherence (PDC) [29], are based upon the
spectral characteristics of the physiologic signals
and are able to differentiate causal interactions
within specific frequency bands of interest.

The DTF is a frequency-domain estimator
of causal interaction based on the multivariate
autoregressive (MVAR) modeling [46]. Let
Y = [y1(t), y2(t), . . . , yN(t)]T be a set of
electrophysiological measurements or estimates
at N selected regions of interest (ROIs), where t
refers to time. The following MVAR process will
be an adequate description of the dataset Y:

p∑

k=0

Λ(k)Y (t − k) = E(t),with Λ(0) = I

(14.9)

where E(t) is a vector of a multivariate zero-mean
uncorrelated white noise process, �(1), �(2),
. . . , �(p) are the N × N matrices of model
coefficients, and the model order p can be chosen
with the Akaike information criteria (AIC) [44]
for a MVAR process. In order to investigate the
spectral properties of the examined process, the
above equation can be transformed to the fre-
quency domain.

Λ(f )Y(f ) = E(f ),

where Λ(f ) =
p∑

k=0

Λke
−j2πfΔtk (14.10)

This equation can be rewritten as

Y (f ) = Λ−1(f )E(f ) = H(f )E(f ) (14.11)

where H(f ) is the inverse of the frequency-
transformed coefficient matrix, #(f ), and is

defined as the transfer matrix of the system. From
the transfer matrix, the DTF measure, γ2

ij(f ),
which describes the directional connectivity from
ROI j to ROI i, is defined by the elements of the
transfer matrix in the spectrum domain [1, 46]:

γ 2
ij (f ) =

∣∣Hij (f )
∣∣2

N∑
m=1

|Him(f )|2
. (14.12)

14.4.2 Connectivity Analysis
from Electrocorticogram

The DTF has been applied to ECoG recordings
from epilepsy patients to identify zones [17, 18,
30, 31, 47]. The connectivity analysis using DTF
has been shown useful in elucidating seizure on-
set zones in patients with temporal lobe epilepsy
originating in either the mesial or lateral cortical
structures as well as in patients with neocortical
onset extratemporal lobe epilepsy. In such ap-
proach, the seizure foci were identified by calcu-
lating the DTF-calculated causal activity, which
originates at each ECoG electrode. The direc-
tional functional connectivity was further inves-
tigated using a within frequency framework as
discussed above and using a cross-frequency di-
rectionality analysis [30], revealing the push-pull
interplay between seizure-onset zone and the sur-
rounding regions.

Treating each ECoG signals as a time series,
the DTF connectivity values can be estimated
using the algorithms as discussed in Sect. 14.4.1.
After this procedure, the question arises as to
whether the calculated values constitute a sig-
nificant causal interaction. Since the DTF has a
highly nonlinear relationship to the time series
from which it is derived, the distribution of the
estimator under the null hypothesis of no con-
nectivity is not well-established. Therefore, con-
ventional parametric statistical analysis cannot be
used. To overcome this problem, a nonparametric
statistical test using surrogate data [4, 7] canbe
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performed to determine the significance of the
calculated DTF values.

From the DTF calculation, the causal relation-
ships among the ECoG channels in the selected
ictal frequency bands can be identified. Once
the causal interactions from the DTF calculation
for the analyzed epoch are obtained, statistical
significance testing can be performed in order
to remove the links, which may form spurious
interactions between ECoG channels. The sur-
rogate data method can be applied to each an-
alyzed epoch in which the temporal correlation
between the ECoG channels is destroyed [4, 7].
The DTF method can be applied to the surrogate
datasets, and a distribution of DTF values can be
obtained which correspond to the null hypothesis
of no causal interactions. From this distribution,
a threshold is normally set (e.g., p = 0.01), and
links in which the strength of the causal interac-
tion does not exceed this threshold are discarded
from further analysis.

In situations where the frequency-derived in-
formation is confined to a relatively narrow band-
width, the DTF values can be integrated over a
specific frequency band of interest in order to
provide a better visualization of the connectivity
pattern [47]. This is denoted as the integrated
DTF (IDTF) and is given by

θ2ij =

f2∑
k=f1

γ 2
ij (k)

f2 − f1
, (14.13)

where f1 and f2 correspond to the lower and upper
indices, respectively, of the frequency band of
interest.

If the total amount of information entering or
leaving a node is desired, the afferent and efferent
IDTF values can be summed accordingly. This
technique has been previously demonstrated in
identifying frequency-dependent sources (and
sinks) of cortical activity [1]. Here, the total
amount of information leaving a channel is
calculated by summing the IDTF values for each
jth input channel over all i output channels. This
outflow value can also be normalized by dividing
the sum by the number of output nodes.

Φ2
j =

∑
k∈n 	=j

θ2kj

n− 1
. (14.14)

Following calculation of the causal links, the
sum can be obtained of the DTF-calculated activ-
ity which arises from each channel. The resulting
value can be interpreted as the degree to which
each electrode acts as a generator of the observed
ictal activity. This value, which is termed the
causal source activity, is usually normalized such
that the electrode(s) with the maximum activity
in each analyzed seizure had unit strength. A
diagram outlining the methods for application
of DTF causal connectivity analysis to epilepsy
ECoG data is shown in Fig. 14.6 [18].

From the thresholded DTF results, Fig. 14.7
[18] shows an example of epilepsy source iden-
tification, where two regions of source activity
can be observed in a patient (Fig. 14.7). From
this figure, a good correlation can be observed
between the spatial locations of the causal source
activity and the SOZ identified by the epileptol-
ogist. A right temporal lobectomy and resection
of the frontal focus were performed. Following
surgery, the patient experienced a roughly 70%
reduction in seizure frequency.

In a study of 11 selected patients [18], the
sources estimated from the DTF method were
found to be in agreement with the seizure foci
identified by the epileptologists. The use of such
causal analysis tools could provide greater insight
into the sources of the epileptogenic networks
which give rise to the ictal activity and pave the
way for better and more focused treatment of
patients with intractable epilepsy.

14.4.3 Connectivity Analysis
from E/MEG Source Imaging

Recently, a noninvasive electrophysiological con-
nectivity analysis approach has been developed
based on the unique feature of EEG (and MEG)
source imaging in conjunction with causal anal-
ysis such as DTF method [1, 4, 6, 7, 32–35].
Through the utilization of EEG/MEG-based non-
invasive source imaging techniques, it is pos-
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Fig. 14.6 A diagram outlining the causal connectivity
analysis from ECoG. First, a time segment following the
ictal onset is selected from the ECoG recordings. The DTF
method is applied to the time series, and the connectivity
pattern between the ECoG electrodes is obtained. Signif-
icance testing by means of a surrogate data method is
performed to obtain the causal interactions. From here, the

amount of information leaving each electrode (strength of
the outgoing arrows) is summed, and the electrode with
the maximum amount of source activity for each seizure
is noted. This process is repeated for each seizure, and the
statistically significant source activity is summed to obtain
the total DTF-calculated source activity for each patient.
(Figure adapted from [18] with permission)

Fig. 14.7 (a) The seizure onset zones identified clinically
by the epileptologists. (b) The DTF-calculated source ac-
tivity obtained by selecting the cortical regions having the

maximum source activity in each of the analyzed seizures.
(Figure adapted from [18] with permission)

sible to reconstruct the cortical neural activity
with a high degree of fidelity (see Chap. 13 of
this book). The network connectivity can then
be directly estimated from source waveforms at
regions of interest (ROIs) within the brain. These
types of connectivity estimation approximate the
macroscopic causal interactions between func-
tionally distinct brain regions. Still other recently
developed techniques, such as dynamic causal

modeling [36], aim to explain the local network
dynamics at the neural level.

Electrophysiological connectome (eConnec-
tome) is a concept born from the combination
of inverse imaging algorithms and causal
connectivity measures such as Granger causality,
in which the estimated time series of sources are
analyzed to delineate the underlying effective
connectivity of brain networks [1, 6, 37]. Similar

http://dx.doi.org/10.1007/978-3-030-43395-6_13
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Fig. 14.8 The concept of electrophysiological connec-
tome (eConnectome). Source imaging can estimate the
location and time-course of underlying brain sources from
noninvasive EEG and MEG measurements, which can be

used to determine the directional connectivity among these
nodes of activity. This approach, eConnectome, is suitable
for imaging dynamic brain networks. (Figure from [37]
with permission)

to the ECoG-based connectivity analysis, one can
first estimate cortical current density distributions
from noninvasively recorded scalp EEG [1, 4] or
from MEG [33, 35] and then perform causal
analysis on waveforms at the cortical ROI level.
In this case, the estimation of causal interactions
from the EEG/MEG data can be complicated
by the volume conductor effect, whereas it is
less an issue for the near-field ECoG recordings.
The volume conduction effect can be reduced
by reconstructing the source signals in the brain
that underlie the sensor signals. The cortical
current density (CCD) source model [38] can
be used to solve the inverse problem from the
scalp EEG to cortical source distribution [1, 37,
39]. Alternatively, a volume source scanning
method can be used to estimate current source
distribution within the brain and then used to
assess the causal relations among the activities
located in various brain regions [4]. Figure

14.8. schematically illustrates the eConnectome
approach for mapping functional and causal
brain networks from scalp EEG/MEG signals
[37]. Figure 14.9 shows an example of causal
connectivity measures estimated from EEG
source imaging and DTF analysis during a motor
task [1]. From the directionality information
provided by the DTF, the degree to which each
cortical region acts as either a source or sink of
cortical activity during the task can be calculated.

The interpretation of cortical network activity
obtained from functional and effective connectiv-
ity estimates may not be entirely straightforward
[6, 7]. While the relationship between anatomic
connectivity measurements, such as diffusion
tensor MRI [40], and the physiologic cortical
networks is easily discernable, the precise
anatomic relationship between functionally
coupled disparate brain regions is less obvious.
Granger causality and other similar connectivity-
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Fig. 14.9 Causal
connectivity patterns
estimated from EEG source
imaging and DTF analysis
during a motor task in
human subject. Spheres
show in-flow or out-flow at
the cortical ROIs. Arrows
show causal connectivity
estimated from the source
waveforms averaged over
the cortical ROIs among
brain regions. (Figure from
[1] with permission)

based techniques do not provide information
regarding the underlying physical connections
between functionally coupled ROIs. Currently,
as a result of this disconnect between structure
and function measures, the identification of
the precise neural networks which denote how
functionally coupled brain regions interact is
not trivial. Imaging modalities and connectivity
techniques, which are able to incorporate the
structural neural network information into the
causal interactions, are needed to improve
the accuracy and precision of the calculated
cortical network activity. An effort has been
made to first estimate brain sources using
anatomically realistic head models, and then
causal connectivity among selected ROIs is
assessed (Fig. 14.9) [1, 7]. Such approach
represents an initial albeit important direction
to integrate anatomic and functional information
to estimate the causal interactions within the brain
networks.

14.5 Software Packages for
Functional and Causal
Connectivity Analysis

A number of toolboxes for causal connectivity
analysis have appeared in the past several years.
These include the BSMART software package

[41], the toolbox developed by Anil Seth [42],
and eConnectome toolbox developed by He and
co-workers [6, 34]. In this section, we describe
a MATLAB-based toolbox, eConnectome
(electrophysiological connectome) [33, 34],
which has been developed for mapping and
imaging functional and causal connectivity at
both the scalp and cortical levels from EEG/MEG
and ECoG. Graphical user interfaces were
designed for interactive and intuitive use of
the toolbox. Major functions of eConnectome
include EEG/ECoG/MEG preprocessing, scalp
spatial mapping, cortical source estimation,
connectivity analysis, and visualization. Granger
causality measures such as directed transfer
function and adaptive directed transfer function
[45] are implemented to estimate the directional
interactions of brain functional networks, over
the scalp and cortical sensor spaces. Granger
causality can be further estimated over the
cortical source domain from the inversely
reconstructed cortical source signals as derived
from the scalp EEG [34] or MEG [33]. The
toolbox package is open-source and freely
available at https://www.nitrc.org/projects/
econnectome/ under the GNU general public
license for noncommercial and academic uses.

Figure 14.10 illustrates a source connectiv-
ity analysis from an interictal MEG spike in a
patient with focal epilepsy [33]. The waveform

https://www.nitrc.org/projects/econnectome/
https://www.nitrc.org/projects/econnectome/
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Fig. 14.10 Source connectivity analysis from the inter-
ictal MEG spike. The waveform and global field power
of the interictal spike were inspected for the selection of
significant time points around the peak of the spike (see
a). Cortical current distributions were reconstructed from
the interictal spike with an individual realistic three-layer
boundary element model, and cortical regions with signifi-

cant activity at the selected time points were considered as
regions of interest (see b). Representative waveforms for
the cortical regions of interest were computed. Directional
connectivity among the cortical ROIs was estimated from
the ROI waveforms using directed transfer function and
visualized over the cortical surface (see c). L left view, R
right view. (Figure from [33] with permission)

and global field power of the interictal spike
can be inspected for the selection of significant
time points using eConnectome (see a). Corti-
cal current distributions were reconstructed from
the interictal spike with an individual realistic
three-layer boundary element model, and cortical
regions with significant activity at the selected
time points were considered as regions of inter-
est using the cortical source imaging function in
eConnectome (see b). Representative waveforms
for the cortical regions of interest were computed.
Directional connectivity among the cortical ROIs
was estimated from the ROI waveforms using
directed transfer function and visualized over the
cortical surface using eConnectome (see c).

The eConnectome toolbox is developed in
MATLAB (MathWorks, Inc.) with graphical
user interfaces as an open-source package. It
is integrated by the modules of preprocessing,
source imaging, and connectivity analysis,
which can be called individually or coordinately

for EEG/ECoG/MEG processing. While the
focus of the toolbox lies on the mapping
and imaging of causal connectivity, a set of
preprocessing tools are easily available to handle
the raw electrophysiological signals in the
time, frequency, and spatial domains. Three-
dimensional visualization of the brain activity
images and connectivity patterns is implemented
at both the sensor and source levels based on the
standard Montreal Neurological Institute (MNI)
brain [43] or a user-defined anatomy.

The graphical user interfaces of the eConnec-
tome allow users to analyze EEG/MEG/ECoG
data interactively and intuitively without MAT-
LAB programming experience. The MATLAB-
based interface also allows users to run modules
in command line or write customized modules
with available functions and interfaces. A uni-
form structure “ECOM” was designed to store
EEG/MEG/ECoG data including acquisition in-
formation (e.g., sampling rate), electrodes loca-
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tions, time series, and event information (e.g.,
onset time). Intermediate data such as prepro-
cessed EEG/MEG/ECoG data, estimated cortical
sources, and connectivity measures can be ex-
ported for later analysis and review.

14.6 Concluding Remarks

With the advent of data acquisition technology,
multielectrode neural recordings and functional
brain imaging are becoming commonplace.
Such technologies promise to offer unparalleled
insights into how different areas of the brain work
together to achieve thought and behavior and how
such coordinated brain activity breaks down in
disease.While the accumulation of data continues
at an astonishing rate, how to effectively analyze
these data to extract information about the
workings of the brain remains a key challenge.
Recent years have witnessed rapid growth
in the applications of various functional and
causal connectivity measures to multichannel
neural data. In this chapter, we give a brief
introduction to some of the commonly applied
methods, including cross-correlation, spectral
coherence, and Grange causality. In addition
to time-domain formulations, we also discuss
spectral domain formulations, which are useful
in analyzing oscillatory neuronal networks.
Numerical examples are provided, where the
connectivity pattern is known a priori. An
experimental example is also provided in which
local field potential data from monkeys were
analyzed to reveal the laminar organization
of cortical alpha oscillations. Uses of Granger
causality and in particular the directed transfer
function analysis have been discussed in human
subjects from both scalp EEG/MEG and ECoG
data. Our emphasis is placed on the insights
generated by the directional information provided
by these methods. Readers can consult a recent
tutorial [7] on functional connectivity analysis for
more advanced treatments of various connectivity
estimation algorithms. Finally, we introduce
several open-source MATLAB Toolboxes,
especially the eConnectome package in detail.
These toolboxes can serve as the starting point

for the interested reader to begin the exploration
of functional and causal connectivity in brain
networks.
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Homework

1. Suppose that X(t) is a process with μ(t) = 0
and RXX (t1, t2) = 2−|t2−t1|. Determine the
mean, variance, and covariance of the ran-
dom variables X(3) and X(9).

2. Consider the process

X(t) = A cos (ωt)+ B sin (ωt)

where A and B are independent random vari-
ables with zero mean and equal variance.
Show that this process is stationary.

For problems 3–4, the process {Z(t)} is
white and Gaussian with mean zero and vari-
ance σ 2

Z .
3. Consider the following AR(2) process

X(t) = α1X (t − 1)+ α2X (t − 2)+ Z(t)

where α1 = 1/3 and α2 = 2/9. It can be shown
that the autocorrelation function of X(t) is

ρXX (τ) = 16/21(2/3)|τ | + 5/21(−1/3)|τ |

where τ = 0, ± 1, ± 2, . . . Simulate this
model (assume σ 2

Z = 1) to generate a dataset
of 1000 data points. Plot the time series.
Estimate the autocorrelation function up to
lag 10 from the dataset and compare it with
the theoretical autocorrelation function. Vary
the dataset size (2000 points, 5000 points,
10000 points, etc.) and see what happens.

4. Consider the following MA process

X(t) = Z(t)+ 0.4Z (t − 1)
Y (t) = Z(t)− 0.4Z (t − 1)

Find the cross covariance functionRXY (τ ).
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5. Consider the following AR(2) model:

X(t) = 0.9X (t − 1)− 0.5X (t − 2)+ ε(t)

Y (t) = 0.8Y (t − 1)
− 0.5Y (t − 2)+ 0.16X (t − 1)
− 0.2X (t − 2)+ η(t)

where ε(t), η(t) are independent Gaussian
white noise processes with zero means and
variances σ 2

1 = 1, σ 2
2 = 0.7, respectively.

Simulate this model to generate a data set
of 500 points. Your task is to estimate the
AR model from the data according to the
following procedure. (a) Plot the time series.
(b) Determine the model order. (c) Obtain
the model coefficients using the Yule-Walker
procedure and compare the estimated model
equations with the above theoretical equa-
tions. (d) Increase the length of the time
series to 2000 points or some other number,
repeat (a) to (c), and compare the results.

6. Suppose that X(t) is a process with
RXX (t1, t2) = 4e−0.2|t2−t1|. Find its power
spectral density function.

For problems 7–10, the processes {U(t)}
and {V(t)} are independent normal white pro-
cesses with mean zero and variance σ 2

U and
σ 2
V .

7. Consider the following AR(1) process

X(t) = αX (t − 1)+ U(t).

(a) Find the power spectral density func-
tion of {X(t)}. Here �α � < 1. (b) For σ 2

U = 1
and α = 0.5 plot the power spectral density
function. (c) Simulate the process to generate
a data set of 100 realizations each containing
500 data points. Estimate the spectral density
with the periodogram approach. Compare the
result with the result from (b). (d) What hap-
pens if you have only 5 realizations? (e)What
happens if you have 100 realizations but each
realization only has 10 data points?

8. Consider the following AR(2) process

X(t) = α1X (t − 1)+ α2X (t − 2)+ U(t)

where a1 = 2 cos (2π /T) exp (−1/τ ) and
a2 = − exp (−2/τ ). Let T =10, τ = 50, and
σ 2
U = 1. Simulate the process to generate a

data set of 100 realizations each containing
500 data points. Estimate the spectral density
using the periodogram approach.

9. Consider the following MA process

X(t) = U(t)+ 0.4U (t − 1)
Y (t) = U (t − 1)− 0.4U (t − 2)

Find the cross-covariance function, the
cross-spectrum, and spectral coherence.

10. Consider the following process

X(t) = U(t)

Y (t) = αY (t − 1)+X (t − 1)+ V (t)

Compute the theoretical Granger causality
between the two processes in the time do-
main.

11. Download eConnectome software from
(https://www.nitrc.org/projects/econnectome),
and add it to your MATLAB path. You might
have to use earlier MATLAB versions to
avoid compatibility issues.

12. Read and follow eConnectome’s tutorial.
13. Can you simulate two sources randomly on

the cortex, assign two time-courses of inter-
est to these sources, solve the forward prob-
lem, add noise to the simulated EEG, and
solve the inverse problem to recover the two
sources and study the connectivity of the two
sources?
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15Deep LearningModels with
Applications to Brain Image Analysis
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Abstract

Deep learning, rooted in artificial neural net-
works, has received increasing attention in the
field of brain image analysis. In this chap-
ter, the pre-processing steps for brain images
and the fundamental concepts of deep neural
networks are first introduced. After that, four
typical types of deep neural networks used for
brain image analysis are elaborated, includ-
ing (i) convolutional neural networks (CNNs)
and the variants (i.e., fully convolutional net-
works and U-net), (ii) recurrent neural net-
works (RNNs) and the variant (i.e., long short-
term memory model), (iii) auto-encoder, and
(iv) generative adversarial networks (GANs)
and the variants (i.e., Pix2Pix GAN and Cycle-
GAN), aswell as their applications in brain im-
age classification, segmentation, registration,
and image synthesis/augmentation. In addi-
tion, several challenges and future research di-
rections of deep learning in brain image anal-
ysis are also pointed out.
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15.1 Background

The significant advances of neuroimaging
techniques have deeply reshaped modern neu-
roscience in recent decades, offering researchers
unprecedented opportunities to noninvasively
investigate the anatomy and functions of the
brain. The imaging-based measurements are
heralded more sensitive and consistent than
the traditional cognitive tests, thus critical for
the early diagnosis of brain disorders, e.g.,
Alzheimer’s disease (AD) and schizophrenia.

As a relatively new discipline withinmedicine,
neuroscience, and psychology, neuroimaging
falls into two broad categories: (1) structural
imaging, such as magnetic resonance imaging
(MRI), and (2) functional imaging, such as
functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET).
Neuroimaging-based studies not only focus
on investigating how the brain is organized
around regions (such as local morphometry
and functions) but may also consider the
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connections between brain regions, in order to
identify imaging-based biomarkers for automated
diagnosis of brain diseases. Such tasks could be
very challenging, giving the highly non-linear
mapping between image-based observations
and diagnosis outputs. Recently this research
field significantly benefits from the emerging
deep learning techniques that have demonstrated
excellent performance in learning non-linear
function mapping in various tasks.

As part of a broader family of machine learn-
ing methods, deep learning models are generally
based on artificial neural networks. Even though
artificial neural networks were proposed in the
1950s, their development still suffered from some
limitations, such as lack of computing power,
lack of sufficient training data, and difficulty in
training deep networks. The rapid development
of deep learning in recent years can be attributed
to the enhanced computer capabilities of high-
tech central processing units (CPUs) and graphics
processing units (GPUs), the availability of big
data, and the novel algorithms for training deep
neural networks. Deep learning algorithms can
be supervised (i.e., learning with only labeled
data), semi-supervised (i.e., learning with both
labeled and unlabeled data), or unsupervised (i.e.,
learning with only unlabeled data) [1–3]. In par-
ticular, deep learning models such as convolu-
tional neural network (CNN), recurrent neural
network (RNN), auto-encoder (AE), and gener-
ative adversarial network (GAN) have rapidly
become a methodology of choice for analyzing
brain images in various applications [4,5], such as
brain image segmentation [6–8], brain image reg-
istration [9], brain disease diagnosis [10–12], and
brain image synthesis [13–15]. However, there
are several challenges for deep learning models
in dealing with neuroimages, as summarized be-
low:

(1) Small-sample-size problem. In the domain
of brain image analysis, deep learningmodels
generally suffer from the small-sample-size
problem, because there are millions of voxels
in each 3D volume and a very limited number
(e.g., tens or hundreds) of subjects/images for
model training. A popular solution is to locate
regions of interest (ROIs) in brain images

using prior knowledge or data-driven strate-
gies [10]. However, it is usually challenging
to define such ROIs in each 3D brain image.

(2) Missing data problem. The missing data
problem is usually unavoidable in the field
of brain image analysis (especially for multi-
modality applications) [15], because subjects
may lack some modalities (e.g., PET) due
to patient dropouts and/or poor data quality.
Conventional methods typically discard data-
missing subjects, but this will significantly
reduce the number of training subjects and
affect the robustness of the learned model.

(3) Spatiotemporal dynamics of the brain. Pre-
vious studies on brain functional connectiv-
ity have shown that the human brain is in-
trinsically organized into spatiotemporal dy-
namic interaction network [16, 17], demon-
strating remarkable spatiotemporal variabil-
ity over time in its function and structure [18,
19]. Hence, it’s essential to model the spa-
tiotemporal dynamics of brain images to im-
prove the performance of deep learning mod-
els.

To address these issues, various deep learning
models have been proposed for analyzing brain
images, resulting in promising results in different
applications. In the following, the pre-processing
steps for brain images and fundamental concepts
of neural networks will be first introduced in
Sect. 15.2. Then, four typical deep neural net-
works for brain image analysis will be presented
in Sects. 15.3, 15.4, 15.5, and 15.6. Section 15.7
presents the limitations of current deep learning
models and several possible future research
directions. Finally, Sect. 15.8 concludes this
chapter.

15.2 Image Processing and
Concept of Deep Learning

15.2.1 Brain Image Pre-processing

Brain images usually need to be pre-processed
so that the acquisition artifacts and undesired
tissues could be removed to better serve subse-
quent tasks. In the following, a typical pipeline
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to pre-process structural brain MR images is in-
troduced, since MRI is the most widely used
imaging modality to explore human brains. The
pipeline includes the steps of skull stripping, bias
field correction, intensity normalization, and spa-
tial registration [20]. Based on the characteristic
of the analysis task, some steps could be optional.

Skull stripping is used to remove non-brain tis-
sues fromMR images. The existence of non-brain
tissues, such as skull and eyes, could negatively
affect the algorithms for the subsequent segmen-
tation or diagnosis. Therefore, skull stripping is
used for pre-processing inmany brain image anal-
ysis models, including those deep learning-based
ones. Either under- or over-segmentation of the
brain will lead to inaccurate estimation of brain
tissues. A commonly used skull stripping method
is based on BET [21,22].

A common artifact seen in an MR image is
the smooth variation of signal intensity across the
image, called as bias field. This may be caused
by factors such as poor radio-frequency field uni-
formity and eddy currents driven by the switch-
ing of field gradients, etc. This intensity non-
uniformity is known as “bias field” which is the
low-frequency multiplicative noise in the images.
Many methods have been proposed for the bias
field correction by estimating both the uncor-
rupted image intensities and the spatially smooth
and multiplicative model of the bias field. Among
these methods, a typical representative is the non-
parametric non-uniform intensity normalization
(N3) algorithm [23].

MRI scans are acquired in arbitrary units, mak-
ing them not amiable for the comparison of the
same tissue across different studies of a same
subject or across different subjects. Such intensity
difference could make simple operations such as
thresholding difficult across images. Therefore,
intensity normalization is sometimes involved for
pre-processingMR images. Methods for intensity
normalization usually manipulate the histograms
of MR images so that they are aligned after the
normalization, i.e., the discrepancy between his-
tograms is minimized. However, pre-processing
images with intensity normalization needs to be
done carefully to avoid the elimination of critical
or discriminative information carried in image
intensities.

Spatial registration, which transforms images
into a common coordinate space, is often
needed when integrating multiple imaging
modalities/MR sequences for analysis. The trans-
formation could be linear (such as translation,
rotation, scaling and other affine transforms) or
non-linear, which could locally warp images to
match them. Image registration by itself is a big
category of research problems [24, 25].

Many off-the-shelf toolkits provide basic
tools for the pre-processing of brain images, for
example, FMRIB Software Library (FSL)1 and
Statistical Parametric Mapping (SPM).2 Such
pre-processing steps are often indispensable
in traditional non-deep learning-based models.
For deep learning models, despite their strong
capacity of learning highly non-linear function
mapping, they could still benefit from these pre-
processing steps to reduce the complexity of the
learning task, especially when there are only a
limited number of images for training.

15.2.2 Fundamentals About Neural
NetworkModels

Deep learning is rooted in artificial neural
networks. An artificial neural network consists
of multiple layers of interconnected processing
units, known as neurons. If the connections
between neurons do not form a circle, the artificial
neural network is feed-forward. The most
common class of feed-forward neural network is
known as multilayer perception (MLP). An MLP
has at least three layers, (1) an input layer, (2) a
hidden layer, and (3) an output layer, as shown in
Fig. 15.1. The network takes data from the input
layer, non-linearly transforms the data via the
hidden layer, and produces the prediction at the
output layer. In MLP, neurons in the neighboring
layers are fully connected, while neurons within
the same layer have no connection. Multiple
hidden layers can be stacked to increase the non-
linearity of the model.

Specifically, an MLP learns an embedding
function y = f (x;w), where x is the input, y

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
2https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 15.1 A basic
multilayer perception
network (MLP)

Fig. 15.2 Common activation functions: sigmoid (left), hyperbolic tangent (middle), and rectified linear unit (right)

is the output, f = (fn ◦ fn−1 · · · ◦ f1)(x) is a
set of non-linear transforms parameterized by w,
and n denotes the number of layers. Usually, a
non-linear transform fi at the i-th layer takes the
form of fi = σi(wi

�fi−1), consisting of a linear
transform on the output of the previous layer fi−1

and a following non-linear activation function
σi . The linear transform matrix wi is called
the parameters or weights of the model, which
is automatically learned during training. The
commonly used activation function σi includes
sigmoid function, hyperbolic tangent function
(tanh), and rectified linear unit (ReLu), as shown
in Fig. 15.2.

Training and testing neural networks require
non-overlapped training and test datasets. The
training set consists of N paired input and
expected output samples {xi , yi}Ni=1. An MLP
is trained to minimize the difference between
its prediction and the expected output by
optimizing the loss function L. For example,
L = minw

∑N
i=1

1
N

‖ yi − f (xi;w) ‖2. The
optimal model parameters w∗ can be effectively
attained by a family of methods known as
“backpropagation.” The basic idea is to exploit
chain rule to first compute the gradient of the loss
function with respect to each model parameter
wij in w and then update wij using the direction
of gradient descent iteratively as

wt+1
ij = wt

ij − α
∂L(wt

ij )

∂wij

, (15.1)

Output layer

Hidden layer

Input layer

Fig. 15.3 An example for backpropagation

where α is the user-predefined learning rate and
t is the index of iteration. Repeating in this way,
the value of the loss function will be gradually
reduced until a certain stopping criterion can be
met. In the test stage, the test set (unseen in
the training stage) is simply fed forward through
the learned neural network model, using w∗ for
prediction.

An example for backpropagation Figure 15.3
shows an MLP consisting of an input layer with
two scalar input variables x1 and x2, a hidden
layer with the output h, and an output layer with
the output o. The loss function of the MLP is
L = ∑

i (oi − yi)
2, where yi indicates ground-

truth and

hi = f1(x1,i , x2,i;w1, w2) = w1x1,i + w2x2,i ,

oi = f2(hi) = w3hi.



15 Deep Learning Models with Applications to Brain Image Analysis 437

Solution Applying the chain rule, we have the
following solution

∂L
∂w3

=
∑

i

∂L
∂oi

∂oi

∂w3
=
∑

i

2(oi − yi)hi,

∂L
∂w2

=
∑

i

∂L
∂oi

∂oi

∂hi

∂hi

∂w2
=
∑

i

2(oi − yi)w3x2,i ,

∂L
∂w1

=
∑

i

∂L
∂oi

∂oi

∂hi

∂hi

∂w1
=
∑

i

2(oi − yi)w3x1,i .

Gradient descent computed in backpropa-
gation can be trained in three ways: (1) batch,
(2) stochastic, and (3) mini-batch. In gradient
descent, batchmeans the total number of samples
used to update the gradient in one iteration. A
large batch (e.g., the entire training set) may
even cause a single iteration to take a long
time to compute. On the contrary, stochastic
gradient descent (SGD) uses a single training
sample to calculate the objective loss and
update the gradient for each iteration. The
increased frequency of model update may
lead to faster learning in some problems, but
also bring noisy gradient estimation. Mini-
batch stochastic gradient descent (mini-batch
SGD) balances the full-batch training and SGD.
It splits the training set into small batches
and uses these small batches to calculate
objective loss and update the model. Mini-batch
SGD improves the efficiency of the full-batch
training and reduces the noise in SGD, which
is commonly used for training deep learning
models.

The following terms are related to mini-batch
training. Mini-batch size refers to the number of
training samples in one mini-batch used to update
the model. The number of epochs refers to the
times that the entire training set is passed forward
and backward through the neural network model.
The number of iterations refers to the number of
passes using the samples of the mini-batch size,
where each pass includes a forward pass and a
backward pass. For example, if the training set
contains 1,000 samples, and the mini-batch size
is 50, it then takes 20 iterations to complete one
epoch.

15.3 Convolutional Neural
Networks

MLPs have some drawbacks when they are used
for image processing. They use one neuron for
each input (e.g., a pixel in an image), and ev-
ery neuron connects to all neurons in the next
layer. This makes the parameters of the model
increase dramatically when the size of the image
is relatively large. Also, flattening an image to
MLP causes the loss of spatial information in
the image. Instead, convolutional neural networks
(CNNs) are the most commonly used deep learn-
ing models in medical image analysis. They are
biologically inspired variants of MLPs, utilizing
local receptive fields, weight sharing, and sparse
connectivity to preserve spatial information and
reduce the number of network parameters.

Receptive field Being 2D or 3D grids, images
form high-dimensional input to neural networks.
It is inefficient to fully connect a neuron with
every pixel/voxel in this case. Instead, as known,
pixels/voxels are mostly useful in the context of
their neighbors. Therefore, in CNNs, a neuron
is connected only to a local region of the input
grid. This input region is known as the recep-
tive field of the neuron. It can be described by
its centroid location and size. In CNNs, the re-
ceptive field can be increased by stacking more
layers.

Weight sharing At every layer in CNNs, filters
are applied to detect the presence of specific fea-
tures or patterns. These filters act on the receptive
field of the input image. The numbers within
each filter are called weights. Weight sharing
happens across the filters in a particular layer.
That is, when the filter moves through the image,
its weights do not change. The idea behind is that
if a detected pattern is important in a particular
region of the image, it may be important in other
regions of the image too.

Sparse connectivity In CNNs, filters are con-
volved with the input image to calculate the ac-
tivation of neurons. When the size of the filter,
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or equally the receptive field, is smaller than
the input volume, each neuron in the activation
map is only connected to a local region of the
input, leading to “sparse” (rather than “dense”)
connectivity across layers.

15.3.1 CNN Fundamentals

A CNN model consists of convolutional layers
interspersed with pooling layers, on top of which
are often fully connected layers as in standard
MLPs. A typical example of CNN, i.e., LeNet, is
shown in Fig. 15.4.

Convolutional layers In convolutional layers,
the input of the layer is convolved with stacks of
filters of predefined size. The weights of filters
are automatically learned by optimizing CNN
via backpropagation. Filters are also known as
convolutional kernels. The output of convolution
is the sum of element-wise multiplication
between pixels in the receptive field and weights
in the convolution filter, as shown in Fig. 15.5.

Each filter moves across all input locations via
a step called stride and uses the same weights
for convolution. This produces a feature map.
In other words, a feature map is formed by
units that share the same weights and bias in a
convolutional layer. The stack of filters produces
a tensor of feature maps. The feature maps
are further sent through a non-linear activation
function, such as ReLu (See Fig. 15.2), to model
non-linear mapping and produce activation
maps.

Pooling layers After convolutional layer, there
is typically a pooling layer to down-sample the
feature maps produced in the convolutional layer.
By pooling, each small region in a feature map
is summarized into a single value. There are two
common methods for pooling: max-pooling and
average-pooling. In max-pooling, a small region
is represented by the maximum value inside it.
In average-pooling, a small region is represented
by the average of all values inside it. Figure 15.6
illustrates the ideas of max-pooling and average-
pooling. The down-sampled feature maps could

Fig. 15.4 LeNet: an example of CNN

Fig. 15.5 Illustration of convolution operation in 2D.
When a filter is convolved with a local region (receptive
field) in the image, the element-wise multiplication be-

tween the weights in the filter and the pixel values in the
region is calculated, and these multiplications are summed
up to produce a value in the feature map
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Fig. 15.6 Illustration of
max-pooling and
average-pooling

feature map max-pooling average-pooling
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be more robust to small changes in the positions
of the features. Therefore, pooling could give the
network model a certain degree of “translation
invariance.” Another way to down-sample feature
maps is to conduct convolution with the “stride”
larger than 1.

Fully connected layers When CNNs are
used for classification, following multiple
convolution-pooling blocks, there are usually
several fully connected (FC) layers that flatten
feature maps for prediction. FC layers are in
principle the same as the traditional MLP: every
neuron in one layer is connected to every neuron
in another layer. For example, in LeNet (see
Fig. 15.4), there are two FC layers on top of the
convolution-pooling blocks. The output of the
final FC layer is sent through a softmax function
to classify the image with probabilistic values
between 0 and 1.

Dropout Deep models may contain a large
number of parameters to learn, and they have
a lot of freedom to fit complex datasets. This
may lead to an overfitting problem, i.e., the
learned model fits well to the training data but
fails to generalize well to unseen test data. It is
known that the ensembles of neural networks
with different model configurations can reduce
overfitting. This can be achieved in a single
model by “dropout” (i.e., randomly dropping
out neurons during training). When a neuron
is dropped out, it is temporally removed from
the network with all its incoming and outgoing
connections. This leads to slightly different
network for each batch of training data, which
effectively reduces overfitting. Dropout takes
place only in the training stage, but not in the test
stage.

15.3.2 CNN Variants

Based on CNNs, many novel network architec-
tures have been proposed to enable the network
model to go deeper with less parameters and
better performance. For example, the residual
module [26] and inception module in [27] have
been proved effective in both general and medi-
cal image classification. Meanwhile, it is noticed
that when CNN models are used for prediction
at pixel level (e.g., segmentation and synthesis),
fully convolutional networks (FCNs) [28] without
using fully connected layers on top of convo-
lutional blocks demonstrate several advantages
over the traditional CNNs, such as allowing input
images with different image sizes and being more
efficient than patch-wise training for pixel-level
prediction. In the following, residual CNNs and
a typical FCN model called U-net [29] are intro-
duced, respectively, as well as different ways to
combine CNNs for analysis.

15.3.3 Residual Learning Based on
CNN

When neural networks go deep, they are expected
to become more powerful and better approxi-
mate complicated functions. However, it turns
out that they often encounter the gradient van-
ishing problem. That is, the gradient of the loss
function approaches zero, especially at the shal-
low layers (the layers closer to the input) during
backpropagation. In this case, we may observe
the performance saturates or even degrades when
more layers are added. To mitigate this problem,
the residual module is proposed. As illustrated
in Fig. 15.7, in the residual module, the inputs x
from the previous layers are directly connected
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with the output f (x) of the new convolutional
layers in the module, which is known as residual
connection. They are then added to approximate
the target output y. In other words, in common
CNNs, we directly learn the output y, while in the
residual setting we learn the difference (residual)
between the output and the input: f (x) = y −
x. In this way, the gradient of the input can be
better preserved, as x is transmitted by the identity
matrix without loss of information. The residual
modules can be stacked to form very deep neural
networks, such as ResNet (Fig. 15.8) that is able
to train up to hundreds or even thousands of layers
with compelling performance.

15.3.4 Fully Convolutional Networks
and U-Net

Common CNN models with fully connected
layers can be used for pixel-level prediction,
such as segmentation and synthesis. This is
usually conducted in a patch-wise manner,
i.e., the CNN takes image patch(es) extracted

Fig. 15.7 Illustration of the difference between the plain
layers (left) and the residual module (right)

around every pixel as input and predicts the
label of the patch centroid. Such approaches
have some potential disadvantages. First, fully
connected layers consist of predetermined
number of neurons, which constrains the size
of the input image. That is, all input images
have to be rescaled to the same size that is
predefined. Second, by flattening the feature
map output from a convolutional layer into a
fully connected layer, some spatial information
is lost. Third, predicting pixel label in a patch-
wise manner could be very time-consuming as
the prediction needs to go through pixels one by
one.

Recently, fully convolutional networks
(FCNs) [28] are proposed to better deal with
per-pixel prediction tasks and demonstrate
promising performance, especially in semantic
segmentation. Different from CNNs used in
patch-wise manner that predicts the label of
one pixel each time, FCNs can produce dense
outputs from the input images of arbitrary size.
For example, FCNs can generate segmentation
map that has the same size as the input image at
one shot, by concatenating convolutional layers
and deconvolutional layers. Deconvolution is
simply backward strided convolution. Similar
to convolutional layers that down-sample the
feature maps, deconvolutional layers upsample
the feature maps. Figure 15.9 illustrates the
deconvolution with 3 × 3 kernel using stride
one on the feature map with size 2 × 2.

A typical FCN widely used in medical image
analysis is U-net [29], as shown in Fig. 15.10. It
consists of the contracting and expanding paths.
The contracting path consists of convolutional
layers, while the expanding path consists of de-
convolutional layers. They share the same num-
ber of layers. Between these two paths, multi-
ple skip connections are used to link the corre-

Fig. 15.8 Network architecture of ResNet with 32 layers
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sponding convolutional and deconvolutional lay-
ers. Similar to the residual module, using the
skip connections, U-net can mitigate the common
gradient vanishing problem during the training
of deep learning models, as the gradient of the
deeper layers can be directly backpropagated to
the shallower layers via the skip connections.
Moreover, this structure allows U-net to acquire
multi-depth information of the input image. In
this way, it can preserve the contextual informa-
tion from the input as well as the spatial details

Fig. 15.9 Illustration of deconvolution (kernel size 3×3)
using stride one. The original input is only the 2×2 green
region, while the white region is filled with zeros

in the feature maps of shallow layers, forming a
hierarchy of visual clues.

15.3.5 Combination of CNNs

CNNmodels could also be combined sequentially
or in parallel for analysis. When combined
sequentially, the output of the preceding network
becomes the input of the successive network.
Such combination is often used to gradually
refine the output results. When combined in
parallel, the networks are used to process the
same input, and their outputs are integrated for
decision. Such combination is often used to
extract complementary features from the input
image. For example, a cascade of networks is
proposed (see Fig. 15.11) in [30]. It sequentially
combines CNNs to segment the regions of interest
from coarse to fine, including (1) segmentation
of whole tumor, (2) segmentation of tumor
core segmentation, and (3) segmentation of
enhancing tumor core. Each network takes
a fully convolutional network using dilated
convolutions [31] and residual connections. In
contrast, the work in [32] proposed a CNNmodel
(Fig. 15.14) that consists of two parallel CNN
pathways, each coping with a different receptive
field on the input image, to incorporate both the

Fig. 15.10 Illustration of U-net model. (Image courtesy to [29])
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Fig. 15.11 Illustration of Cascade Net. (Image courtesy to [30])

local and the contextual information for brain
tumor segmentation. Also, a multi-instance CNN
(MICNN) model with multiple parallel sub-
networks was designed in [33] for diagnosis
and prognosis of brain diseases, and each sub-
network was used to extract local patch-level rep-
resentations of an input image. These patch-level
features were further concatenated and fed into
several FC layers for brain disease identification.
In MICNN, each sub-network was corresponding
to a disease-associated location (defined by
anatomical landmarks) in the input brain MR
image, and these sub-networks share the same ar-
chitecture but with different network parameters,
learn specific features from local patches. This
method was further extended to be a multi-task
learning model in [11] for joint classification and
regression in brain MRI-based disease diagnosis.

15.3.6 CNN Applications to Brain
Image Classification and
Segmentation

CNNs have been applied to analyze brain im-
ages in a variety of tasks, such as mental disease
classification [10, 33], neuroanatomy segmenta-
tion [34], lesion/tumor detection and segmenta-
tion [32, 35], brain image registration [36, 37],
etc. In the following, some examples of CNNs
used for brain image classification, segmentation,
and brain network analysis are introduced, re-
spectively.

15.3.7 Brain Image Classification

With the capability of learning highly non-
linear and task-oriented features, CNNs have
been applied to diagnosing brain diseases, such

as Alzheimer’s disease (AD). Many methods
train CNN models to extract visual features
based on predefined anatomical landmarks,
such as hippocampus, for classification. These
approaches demonstrated improved diagnostic
accuracy over the conventional approaches using
handcrafted features. However, in these methods,
the localization of atrophy and the diagnosis
of diseases are treated separately. Different
from them, a hierarchically fully convolutional
network (H-FCN) was proposed to jointly learn
atrophy location and perform AD diagnosis [10].

The architecture of H-FCN is shown in
Fig. 15.12. It consists of four components:
location proposal sub-network, patch-level sub-
network, region-level sub-network, and subject-
level sub-network, aiming to learn features in a
hierarchical way. Specifically, co-registered brain
images were sent to the location proposal sub-
network to generate image patches distributed
over the whole brain. These image patches
were fed into patch-level sub-networks to output
patch-level features and patch-level classification
scores. After that, spatially neighboring patches
were then grouped into local regions, and their
patch-level outputs (features concatenated with
classification scores) were processed by the
region-level sub-networks to produce regional
features and regional classification scores. The
outputs of the region-level sub-networks were
eventually integrated by the subject-level sub-
network to classify each subject. The proposed
H-FCN demonstrated promising performance
when evaluated on two datasets, i.e., Alzheimer’s
Disease Neuroimaging Initiative 1 (ADNI-1)
and ADNI-2, that contain a large cohort of
subjects. Visual examples of discriminative
regions identified by H-FCN are provided in
Fig. 15.13.
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Fig. 15.12 Illustration of the hierarchically fully convolutional network (H-FCN) [10] for joint atrophy localization
and disease diagnosis. (Image courtesy to [10])

Fig. 15.13 Voxel-level AD heatmaps for discriminative patches automatically identified by H-FCN [10] in six different
subjects. Warmer color in each heatmap indicates higher discriminative capacity. (Image courtesy to [10])

15.3.8 Brain Image Segmentation

As mentioned, segmentation of tissues or lesions
in brain images could be conducted either by
patch-wise classification (predicting the label of
the patch centroid) or by FCN-based models that
directly generate dense output for segmentation
labels. DeepMedic [32] is a representative patch-
wise classification method for brain tumor seg-
mentation, with architecture shown in Fig. 15.14.
This method proposed a two-pathway 3D CNN
architecture to capture multi-scale features that
incorporate both the local and the contextual in-
formation to improve brain tumor segmentation.
As shown in Fig. 15.14, the inputs of the two
pathways are 3D patches at the same image lo-
cation but with different resolutions. The normal-
resolution one focused on the local information,
while the low-resolution one was extracted from
a down-sampled version of the image, providing

contextual information. Features extracted from
the two parallel pathways were concatenated and
processed by two fully connected layers to predict
the label of the patch centroid. Additionally, on
top of the CNNs’ soft segmentation maps, fully
connected conditional random field (CRF) model
was used for final post-processing. DeepMedic
model achieved top rankings in two brain le-
sion segmentation challenges ISLES2015 [38]
and BRAT2015 [39]. Example segmentation re-
sults are given in Fig. 15.15.

Rather than classifying the centroid of each
patch, another type of CNN-based segmentation
approaches directly produce dense outputs corre-
sponding to the segmentation labels. For exam-
ple, in [6], a 3D U-net architecture was proposed
for brain tumor segmentation (see Fig. 15.16).
Just like U-net, this model consists of a context
aggregation pathway to extract the abstract rep-
resentation of the input large 3D blocks and a
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Fig. 15.14 Network architecture of DeepMedic. The inputs of the two parallel pathways are centered at the same image
location but with different resolutions. (Image courtesy to [32])

Fig. 15.15 Brain tumor segmentation examples (eval-
uated on the training set of BRATS2015 dataset) by
DeepMedic [32]. Cyan indicates necrotic core; green in-

dicates edema; orange indicates non-enhancing core; and
red indicates enhancing core. (Image courtesy to [32])

localization pathway that localizes the structures
of interest based on combined features from shal-
low layers. The context pathway is constructed
by residual blocks, while the localization path-
way is constructed by deconvolutional blocks for
upsampling. Upon all convolution computation,
Leaky ReLu is used as the activation function
for non-linearity. The final output of the network
is the element-wise summation of the segmenta-

tion results at different layers in the localization
pathway. Meanwhile, the proposed model also
benefits from the objective function of Dice loss
as well as data augmentation. It achieves promis-
ing results on both BRATS2015 and BRATS2017
datasets. Figure 15.17 shows an example segmen-
tation result achieved by [6]. Moreover, based
on the segmentation mask, the work in [6] could
further extract imaging-based features (such as
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Fig. 15.16 Network architecture of [6]. (Image courtesy to [6])

Fig. 15.17 A visual example of brain tumor segmentation. (Image courtesy to [6])

shape and first-order statistics) for survival pre-
diction. Another state-of-the-art multi-scale FCN
method was proposed in [8] for segmentation of
perivascular spaces (PVSs) in brain images.

Furthermore, ensemble methods integrating
different segmentation networks (e.g., 3D
FCN [28], 3D U-net [40] and DeepMedic [32])
and trained with different loss functions and
normalization schemes could further improve
the segmentation performance over individual
models, as demonstrated in [41].

15.4 Recurrent Neural Networks

15.4.1 Recurrent Neural Networks
(RNNs): Basic Model

Traditional neural networks assume that all in-
puts (and outputs) are independent of each other.
But for many tasks, this assumption may not

hold. For example, the prediction of a word in a
sentence usually depends on which words came
before it. Recurrent neural networks (RNNs) ad-
dress this issue. RNNs are called recurrent be-
cause they perform the same task for every el-
ement of a sequence (with the output being de-
pended on the previous computations) and they
have a “memory” which captures information
about what has been calculated so far [42]. As
shown in Fig. 15.18 (with a fold and an unfold
structure), the basic RNN model consists of a
sequence of non-linear units, and at least one
connection of units forms a directed cycle. This
chain-like nature reveals that RNNs are intimately
related to sequences and lists. RNNs allow us to
operate over sequences of vectors: sequences in
the input, the output, or in the most general case
both.

A typical RNN consists of three types of lay-
ers (see Fig. 15.18): (1) input layer, (2) recurrent
hidden layers, and (3) output layer. The input



446 D. Shen et al.

Fig. 15.18 Architecture of the basic recurrent neural net-
work (RNN). Each x is an input example, U is the weight
matrix between the input and hidden layers, W is the
weight matrix between the previous and current hidden

units in the hidden layer, and V is the weight matrix that
connects the hidden and output layers. For simplicity, bias
terms are not shown in this figure

layers is a sequence of vector through time step t ,
i.e., {. . . , xt−1, xt , xt+1, . . . }, where xt is the input
vector. The input units are fully connected with
the units in the hidden layers via a weight matrix
U .

The hidden layers are connected with each
other through time via recurrent connections, and
W is the weight matrix between the previous
and current hidden units of the layer. With the
recurrent hidden layers, RNNs can obtain the
state space or “memory” as follows:

ht = σh(Wxt + Uht−1 + bh), (15.2)

where ht and ht−1 denote the hidden state at time
steps t and t − 1, respectively, bh is the bias
vector of the hidden units, and σh is the activation
function used in the hidden layer. The weight
matrices W and U are filters that determine how
much importance to accord to both the present
input and the past hidden states. The error they
generate will return via backpropagation and be
used to adjust their weights until error cannot go
any lower. Because the feedback loop occurs at
every time step in the series, each hidden state
contains traces not only of the previous hidden
state but also of all those that preceded ht−1 for
as long as memory can persist.

The output units are connected with the hidden
units via a weight matrix V , and the output can be
computed as follows:

ot = σo(V ht + bo), (15.3)

where σo and bo denote the activation function
and bias term of the output layer. To learn net-
work parameters (W ,U ,V , bh, bo), RNNs use
the backpropagation algorithm for network train-
ing.

15.4.2 Long Short-TermMemory
(LSTM)Model

Even though RNNs with recurrent connections
are capable of understanding sequential depen-
dencies, the backpropagation is usually time-
consuming and falls victim to exploding and
vanishing gradient during network training.
Thus, in practice, RNNs don’t seem to be able
to learn “long-term dependencies” from data.
Many methods have been designed to address
this problem. Among these methods, long short-
term memory (LSTM) network, introduced by
Hocheriter et al. [43], is the most popular and
efficient method, capable of learning “long-term
dependencies.”

As shown in Fig. 15.19a, a typical LSTM
model consists of a memory cell Ct , an input gate
it , an output gate ot , and a forget gate ft for the
time step t . The memory cell transfers relevant
information all the way down the sequence chain,
and these gates control the activation singles
from various sources to decide what information
to add to or remove from the memory cell. The
input gate it , the output gate ot , and the forget
gate ft of an LSTM at time step t are defined as
follows:
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Fig. 15.19 Architectures of (a) long short-term memory
(LSTM) network and (b) gated recurrent unit (GRU). Each
x is an input example, U is the weight matrix between the
input and hidden layers, W is the weight matrix between

the previous and current hidden units in the hidden layer,
and V is the weight matrix that connects the hidden and
output layers. For simplicity, bias terms are not shown in
this figure

it = σ(W ixt + Uiht−1 + bi),

ot = σ(W oxt + Uoht−1 + bo),

ft = σ(W f xt + Uf ht−1 + bf ),

(15.4)

where W ∗ and U ∗ are weight matrices from one
state to the corresponding gate and b∗ is the bias
term. Thememory cellCt is updated by forgetting
the existing memory and adding the new memory
content C̃t as follows:

Ct = ftCt−1 + it C̃t , (15.5)

where the new memory content C̃t is defined as

C̃t = tanh(W cxt + Ucht−1 + bc). (15.6)

As can be seen, the existing memory and the new
memory are modulated by the forget data ft and
the input data it , respectively. The hidden state is
finally computed as

ht = ot tanh(Ct ). (15.7)

Unlike conventional RNN models, LSTM is
able to decide whether to preserve the existing
memory by the above-introduced gates. Theoret-
ically, if LSTM learns an important feature from
the input sequential data, it can keep this feature
over a long time, thus capturing potential long-
term dependencies.

A popular LSTM variant, called gated recur-
rent unit (GRU), is introduced by Cho et al. [44].

It combines the forget and input gates into a
single “update gate.” It also merges the cell state
and hidden state, making each recurrent unit to
adaptively capture dependencies of different time
scales. The resulting model is simpler than stan-
dard LSTMmodels, with an illustration shown in
Fig. 15.19b. The activation ht in GRU at time step
t is linearly modeled as

ht = (1 − zt )·ht−1 + zt · h̃t , (15.8)

where the update gate zt and the candidate activa-
tion h̃t are defined as

zt = σ(W zxt + Uzht−1 + bz),

h̃t = tanh(W hxt + Uh(ht−1· rt )+ bn),
(15.9)

where the term rt = σ(W rxt + U rht−1 + br)

denotes the reset gate. The update gate decides
how much information to add and throw away,
and the reset gate decides how much previous
information to forget. Detailed comparisons be-
tween LSTM and GRU can be found in [45, 46].

15.4.3 RNN Applications to Time
Series Data Analysis

RNNs have shown their advantage in exploiting
the temporal information in various tasks, such as
disease diagnosis and object detection [12,47,48].
In the following, we introduce an example of
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RNN models used for brain image classification
based on time series data.

Brain functional connectivity (FC) extracted
from resting-state fMRI (RS-fMRI) has become
a popular approach for disease diagnosis, where
discriminating subjects with mild cognitive
impairment (MCI) from normal controls (HC)
is still one of the most challenging problems.
Dynamic functional connectivity (dFC) charac-
terizes “chronnectome” diagnostic information
for improving MCI classification, consisting of
time-varying spatiotemporal dynamics. In [12],
a fully connected bidirectional LSTM model
(called Full-BiLSTM) is designed to learn the
periodic brain status changes using both past and
future information for each brief time segment
(of blood oxygen-level-dependent signal of
distributed brain regions) for MCI identification.
The architecture of Full-BiLSTM is shown in
Fig. 15.20. As can be seen from this figure, the
outputs of every repeating cell are concatenated
into a dense layer (i.e., “concatenation layer”).
With this dense layer, one can abstract a common
and time-invariant dynamic transition pattern
from all the BiLSTM cells which may represent
a constant “trait” information of each subject.

The dense layer is followed by a softmax
layer to get the final classification result. The
proposed Full-BiLSTM method demonstrates
good performancewhen evaluated on a rigorously
built large-scale multi-site database (i.e., with
164 RS-fMRI scans from HCs and 330 scans
from MCIs), achieving an accuracy of 73.6% in
the task of MCI vs. HC classification.

15.5 Auto-encoder

The above-mentioned CNNs and RNNs can be
treated as supervised deep learning models, since
they require labeled data for network training.
However, the acquisition of these ground truth
labels needs massive human efforts from experts
and considerable time cost for manual annotation.
Therefore, many unsupervised deep feature learn-
ing models, such as stacked auto-encoder [7,49],
deep belief networks [50], and deep Boltzmann
machine [51], have been proposed to mitigate this
issue by using unlabeled training data. In addi-
tion, these unsupervised models learn imaging
features without knowing the exact analysis tasks
in advance and directly capture the visual clues

Fig. 15.20 Overview of the fully connected bidirectional LSTMmodel (Full-BiLSTM) for mild cognitive impairment
(MCI) classification. (Image courtesy to [12])
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that would be robust for different analysis tasks
from brain images. This means that, feature rep-
resentations extracted by unsupervised learning
methods could have good capacity of generaliza-
tion for the subsequent complex analysis. Among
them, the deep variants of auto-encoder (AE) [52]
have been widely applied to brain image analysis
and achieved promising results.

A typical auto-encoder (AE) model contains
an encoder to first transform the input into its
low-dimensional latent representation space and
a decoder to reconstruct the initial data from the
representation by closing the distance between
the input and the output. Once the models are
well trained, the latent representations can be
leveraged as the extracted features in the follow-
ing tasks. Originally, the AE model consists of
two layers for its encoder and decoder, respec-
tively [52]. The first layer maps the input data x to
its feature representation h by a specific function
h = σ(Wxx+bx), whereWx and bx are trainable
parameters and σ is an activation function. The
second layer decodes h to the output y by the
mapping y = σ(Whh + bh) with the parameters
Wh and bh. The AE is trained to minimize the
reconstruction loss to optimize parameters Wx ,
bx , Wh, and bh, as follows:

{Wx,bx,Wh,bh}
= arg min

{Wx ,bx ,Wh,bh}
∑

Distance(x, y).

Figure 15.21 illustrates the basic structure of
an AE model. With this structure, AE models
have at least two prominent advantages in feature
learning [53]. First, they can be applied as feature
extractors without any training labels, which fits

the medical cases where only scarce labeled im-
ages are available in clinic and research. Second,
the generated low-dimensional features largely
reduce the complexity of the learning task and
benefit the subsequent analysis.

However, due to the simple and shallow struc-
ture of the original AE models, they have limited
power to capture the complicated non-linear pat-
terns from the input data. To address this prob-
lem, deep stacked auto-encoders (SAEs) are con-
structed to improve the representational power.
Specifically, SAEs organize AEs on top of each
other by using the hidden features from one AE
as the input of the successive AE, as shown in
Fig. 15.22. Similar to training the original AE
models, SAEs could be trained by directly opti-
mizing the parameters of all layers at the same
time. However, this training approach could eas-
ily lead these parameters to be stuck in local opti-
mum, reducing the stability of SAEs. Therefore,

Fig. 15.22 SAE model

Fig. 15.21 Original AE
model
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a greedy layer-wise strategy is employed to train
SAEs [54]. It gradually optimizes the layers in
SAEs one by one: when training the l-th layer,
the former pre-trained l − 1 layers only need
fine-tuning. In this way, SAEs can benefit from
their deep architecture and derive the high-quality
hierarchical hidden patterns from the input.

In addition, to better apply SAEs to unsu-
pervised image feature extraction, the conven-
tional MLP layers in SAEs are replaced by 2D
or 3D convolutional layers as stacked convolu-
tional auto-encoders (SCAEs) [55]. By building a
symmetrical architecture of CNNs, SCAEs could
learn the localized features of image structures.
Furthermore, the pre-trained SCAEs can also be
used to better initialize a CNN model of the same
architecture before supervised learning.

15.5.1 AE Applications to Feature
Learning in Brain Image
Analysis

15.5.2 Brain Image Classification

As mentioned in Sect. 15.3.6, supervised
learning- based deep models are usually lever-
aged to classify MRI and PET images of patients
for early diagnosis and prognosis of Alzheimer’s

disease (AD) and its prodromal stage, i.e., mild
cognitive impairment (MCI). However, training
a high-quality deep model requires sufficient
labeled brain images which are not always
accessible. The work in [56] gives an SAE-based
approach to mitigate this issue. Figure 15.23
illustrates a diagram of the proposed approach
for brain image classification. Specifically, it first
extracts the traditional handcrafted features as the
low-level representations of input brain images.
Then, a deep SAE is trained to reconstruct
the low-level features in a greedy layer-wise
manner without using disease labels. After
this unsupervised learning, SAE can efficiently
discover the hidden representation of these target-
unrelated samples and be applied to initialize
another deep model for supervised classification.
This deep model is then fine-tuned by the labeled
samples to extract their deep features of brain
images. The extracted deep features and the
low-level features are concatenated to select the
best features for disease diagnosis. Finally, the
selected features are passed to a support vector
machine (SVM) model for AD/MCI diagnosis.
Figure 15.24 compares the diagnosis results by
separately using low-level features (LLF), SAE
features (SAEF), and the fused LLF and SAEF.
Since this work is among the first attempts to use

Fig. 15.23 An illustration
for AD/MCI diagnosis
in [56]. (Image courtesy
to [56])
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Fig. 15.24 Comparison of different feature extraction methods for AD, MCI, MCI converter (MCI-C), MCI non-
converter (MCI-NC), and healthy normal control (HC) classification. (Image courtesy to [56])

deep learning for feature representation in brain
disease diagnosis and prognosis in 2013, its SAE
is simply constructed with MLP layers rather
than convolutional layers. Thus, the extracted
SAEF performs worse than LLF in this case.
These reported results still validate that the use of
SAEF could improve the diagnosis performance
by only using traditional LLF.

15.5.3 Brain Image Registration

Deformable image registration, which aims to
register medical images to a target template
for anatomical alignment, is an important pre-
process for various brain image analysis tasks.
For more accurate registration, better features
should be extracted to reflect the intrinsic local
characteristics of both brain images and template.
To satisfy this target, [9] proposed a SCAEs
model to capture low-dimension anatomical
latent representations of brain MR images via
unsupervised feature learning. After training the
SCAE model in a greedy layer-wise manner, the
extracted deep imaging features from its encoder
could be directly utilized as the input of existing
image registration frameworks. Therefore, the
hierarchical features can be learned without using
manually annotated labels, and the constructed

SCAEs could be directly applied to different
types of medical images, such as 1.5-T MR and
7.0-T MR brain images. In [9], the SCAEs (for
extracting deep features) are cooperated with
the existing HAMMER registration framework,
denoted as “H+DP”. Another two registra-
tion approaches, i.e., image intensity-based
Demons [57] and handcrafted feature-based
HAMMER [58], are used to evaluate its effective-
ness. A visual example of their registration results
on 7.0-TMR brain images is shown in Fig. 15.25,
where the manually labeled hippocampus on
the template image and the deformed subject
hippocampi achieved by different registration
methods are indicated through red and blue
contours, respectively. As observed, H+DP
achieves most accurate registration results, while
Demons almost fails to register these 7.0-T MR
images. These results demonstrate the power of
feature representations learned by the SCAEs
model for brain image registration.

15.6 Generative Adversarial
Networks

The recent occurrence of generative adversarial
networks (GANs) has well tackled many
challenging problems in brain image analysis.
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Fig. 15.25 Typical registration results on 7.0-TMRbrain
images by Demons, HAMMER, and HAMMER with
SCAEs features (H+DP). Three rows represent three

different slices in the template, subject, and registered
subjects. (a) Template. (b) Subject. (c) By Demons. (d)
By HAMMER. (e) By H+DP. (Image courtesy to [9])

Fig. 15.26 Original GAN model

GANs have been used for a wide variety of
applications such as brain lesion detection and
segmentation, brain image registration, brain
image reconstruction and super-resolution, cross-
modality brain image synthesis, etc. GANs were
originally proposed as generative models for
unsupervised learning, which focus on learning
the distribution of given data and therefore can
generate new samples from the learned distribu-
tion. That is, given the input data x, GANs focus
on learning the probability P(x). This is different
from the discriminative models, such as CNNs
used for classification, which focus on classifying
the input data, i.e., learning P(y|x), where y
indicates class labels. The key idea of GANs is
adversarial training. It refers to the simultaneous
training of two agents in a GAN model, i.e., a
generator and a discriminator, with the goal of

one beating the other. Specifically, the generator
tries to produce fake samples that resemble the
real ones to fool the discriminator, while the
discriminator struggles to tell the fake samples
from the real ones. Through the competition,
both the generator and the discriminator could
improve their models for better performance.

15.6.1 Principle of GAN

In 2014, the original GANs were first proposed
for the generic image synthesis tasks [59]. Differ-
ent from the common CNN-based deep learning
models, a GANmodel consists of two agents, i.e.,
a generator G and a discriminator D, which are
trained by adversarial learning, as illustrated in
Fig. 15.26. Given a training set of real samples
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X with the distribution Pdata, the goal of the
generator is to learn an embedding function G(·)
that transforms the random inputs z (drawn from
the distribution Pnoise) to the output synthetic
imagesG(z) whose distribution matches the data
distribution Pdata. Meanwhile, the discriminator

D is trained to learn an embedding functionD(·)
to maximize the probability of the correct label
assignment to discriminate the real and the fake
samples. The generator and the discriminator play
a two-player minmax game with the following
objective function

argmin
G

max
D

V (G,D) = Ex∼pdata(x)[log (D(x)] + Ez∼pnoise(z)[log (1 −D(G(z))], (15.10)

where the symbolE denotes mathematical expec-
tation.

In addition, prior information could also be in-
corporated via conditional GANs (cGANs) [60].

With the condition variable c, the objective of
cGANs becomes

argmin
G

max
D

V (G,D) =Ex∼pdata(x)[log (D(x|c)] (15.11)

+ Ez∼pnoise(z)[log (1 −D(G(z|c))].

When the prior information is an input image
x ∼ pdata(x), cGANs can be trained for paired
image-to-image translation. That is, generating
the corresponding image y ∼ pdata(y) with the
specific control from x. For example, when x is
an input brain image and y is the corresponding
segmentation map of x, the cGAN model can be
trained for segmentation tasks.

15.6.2 GAN Variants

15.6.3 Pix2Pix GANs

Many GAN models used in medical image
analysis [14, 61–63] follow the image translation
framework Pix2Pix proposed in [64] and achieve
promising results. As a cGAN model, given a
source image x, the generator G in Pix2Pix
produces an image G(x) that resembles the

real target image y. At the same time, the
discriminator D is trained to differentiate
between the fake image pair (x,G(x)) and the
real image pair (x, y). The training loss of the
generator G is as follows:

LG
cGAN = Ex∼Pdata(x)[log (1 −D(x,G(x)))

+ λl1Ex,y∼Pdata(x,y)[‖y −G(x)‖1],
(15.12)

where the first term in Eq. 15.12 is the common
adversarial loss of a generator as in the orig-
inal GANs. In addition, Pix2Pix also enforces
the pixel-wise similarity between the generated
image and the real image, as described in the
second term. Here ‖ · ‖1 indicates the l1 norm,
i.e., the average absolute pixel-wise difference
between G(x) and y. The hyper-parameter λl1 is
user-defined to balance these two terms.

The loss function of the discriminator D is
defined as

LD
cGAN = − Ex,y∼Pdata(x,y)[logD(x, y)]

− Ex∼Pdata(x)[log (1 −D(x,G(x)))].
(15.13)
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By minimizing Eq. 15.13, the discriminator D is
trained to assign the correct labels (0 or 1) to the
fake or the real image pairs.

As image generation and image discrimination
are trained together, the final loss function that
integrates the objectives of G and D becomes

LcGAN = LG
cGAN + LD

cGAN . (15.14)

In Pix2Pix, CNN architectures are used for
both the generator and the discriminator to extract
powerful deep features. Especially, the generator
uses a U-net-like architecture to utilize the hier-
archy of contextual information for image gen-
eration. The discriminator follows the common
CNNs used for classification.

15.6.4 CycleGAN

The Pix2Pix model transforms images between
two domains with one-to-one correspondence.

That is, the training data consists of paired im-
ages {x, y}, where x and y are the corresponding
samples in the two domainsX andY, respectively.
This requirement could be relaxed by cycle GAN
(CycleGAN) [65] that only needs unpaired train-
ing data to learn the mapping between images in
two domains, such as computerized tomography
(CT) andMR images. The needs of paired images
are eliminated by learning two mappings X → Y
andY → X simultaneously and enforcing a cycle
consistency loss during training. CycleGAN con-
sists of two generators – G to learn the mapping
X → Y and F to learn the mapping Y → X –
as well as two discriminators,DX to differentiate
x̂ = F(G(x)) from x and DY to differentiate ŷ =
G(F(y)) from y. The basic idea is illustrated in
Fig. 15.27. The objective function of CycleGAN
is as follows:

L(G, F,DX,DY ) = LG,DY ,X,Y
GAN + LG,DX,Y,X

GAN + λLG,F
cycle, (15.15)

where the first and the second terms are the ad-
versarial loss of GANs and the third term is the
cycle consistency loss, which is defined as

LG,F
cycle = Ex∼Pdata(x)[‖F(G(x))− x‖1] + Ey∼Pdata(y)[‖G(F(y))− y‖1]. (15.16)

As can be seen, the forward cycle x → G(x) →
F(G(x)) ≈ x should be able to bring x back.
Similarly, the backward cycle y → F(y) →
G(F(y)) ≈ y should be able to bring y back.
In this way, the samples x and y in two domains
do not need to have one-to-one correspondence in
CycleGAN.

15.6.5 GAN Applications to Brain
Image Analysis

15.6.6 Brain Image Synthesis

GANs have been widely used for brain image
synthesis either within the same imaging modal-
ity or across different imaging modalities. For

example, a 3D cGANmodel was proposed in [13]
to synthesize full-dose brain positron emission to-
mography (PET) images from the low dose ones.
PET imaging reveals the metabolism processes of
human and is widely exploited in clinics and re-
search. During PET scanning, radioactive tracers
are injected into the patient’s body for imaging.
Usually, a full dose of radioactive tracer is needed
to generate PET images of diagnostic quality. The
exposure to radiation inevitably brings healthy
concerns, especially for those patients who have
to undertake multiple scanning during their treat-
ment. On the other hand, lowering the dosage of
tracers could significantly reduce the quality of
PET images, as shown in Fig. 15.28. Therefore,
the work in [13] proposed to fill the gap between



15 Deep Learning Models with Applications to Brain Image Analysis 455

Fig. 15.27 Illustration of
CycleGAN for unpaired
image-to-image
translation. (Image
courtesy to [65])

Fig. 15.28 Comparison between a low-dose PET (L-
PET) image and its corresponding full-dose PET (F-PET).
(Image courtesy to [13])

the low-dose PET images and the full-dose ones
by using a 3D conditional GAN (cGAN) model.
The overview of the proposed method is given
in Fig. 15.29. It follows the Pix2Pix framework,
where the generator is a U-net-like structure and
the discriminator is a CNN-based classifier to
differentiate the real and the fake image pairs.
Different from Pix2Pix and many other cGAN-
based medical image synthesis models [61, 63,
66, 67] that use 2D slices of a PET image as
the input, the cGAN model [13] is completely
3D. It takes 3D patches of PET images as in-
put and processes them with 3D up- and down-
convolutions. In this way, it mitigates the problem
of discontinuous estimation across slices, which
is however often observed in 2D-based synthe-
sis models. A visual comparison of the results
using 2D and 3D cGAN models, respectively,
is given in Fig. 15.30. As shown, the full-dose
PET images synthesized by 3D cGAN show high
image quality in all three views. However, three
2D cGAN models only produce good results in
their corresponding trained views as indicated
in the red circles, but not along with the other
two directions since they lose the 3D structural
information during the synthesis.

GANs have also been intensively studied
for cross-modality brain image synthesis. For
example, when setting different scanning param-
eters, MRI can generate multi-modality images
(e.g., T1-weighted, T2-weighted, and FLAIR)
to reflect soft tissues with different contrast,
providing complementary information for disease
diagnosis [68] and treatment planning [69].
Cross-modality MR image synthesis is therefore
often needed to deal with the potential modality
loss in clinics so that the diagnosis could benefit
from the enriched information in the multiple
imaging modalities [70, 71]. Such tasks could be
more challenging than the synthesis within the
same imaging modality. Meanwhile, generating
the images of new modality is often not the end:
these images are expected to well preserve the
pathology that is critical for the subsequent
analysis. For example, when the brain images
contain tumors, the boundaries of tumors are
expected to be well depicted in the generated
images. To develop pathology-centered synthesis,
different regularization terms have been proposed
and embedded into the learning process of GANs
models. For example, the work in [14] proposed
edge-aware conditional GANmodels (Ea-GANs)
to enforce the preservation of edges for cross-
modality MR image synthesis to assist brain
tumor segmentation. In addition to enforcing the
pixel-wise intensity similarity as in Pix2Pix, Ea-
GANs also require that the edge maps extracted
from the synthesized images should resemble
those from the real images. These edge maps
are computed by the commonly used Sobel
filters. As shown in Fig. 15.31, the work in [14]
proposed two frameworks to incorporate the edge
maps, i.e., a generator-induced Ea-GAN (gEa-
GAN) and a discriminator-induced Ea-GAN
(dEa-GAN). In gEa-GAN, the edge maps are
incorporated into the generator side only, while
in dEa-GAN, the edgemaps are also introduced to
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Fig. 15.29 Framework of training a 3D conditional GAN (cGAN) to estimate the full-dose PET image from low-dose
counterpart. (Image courtesy to [62])

Fig. 15.30 Visual comparison between the results esti-
mated by 2D cGAN and the 3D cGAN in [62]. These 2D
cGANs are separately trained with the 2D slices from the

corresponding axial, coronal, and sagittal views. (Image
courtesy to [62])

the discriminator side, so that they participate the
adversarial training to help improve the synthesis
quality. As shown in Table 15.1, in a synthesis
task from T1-weighted MRI to FLAIR MRI, Ea-

GANs using the edge information outperformed
the 3D cGAN in both the whole image and the
tumor areas. This is consistent with the visual
comparison in Fig. 15.32.



15 Deep Learning Models with Applications to Brain Image Analysis 457

Fig. 15.31 Frameworks of Ea-GANs proposed in [14].
(Image courtesy to [14]). In gEa-GAN, the generator en-
forces the similarity between the real and the generated
images, as well as the similarity of their corresponding
edge maps. In dEa-GAN, the edge maps are also used to

train the discriminator to classify the triplets comprising
of the source-modality image, the real/generated target-
modality image, and the edge map of the corresponding
real/generated target-modality image

Table 15.1 Method comparison: synthesizing FLAIR-like images from T1-weighted images on the BRATS2015
dataset (mean)

Whole image Tumor part
Methods

PSNR NMSE SSIM PSNR NMSE SSIM

3D cGAN [72] 29.26 0.119 0.958 15.95 0.098 0.681

gEa-GAN [14] 29.55 0.115 0.960 16.37 0.090 0.697

dEa-GAN [14] 30.11 0.105 0.963 16.90 0.084 0.705

15.6.7 Brain Image Augmentation

Brain disease diagnosis benefits from multi-
modality imaging data that provides comple-
mentary information. For example, the structural
imaging MRI and the functional imaging PET
have been widely used for the diagnosis of
Alzheimer’s disease (AD). However, the missing-
modality problem often occurs in clinic, for
example, patients taking MRI scanning may
reject to also take PET scanning due to the
concerns about the cost. Such a problem also
exists in the widely used Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database, which
limits the number of subjects available for the
research. A common practice to deal with the
missing-modality problem is to impute the
images of the missing modality. For example,
in [15], a 3D CycleGAN model was proposed
to impute the missing PET images by learning
the bidirectional mapping between MRI and
PET. Based on complete (after imputation) MRI-
PET pairs, a multi-modal multi-instance learning
method was further proposed for AD diagnosis.
The architecture of the 3D CycleGAN is shown
in Fig. 15.33. It consists of two generators to learn
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Fig. 15.32 FLAIR image synthesis from T1-weighted
MR images: visual comparison between the results esti-
mated by methods proposed in [14] and several competing

approaches. (a) Axial slices, (b) zoomed parts of axial
slices, (c) coronal slices, (d) zoomed parts of coronal
slices, (e) sagittal slices, and (f) zoomed parts of sagittal
slices
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Fig. 15.33 The architecture of the 3D CycleGAN proposed in [15]. (Image courtesy to [15])

Fig. 15.34 Visual comparison on two subjects: synthetic PET images generated by 3D CycleGAN proposed in [15]
(top) vs. the corresponding real PET images (bottom). (Image courtesy to [15])

the mappings from MRI to PET and the mapping
from PET to MRI, respectively. Each generator
consists of three parts: encoding, transferring,
and decoding components. The encoding part
consists of three convolutional layers to extract
features in the source domain (e.g., MRI). The
transferring part is constructed by six residual

network blocks to transfer the features from the
source domain to the target domain (e.g., PET).
The decoding part contains two deconvolutional
layers and one convolutional layer to generate
images in the target domain. Examples of the
synthesized PET images are shown in Fig. 15.34.
By integrating image synthesis and disease
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diagnosis into a unified framework, this work
was further extended to a more advanced model
to generate disease-specific PET/MRI scans [73],
providing an exciting research direction for
synthesizing task-oriented neuroimages through
GANs.

15.7 Discussion

Even though deep learning has achieved record-
breaking performance in brain image analysis,
there are still several potential limitations to con-
sider.
First, deep learning models usually have a

very high computational cost for network training
because of the high dimensionality of input brain
images as well as the huge number of to-be-
optimized network parameters. Using GPUs with
higher computation power and designing models
in a parallel way can partly address this issue. It
is also interesting to perform dimension reduction
for input brain images, by defining regions of
interests in the brain (empirically or in a data-
driven manner) to reduce the negative influence
of uninformative regions [8].
Second, they generally require a large number

of training images for generating reliable models.
The latest success of GAN models in the syn-
thesis of neuroimages has brought new solutions
to the augmentation of training samples. Transfer
learning [33, 74], which can enable knowledge
sharing between related tasks/domains, is also
an interesting solution that reduces the need for
a large number of training samples required for
network training.
In addition, deep learning models have often

been described as “black boxes,” without explic-
itly articulating themselves in a certain way. In
many neuroimaging-based applications, it is of-
ten not enough to have a good prediction sys-
tem. To understand what intermediate layers of
convolutional networks are responding to, several
strategies have been proposed, such as deconvo-
lution networks [75], deep Taylor composition
backpropagation [76], and Bayesian deep net-
works [77]. It is desired to develop new strategies
to further understand deep learning methods in

brain image analysis, which could accelerate the
acceptance of deep learning applications among
clinicians and patients.

15.8 Conclusion

In this chapter, deep learning models and their ap-
plications to brain image analysis are introduced.
Specifically, four typical deep learning models
(i.e., CNN, RNN, AE, and GAN) and their appli-
cations (i.e., brain image segmentation, brain im-
age registration, neuroimaging-based brain dis-
ease diagnosis, and brain image synthesis) are
introduced. Limitations of current deep learning
models and possible future research directions are
also discussed. It is expected that deep learning
will have a great impact on brain image analysis.

Homework

1. In practice, we usually have only limited
number of brain images to train deep models
for analysis. Please explain the problem and
list at least two strategies to deal with this
situation.

2. Consider the following MLP model with two
hidden layers and the loss function shown in
Table 15.2. Please calculate ∂h1,i

∂w1,2
and ∂J

∂w1,2
.

3. What are the benefits to use CNN to analyze
brain images, compared with MLP?

4. What are the key difference and advantages
of the fully convolutional networks (FCNs)
over convolutional neural networks (CNNs)
in brain image segmentation (pixel-level pre-
diction)?

5. Please describe the network structure of U-
net. What are the benefits to use skip connec-
tions in U-net?

Table 15.2 AnMLP model with two hidden layers

Input x1,i , x2,i , where i = 1, · · ·N and N is
the number of samples

Layer 1 h1,i = max(w1,1x1,i + w1,2x2,i , 0),
h2,i = max(w2,1x1,i + w2,2x2,i , 0)

Layer 2 pi = w5h1,i + w6h2,i

Loss J (p,w) =∑i (pi − yi)
2
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6. What’s the difference between RNNs and
CNNs? What is the advantage of LSTM over
RNN?

7. The auto-encoder (AE) model can extract
imaging features in an unsupervised manner.
What is the principle of AE?

8. What’s the purpose of using the generator and
discriminator in GANs?

9. What’s the advantage of CycleGAN over
GAN?

10. Please list possible deep learning models that
could be used for the following brain image
analysis tasks: (a) brain disease diagnosis,
(b) brain lesion segmentation, (c) brain net-
work analysis based on fMRI images, (d)
brain image transferring across modality, (e)
brain disease diagnosis without labeled train-
ing samples, (f) brain image generation with-
out paired training samples.
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16Neural Modeling

Michael N. Economo, Jad Noueihed, Joan J. Martinez,
and John A. White

Abstract

The brain is extraordinarily complex, contain-
ing 1011 neurons linked with 1014 connec-
tions. We can improve our understanding of
individual neurons and neuronal networks by
describing their behavior in mathematical and
computational models. This chapter provides
an introduction to neural modeling, laying the
foundation for several basic models and sur-
veying key topics. After some discussion on
the motivations of modelers and the uses of
neural models, we explore the properties of
electrically excitable membranes. We describe
in some detail the Hodgkin-Huxley model, the
first neural model to describe biophysically
the behavior of biological membranes. We ex-
plore how this model can be extended to de-
scribe a variety of excitable membrane behav-
iors, including axonal propagation, dendritic
processing, and synaptic communication. This
chapter also covers mathematical models that
replicate basic neural behaviors through more
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abstract mechanisms. We briefly explore ef-
forts to extend single-neuron models to the
network level and provide several examples of
insights gained through this process. Finally,
we list common resources, includingmodeling
environments and repositories, that provide
the guidance and parameter sets necessary to
begin building neural models.

Keywords
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16.1 Why Build Neural Models?

Given the immense complexity of the brain and
nervous system, it seems reasonable to attempt to
understand its behavior by building and studying
computational models. The approaches used fall
along a continuum between two extremes. At one
extreme, practitioners attempt to include every
relevant detail, in essence trying to build an in
silico representation of the full neural system that
can then be monitored, dismantled, and altered
at will. Although this approach is philosophically
attractive, it is impossible to build a truly accu-
rate and complete model of even a single neuron
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within the foreseeable future, because so many of
the critical parameters for such a complete model
are very difficult, or even impossible, to measure.
Such factors include the dendritic densities of
channels, the precise neuromodulatory states of
the channels, and the spatiotemporal distributions
of a vast number of second messengers and cy-
toskeletal elements.

At the other extreme lie modelers who pur-
posefully and unapologetically construct over-
simplified models. This approach allows one to
build a model with a fairly limited number of free
parameters and thus a model that can potentially
be understood fully and in detail. However, by
construction, such simple models leave out a host
of presumably important details. Modelers taking
this approach are criticized for picking the impor-
tant details, rather than letting the model tell them
what is important. In the worst cases, suchmodels
can often legitimately be criticized as having been
“rigged” to give a particular answer, without pro-
viding meaningful insight into the mechanisms.

As in most ideological arguments, day-to-day
neural modelers lie at some point on this contin-
uum. Most who take more detailed approaches
are aware that they, too, make many unavoid-
able choices in building the model. Most of the
detail-focused work is at the cellular level, but the
best practitioners of detailed network models are
meticulous in exploring the relevant parameter
spaces and in trying to draw general conclusions
from complex simulations. The best of the work
with more reduced models avoids the trap of
“rigging” the model to give an inescapable result
and instead produces a result that the community
would not have guessed a priori. No matter what
the style of the model, the most useful modeling
work makes non-trivial predictions and is experi-
mentally falsifiable.

Regardless of the style and choices of themod-
eler, what are the purposes of neural modeling?
Below is a partial list:

1. Keeping track of complex nonlinear interac-
tions. Even many of the simplest neural mod-
els are highly nonlinear, making it difficult
to reason through multiple interactions. Com-
putational models allow us to examine such
interactions, quantitatively and qualitatively.

2. Fitting experimental data. A model with a
tractable number of parameters can be used ex-
tremely effectively to fit experimental data and
thus to make those data useful more broadly.
If a given class of model can’t fit trustworthy
data, then one is in a good position to reject
that class of model and posit a new class.

3. Understanding the implications of collected
data. We as experimentalists often collect
our data using deliberately simplified stimuli.
Computational models can represent an im-
portant step in understanding the implications
of a given biophysical mechanism for neural
data processing under more general conditions
than in the original experiment.

4. Guiding novel experiments. For many labo-
ratories, neural models represent a rigorously
stated hypothesis, hopefully with clear im-
plications that can be tested experimentally.
In this way, the refinement of computational
models via feedback from experiments repre-
sents a particularly rigorous form of the scien-
tific method. We are well behind the physics
community in the degree of productive inter-
action between experiments and models, but
we are making progress.

5. Testing one’s understanding of a proposed
mechanistic explanation. It is one thing to have
a basic understanding of the Carnot cycle; it
is quite another to build an efficient internal-
combustion engine. Building a computational
model that can reproduce data or perform a
task is often a strong test of our understanding
of a neural circuit. Often, we find that our
less-than-rigorous hypothesis is inadequate
in some fundamental way. An even more
rigorous test comes in building a physical,
rather than simulated, version of the model.

In building a model, one’s methods should
meet one’s goals. Conductance-based models
of the Hodgkin-Huxley form (Sects. 16.3, 16.4,
16.5, and 16.6) are superb for understanding the
effects of a novel set of ion channels on neuronal
integration, but these models are known to be
wrong in some of the fine details and are not
adequate to describe the gating (turning off and
on) of single ion channels. Integrate-and-fire and
similar models (Sect. 16.7) have the immense
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advantage of mathematical tractability, but they
are too abstract for many studies of membrane
mechanisms. Commonly, the most detailed
portions of a model represent the most detailed
and trustworthy data and/or the mechanism of
particular interest of the study.

16.2 Basic Properties of Excitable
Membranes

16.2.1 Membrane Properties

Excitable cells, including neurons in the nervous
system, cardiac myocytes in the heart, and beta
cells of the pancreas, carry information in the
voltage difference across their membranes. The
lipid membrane of a cell separates the charged
ions within the cell from charged ions in the
extracellular medium. The collection of ions near
both sides of the membrane creates an electric
potential difference across the cell membrane.
Static in non-excitable cells, this electrical
potential changes dynamically in their excitable
counterparts. The membrane potential of a cell is
defined as

Vm = Vin − Vout (16.1)

where Vin and Vout are the internal and external
potentials, respectively.

Cell membranes are primarily composed of
two elements: a lipid bilayer that forms the bulk
of the surface area and membrane-bound pro-
teins interspersed throughout the lipid bilayer.
Although the lipid bilayer is largely impermeable
to charged ions, transmembrane ion channel pro-
teins are able to selectively control the flow of
distinct ion species into and out of the membrane.
The inward flow of a positively charged ion (com-
monly Na+ or Ca2+) results in an inward current
and increases the membrane potential. Similarly,
the outward flow of positive ions (commonly
K+) produces an outward current and moves the
membrane potential to more negative values. If
a negatively charged ion, such as Cl−, moves
across the membrane, the effects are reversed
with respect to the direction of ion flow. Sec-

tion 16.3 describes the manner in which distinct
ion fluxes are controlled by excitable cells in
order to integrate, process, and transmit electrical
signals.

16.2.2 Equivalent Circuit
Representation

We first consider a small isopotential cell with
a lipid bilayer membrane. In this case, there is
no spatial variation in electrical potential within
the cell or in the extracellular space. The passive
properties of this cell can be easily represented
using elements common in electrical circuits.
The circuit analogs of cellular components and
their contribution to the flow of ionic currents are
described.

16.2.2.1 Membrane Capacitance
The lipid bilayer of a neuron acts as a thin, insulat-
ing membrane, separating positive and negative
charges and endowing it with an intrinsic capac-
itance. The capacitance of a small isopotential
cell, Cm, is defined as the amount of charge that
must accumulate across the membrane to achieve
amembrane potentialVm. In any cell,Cm =Q/Vm,
where charge Q is a measure of the ions near
the membrane, and Vm is the resulting membrane
potential. Commonly, units of millivolts (mV) for
Vm and nanofarads (nF) for Cm are used when
describing these quantities.

Following a change in voltage across themem-
brane, ions redistribute on each side of the mem-
brane. This produces a capacitive current, which
is defined as

Ic = Cm
dVm

dt
, (16.2)

where Ic is in nanoamps (nA) when units for the
other quantities are as defined above and time is
in milliseconds (ms).

16.2.2.2 Membrane Conductance
A current may also flow across the cell membrane
in response to a static potential difference. In this
case, the magnitude of current flow is governed
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by the resistance of this structure, Rm, which is
itself a function of the composition of the mem-
brane and the presence of ion channel proteins.
The membrane conductance,Gm, is the inverse of
the membrane resistance,

Gm = 1

Rm
(16.3)

and is measured in nanosiemens (nS) when re-
sistance has units of gigaohms (G	). When a
voltage difference exists between the interior and
exterior of a small isopotential cell, a resistive
current flows through the membrane according to
Ohm’s law:

IR = Gm·Vm. (16.4)

Analysis of current flux becomes more com-
plex when the flows of distinct ionic species
are considered. In general, Eq. 16.4 will include
fluxes of multiple ions, each with variable con-
ductances and behavior that accounts for differ-
ent internal and external concentrations of each
ion. These additional factors will be discussed in
detail in Sect. 16.3.

16.2.2.3 Normalized Units for
the Passive Membrane

In cellular neuroscience, membrane properties
are often normalized by the surface area of the
membrane, so as to describe the intrinsic char-
acteristics of a patch of membrane independent
of the size or morphology of a given cell. In
normalized units, we have the specific membrane
capacitance, cm, in units ofmicrofarads per square
centimeter (μF/cm2); the specific membrane re-
sistance, rm, in units of kilohms per square cen-
timeter (k	/cm2); specific membrane conduc-
tance, gm, in millisiemens per square centimeter
(mS/cm2); and current densities, ic and iR, in
nanoamps per square centimeter (nA/cm2). When
considering normalized quantities, one may cal-
culate the characteristics of an entire cell by mul-
tiplying each quantity by the surface area of the
cell of interest. Quantities normalized by surface
area generally have larger units than in the non-
normalized case (e.g., μA/cm2 vs. nA), as the

surface area ofmanymammalian neurons ismuch
less than one centimeter squared.

16.2.2.4 Passive Membrane
Representation

To account for the resistive and capacitive qual-
ities of the cell membrane, we may construct a
circuit model of a patch of passive membrane
by considering a resistance in parallel with a
capacitance (Fig. 16.1a). These elements separate
the interior of the cell, with voltage, Vin, from
the extracellular space, with voltage, Vout. If an
extrinsic current, Iinj, is applied to the interior
of the cell, as may be introduced experimentally
with a recording pipette, then we may determine
the behavior of the membrane using Kirchhoff’s
current law. Under this condition, all currents
flowing into each node must sum to zero. This
condition can be represented as

0 = Iinj − Ic − IR = Iinj − Cm
dVm

dt
−GmVm.

(16.5)

Rearranging Eq. 16.5 produces an expression
describing the behavior of the membrane poten-
tial in response to internal current injection. This
is the passive membrane equation:

τ
dVm

dt
= −Vm + Iinj/Gm, (16.6)

where τ is the time constant of the membrane,
defined as τ = Cm/Gm, in units of milliseconds.
The time constant is a measure of how fast the
membrane potential changes. Specifically, it mea-
sures the time it takes for the membrane potential
to reach e−1 (approximately 37%) of its steady-
state value following a step change in voltage.
Neuronal membranes typically have a time con-
stant between 1 and 100 ms. The behavior of a
passive membrane to step changes in injected cur-
rent is depicted in Fig. 16.1b. For both charging
and discharging, Vm moves exponentially from its
initial value (either zero or Vss in this example) to
its final value (either Vss or zero here) with time
constant τ .
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Fig. 16.1 (a) Simple electrical-circuit representation of a passive membrane. (b) Response of passive membrane to
external injected current pulses

16.3 Excitability

16.3.1 Electric Potentials

Although the passive membrane is a useful tool
for the investigation of basic membrane proper-
ties, one must consider the behavior of individ-
ual ions in order to understand the dynamics of
voltage in excitable cells. Here, we review the
highlights of this material, which is covered su-
perbly and in detail elsewhere [1, 2]. The central
point in considering ionic fluxes is that they are
driven by gradients in both electrical potential
and chemical potential. This chemical potential
arises when the concentration of an ion differs in
the cytoplasm of a cell and in the extracellular
milieu. The principal charge carriers responsible
for excitable behavior are sodium, potassium, and
chloride ions (Na+, K+, and Cl−), and so we will
describe the chemical potentials acting on these
species. The concentration of potassium ions is
much higher inside the cell than outside, while the
concentrations of sodium and chloride are much
lower inside the cell relative to the exterior (Table
16.1). Although the concentrations of these ions
are different inside and outside of the cell, the
sum total of all charges on both sides of the mem-
brane must be zero to maintain electroneutrality.
In the extracellular space, the charge introduced
by sodium ions is largely canceled by negatively
charged chloride ions, and inside of the cell, the
positive charges introduced by potassium ions are
canceled by the presence of a large population
of organic anions, to which the cell membrane

is impermeable (and therefore do not contribute
any flux). Because of these differences in con-
centration, a diffusive flux exists for each ion as
it diffuses down its concentration gradient. This
density of diffusive flux is described by Fick’s
first law in one dimension, here expressed in
steady-state (non-time-varying) form:

jdiff,i = −Di

d [i]

dx
, (16.7)

where the coordinate x represents distance across
the membrane, jdiff,i is the diffusive flux (in mol
cm−2 s−1) of an ion, i, [i] is the concentration of
the ion (in moles) as a function of distance, andDi

is the diffusion coefficient of the ion, a measure
of how fast the ion can diffuse across the mem-
brane (in cm−1 s−1). This concentration gradient
represents a chemical potential (analogous to a
voltage gradient or electrical potential) that drives
a flux of the ion to the right in Fig. 16.2a. The
subsequent flow of ion i down its concentration
gradient and across the cell membrane results in
an accumulation of excess charge on one side of
the membrane and produces a shift in the electric
potential across the membrane. An ionic flux in
the opposite direction is initiated resulting from
the electric potential. The net flux density of the
ion is

jnet,i = −Di

d [i]

dx
− DiziF

RT
[i]

dV

dx
, (16.8)

where zi is the valence of the ion, R is the ideal
gas constant (8.314 J K−1 mol−1), F is Faraday’s
constant (96485.4 C mol−1), and T is absolute



468 M. N. Economo et al.

temperature in degrees Kelvin [2]. Multiplying
by Faraday’s constant and the ion’s valence pro-
duces the Nernst-Planck equation for steady-state
conditions:

Ii ≡ ziFjnet,i

= −ziF
(
Di

d [i]

dx
+ DiziF

RT
[i]

dV

dx

)

(16.9)

where Ii is the flow of ion i in amperes per
centimeter squared (A cm−2) and the sign “≡”
means “equivalent by definition.” The Nernst-
Planck equation describes the current density of
a particular ionic species through the membrane.
At equilibrium, the magnitude of flux of ion i
due to its chemical potential equals its flux due
to the electrical potential but flows in the opposite
direction (Fig. 16.2b). Solving for the equilibrium
condition of zero net current for an individual ion
and integrating yields the Nernst equation,

V
eq
i = RT

ziF
ln

[i]out
[i]in

, (16.10)

where the concentrations, [i], denote the concen-
tration of the ion on each side of the membrane.
V

eq
i is called the reversal potential, or Nernst

potential, of ion i and is commonly written as Vi
for simplicity. The term “reversal potential” is a
reference to the fact that the net flux of an ion
reverses direction when the membrane potential
crosses the Nernst potential for that ion. When
the membrane voltage exactly equals the Nernst
potential, no net movement of charge across the
membrane occurs for that particular ion. For ex-
ample, K+ has a valence of +1, a typical mam-
malian cytoplasmic concentration of 140 mM,
and an extracellular concentration of 5 mM. The
Nernst potential for K+ can be calculated at 37 ◦C
using Eq. 16.10 as −90 mV. At this potential,
there is no net influx or efflux of K+ ions. If the
cell membrane was permeable only to K+ ions,
K+ ion flux would tend to bring the membrane
potential toward its reversal potential, and its
resting membrane potential would be −90 mV at
steady state. Approximate Nernst potentials for
common ions are given in Table 16.1 for mam-
malian neurons under physiological conditions.

Table 16.1 Internal and external concentrations of
common ions in mammalian neurons [3]

[Internal] [External] Nernst potential

Ion (mM) (mM) (mV)

Na+ 15 145 +61

K+ 140 5 −90

Cl− 4 110 −89

Ca2+ 0.1 2.5 +136

16.3.2 Resting Potential

Cellular membranes contain a variety of ion chan-
nels and are permeable to several different ions.
The Nernst equation may be generalized to de-
termine the equilibrium potential when multiple
ionic species are present with unique permeabil-
ities and concentration gradients. In this case,
a dynamic equilibrium occurs, in which the net
ionic current of each species is nonzero, but the
total current summed over all ions equals zero. If
one assumes that the change in voltage across the
membrane is linear (the so-called constant field
assumption), the resting potential for a membrane
permeable to Na+, K+, and Cl− can be calculated
using the Goldman-Hodgkin-Katz (GHK) equa-
tion,

Vm = RT

F
ln
PK
[
K+]

out + PNa
[
Na+]

out + PCl
[
Cl−

]
in

PK
[
K+]

in + PNa
[
Na+]

in + PCl
[
Cl−

]
out

,

(16.11)

where Pi denotes the permeability of the mem-
brane to ion i. In the GHK derivation,Pi is defined
as the diffusion coefficient Di divided by mem-
brane thickness. Note that the Cl− concentrations
appear on opposite sides of the fraction compared
to the K+ and Na+ terms; this is due to the
negative valence of Cl−.

A secondmethod of deriving the resting poten-
tial arises when one assumes that resting fluxes
of each ion are linearly related to the difference
between membrane potential and the Nernst po-
tential for that particular ion. In this case, the
resting potential is given for our three-ion sys-
tem by a simple combination of conductances
(GNa for sodium, GK for potassium, and GCl for
chloride) and Nernst potentials (VNa, VK, and VCl,
respectively):
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Fig. 16.2 (a) A difference
in concentration [i] of a
cation i across a
semi-permeable
membrane, with no voltage
gradient, results in
diffusion of the ion down
its concentration gradient.
(b) If the system is allowed
to equilibrate, the cation
redistributes, reducing the
chemical potential that
drives diffusion, while
simultaneously increasing
the electrical potential.
When the electrical
potential is equal and
opposite to the chemical
potential, the system is in
equilibrium. At
equilibrium, the electrical
potential is equal to the
Nernst potential for ion i

a

b

Vm = GNaVNa +GKVK +GClVCl

GNa +GK +GCl
(16.12)

Both methods of calculating the resting
potential yield close approximations of the
correct value, although the stated assumptions of
the GHK equation generally yield smaller errors.
In the absence of activity, most neurons have
a resting membrane potential of approximately

−70 mV, as the cell membrane is more permeable
to K+ and Cl− ions than Na+ ions. A membrane
potential shift away from this “polarized”
resting potential and toward zero is called a
depolarization. Alternatively, a shift to potentials
more negative than the resting potential is termed
a hyperpolarization. If the membrane potential
shifts from the resting potential to zero and
then to increasingly positive potentials, it is still
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referred to as a depolarization, contrary to a literal
interpretation of the term.

16.3.3 Voltage-Gated Conductances

Thus far, we have described membrane perme-
ability as a static quantity. However, a host of
transmembrane channels whose permeabilities
change dynamically are present in themembranes
of excitable cells. Of particular importance are
voltage-gated ion channels, whose pores switch
between open and closed states probabilistically
depending on the voltage across the membrane
at the position of the channel. Ubiquitous among
all excitable cells are voltage-gated Na+ and K+
channels, which display preferential specificity
for a single ionic species in the open state. The
presence of these, and other, channel populations
in the cell membrane results in highly nonlinear
behaviors of membrane potential in response
to perturbations. Chief among these behaviors
are the generation of the action potential, an
all-or-nothing transient depolarizing spike in
membrane potential responsible for representing
and transmitting information in the nervous
system of all animals.

16.3.4 The Hodgkin-Huxley Model:
Action Potentials in the Squid
Giant Axon

In 1952, Alan Lloyd Hodgkin and Andrew Hux-
ley published a series of papers, culminating in
a quantitative biophysical model of membrane
currents and the mechanism by which they pro-
duce action potentials [4]. This work established
a phenomenological model of action potential
generation in terms of experimentally measurable
ionic conductances, membrane potential, and cur-
rent flow. The approach of Hodgkin and Hux-
ley has offered an experimental and theoretical
framework for examining a broad class of neu-
ronal models and, upon its introduction, became a
foundation for understanding neural excitability.
Hodgkin and Huxley shared the Nobel Prize in
physiology or medicine in 1963 with John Carew

Eccles “for their discoveries concerning the ionic
mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve
cell membrane.” For reasons discussed in Sect.
16.3.6, the Hodgkin-Huxley formulation remains
extremely useful after more than a half century.

16.3.4.1 Voltage Clamp and Space
Clamp

In the late 1940s, it was understood that mem-
brane currents both contributed to and were de-
pendent on the membrane potential. This cou-
pling between membrane potential and current
presented a significant experimental hurdle, as it
was difficult to study either without controlling
for one. Additionally, the capacitive current com-
plicated the study of these ionic currents, as it
was not possible, given electrophysiological tech-
niques at the time, to separate individual compo-
nents of membrane current. Finally, experimental
constraints led many researchers to focus on the
study of very large neurons, which cannot be
approximated as isopotential. Instead, large axial
currents, those flowing between sections of the
cell that do not have the same transmembrane
potential, were present and difficult to distinguish
from transmembrane currents.

Hodgkin and Huxley exploited two techniques
to address these problems: the voltage clamp and
space clamp. To allow for easier experimental
access, they studied the giant axon of the squid
Sepia loligo, taking advantage of its large diam-
eter. They introduced electrodes to measure po-
tential and inject current in both the extracellular
medium and within the cell. The voltage clamp
technique (Fig. 16.3a) used a feedback amplifier
to hold the voltage across the membrane constant.
This technique uncoupled the ionic currents from
themembrane potential, and custom circuitry was
employed to eliminate the capacitive current. The
space clamp technique utilized a long wire, care-
fully threaded into the squid axon intracellularly,
to short-circuit the voltage of the axon, resulting
in the same value of voltage at all positions along
its length. As such, this made the entire intracellu-
lar space of the cell isopotential, eliminating any
axial currents. The combination of these technical
advances allowedHodgkin andHuxley to analyze
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a b

Fig. 16.3 (a) Schematic of a two-electrode voltage-clamp experiment. (b) Circuit diagram of the space-clamped
Hodgkin-Huxley model of neuronal excitation

the dynamics of the conductances mediated by
voltage-gated Na+ and K+ channels. In order to
separate voltage-clamp responses into their ionic
components, they used the painstaking method
of ionic substitution within their salt solutions
to manipulate the Nernst potentials VNa and VK

independently. (Thankfully, we now have access
to channel blockers, making the process of sep-
arating ionic currents much easier than it was a
half-century ago.)

16.3.4.2 Ionic Conductances
In order to reveal the mechanisms responsible for
action potential generation, Hodgkin and Hux-
ley quantitatively described three principal ionic
conductances present in the squid giant axon:
the Na+, K+, and leak conductances. Although
voltage-gated Cl− channels do not play a major
role in the squid giant axon, these ions do con-
tribute to the leak conductance, a “catch-all” term
used to denote all static conductances in themem-
brane. All currents that result from static con-
ductances linearly and instantaneously depend on
voltage according to Ohm’s law. As a result, they
may be combined into a single conductancemath-
ematically, the leak conductance, the reversal po-
tential of which does not necessarily correspond
to the Nernst potential of any single ion.

To fully describe the dynamics of each con-
ductance, Hodgkin and Huxley determined the
amount of activation and time scale of activa-
tion of each channel population as a function of
voltage, as well as the maximal conductance of

each population (the total conductance of a chan-
nel population when all constituent channels are
open). In addition to this information, they also
determined the reversal potential of each channel
population, equivalent to the Nernst potentials for
Na+ andK+, in order to determine the appropriate
current flow mediated by each resulting from a
given level of activation. The membrane model
proposed by Hodgkin and Huxley is shown in
Fig. 16.3b, and the components are described in
the following sections.

16.3.4.3 Model of the Potassium
and Sodium Conductance

Hodgkin and Huxley represented the voltage
dependence of the Na+ and K+ conductances
as static maximal conductances, GNa and GK,
multiplied by voltage-dependent gating variables.
Upon stepping the voltage of the squid axon from
near the resting potential to more depolarized
values, under conditions that isolated the K+-
mediated current, this current was found to
activate and remain activated for the duration
of the step. A single voltage-dependent gating
variable, n, representing the fraction of open
channels, was used to describe the voltage
dependence of this channel. The isolated Na+
current was found to quickly activate and then,
after a short period of time, inactivate. To describe
this behavior, two gating variables were ascribed
to this channel. The variable m describes the
activation process of the Na+ current, and another
variable, h, describes the inactivation process. All
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a b

Fig. 16.4 Steady-state amplitudes (a) and time constants (b) of the Hodgkin-Huxley gating variables vs. membrane
potential

three gating variables were assumed by Hodgkin
and Huxley to possess first-order kinetics. The n
gating variable, for example, was described by

C
αn(Vm)↔
βn(Vm)

O (16.13)

where C is the closed state and O is the open
state of the channel. αn(Vm) and βn(Vm) represent
the rates of channel opening and closure, respec-
tively, both voltage-dependent quantities. If n is
the fraction of open channels, then 1-n represents
the fraction of closed channels, and onemaywrite
an expression for the change in the fraction of
open channels:

dn

dt
= αn (Vm) · (1 − n)− βn (Vm) · n. (16.14)

Alternatively, we can write

dn

dt
= n∞ (Vm)− n

τn (Vm)
(16.15)

where n∞(Vm) is the steady-state fraction of open
channels at a voltage, Vm, calculated as

n∞ (Vm) = αn (Vm)

αn (Vm)+ βn (Vm)
, (16.16)

and τ n(Vm) is the time constant of this process,
defined as

τn (Vm) = 1

αn (Vm)+ βn (Vm)
. (16.17)

We leave the derivation of these expressions
as a useful exercise for the reader. The time con-
stant (Eq. 16.17) and steady-state activation (Eq.
16.16) of the gating variable can be measured
experimentally in voltage-clamp experiments.

The m and h variables governing the Na+
conductance are described in the same manner.
The steady-state value and time constant for each
gating variable are depicted in Fig. 16.4. Notice
that m and n, representing activation of the Na+
and K+ currents, increase with increasing volt-
age, while h decreases with increasing voltage. In
addition, the activation of the Na+ channel takes
place on a substantially shorter time scale than the
activation of the K+ channel or the inactivation of
the sodium channel.

16.3.4.4 Potassium and Sodium
Currents

With descriptions of the rate constants describing
opening and closure of the m, n, and h, gates,
Hodgkin and Huxley were able to calculate the
current produced by each channel. When fitting
this model to their data, the K+ current, Ik, in
nanoamps (nA), was found to depend roughly on
the fourth power of the gating variable n, in the
squid axon,
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IK = Gkn
4 (Vm − VK) , (16.18)

where Gkis the maximal conductance, in
nanosiemens (nS), of the potassium channel
population and VK is the Nernst potential of
K+. The reversal potential for potassium, VK, is
approximately −90 mV, slightly more negative
than the resting potential. Therefore, when the
membrane voltage is more positive than VK,
activation of this conductance leads to increased
K+ permeability and hyperpolarization of the
membrane, as the membrane potential moves
closer to the Nernst potential for K+.

In an analogous fashion, the Na+ current INa
was found to depend on approximately the third
power ofm, the gating variable controlling activa-
tion of the Na+ conductance, and the first power
of h, which controls the inactivation process of
this channel. The Na+ current, INa, therefore, may
be represented as

INa = GNam
3h (Vm − VNa) (16.19)

where GNa is the maximal conductance of the
population of Na+ channels and VNa is the Nernst
potential for sodium. The Nernst potential for
sodium is approximately +61 mV, and so activa-
tion of Na+ channels leads to depolarization of
the membrane.

Finally, the leak current, Ileak, is modeled as a
linear function of voltage, with reversal potential,
Vleak. Because this conductance is static, it is
not controlled by a gating variable, but instead
modeled simply as

Ileak = Gleak (Vm − Vleak) (16.20)

where Gleak represents the constant leak conduc-
tance. The leak current has a reversal potential
near the resting membrane potential, approxi-
mately −60 mV.

16.3.4.5 Complete Hodgkin-Huxley
Model

Combining these currents with the current due to
membrane capacitance and an extrinsic injected
current produces the membrane equation for the

Hodgkin and Huxley model:

Cm
dVm

dt
= Iinj − Iion (16.21)

where Iion is the sum of the Na+, K+, and leak
currents:

Iion = GKn
4 (Vm − VK)+GNam

3h (Vm − VNa)

+Gleak (Vm − Vleak) .

(16.22)

The Hodgkin-Huxley model is comprised of
four ordinary differential equations describing the
time evolution of the three gating variables n,
m, and h and the voltage of the membrane, Vm.
Notice that its form is similar to the passive
membrane equation with the addition of two non-
linear, voltage-gated conductances and reversal
potentials appropriate for the ions to which each
conductance is permeable. The Hodgkin-Huxley
equations (Eqs. 16.18–16.22) describe exactly the
dynamics of the circuit depicted in Fig. 16.3b.

When endowed with physiologically accurate
parameters, this model reproduces the action po-
tential waveform observed in the giant axon of
the squid as well as many other aspects of the
voltage dynamics observed in this system. Fig-
ure 16.5 illustrates the voltage waveform of the
action potential and the time course of the gating
variables, conductances, and currents during the
action potential.

16.3.4.6 Normalized Units in the
Hodgkin-Huxley Model

This description of the Hodgkin-Huxley model
has been provided in terms of the macroscopic
quantities, current, conductance, and capacitance.
Normalizing by surface area, as in Sect. 16.2.2.3,
provides an analogous description of the model in
terms of current density, conductance density, and
specific capacitance. The membrane equation for
the Hodgkin-Huxley model in normalized units is

cm
dVm

dt
= iinj − iion (16.23)

with
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Fig. 16.5 An action
potential (top panel). The
associated values of the
Hodgkin-Huxley gating
variables (second panel),
sodium and potassium
conductances (third panel),
and ionic currents (bottom
panel)

iion =gKn4 (Vm − VK)+ gNam
3h (Vm − VNa)

+ gleak (Vm − Vleak) .

(16.24)

In Eqs. 16.23–16.24, each gi is a conductance
density, in mS/cm2; cm is the specific capacitance
of the membrane, in μF/cm2; and the current
terms are replaced by current densities, iinj and
iion, in μA/cm2. The gating variables m, n, and
h are unitless fractions and therefore remain the
same.

16.3.5 Behavior of theHodgkin-
Huxley Model

16.3.5.1 Action Potentials
and Threshold

Introducing a positive current pulse, Iinj, into the
axon results in a depolarization of the membrane

potential. If the magnitude of this current is large
enough, it will trigger activation of the Na+ con-
ductance (i.e., an increase in the variable, m,
which possesses fast kinetics; see Fig. 16.4), re-
sulting in additional depolarization and an in-
creased inward current. This produces a positive
feedback loop in which the membrane poten-
tial and the Na+ current continue to increase
at increasingly higher rates. This process is re-
sponsible for the upstroke of the action poten-
tial. This depolarization is halted as the slower
h variable begins to decrease (representing in-
activation of the Na+ conductance; dotted line
in second panel of Fig. 16.5) and the n vari-
able begins to increase (activation of the hyper-
polarizing K+ conductance; dashed line of sec-
ond panel in Fig. 16.5). The hyperpolarization
brought about by the combination of decreased
Na+ conductance and enhanced K+ conductance
results in the downstroke of the action potential.
Because the n and h variables are relatively slow
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to respond to changes in voltage, a small un-
dershoot of the resting membrane potential oc-
curs before these variables return to their equi-
librium states. This brief hyperpolarization fol-
lowing the action potential is termed the after-
hyperpolarization and is discussed in more detail
in Sect. 16.5.3.

The action potential is an all-or-none event
triggered when the state variables of the
model cross a threshold hyperplane in its
four-dimensional (m, n, h, Vm) state space.
However, this threshold is often approximated
as a simple scalar voltage threshold. Small
depolarizing currents that do not move the
membrane voltage across the voltage threshold
produce insufficient change in the activation
of the Na+ conductance to recruit the positive
feedback necessary for an action potential.
Depolarizing stimuli that are too small to elicit
an action potential are termed subthreshold, in
contrast with larger, suprathreshold stimuli that
produce a full spike in membrane potential.
After a subthreshold stimulus, the membrane
relaxes back to its resting potential, and because
the voltage-gated channels are minimally
recruited, this subthreshold response is very
similar to the response to current input of the
passive membrane considered in Sect. 16.2
(Fig. 16.1).

16.3.5.2 Refractory Period
Following an action potential, the squid giant
axon displays a refractory period, during which
the membrane is less excitable than at rest. The
refractory period follows from two factors: the
residual activation of the K+ current, as indicated
by the elevated value of the n gate in Fig. 16.5,
and inactivation of the Na+ current, as indicated
by the depressed value of the h gate in Fig. 16.5.
This feature is captured by the Hodgkin-Huxley
model. During this period of reduced excitability,
a larger depolarization may be required to cause
an action potential (the relative refractory period),
or it may not be possible at all (the absolute
refractory period). During the refractory period,
the assumption of a fixed voltage threshold does
not apply.

16.3.6 Assumptions of theModel

The ability of the Hodgkin-Huxley model to re-
produce the biophysical phenomena observed in
the squid axon remains one of the most impor-
tant achievements in the modeling of excitable
cells. However, it is important to keep in mind
the assumptions that were made in its construc-
tion. First, Hodgkin and Huxley took the various
ionic currents to be independent, meaning that
the effect on the membrane potential of each
current could be described as a simple sum of the
individual components. Second, ionic currents
were assumed to be ohmic. Thus, they could be
calculated as the product of the ionic conduc-
tance and the difference between the membrane
potential and the reversal potential of each ionic
species. Finally, the model assumes that the ionic
conductances can be described simply as a frac-
tion of the maximal conductances, according to
their respective gating variables, which for the
Na+ conductance are assumed to be indepen-
dent [4]. Subsequent research has shown that
many of these assumptions do not strictly hold.
However, when more accurate models have been
constructed, they behave mostly in a qualitatively
similar manner. The immense and continued in-
fluence of the Hodgkin-Huxley approach, despite
its known inaccuracies, lies in its direct connec-
tion to voltage-clamp data, its relative simplic-
ity, and its demonstrated ability to account for a
diverse body of experimental results, including
those described in Sects. 16.4, 16.5, and 16.6.

16.4 Propagating Activity

The Hodgkin-Huxley model was derived from
data collected under conditions of “space clamp”
(i.e., with a wire inserted down the length of
the axon to short-circuit the interior; Fig. 16.3a).
However, the crowning achievement of their work
was that they were able to model propagation
of the action potential in the non-space-clamped
cylindrical squid giant axon and to show that
the propagating solution is stable only for veloc-
ities near those measured experimentally. They



476 M. N. Economo et al.

a

b

Fig. 16.6 (a) Electrical-circuit representation of an un-
myelinated axon. (b) A propagating action potential in a
model of an unmyelinated axon

accomplished this goal by assuming a travel-
ing wave solution and thus simplifying the prob-
lem considerably [4]. With the benefit of modern
computer technology, it is fairly straightforward
to dispense with the traveling wave assumption
and instead to simulate directly electrical behav-
ior in spatially extended processes with arbitrary
geometry and channel properties.

Figure 16.6a shows a circuit diagram of a long
process with membrane potential that varies with
distance along the membrane. From Ohm’s law,

riΔxIa (x, t) = Vin (x, t)− Vin (x +Δx, t)

(16.25)

where ri is the intracellular resistance per unit
length, �x is the length of the “compartment” of
membrane that can be considered isopotential,
and Ia is the magnitude of the axial current
between neighboring compartments. Because
the exterior environment is assumed to be short-
circuited at all locations, we can assume that
Vout = 0 and, thus, that Vm(x,t)= Vin(x,t). Making
this substitution, dividing both sides by �x, and
taking the limit as Δx → 0 yields

riIa (x, t) = −∂V m (x, t)

∂x
. (16.26)

Another relationship for Ia(x, t) can be derived
by applying Kirchhoff’s current law:

Ia (x, t) = Δxι̂m (x +Δx, t)+ Ia (x +Δx, t)

(16.27)

where, for mathematical convenience, we have
defined membrane current per unit length ι̂m =
Im/Δx. Rearrangement and taking the infinitesi-
mal limit of this equation yields

ι̂m (x, t) = −∂Ia (x, t)

∂x
. (16.28)

We can combine Eqs. 16.26 and 16.28 as fol-
lows:

−ri ∂I a (x, t)
∂x

= ∂2Vm (x, t)

∂x2
= ri ι̂m (x, t) .

(16.29)

To write a more specific version of this equa-
tion, we must specify the relationship between
membrane potential Vm and membrane current
per length, ι̂m. For the Hodgkin-Huxley model,

im (x, t) = cm
∂Vm (x, t)

∂t
+ iion (x, t) (16.30)

where iion(x,t) is the sum of the conductance-
based current fluxes,

iion (x, t) =gKn4 (Vm (x, t)− VK)

+ gNam
3h (Vm (x, t)− VNa)

+ gleak (Vm (x, t)− Vleak) .

(16.31)

To bridge between im, with units of current
per unit area, and ι̂m, with units of current per
unit length, we must consider the geometry of
the axon or other neuronal process. If we assume
that our neural compartments are cylindrical with
length �x and radius a, then ι̂m = 2πaim. Thus,
for a cable with Hodgkin-Huxley conductances,
we have the equation

∂2Vm (x, t)

∂x2
= 2πari

(
cm

∂Vm (x, t)

∂t
+ iion (x, t)

)
.

(16.32)
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In practice, this nonlinear partial differential
equation is difficult or impossible to solve ana-
lytically under most conditions. The more use-
ful approach is to build a compartmentally dis-
cretized version of the equations and to solve a
set of nonlinear ordinary differential equations
computationally. One way to derive this equation
is to use a spatially discrete approximation of the
second spatial derivative above. In this example,
onewould solve the ordinary differential equation
below for each compartment,

∂Vm (x, t)

∂t
= 1

c m
(

1

2πari

Vm (x +Δx, t)− 2Vm (x, t)+ Vm (x −Δx, t)

(Δx)2

−iion (x, t)
)
.

(16.33)

This intimidating-looking equation is easy to
derive [5, 6] and is conceptually simple. The
second spatial derivative gives rise to currents
that are proportional to the voltage differences
between the current compartment and its imme-
diate neighbors, according to Ohm’s law. The
term, iion, comes from the membrane within the
compartment. One must also find a sensible way
to determine ri, the intracellular resistance per
unit length. For intracellular fluid with volume
resistivity ρ i, in units of 	-cm, ri = ρi

πa2
, giv-

ing a version of the compartmental equation that
depends only on the geometry of the cylinder
and fundamental properties of the intracellular
medium and membrane:

dVm(i)

dt
= 1

c m
(
a

2ρi

Vm (i + 1)− 2Vm(i)+ Vm (i − 1)

(Δx)2
− iion(i)

)
.

(16.34)

In this equation, we have also indexed the
compartments using the compartment number i
rather than the position of the compartment, x.

For physiological parameters, an action poten-
tial initiated in a long, unbranching process such
as the squid giant axon propagates away from
the site of initiation without decrement in am-
plitude (Fig. 16.6b). Hodgkin and Huxley man-

aged to solve this problem with 1950s technology
by using an ingenious traveling wave assump-
tion. However, solving for the voltage profile
in a branching or nonhomogeneous structure re-
quires numerical simulations of equations like
those above. Although good software packages
exist to solve conductance-based equations for
spatially extended neural models, it is a useful
exercise to solve a set of equations from scratch,
using a general numerical analysis program like
MATLAB or XPP. One of the major issues that
arises in such models is that of equation stiffness:
a very small value of�x can be required for accu-
racy, but small values of�x can force the numeri-
cal algorithm to take exceedingly small time steps
and in fact can make the problem numerically
unstable in some cases. Good software packages
like NEURON or GENESIS have been written
especially to solve these problems efficiently and
accurately and are described in Sect. 16.14.

Many of the large axons in mammals are
myelinated. The myelin sheath is electrically
passive, as is the axonal membrane underneath
the sheath. This portion of the axonal membrane
can be modeled as passive, with very high
membrane resistivity and low membrane
capacitance. Between myelin sheaths are hot
spots, called nodes of Ranvier, with very
high densities of voltage-gated sodium and
potassium channels. Action potential propagation
in myelinated axons is saltatory, jumping from
one node of Ranvier to another. The effect of
myelination is to speed up propagation in large
axons substantially and to make propagation
velocity proportional to axonal radius a [7].

16.5 Diversity in Channels
and Electrical Activity

Although the squid giant axon provided an
ideal preparation for early studies of neuronal
excitability, it represents only one of the
many patterns of electrical excitability that
have been observed in neurons. Since the
pioneering work of Hodgkin and Huxley,
neurons have been described that exhibit a
host of identifiable behaviors. These include
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various forms of burst spiking, rebound spiking,
after-hyperpolarization trajectories, spike-rate
adaptation, and subthreshold membrane potential
oscillations. Electrophysiological characteristics
such as these are mediated by voltage-gated ion
channels, including the sodium and potassium
channels described in the squid giant axon,
as well as ligand-gated channels sensitive
to neurotransmitters and intracellular species
such as calcium [8]. Here we briefly describe
these forms of electrical activity and the ionic
mechanisms that have been used to construct
models of them.

16.5.1 Bursting

Bursting is a pattern of spiking in which groups
of spikes occur closely spaced in time (the burst),
flanked by relatively long periods of inactivity
(the inter-burst intervals). Bursting can be gener-
ated intrinsically, as a result of the combination of
ionic currents present in a neuron, or as a result
of extrinsic synaptic input originating from other
cells in a local network. Thalamocortical (TC) re-
lay neurons represent a neuron type that exhibits
action potential firing in both regular and bursting
patterns intrinsically, with mechanisms that are
well understood [9, 10]. In TC neurons, high-
frequency bursts of action potentials are gener-
ated following the activation of T-type calcium
channels. T-type channels are activated at mem-
brane potentials more negative than the resting
membrane potential and have slow kinetics. As a
result of these two properties, hyperpolarization
induced by transient synaptic inhibition, or hy-
perpolarizing current injected through a recording
pipette, activates T-type calcium channels. The
activation of this population of channels, which
is highly expressed in the proximal dendrites of
TC neurons, leads to a strong depolarization of
the neuron and the generation of a high-frequency
(300Hz) burst of action potentials (Fig. 16.7a bot-
tom). This burst is terminated when the calcium
channels inactivate (among other factors) and the
neuron’s voltage returns to rest. In contrast, TC
neurons exhibit a regular firing pattern when spik-

ing is not preceded by hyperpolarization, as the
T-type calcium current remains inactivated (Fig.
16.7a top). The bursting and regular firing be-
haviors of TC neurons can be reproduced in a
model incorporating a representation of the T-
type calcium channel with the correct voltage
dependence and kinetics.

In general, bursting requires the presence of a
channel population or other process that operates
on a time scale that is slower than the transient
sodium and delayed rectifier potassium channels
responsible for the upstroke and subsequent re-
polarization of the action potential. In addition
to the T-type calcium channel, such mechanisms
can include calcium-activated potassium chan-
nels and slow, hyperpolarization-activated cation
channels.

16.5.2 Subthreshold Oscillations

Several types of neurons exhibit small-amplitude
oscillations of membrane voltage below spike
threshold. These subthreshold oscillations
(STOs) vary in their frequency and amplitude and
in the channels responsible for producing them.
Mesencephalic V neurons of the brainstem and
stellate neurons of the medial entorhinal cortex
illustrate two distinct forms of STOs. In both
cases, these oscillations emerge and increase in
amplitude, reaching 5 mV or more, as the voltage
of the neuron increases toward spike threshold.
The STOs in each cell type emerge, however,
at frequencies and by mechanisms which differ
substantially. Mesencephalic V neuron STOs are
often observed at frequencies between 50 and
100 Hz [12]. In contrast, the STOs of stellate
neurons are typically recorded in the 2–8 Hz
frequency band [13] (Fig. 16.7b), a difference of
more than an order of magnitude.

Experimental and modeling studies have es-
tablished that subthreshold oscillations in both
cell types are generated by the interplay of a
channel population possessing slow kinetics with
a regenerative current possessing fast kinetics. In
both cases, the regenerative current is believed to
be the persistent sodium current, which is similar
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Fig. 16.7 (a) Tonic spiking and bursting in a thalamo-
cortical relay neuron. (b) Subthreshold oscillations in an
entorhinal stellate neuron. (c) After-hyperpolarization, in-
dicated by the arrow, of a neocortical fast-spiking interneu-
ron. (d) Spike-frequency adaptation in response to DC
current in a neocortical pyramidal neuron. (e) Bistability,
in which the neuron can fire at high rates or be silent in re-

sponse to the same level of DC current; the current pulses
in the bottom trace can move the cell from one regime to
the other. (f) Rebound spiking, in which a stellate neuron
of the entorhinal cortex fires an action potential after being
released from hyperpolarization. (Panel (a) adapted from
[10] and panel (e) adapted from [11]. Other panels are
from our laboratory’s unpublished data)

to the sodium current described in the squid giant
axon, but does not inactivate following activa-
tion of the channel. This channel activates in
response to small depolarizations, thus depolar-
izing the membrane further. The interplay be-
tween the slowly activating current, which acts

as an inductive element in the membrane, and the
membrane itself, which is inherently capacitive,
results in a resonant membrane in which fluctu-
ations in a certain frequency band are preferen-
tially amplified [14]. In mesencephalic V neu-
rons, the slowly activating current is believed
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to be a non-inactivating low-threshold potassium
current with an activation time constant of 10 ms
[12]. In stellate neurons, the hyperpolarization-
activated cation current, Ih, having an activation
time constant of 100 ms, fulfills this role [15].
The difference in activation kinetics controls the
inductive strength of these currents and explains
the frequency of observed STOs.

16.5.3 After-Hyperpolarizations
and After-Depolarizations

After-hyperpolarizations (AHPs) and after-
depolarizations (ADPs) refer to the voltage
trajectory following an action potential. If the
voltage follows a trajectory more negative than
rest, then it is referred to as an AHP, as in the
squid giant axon, while voltage trajectories more
depolarized than rest are termed ADPs. Neurons
can express one or more of these characteristics
sequentially as a result of the sequential activation
of multiple membrane mechanisms. Figure 16.7c
illustrates the voltage trajectory following a spike
in a fast-spiking interneuron of the somatosensory
cortex. This neuron exhibits a strong, fast AHP
under control conditions. In these neurons,
the AHP produces complete de-inactivation of
sodium channels immediately after the spike,
as a result of the strong hyperpolarization,
allowing these neurons to fire at high rates.
The presence of AHPs and/or ADPs has been
shown to impact the excitability of a neuron
following an action potential in many ways.
AHPs contribute to post-spike refractoriness and
can determine the frequencies at which a neuron
may spike preferentially. ADPs typically provide
a short time window of enhanced excitability
following each action potential. This may result
in a propensity to fire pairs or bursts of closely
spaced spikes. AHPs and ADPs are shaped by the
particular combination of ion channels present
and by passive current fluxes determined by the
morphology of the cell. A host of voltage- and
calcium-gated ion channels have been shown to
contribute to AHPs and ADPs, and they are often
generated by the combined activity of several
such populations.

16.5.4 Spike-Frequency Adaptation

In response to a constant injected current, many
neurons fire action potentials repetitively at a
frequency that depends on the amplitude of
the injected current. Commonly, however, the
interval between successive action potentials
becomes longer and longer as more and more
spikes are fired, until a steady-state firing
frequency is reached (Fig. 16.7d, unpublished
data). This decreasing spike frequency in
response to a stimulus is termed spike-frequency
adaptation (or accommodation). Spike-frequency
adaptation occurs as a result of activating
outward currents or inactivating inward currents.
The change in activation of these currents
may be due to the sustained depolarization on
top of which spikes ride, or through a spike-
dependent mechanism in which each spike leads
to an incremental change in some activation
variable. Common ionic mechanisms underlying
spike-frequency adaptation include the M-type
potassium current IM [16], calcium-activated
potassium currents [17], and cumulative partial
inactivation of the fast sodium current responsible
for the upstroke of the action potential [18].

16.5.5 Bistability

Some neurons exhibit two stable states for the
same value of injected current. In one state, the
cell resides below spike threshold and remains
quiescent, while in the other state, it generates
action potentials repetitively. A brief stimulus
may transition the neuron from the resting state
to the spiking state, where it remains indefinitely,
until another, correctly timed stimulus transitions
it back to the resting state again. Bistability is
exhibited by Purkinje neurons of the cerebel-
lum [19]. Figure 16.7e illustrates that a positive
pulse of current can switch the state of these
neurons from resting to spiking and a second
pulse can subsequently facilitate a switch back to
the resting state. Many neurons exhibit bistability
over a small range of injected current ampli-
tudes, including many neocortical fast-spiking in-
terneurons, which transition between fast spiking
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and quiescence as a result of noisy membrane
fluctuations. In fact, under certain experimental
equations, even the squid giant axon has been
shown to exhibit bistability [20]. Bistability is not
generally associated with any specific membrane
mechanism, but rather is a product of the dynam-
ics produced by the sum total of all passive and
active elements in the cell membrane. For an in-
depth discussion of membrane behaviors from a
dynamical systems perspective, see the treatment
by Izhikevich [21].

16.5.6 Post-Inhibitory Rebound
Spiking

Post-inhibitory rebound spiking occurs when
spikes are induced following a hyperpolarization
of membrane voltage. This phenomenon may be
observed in response to inhibitory synaptic input
or the injection of hyperpolarizing current with
a recording pipette. As illustrated previously,
the T-type calcium current mediates rebound
bursts in thalamocortical relay neurons, but
rebound spiking may be generated by any current
that contributes to an increase in excitability in
response to hyperpolarization of the membrane.
Channel populations contributing to rebound
spiking must also have kinetics that are slower
than the kinetics of the cell membrane, so that the
increase in excitability effected at hyperpolarized
potentials does not subside before spike threshold
is reached. Post-inhibitory rebound spiking
may also be generated in cells expressing the
hyperpolarization-activated cation current, Ih
(Fig. 16.7f).

16.6 Nonlinear Dendritic
Processing

Initially treated as passive cables [5, 6, 22], den-
drites have since been shown to contain a host of
nonlinear active conductances, serving to shape
synaptic inputs originating at dendritic locations
[23]. This realization was made possible by tech-
nological advancements that allowed for access
to membrane voltage at dendritic locations with

a b

Fig. 16.8 (a) Filled pyramidal cell, showing locations
of simultaneous patch-clamp recordings. (b) In response
to depolarization via the dendritic electrode, the dendrite
can fire an action potential, which in this case does not
propagate to the soma. (Adapted from [24])

a high signal-to-noise ratio (Fig. 16.8a). The in-
troduction of differential interference contrast mi-
croscopy, in particular, provided unprecedented
optical contrast in thick tissue specimens, per-
mitting visualization of dendritic processes in
live tissue. In studies taking advantage of these
technical advances, it was observed that sodium-
based action potentials generated in the somata
of neocortical pyramidal neurons could propa-
gate into dendrites as well as along the axon
[25]. Although dendritic spikes are smaller in
amplitude and broader than somatically recorded
spikes (Fig. 16.8b), this seminal work established
that dendrites may behave in a strongly nonlinear
manner.

16.6.1 Dendritic Channel Expression

In addition to sodium channels, a plethora
of other voltage-gated channels have been
described in dendrites. In pyramidal neurons
residing in region CA1 of the hippocampus,
these include a host of voltage-gated calcium and
potassium channels, as well as Ih, the slow inward
current activated at hyperpolarized potentials
[26]. The position-dependent expression of
these ion channels indicates that different
dendrites, and different positions along the
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same dendrite, may integrate synaptic inputs
with variable efficacy and at different preferred
temporal frequencies. Although the data are
limited to a handful of cell types with large-
diameter primary dendrites, voltage-gated ion
channels have been documented in the dendrites
of all (or nearly all) the examples studied
[26], suggesting that nonlinear processing in
dendrites may be the rule rather than the
exception.

16.6.2 Dendritic Excitability

Although sodium-based action potentials gener-
ated at the soma of a neuron may propagate into
the dendrites, this type of spike is generally not
initiated in response to dendritic synaptic input.
However, voltage spikes mediated by voltage-
gated calcium channels and synaptic NMDA re-
ceptors do occur in this manner in some cells.
In neocortical pyramidal neurons, activation of
sufficient glutamatergic synapses in the distal api-
cal tuft induces an all-or-nothing spike that re-
lies upon voltage-gated calcium channels [24].
These calcium spikes do not propagate actively
to the soma but do contribute to nonlinear in-
tegration of distal inputs (Fig. 16.8b). In con-
trast, convergent input onto smaller, basal den-
drites of these neurons results in an all-or-none
event that is heavily dependent upon the activa-
tion of NMDA channels [27]. These results illus-
trate that dendrites are heterogeneous, nonlinear
structures whose function has only begun to be
understood.

16.7 Simple Neural Models

16.7.1 Integrate-and-Fire Model

In addition to the Hodgkin-Huxley formalism,
which describes model neurons in terms of
conductances representative of populations of
ion channels with voltage-dependent gating
variables, neuron models take on numerous
other forms. The integrate-and-fire model, first
studiedmore than a century ago by Lapicque [28],

represents one of the first, and simplest, models
describing the neuron. The ideal integrate-and-
fire model is described by

Cm
dVm

dt
= Iinj(t). (16.35)

This equation describes the charging of a ca-
pacitive circuit (the membrane) with capacitance,
Cm, and represents the behavior of a neuron in the
subthreshold regime in response to a time-varying
injected current, Iinj(t). The left side of Eq. 16.35
is identical to the capacitive current described
in Sect. 16.2.2.1. Instead of explicitly modeling
the sodium and potassium currents responsible
for spike generation and repolarization, a hard
threshold is applied. Upon a threshold crossing
of voltage, a spike is considered to have occurred,
and the following reset condition is applied:

If Vm > Vthresh, then Vm = Vreset. (16.36)

This model is a perfect integrator, in that the
effect of any current input, no matter how small
or brief, will affect the voltage of the model for
all time. In real neurons, however, the effect on
voltage of an input decays with time. For this
reason, the resistance, Rm, of a cell membrane is
commonly incorporated into this model in addi-
tion to the contribution of membrane capacitance.
In this case, it is termed the leaky integrate-and-
fire (or LIF) and is described by

Cm· dVm
dt

= Iinj(t)− Vm

Rm
. (16.37)

Here, the membrane leak current, Vm
Rm

, reverses
direction when the voltage changes sign. The
circuit equivalent of the leaky integrate-and-fire
neuron in the subthreshold regime is depicted in
Fig. 16.9a and is equivalent to the passive mem-
brane considered in Sect. 16.2. The more realistic
scenario, in which the membrane leak current
reverses at a negative voltage, near resting po-
tential, may be obtained by a simple substitution
of variables, where V ′

m = Vm − Vleak, although
the two forms are equivalent mathematically. The
LIF neuron model, while highly idealized, cap-
tures the most basic aspects of neuronal respon-
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Fig. 16.9 (a) Schematic representations of the leaky
integrate-and-fire (LIF) model and the resonate-and-fire
model (RIF). (b) Repetitive firing in the LIFmodel. Spikes

added artificially for clarity. (c) Responses to pulsatile
inputs at different rates in the two models. (Panel (c)
adapted from [29])

siveness and is analytically tractable for many
problems. Because its behavior can be described
in a mathematically precise fashion, the LIF has
been an invaluable tool for neural modeling.

16.7.2 Behavior of the Leaky
Integrate-and-Fire Model

Given a constant current input, the leaky
integrate-and-fire model approaches a steady-
state voltage:

VSS = Iinj·Rm. (16.38)

If Vss is more depolarized than spike threshold,
then repetitive spiking results (Fig. 16.9b). This
condition occurs when the injected current, Iinj,
is greater than the rheobase current, Irheo, the
minimum current that produces action potentials.
Irheo can be solved for algebraically:

Irheo = Vthresh

Rm
. (16.39)

If a subthreshold injected current is applied,
such that Iinj < Irheo, then the voltage of the LIF
will approach Vss exponentially. If the initial volt-
age of the LIF is V0 before the constant current is
applied, then its voltage trajectory becomes

Vm(t) = VSS + (V0 − VSS) · e−t/τ, (16.40)

where τ = RmCm is the membrane time constant.
Hence, the steady-state voltage of the model is
determined only by the injected current and the
resistance of the membrane, while the speed with
which the membrane voltage approaches a new
steady state is determined by a combination of Rm
and Cm.

If, on the other hand, Iinj > Irheo, then the neu-
ron will repeatedly cross spike threshold and be
subsequently reset to a subthreshold voltage. The
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frequency of repetitive spiking can be calculated
directly [30] to give

F
(
Iinj
) =

(
−τln

[
Vthresh − IinjRm

Vreset − IinjRm

])−1

.

(16.41)

For more complicated input current wave-
forms, the firing frequency may be calculated
analytically as well, making the LIF a useful tool
for obtaining mathematically precise descriptions
of neural activity.

16.7.3 Modified Integrate-and-Fire
Models

The leaky integrate-and-fire model has been ex-
tended in several ways in order to obtain more re-
alistic dynamics at the expense of reduced math-
ematical tractability. The following are common
extensions of the LIF.

16.7.3.1 Resonate-and-Fire Models
The resonate-and-fire (RIF) model [29] is ob-
tained when a second dynamic variable, U, is
added to the LIF model. The variable, U, repre-
sents the current mediated by voltage-gated ion
channels or other processes acting as inductive
elements in the membrane, as in Fig. 16.9a. In
contrast to the one-variable LIF, the addition of
a second variable allows for models that act as
resonators, in that they display intrinsic oscilla-
tory behavior and/or respond preferentially to os-
cillatory input at certain frequencies (Fig. 16.9c).
The resonate-and-fire model is described by two
coupled ordinary differential equations:

Cm· dVm
dt

= Iinj(t)− Vm

Rm
− U (16.42)

dU

dt
= Vm

a
− U

b
. (16.43)

The parameters a and b are the inductance and
the time constant of the resonant process, and U

represents the resonant current. Like the LIF, the
RIF has an artificial threshold, and upon threshold
crossing, the following condition applies:

If Vm > Vthresh, then

{
Vm = Vreset

U = Ureset
. (16.44)

16.7.3.2 Quadratic Integrate-and-Fire
Models

The quadratic integrate-and-fire (QIF)model [21]
is constructed by adding a nonlinear term, a de-
pendency on the square of voltage, to the LIF.
Unlike the LIF model, the QIF model generates
spikes intrinsically, without the imposition of an
artificial threshold. It does, however, still rely on a
reset for repolarization. The QIF model is written
generally as

dVm

dt
= Iinj + a (Vm − Vrest) (Vm − Vthresh)

(16.45)

with the same reset condition as the LIF. Here, the
variable a is a constant controlling the excitability
of the model, and Vthresh is the threshold voltage
when Iinj = 0.

16.7.3.3 Complexity in Simple Models
Izhikevich [31] developed and characterized a
model combining the built-in threshold of QIF
with the resonance of RIF. This model is capable
of reproducing many of the behaviors observed
in a diverse set of biological neurons [31]. The
dynamics of the Izhikevich model are governed
by the equations

dVm

dt
= Iinj + 0.04V 2

m + 5Vm + 140 − U

(16.46)

dU

dt
= a (bVm − U) (16.47)

and the reset condition.

If Vm > 30 mV, then

{
Vm = c

U = U + d
(16.48)
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Fig. 16.10 The Izhikevich model, consisting of only two differential equations, can exhibit a wide variety of firing
patterns. (Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com)

with the parameters a, b, c, and d controlling
the behavior of the model. Figure 16.10 depicts
many of the firing patterns that may be observed
by varying parameters of the Izhikevich model.
This example illustrates that a wealth of behav-
iors may be obtained in models with as few as
two dependent variables, although the biophysi-
cal interpretation of parameters in simple models
may not always be straightforward. It is a useful
exercise for students to code their own version of
this model and to explore its range of behaviors.

16.8 Generalized Linear Model

Hodgkin-Huxley and other biophysically based
models can provide detailed accounts of ion chan-

nel activity, currents, conductances, and mem-
brane potential. Although they can model the
dynamics of real neurons and explain variations
in the membrane potential, they are challeng-
ing to study analytically and can become over-
whelming when applied to neural coding prob-
lems and large-network activity. In contrast, the
simple models discussed in Sect. 16.7 are math-
ematically tractable and can be theoretically ana-
lyzed. With such models, capturing the dynamics
of real neurons depends on the dimensionality and
complexity of the model. The two-dimensional
Izhikevich model [31] provides a richer repertoire
of more complex dynamics than the simpler one-
dimensional LIF. The drawbackwith these simple
mathematical models is that parameters generally
do not directlymap tomeasurable biologicalmea-

http://www.izhikevich.com
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surements. By construction, biophysical, LIF, and
Izhikevich models are deterministic, but they can
be altered by adding either channel- or current-
based noise sources [32].

In this section, we highlight a more abstract
type of model, the generalized linear model
(GLM) [33]. GLMs are compatible with a wide
variety of neurophysiological data, ranging
from current-clamp intracellular recordings to
in vivo, single-unit recordings in response to
a physiological stimulus. GLMs are inherently
stochastic and thus naturally attempt to describe
the variability of neuronal spiking activity seen
in vivo. In these models, regression is used
to fit the model and find a relation between
the covariates and experimental measures of
neuronal spiking activity. GLMs have been used
successfully to model spiking activity in the early
stages of sensory [34] and motor [35] processing
pathways.

The basic framework of the GLM model is a
series of three processing stages (Fig. 16.11a),
with the addition of a possible feedback loop
(Fig. 16.11b), that take an input stimulus x(t) and
produce an output spike train y(t). The sequence
is summarized by an input linear stimulus filter,
followed by a nonlinear thresholding stage, and
finally an output stochastic process. Because a
Poisson point process is most commonly used as
the stochastic output process, we will focus on
that design choice in this section.

The Poisson process is fully characterized by
its instantaneous rate, λ(t). In theGLM, the output

y(t) is a discrete spike train with a spike rate λ(t).
The spike count y(t) is conditioned on the rate λ(t)
and has a Poisson distribution in an interval Δt:

Pr (y(t)|λ(t)) = Δt λ(t)

y(t)! e−Δt λ(t). (16.49)

16.8.1 Linear-Nonlinear Poisson
Model

The linear-nonlinear-Poisson (LNP) model
shown in Fig. 16.11a is a reduced form of the
GLM that does not incorporate feedback. The
spike rate in the LNP is given by

λ(t) = f (K · x(t)) . (16.50)

The linear filter K, estimated from physiologic
recordings, represents the receptive field of the
neuron and is used to integrate the input stimulus
vector x(t). The nonlinear function f is a thresh-
olding function that provides a nonnegative spike-
rate. An exponential function is themost common
nonlinearity, but a soft-rectification function can
work as well.

16.8.2 Generalized Linear Model
with Spike History Dynamics

The LNP can be extended to a GLM by adding
the effect of spiking history via a feedback in the

Fig. 16.11 (a) Processing
stages of the
linear-nonlinear-Poisson
model showing the linear
input stimulus filter K, the
nonlinearity f, and Poisson
output stochastic process.
(b) Generalized linear
model with spike history
feedback via post-spike
filter H K

m
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H
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model as depicted in Fig. 16.11b. With feedback,
the rate of the Poisson process becomes

λ(t) = f
(
K · x(t)+ H · yhist(t)+ μ(t)

)
.

(16.51)

The post-spike filter H is used to capture the
effects of spiking history of the neuron yhist(t) has
on itself. The parameter μ(t) is used to set the
baseline spiking activity. These allow the GLM
to account for adaptation and refractoriness, as
well as other spiking-dependent dynamics that are
not possible in the simpler LNP. By changing the
stimulus and post-spike filters, the GLM has been
shown [33] to capture the same spiking dynamics
produced by the Izhikevich model [31], which
is illustrated in Fig. 16.10. By linking neurons
using coupling filters, the GLM incorporates the
covariates that affect a neuron’s activity and its
input, history, and network activity [35].

16.9 Similar Phenotypes Arising
fromDisparate Mechanisms

Trying to build a model neuron by matching the
full complement of channel types and densities
is a laudable approach. However, this method
is fraught with difficulty, because there can be
a great deal of variability in channel densities
from cell to cell. Golowasch and colleagues [36]
studied this problem in a population of cells from
the crab that act as highly stereotyped bursting
neurons in vivo. They had three major findings.
First, measured densities of sodium and potas-
sium channels were highly variable among dif-
ferent cells of the same class. This result is quite
surprising, given the apparently stereotyped be-
havior of the neural outputs from these cells.
Second, models with randomly chosen channel
densities span a large range of electrophysio-
logical behaviors, but many disparate choices of
channel densities replicate the correct stereotyped
pattern (Fig. 16.12a). Third, an “average” model,
with mean conductance-density values from their
measurements, did not replicate the known in
vivo responses. The implication of this finding for
modeling work is that it may be literally impos-
sible to build an accurate model from painstaking

measurement of parameters in a given neuronal
type. Similar results have been seen in other stud-
ies [37, 38]. Overall, this body of work empha-
sizes the point that particular values of param-
eters do not seem to be preserved by neurons.
Instead, it is believed that individual neurons of
a given type appear to have a mechanism by
which they co-vary channel densities and perhaps
other parameters in order to “tune” resulting out-
put behavior [37]. This fascinating set of results
gives credence to more mathematically abstract,
dynamical systems-based approaches of under-
standing the physiological behaviors of neurons.
As described in detail elsewhere [21], dynamical
systems models depend not on the specific ion
channels and their densities but rather on the
underlying mathematical forms that give rise to
particular behaviors.

Fig. 16.12 (a) Similar firing patterns can arise from sub-
stantially different conductance densities. (b) Somewhat
similar conductance densities can give rise to much differ-
ent firing patterns. In both cases, insets show the details in
finer time resolution. (Adapted from [36])
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16.10 SynapseModels

Constructing models containing more than
a single neuron requires an accurate and
computationally efficient representation of the
synapses connecting them. The most common
type of synaptic transmission incorporated into
computational models is ionotropic transmission.
Ionotropic synaptic transmission is mediated
by the activation of ionotropic channels on
a postsynaptic neuron by neurotransmitters
released from a presynaptic neuron. Ionotropic
channels are those that act as both the receptor
and the ion channel; one or more neurotransmitter
molecules bind to the protein, inducing a
conformational change that opens a pore in the
membrane through which ions may flow.

The excitatory AMPA (2-amino-3-(5-methyl-
3-oxo-1,2- oxazol-4-yl)propanoic acid) and
NMDA (N-Methyl-D-aspartic acid) receptors
and the inhibitory GABAA (γ-aminobutyric
acid A-type) receptor are responsible for the
majority of fast chemical synaptic transmission
in the nervous system. Models of ionotropic
synapses take many forms. The simplest and
most amenable to mathematical analysis is the
representation of synaptic transmission by a
scaled delta function of current. In this model,
the voltage of a postsynaptic neuron is simply
incremented (decremented) following an action
potential in a synaptically connected excitatory
(inhibitory) neuron.

To more accurately capture the postsynaptic
effect of a presynaptic spike, synapses may be
represented by an input current waveform qualita-
tively similar to those recorded in voltage-clamp
experiments from intact neurons. This synaptic
current waveform may be described by an expo-
nentially decaying current

Isyn(t) = H
(
tspike

) [
a· e− t−tspike

τfall

]
(16.52)

that captures the decay time course of the synaptic
current but reaches its maximum instantaneously
or a double exponential waveform,

Isyn(t) = H(tspike)

[
a

(
e− t−tspike

τfall − e− t−tspike
τrise

)]
,

(16.53)

that captures both the rise and fall kinetics of the
waveform. The alpha function,

Isyn(t) = H
(
tspike

) [
α2te−α·(t−tspike)

]
, (16.54)

which requires fewer computations than a dou-
ble exponential waveform, also has non-zero, but
coupled, rise and decay times. In the above equa-
tions, H(t) denotes the Heaviside unit-step func-
tion,

H(t) =
{
0, t < 0
1, t ≥ 0

. (16.55)

Although in many circumstances synaptic ac-
tivation is well-approximated by the addition of
a current source to a model neuron, the postsy-
naptic effect is more accurately represented by
a change in synaptic conductance. This disparity
has two important implications. First, represent-
ing synaptic activation as a conductance change
introduces a voltage dependency in the synap-
tic current due to the reversal potential of each
channel. Second, an increase in open channels
following synaptic transmission leads to a change
in the effective membrane resistance, resulting in
the “shunting” of other membrane currents. This
indirect effect on excitability has particular im-
portance when considering inhibitory synapses.
Synaptic conductance inputs may be described
like other membrane conductances,

Isyn(t) = Gsyns(t)
(
Vm − Vsyn

)
(16.56)

where Gsyn represents the maximal conductance
of the synapse; s(t) is the so-called activation
variable, a time-varying quantity that may be
described as a single exponential, double expo-
nential, or alpha function (Eqs. 16.52–16.55); and
Vsyn is the reversal potential of the channel.

An even more realistic representation of
synaptic activation can be obtained by modeling
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Fig. 16.13 Synaptic currents (top panel) and resulting
changes in membrane potential (bottom panel) generated
by a variety of models of chemical synaptic transmission

transmitter release and the open probabilities
of a receptor population. For example, if the
concentration of neurotransmitter in the synaptic
cleft, [T], is assumed to be a square pulse with
unitary amplitude and short duration, then the
activation function, s(t), may evolve according to

ds(t)

dt
= αs (1 − s(t))− βs · s(t) (16.57)

with the forward rate constant αs equal to its
maximal rate, αs , when [T] is high and zero when
[T] is low:

αs ([T ]) =
{

αs, [T ] = 1
0, [T ] = 0

. (16.58)

Figure 16.13 illustrates the shape of current
and voltage waveforms resulting from con-
ductance inputs modeled using the waveforms
described above. With the exception of the
delta function representation, each of the
aforementioned models approximates synaptic
input closely.

While these formulations can be used to model
AMPA and GABAA receptors, given appropri-

ate parameters, NMDA receptors have an addi-
tional dependency on postsynaptic voltage.When
the membrane voltage at the postsynapse is low,
the NMDA pore is effectively blocked by free
Mg2+ ions. Subsequent depolarization removes
this “Mg2+ block,” allowing for the flow of cur-
rent when activated by neurotransmitter binding.
The added voltage dependency may be incorpo-
rated into the synapse model by modifying Eq.
16.56 as follows [30]:

Isyn(t) = GMg2+· s(t)·Gsyn
(
Vm − Vsyn

)

(16.59)

where

GMg2+ =
(
1 +

[
Mg2+

]

3.57 mV
e− Vm

16.13

)−1

(16.60)

and [Mg2+] is the concentration of magnesium
ions in the extracellular solution. The dependency
of this receptor on presynaptic transmitter release
as well as postsynaptic depolarization endows
NMDA receptors with a unique ability to sense
coincident activity in both neurons. Markov mod-
els, which capture channel kinetics with the high-
est precision, are also employed for accurate rep-
resentation of synaptic activation but are beyond
the scope of this chapter.

Electrical synapses, which connect the cyto-
plasm of neighboring cells, are made up of pore-
forming gap junction proteins and provide an-
other mechanism of cell-to-cell communication.
Electrical synapses are often modeled as simple
resistors, with the current through the gap junc-
tion, Igap, defined as

Igap = Vm,pre − Vm,post

Rgap
(16.61)

where Vm,pre is the voltage of the presynaptic
neuron, Vm,post is the voltage of the postsynaptic
neuron, and Rgap is the resistance of the gap
junction. Some gap junctions display rectification
(i.e., pass current more readily in one direction
than the other), and in some models, this charac-
teristic is included as well.
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Metabotropic receptors, whose postsynaptic
actions are mediated by G-protein-coupled path-
ways, operate on a much slower time scale and
impact postsynaptic excitability in ways too nu-
merous to describe here.

16.11 Short-Term Synaptic
Plasticity

The efficacy of synaptic transmission has been
shown to undergo dynamic changes depending
on the recent history of synaptic activation.
Short-term synaptic plasticity encompasses the
family of processes controlling usage-dependent
changes in synaptic strength on the time scale of
tens of milliseconds to tens of seconds. Various
forms of synaptic enhancement and depression,
leading to increases and decreases in synaptic
strength, respectively, are categorized by the
time scale and mechanism of their action. We
focus on facilitation, fast enhancement caused
by an increase in the probability of release
of presynaptic neurotransmitter-containing
vesicles, and depression, a fast decrease in
synaptic strength resulting from depletion of
the immediately releasable pool vesicles in the
presynaptic terminal. Examples of synaptic
facilitation and depression are depicted in
Fig. 16.14. The biochemistry of these processes
is complex, and so we will focus on a simple
phenomenological model [30] that captures
the basic attributes of synaptic facilitation and

depression. This model expands the models of
synaptic transmission described in the previous
section to include an additional term, the
probability of release, p(t), that multiplies the
previous expression for the synaptic conductance:

Isyn = p(t)Gsyn s (t)
(
Vsyn − Vm

)
. (16.62)

Here, p(t) relaxes exponentially to its steady-
state value, p0, during periods of quiescence,

dp(t)

dt
= − (p − p0) /τp (16.63)

and undergoes activity-dependent modification
whenever an action potential occurs. The up-
date rule for the probability of release takes the
form

p = p + fF (1 − p) (16.64)

for facilitating synapses and

p = fDp (16.65)

for depressing synapses. The factors fF and fD
are related to the strength of the facilitation and
depression processes, and both parameters are
fractional values less than one. The combination
of the decay time constant τ p and the factors fF
and fD control the kinetics of the onset of synaptic
modification, for a given presynaptic firing rate,
as well as the time scale with which it decays in

pre

post

pre

post

Facilitation Depressiona b

Fig. 16.14 (a) In synaptic facilitation, repeated presy-
naptic trains of action potentials (bottom trace) lead to
successively larger postsynaptic potentials (top trace).

(b) In synaptic depression, postsynaptic potentials become
smaller with repeated inputs
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the absence of activity. Solving for the steady-
state probability of release at a given firing rate
is straightforward and is left to the reader as an
exercise.

This model assumes a large number of release
sites per synaptic connection, so that the effective
postsynaptic current may be represented by the
deterministic Eq. 16.62. In the case of a small
number of release sites, the effective postsynaptic
conductance must be determined stochastically.

16.12 Beyond Single Neurons

Although the modeling of single neurons is a
rich and diverse topic that has added much to
our knowledge of how neurons operate, these
models are relatively constrained compared to
what might be represented computationally at
a network level. Network models allow one to
choose not only the manner in which each neuron

is represented but also the pattern of connectiv-
ity and the rules that govern each connection.
This follows from the abundance of neuronal and
synaptic dynamics described above as well as
the limitless topologies that may be envisioned.
Here, we highlight several examples that have
been particularly influential.

16.12.1 Feed-Forward Networks

Networks that are purely feed-forward are those
comprised of multiple populations in which one
population, or layer, projects to another, and this
one to a third, and so forth in a unidirectional
chain (Fig. 16.15a). Cortical processing of sen-
sory input can be abstracted as occurring in a
largely feed-forward manner. One particular in-
carnation of a feed-forward network is the syn-
fire chain, first described by Griffith [41] and
later explored in detail by Abeles [42]. A synfire

Fig. 16.15 (a) Schematic representation of a feedfor-
ward network in which “packets” (correlated firing in
groups of modeled neurons) can either be dispersed (b)

or maintained (c). (d) Sustained activity recorded exper-
imentally in a working memory task and in a model (e).
(Panel (d) adapted from [39] and panel (e) adapted from
[40])
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chain is a strictly feed-forward network contain-
ing many layers in which the first layer receives
a stimulating input that excites a subset of neu-
rons in this layer. Input to the synfire chain may
be a synchronous “packet,” or an asynchronous,
continuous input. Connections between layers are
described as all-to-all if every neuron in the first
layer projects to every neuron in the second layer
and so forth. A specific pattern or statistical rule
may be used to govern the connections between
layers as well.

When the connections between layers are all
excitatory and simple neuron models are used to
represent constituent cells, propagation of activity
through the chain may occur stably only when
synchronized volleys of activity are transmitted
from layer to layer (Fig. 16.15c). If the input
to the first layer in the chain is incapable of
exciting a sufficient number of cells, then activity
will eventually die out as it propagates through
successive layers (Fig. 16.15b). If the first layer
is initially excited in an asynchronous fashion, its
degree of synchrony will increase in successive
layers until the activity among all of the neurons
in each layer becomes synchronous. This result
has been examined in synfire chains that con-
tain more realistic neuron models, that contain
inhibitory connections, and whose connectivity is
sparse (e.g., <10% probability of connection be-
tween neurons in successive layers). While chal-
lenging to ascertain generally what patterns may
be stably propagated in these, more complex,
chains, it is believed that asynchronous activity
may only be transmitted under these conditions
when constituent neurons generate action poten-
tials periodically. Although the synfire chain, as
described in isolation, represents a highly ideal-
ized abstraction, the study of these networks has
provided understanding of how activity patterns
may propagate through networks of neurons. Ad-
ditionally, further research on synfire chains has
indicated that the scenario in which many in-
terwoven chains are contained within a single
neuronal population may have greater biological
relevance.

16.12.2 Persistent Activity

Persistent activity, the autonomous sustained fir-
ing of a population or subpopulation of neurons
in the absence of external input, has been ob-
served in a variety of vertebrates during specific
behavioral states in vivo. Of particular interest has
been the persistent firing described in a variety
of cortical areas of the monkey during work-
ing memory tasks. While performing a task that
requires the subject to remember a cue for a
short delay period, a subset of neurons display
an increased firing rate, which remains stable
over time, until the precise moment when the
delay period ends (Fig. 16.15d). The mechanisms
underlying persistent activity remain unknown,
although modeling studies have helped tremen-
dously in determining when and how persistent
activity may arise.

Most models of persistent activity during
working memory tasks assume that this form of
activity originates at the network level, mediated
in single neurons by synaptic input. Initial
theoretical work implicated the involvement
of local recurrent excitation in this process.
Recurrent excitation is capable of providing
long-lasting activation after the termination of
external input, as the activated subset of neurons
at any instant provides additional excitation
to other cells in the local network. Recurrent
activation alone, however, does not lead to stable,
constant activation at the firing rates observed
in vivo. Much like the scenario described in
synfire chains, initial inputs activating only
a small subpopulation decay with time and
input magnitudes above a certain threshold rise
exponentially until unrealistic rates are obtained.
Local feedback inhibition from a population of
interneurons has been proposed as a means to
control excessive excitation. Networks containing
a balance of excitatory and inhibitory inputs were
found capable of producing persistent activity,
but only when parameters governing this balance
were tuned with a precision unlikely to occur in
a biological system.
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Various solutions have been proposed that
alleviate the requirement for fine parameter
tuning: saturating synaptic conductances or firing
rates, involvement of slow NMDA receptors,
and the recruitment of multiple interneuron
populations. Using thesemodifications, modeling
studies have been able to closely approximate
the qualitative behavior recorded experimentally
(Fig. 16.15e). However, several aspects of
persistent activity have eluded explanation in
modeling studies. Spike-frequency adaptation
and periods of enhanced neural synchrony
seem to disrupt persistent firing in models.
When persistent firing is obtained in a model,
termination of this behavior typically leads to
a brief enhancement or depression of firing
rates relative to rest that are not observed in
experimental recordings. Further observations
that the irregularity of firing increases during
the persistently enhanced state relative to
spontaneous firing in the rest state are not
captured by many models. Although these
inconsistencies remain to be resolved, modeling
studies have helped to clarify which cellular
mechanisms may be plausible for the generation
of persistent activity and the conditions under
which it cannot occur.

16.13 Neural Modeling in Medicine

Given the number of uncertainties involved in
constructing a detailed neural model, it is an
immense challenge to construct a model that is
accurate enough formedical application. The suc-
cessful examples, like the work of Traub and
colleagues on computational models of epilepsy
[43], involve immense amounts of work and ex-
traordinary attention to detail. One medical do-
main in which neural modeling has proven quite
useful is that of modeling field effects related to
electrical stimulation of neural structures. Rela-
tive to many other neural modeling problems, this
application has distinct advantages. First, it de-
pends strongly on anatomy that can be measured
accurately in three dimensions using noninva-
sive methods like traditional and diffusion-tensor
magnetic resonance imaging. Second, the equa-

tions that determine the extracellularly evoked
electric field are well understood. Third, there ex-
ist accurate models of axonal extracellular stimu-
lation.

As an example, we highlight here a par-
ticularly influential computational study of
deep brain stimulation (DBS) by McIntyre and
colleagues [44]. By coupling a finite-element
model of the electrode-induced field with a
conductance-based model of neurons in the thala-
mus, their simulation results suggested that DBS
stimuli can stimulate activity in appropriately
oriented axons while simultaneously suppressing
activity in the cell bodies. This computational
result was important in helping researchers to
understand paradoxical results in recordings from
DBS patients. More recently, similar models
have been used to design customized methods
that attempt to optimize DBS effectiveness
while minimizing side effects in individual
patients [45].

16.14 Modeling Resources

A bevy of powerful tools and resources are avail-
able to aid in the construction and simulation of
neuralmodels. NEURON (www.neuron.yale.edu/
neuron) specializes in the simulation of
conductance-based neurons and allows for
the construction of models with realistic
morphologies. This software package has
undergone much development, resulting in
extensive functionality for tasks as diverse as
importing anatomical data and interfacing with
real-time dynamic clamp software. GENESIS
(genesis-sim.org) was developed for purposes
similar to NEURON and attempts to provide a
platform for the investigation of neural models
across spatial scales ranging from the subcellular
to the systems level. BRIAN, a neural simulator
developed using the Python programming
language (www.briansimulator.org), attempts to
simplify the process of constructing complicated
networks. The NEST initiative (www.nest-
initiative.org) has focused on the development
of algorithms and visualization methods as well
as in simulation software.

http://www.neuron.yale.edu/neuron
http://genesis-sim.org
http://www.briansimulator.org
http://www.nest-initiative.org
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In addition to these simulators, repositories
of computational models are another useful
resource. Databases such as ModelDB, cellML,
and Visiome have been introduced to solve two
inherent challenges in computational modeling.
The first goal of these databases is to make
published models freely and easily available to
any individual who wishes to investigate them.
This goal is largely accomplished through the
cooperation of individuals who submit their
models to the databases voluntarily. ModelDB
(senselab.med.yale.edu/modeldb) alone currently
has well over a thousand submissions. A second
goal of databases like the ones listed here is to
standardize the framework of neural models.
CellML (www.cellml.org), for example, in
addition to serving as a central repository, has
introduced a markup language proposed as a
common language for constructing and sharing
mathematical models of biological systems.More
specific databases have also been introduced,
such as Visiome (visiome.neuroinf.jp), which
specializes in tools and resources restricted to
vision research. These efforts are important
in fostering collaboration and standardiza-
tion among those using neural modeling to
better understand how the nervous system
functions.

Homework

1. A cell with ion-selective channels has dif-
ferent concentrations [Na+], [K+], and [Cl−]
inside and outside the cell as given in Table
16.2. Calculate the reversal potential Veq for
each of the ions at 310 K.

Table 16.2 Internal and external concentrations of
ions for cell

[Internal] [External] Conductance

Ion (mM) (mM) (S/cm2)

Na+ 12 145 1 × 10−5

K+ 150 4 1 × 10−4

Cl− 5 100 2 × 10−5

2. Draw an equivalent circuit diagram of the cell
in Exercise 1 assuming it has a membrane
capacitance Cm. Find the resting potential
of the cell. How does doubling the external
potassium concentration change the resting
potential?

3. Use the Hodgkin-Huxley gating variables to
describe how an action potential is generated.
What happens if the time constant τm of the
sodium conductance activation is increased?

4. Find the rheobase current of a leaky
integrate-and-fire neuron with the pa-
rameters Rm = 50 M	, Cm = 2000 pF,
Vthresh = −50 mV, and Vreset

= −70 mV. What is the injected current
required to have the neuron fire repeatedly at
10 Hz?

5. Write a program to simulate the LIF neuron
in Exercise 4 using time steps of 0.5 ms. Use
an artificially added spike with amplitude
20 mV (for a single time step) to indicate
the occurrence of an action potential. Plot the
response to the following currents:
(1) 640 pA current step with 1 s duration.
(2) Current linearly increasing from 0 nA to

1 nA over a duration of 5 s.
6. Find expressions for the time of the peak tpeak

of postsynaptic potentials for the difference
of exponentials synapse model and for the al-
pha function model. The expressions should
be in terms of the model parameters: τ rise,
τ fall, α, and tspike.

7. Derive Eq. 16.41 for the firing frequency of
an LIF neuron with a constant current injec-
tion.

8. Write a program that simulates a neuron
using the Izhikevich model given by Eqs.
16.46–16.48. Find the parameters a, b, c, and
d that produce tonic spiking, phasic spiking,
tonic bursting, and phasic bursting.

9. Write a program that simulates an exponen-
tially decaying synapse with τ fall = 20 ms,
peak conductance of 25 nS, and excitatory
synaptic reversal potential of 0 mV. Use
an LIF neuron with with Rm = 50 M	,
Cm = 2000 pF, Vthresh = −50 mV, and
Vreset = −70 mV for the model. Plot the

http://senselab.med.yale.edu
http://www.cellml.org
http://visiome.neuroinf.jp
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response of the neuron to 5 presynaptic action
potentials occurring at a rate of 40Hz. Repeat
the simulation with synaptic facilitation
having p0 = 0.25, τ p = 100 ms, and fF = 0.3.
To compare the effect of facilitation, use
the same plasticity factor p0 = 0.25 in both
simulations.

10. For an unmyelinated fiber, describe quanti-
tatively how the attenuation of a signal is
affected by the length and radius of the fiber.
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17Linear Dynamics and Control of Brain
Networks

Jason Z. Kim and Danielle S. Bassett

Abstract

The brain is an intricately structured organ
responsible for the rich emergent dynamics
that support the complex cognitive functions
we enjoy as humans. With around 1011 neu-
rons and 1015 synapses, understanding how
the human brain works has proven to be a
daunting endeavor, requiring concerted collab-
oration across traditional disciplinary bound-
aries. In some cases, that collaboration has
occurred between experimentalists and techni-
cians, who offer new physical tools to measure
and manipulate neural function. In other con-
texts, that collaboration has occurred between
experimentalists and theorists, who offer new
conceptual tools to explain existing data and
inform new directions for empirical research.
In this chapter, we offer an example of the
latter. Specifically, we focus on the simple but
powerful framework of linear systems theory
as a useful tool both for capturing biophysi-
cally relevant parameters of neural activity and
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connectivity and for analytical and numerical
study. We begin with a brief overview of state-
space representations and linearization of neu-
ral models for non-linear dynamical systems.
We then derive core concepts in the theory of
linear systems such as the impulse and con-
trolled responses to external stimuli, achieving
desired state transitions, controllability, and
minimum energy control. Afterward, we dis-
cuss recent advances in the application of lin-
ear systems theory to structural and functional
brain data across multiple spatial and temporal
scales, along with methodological considera-
tions and limitations. We close with a brief
discussion of open frontiers and our vision for
the future.

Keywords

Linear systems theory · Control theory ·
Dynamical brain networks · Controllability ·
Simple models

17.1 Emergence in the Structure
and Function of Complex
Systems

In the observable world, some of the most
beautiful and most puzzling phenomena arise in
physical and biological systems characterized by
heterogeneous interactions between constituent
elements. For example, in materials physics,
heterogeneous interactions between particles in
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granular matter (such as a sand pile) constrain
whether the matter acts as a liquid (flowing with
gravity) or a solid (supporting load-bearing)
[1, 2]. In sociology, heterogeneous interactions
between humans in a society are thought to
be responsible for surges in online activity,
peaks in book sales, traffic jams, and correlated
spikes in demand for emergency services [3].
In biology, heterogeneous interactions between
computational units in the brain are thought to
support a divergence of the correlation length,
an anomalous scaling of correlation fluctuations,
and the manifestation of mesoscale structure
in patterns of functional coupling between
units, all features that allow for a diversity of
dynamics underlying a diversity of cognitive
functions [4,5]. The feature of these systems that
often drives our fascination is the capacity for
heterogeneous interactions to produce suprising
dynamics, in the form of drastic state transitions,
spikes of collective activity, and multiple
accessible dynamical regimes.

Because element-element interactions are
heterogeneous in such systems, traditional
approaches from statistical mechanics – such
as continuum models and mean-field approxima-
tions – fail to offer satisfying explanations for
system function. There exists a critical need to
develop alternative approaches to understand how
interactions map to emergent behavior. The need
is particularly salient in the context of neural
systems, where such an understanding could
directly inform models of neurological disease
and psychiatric disorders [6, 7]. Moreover, gain-
ing such an understanding is a prerequisite for
the well-reasoned development of interventions
[8], whether in the form of brain stimulation
[9, 10], pharmacological agents [11, 12], or other
therapies [13]. Technically, such interventions
in systems characterized by heterogeneous
interactions can be parsimoniously considered
as forms of network control, thus motivating
extensive recent interest in the utility of network
control theory for neural systems [8].

Despite the generic importance of understand-
ing how interactions map to emergent properties,
and the specific importance of understanding that
mapping in the human brain, progress toward that
understanding has remained surprisingly slow.

Some efforts have sought to develop detailed
multiscale computational models [14]. Yet such
efforts are faced with the ever-present quandary
that, in point of fact, “the best material model
of a cat is another, or preferably the same, cat”
[15]. Detailed models are difficult to construct
and intractable to analytic approaches, require ex-
tensive time to simulate, contain parameters that
are frequently underconstrained by experimental
data, and in the end produce dynamics that are
themselves difficult to understand or to explain
from any specific choices in the model. In con-
trast, approaches from physics consider natural
phenomena as if dynamics at macroscopic length
scales were almost independent of the underlying,
shorter length scale details [16]. A hallmark of ef-
fective physical theories is a marked compression
of the full parameter space into a few governing
variables that are sufficient to describe the observ-
ables of interest at the scale of interest. Interest-
ingly, recent theoretical work demonstrates that
such simple models are the natural culmination
of processes maximizing the information learned
from finite data [17].

Here we embrace simplicity by considering
the utility of linear systems theory for the under-
standing and control of neural systems comprised
of computational units coupled by heterogeneous
interactions. We begin by placing our remarks
within the context of quantitative dynamical mod-
els of neurons and their interactions, as well as
the spatial and temporal considerations inherent
in choosing such models. We will then turn to a
discussion of approximations to those dynamical
models, the incorporation of exogeneous control
input, andmodel linearization. Our treatment then
naturally brings us to a discussion of the theory of
linear systems, as well as their response to pertur-
bative impulses, and to explicit control strategies.
We lay out the formalism for probing state tran-
sitions, controllabilty, and the minumum control
energy needed for a given state transition. After
completing our formal treatment, we discuss the
application of linear systems theory to neural
systems, and efforts to map network architecture
to control properties. We close with a description
of several particularly pertinent methodological
considerations and limitations, before outlining
emerging frontiers.
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17.2 Quantitative Dynamical
Models of Neural Systems
and Interactions

Historically, many neural behaviors and mecha-
nisms have been successfully modeled quantita-
tively. Here we briefly describe several illustra-
tive examples of such models. The classic fun-
damental biophysical model of a single neuron

(Fig. 17.1, left) was developed by Alan Hodgkin
and Andrew Huxley in 1952 (see [18] for details).
The model is now known as the Hodgkin-Huxley
model. It treats a segment of a neuron as an elec-
trical circuit, where themembrane (capacitor) and
voltage-gated ion channels (resistors) are parallel
circuit elements. The time evolution of membrane
voltage, Vm, between the inside and the outside of
the neuron is given by

CmV̇m(t) = ḡKn
4(t)(VK − Vm)+ ḡNam

3(t)h(t)(VNa − Vm)+ ḡl(Vl − Vm)+ I (t),

whereCm is the membrane capacitance; ḡK, ḡNa,
and ḡl are maximum ion conductances for potas-
sium, sodium, and passive leaking ions; and I is
an external stimulus current, all per unit area. In
addition, VK, VNa, and Vl represent the reversal
potential of these ions. The variables n,m, and h
vary between 0 and 1 and model the ion channel
gate kinetics to determine the fraction of open
sodium (m,h) and potassium (n) channels:

ṅ(t) = αn(Vm(t))(1 − n(t))− βn(Vm(t))n(t)

ṁ(t) = αm(Vm(t))(1 −m(t))− βm(Vm(t))m(t)

ḣ(t) = αh(Vm(t))(1 − h(t))− βh(Vm(t))h(t),

where the functions αi(Vm) and βi(Vm) are em-
pirically determined. These segments are then
spatially connected together, such that the prop-
agation of an action potential across a neuron is
modeled by a set of partial differential equations.
Due to the biophysical realism of variables and
parameters, this model can make powerful and
accurate predictions of neuron activity in different
environments and stimulation regimes [19–21].
Simplified versions of this model, such as the
FitzHugh-Nagumo model [22], can also produce
many of the same neuronal dynamics.

However, many complex behaviors of neural
systems arise from interactions between multiple
neurons. With four variables (membrane voltage,
gates) and even more parameters to model the
behavior of a single neuron, the space of models
to explore interacting neurons quickly becomes
intractable to both analytical and numerical

interrogation. An alternative approach is to
capture the simplest aspects of neural interactions
that are crucial for the phenomenon of interest.
Such was the approach taken by Warren
McCulloch and Walter Pitts [23], who developed
what would later become a canonical model of
an artificial neuron. In this model, each neuron i
at any point in time t exists in one of two states:
firing xi(t) = 1 or not firing xi(t) = 0. The
state of the neuron is determined by a weighted
sum of inputs from connected neurons j at the
previous time step. Then, neuron i in a system of
N neurons evolves in time as

xi(t + 1) = fi

⎛

⎝
N∑

j=1

wijxj (t)

⎞

⎠ ,

where wij is the strength of excitation (wij >

0) or inhibition (wij < 0) from neuron j to
neuron i and function fi is typically a threshold-
ing function (Fig. 17.1, center). Instantiations and
extensions of thismodel are used to study associa-
tive memory (Hopfield [24]), machine learning
(perceptron [25]), and cellular automata [26].

In many cases, the sheer number of neurons
and interactions renders even these simplemodels
difficult to study. A typical solution is to instead
model the average activity of a population of
neurons. This is the approach taken by HughWil-
son and Jack Cowan [27] in the Wilson-Cowan
model. Here, a group of neurons is separated into
excitatory and inhibitory populations, where the
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Fig. 17.1 Schematic of neural models and controlling
perturbations at different scales. Here, the Hodgkin-
Huxley model describes the biophysical behavior of single
neurons (left) that may be excitatory (blue) or inhibitory
(gray). The artificial neuron models describe the sim-
plified weighted connections and binary states of many

neurons (center). The Wilson-Cowan model describes the
activity of large neural populations in a region (right)
or in a cortical column by modeling the excitatory and
inhibitory connections of each population. In each case,
a controlling perturbation (yellow) can affect the neural
system at different scales

fraction of cells firing at time t in each population
is E(t) and I (t), respectively, that evolve in time
as

τeĖ(t) = −E(t)+ (ke − reE(t))Se (c1E(t)

−c2I (t)+ P(t))

τi İ (t) = −I (t)+ (ki − riI (t))Si (c3E(t)

−c4I (t)+Q(t)) .

Here, c1, c2 > 0 represent connection strength
into the excitatory population, and c3, c4 > 0
represent connection strength into the inhibitory
population, re, ri are the refractory periods, and
Se, Si are sigmoid functions from the distribution
of neuron input thresholds for firing. Suchmodels
produce oscillations such as those observed in
noninvasive measurements of large-scale brain
activity (Fig. 17.1, right) in patients with epilepsy
[28].

In these and many other models, a common
theme is the tradeoff between realism and
tractability. We desire sufficient realism to study
crucial features of neural systems such as the
activity of each unit, the interaction strength
between units, the connection topology, and the
effect of external stimulation. We also desire
sufficient tractability (either to analytical or
numerical interrogation) to make consistent
and meaningful predictions about our neural
system by understanding relations between the
model parameters and the model behavior. In this
chapter, we will discuss one such model from the
theory of linear dynamical systems.

17.2.1 Spatial and Temporal
Considerations

When modeling neural systems, an immediately
salient consideration is the vast range of spatial
and temporal scales at which nontrivial – and
thus quite interesting – dynamics occur. It stands
to reason that the most relevant type of model
for understanding a given phenomenon depends
on the spatiotemporal scale at which that phe-
nomenon is observed. For example, consider the
fact that while it is generally known that cer-
tain sensory regions such as the visual cortex
are both anatomically linked to and functionally
responsible for sensory inputs, it is more diffi-
cult to assign a set of neurons that are neces-
sary for distributed cognitive processes such as
attention and cognitive control. Thus, biophysical
models at the level of single neurons may be
viable for simulating receptive fields in visual
processing, but may be less useful for studies of
task-switching or gating. Similarly, consider the
fact that a single neuron may fire every few mil-
liseconds, while human reaction times are on the
order of hundreds ofmilliseconds, and brain-wide
fluctuations in activity on the order of seconds.
Thus, the form of the model considered should
match the temporal scales of the behavior to be
studied.

From a modeling perspective, balancing these
considerations of spatial and temporal scales with
model realism impacts the category of model that
has the greatest utility. If one wishes to con-
sider small spatial scales, then a rather simplistic
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neuron-level model such as the McCulloch-Pitts
may be particularly useful, where each neural
unit has discrete states such that each neuron i
is either firing xi(t) = 1 or not xi(t) = 0. In
contrast, if one wishes to consider larger spatial
scales characteristic of distributed cognitive pro-
cesses, it may be more appropriate to consider
models in which each neural unit reflects the
average population activity of a brain region as
a continuous state, where xi(t) is a real number.
Similar considerations are relevant and important
in the time domain. For models that assume fairly
uniform delays in neuronal interactions such as
the McCulloch-Pitts, a discrete timemodel where
time evolves in integer increments may be appro-
priate. In contrast, if the timing of interactions
between neural units such as myelinated versus
unmyelinated axons is heterogeneous, a continu-
ous timemodel may be more suitable, where time
t is a real number.

In addition to affecting the definition of neural
activity and the nature of its propagation, these
considerations also affect the meaning of inter-
actions between units. In a neuron-level model
whose units reflect neurons, the unit-to-unit in-
teractions may represent structural synapses be-
tween neurons. In contrast, in a population model
whose units reflect average neural activity of a
brain region, unit-to-unit interactions may repre-
sent a summary measure of the collective strength
or extent of structural connections between re-
gions. Both types of connections can be empir-
ically measured using either invasive (staining,
flourescence imaging, tract tracing [29]) or non-
invasive (tractography [30]) methods. The spe-
cific type of interaction studied constrains the
sorts of inferences that one can draw from the
subsequent model, as well as the types of model-
generated hypotheses that one can test in new
experiments.

17.2.2 Dynamical Model
Approximations

Both here and in the following sections, we will
consider systems with both continuous state and
time. However, we note that the theory of linear
systems extends naturally to discrete time sys-

tems as well. We begin our formulation with a set
of N neural units, where each unit has an associ-
ated level of activity xi(t) that is a real number at
some time t ≥ 0 that is also a real number. Then
the collection of activity for all units into column
vector x(t) = [x1(t); x2(t); · · · ; xN(t)] is called
the state of our system at time t . For example, in
the Hodgkin-Huxley equations, our state vector
is x = [V ; n;m;h]. In many models including
Hodgkin-Huxley, the time evolution of the sys-
tem states can be written as a vector differential
equation:

⎡

⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡

⎢⎢⎢⎣

f1(x(t))

f2(x(t))
...

fN(x(t))

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
f (x(t))

,

where f , the vector of functions fi , determines
how the system states change, ẋ, at every partic-
ular state x. We can think of these equations as
generating a vector field, where at each point x,
we draw an arrow with magnitude and direction
equal to f (x). As an example, consider the fol-
lowing two neuron system x1, x2 that evolves in
time as:

ẋ1(t) = 2x2(t)− sin(x1(t))

ẋ2(t) = x21(t)− x2(t),

where the vector field and example trajectory
from initial state x(0) = [−0.3; −0.4] are shown
(Fig. 17.2, top). Note how at every point x1, x2
the above equation determines a vector of motion
ẋ that the system traces from the initial point.
This quantitative modeling of neural dynamics
allows us to study and predict the response of our
neural system to changes in interaction strength
or external stimulation.

17.2.3 Incorporating Exogenous
Control

While modeling intrinsic system behavior is al-
ready a broad topic of current research, there is
an increasing need for the principled study of
therapeutic interventions to correct dysfunctional
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neural activity. These interventions may take the
form of targeted invasive (deep bran stimulation)
or noninvasive (transcranial magnetic stimula-
tion) inputs, or more diffusive drug treatments.
Hence, in our modeling efforts, we also often
desire to incorporate the effect of some external
stimuli u1(t), · · · , uk(t). We collect these stimuli
into a vector u(t) = [u1(t); u2(t); · · · ; uk(t)]
and include their effect on the rates of change of
system states in our function:

⎡

⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡

⎢⎢⎢⎣

f1(x(t),u(t))

f2(x(t),u(t))
...

fN(x(t),u(t))

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
f (x(t),u(t))

.

As an example in our two-unit system, we can
apply an input to the first unit

ẋ1(t) = 2x2(t)− sin(x1(t))+ u(t)

ẋ2(t) = x21(t)− x2(t),

thereby changing our system of equations. We
plot the vector field and trajectory of our system
under some constant input u(t) = 0.5 (Fig. 17.2,
bottom). Notice how the control input changes
the trajectory and final state of our system by
modifying the vector field. Also notice that our
input only shifts the x1 component of our vectors
because we only stimulate x1. These abilities to
map neural interactions f to the full trajectory of
activity x(t) and to find control inputs u(t) that

-0.5 0.5
-0.5

0.5

0 2
-0.5

0.5

-0.5 0.5
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Fig. 17.2 Vector fields and trajectories, with andwith-
out control inputs. Example simple vector field of two
states with a particular trajectory from initial condition
x(0) = [−0.3;−0.4] (top left) in state space, with the

corresponding plot of each state over time (top right) and
the corresponding vector field and trajectory with control
input u(t) = 0.5 (bottom left) with corresponding states
over time (bottom right)



17 Linear Dynamics and Control of Brain Networks 503

drive our neural system to a desired final state
x(T ) are among the core contributions of linear
systems theory.

17.2.4 Model Linearization

While we have a quantitative framework for the
evolution of a controlled neural system, there
are no general principles for determining the full
trajectory x(t) or control input u(t) to reach a
desired final state for a general nonlinear system.

In systems of only a few neural units, there exist
several powerful numerical and analytic tools.
However, the study and control of large neural
systems is made difficult by our inability to know
how a stimulus will affect our systemwithout first
simulating the full trajectory. Further, for multiple
stimuli, the number of possible stimulus patterns
grows exponentially.

A special class of simplified systems called
linear systems circumvents this issue. In our state
representation, a linear system is described by

⎡

⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡

⎢⎢⎢⎣

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡

⎢⎢⎢⎣

x1(t)

x2(t)
...

xN(t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

+

⎡

⎢⎢⎢⎣

b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...

bN1 bN2 · · · bNk

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡

⎢⎢⎢⎣

u1(t)

u2(t)
...

uk(t)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
u(t)

, (17.1)

that is characterized by the time evolution of any
state ẋi (t) being a weighted sum of current states∑N

j=1 aij xj (t) and external inputs
∑k

j=1 bijuj (t).
Here, aij is a real number that determines how
activity in state xj influences the rate of change
of state xi and bij is a real number that deter-
mines how external input uj influences the rate of
change of state xi . We see that our example two-
unit system is not linear, because the first state
ẋ1(t) depends on sin(x1(t)), and the second state
ẋ2(t) depends on x21(t), and is therefore a non-
linear system.

To transform the nonlinear system ẋ =
f (x,u), into a linear system ẋ = Ax + Bu,
we can create an approximate model of our
vector field about a particular constant operating
state x∗ and input u∗. We first evaluate the
dynamics at this operating point, f (x∗,u∗).
Then we approximate the vector field along
small deviations from this point by computing the
derivative of f (x,u) with respect to the states to
get matrix A and with respect to control inputs to
get matrix B:

A =

⎡

⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

...
...
. . .

...
∂fN
∂x1

∂fN
∂x2

· · · ∂fN
∂xN

⎤

⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=x∗,u=u∗

B =

⎡

⎢⎢⎢⎢⎣

∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂uk

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂uk

...
...
. . .

...
∂fN
∂u1

∂fN
∂u2

· · · ∂fN
∂uk

⎤

⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=x∗,u=u∗

.

Then, for states near x∗ and inputs near u∗, the
vector field is approximately

ẋ(t) = f (x,u) (17.2)

≈f (x∗,u∗)+A(x(t)−x∗)+B(u(t)−u∗).
(17.3)

A typical operating point for the input is u∗ =
0 corresponding to no input, because neural stim-
ulation is viewed as a perturbation to the natural
and unstimulated dynamics. A typical operat-
ing point for the state x∗ is a fixed point where
f (x∗,u∗) = 0, because then the evolution of our
system Eq. 17.2 only depends on deviations from
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the point, and not on its actual value. Finally, we
can write the linearized equation explicitly as a
function of these deviations through a change of
variables y(t) = x(t)− x∗:

ẏ(t) = ẋ(t) ≈ Ay(t)+ Bu(t).

We will continue to use variable x instead of y

with the understanding that it represents devia-
tions from the fixed point. For example, in our
two-unit system, we can linearize about x∗

1 =
0, x∗

2 = 0, and u∗ = 0 to yield

[
ẋ1(t)

ẋ2(t)

]

︸ ︷︷ ︸
ẋ(t)

≈
[−1 2
0 −1

]

︸ ︷︷ ︸
A

[
x1(t)

x2(t)

]

︸ ︷︷ ︸
x(t)

+
[
1
0

]

︸︷︷︸
B

u(t).

We show the vector fields and trajectories for
both the nonlinear and linear equations without
control where u(t) = 0 (Fig. 17.3, top) and with
control where u(t) = 0.5 (Fig. 17.3, bottom)
from the same initial condition, and we notice
that in the neighborhood of x∗

1 = 0, x∗
2 = 0,

the field and trajectories are similar. Hence, by
linearizing our neural dynamics about x∗,u∗, we

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

Fig. 17.3 Vector fields and trajectories for a nonlinear
system and its linearized form. Example vector field of
two states with a particular trajectory from initial condition
x(0) = [−0.3;−0.4] for the uncontrolled nonlinear sys-

tem (top left), the uncontrolled linear system (top right),
the controlled nonlinear system (bottom left), and the
controlled linear system (bottom right)
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can preserve the behavior of our neural system at
state x(t) and inputs u(t) near this point while
enabling the use of powerful tools developed in
the next section.

17.3 Theory of Linear Systems

A useful model for therapeutic intervention in a
neural system should capture both how the activ-
ity over time depends on the connections between
neural units and how to change the activity in a
desired way through stimulation. Now that we
have a model that captures features of neural
activity and connectivity in a linearized form, we
will develop equations that yield precisely these
features. Specifically, we will first determine the

system’s response to control through mathemati-
cal relations as opposed to simulations. Then we
will use these principles to design stimuli that
optimally guide our system from some initial state
x(0) to some final state x(T ).

17.3.1 Impulse Response

First, we find the natural evolution of system
states from some initial neural state x(0) without
any external input. This task amounts to finding
the state trajectory x(t) that solves our dynamic
equation ẋ(t) = Ax(t). For scalar systems where
x(t) is not a vector, we are reminded of the
solution to ẋ = ax:

dx

dt
= ax differential equation,

1

x
dx = adt divide by x,

∫
1

x
dx =

∫
adt + c integrate both sides,

ln |x| = at + c

x(t) = Ceat solution to differential equation,

where the constant is the initial condition C =
x(0). We can prove that this solution satisfies
ẋ = ax by using a Taylor series of the exponen-

tial function eat = ∑∞
k=0

(at)k

k! . Taking the time
derivative of x(t) = eat , we see ẋ = ax:

d

dt
eat = d

dt

(
1 + at

1! + a2t2

2! + a3t3

3! + · · · + aktk

k! + · · ·
)

Taylor series of eat ,

= 0 + a

1! + 2
a2t

2! + 3
a3t3

3! + · · · + k
aktk−1

k! + · · · differentiate each term,

= a

(
1 + at

1! + a2t2

2! + · · · + aktk

k! + · · ·
)

factor out scalar a,

= aeat substitute Taylor series.

A matrix exponential is defined exactly the same
as above with eAt = ∑∞

k=0
(At)k

k! , and we again

show that the time derivative satisfies the vector
relation ẋ(t) = Ax(t):



506 J. Z. Kim and D. S. Bassett

d

dt
eAt = d

dt

(
I + At

1! + A2t2

2! + A3t3

3! + · · · + Aktk

k! + · · ·
)

Taylor series of eAt ,

= 0 + A

1! + 2
A2t

2! + 3
A3t3

3! + · · · + k
Aktk−1

k! + · · · differentiate each term,

= A

(
I + At

1! + A2t2

2! + · · · + Aktk

k! + · · ·
)

factor out matrix A,

= AeAt substitute Taylor series.

Hence, we see that the following solution

x(t) = eAtx(0) (17.4)

satisfies our dynamic equation. Here, the matrix
exponential eAt is called the state transition ma-
trix, and Eq. 17.4 is called the impulse response
of our system. Hence, we can find the state at

any time T without solving for intermediate states
0 < t < T .

As an example in our linearized two-unit
model, to find the state of our system at T = 2
given an initial start at x(0) = [−0.3; −0.4], we
can use a software to numerically compute the
matrix exponential at time t = 2 and multiply by
our initial state Eq. 17.4

x(2) = e2Ax(0) =
[
0.1353 0.5413

0 0.1353

] [−0.3
−0.4

]
=
[−0.2571
−0.0541

]
,

which agrees with the simulation results
(Fig. 17.3).

17.3.2 Control Response

Next, we derive the system response from an
initial state x(0) to some controlling input u(t)

through some algebraic manipulation and calcu-
lus. We begin with our system equations ẋ(t) −
Ax(t) = Bu(t) and multiply both sides by a
matrix exponential

e−At ẋ(t)− e−AtAx(t) = e−AtBu(t).

Next, we see that the left-hand side is the re-
sult of a product rule where d

dt
(e−Atx(t)) =

e−At ẋ(t)−Ae−Atx(t), recalling that functions of
matrices can switch orders of multiplication, such
that Ae−At = e−AtA. Hence, we can write our
equation as

d

dt
(e−Atx(t)) = e−AtBu(t),

and integrate both sides from t = 0 to t = T to
yield

e−AT x(T )− x(0) =
∫ T

0
e−AtBu(t)dt.

We note the matrix exponential at t = 0 becomes
e−A·0 = I from the Taylor series. Next, we move
the initial state x(0) to the right-hand side and
multiply by eAT :

eATe−AT x(T )= eATx(0)+eAT
∫ T

0
e−AtBu(t)dt.

Finally we use the fact that eAT and e−AT are
inverses of each other where eAT e−AT = I ,
and we bring eAT into the integral to derive the
system’s response to control input:
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x(T ) = eAT x(0)︸ ︷︷ ︸
natural

+
∫ T

0
eA(T−t)Bu(t)dt

︸ ︷︷ ︸
controlled

.

(17.5)

Intuitively, we see that the first part of the re-
sponse, eAT x(0), is just the natural evolution of
our system from an initial state and that the sec-
ond part of the response is a convolution of our
mapped inputs,Bu(t), with the impulse response.
We will next take advantage of the convolution’s
property of linearity to draw powerful relations
between the state evolution, control input, and
system structure.

17.3.3 Linear Relation Between the
Convolution and Control Input

Previously, we focused on the evolution of a neu-
ral system in response to a known control input
u(t) in Eq. 17.5. However, our goal is to design
a control input that drives our neural system to
some desired final state that may stabilize an
epileptic seizure [31], or aid in memory recall
[32]. In this scenario, we fix the initial state
x(0) = x0 and the final state x(T ) = xT as con-
stants and rewrite Eq. 17.5 to move the variables
u(t) to the left-hand side and the constants to the
right-hand side:

∫ T

0
eA(T−t)B u(t)︸︷︷︸

variable

dt = x(T )− eAT x(0)︸ ︷︷ ︸
constant

.

This formulation is a linear equation with a struc-
ture that is similar to a typical system of linear
equations used in regression,Mv = b, where v is
the variable, b is a constant vector, and matrixM
is the linear function acting on v. Here, the control
input u(t) is the variable, x(T ) − eAT x(0) is the
constant vector, and the convolution

L(u(t)) =
∫ T

0
eA(T−t)Bu(t)dt

is the linear function acting on our control inputs.
By linear function, we mean that for two control
inputs u1(t) and u2(t), if L(u1(t)) = c1, and

L(u2(t)) = c2, then a weighted sum of inputs
yields the same weighted sum of outputs, such
that

L(au1(t)+ bu2(t)) = ac1 + bc2. (17.6)

This linearity allows us to treat solutions to
our control function problem the same as
solutions to our linear system of equations.
Specifically, suppose the control input u∗(t) is
a particular solution to our control problem such
that L(u∗(t)) = xT − eAT x0. Further, suppose
that inputs u1(t),u2(t), · · · are homogeneous
solutions such that L(ui (t)) = 0. If we construct
a control input that is the particular solution added
to a weighted sum of homogeneous solutions

u(t) = u∗(t)︸ ︷︷ ︸
particular

+
∑

i

ai ui (t)︸︷︷︸
homogeneous

,

then the convolution of this combined input yields
the desired output:

L(u(t)) = L
(

u∗(t)+
∑

i

aiui (t)

)

= L(u∗(t))+
∑

i

L(aiui (t))

= xT − eAT x0 +
∑

i

ai0

= xT − eAT x0.

Hence, if we have a particular control input u∗(t)
that drives our system to a desired final state,
then the homogeneous control inputsui (t) give us
the flexibility to design less costly, more energy-
efficient inputs.

17.3.4 Controllability

For any system, we would first like to know if a
particular solution exists to the control problem
described above. A system is controllable if there
is a control input that brings our system from any
initial state to any final state in finite time. For
nonlinear systems, if we know that the input u∗(t)
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brings our system from the initial state 0 to some
final state xT , there is in general no way to know
what input will take our system to a scaled final
state axT .

In contrast, due to the linearity of our convolu-
tion operator, we know that a scaled input au∗(t)
will produce a scaled output L(au∗(t)) = axT .

Further, anyN-dimensional vector can be written
as a weighted sum ofN linearly independent vec-
tors v1, v2, · · · , vN . Here, linear independence
means that no vector vi in the set can be written as
a weighted sum of the remaining vectors vj 	=i . For
example, a column vector a = [a1; a2; · · · ; aN ]
can be written as the weighted sum

⎡

⎢⎢⎢⎣

a1
a2
...

aN

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
a

= a1

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦

︸︷︷︸
v1

+a2

⎡

⎢⎢⎢⎣

0
1
...

0

⎤

⎥⎥⎥⎦

︸︷︷︸
v2

+ · · · + aN

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦

︸︷︷︸
vN

,

where none of the vectors vi can be written as a
weighted sum of remaining vectors vj 	=i . Hence,
our system is controllable if we can find input
functions u1(t), · · · ,uN(t) that reach N linearly

independent vectors L(u1(t)), · · · ,L(uN(t)),
because then we can always reach any final state
from any initial state through the weighted sum

xT − eAT x0︸ ︷︷ ︸
a

= a1L(u1(t))︸ ︷︷ ︸
v1

+a2L(u2(t))︸ ︷︷ ︸
v2

+ · · · + aN L(uN(t))︸ ︷︷ ︸
vN

,

through the control input u(t) = a1u1(t) +
a2u2(t) + · · · + aNuN(t). This information of
reachable states is encoded in the controllability
matrix

C = [B, AB, A2B, · · · , AN−1B
]
, (17.7)

where the rank of this matrix (given by the num-
ber of linearly independent columns of C) tells
us how many of these N independent vectors can
be reached using control input. If this rank = N ,
then the system is controllable and can reach all
states. However, even if the rank < N , there still
exists a control input that drives the system from
x0 to xT if the vector xT − eAT x0 can be written
as a weighted sum of the columns of C. This set
of vectors spanned by the columns of C is called
the controllable subspace and the remaining set
of vectors the uncontrollable subspace.

As an example in our linearized two-unit sys-
tem, A,B, and C are written as

A =
[−1 2
0 −1

]
, B =

[
1
0

]
,

C = [B,AB] =
[
1 −1
0 0

]
,

which is not controllable, because the rank of C
is 1. To consider the controllable subspace, notice
that the columns of C only have non-zero entry
in the first row. Hence, the controllable subspace
contains any desired value of x1(T ), but excludes
all values of x2(T ). Intuitively, this loss of con-
trollability arises because x2 does not receive an
input, nor is it affected by x1. Hence, there is no
way to influence the activity of x2 in a desired
way.
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17.3.5 Minimum Energy Control

Once we know a system is controllable, we would
like to determine the control input function u(t)

that transitions our system from initial x0 to final
xT states. However, there are often limitations on
the input magnitude such as electrical and thermal
damage of neural tissue or battery life of chronic
implanted stimulators. Due to the system’s linear-
ity, we can find not only an input function but an
optimal one u∗(t) that minimizes input cost.

First, we must define a measure of the size of
our control input functions u(t). In many applica-
tions of electrical stimulation, the cost of control

scales quadratically with the input, such as with
resistive heating. This quadratic measure of size
is mathematically and intuitively defined using
the inner product. For N-dimensional column
vectors of numbers, a, the inner product is the
well known dot product

< a, a >= a21 + a22 + · · · + a2N = a�a,

where a� is the transpose that turns column vec-
tor a into a row vector.We see that doubling a will
quadruple the inner product. For k-dimensional
column vectors of functions a(t) from time t = 0
to t = T , the inner product is similarly defined as

< a(t), a(t) >=
∫ T

0
a21(t)+ a22(t)+ · · · + a2N(t)dt =

∫ T

0
a(t)�a(t)dt

that has the same quadratic relation. Hence, we
define the control energy as

E =< u(t),u(t) > . (17.8)

Now that we have a measure of how large an
input is, we wish to find a minimal input u∗(t)
that minimizes the control energy. This task is
analogous to a typical linear system of equations,
Mv = b, where we want to find v∗ that solves
the equation with the smallest cost < v∗, v∗ >.
Here, if M has full row rank where the rows of
M are linearly independent, then the minimum
solution is given by the equation for least squares
v∗ = M�(MM�)−1b. Here,M� is the transpose,
or adjoint ofM .

This same principle holds for our linear system
L(u(t)) = xT − eAT x0, where we want to find
u∗(t) that solves the equation with the smallest

cost < u∗(t),u∗(t) >. However, while matrix
M inputs a vector of numbers v and outputs a
vector of numbers b, our linear function L inputs
a vector of functions and outputs a vector of
numbers. Hence, we need to carefully define the
adjoint of L; because L is not a finite matrix,
we cannot use L� to denote the adjoint. Instead,
we will use L∗ to denote the adjoint of L. In the
case of matrixM , the adjoint preserves the inner
product between inputs and outputs such that

< Mv, b > =< v,M�b >

(Mv)�b = v�(M�b).

Identically, for state transition x = eAT x0 −
xT , the adjoint of L preserves the inner product
between the vectors of input functions u(t) and
output numbers x as

< L(u(t)), x > =< u(t),L∗(x) >
(∫ T

0
eA(T−t)Bu(t)dt

)�
x =

∫ T

0
u�(t)(B�eA

�(T−t)x)dt.
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Notice that the inner product on the left is over
vectors of numbers, while the inner product on
the right is over vectors of functions. Then, we
see that our adjoint is

L∗(x) = B�eA
�(T−t)x

and takes as input a vector of numbers and outputs
a vector of functions. Then, just as our system
Mv = b, the minimum input u∗(t) is given by

u∗(t) = L∗(LL∗)−1(xT − eAT x0). (17.9)

Finally, through substitution into Eq. 17.8, we can
write the minimum control energy as

Emin = (xT − eAT x0)
�(LL∗)−1(xT − eAT x0).

(17.10)

In conclusion, we point out the crucially im-
portant term of the minimum energy, LL′, as the
controllability Gramian written as

Wc(T ) = LL∗ =
∫ T

0
eA(T−t)BB�eA

�(T−t)dt.

(17.11)

First, we notice that this Gramian is only a func-
tion of the underlying neural relationships,A; the
matrix determining where the inputs are placed,
B; and time T . Next, we notice that Wc(T ) is
actually an N × N matrix and can therefore be
numerically evaluated and analytically studied.
Finally, we see that if our system begins at an
initial state of x0 = 0, then the minimum energy
can be written as

Emin = x�
T W

−1
c (T )xT ,

where the role of neural interactions and stim-
ulation parameters on our ability to control the
system is fully encapsulated in the Gramian. This
ability to decouple the states xT from the neural
interactions and stimulation parameters A,B, T
is a powerful tool for studying and designing
control properties of neural systems.

17.4 Mapping Network
Architecture to Control
Properties

By formulating our neural system in a linear way,
we can solve difficult problems such as predicting
the system’s response to control, finding the set
of states that the system can reach, and designing
efficient input stimuli, without the need to try
every control input and simulate every trajectory.
Further, by directly mapping control properties
to neural activity and network architecture in
an algebraic way, we can study how features of
interaction patterns impact our ability to control
neural activity [8]. As an active area of research,
the variety of questions being asked and systems
being studied is very large, and require simul-
taneous innovations in experiment, computation,
and theory. In this section, we will describe a few
recent applications and advances.

17.4.1 Neuronal Control in Model
Organisms

While most neural systems are too large to em-
pirically measure activity and connectivity or to
analyze numerically, there do exist a few suffi-
ciently simple model organisms. Among these is
the worm Caenorhabditis elegans [33] with sev-
eral hundred neurons that can be recorded from si-
multaneously [34]. Even for such a small system,
it is difficult to map the functional form of how
activity in neuron i affects the activity in neuron
j . However, the presence or absence of connec-
tions between neurons in this organism, and by
consequence the presence or absence of elements
in the connectivity matrix A, is well known.

Advances in the study of structural control-
lability [35] allow us to ask questions about our
ability to control a system given only the bi-
nary presence or absence of edges. Colloquially,
this framework focuses on connectivity matrices
A where non-zero entries can only exist in the
presence of binary edges, and can be used to
determine whether the system is controllable
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for most values where an edge is present. Using
this framework, recent work has sought to deter-
mine whether the removal of certain neurons in
C. elegans will reduce structural controllability
[36]. Specifically, the modeling involves input
to the sensory receptor neurons as the control
input that is mapped to the system through a
matrix B and the connectivity between neurons
and muscle cells through a matrix A. Further, in-
stead of recording the activity of each neuron, the
motion of muscles was recorded. This framework
involves the appended control framework

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t),

where y(t) represents the states (muscles) that
are measured and C is the map from neurons and
muscles x(t) to the measured output [37]. Here,
the authors find that the ablation of a neuron not
previously implicated in motion, PDB, decreased
structural controllability, significantly reducing
ventral bias in deep body bends in C. elegans.

17.4.2 State Transitions in the
Human Brain

While neuron-level structural synapses map
most directly to functional relationships between
neurons, there are also well-characterized
structural connections between larger-scale brain
regions. These connections contain thick bundles
of myelinated axonal fibers that run throughout
the brain and are thought to play a crucial role in
coupling the activity of distant brain regions [38].
These fibers are resolved by measuring water
diffusion throughout the brain using magnetic
resonance [39] and tracing fibers along this
diffusion field using computational algorithms
[30]. The whole brain is typically divided into
hundreds to thousands of discrete brain regions
using a variety of parcellation schemes [40, 41],
and the strength of fibers between these regions
comprises the connectivity matrix A [42].

Such region-level study of brain dynamics has
led to the discovery of macroscopic functional
organization in the human brain at rest [43] and

during various cognitively demanding tasks [44].
Here, brain activity can be empirically measured
through methods such as magnetic resonance
imaging (blood oxygen level dependent) or elec-
trophysiology (aggregate electrical activity). Of
particular interest are large-scale functional brain
networks that display stereotyped changes in
activity patterns during tasks that demand certain
cognitive or sensorimotor processes [45]. Here, it
is thought that the brain uses underlying structural
connections to support circuit-level coordination,
as well as to guide itself to specific patterns of
activity using cognitive control [46, 47].

Recent work has begun formulating cognitive
control as a linear systems problem [46, 48–51],
where matrix A is the network of white matter
connections between brain regions, B represents
the regions that were chosen to be responsible
for control, and x(t) represents the activity of
each region over time. Specifically in [48, 50],
the authors quantify cognitive states as vectors
corresponding to activity in the brain regions
during cognitive tasks and compute the mini-
mum control energy Eq. 17.9 to transition be-
tween cognitive states for various sets of control
regions. Colloquially, if a set of regions requires
less input energy to transition between cognitive
states, then those regionsmay easily transition the
whole brain between these states along an optimal
trajectory given they are responsible for cogni-
tive control. Moreover, individual differences in
the minimal control energy are correlated with
individual differences in performance on cogni-
tive control tasks [52]. In complementary studies,
individual differences in controllability statistics
calculated for distinct regions of the brain are
correlatedwith individual differences inmeasures
of cognitive control assessed with common neu-
ropsychological test batteries [49, 51].

17.5 Methodological
Considerations and
Limitations

While the theory of linear systems is a powerful
quantitative framework for studying and control-
ling dynamical neural systems, there are several
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important caveats. Herewemention three: dimen-
sionality and numerical stability, model valida-
tion and experimental data, and the assumption
of linearity.

17.5.1 Dimensionality and Numerical
Stability

The benefit of studying linear systems is that
we take difficult and largely intractable ques-
tions of controllability and control input design
and greatly simplify them into algebraic prob-
lems of computing objects like the controllability
matrix Eq. 17.7 and the controllability Gramian
Eq. 17.11. However, these matrices scale quadrat-
ically with the number of neural units, and numer-
ical calculations and manipulations using these
matrices quickly face computational issues.

Most viable approaches to dealing with these
issues involve numerically representing the ele-
ments of our matrices and performing algebraic
operations. However, these representations are
imperfect, as it is impossible to completely rep-
resent irrational numbers such as π . Hence, the
matrices are truncated to numerical precision,
and this truncation error propagates with each
computation. Further, the propagation of error
tends to scale faster than the number of dimen-
sions. This issue is prevalent in the computation
of the state-transition matrix [53], as well as in
the calculation of the controllability Gramian and
its inverse. With the application of this theory
to high-dimensional neural systems, the study of
useful controllability metrics is an active area of
research [54].

17.5.2 Model Validation and
Experimental Data

A fundamental limitation for modeling any neural
system is the ability to empirically and accu-
ratelymeasuremodel parameters and variables. A
crucial parameter is the network of connectivity
encoded by our adjacency matrix A, where the
element in the i-th column and j -th row models
the effect of unit i on the rate of change of unit j .

While we typically use the structural connections
in synapses between neurons, or bundles of axons
between brain regions as a proxy for A, it is very
difficult to measure the true functional effect that
activity in unit i has on activity in unit j , partic-
ularly for large systems. This problem is exacer-
bated by further methodological limitations such
as the inability to resolve directionality of connec-
tions in diffusion tractography. Along these lines,
many statistical and autoregressive methods have
been developed to infer functional relationships
from recordings of neural activity [55–59] and
to use that inferred activity to better understand
control [60]. However, the degree of causality in
these methods as measured by true response to
external stimuli remains controversial.

Another such fundamental limitation is our in-
ability to fully measure every state of the system.
The state-space representation of our model re-
quires that every state is observed. However, it is
impossible to simultaneously record the activity
of every neuron in almost all biological systems,
although this recording has been achieved in suf-
ficiently simple organisms [34]. As a result of
only being able to observe a small subset of the
full state-space, these models of interactions may
become largely descriptive and phenomenologi-
cal in nature. In response, there is a continuing
effort to improve the spatial and temporal resolu-
tion of neuroimaging methods [61].

17.5.3 Assumption of Linearity

An inherent limitation is the lack of generality
in our linear approximation of the full nonlinear
neural dynamics. In response, there is a sizable
quantity of research studying the control prop-
erties of nonlinear dynamical systems [62]. An
interesting bridge between these two disciplines
exists in the theory of the Koopman or composi-
tion operator [63]. The underlying benefit of this
theory is that, while our system of equations may
evolve nonlinearly in time given the current set
of N states, there may exist a higher-dimensional
set of M > N state variables in which the dy-
namical system does evolve linearly [64]. While
the extension of linear systems theory to actually
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controlling this higher-dimensional system may
be limited, it remains a promising future area of
research.

17.6 Open Frontiers

Many exciting and open frontiers exist in the
study of brain network dynamics using linear
systems theory. Here we constrain our remarks to
three main topic areas, but freely admit that this
discussion is far from comprehensive. First, we
describe opportunities in the further development
of useful controllability statistics as well as in
the development of foundational theory linking
control profiles to the system’s underlying net-
work architecture. Second, we underscore the
need for a better understanding of how control is
implemented in the brain, how control strategies
might depend on context, and how control pro-
cesses could facilitate the effective manipulation
of information. Third, we describe the relevance
of the modeling efforts we discussed here for
our understanding of neurological disease and
psychiatric disorders as well as the development
of personalized and targeted therapeautic inter-
ventions for alterations in mental health.

17.6.1 Theory and Statistics

Linear systems theory has its basis in a rich liter-
ature stemming from now well-developed areas
of mathematics, physics, and engineering [65].
Yet, much is still unknown about exactly how
the network topology of a given unit-to-unit in-
teraction pattern impacts the capacity for control,
the trajectories accessible to the systems, and
the minimum control energy. Some preliminary
efforts have begun to make headway by using
linear network control theory to derive accurate
closed-form expressions that relate the connec-
tivity of a subset of structural connections (those
linking driver nodes to non-driver nodes) to the
minimum energy required to control networked
systems [66]. Further work is needed to gain an
intuition for the role of higher-order structures
(e.g., cycles) in the control of the networked sys-
tem and any dependence on edge directionality

[67]. Moreover, it would be fruitful in the future
to further develop a broader set of controllablity
statistics, extending beyond node controllability
[54], and edge controllability [68], to the control
of motifs [69]. Finally, throughout such investi-
gations, it will be useful to understand which fea-
tures of control are shared across networks with
various topologies, versus those features which
are specific to networkswith a particular topology
[70–72].

17.6.2 Context, Computations, and
Information Processing

Despite the emerging appreciation that linear sys-
tems theory has considerable utility in the study of
cognitive function, we still know very little about
exactly how control is implemented in the brain,
across spatial scales, and capitalizing on the unit-
to-unit interaction patterns at each of those scales.
Some initial evidence suggests that features of
synaptic connectivity – and particularly autaptic
connections – can serve to tune the excitability
of the neural circuit, altering its controllability
profile and propensity to display synchronous
bursts of activity [73]. Complementary evidence
also at the cellular scale demonstrates how in-
trinsic network structure and exogeneous stim-
ulus patterns together determine the manner in
which a stimulus propagates through the network,
with important implications for cognitive facul-
ties that require persistent activation of neuronal
patterns such as working memory and attention
[74]. There are interesting similarities between
these observations and evidence at larger spatial
scales, which suggests that the architecture of
white matter tracts connecting brain areas can be
used to infer the probability with which the brain
persists in certain states [75]. Such conceptual
similarities motivate concerted efforts to better
understand how the architecture of brain net-
works across spatial scales supports information
processing and cognitive computations and how
those processes and computations might depend
on the context in which the brain is placed. For-
mally, it would be interesting to consider context
as a form of exogeneous input to the system, in a
manner reminiscent of how we currently consider
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brain stimulation [8]. We speculate that such a
formulation of the problem could help to explain
a range of observations, such as the ability of
cognitive effort to suppress epileptic activity [76].

17.6.3 Disease and Intervention

The fact that controllability can depend on net-
work topology [66, 70] and can be altered by
edge pruning [77] suggests that it might also be
a useful biomarker in some neurological diseases
and psychiatric disorders, many of which are as-
sociated with changes in the structural topology
of neural circuitry at various spatial scales [6, 7].
Indeed, recent studies have reported differences
in controllability statistics estimated in brain net-
works of patients with bipolar disorder [78], tem-
poral lobe epilepsy [79], and mild traumatic brain
injury [50]. In a complementary line of work,
studies are beginning to ask whether the altered
controllability profiles of brain networks in these
patients could help to inform the development of
more targeted interventions for their illness, in
the form of brain stimulation [31, 80], pharma-
cological agents, or cognitive behavioral therapy.
Other efforts have begun to consider symptoms
of a given disease as a network and to identify
symptoms predicted to have high impulse re-
sponse in the patient’s daily life [81]. It would be
interesting in the future to determine whether the
linear systems approach could be useful in more
carefully formalizing that problem as a network
control problem, which in turn could be used
to determine which symptom to treat in order
to move the entire symptom network toward a
healthier state [82].

Homework

1. Linearize the following system about point
x∗
1 = 1, x∗

2 = −1, x∗
3 = 0,

⎡

⎣
ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎦ =
⎡

⎣
−x21(t)− 2x2(t)+ x3(t)− 1
2x1(t)− 2x22(t)+ 2x3(t)
x1(t)x2(t)− x3(t)+ 1

⎤

⎦ .

and demonstrate that this point is a fixed
point where ẋ1 = ẋ2 = ẋ3 = 0.

2. Prove that the matrix exponential of A =[
a 0
0 b

]
is

eA =
[
ea 0
0 eb

]
,

using the Taylor series of the scalar and ma-
trix exponentials.

3. Prove that the system response to control

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ )dτ

satisfies the dynamical equation ẋ(t) =
Ax(t)+ Bu(t) by substitution.

4. Prove that the convolution operator

L(u(t)) =
∫ T

0
eA(T−τ)Bu(τ )dτ

is linear according to Eq. 17.6; that is, if
L(u1(t)) = c1, and L(u2(t)) = c2, then
demonstrate thatL(au1(t)+bu2(t)) = ac1+
bc2.

5. Determine if the following system is control-
lable

⎡

⎣
ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎦ =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

⎡

⎣
x1(t)

x2(t)

x3(t)

⎤

⎦+
⎡

⎣
1
0
0

⎤

⎦ u(t),

by constructing the controllability matrix.
6. Determine for what value of a the system is

not controllable

⎡

⎣
ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎦ =
⎡

⎣
0 0 0
1 1 0
1 0 a

⎤

⎦

⎡

⎣
x1(t)

x2(t)

x3(t)

⎤

⎦+
⎡

⎣
1
0
0

⎤

⎦ u(t),

by constructing the controllability matrix.
7. Derive the minimum energy equation

Eq. 17.10

Emin = (xT−eAT x0)
�(LL∗)−1(xT−eAT x0),
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by substituting the minimum input u∗(t) into
the control energy Eq. 17.8

E =< u(t),u(t) > .

8. Show that the controllability Gramian can be
written as

WC(T ) =
∫ T

0
eA(T−t)BB�eA

�(T−t)dt

=
∫ T

0
eAτBB�eA

�τ dτ,

using the substitution τ = T − t .
9. Show that the controllability Gramian for

system

A =
[
a 0
0 b

]
, B =

[
1 0
0 1

]

is

WC(T ) =
[ 1
2a

(
e2aT − 1

)
0

0 1
2b

(
e2bT − 1

)
]

10. Compute the minimum energy required for
the system

A =
[ 1
2 0
0 2

]
, B =

[
1 0
0 1

]
,

to transition from initial state x(0) =
[
0
0

]
to

final state x(T ) =
[
1
2

]
in time T = 1.
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Abstract

Neuroscience has long asked questions about
how neurons represent both external sensory
information arriving from the outside world
and motor and cognitive signals that are in-
ternal to an organism. These questions were
first asked at the level of spiking activity in
single neurons, but in the latter years of the
twentieth century, technological advances en-
abled recording from small groups of neu-
rons. Along with the technology, computa-
tional frameworks have been developed to an-
alyze neuronal populations, starting with pairs
and moving into larger groups. This body of
work has opened up avenues of inquiry that
range from primarily theoretical (how do neu-
rons represent information?) to highly practi-
cal (how can we design a robust brain com-
puter interface?). This chapter reviews the his-
tory of analytic approaches and neuroscience
research aimed at deciphering the population
code, from early work with single neurons and
pairs to more recent approaches leveraging the
newest technology tomeasure tens to hundreds
of neurons simultaneously.
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18.1 Introduction

In the latter portion of the nineteenth century,
developments in anatomical staining by Camillo
Golgi [1] and later investigation of nervous sys-
tem tissue by Santiago Ramon y Cajal led to
the neuron doctrine, the notion that the nervous
system is comprised of individual cells, along
with vivid pictures of the intricate connectivity
among these cells [2]. Work in the first half of
the twentieth century led to understanding of fun-
damental principles of the neural code – neurons
signal by emitting “spikes” (action potentials),
and spikes convey information to their targets
through their rate or timing. Since this time, the
understanding of the neuronal population code
has been advanced greatly by experimental work
in which the activity of many tens to hundreds of
neurons is recorded simultaneously and by theo-
retical work that has attempted to derive princi-
ples of information encoding and transfer. In this
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chapter, we review some of this ongoing literature
that delves into the computational principles of
the brain.

18.2 Extracting Information
from Single Neurons

Within the sensory domain, the information neu-
rons convey spans many different modalities in-
cluding vision, hearing, taste and smell, balance
and spatial orienting of the body, and somatosen-
sory experiences such as touch and pain. Single
neurons can respond selectively to different stim-
ulus attributes such as the spatial location of a dot
displayed on a computer screen, the constituent
frequencies of a sound, or whether the index
finger or thumb is touched. This phenomenon is
not limited to sensory systems, but also occurs
for motor systems, such as those that control the
six muscles that coordinate to produce a saccadic
eye movement, and the more complex muscle and
joint kinematics required to kick a ball.

A neuron is said to be tuned if across a given
set of attributes (such as spatial location of a
visual stimulus), the neuron varies its activity in
a systematic way. The optimal or preferred stim-
ulus is then the unique stimulus which elicits the
largest response from the neuron. In many cases,
neuronal responses vary smoothly as a stimulus is
changed, and by varying a given stimulus attribute
across a wide range of values, a tuning curve
can be generated. For example, in a region of
the prefrontal cortex known as the frontal eye
fields (FEF), the spikes that a neuron emits tend
to be related to both the spatial location of a
visual stimulus and the direction and magnitude
of eye movements. To determine the tuning of a
single neuron, experimenters typicallymonitor its
electrical activity while an experimental subject
(in this example, a macaque monkey) performs a
simple task in which it makes eye movements to
flashed stimuli.

To illustrate this with an example from real
neuronal data, we show (Fig. 18.1a) the spiking
response of a frontal eye field neuron that was
recorded as the spatial location of a visual stim-
ulus was varied across the visual hemifield in

45◦ steps. This neuron emitted more spikes for
leftward target locations (135◦,180◦,225◦) com-
pared to rightward locations (0◦,45◦,315◦) as thus
can be considered “tuned” for leftward targets (it
was recorded in the right hemisphere, and the
preferred targets were, as is typical in this brain
area, the contralateral visual field).

Like many signals in biological systems how-
ever, neuronal spiking is variable. If a target is
presented repeatedly at the same location, re-
sponses will vary from trial to trial. For the exam-
ple neuron shown, spiking responses to a down-
ward target (orange dot, 270◦) were greater than
20 spikes/second for some trials and as low as
0 spikes/second for others (orange histogram in
Fig. 18.1b). At the single-neuron level, variability
can bemeasured by computing the variance of the
spiking response for each condition, across trials
of that particular condition (Fig. 18.1c). The spik-
ing response and variance scale with each other,
such that conditions with a high spiking response
also have high variance, while conditions with
low spiking responses have low variance. In a
Poisson process, often used as a mathematical ap-
proximation of the statistics of neuronal spiking
behavior, the ratio of the variance to the mean is
one.

By calculating the tuning curves of individual
neurons, researchers can gain some insight into
how stimuli are represented in the brain. In Fig.
18.1, spike responses for two conditions (blue and
orange histograms, 180◦ and 270◦) are plotted
for many repeats of these two conditions. If an
observer was using the spiking response of this
neuron to determine the location of the stimulus
(left or down), for some responses it would be
clear where the stimulus was being presented.
For instance, only the leftward stimulus (blue his-
togram) showed responses greater than 40 sp./s,
while the weaker responses (in the range of 15–
20 sp./s) could arise from a stimulus in either
the blue or orange condition. To quantify the
degree to which a neuron can accurately represent
a stimulus, researchers have drawn from signal
detection theory methods, including d-prime (d’).
d’ is calculated as the difference of the means of
two distributions normalized by the standard de-
viation of the two distributions. A neuron’s d’ can
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Fig. 18.1 Tuning curve and variability. (a) In this simple
tuning curve, the firing rate (in spikes per second) of a
single FEF neuron (recorded in the right hemisphere) is
plotted as a mean value (across many trials) with the stan-
dard error of the mean (SEM) indicated by the error bars
(± 1 SEM). This single neuron responds briskly to visual
stimuli flashed contralateral (180 degrees) to the recorded

hemisphere (blue dot), but much more weakly to stimuli
flashed downward (270 degrees, orange dot). (b) These
histograms show the distribution of spike counts in many
repeated trials of the two stimulus conditions in panel A.
The means of the distributions are indicated by the vertical
lines. (c) Variance in the spike count (computed across
trials) is shown here as a function of the stimulus condition

be used to calculate a “neurometric” function [3],
which can be related to behavioral performance
(the psychometric function). We will discuss this
issue further in the sectionRelating neurons to be-
havior. Our next section, however, will deal with
generalizing the concept of neuronal responses
beyond the single neuron.

18.3 Correlation in Pairs
of Neurons

To give some intuition on how variability can
affect stimulus encoding, we start with a simple
coin flipping example. Imagine you flip a coin
eight times and observe the number of times it
lands on each side of the coin (“heads” or “tails”).
We can define a variable x that represents whether
for a given flip the result was heads or tails (x= 0
for tails, x = 1 for heads). We can thus represent
the outcome of the 8 trials as an 8 bit binary
number (11111111 corresponds to 8 flips landing
all on heads, 00000000 to 8 flips landing all on
tails, 10101010 to 50% heads and 50% tails)
that would have 28 possible values (ignoring the
ordering of the responses).

Now, to extend this example to neuroscience,
let’s consider a set of 8 sensory neurons, each
of which encode the presence or absence of a
single sensory input (one of the coin flips) with
a spike. If we were recording from 8 neurons, the
population could represent the 8 coin flips (the
variable x). That is, if each neuron fired a spike
(1) or did not (0), we could encode the results
of the coin flips in the spiking of the neurons (1
spike for heads, 0 spike for tails). If those eight
neurons were able to accurately encode the coin
flips and never made a mistake (i.e., fired a spike
for tails, or failed to fire a spike for heads), then no
information would have been lost, and our coin-
flip-detecting sensory system would have perfect
fidelity in its encoding.

There are then two simple ways that this sen-
sory system could be imperfect. First, there could
be noise in the encoding of the coin flips. That is,
some of our sensory neurons couldmakemistakes
on occasion. Second, some of the neurons could
be correlated. If two of the neurons were perfectly
correlated, only 27 states would be possible in
this set of neurons (instead of 28). Thus, in a
very simple sense, correlation can have an im-
pact on the amount of information that can be
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represented in a population. This seems unde-
sirable in a simple sense – uncorrelated sensory
neurons would seem to provide the best possible
sensory encoding. However, the brain contains
neurons that are massively interconnected, and
correlation may be a necessary side effect of that
interconnection.

As another analogy to reinforce the effect of
correlation, consider the same population of eight
neurons who now each fire spikes related to the
outcome of a single coin flip. If the coin landed
on heads, then they would all fire one spike (and
zero spikes for tails). As we mentioned above,
noise in the encoding of the coin flip by individual
neurons could decrease the fidelity of their repre-
sentation of the coin flip outcome. One way to ac-
count for noisiness in the responses of individual
neurons would be to average the spike responses
of the eight neurons and set a threshold such that if
the total spike response across the eight neurons
is greater than 4 (0.5 spikes/neuron), a stimulus
was present. This would be an effective way of
dealing with noise in the encoding of the coin
flip in individual neurons. If up to three of the
eight neurons made an error, the spike response
would still exceed our threshold, and we would
know the outcome of the coin flip. However, if
there is correlation among some pairs within the
group of eight neurons, when one neuron fired an
“accidental” spike when the coin turned up tails
(and it was supposed to not fire), the other neurons
positively correlated with that neuron also would
exhibit increases in the likelihood or magnitude
of their spiking response. Thus, the presence of
correlation in pairs of neurons can produce errors
in the population’s encoding of a stimulus.

An early motivation for studying correlations
came from the observation that in certain circum-
stances, the behavioral performance of a subject
in a task was not substantially better than the
single most sensitive neuron recorded during that
task [3]. Although it has already been highlighted
that single-neuron responses can vary from trial
to trial even in identical task conditions (Fig.
18.1b), as described above pooling across a small
subpopulation of these sensitive neurons could
result in an accurate estimate of the stimulus. By
pooling across neurons, small variations in single

neurons could be averaged out, if each neuron’s
variability was independent. However, variability
in neurons is not in fact independent, but shared,
meaning it could not simply be averaged away by
pooling across neurons [4].

Noise correlation (also known as rnoise, rsc, or
spike count correlation) describes the tendency of
a pair of neurons to co-fluctuate their activity for
an identical stimulus presented repeatedly and has
been used as a measure of the shared variability
in pairs of neurons. It is termed “noise” correla-
tion because it involves fluctuations in neuronal
response that are independent of the stimulus
(and are typically measured in repeated presen-
tations of an identical stimulus). This tendency
of neurons to fluctuate their responses together
has been used as an index of their functional con-
nectivity, reflecting the direct and indirect con-
nections present in a network of neurons. Such
a common source of variability could arise from
noise present in a common input to both neurons.
By studying how groups of neurons vary their
activity together, researchers can gain insights on
the functional architecture of neuronal networks,
a difficult task to achieve by only recording single
neurons. Furthermore, it is possible that by learn-
ing how pairs of neurons interact, and how those
interactions are linked to behavior, we can glean
principles that impact the operations of much
larger groups of neurons.

Noise correlation (referred to hereafter as rsc)
is typically calculated across repeats of a given
condition by computing the Pearson correlation
coefficient of a pair of neuronal spike responses.
It is also possible to combine data across condi-
tions, typically by z-scoring the spiking responses
within each condition before computing the Pear-
son product-moment correlation coefficient. Crit-
ically, to calculate rsc, simultaneous recordings
must be made of multiple neurons (at least 2)
across multiple trial repeats (at least 20 or 30 are
needed to estimate rsc reliably).

When considering the effect of rsc on stimulus
encoding, the tuning of each neuron in the pair
must be considered. Signal correlation, or rsignal,
describes the similarity of tuning in two neurons
by calculating the Pearson correlation coefficient
of their tuning curves. An rsignal value of 1 cor-
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Fig. 18.2 (a) An example pair of neurons with similar
tuning curves (top panel). When rsc is large and positive
(middle panel), discrimination between a pair of stimuli
can be difficult (ellipses cross the dashed decision bound-
ary). A reduction of rsc in this case would enhance the

ability of an observer to determine the stimulus identity
(bottom panel). (b) For an example pair of neurons with
dissimilar tuning (top panel), the effect of rsc would be
quite different, better with large values (middle panel) than
with weakly correlated neurons (bottom panel)

responds to two neurons whose tuning curves
are identical (or scaled copies), while a rsignal of
−1 would correspond to tuning curves that are
opposite (Fig. 18.2).

A simple example of how correlation between
neurons can impact coding is shown in Fig. 18.2.
Consider first two neurons in Fig. 18.2a (top
panel). They have similar tuning curves, mean-
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ing the stimuli that elicit large (and small) re-
sponses are shared between the two neurons.With
this pair of neurons, we can consider the goal
of discriminating the trial condition (1 and 2,
which can be thought of as the blue and or-
ange conditions from Fig. 18.1). In a joint fir-
ing rate space (Fig. 18.2a, illustration in mid-
dle and bottom panels), the neural responses are
plotted, with the filled circles representing the
mean firing rates for each condition and the el-
lipses representing the variability (2 standard de-
viations from the mean). Two cases are shown
for this pair, one in which the rsc is low (bottom
panel) and high (middle panel). These are visu-
ally distinguishable because of the shape of the
joint response ellipses. If the two neurons were
uncorrelated (rsc of zero), those ellipses would
be completely circular. In the case of higher rsc
(middle panel), the ellipses are more elongated,
indicating that the noise in the response of one
neuron around its mean was highly predictive of
the noise in another neuron’s response around its
mean.

The noise shared among a pair of neurons
can impact the ability of an observer to determine
which stimulus (red or blue) was shown. A simple
way to distinguish the stimulus identity would
be to determine an optimal decision boundary,
considering the noise in each neuron’s response.
Such an optimal boundary could be sufficient
when the rsc of the pair of neurons is low (dashed
line, bottom left panel), and few mistakes would
occur. However, for the same pair of neurons
with the same mean responses to the two stimuli,
a higher rsc (middle left panel) would lead to
mistakes in identifying the stimulus – instances
where the response falls on the “wrong” side
of the decision boundary. When we consider
a pair of neurons with dissimilar tuning (Fig.
18.2b, rsignal < 0), however, the intuition changes.
In this case, discrimination between the two
conditions would be better when rsc was high
(middle right panel) when compared to lower
values of rsc (bottom right panel). This simple
example highlights how the structure of both
signal and noise correlation can greatly impact
the ability of downstream neurons to decode
neuronal population activity [5].

The results from Zohary et al. [4] and related
work brought about many theoretical studies de-
voted to the impact of correlations on information
encoding in populations of neurons. A common
measure of information encoding is Fisher infor-
mation, which in a neural encoding context is
meant to capture the amount of information about
the stimulus carried by the spiking responses of a
group of neurons. Some of the earliest studies to
examine Fisher information and neuronal corre-
lations disagreed on the impact of correlations on
information in neuronal populations [6–8], with
a key point of disagreement coming from the
question of whether correlation could lead to a
saturation in the gains in information as popula-
tion size grows. In other words, in the presence of
correlation, is the brain limited in howmuch it can
do with a large group of neurons? Assumptions
in the structure of neuronal responses and their
correlations can have an important impact on
this calculation. For populations of neurons with
heterogenous tuning (tuning curves have different
amplitudes and widths), Fisher information does
not saturate [9, 10]. Similar assumptions in the
correlation structure are critical, such as whether
correlations are uniform across the population or
decrease as a function of neuronal response char-
acteristics such as tuning similarity or distance.
Ultimately, great care should be taken when infer-
ring the impact of correlations in pairs of neurons
or simulated populations [11].

18.4 Synchrony in Pairs
of Neurons

So far in this chapter, we have described cor-
relation in pairs of neurons in a fashion that is
independent of time. However, co-fluctuations in
the responses of pairs of neurons can be measured
across a wide range of time-courses, from mil-
liseconds to spanning the entire trial (hundreds
of milliseconds). The precise synchronization of
spiking responses on a millisecond by millisec-
ond time scale is often referred to as synchrony.
To measure the synchrony of a pair of neurons, a
common tool is the spike train cross-correlogram
(CCG). For a given pair of neurons, the CCGmea-
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correlogram (CCG) is shown between the two neurons.
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CCG (green), indicating that these two neurons were not
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neurons have no synchrony but a similar stimulus response
profile, an elevated synchrony level can be detected in
the CCG but will be removed by trial shuffling. (c) A
synchronous pair of neurons (with a time scale of less
than 10 ms) will exhibit a peak in the CCG which is not
removed by trial shuffling

sures the number of coincident spikes between the
two neurons’ spike trains at different time lags
(Fig. 18.3). If a peak is observed at 0 ms, for
example, the pair of neurons tended to spike at
the same time, while a peak at 3 ms would mean
one neuron tended to spike 3 ms after the other.
Typically, to quantify synchrony, the area under
the CCG is calculated for time lags in a small
window. In the calculation of synchrony (as with
correlation overall), an important consideration
is the expectation due to chance. That is, for a
pair of neurons with moderate firing rates, even if
their spiking activity is independent, some spikes
may still occur within a few milliseconds due to
chance (Fig. 18.3a). Furthermore, if those neu-
rons share a particular feature of their response,
for instance, a transient increase in spiking when
the stimulus turns on, it may masquerade as a
precise relationship between the neurons when in
fact it only indicates their common relationship
to the stimulus. How do we determine if the syn-
chronously timed spikes we observe are simply
due to chance, or instead indicate some precise
temporal relationship between the neurons?

A widely used means to control for stimulus-
locked responses and those due to random coin-
cidences in spiking involves using surrogate data
to compute a CCG. The goal of this procedure
is to generate surrogate spike trains that are like
the real data in all ways except the synchronous

behavior under study and then subtract it from
the raw CCG. Whatever remains after that sub-
traction is the “true” synchrony. For example, a
pair of neurons that spike randomly will exhibit
some level of synchrony (Fig. 18.3a). If one con-
structs a surrogate data set in which the trials are
rearranged such that the trials of the two neurons
were not recorded simultaneously, synchrony that
was due merely to the spike rate would be pre-
served. If that “shuffled” CCG is subtracted from
the raw CCG, a flat (albeit noisy) trace remains,
indicating a lack of synchrony beyond the chance
expectation. This shuffled control can also correct
for synchrony that is observed merely due to
the response timing of the neurons (Fig. 18.3b).
However, if the neurons are truly synchronous
(Fig. 18.3b, simulated with synchronous spiking
on a time scale of a few milliseconds), synchrony
will be preserved even after the shuffled control.

It is also possible to use other forms of shuf-
fled correction, which attempt to isolate the spe-
cific time scale of synchrony [12–14]. In this
case, jittering the spike times within a particu-
lar designated window (e.g., 50 ms) can destroy
the potential for synchrony on a fast time scale,
but preserve the overall PSTH and the potential
for slower time scale interactions. Designing a
method to create surrogate spike trains requires
careful thought about the response properties of
the neurons and the time scale under study. Im-
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portantly, the CCG approach to studying faster
time scale interactions and the Pearson’s corre-
lation metric of rsc are linked. The integrated area
under the CCG, when normalized by the temporal
pattern of spiking of each neuron in the pair, is
mathematically equivalent to rsc when computed
at the same time scale [15].

18.5 Beyond Pairwise Correlation

Pairwise correlations and single-neuron metrics
provide a relatively simple measure of how neural
activity is evolving, that when averaged across
many pairs or neurons can give some index into
the underlying circuitry. However, changes in cor-
relations can be difficult to interpret when relating
these measures to higher cognitive processes such
as attention. Attention modulates the spiking of
sensory neurons, typically increasing their firing
rate when compared to an unattended stimulus
[16–18]. Correlations have also been shown to
decrease with attention in pairs of neurons [19,
20], indicating that the changes in the activity of
populations of neurons due to attention cannot
be described simply as the sum of single-neuron
changes. That is, a change in firing rate alone
does not capture the changes in the population
due to attention. However, it is difficult to de-
velop simple intuition for how the activity of
single neurons and pairs of neurons influences
the population-level structure, particularly since
previous modeling studies have shown correla-
tions can be both beneficial and detrimental to
information capacity. Furthermore, correlations
are measured across trials, but for directly link-
ing population activity to behavior, it is desir-
able to have population metrics that can be com-
puted on a trial-by-trial basis. As an example,
one might want to identify simple descriptions
of what changes in a population between con-
ditions or states (for instance, paying attention
or not). The following paragraph will describe
common measures of population activity, while
later paragraphs will describe their applications
in experimental paradigms.

Many approaches to measuring population
activity are based on statistical techniques rooted

in machine learning. One such approach is
dimensionality reduction, which reduces high-
dimensional (tens to hundreds of neurons)
neural activity into a more tractable subspace
(a smaller number of latent dimensions) that
maintains many of the important features of the
high-dimensional neural activity. One common
dimensionality reduction method is principal
component analysis (PCA) which identifies the
dimensions in the neural data that contain the
most variance (Fig. 18.4). PCA is particularly
useful in identifying the separation of neural
activity due to stimulus tuning. For instance,
in a population of FEF neurons with tuning to
the location of a visual target, the activity on
single trials is separated into distinct clouds in
a PCA subspace generated from the condition-
averaged responses (Fig. 18.4). Importantly, a
PCA subspace is defined to describe all of the
variability present in the responses, whether
it derives from the stimulus, single neuron
variability, or neuronal correlation.

Factor analysis (FA) expands upon PCA by
explicitly defining a noise term private to each
neuron, allowing neural variability to be parti-
tioned into components shared across the pop-
ulation and those independent to each neuron
[21, 22]. This conceptually links FA and pairwise
correlationmeasures such as rsc, which also incor-
porates covariance and variance. Similarly to how
synchrony and correlation are related but attempt
to capture different time scales, population-level
analyses like PCA and FA have been extended
to incorporate temporal information. Two such
techniques are Gaussian process factor analysis
(GPFA) [23] and latent factor analysis via dy-
namical systems (LFADS) [24]. By assuming that
population activity is both low-dimensional and
smoothly varying over time, these methods can
identify the temporal structure of the population
activity, which could vary across different task
epochs of an experiment. An important additional
method to describe population activity involves
the explicit identification of the relevant variables
within a regression framework, known as a gen-
eralized linear model (GLM). In this case, rele-
vant variables like interaction strengths between
neurons, spiking history, stimulus input, andmore



18 Deciphering the Neuronal Population Code 527

-30 -20 -10 0 10 20 30 40

Principal component 1

-30

-20

-10

0

10

20

30

40

P
rin

ci
pa

l c
om

po
ne

nt
 2

N
eu

ro
n 

#

1

21

Condition # (target direction)
1 (0˚) 3 (90˚) 5 (180˚) 7 (270˚)
μ1 , 1 μ1 , 3 μ1 , 5 μ1 , 7

Define low dimensional space
 based on condition average

Principal component
1 2

Tr
ia

l #

Project each individual trial into
low dimensional space

Fig. 18.4 Data from a population of 21 FEF neurons in
which 8 different conditions were shown. In this example,
a matrix containing the mean responses of those 21 neu-
rons to 8 different stimulus conditions forms the starting
point. PCA can identify a low-dimensional subspace that
captures most of the variance (here, two dimensions are

shown). This method allows the projection of the individ-
ual trials (only four conditions are shown for simplicity)
into that space. The condition means (large black-outlined
circles) are well separated, but the individual trials have
some overlap, indicating that imperfect decoding would
be obtained from this population of neurons

can be incorporated into a generative model that
describes spiking activity. Such a framework can
be used to capture neuronal responses while tak-
ing into account the population [25]. The ability
to explicitly identify and add parameters, and
observe the change in prediction, makes it an
important alternative to the dimensionality reduc-
tion approach.

Advances in recording technologies have al-
lowed researchers to go from monitoring single
neurons or small populations (tens of neurons)
to recording from hundreds of neurons simulta-
neously [26]. To understand how all these neural
signals are combined in the brain to produce
a behavior, statistical approaches from machine
learning have been applied to these data sets to
identify the relevant signals in a more tractable
way. In particular, dimensionality reduction tech-
niques allow researchers to extract population
signals from groups of simultaneously recorded
neurons and relate these signals to behavior on
a trial-by-trial and moment-to-moment level. As
we will see in the next section, one of the ultimate
goals of population analyses is to understand and
predict behavior.

18.5.1 Relating Neurons to Behavior

While descriptive statistics of neural activity,
whether at the single neuron, pairwise, or
population level, are useful for establishing the
response properties of neurons in a particular
region, in order to truly understand how the brain
works, these statistics must be related to high-
order processes. Identifying the neural correlates
of behavior has a long history, beginning with
single-neuron experiments, extending to pairs
and populations, and even includes causal
manipulations of neural activity.

One of the first studies linking single-neuron
activity to behavior employed a binocular rivalry
paradigm. In this paradigm, two distinct stim-
uli (moving gratings) were presented separately
to the two eyes, either moving in the same di-
rection (i.e., upward, the nonrivalry condition)
or in different directions (i.e., one upward, one
downward, rivalry condition). During the rivalry
condition, a perceptual instability occurs, as one
eye would signal the motion to be downward,
while the other would signal it upward. The term
“rivalry” describes the phenomenon that subjects
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report only one of the two motions (but not both)
at a time, and this report can change across tri-
als or even within a trial. Logothetis and Schall
[27] recorded from neurons in parietal cortex
and found that some neuronal responses reflected
the monkeys’ reported perception in the rivalry
condition, indicating that the perceptual report of
the subject could be read out from these neurons.

The typical way to quantify the relationship
between the activity of individual neurons and
behavioral choices is with “choice probability,”
which quantifies the ability of an ideal observer to
determine which choice a subject will make based
on the firing rate of a single neuron [28, 29]. Com-
puted by taking the area under the receiver operat-
ing characteristic (ROC) curve, choice probabil-
ity captures the tendency of a neuron’s variability
in response to an ambiguous stimulus to predict
an animal’s behavioral choices about that stimu-
lus. Inmany cortical areas such as themiddle tem-
poral area (MT), lateral intraparietal area (LIP),
somatosensory cortex (S1 and S2), premotor and
motor cortex, and subcortical areas involved in
eye movements (for review, see Crapse and Basso
[30]), neurons possess choice probability levels
that easily exceed chance, meaning single neu-
rons can accurately predict which decision the
subject will make. In general, choice probabili-
ties increase along the visual hierarchy, meaning
higher-order “decision” areas have larger choice
probabilities compared to earlier sensory areas.
Importantly, the presence of choice probabili-
ties in individual neurons by necessity will go
along with statistical relationships between neu-
rons, measured by pairwise correlation [29, 31,
32]. Thus, an understanding of the relationship
between neurons and decisions must include con-
sideration of both individual neurons and popula-
tions.

As previously mentioned, changes in pairwise
correlations have been linked to attention. While
numerous studies have found that correlations de-
crease with attention [19, 20, 33, 34], this descrip-
tion does not capture the full picture. Correlation
changes with attention depend on the tuning sim-
ilarity of neurons [35] and whether the pair is
within or between cortical areas [36]. At the pop-
ulation level, activity from groups of neurons can

be used to define an “attention axis,” which goes
beyond examining stimuli in unattended/attended
conditions, but aims to quantify the degree of
attention allocated to a stimulus on a trial-by-trial
basis [37–39]. In the motor domain, shared vari-
ability in populations decreases after the onset of
a stimulus [21] and is lower for faster eye move-
ment reaction times [40]. Dimensionality reduc-
tion analyses have shown that population activ-
ity occupies different low-dimensional subspaces
when preparing to make an arm reach (denoted
the “null” space since the arm has not moved
yet) and executing the arm movement (denoted
the “potent” space) [41]. Additionally, these low-
dimensional trajectories across time can represent
vacillation between two reach targets, giving an
indication of when the subject is “changing their
mind” [42].

Here, we consider the same example of FEF
neurons in the context of an eye movement task
used above (Fig. 18.1). In a group of FEF neurons,
FA can be used (similar to PCA in Fig. 18.4) to
identify a low-dimensional subspace that captures
the shared variability among the neurons. In con-
trast to the PCA procedure shown above, FA is
performed in this case on a matrix of neurons by
individual trials (Fig. 18.5). Because the behavior
of the animal is variable even though the target is
in the same location (Fig. 18.5a, reaction times
for one target location), this offers an opportunity
to predict behavior from neural activity. The 1st
FA dimension captures the largest proportion of
shared variability that can be described from FA.
Although FA was not provided with information
about the saccadic reaction time in the trials,
nonetheless individual trials fell in a different
portion of the 1st FA dimension axis (Fig. 18.5b)
when the eventual reaction time was particularly
fast (green) or slow (purple). In a multidimen-
sional subspace (Fig. 18.5c, 3 FA dimensions),
this was also true, where fast and slow trials were
separable.

This FA result is one example of the link be-
tween neuronal populations and behavior. How-
ever, in the above example, FAwas applied across
a large temporal window of several hundred mil-
liseconds. Applying GPFA [23] to the same data
yields a rich picture of the temporal extent to
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dimensions), fast and slow reaction times can be predicted
from the population-level activity of FEF neurons

which population activity separates during eye
movement preparation. In GPFA, each dimen-
sion has its own time scale that best matches the
data. Once again, as with FA, individual trials
(grouped by reaction time) are well separated in
the subspace (Fig. 18.6a). Considering the full
set of eight eye movement conditions, and the
fastest and slowest trials in each (green and purple
lines), there is a strong separation in the subspace
identified by GPFA (Fig. 18.6b).

These data relating low-dimensional activity
in FEF to reaction time [40] form but one of
many studies that have linked low-dimensionality
motor activity to behavior. Importantly, they offer
the potential for large-scale population recordings
to predict and account for behavior on a scale that
has not been possible with measurements from
individual neurons or pairs of neurons. Some fur-
ther examples of this type of analysis include re-
lating low-dimensional projections to reaching/-
grasping reaction time [43, 44], task epoch from
motor preparation to the onset of movement [41,
45], and the motor preparatory state to one of two
targets [46].

Finally, one direct method of linking neural
activity to behavior involves altering neural re-
sponses through direct activation of neurons in
the proximity of an electrode. Electrical micros-

timulation has been widely used to identify func-
tional properties of different cortical and sub-
cortical regions, identifying which areas, when
stimulated, elicit a behavior such as a saccade
[47–49], complex arm reach [50], and tactile sen-
sations [51]. In sensory areas, microstimulation
can influence the direction random motion dots
are perceived [52], while subthresholdmicrostim-
ulation (not eliciting a movement) can improve
performance on visual discrimination task [53,
54], delay arm reaches [55], and increase the
firing rates of neurons in visual cortex in amanner
similar to attention [56]. Causal interventions, of
which electrical microstimulation is one of many,
are a powerful means to understand the relation-
ship between neuronal activity and behavior.

18.6 Developing Hypotheses
About the Structure
and Function of Neuronal
Population Activity

Intracortical brain computer interfaces (BCIs) op-
erating on spiking neural activity represent one
situation in which it is particularly important to
link neural activity accurately to behavior. BCIs
often involve a user controlling some kind of
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output, generally a computer cursor or robotic
arm, by generating activity patterns across a pop-
ulation of neurons. Because the mapping between
the activity and the control signal is defined by
the experimenter, BCIs are useful tools to study
learning, when the mapping can be redefined or
perturbed in some systematic way to identify how
(and whether) the user can learn the newmapping
[57]. In work of this nature, rich descriptions of
population activity are essential to capture the
nature of the population code in use [58] and to
recognize changes in activity patterns when they
emerge [59].

Another instance of using population activity
metrics to test hypotheses about the neural code
is in the study of working memory. The nature
of the neural code for working memory has been
hotly debated [60–62], in particular focusing
on whether persistent activity in single neurons
might form an effective code. One means to test
that hypothesis involves investigating whether
the neural code (based on population activity)
can generalize across the memory period of a
working memory task. That is, is the same code
used at all times while a memory is stored?While
some studies have shown evidence of neural
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codes that do not generalize (in support of a
more dynamic working memory framework (for
review see Meyers [63]), an alternative avenue
forward lies in the stable subspace approach that
permits a fixed population readout regardless of
the time in the memory period [64]. Others have
used decoding frameworks to compare cortical
regions, highlighting the presence of a stable
or dynamic code could depend on the role of a
particular area in the sensorimotor hierarchy [65,
66]. Although this debate remains unresolved,
it is clear that population-level analyses provide
additional insights that cannot be gained from the
study of only single neurons.

18.7 Conclusion

Although spikes from single neurons can be con-
sidered the fundamental unit of communication
in the brain, those single neurons do not act in-
dependently. Vast connections exist between neu-
rons within and between regions. To understand
interactions between neurons, analyses were first
developed to account for how a pair of neurons
might covary their activity, across trials and from
millisecond to millisecond within a trial. With
the advent of technologies that allowed hundreds
of neurons to be recorded simultaneously, re-
searchers turned to statistical methods that bet-
ter describe population-level signals. With these
methods, researchers can uncover subtle signals
that are distributed across a population of neurons
that might be hidden from examination of single
neurons individually. Relating these population-
level signals to behavior is an extremely active
area of current research in neuroscience.

In this chapter, we aimed to cover a vari-
ety of techniques used for extracting information
from neurons, beginning with single neurons, ex-
tending to pairwise interactions, and finally con-
cluding with population-level analyses. We high-
lighted research findings at each of the levels and
demonstrated their relation to behavior, a com-
ponent we believe will be critical in advancing
our understanding of the brain. Examining neural
activity at the single-neuron, pairwise, and pop-
ulation level provides complementary insights:

examining single-neuron response properties can
aid in the interpretation of population signals,
while understanding population signals can pro-
vide a holistic measure of how single-neuron ac-
tivity is combined. Ultimately, the level (or levels)
at which researchers examine neural activity is
dependent on the research question posed.

Homework

1. Neurons in the brain convey information
about:
(a) Vision
(b) Hearing
(c) Touch
(d) All the above

2. If neuron A and neuron B are perfectly cor-
related, no additional information is gained
when taking into account neurons A and B as
opposed to only neuron A
(a) True
(b) False

3. Signal correlation (rsignal) and noise correla-
tion (rsc) differ in that:
(a) rsignal examines evoked activity; rsc exam-

ines spontaneous activity.
(b) There is no difference between rsignal and

rsc; they are only different names for the
same thing.

(c) rsc is measured for pairs of neurons,
whereas rsignal is measured for single
neurons.

(d) rsc measures trial-to-trial fluctuations for
a repeated stimulus; rsignal is a measure
of the similarity of two neuron’s tuning
curves.

4. The impact of rsc on stimulus encoding is:
(a) When rsc decreases, stimulus decoding

always increases.
(b) When rsc increases, stimulus decoding

always decreases.
(c) rsc does not impact stimulus decoding.
(d) None of the above

5. Single neurons in the brain cannot predict
behavior
(a) True
(b) False
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6. Attention’s effect on correlation is primarily
to increase its value
(a) True
(b) False

7. Describe the difference between correlation
and synchrony.

8. Explain the concept of surrogate data and
how it is used in correcting synchrony met-
rics.

9. What is the difference between PCA and FA
as applied to neural spiking data?

10. What advantage do GPFA and LFADS have
over PCA and FA?
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Abstract

Epilepsy is one of the most common neuro-
logical disorders globally, and the decrease in
quality of life associated with it includes –
among other things – fear and uncertainty over
when the next seizure would manifest itself.
The most common way to treat epilepsy is
by using antiepileptic drugs; however, around
30%of all patients develop refractory epilepsy,
where medication fails to control seizures, and
patients have to resort to surgical resection of
epileptogenic zones. While manual techniques
exist to detect epileptic seizures, and come up
with the appropriate regiment of antiepileptic
drugs, they are generally limited by the skill of
the human operator and can be applied only to
a particular application. Arguably, a better ap-
proach is to use machine intelligence to iden-
tify patterns in data unseen to the human eye
and perform identification of seizure states,
and medicine regiments in an automated ob-
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jective manner. In this chapter, we will dis-
cuss such machine learning algorithms. We
will explore the most widely used algorithms
and their variations – both in the context of
seizure prediction and detection (arguably the
most widely used application of machine in-
telligence in epilepsy), as well as in other
applications, such as antiepileptic drug effi-
cacy. We will also talk about common tech-
niques of feature extraction – particularly fo-
cusing on wavelet phase coherence and cross-
frequency coupling. While much of work has
been done to improve current machine learn-
ing algorithms in the context of epilepsy, chal-
lenges still remain to be solved, and potential
future directions for machine intelligence ap-
plications in epilepsy are discussed at the end
of the chapter.

Keywords

Epilepsy · Seizure prediction · Seizure
detection · Machine learning ·
Cross-frequency coupling · Machine
intelligence · State classification

19.1 Introduction

Epilepsy is a dynamical disease, and its effects
are evident in up to 1% of the population, or over
60 million people worldwide. It ischaracterized
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by transient interruptions of brain function caused
by abnormal temporal and spatial coherent firing
of a neuronal population, often referred to as
a seizure, paroxysmal discharge, or ictal event
[1]. Beyond a number of comorbidities associated
with epilepsy, patients with epilepsy are usually
unable to predict when they will have a seizure
and thus are often unable to drive, have difficulty
engaging in the workforce, are at increased risk
of head injury due to seizure-related fall, and
typically carry a stigma associated with having
epilepsy. All of these factors contribute to a re-
duced quality of life in patients with epilepsy and
are largely attributed to the debilitating as well as
the unpredictable nature of seizures. Furthermore,
patients with refractory epilepsy are also at an ele-
vated risk of sudden unexpected death in epilepsy
(SUDEP), which might be preventable if one
could anticipate a seizure occurrence [2]. Hence,
there exists a need for monitoring systems that
detect preclinical seizure states in the EEG to alert
patients and caregivers to oncoming seizures.

The pathophysiology of seizures is an
enhanced cortical excitability, leading to
paroxysmal depolarization shifts, an enhanced
probability of hypersynchronous activity of small
neuronal networks, and an abnormal spreading of
this pathological activity along cortico-cortical
and cortico-subcortical neuronal connections [3,
4]. Thus, the common feature of antiepileptic
therapies is the reduction of any pathological
hyperactivity by either enhancing neuronal
inhibition or reducing excitation. Current
methods for seizure treatment include either the
use of antiepileptic drugs (AEDs) or surgical
removal of epileptic tissues. While usually the
first treatment option to be used, AEDs require
a regiment tailor-made for a given patient and
have a wide range of side effects associated with
them [5] – thus being able to predict whether a
given regiment of AEDs will be successful will
improve epilepsy therapy strategies.

In this chapter, we will describe EEG-based
machine learning approaches for classification
and detection of preclinical seizure states in
epileptic patients, as well as look at some other
applications of machine intelligence in context of
epilepsy.

19.2 Feature Extraction

All machine learning techniques rely on input
data to find underlying patterns and develop data-
based models. This input data consists of measur-
able quantities designated as features, and choos-
ing appropriate features is one of the main chal-
lenges in machine intelligence. Manual feature
selection and tuning is a task that can be time-
consuming and often requires expertise in the
application. Feature engineering is the process of
finding these features from our knowledge of the
origin of scalp EEG recordings and deciphering
the physiological and pathological basis of their
oscillations.

19.2.1 Rhythms of the Brain

Scalp EEG is a noninvasive recording method
that has been widely used by neurologists to
identify epileptiform activity in patients. Human
scalp EEG recordings are measures of electrical
fields with contributions from all transmembrane
currents in the brain. EEG reflects the summa-
tion and superposition of similarly oriented, syn-
chronous neuronal and glial electrical activity
favoring superficial sources rather than subcorti-
cal deeper structures [7]. The nature of volume
integration in the brain leads to spatial averaging
in EEG as compared to local field potential (LFP)
recordings which can pick out local activity [7].
Nonetheless, EEG signals show brain rhythms re-
lating to neuronal network effects and oscillations
with high temporal resolution, and temporal and
spectral analysis of these signals forms a large
and important set of features for machine learning
techniques.

As information in the brain is transmitted
using neural coding, spectral information or
rhythms at different frequency ranges recorded
in EEG have been the target for analysis in
perceptual binding and transient short- and long-
range coordination. The rhythms of the brain
were noticed by Penttonen and Buzsaki to show
frequency ranges at an arithmetic progression
on the natural logarithmic scale (Fig. 19.1) [6].
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Fig. 19.1 Brain rhythm
frequency range following
a logarithmic scale. (Figure
adapted from Penttonen
and Buzsáki [6])

Lower-frequency oscillations allow for longer
delays and communication between larger areas.
Higher-frequency oscillations facilitate acute
and spatially limited communication. These
oscillations are concurrent with one another
suggesting that the brain works at different time
scales [8].

While low-frequency oscillations (LFOs) are
important – e.g., the shape and synchronicity
of beta (13–30 Hz) waveforms was shown to
improve detection of Parkinson’s disease patho-
physiology in noninvasive recordings [9] – in
the past decade, higher frequencies have gained
prominence. High-frequency oscillations (HFOs)
are defined as frequencies in EEG ranging from
100 to 500 Hz. More specifically, HFOs rang-
ing from 100 to 150 Hz are described as ripple
and 250 to 500 Hz as fast ripple [10]. HFOs
have been identified occurring during interictal
epileptiform discharges (IEDs) with fast ripples
more restricted to seizure-onset zone. Jacobs et
al. showed analysis of HFO rate independent of
IEDs for identifying seizure-onset zone [10]. Fast
ripples during IEDs and in absence showed higher
sensitivity in finding the seizure-onset zone while
keeping a specificity value of 95%.

The challenge of using HFOs in EEG for high-
lighting the seizure-onset zone (SOZ) is that of-

ten there is an overlap between physiological
and pathological activity in the range of high-
frequency oscillations. Brazdil et al. showed a
higher specificity in locating the zone using fre-
quency ranges from 600 Hz up to 2000 Hz (see
Fig. 19.2) [11]. These very-high-frequency os-
cillations (VHFO) were shown to be present in
patients with focal epilepsy [12]. Patients whose
resected brain regions more closely corresponded
to EEG channels containing VHFOs showed sig-
nificantly better surgery outcomes indicating that
this may be a superior biomarker.

To examine the power of different spectral
bands, including the VHFOs, the Fourier trans-
form has enabled us to transform EEG recorded
signals from the time domain to the frequency
domain. The Fourier transform is given as

I {f (t)} = f̂ (ξ) =
∫ ∞

−∞
f (t) e−2πjtξ dt,

(19.1)

where ξ is the frequency in hertz. Applying it to
discrete data and using a finite window, the short-
term Fourier transform takes the form

F (ξ, k) =
N∑

n′=1

fkw
(
n′ − k

)
e−jξk, (19.2)
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Fig. 19.2 Localization of epileptogenic zone using
VHFO activity on iEEG data. Each vertical bar shows the
length of duration exceeding threshold in different ranges

of frequency bands (R ripple, FR fast ripple, VFR very
fast ripple, UFR ultrafast ripple). Stars identify selected
regions. (Figure taken from Bradzil et al. 2017)

where fk is the value of the signal at tk = kδt
and w(n

′ − k) is a window function. The wavelet
transform follows this transform using a wavelet
basis instead of a sinusoidal basis function.
Wavelets are a family of functions used as a basis
for wavelet transforms which have the property
of integrating to zero and are expressed as

W (s, n) =
N∑

n′=1

fn′ψ∗
[(
n′ − n

)
δt

s

]
, (19.3)

where ψ(s, n) is the wavelet function used with
scaling factors s and n. We can convert the scaling
factor s into frequencies by scaling the central

frequency of the mother wavelet by 1
/
s
. Con-

tinuous wavelet transform (CWT) is preferred
over short-time Fourier transforms (STFT) for
two distinct reasons. The chosen mother wavelet
of the CWT can better extract the preferred fre-
quencies of EEG signal which do not typically
follow sinusoidal functions, and the CWThas bet-
ter temporal resolution increasing with frequency.
Complex wavelet transforms are a type of CWT
which uses complex mother wavelets. The real

and imaginary wavelet coefficients can be used
to extract phase information of specific frequency
bands in EEG signals.

19.2.2 Wavelet Phase Coherence

Wavelet phase coherence (WPC) is a measure of
phase coherence that uses complex wavelet trans-
form to extract the phase information of different
frequency bands in EEG data. WPC describes
how the phases of two EEG signals change with
respect to one another within a time window.
Unlike other coherencemeasurement,WPC is not
related to the power of the frequency bands. The
relative phase difference �φ is extracted from
wavelet coefficients of two signals W1(s, τ ) and
W2(s, τ ), with s as the wavelet scaling coefficient
and τ as the time shift, as follows:

Δφ (s, τ ) = arctan
(
W ∗

1 (s, τ )W2 (s, τ )−W1 (s, τ )W
∗
2 (s, τ )

W1 (s, τ )W2 (s, τ )−W ∗
1 (s, τ )W

∗
2 (s, τ )

)

(19.4)
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where W∗ indicates the complex conjugate. The
relative phase coherence is then measured as the

ρ (s, τ ) = ∣∣〈ejΔφ(s,τ )〉∣∣ (19.5)

and ranges from zero to one, with a value of
one indicating complete coherence or a constant
phase difference within a time window.

Wavelet phase coherence (WPC) of high-
frequency oscillations was shown by Cotic et
al. to be a useful feature in the localization of
the epileptogenic zone [13]. Although the power
of HFOs increased during seizures and could
roughly locate the epileptogenic zone, WPC was
better able to identify electrodes within this zone
as confirmed using ROC curve analysis.

19.2.3 Cross-Frequency Coupling

We have thus far introduced brain rhythms
and how different regions can show phase
coherence within specific frequency ranges.
Cross-frequency coupling (CFC) pertains to
the communication or brain code observed as a
function of two or more interacting frequencies.
Phase-amplitude CFC (PAC) has been observed
in humans under a variety of conditions [14].
PAC refers to the relationship where the phase
of a low-frequency oscillation modulates the
amplitude of a high-frequency rhythm. The
most popular example of PAC is the theta-

gamma code and its role in spatial memory
[15]. Distinct neural ensembles observed to
fire in the gamma range were encoded within
specific phases of theta cycles cued by positional
information and long-term memory. One of the
most common measures of PAC was developed
by Tort et al. [16]. A variation of the algorithm
uses complex wavelet transforms to extract phase
and amplitude information in contrast to using
band pass filtering with Hilbert transforms [17].
The amplitude of the high-frequency rhythm is
computed using (Fig. 19.3)

A
(
t̂ , fH

) = ∣∣Re {W (t̂ , fH
)}+ j Im

{
W
(
t̂ , fH

)}∣∣ .
(19.6)

The phase of the low frequency can easily be
computed from the analytic wavelet transform
representation.

φ
(
t̂ , fL

) = arctan
Im
{
W
(
t̂ , fL

)}

Re
{
W
(
t̂ , fL

)} . (19.7)

The mean amplitude is normalized in order to
have an amplitude-independent measure of CFC

pj
(
t̂ , fH , fL

) =
〈
A
(
t̂ , fH

)〉
j∑N

k=1

〈
A
(
t̂ , fH

)〉
k

. (19.8)

The cross-frequency coupling index is then
computed as a measure of entropy normalized to
a uniform distribution.

Fig. 19.3 Example wavelet phase coherence between electrodes 1 and 5 during a seizure. (Adapted from Cotic et al.
[13])
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H
(
t̂ , fH , fL

) = −
N∑

j=1

pj
(
t̂ , fH , fL

)
log

(
pj
(
t̂ , fH , fL

))

(19.9)

ICFC
(
t̂ , fH , fL

) = logN −H
(
t̂ , fH , fL

)

logN
.

(19.10)

PAC has been used as a biomarker of both
physiological and pathological conditions. Guir-
gis et al. [18] showed PAC captured seizure dy-
namics and identified regions of interest for sur-
gical resection in seven patients (Fig. 19.4). Mod-
ulation of high-frequency oscillations by delta
activity showed higher specificity in selecting
the seizure-onset zone (SOZ) as compared with
regions determined by neurologists as well as
considering the Engel class of the patient (i.e.,
how seizure-free is the patient after the surgery;
EC I–IV denote a progressively worse surgical
resection outcome). Conversely, in Amiri et al.
[19], theta modulation of high-frequency oscil-
lations was shown to best identify seizure-onset
patterns.

19.2.4 Model Performance

Before a given machine learning algorithm can be
trained on a set of features, those features need
to be tested for reliability. Surrogate analysis is a
commonway to assess this reliability of nonlinear
measures and how they differ from noise and
inherent trends in the data. A common way to
create surrogate data, described by Theiler et al.
[20], is to shuffle phase while having an am-
plitude adjusted Fourier transform. This method
preserves spectral information while removing
the original temporal information. In the case
of cross-frequency coupling, surrogate analysis
consists of shuffling the phase information and
recomputing the CFC index. Although we might

Table 19.1 Selection of algorithm performance metrics

Sensitivity T P
T P+FN Accuracy T P+TN

T P+TN+FP+FN
Specificity TN

TN+FP F1 score 2T P
2T P+FP+FN

False-
positive
rate

FP
FP+TN Precision T P

T P+FP

expect a uniform distribution when binning the
amplitude of high-frequency rhythms to phases
of low frequencies, there may be an inherent CFC
based on the noise of the data.

Once the machine learning model is created,
its performance needs to be evaluated. In case of
a two-state classification (e.g., seizure vs. non-
seizure), a number of metrics can be used; how-
ever, first we need to introduce the basic termi-
nology:

True positive (TP) – The algorithm has classified
and identified the state.

False positive (FP) – The algorithm has incor-
rectly identified the state (Type I error).

True negative (TN) – The algorithm has correctly
rejected the state.

False negative (FN) – The algorithm has incor-
rectly rejected the state (Type II error).

From these definitions, several metrics can be
established (see Table 19.1).

Sensitivity and specificity are commonly used
in evaluating algorithms’ performance in general
[21]; however, other metrics – especially false-
positive rate and accuracy – are also widely used.
While it is not necessary to show all of these met-
rics (some of them can be derived from others),
each measure offers different information on how
the algorithm performs. For example, high sen-
sitivity indicates a high probability of correctly
identifying the diseased state, and high speci-
ficity indicates a high probability of correctly
rejecting the diseased state. In classification tasks
with more than two classes (e.g., interictal, pre-
ictal, ictal EEG state classification), these mea-
sures can be used for each individual class in
a one-vs.-all approach – for example, interictal
vs. non-interictal, preictal vs. non-preictal, and
so forth.
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Fig. 19.4 Localization of epileptogenic zone using
phase-amplitude cross-frequency coupling of iEEG data.
Delta-HFO modulation index (MI) used along with

eigenvalue decomposition (EVD) to localize epileptogenic
zones in patients who underwent surgical resection with
varying outcomes. (Figure adapted from Guirgis et al.
[18])
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Fig. 19.5 (a) Example of receiver operating curve of three different models. (b) Area under the curve shows model A
as the best performing classification model. (Figure used with author’s permission)

These measures can be better visualized as
a receiver operating characteristic (ROC), which
is a plot of sensitivity against false-positive rate
while ranging over values of a parameter of an
algorithm with binary classification such as a
threshold [22]. ROCs explore the trade-off be-
tween high sensitivity and high specificity. We
can compare different classification models using
the area under the curve (AUC) and find the best
parameter to maximize sensitivity and specificity,
giving bias to meet the requirements of classifica-
tion problem (see Fig. 19.5).

19.3 Seizure Detection
and Forecasting

The ability to reliably detect, classify, and
forecast seizures in epileptic patients can
have a profound impact on state-of-the-art
therapies for epilepsy and patients’ quality of
life. Successful classification of EEG signals
into a number of states – such as interictal,
preictal, or potentially several seizure states –
can identify different epilepsy etiologies, predict
potential complications, and aid in classifying



542 V. Grigorovsky et al.

the severity of seizures. Being able to detect the
seizure early (as opposed to after the fact) or
even forecast the event before it happens can
provide an alert or therapeutic intervention for
epileptic patients. People with chronic epilepsy
report decreased quality of life and common
fear of future seizures due to uncertainty [23],
which an early warning system could reduce or
eliminate. However, the question whether reliable
seizure detection and, forecasting are possible has
long been left unanswered. While the difficulty
varies significantly based on the task (detection,
classification, or forecasting), the quality of data,
and the overall goal, it was only in the last decade
that computer algorithms became sophisticated
enough to be able to forecast epileptic seizures
with above chance accuracy (compare Mormann
et al. [24] and Kuhlmann et al. [25]).

The algorithms that enabled this breakthrough
belong to the area of machine intelligence, espe-
cially deep learning, that train on large amounts
of data to extract underlying features and patterns
which might not be noticeable to the human eye.
Generally machine learning algorithms can be
split into supervised and unsupervised learning;
in this section we will mostly focus on the former
category, while still presenting some examples of
clustering algorithms used for EEG signal classi-
fication. In supervised learning, the algorithm is
presented with a training set of inputs and corre-
sponding outputs, based on which it attempts to
infer an underlying input-output map – with its
performance evaluated on the never-before-seen
test set of data. Supervised learning could be fur-
ther broken down into two areas – classification
tasks with categorical outputs, such as seizure
detection, and regression tasks with numerical an-
swers, for example, predicting the duration of the
seizure. The former dominates epilepsy research,
as it is important to determine the current and
the next state the patient is in; so in this sec-
tion, we will exclusively focus on classification
algorithms. Another way supervised learning can
be divided is into linear models (e.g., logistic
regression and support vector machines) and non-
linear models (e.g., decision trees and deep neural
networks). We will first look at linear models
and how they are used in epilepsy research and

then at both tree-based methods and deep neural
networks.

19.3.1 Linear Methods

The underlying feature of all linear methods is
that, as the name implies, at the core they create
a boundary to distinguish between two or more
classes (in case of classification tasks) based on
some linear combination of input features. For
example, a logistic regression model applies an
activation function to an otherwise linear summa-
tion of inputs:

z = b + w1x1 + w2x2 + · · · = b + xTw

(19.11)

y ′ = 1

1 + exp (−z) , (19.12)

where x is a vector of inputs, w is a weight
vector, and b is a bias term. In one case, logistic
regression was used for seizure prediction with
EEG data from 9 patients with an average of
320 days of recording and 116 seizures each
[26]. The signal energy features from four fre-
quency bands (8–16 Hz, 16–32 Hz, 32–64 Hz,
and 64–128 Hz) were used, and the algorithm
showed the average sensitivity for seizure predic-
tion of 0.55 and an average AUC of 0.79. The
authors have suggested to augment the logistic re-
gression by integrating patient-specific circadian
information, which increases average sensitivity
to 0.61.

On its own, logistic regression is only suited
for binary classification – e.g., whether an EEG
signal is a seizure or not. However, it can be
generalized to a multiclass classification using
softmax regression, where a softmax function is
used to calculate probability of every class occur-
ring given the input (and the class with the largest
probability is selected):

σ(z) = exp (zi)∑K
j=1 exp

(
zj
) . (19.13)
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One group utilized softmax regression in a so-
called mixture-of-experts model to classify EEG
signals into normal or epileptic using the Univer-
sity of Bonn dataset (Bonn dataset), which con-
sists of scalp EEG data obtained from five healthy
volunteers and five individuals suffering from
epilepsy [27]. A mixture-of-experts model con-
sists of a population of simple linear classifiers
(such as logistic regression) and a gating network
(which contains a softmax function). The gating
networkmixes outputs from linear classifiers, and
during training, it eventually learns to partition
inputs such that each classifier is an “expert” in
one subset of features. The model used features
such as mean, standard deviation, and average
power of wavelet coefficients from six distinct
frequency bands covering the entire range up to
86.8 Hz and showed an improvement over a basic
multilayer perceptron neural network (which we
will cover in more detail in a later section) with
an increased accuracy (94.5%), specificity (94%),
and sensitivity (95%).

Support vector machines (SVMs) are another
family of linear models, where the objective
is to find the optimal hyperplane separating
two classes by maximizing the space between
the closest points (or support vectors) of these
classes (see Fig. 19.6). A linear SVM is very
similar to the logistic regression and can be
adapted from Eqs. (19.11) and (19.12) to look
like this:

y ′ =
N∑

i

wiyik
(
xi , x

′)+ b (19.14)

k
(
xi , x

′) = xTi x ′, (19.15)

where y’ is the predicted class for the input x’and
k() is the so-called kernel. Kernels are a transfor-
mation of the (potentially nonlinear) feature space
associated with a classification problem. A linear
SVM is very similar to the logistic regression,
but has a few advantages over it, since SVM
(a) ensures that the found solution is as fair as
possible and (b) less sensitive to outliers com-
pared to logistic regression. In one case, Bonn
dataset was used to construct features such as
dominant frequency, mean of power spectrum,
and coefficient of variation [29]. These features
were fed into a linear SVM to classify the given
EEG signal as either normal or epileptic. The
authors found that while each individual feature
had about a 50% accuracy, combining the features
led to a 98% accuracy.

Furthermore, SVMs can be used to extend
linear modelling to a nonlinear domain, using
kernels such as:

polynomial : k (xi , x ′) = (xTi x ′ + 1
)d

(19.16)

radial basis f unction :
k
(
xi , x

′) = exp
(
−γ ∥∥xi − x ′∥∥2

)
.

(19.17)

This allows the capture of some of the non-
linear dynamics of the brain. One group used a
patient-specific radial basis function (RBF) SVM
on intracranial EEG data of 19 out of 21 patients
with epilepsy from Epilepsy Center of Univer-

Fig. 19.6 Hyperplane and support vectors (−1 and 1) in a two-class SVMwith linear, polynomial, and Gaussian (RBF)
kernels. (Figure adapted from Ben-Hur et al. [28])
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sity of Freiburg dataset (Freiburg dataset), us-
ing features based on correlation patterns and
space/time delays to forecast seizures [30]. SVM
outputs were also averaged over time to reduce
noise, and the resultant algorithm, depending on
alarm threshold values, had a sensitivity of 0.86–
0.95 and false prediction rate (FPR) of 0.03/h to
0.07/h. Additionally, the algorithm spent between
3% and 9% of time in the seizure warning state.
As feature selection is an important element of
designing seizure detection and forecasting algo-
rithms, another study used RBF SVM to test two
ways of identifying the most important features
for predicting seizures [31]. The authors used a
combined dataset of scalp EEG (sEEG) of 16
patients and intracranial EEG (iEEG) of another
8 patients to extract absolute and relative spectral
power from several frequency bands – delta (0.5–
4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–
30 Hz), and gamma (30–128 Hz). They compared
a method of maximum difference of amplitude
distribution histogram (MDAD) between preic-
tal and non-preictal feature samples with mini-
mum redundancy maximum relevance (mRMR)
method and found that the former outperformed
in seizure prediction with average sensitivity of
75.8% and FPR of 0.1/h, while mRMR showed
sensitivity of 64.4% but marginally lower FPR.

Several studies have compared the perfor-
mance of different commonly used kernels for
SVM in the context of seizure detection and
forecasting using EEG data. In a work by Zhang
and Parhi [32], polynomial and RBF SVM
classifiers were compared using iEEG from
two patients and spectral power-based features
calculated from 10 frequency bands covering the
range from 3 Hz to 200 Hz. While RBF SVM
classifier showed slightly better performance for
predicting a seizure (AUC of 0.9985 compared
to 0.9795 of the polynomial SVM), the second
degree polynomial SVM classifier used fewer
number of features, potentially increasing the
computational efficiency of classification. Other
studies have compared the performance of
linear and nonlinear SVM classifiers. In Shiao
et al. [33], the authors found that both linear
and nonlinear SVMs can perform with similar
sensitivity and FPR (attributing it to a carefully

prepared training set), while another study
showed that when using permutation entropy
(a complexity measure based on neighboring
values in the time series), whether nonlinear SVM
outperformed linear one or vice versa depended
on the state associated with the EEG [34].

While SVMs show adequate results for EEG
classification, work is being done to further im-
prove their performance. In the study by Park et
al. [35], so-called cost-sensitive SVMs (CSVMs)
are proposed, which penalize misclassification of
preictal data higher than interictal data in an effort
to address the imbalance of preictal and interictal
samples in the training set. The authors used the
algorithm on the Freiburg dataset and found that
it achieved a sensitivity of 97.5% and a FPR of
0.27/h for seizure prediction. Another strategy to
improve SVM performance was to utilize a group
of different classifiers (an ensemble) each trained
with a different set of weights – using Bonn
dataset and extracted Teager energy among other
features. The algorithm achieved an accuracy of
98.72% for seizure detection [36].

As with many machine learning algorithms,
one concern with SVMs is that the algorithm will
overfit the training set, meaning that it will model
not just the underlying pattern of the data but also
the noise specific to the training set – reducing
its performance on the test set. In order to reduce
the chance of overfitting, regularization is used
where the weights or coefficients of the algorithm
are kept small, which discourages learning amore
complex model. While there are many ways to
accomplish that, in one study Kalman filters were
used to regularize SVM classifier on coefficients
of autoregressive models (AR) of EEG signals to
predict seizures, which achieved FPR of as low as
0.02/h [37].

19.3.2 Tree-BasedMethods

Another family of machine learning algorithms
are tree-based methods. A decision tree is a
flowchart-like structure, consisting of branches
and nodes, traversing which allows the algorithm
to make a conclusion about the class of a new data
point based on a recursive analysis of features
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Fig. 19.7 Example of a decision tree for classification.
(a) Sample training set with two classes. (b) Splitting of
the original space into decision tree nodes. (c) Probability

that a point belongs to either class in each node of the tree.
(Figure used with author’s permission)

associated with the data (see Fig. 19.7). In a
decision tree, the nodes represent a feature, the
branches connecting the nodes are a decision,
and a terminal node (or a leaf) is the probable
outcome. Thus, each path from the top of the
tree to the leaf is a classification rule which
the algorithm applies to the input vector. The
trees are constructed by a recursive algorithm of
binary splitting, which divides the training set
data into two along a feature based on some cost
function, with the goal of minimizing the cost.
By splitting the data along each feature to come
up with least-cost classification rules, decision
tree-based algorithms are able to successfully
capture nonlinear dynamics of the EEG signals
and have been used for seizure detection and
forecasting.

In one study, empirical mode decomposition
(EMD) has been used to separate scalp EEG sig-
nals from the Bonn dataset into mono-rhythmic
intrinsic mode functions (IMFs), and correspond-
ing features such as spectral peaks, entropy, and
energy of these IMFs were fed into a decision tree
algorithm for seizure detection [39]. The algo-
rithmwas able to achieve the accuracy of 95.33%,
sensitivity of 98%, and specificity of 97%. These

results were confirmed by a long-term seizure
advisory system, which was implanted into 15
patients with drug-resistant epilepsy for up to
24 months [40]. In that study, features from a
range of frequencies from 8 to 128 Hz, such as
average energy, Teager energy, and line length,
were used in a combination of decision tree and
k-nearest neighbors (an algorithm where a class
of a given data point is determined by plurality
vote of k of its neighbors) classifiers. The final
algorithm showed a patient-specific sensitivity of
54–100% with time spent in “high” alert state
of between 3% and 41%. While the algorithm
showed a large variability in performance de-
pending on the patient, it was one of the first
results from a long-term real-life patient trial
where the authors found little to no significant
reduction in clinical effectiveness after 4 months
of implantation. Several studies have also com-
pared decision trees to other machine learning
algorithms. In one, decision trees were compared
with SVM classifiers with various kernels (linear,
polynomial, RBF) and probabilistic neural net-
works (which will be briefly covered in the next
section) for seizure detection task using features
derived from intrinsic time-scale decomposition
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Fig. 19.8 Sample strategy for multistate classifier based on random forest. (Figure adapted from Jacobs et al. [38])

(ITD) – an adaptive data-driven method similar
to EMD to decompose a complex signal [41].
The authors found that decision trees performed
slightly better than the rest with accuracy of 96%,
sensitivity of 99%, and specificity of 99.5%. This
finding was confirmed by another study using
different set of frequency-related features and
an extended algorithm comparison, which found
decision trees to have average sensitivity of 99%
and specificity of 94% [42].

An iteration on the decision tree algorithm is
a logistic model tree, where each of the leaves
(terminal nodes) of the tree consists of a logistic
regression. Logistic model trees have been re-
ported to be accurate classifiers, combining high
performance with ease of interpretability [43].
In one study, they have been used on the Bonn
dataset for seizure detection and outperformed
both logistic regression and SVM, with an over-
all AUC of 0.988 (compared to 0.932 and 0.52,
respectively) [44].

In an effort to improve the performance of
decision trees, an ensemble technique of random
forest has been developed. As with real forests,
a random forest algorithm consists of a number
of trees (in this case, decision tree algorithms).
In a random forest, each decision tree has access
only to a random subset of features while making
the decision to split the node and a random subset
of training data points. The random forest, then,
takes a majority vote (for the classification task)
of all individual tree decisions as the final class.
The large number of classifiers with, ideally, low
correlation between any two trees results in the

low error rate of the random forest. Random
forest algorithms have been used extensively for
seizure forecasting (a sample strategy for random
forest use shown in Fig. 19.8). In the work by
Tzimourta et al. [45], energy coefficients, en-
tropy, and other frequency-based features were
extracted from Bonn and Freiburg datasets and
used with a random forest classifier achieving
accuracy of 95% with FPR of 0.21/h. In Donos
et al. [46], 11 time- and frequency-domain fea-
tures have been extracted from intracranial EEG
of 8 patients and fed into a random forest clas-
sifier, which showed 1.75 s median delays of
seizure prediction and 0.07/h FPR. As the authors
suggested, “For closed loop stimulation devices,
an early detection is necessary if termination of
epileptic activity prior to first ictal manifestations
is aimed at,” which the short median delay of
seizure-onset prediction enables. However, with
correct input feature selection, the time of ad-
vance seizure forecasting can be extended. In Ja-
cobs et al. [38], a global index of cross-frequency
coupling computed from scalp EEG was used
as an input to a multistage state classifier based
on random forest, and the algorithm achieved a
45 ± 16 second advance alarm with AUC of
0.934. Robustness of a classifier to input fea-
tures is also an important consideration, and in
the same study, the authors found that the per-
formance of random forest did not significantly
changewith reduced electrode ring configuration.

Random forest classifier has also been used for
seizure detection. As an example, in Zhang et al.
[47], a combination of variational mode decom-
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position (VMD; an extension of EMD technique,
with an advantage of decomposing a multicom-
ponent signal into a number of band-limited in-
trinsic mode functions non-recursively and syn-
chronously) andARwas used on the Bonn dataset
for feature extraction. These features were then
fed into a three-state random forest classifier,
which delivered an accuracy of 97.4%. In another
study, a random forest classifier was compared
with both SVM and an existing closed loop neu-
romodulation device for seizure detection and
showed better performance compared to the other
two strategies, while maintaining low detection
delay and good energy efficiency [48].

19.3.3 Deep Neural Networks

Artificial neural networks (ANN) are a large fam-
ily of machine learning algorithms inspired by
biological neurons. The simplest ANN is sys-
tem of multiple perceptrons, or individual artifi-
cial neurons which behave very similarly to the
logistic regression described in an earlier sec-
tion – the only difference being a slightly dif-
ferent activation function. In fact, unlike logistic
regression, ANNs can use any activation function,
and several have been commonly used. While
the activation function cannot be linear (other-
wise an ANN will collapse into a single per-
ceptron), both sigmoid (with range 0 to 1) and
hyperbolic tangent (with range−1 to 1) functions
have been used. More recently, rectified linear
unit (ReLU) and “leaky ReLU” functions have
been designed to improve upon some of the is-
sues with the sigmoid and tanh functions and are
defined as

f (z) =
{
z, z > 0
αz, z ≤ 0

, (19.18)

where α is zero for ReLU and a small value (e.g.,
0.01) for leaky ReLU. While these activation
functions have enjoyed wide adoption as typical
activations used in ANNs, a few other functions
have been occasionally used, such as a radial basis
function and a nonlinear cube function.

While on its own a perceptron is a linear classi-
fier, a system with multiple perceptrons arranged
in several layers becomes nonlinear. A typical
multilayer perceptron network (MLP, also called
a feedforward network) has at least three layers –
an input layer of features, a hidden layer, and
an output layer (a typical MLP is shown in Fig.
19.9). While the input layer has the same number
of units as input features, and the number of
units in the output layer is restricted by however
many classes there are in the classification task,
the number of hidden layers and units in each
layer is dependent on algorithm design. Too few
hidden layers/units lead to poor differentiation of
complex patterns in the data, while toomany units
can lead to overfitting, and too many layers can
make training time-consuming – so a careful con-
sideration forMLP parameters is necessary. In the
work by Sriraam et al. [50], a three-layer MLP
with 10 hidden units was usedwith spectral power
and energy features from scalp EEGof 20 patients
for seizure detection and achieved a sensitivity of
97.1%, specificity of 97.8%, and FPR of 1/h. In
Subasi and Erçelebi [51], a similar MLP with one
hidden layer and 21 hidden units was compared
with logistic regression using wavelet-extracted
features from 500 scalp EEG segments for seizure
classification, and it outperformed the latter al-
gorithm with an accuracy of 92% and AUC of
0.889. MLPs with more than one hidden layer
have also been used, for example, in the study
by Abbasi and Esmaeilpour [52], where a neural
network with two hidden layers (with 4 units in
the first and 5 units in the second hidden layer)
was used with wavelet-derived features from the
Bonn dataset and achieved 98.3% accuracy in
seizure detection.

While multilayer perceptron network is the
most common among the simpler ANN designs,
there are many iterations that attempt to improve
the algorithm’s performance. Probabilistic neu-
ral network (PNN) is a neural network with an
exponential as an activation function which com-
putes the distance from the test input to the train-
ing input vectors and produces a net output as a
vector of probabilities. PNNs are characterized
by fast training and have been compared with
decision trees and SVM classifiers in Martis et
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Fig. 19.9 Example of a multilayer perceptron with one hidden layer and four hidden units. (Figure adapted from
Acharya et al. [49])

al. [41] and Acharya et al. [42] showing compara-
ble accuracy, sensitivity, and specificity. Contin-
uous neural networks are ANNs where each unit
is described by ordinary differential equations
(ODEs), and in one case, they were trained on
Freiburg dataset as well as 90 scalp EEG trials,
and the overall correct classification percentage
was 97.2%, using features that, unlike most other
noncontinuous classifiers, take into account the
continuous nature of EEG signals [53]. Extreme
learning machines (ELM) are a generalized sin-
gle hidden layer MLP network where the param-
eters of hidden units (and not just the weights)
are randomly generated. A sparse ELM has been
shown to perform comparably to SVM classifiers
and traditional ANN on a seizure detection task
with accuracy of 98.4%, while requiring less stor-
age space and training time [54].

An early comparison of several types of artifi-
cial neural networks for EEG state classification
was shown in Costa et al. [55]. In the study, the
authors investigated (1) a traditional feedforward
network, (2) a radial basis function neural net-

work, (3) a layer-recurrent network (with a feed-
back loop around each layer), and (4) a distributed
time-delay network (where the output of a layer
also depends on past outputs) using energy-based
and complexity-based features extracted from the
Freiburg dataset. The comparison showed that in
a patient-specific task (i.e., both testing and train-
ing data came from the same patient), all of ANNs
showed great performance with accuracy of close
to 100% – with RBF network performing slightly
worse than others. However, when the systemwas
trained on one patient and tested on another, the
performance of ANNs dropped significantly.

Perhaps the two patients used for compari-
son had two drastically different epilepsy eti-
ologies (as the authors suggested), or there was
not enough data to properly tune ANNs to suc-
cessfully classify EEG signals across different
patients. However, it is equally likely that ANNs
used were unable to capture the full complexity
of the provided EEG signals. Deep learning is
a subfield of machine learning which is rapidly
gaining prominence due to the ability of deep
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neural networks to better capture complexity as-
sociated with real-life data without the necessary
fine-tuned feature selection. While the precise
definition of what makes a neural network deep is
elusive, the generally accepted criterion is having
at least three hidden layers. An example of deep
neural network is the multilayer perceptron with
three hidden layers used with bispectral entropy
features for seizure prediction using intracranial
EEG data, where it achieved a test accuracy of
78.11% [56].

One specific class of deep neural network is a
convolutional neural network (CNN or ConvNet,
example shown in Fig. 19.10) which was inspired
by and is highly correlated with the organization
of the visual cortex [58] and has been extensively
used on image classification tasks. In general,
ConvNets consist of a feature learning stage and
a classification stage. The feature learning stage
is comprised of convolutional and pooling layers.
The former consists of filters or kernels, matrices
that convolve with the image (a spectrogram, a
matrix of wavelet coefficients, or a compilation of
EEG signals for seizure detection and forecasting
tasks) to extract spatial features and create a fea-
ture map. The latter, pooling layer, down-samples
the input data and reduces its dimensions, de-
creasing the necessary computational power as
well as extracting dominant features. Two types
of pooling layers exist – a max pooling returns
the maximum value from the subregion of the
data, while the average pooling returns the av-
erage of all values from the subregion. As max
pooling can also act as a de-noising filter, it is the
preferred choice when designing the CNN. Due
to existence of the feature learning stage, CNNs
require little preprocessing or manual feature se-
lection, unlike othermachine learning algorithms.
Features extracted from the input data are then fed
into the classification stage, which is typically a
multilayer perceptron trained for a classification
task.

Recently, convolutional neural networks have
been used for seizure prediction and EEG state
classification. In a work by Khan et al. [59], a
CNN with six convolutional layers (with max
pooling) and two dense (or MLP) layers was used
with wavelet-transformed scalp EEG signals for

seizure prediction and performed with sensitivity
of 87.8% and FPR of 0.142/h. In another study,
a sequence of short-time Fourier transforms was
used with a CNN with three convolutional layers
with max pooling and twoMLP layers for seizure
prediction with FPR of 0.06/h and sensitivity of
81.4% [57]. In both examples, a two-dimensional
convolutional neural networkwas used on, a spec-
trogram image; however, this need not be the
case. In Acharya et al. [49], for example, a one-
dimensional CNN with five convolutional layers,
five max-pooling layers, and three MLP layers
was used on a normalized EEG trace. The al-
gorithm was used to classify scalp EEG into
normal, preictal, and seizure states and achieved
an accuracy of 88.7%, sensitivity of 95%, and
specificity of 90%. On the other hand, in the study
by Wei et al. [60], a multichannel scalp EEG
data was fed into a three-dimensional CNN with
nine total layers, and the seizure detection per-
formance was compared with a two-dimensional
CNN and a SVM-based classifier. With average
accuracy of 92.4%, the 3-D CNN outperformed
the other two classifiers. Further comparison of
CNNs to other classifiers also showed that CNNs
outperformed SVM and logistic regression clas-
sifiers for seizure prediction [61] and achieved
zero-false-alarm seizure prediction in 20 out of
21 patients of the Freiburg dataset, while SVMs
only had 11 such predictions [62].

Another commonly used class of a deep neural
network is a recurrent neural network (RNN), de-
signed specifically for sequential data. RNNs take
as an input not only the current training/testing
example but also previous information they have
encountered – so they are said to have memory.
Adding this memory can be advantageous since
there is information in the sequence itself (e.g.,
the sequence of interictal → preictal → ictal
EEG states) that other ANNs cannot capture.
Recurrent neural networks for seizure prediction
were first used in 2000, when an RNN with one
hidden layer of between 10 and 15 units was
used with intracranial and scalp EEG of two
patients for seizure prediction [63]. Both EEG
time-series data and wavelet-decomposed spec-
tral bands were fed into the RNN which resulted
in up to 15 second early warning of seizure onset.
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Fig. 19.10 Example of a convolutional neural network, with three convolutional kernels, three max-pooling layers,
and two fully connected MLP layers. (Figure from Truong et al. [57])

More work has been done since with RNNs,
including classification of epileptic seizures using
wavelet energy and norm entropy as features,
resulting in average accuracy of 99.8% [64], and
using a recurrent cellular neural network (an
ANN with geometric arrangement of units with
the restriction that the communication is only al-
lowed between neighboring units) on EEG time-
series data to successfully detect 100%of seizures
with an average detection delay of 7.0 seconds
[65].

Regular recurrent neural networks have some
limitations on their memory, and improved RNNs
have been developed – namely, gated recurrent
unit (GRU) and long short-term memory (LSTM,
schematic shown in Fig. 19.11) networks.
Both networks have units which contain so-
called gates, mechanisms regulating the flow of
information and allowing the unit to learn which
data in the sequence is important to keep. These
gates improve the performance, for example,
when an LSTM network was used on frequency-
domain, time-domain, and cross-correlation
features extracted from scalp EEG for seizure
prediction [67]. The algorithm achieved average
sensitivity of 100% and a false prediction rate of
0.11/h – the authors also noted that increasing
the window of preictal data available to LSTM
reduced the FPR to as low as 0.03/h.

There has been some effort put into combin-
ing recurrent neural networks and ConvNets to
take advantage of both automated feature learning
and sequential memory in one algorithm. In one

study, a CNN-LSTM hybrid algorithm was used
on scalp EEG of 23 patients, with three frequency
bands covering 0–49 Hz and 2-D projection of
electrode placements as features [68]. The pro-
posed hybrid algorithm achieved sensitivity of
95–100%, FPR of 0.1/h for the same patient,
and 0.8/h for cross-patient trials. Furthermore, it
proved to be more robust to missing electrodes
than previous algorithms.

19.3.4 ImprovingModel
Performance

In the previous subsections, we have outlined the
main classes of machine learning algorithms used
for seizure detection and forecasting from in-
tracranial and scalp EEG signals. However, across
all types of algorithms, some strategies exist to
further improve classification performance. One
of the ways to improve algorithm performance
is through using ensemble techniques, where a
combination of weak learners is used to create
an overall strong learner with better performance.
We have briefly mentioned examples of ensemble
techniques before, such as random forests, or
ensemble of SVM classifiers in the work by Tang
and Durand [36]. Ensemble learning can also be
extended to ANNs and deep learning, such as
using three groups of five neural networks each
for three-way EEG signal classification, which
improved the performance by 10% compared to
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Fig. 19.11 Schematic of a long short-term memory unit for RNNwith internal gates for memory management. (Figure
from Yu et al. [66])

an individual ANN (98.78% vs. 88%) [69]. In
another study, an ensemble of so-called pyrami-
dal convolutional networks (CNNs with smaller
kernel size at each layer) was used with raw EEG
signals and achieved an accuracy of 99.1% for
epilepsy detection task [70].

Ensemble learning is not limited to using mul-
tiple copies of the same algorithm. In a work by
Abdulhay et al. [71], k-nearest neighbor, RBF-
SVM classifier, and naïve Bayes (a conditional
probability supervised learning method based on
Bayes’ theorem) classifiers were combined into
an ensemble model, and the performance for each
base classifier increased by around 3% for EEG
state classification. A large study of different en-
semble models for seizure forecasting in human
and canine epilepsy in an online competition was

done by Brinkmann et al. [72], where several of
the top 10 algorithms utilized ensemble learning
(see Table 19.2) and showed higher AUC than,
for example, a ConvNet; moreover, the first al-
gorithm improved its performance AUC by up to
10% compared to its base classifiers. In any en-
semble model, the final decision has to be reached
from the combination of individual classifiers –
one of the most widely used ways of determining
the final decision in a classification is a majority
vote. However, other ensemble methods exist,
such as weighted average, Platt scaling (combin-
ing all of the outputs into a probability distribu-
tion over all classes), or Bayesian combination of
classifiers.
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Table 19.2 Details of seizure forecasting classifiers

Selected features used Machine learning algorithm Ensemble method AUC

Spectral power, correlation,
distribution statistics, signal
variance

Generalized linear model;
SVM classifier; random
forest

Weighted average 0.82

Log spectral power,
covariance

SVM Platt scaling 0.8

Spectral power, correlation,
signal derivative

Neural network; k-nearest
neighbor

Bayesian combination 0.79

Spectral power, statistical
measures, covariance
matrices

SVM; generalized linear
model

Weighted average of rank scores 0.79

Spectral power, signal
standard deviation

Convolutional neural
network

N/A 0.78

Adapted from Brinkmann et al. [72]

Ensemble models are not the only strategy for
improving classification results – correctly select-
ing features to feed into a machine learning al-
gorithm is equally important. One way to reduce
the algorithm’s reliance on correctly selected fea-
tures is to utilize a CNN with its feature learn-
ing stage, which was covered earlier. Another is
to rely on unsupervised learning algorithms to
automatically identify useful features. Instead of
building an input-output map from a training set,
unsupervised algorithms find patterns in the data
without being provided the “correct” answers.
In one study, k-means clustering algorithm was
used for feature extraction from scalp EEG (Bonn
dataset) together with an MLP model to achieve
an overall accuracy of 98.3%, about 5–8% in-
crease compared to MLP used with manual fea-
tures [73]. K-means algorithm finds k number of
clusters, or collections of data points aggregated
together based on some similarity, by reducing
the in-cluster distance between every data point
and the center of the cluster. Another unsuper-
vised learning technique for feature extraction
is bag-of-words, originally developed for natural
language processing, where each feature vector (a
so-called bag) is described by the distribution of
unique features (“words”) – or how many times
each feature has appeared in the input. In the
study by Martinez-del-Rincon et al. [74], bag-of-
words technique was used with an SVM classifier
for seizure detection and showed an overall 10%
improvement in the F1 score over the second-

best ranked method, likely due to more linear and
discriminative feature space.

Careful consideration for the type of machine
learning algorithm and the feature selection is
necessary for good classification performance.
In Fig. 19.12, ROC curves show that even for
the same algorithm, using different features can
lead to vastly different AUC – in the example, a
random forest algorithm using time-based and co-
modulogram features led to an increase of 0.226
in AUC compared to power-based features [17].
Deep neural network-based unsupervised learn-
ing algorithms also have been used for feature
extraction. Autoencoders are a type of unsuper-
vised neural networks with two stages – an en-
coder and a decoder – which attempt to learn
an identity function by adjusting hidden layer(s)
such that the input and the output are as close
to each other as possible – in essence create a
reduced representation of the data which can be
used as features. The underlying type of neural
network used for an autoencoder can vary, for
example, in one study, a CNN-based autoencoder
feature learning was used with various classifiers
(SVM, decision tree, random forest, MLP) for
EEG state classification and showed more than
10% improvement in average accuracy compared
to other, non-machine-learning, feature extraction
techniques [75]. Another study used a stack of
two autoencoders to extract the features to the
extent that only a supervised learning softmax
function was needed, and it achieved accuracy of
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Fig. 19.12 ROC curves of different machine learning algorithms (SVM and RF) using varying sets of features, used
to predict AED treatment efficacy. (Figure from Colic et al. [17])

94% (around 15% points higher than the next best
method) and FPR of 0.05/h for seizure forecasting
[76]. A recent paper improved on that approach
by using a deep convolutional autoencoder cou-
pled with bidirectional LSTM and showed an in-
creased per-patient prediction accuracy of 99.6%
with false alarm rate of 0.004/h and prediction
time of 1 h prior the seizure onset [77].

Occasionally, in addition to feature selection,
unsupervised learning algorithms can also be
used for seizure prediction and forecasting in
their own right. K-means algorithm has been with
entropy-based features extracted from the Bonn
dataset for seizure detection and showed a 6%
higher accuracy with 97% less execution time
compared to the SVM classifier [78]. Another
type of unsupervised learning used for seizure
detection and forecasting is a hidden Markov
model (HMM) – a probabilistic algorithm used
to model a sequence of underlying hidden states
based on observable variables. A very common

example of an HMM is predicting the weather
state (rain, cloudy, sunny) based on the type of
clothes people wear without being able to look
outside. In context of EEG analysis, HMMs
can identify the underlying EEG state based
on some observable feature set. In a work by
Baldassano et al. [79], an autoregressive hidden
Markov model was used with intracranial EEG
recordings from six dogs with naturally occurring
epilepsy, and the method showed a reduced
false-positive rate compared to a previously used
random forest classifier with manually selected
features (0.0012/h vs. 0.058/h FPR) with an
average 12.1 second advance seizure detection.
In another study, an HMM with observable
states that were assumed to be a combination
of Gaussian distributions (a Gaussian mixture
model) was used with pediatric scalp EEG data
to predict seizures with sensitivity of 0.95 and
specificity of 0.86 [80].

It is evident from this section that a large
variety of machine intelligence algorithms have
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Table 19.3 Summary of strengths and weaknesses of a number of common machine learning algorithms

Algorithm Strengths Weaknesses

Logistic regression Output can be interpreted as probability
Easy to train

As a linear model, cannot handle
nonlinear relationships in the data

SVM Works well for nonlinear classification
Deals well with outliers

Hard to pick the right kernel
Memory intensive
Poor performance on noisy data

Decision tree Easy to understand and visualize
Require less data preprocessing

Can create complex trees that do not
generalize well

Random forest Improves the performance of decision
trees
Works well in high-dimensional feature
spaces

Output can be hard to interpret
Predictions are slow to create
Does not work well with sparse datasets

Deep neural networks Can learn complex input-output
mapping of the data
Can perform feature extraction
On large datasets generally outperform
most other algorithms

Require a lot of data
Computationally expensive
Very hard to interpret the resultant
classifier itself and the internal workings
of the algorithm

been used for seizure detection, classification,
and forecasting. While some studies and strate-
gies discussed above have compared their perfor-
mance to other classifiers, an astute reader can
notice that no one particular method has been
identified as the “gold standard” to be used for
EEG signal classification. In part, it is due to
the fact that EEG signals are inherently com-
plex due to their nonlinear, dynamic, and non-
Gaussian nature, making classification difficult.
Another reason is the so-called no free lunch
theorem which states that there is no one ma-
chine learning model that works best for every
problem due to underlying assumptions one has
to make during algorithm design. Deep convolu-
tional neural networks, for example, can perform
better than some other classifiers due to fewer
number of parameters and CNN’s property of
rotational and positional invariance; however, that
same invariance can prove detrimental when the
position or rotation of a feature is important.
Furthermore, deep learning models in general are
not very good at handling imbalanced data, a
situation frequently encountered in EEG signal
classification. With that in mind, some of the
strengths and weaknesses of machine learning al-
gorithms discussed in this chapter are presented in
Table 19.3.

19.4 Other Applications
of Machine Intelligence
with EEG

In the previous section, we have discussed at
length the application of several types of ma-
chine learning algorithms to seizure prediction
task. However, while these algorithms are effec-
tive, they are not the only approach – in one
case, effective connectivity of brain networks was
used for seizure prediction, achieving sensitiv-
ity of 80% and FPR of 0.33/h [81]. Another
area where machine intelligence performance is
steadily improving is seizure localization. In one
study, using intracranial EEG signals, an SVM
classifier was trained and tested on patients with
Engel class I to class IV outcomes, demonstrat-
ing superior performance in the class I patients
in Fig. 19.13 [82]. The classification using fea-
tures based upon both high-frequency and low-
frequency oscillations was best able to identify
channels suited for resection. This study demon-
strates a novel approach to region of interest
identification and provides a path for developing
tools to improve outcomes in epilepsy surgery
[17]. Another SVM classifier was used in iden-
tifying SOZ based on phase locking value (PLV)
[83]. The study showed that more than 96% of
electrodes identified as the SOZ were within the
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Fig. 19.13 SVM-classified region of interest channels
(shown in brown) coincide with resected area (shown in
gray) in a seizure-free patient (Patient A, EC I), while
in patients where SVM-identified channels are outside of

resected area, surgical resection resulted in poor control
of seizures (Patients B and C, EC III and IV, respectively).
(Figure from Dian et al. [82])

resected area in six seizure-free patients. In four
non-seizure-free patients, more than 31% of the
identified SOZ electrodes were outside the re-
sected area. Furthermore, in the same study the
outcome in non-seizure-free patients correlated
with the number of non-resected SOZ electrodes
identified. In the study by Tomlinson et al. [84],
an SVM classifier was used on iEEG data from 17
pediatric patients, and it was able to predict sur-
gical outcome using global synchrony and local
heterogeneity features with 94.1% accuracy.

Both random forest and SVM classifiers were
used to distinguish between resection and non-
resection areas of 94 patients, using interictal

magnetoencephalogram (MEG) recordings.
MEG is a technique very similar to scalp EEG,
though better suited to source localization, and
with features such as delta frequency power,
power ratio, and phase lag index extracted
from MEG data, both classifiers distinguished
the resection areas from non-resection areas
with 59.94% accuracy for SVM and 60.34%
for random forest (however, the above method
was not able to differentiate seizure-free from
not seizure-free patients) [85]. Overall, as with
seizure prediction, the accuracy of epileptogenic
source localization techniques varies based on
data modality and features selected. Although
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machine learning methods showed improvement
over manual SOZ identification, they are
still facing challenges to properly identify
epileptogenic sources especially in noninvasive
recordings due to low signal-to-noise ratio (SNR).

19.4.1 Prediction of Antiepileptic
Drug Treatment Outcomes

Frequently, antiepileptic drug (AED) treatments
produce inconsistent outcomes, so patients may
need to go through several drug trials until a suc-
cessful treatment can be found. There are dozens
of commonly used AEDs, and many more ex-
perimental drugs, available to treat the disorder.
Determining the efficacy of one drug for a spe-
cific patient often involves a trial-and-error pro-
cedure. There are 20–40% of epileptic patients
with drug-resistant epilepsy [86], though they
only become aware of this after having already
participated in numerous AED trials. Antiepilep-
tic drugs can also make the seizures worse and
more frequent, which are associated with numer-
ous side effects that can affect patients’ cognition
and functioning [87]. Unsuccessful drug trials
and delayed treatments highly impact patients’
quality of life and are expensive for both patients
and the health-care system. Determining a priori
the most effective treatment using machine learn-
ing methods would go a long way in improving
the lives of patients and reducing the financial
burden.

While using patients’ scalp or intracranial
EEG is the gold standard for epilepsy research,
sometimes it is easier to do preliminary
assessment on computer or animal models before
transitioning the methodology to humans. One
example of this is the use of rodent models of Rett
syndrome – a neurological disorder characterized
in part by neural network hyperexcitability
and spontaneous epileptiform-like discharges,
similar to epilepsy [88]. In Rett syndrome
model, an examination of different feature sets
showed that, like other classification tasks, the
selection of features is vital in achieving class
separation and thus has a profound effect on
determining treatment outcome [89]. In the

study by Colic et al. [17], the normalized power
feature projections did not show any clustering
by individual animal subjects and were the
least useful features in terms of separating
responders and non-responders, while ensemble
empirical mode decomposition (EEMD) time-
based and comodulogram features achieved the
best separability with distinct clusters for each
of the animal subjects. These features were then
usedwith both SVMand random forest classifiers
to predict treatment efficacy of an antiepileptic
drug, and the results showed that comodulogram
features (AUC 0.974) outperformed those of
EEMD time-based (AUC 0.918) and normalized
power (AUC 0.745) – see Fig. 19.12.

When the two machine learning methods were
evaluated to predict the treatment outcome of four
different AEDs, SVM was found to predict the
treatment outcome of outliers found in random
forest predictions (see Fig. 19.14). In the same
study by Colic et al. [17], random forest predic-
tion of treatment outcome for ganaxolone applied
on mouse 2 was close to 100%, when it should
have been closer to 0%, whereas SVMs predicted
44%. Similarly, for phenytoin, the prediction for
mouse 1was 84%when it should have been closer
to 0%, whereas SVMs predicted 59%. Generally,
SVMs estimated 90% or greater likelihood scores
only for successful treatments.

Patient variability is a serious challenge to se-
lecting treatments for epilepsy. Often antiepilep-
tic drug treatments are cycled through until an
effective treatment can be found, and with over
two dozen commonly prescribed AEDs available,
it can be a cumbersome process. There are certain
AEDs that have been found to be statistically
more likely to lead to a successful treatment out-
come, and it is those AEDs that typically are
tried first. However, the likelihood of a success-
ful treatment reduces with each round of AED
application [90], possibly due to patient desen-
sitization to AEDs which happens over time. By
indicating which patients would be unresponsive
to certain AEDs, and what AEDs are most likely
to be successful – using machine intelligence –
epileptologists could choose the most appropri-
ate therapy for the patient without unnecessary
testing of AEDs, and the treatment is more likely
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Fig. 19.14 Predicted likelihood of favorable treatment
outcome across four commonly used AEDs using SVM
and RF machine learning algorithms. Green bars indicate
the patient was successfully treated by specific AED,
and brown bars indicate unsuccessful treatment. (a) SVM

predictions accurately predicted treatment outcome for all
AEDs. (b) RFs had comparable prediction results, with
misclassifications for ganaxolone treatment for mice 2 and
4 and phenytoin for mouse 1. (Figure from Colic et al.
[17])

to show a positive improvement in a patient’s
quality of life.

19.5 Current Challenges
and Future Directions

In this chapter, we have focused on the use of ma-
chine intelligence for seizure detection and fore-
casting, and prediction of antiepileptic drug treat-
ment outcomes, as well as feature extraction and
selection to be used for machine learning algo-
rithms – including wavelet phase coherence and
cross-frequency coupling. While a lot of progress
has beenmade in the past several years to improve
EEG-based techniques with cutting-edge algo-
rithms, several important challenges still remain.
Frequently, EEG data (especially obtained from
scalp) is imbalanced, favoring one class (e.g. in-
terictal EEG state) over others, and characterized

by relatively low signal-to-noise ratio, which can
significantly impair a given classifier’s perfor-
mance – so any classifier should be designed to
be robust to high noise and class balance issues.
In situations where it is important to understand
how the classifier reached its decision, low inter-
pretability of machine learning algorithms (espe-
cially deep neural networks) might prove that it is
difficult to get the necessary insight.

Other major challenges of EEG-based ma-
chine learning algorithms include issues concern-
ing EEG data, namely amount of data, source of
data, accurate data labels, and artifacts. Due to
the constraints of human EEG acquisition, there
is typically a relatively small amount of heteroge-
neous data available for a particular task – usually
on the order of a couple of dozen to a couple
of hundred EEG segments from 5 to 20 patients.
While it might seem like a lot of data for manual
analysis, this amount of data could make it diffi-
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cult for machine learning algorithms (especially
deep networks) to achieve reliable and highly
accurate classification. One way to circumvent
this issue is to use a technique called transfer
learning, where a model trained in the domain
with a lot of general data (e.g., all of scalp EEG
available) is repurposed to a more specific task
(e.g., antiepileptic drug efficacy). This improved
the classifier’s performance, since the algorithm
can learn more basic features on a larger dataset.
One such strategy was used in Liang et al. [91]
where six available EEG datasets not related to
seizure prediction were used as auxiliary infor-
mation to a one dataset for seizure prediction and
found that the prediction performance improved.
A related issue is the source of EEG data – it is
easier to get the data for analysis from animal
models; however, one must be careful to ensure
that features or classes they identified are trans-
ferable to humans.

Sometimes, parts of the data are unlabelled,
or there is some uncertainty about how reliable
labels are. This poses an issue for the classifier,
since it is given incorrect or missing training
data. In this situation, so-called semi-supervised
learning techniques can be used, such as semi-
supervised version of extreme learning machines
(ELM) which, despite having unlabelled data,
outperformed a fully supervised ELM model
[92]. The most common issue with real-world
EEG signals is the presence of artifacts. Artifacts
in EEG can be very diverse, from not relevant
physiological signals (e.g., EMG, ECG) to
cable and electrode movement, environmental
interference, and recording equipment; they
can be present in multiple electrodes or only
in one and can be periodic or irregular. Most
of publicly available EEG datasets manually
remove artifacts ahead of time, which means
that algorithms trained on them will not perform
as well on the non-processed data. Islam et al.
[93] presented a thorough review of methods
for artifact detection and removal, but, in short,
artificial neural networks, SVM classifiers,
and k-means clustering can be used to detect
unwanted signals, while other techniques, such as
independent component analysis, EMD, wavelet

transform, and neural network-based algorithms,
have been used for artifact correction.

Specific uses of machine intelligence can also
have their unique challenges. As an example,
for seizure prediction, it can be complicated to
compare patient-specific algorithms that are in
the 95–100% sensitivity range. For one, patient-
specific algorithms require new training for ev-
ery new patient, so optimally cross-patient algo-
rithms should be prioritized. Another issue is the
potential discrepancy between reported bench-
marks and real-life expectations. For example, the
best seizure prediction algorithms report around
0.05/h false-positive rate, which appears low es-
pecially compared to previous methods. How-
ever, that translates to roughly one false alarm
every day. For some uses, such aswarning the per-
son about the upcoming seizure, this might not be
an acceptable rate; for others, such as neurostim-
ulation system, it might be within tolerance –
though long-term effects of routine daily neu-
rostimulation should probably be investigated.
Sometimes, parameters that normally are not a
main priority (such as the latency of the algo-
rithm or its energy efficiency) become crucially
important, as they are inmobile seizure prediction
systems. All these challenges – both general and
specific – are the reasons why a recent seizure
prediction system designed for a wearable device
achieved mean sensitivity of only 69% [94].

At their current stage, machine learning al-
gorithms can be used to augment existing tech-
niques, such as providing an opinion on the po-
tential location of the epileptogenic zone, or iden-
tifying seizures for further processing. While it is
not yet clear whether machine intelligence will
completely eliminate the need for manual inter-
vention, some future directions of EEG-based
algorithms can be suggested. One likely potential
development is integration of more probabilis-
tic modelling into machine learning algorithms.
Estimating seizure probability as a way to de-
tect seizures has already been investigated by
Kuhlmann et al. [95], a circadian probability as
subclassifier was used in Karoly et al. [26] for
seizure forecasting, andwe have briefly described
a probabilistic neural network in Sect. 19.3. A
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natural extension to all those is a Bayesian neu-
ral network (BNN) or Bayesian deep learning,
which, for example, was used recently with scalp
EEG for mental fatigue detection [96]. BNN is
a neural network that uses a prior probability
distribution on its weights in order to incorporate
uncertainty about the prediction. This gives an
advantage of BNN to work better on smaller
datasets, prevent overfitting, and give an overall
insight over how reliable the given prediction is.
Another way to incorporate probability into ma-
chine intelligence is to use restricted Boltzmann
machines (RBM). A Boltzmann machine (BM) is
a type of unsupervised fully connected stochastic
recurrent neural networkwith a visible input layer
and at least one hidden layer, while an RBM
has a restriction that connections can exist only
between layers. In context of EEG signals, one
interpretation is that the units in the visible layer
represent observable attributes, while the hidden
layer units act as nonlinear feature detectors, and
recently, an RBM-based technique has been suc-
cessfully evaluated for detection of epileptogenic
lesions [97].

Another potential development is the integra-
tion of genetic algorithms with machine learning
techniques to improve feature or hyperparameter
(a parameter with a value set before the learn-
ing process) selection. Genetic algorithm belongs
to a family of evolutionary computation algo-
rithms inspired by biological evolution – mir-
roring the biological inspiration between various
types of artificial neural networks. In short, the
genetic algorithm generates multiple candidate
solutions with various parameters and after some
training assesses their “fitness.” Each new gen-
eration of algorithms is produced by removing
less fit solutions and introducing small random
changes (mimicking biological concepts of muta-
tion and crossover) – this eventually creates a sub-
set of high-quality optimized solutions to a given
problem. A recent review thoroughly examined a
number of evolutionary computation algorithms
for EEG feature selection, including the genetic
algorithm [98], while another study found that
using genetic algorithm with an MLP for a major

depressive disorder classification task increased
accuracy and AUC by 10% [99]. In a work by
Mesejo et al. [100], an evolutionary computa-
tion algorithm was combined with an artificial
neuron-glia network (ANGN) – an extension of
a regular ANN to include longer-term dependen-
cies for weight adjustments which mirror effects
of astrocytes (dominant glial cells in the brain) in
biological neural networks. Astrocytes have been
shown to be involved in neuronal firing [101],
particularly that their activity has an effect on
neuronal codes similar to those seen in the human
brain [102]. These findings make astrocytes an
attractive target for more biologically inspired
machine learning algorithms. While in the study
by Mesejo et al. [100] the resultant algorithm
performed comparably to existing ANNs, intro-
ducing more biomimetic algorithms for machine
intelligence tasks could result in better perfor-
mance in complex problems.

One final direction of future development is
adapting alternative sequential models for EEG
analysis. Since EEG data is sequential in nature,
machine learning algorithms would benefit from
having memory to be able to capture existing
temporal dependencies within it. We have already
described several variants of recurrent neural net-
works – deep neural networks adapted for se-
quential data – and their use in seizure prediction
studies. One disadvantage of RNNs, however, is
that they require a lot of resources (time and
computational power) to train properly. Autore-
gressive feedforward models, such as a WaveNet
[103] or gated convolutional networks [104], are
being developed as an alternative to RNNs. In
autoregressive neural networks, instead of relying
on most of the history of the sequence for making
predictions, the model only uses the finite number
n ofmost recent inputs.While theoretically RNNs
should be more flexible, in practice, Bai et al.
[105] showed that autoregressive neural networks
outperform comparable RNNs in a wide variety
of tasks such as audio synthesis and machine
translation while also benefitting from signifi-
cantly easier and faster model training and pre-
diction.
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Homework

Conceptual Questions

1. Given the discussion of feature engineering
of both scalp and intracranial EEG data in
this chapter, describe some useful features for
seizure detection and prediction.

2. Given a relatively small dataset of 10 patients
with a selection of interictal, preictal, and
ictal recordings, a) suggest an approach to
divide the dataset into training and test sets,
and b) provide benefits and drawbacks of
leaving one or more patients entirely for the
test set.

3. For the same dataset as in previous question,
suggest what machine learning algorithm you
would use and why. Would your answer
change if a) it was only two classes; b)
the dataset contained 1000 patients; c)
the algorithm needs to perform EEG state
classification in real time.

4. What are common noise sources and artifacts
in EEG recordings? Suggest a few ways to
improve signal quality and eliminate these ar-
tifacts.

5. Frequently, EEG data is imbalanced, favoring
one class over others. How does that impact
classification performance? How would you
overcome this issue?

6. In this chapter, we have briefly covered several
network architectures where the targets are the
same as their inputs. Name two and explain
when you would likely use them.

Practical Analysis Questions

These questions are intended as introductory
guides to your own practical implementation of
the techniques outlined in this chapter.

For questions 7 and 8, use data from UPenn
and Mayo Clinic’s Seizure Detection Challenge

(available at https://www.kaggle.com/c/seizure-
detection).

7. Physicians and researchers working in
epilepsy often review large quantities of
EEG data to identify seizures, which in
some patients may be quite subtle and hard
to detect. Automated algorithms to detect
seizures in large EEG datasets with low false-
positive rates (FPR) and false-negative rates
(FNR) would greatly assist both clinical care
and preclinical research. Using a multilayer
perceptron, classify windows of human EEG
data as seizure or non-seizure. Use spectral
power features computed from 1 second
windows as inputs to the MLP (see figure
below). Divide the data into a training set
and a testing set using a ratio of 80% to
20%, respectively. Use the training set to
train the MLP and the testing set to find the
FPR and FNR. Compute an ROC curve and
the area under the curve to compare network
performance.
(a) Using a MLP with one hidden layer, and

gradient descent method with step size of
0.5, alter the number of units in the hidden
layer (5, 10, 40) and explore whether in-
creased number of hidden units will have
a positive effect on the network perfor-
mance. What are the pros and cons of
having more hidden units?

(b) Alter the number of hidden layer (no hid-
den layers, 1 hidden layer, or 2 hidden
layers) in the feedforward neural network,
using 10 units per hidden layer and gradi-
ent descent method with step size of 0.5.
Determine whether increased number of
hidden layers will have a positive effect
on the network performance. What are
the pros and cons of having more hidden
layers?

(c) Would you say that using a convolutional
neural network is preferable over using a
multilayer perceptron and why?

8. Using the same approach as in question 6,
explore the effect of training parameters.
(a) Learning Rate – Try different step sizes or

learning rates (lr = 0.1, 0.5, 1) using gra-

https://www.kaggle.com/c/seizure-detection
https://www.kaggle.com/c/seizure-detection
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dient descent training function on a neural
network with one hidden layer network
with 40 hidden units. Determine whether
large step size will always expedite learn-
ing.

(b) Momentum – Investigate the effect of mo-
mentum using a network with 1 hidden
layer (10 units) and gradient descent with
momentum (mc = 0.1, 0.5, 0.9). Deter-
mine whether a strong momentum term
will always expedite learning.

For questions 9 and 10, use data from
American Epilepsy Society Seizure Prediction
Challenge (available at https://www.kaggle.com/
c/seizure-prediction).

9. Responsive neurostimulation (RNS) presents
a possible therapy for abolishing seizures in
epileptic patients that are drug-resistant and
ineligible for surgery. Seizures that build and
generalize beyond the area of origin are very
difficult to abort; thus electrical stimulation
must be applied as early as possible. Using
the same algorithmic approach as in ques-
tion 6, train your system to predict epileptic
seizures in human patients. How does your
performance (in terms of the AUC metric)
compare to the seizure detection task as well
as results shown in Table 19.2? Explain your
results.

10. Suggest improvements to your seizure
prediction algorithm. Select a few im-
provements, and implement them to see
how much AUC is increased compared
to results in question 8. If you know that
sequential state changes are characteristic of
seizure episodes, how does that change your
suggested improvements?
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Abstract

Retinal prostheses can provide a sense of
sight to people with severe visual impairment
due to retinal photoreceptor degeneration.
Several devices have been evaluated in
humans, and some devices have received
regulatory approval. Clinical research studies
have shown that people with retinal implants
have improved navigation skills but cannot
read letters in a normal way (rather it takes
them several seconds to recognize a letter).
Improvements in visual acuitymay be possible
through denser electrode arrays or image
processing strategies that yield more focus,
natural responses from the retina.
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20.1 Introduction

A microelectronic retinal prosthesis is a
bioelectronic system designed to address one
of medicine’s most vexing problems; loss of
sight due to photoreceptor degeneration. Other
causes of blindness have been more successfully
addressed. Cataracts (opacity in the lens) are
routinely treated by removal of the aged opaic
lens and replacing it with an artificial lens.
Glaucoma is managed initially with topical eye
drops, but the loss of photoreceptors cannot
currently be treated. Retinal prosthetic systems,
based on the principle of electrical activation of
nerve cells by a device implanted near the retina
(Fig. 20.1), have advanced from experimental
implants to medical devices with regulatory
approval [1]. This chapter will cover the state
of the art in retinal prostheses. A discussion
of normal eye anatomy will set the physical
constraints on the implantable device. A review
of retina disease will demonstrate that in a large
number of blind, the retina remains populated
with electrically excitable cells even when the
light sensitive cells are virtually absent. The main
results from retinal prosthesis human trials will
be reviewed, followed by discussion of technical
advances in cameras, image processing, and
electrode arrays.
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Fig. 20.1 Retinal prosthesis array locations. (a) A di-
agram for the human visual system (b) An epiretinal
array rests on the surface of the retina, near the ganglion
cells. (c) A subretinal array is underneath the retina, in

the space previously occupied by photoreceptors (prior to
degeneration) (d) A suprachoroidal array is between the
sclera and choroid, and the choroid separates the array
from the retina. (From E. Zrenner [41]. Illustration by:
Credit: V. Altounian/Science Translational Medicine)

20.2 Basic Anatomy of the Eye
and Retina

The anatomical information below is derived
from two sources, except where noted: Wolff’s
Anatomy of the Eye and Adler’s Physiology of
the Eye: Clinical Applications. The diameter

of human eye is on average 2.5 cm, shown in
the cross section in Fig. 20.2. The eye’s shape
is maintained in part by a complex intraocular
fluid flow mechanism that maintains the eye
pressure. The cornea and sclera form most
of the outer layer of the eye, with the cornea
in the front of the eye and the sclera on the
sides and back of the eye. Both cornea and
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Fig. 20.2 Cross section of
the eye

sclera are composed mostly of collagen, but the
regular arrangement and diameter of the fibers
in the cornea allows transparency while irregular
collagen fiber patterns make the sclera opaque.
The next layer of the eye is the uvea, consisting of
the choriocapillaris, the ciliary body, and the iris.
The uveal tissue is highly vascularized. In fact, the
choriocapillaris, the blood vessels which supply
nutrients to the outer retina, has the highest per
unit volume of blood in the human body. Behind
the iris is the crystalline lens. The lens and the
cornea form the optical system of the eye. The
vitreous cavity, space between the lens and the
retina, is filled with the vitreous. The vitreous
is clear, composed of 99% physiological saline
and 1% hyaluronic acid. The vitreous cavity has
a volume of 6 cm3. The geometric axis of the
eye connects the opposite ends of the sphere. The
visual axis of the eye connects the fovea of the
retina (detailed below) to the fixation point in the
visual field.

The retina lines the back half of the eye, as the
innermost layer. It terminates at the ora serrata,
3–5 mm before the insertion of the ciliary body
(Fig. 20.2). This 3–5 mm space is called the pars
plana and is the preferred surgical approach to the

vitreous cavity since at this point the sclera can
be incised without damaging the retina or ciliary
body. The retina is a multilayer neural tissue (Fig.
20.3). Between the retina and the choriocapillaris
is the retinal pigment epithelium, which regulates
the exchanges of nutrients and waste between the
retina and choriocapillaris. Photoreceptors are the
light sensing cells of the retina. The photoreceptor
outer segments are next to the RPE. Two types
of photoreceptors are in the human retina: rods
and cones. The rods detect very dim light and
are used in night vision. The cones, which are
further subdivided into red, green, and blue cones,
operate at ambient daylight levels and mediate
color vision. The nuclei of the photoreceptor cells
are in the outer nuclear layer. The outer plexi-
form layer has synapses between the outer nuclear
layer and the bipolar cells. Horizontal cells form
lateral connections in the outer plexiform layer.
Horizontal and bipolar cell somata are in the
inner nuclear layer. The bipolar cells, in turn,
synapse in the inner plexiform layer to ganglion
cells. Amacrine cells form lateral connections in
the ganglion cell layer. Amacrine cell somata are
found in both the inner nuclear layer and ganglion
cell layer; in the latter case, amacrine cells are
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Fig. 20.3 Cross section of the retina

called “displaced” amacrine cells. Finally, the
axons of the ganglion cells form the nerve fiber
layer. The nerve fibers coalesce at the optic disk to
form the optic nerve, which transmits information
to the brain. In primates, ganglion cell axons are
unmyelinated until the optic disk.

Signal transmission through the retina is well
studied. An excellent online resource for all
things retina and vision is webvision (http://
webvision.med.utah.edu/), maintained by Kolb,
Fernandez, Nelson, and Jones. A photon incident
upon the photoreceptor outer segment initiates
the process called phototransduction. The result
of the process is hyperpolarization of the
photoreceptor. These sensory neurons are unusual
in that they hyperpolarize in response to stimuli.
The photoreceptors pass this signal to the bipolar
cells, which respond with graded potentials,
meaning the degree of depolarization of the
bipolar cell will be in roughly proportional with
the photoreceptor hyperpolarization. Horizontal
cells modulate the photoreceptor and bipolar
cells through inhibitory connections. The well-
studied “center-surround” organization of the
retina begins at this stage. ON bipolar cells
respond to the onset of light and OFF bipolar

cells respond to a transition from light to dark.
Other types of bipolar cell responses exist. The
depolarization of the bipolar cell leads to a
response in the ganglion cell. Instead of a graded
potential, ganglion cells fire action potentials. In
general, the number and rate of action potentials
corresponds to the strength of depolarization of
the bipolar cell. Thus, this synapse performs a
type of analog-to-digital conversion. There are at
least 18 types of ganglion cells in human retina.
Similar to bipolar cells, ganglion cells respond
in an on and off fashion. Some ganglion cells
respond to the direction of motion of a light
pattern. Amacrine cells modulate the synapse
between bipolar and ganglion cells and can inhibit
ganglion cell activity.

Glial cells in the retina include astrocytes
and Mueller cells. Astrocytes are similar to
those found in other areas of the CNS, while
Mueller cells are particular to the retina.
Mueller cells have a physiological function
that includes buffering extracellular potassium.
Mueller cell end plates form part of the external
and internal limiting membranes as well as
the internal limiting membrane. The external
limiting membrane separates the photoreceptor

http://webvision.med.utah.edu/
http://webvision.med.utah.edu/
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outer segments from the outer nuclear layer and
serves as selective diffusion barrier between
these two areas. The internal limiting membrane
(ILM) forms the barrier between the retina and
the vitreous. The ILM also contains collagen
fibrils and proteoglycans from the vitreous. Both
astrocytes and Mueller cells will hypertrophy in
response to injury or as consequence of retinal
degeneration.

Cells of the primate retina vary in density,
structure, and function depending on the position
relative to the fovea (Fig. 20.4). The fovea is the
part of the primate retina considered the center of
the visual field and is capable of the highest acuity
vision. In mammals, only primates have a fovea,
although most mammals do have a specialized
central area with better visual acuity than the
peripheral retina. When the eye moves to direct
gaze on an object, it is positioning the eye so that
the fovea can gather detailed information. The
fovea has only cone photoreceptors. In the fovea,
the other layers of the retina are laterally dis-
placed so that light scattering does not affect the
quality of the image. Each foveal cone connects
to a single bipolar cell which connects to a single
ganglion cell. The structure and function of the
retina change with increasing eccentricity from
the fovea (moving peripherally away from the
fovea on the retina). Rods become more promi-
nent. The dendritic tree and receptive field size
for a ganglion cell increases. In contrast to the
fovea, thousands of rods send convergent input to
a peripheral single ganglion cell. The density of
cones in the periphery is 100 times less than the
cone density in the fovea. As such, visual acuity
is lower in the periphery.

If only a small central part of the retina can
provide high acuity vision, then how is it possi-
ble to know someone’s face in detail, appreciate
art and sunsets, and in general have a detailed
understanding of our surroundings? The answer
lies in the movement of the eye over a scene and
the coordination of eye and head movement with
the visual system, to create overall perception
and understanding. But why not simply have a
high resolution retina over the entire visual field?
The reason only the fovea has high acuity vision
relates to the efficient use of cortical processing

Fig. 20.4 Top: The back of the eye as viewed through the
pupil. Circle 1 represents the fovea (shown in histological
cross section in the bottom frame). At the fovea, only
photoreceptors are present. Circle 2 is the macula, the
central 15◦ of vision

power. The fovea projects to a disproportionately
large area of visual cortex (compared to other
areas of the retina), a mechanism called cortical
magnification where a large number of cortical
neurons process information from small part of
the visual field. If the entire retina required this
much cortical area, the optic nerve and cortex
would be enormous.

The role then of the peripheral retina is to
identify gross targets and movement and to cue
the oculomotor system to direct eye gaze to this
area. Models of human attention have been de-
veloped that successfully predict where a person
will look when presented with an image. These
models are based on movement, intensity, color,
and orientation. In general, if an object stands out
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from the background, this draws the attention of
the visual system.

20.2.1 Eye Disease

Incurable eye diseases result in blindness
for 100,000 individuals each year. A retinal
prosthesis will require the presence of a relatively
high percentage of healthy cells in the inner
retina. Therefore, diseases that affect the outer
retina are potentially treatable with a retinal
prosthesis. The two most common outer retinal
degenerative diseases are age-related macular
degeneration (AMD) and retinitis pigmentosa
(RP). AMD is more prevalent, but RP is more
severe.

AMD results from abnormal aging of the RPE
and retina [2]. There are approximately 700,000
new AMD patients in the US each year, 10%
of which will result in legal blindness. Common
symptoms include the formation of yellow de-
posits (drusen) under the RPE and proliferation
of leaky blood vessels in the subretinal space.
The types and severity of AMD are defined by
these symptoms. Persons with AMD will start to
have distorted central vision and if not treated
could lose most vision in the central 20–30◦. A
number of treatments such as intravitreal injec-
tions of anti-VEGF (vascular endothelial growth
factor) drugs have shown effectiveness in treating
neovascular AMD, no cure exists.

Retinitis pigmentosa is a collective name for
almost 200 genetic defects that results in photore-
ceptor loss [3]. The overall incidence of RP is 1
in 4000 live births. The rod-cone variant of RP
attacks the rods first resulting in night blindness.
Cone vision is lost first in the mid-periphery
followed by complete peripheral vision loss. In
some cases, RP patients can maintain near normal
visual acuity in the fovea and parafovea, but have
no vision in other parts of the retina. There is no
treatment or cure for RP.

Postmortem evaluation of retina with RP or
AMD has shown significantly better survival of
cells in the neural retina (ganglion cell layer
and inner nuclear layer) versus the sensory
retina (photoreceptors). In severe RP, in the

macula only 4% of photoreceptors remained
but 80% of inner retina and 30% of ganglion
cells remained [4]. In extramacular regions, only
40% of inner retina remained. In AMD, 90%
of the inner retina cells remained compared to
age-matched controls [5]. Thus, by measures
of cell counting, the inner retina in RP and
AMD appears to be less affected by disease
compared to the photoreceptors. Recent studies
using computational phenotyping, however,
suggest that the inner retina undergoes significant
remodeling during retinal degeneration [6].
Further, Mueller cell hypertrophy leads to a
seal between the subretinal space and the inner
retina. In summary, RP and AMD do not result in
complete degeneration of the retina, but, at least
in the case of RP, it may not be correct to assume
that the information processing circuitry of the
inner retina is intact.

20.2.2 Retinal Prosthesis

An electronic retinal prosthesismust perform sev-
eral basic functions in order to replace the sense of
vision. First, it must detect light in the nearby en-
vironment of the implant patient. The light must
be converted to an electrical stimulus. Next, the
artificial electrical stimulus must be delivered to
the retina and evoke a response. As a system, the
prosthesis must be safe and effective, acceptable
to the patient, and functional in the human body
for decades.

Several artificial vision approaches have been
proposed. While this chapter will focus on retinal
prostheses, other approaches bear mentioning.
Visual cortical prostheses have been pursued by
a number of investigators since the 1960s [7, 8].
This approach has the potential to aid individ-
uals with blindness due to a wider variety of
disease, since the condition of the retina is not
a factor. Diseases such as glaucoma and diabetic
retinopathy, which damage the inner retina and
optic nerve, would potentially be treatable. The
fovea projection to the visual cortex is greatly
expanded, so a cortical prosthesis can put more
electrodes in cortex that represents the fovea than
a retinal prosthesis can put in the actual fovea.
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Thus, a cortical prosthesis has potential for higher
acuity vision provided electrodes can be placed
deep into the calcarine fissure without severing
blood vessels which could lead to mortality and
potentially morbidity. Hence, a cortical prosthesis
will have a higher threshold for safety than a
retinal prosthesis, due to the higher rate of mor-
bidity and mortality associated with brain surgery
vs. eye surgery. Additionally, a cortical visual
prosthesis will have to account for the significant
signal processing that occurs in both the retina
and lateral geniculate nucleus. Positioning elec-
trodes precisely in primary visual cortex is also
a challenge. Recently, a visual cortex prostheses
(Orion, Second Sight Medical Products, Sylmar,
CA) has begun a feasibility trial in humans. At
the time of this chapter writing, no peer-reviewed
report has described the outcome from the Orion
feasibility trial.

An optic nerve prosthesis was tested in two
subjects. A remarkable amount of visual function
was apparent evenwith only four electrodes avail-
able to stimulate the optic nerve [9]. The patient
scanned the scene in front of them with a head-
mounted video camera to distinguish light from
dark. A significant amount of time (30–40 sec-
onds) was required to make pattern discrimina-
tions, but a high rate of accuracy was achieved.
Nevertheless, access to a retinotopic map in the
optic nerve was difficult with a cuff electrode,
since the cuff electrode was on the outside of the
nerve and focal stimulation would have required
an electrode penetrating into the nerve.

Retinal implants have distinct advantages over
optic nerve and cortical implants with regard to
surgical implantation and access to target nerve
cells. The retina lines the back of the eye and
the mapping of the retina to a physical loca-
tion in space is well known. The types of reti-
nal implants are defined mainly by the anatom-
ical location of the stimulating electrode array.
The array can be on the epiretinal surface or in
the subretinal space (Fig. 20.1). The epiretinal
surface is the internal limiting membrane. The
subretinal space is between the retina and the
RPE, in the place of the photoreceptors, which
are absent in the patients who would receive an
implant.

The advantages of the epiretinal approach in-
clude the following: (1) the surgery is less com-
plex and (2) the retinal array can be larger (vs.
a subretinal approach) The disadvantages of this
approach include the following: (1) retinal arrays
have proven to separate from the retina [10],
causing increased perceptual thresholds and (2)
activation of axons of passage leads to distorted
perceptions [11].

The subretinal approach to the retinal pros-
thesis involves implanting a stimulating electrode
array between the remnant retina and retinal pig-
ment epithelium [12, 13]. This is accomplished
surgically via an incision of the sclera, chorio-
capillaris, and RPE. There are distinct advantages
and disadvantages to the subretinal prosthesis
approach. Advantages include closer proximity
to surviving neurons at the earliest point in the
visual pathway (i.e., bipolar cell). Stimulation
at the bipolar cell level avoids the problem of
axon stimulation. Placing an electrode interface
in the subretinal space will use the retina to hold
the electrode in close proximity to the electrode.
The disadvantages include the limited subretinal
space, which limits the size of the array, since
a larger array will increase the risk of retinal
detachment. Another issues with subretinal arrays
is the need to power the implant will require
either a cable will have to traverse the sclera
and choroid or an external projector to send high
intensity light into the eye (if the subretinal array
has microphotodiodes). A cable traversing the
highly vascularized choroid, over the long term,
increases the likelihood of subretinal hemorrhage
and total or local retinal detachment. In the latter
case, the subretinal fluid would increase the dis-
tance between the underlying electrode and the
retinal neurons and therefore increase the current
requirements.

A third approach in terms of electrode array
position is suprachoroidal transretinal stimula-
tion (STS) [14, 15]. Placing the stimulating elec-
trode in the suprachoroidal space (between the
sclera and choroid) may allow for a less-invasive
method to achieve functional percepts. The only
intraocular component would be a return elec-
trode in the vitreous cavity, to ensure that stimulus
current passes through the retina. This approach
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has several advantages. First of all, the surgery is
less complicated. Second, the electrodes are less
invasive to the retina. Third, the electrodes are
relatively easy to remove or replace if damaged.
However, because the electrodes are further from
the target neurons, they should need to deliver
higher currents and the current spread should be
greater, limiting the resolution. An STS system
has been implanted in blind by two groups. Func-
tional testing suggests that electrically elicited
percepts are possible, but with stimulus currents
generally greater than those reported with epireti-
nal or subretinal implants.

20.2.3 Clinical Studies

This section will review current status of retinal
prostheses that have received regulatory approval
or are in active clinical trials. Chronic implan-
tation refers to devices left in the test subjects
for some period of time. For a device to proceed
to this step requires considerable engineering in
order to manufacture the device such that regu-
latory agencies will permit surgical implantation.
All studies were performed with approval of the
appropriate governmental body.

Retina Implant, GmbH has developed an sub-
retinal microphotodiode array, powered and pro-
grammed by an extraocular source (via a cable
across the eyewall). The first version of this sys-
tem used a percutaneous connector for power. The
wireless version developed later used an implant
behind the ear, wirelessly powered, to provide
voltage and configuration data for the subretinal
circuit. The device has 1500 microphotodiodes
each with amplification and stimulation circuitry
as well as an electrode for output. The light de-
tected by the photodiode serves as a scalar for
stimulus voltage output. The initial series of im-
plants had a multiwire cable running from the
eye to a transcutaneous connector behind the ear,
while a more recent set of experimental implants
has an implanted electronic module for power
generation (via an inductive link). One advantage
that this device has is that the imaging functional-
ity of the implant is in the eye and hence coupled
with eye movements. The best patient was able to

read large letters and demonstrated visual acuity
of approximately 20/540 using a Landolt C test
[12]. In contrast to a passive subretinal device
[16], the active device clearly shows that chip-
mediated vision is possible if a subretinal chip is
adequately powered. Using this device, patients
could identify letters and common objects, but
onlywhen in context. Thismeans that the subjects
could identify letters if they were told that they
were looking at letters and objects if they were
given additional information, such as objects on a
dining table (e.g., knife and plate).

The ARGUS I device was a 16-electrode
device, with electronics based on cochlear
implant technology. Six subjects were implanted
in a feasibility study. Subjects were reported
to have thresholds well within published safe
limits for platinum metal. Perceptual threshold
correlated with separation (i.e., lift-off) between
the electrode array and the retina [17]. In addition,
increasing frequency of pulses lowered the charge
per pulse in a predictable way [18]. Subjects
could perform select visual tasks using the device,
such as identifying objects like a knife, a plate, or
a cup from a set and detecting the direction of a
moving bar [19]. In one subject, a grating visual
acuity measure was used to demonstrate that the
best visual acuity using the retinal prosthesis
was the maximum allowable by the spacing of
electrodes on the array (i.e., 20/4000). A 10-year
follow-up study in one patient showed that the
ability to create the perception of light remained
after a decade of implantation [20].

The ARGUS II has 60 electrodes, and the en-
tire device fits inside the orbit. An external cam-
era unit delivers image information wirelessly to
the implant [21]. The implanted electronic com-
ponents are sutured to the sclera under the rectus
muscles, and a ribbon cable enters the eye via a
pars plana incision and is tacked to the retinal
surface resulting in the placement of 60 electrodes
onto the epiretinal surface. The ARGUS II retinal
prosthesis was evaluated in a multicenter clinical
trial. Thirty subjects were enrolled between June
2007 and August 2009. All subjects were able
to perceive light during electrical stimulation. On
object localization tests using a target of a 7 cm
white square on a black LCD screen at 30 cm dis-
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tance, 27 out of 28 subjects (96%) performed bet-
ter in localizing the object with System ON ver-
sus OFF, and no subjects performed significantly
better with the System OFF [22]. In a test that
requires motion detection as well as orientation
of objects, using a target of a white bar moving
across a black LCD screen, 16 out of 28 subjects
(57%) perform this test better with System ON
versus OFF. The best result visual acuity result to
date reported in a peer-reviewed journal is 20 of
1200 using grating acuity [23], but recently vision
of 20 of 480 has been demonstrated using an
ETDRS eye chart (personal communication Dr.
Yoon, Seoul Korea). Letter reading was tested in
22 of 30 subjects. Six of these subjects were able
to identify any letter of the alphabet at a 63.5%
success rate (vs. 9.5% with the system off). In
all 22 subjects, a small set of eight letters was
identified 72.5% correctly, vs. 16.8% with the
system off. Subjects were free to take as much
time as needed to make a judgment. Subjects
provided answers after 100 seconds in the full
alphabet and 44 seconds in the limited letter set
[24]. Follow-up studies on this cohort suggest ac-
ceptable long-term safety [21], and some benefit
from the amount of restored vision [25]. Based
on the clinical trial results, Argus II received a
CE Mark in 2011, allowing sale in Europe, and
a Humanitarian Device Exemption from the US
Food and Drug Administration in 2013, allowing
sale in the US.

A subretinal implant system named Prima has
been tested in patients with Age-Related Macular
Degeneration. The implanted part of this system
is relatively simple, and it consists of an array
of infrared (IR) sensitive microphotodiodes on a
single silicon chip, about 2 mm in diameter [26].
An external IR projector systems is needed to ex-
cite themicrophotodiode to produce stimulus cur-
rent. The microphotodiode circuit is connected
to an electrode with deliver the photocurrent to
the retina, cause excitation, and the perception
of light. Extensive preclinical testing in rodent
models support the ability of such system to ac-
tivate a degenerated retina and achieve visual
acuity [13]. As of the writing of this chapter, the
Prima clinical results were not published in peer-
reviewed format.

Bionic Vision Australia and Nidek are two
research/industry teams that each has advanced
suprachoroidal implant approaches. Both have
tested implants in patients and demonstrated
the ability to evoke phosphenes [15, 27]. As
expected, visual acuity is low and thresholds
are high. However, the subjects could use the
perceived light to detect actions. This approach
represents an attractive alternative, if intraocular
approaches continue to show limited ability to
generate form vision.

20.3 Retinal Prostheses Research

Retinal implants have successfully restored the
perception of light in humans with almost no
vision. Patients with implants report improved
mobility and enjoy “being visual” again. How-
ever, the improvements are small to date, and
better technology is needed to allow more func-
tion to be provided by retinal implants. Here,
we review potential technological innovations in
camera, image/video processing, and electrode
array, which may improve overall performance.

20.3.1 Camera

Imagers for retinal prosthesis have been imple-
mented as external cameras mounted on glasses,
implanted cameras in the place of the crystalline
lens [28], and microphotodiode arrays implanted
under the retina [26, 29]. Implanting the imager
in the eye offers the clear advantage of placing
the imager direction under control of eye move-
ment. Implanted cameras are made possible by
the rapid reduction in size in the commercial
imager chips. Even so, any implanted device will
likely eliminate some common camera functions
to achieve low power consumption. Features such
as automatic gain control, low light sensitivity,
and sophisticated image processing (see next sec-
tion) may need to be traded for efficient oper-
ation (reduced power and size). An implanted
camera that has a custom design may be able to
include many features by reducing the number
of pixels. Retinal prosthesis will have at most
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several thousand channels, still well below com-
mon megapixel cameras. One such approach is to
use an event based, neuromorphic camera [30].
However, a custom camera design will add cost
to a retinal implant system.

20.3.2 Image Processing

Image processing strategies for a retinal prosthe-
sis will depend on the system implementation.
Implanted imagers will have less flexibility to
implement complex algorithms. For the follow-
ing discussion, we will set aside this consid-
eration and discuss possible algorithms without
regard for the computational power requirements
to implement such algorithms. An image process-
ing algorithm will transform a frame of video
into a set of stimulus commands for the im-
planted stimulator. Alternatively, image process-
ing maybe used to detect and highlight important
parts of an image.With such little experience with
retinal prostheses in people, the best processing
strategy cannot be known at this time. Patient in-
teraction in fine-tuning the device will be needed
to optimize the perception. Both the software and
hardware for image processing must be devel-
oped in concert with the implanted portion of
the device. Therefore, the initial image processor
must be flexible to account for the current lack of
knowledge concerning pattern stimulation of the
retina and the likely variability in patient response
due to different disease states.

The implementation of the image processing
system can be on platforms ranging from general
purpose processors to custom chips with hard-
wired processing schemes. Regardless of this,
several systems requirements will be common.
Real-time operation is necessary, since the sub-
jects will be correlating camera direction with
the location of the perception and the stimulus
must update fast enough to create the percep-
tion of where the camera is pointed. The system
must be portable. Conceivably, a laptop computer
could be worn in backpack, but a belt-worn sys-
tem would be preferable and glasses mounted
system ideal. Thus, some custom hardware will
be required. The main algorithms of the image

processor will include decimation and some type
of enhancement. Decimation will be necessary
since commercially available cameras typically
have at least 320 × 240 pixels, two orders of
magnitude higher than the number of electrodes
in a retinal prosthesis. It is known that the retina
performs gain control, edge enhancement, motion
detection, so a first generation image processor
should anticipate the need to replicate some of
these functions.

Silicon retinas based on the biology of the
visual system have been realized [31]. This in-
volves designing a computer chip to emulate reti-
nal processing. Such systems may represent the
best compromise between computational capa-
bility and low power operation, since such cus-
tom, hardware solutions can be very efficient.
On the other hand, the programmability of these
chips is limited. One such system has 5760 pho-
toreceptor elements and 3600 ganglion cell out-
puts [32]. Both outer and inner retina circuitry
were modeled in silicon. Functions performed by
this chip include luminance adaptation, bandpass
spatiotemporal filtering, temporal adaptation, and
contrast gain control. The chip was fabricated in
0.35 μm CMOS, is 3.5 × 3.3 mm2, and con-
sumes 62.7 mW of power. If a similar chip was
developed for a 1000 channel stimulator, the size
and power consumption could be reduced sub-
stantially.

Another type of image processing for retinal
prosthesis involves the use of computer vision
algorithms to detect/enhance important parts of
the scene captured by the camera. The determi-
nation of what is important is the difficult part of
such algorithms, but some recent progresses have
been made. Using models of the primate vision
system coupled with testing in human observers,
“saliency” algorithms have been developed that
detect the most salient part of an image [33].
These algorithms are based on color opponency,
contrast differences, orientation, and movement.
Using a series of test images, good correspon-
dence was noted between what humans looked
at in the scene (recorded via eye tracking) and
what the algorithm predicted would be the most
salient region. It is important to note that the
algorithms do not identify specifics objects or
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people, instead they act similarly to the peripheral
retina by highlighting parts of a scene that might
be important to examine closer. Such algorithms
could be employed in a retinal prosthesis that cov-
ered the central vision (but not peripheral vision).
The user could be alerted to the presence of im-
portant objects or obstacles in the periphery. With
these algorithms, normally sighted test subjects in
a simulated prosthetic vision environment were
able to improve their performance in visually
guided tasks, although in some instances it took
longer for them to complete the tasks [34]. By
providing additional information through com-
puter vision algorithms, the user must then pro-
cess this information which adds to the cognitive
load of interpreting input from the artificial de-
vice.

20.3.3 Retinal Stimulating Electrode
Arrays

Implementation of a stable electrode-retina in-
terface will have a number of challenges. Many
of these challenges stem from the fact that the
retina is spherical and microelectrode technology
typically produces planar structures. Even if a
spherical structure can be produced, the eye cur-
vature is not consistent and even a separation of
200 μm can be significant. If the curvature mis-
match causes a device to mechanically pressure
the retina, then the retina can be damaged [35].
If the curvature mismatch results in separation of
the electrodes form the retina, then more current
may be needed to activate the retina, as noted
earlier. Therefore, the ideal retinal stimulating
electrode would have the flexibility to match the
curvature of the retina without placing significant
mechanical pressure on the retina. General re-
quirements for neurostimulation electrodes, such
as materials, have been covered in detail in an
excellent review by Cogan [36], and below we
discuss electrode materials in the context of reti-
nal prostheses.

Platinum is the electrode material most fre-
quently used for neural stimulation, but other
materials have been evaluated. One problem with

platinum is the small, but finite, dissolution rate
under repeated stimulation [37]. Considering that
a retinal electrode array must use a thin film of
metal (to remain thin and flexible overall), it is
doubtful that a submicron thin film of platinum
will withstand years of pulsing [38]. Thus, any
platinum electrode for chronic stimulation must
have enough material to last under these condi-
tions.

Safe stimulation limits are defined by the
amount of charge applied before hydrolysis and
gas evolution. Estimates of safe stimulation
limits for platinum range from 0.1 mC/cm2

to 0.35 mC/cm2. Alternatives to Pt include
materials such as iridium oxide and titanium
nitride. Both of these have been shown to have
higher safe stimulation limits than Pt (IrOx:
1–4 mC/cm2: TiN 0.9–22 mC/cm2) but have
not been implemented in medical devices as
extensively as Pt. The reason for this is that
most neural stimulating devices in usage today
use large electrodes and have a relatively low-
charge-density requirement. In contrast, retinal
stimulating arrays have electrodes as small as
50× 50 microns [29]. Clinical retinal stimulating
arrays have used platinum gray (a high surface
area platinum used by Argus II), titanium nitride
(Alpha-IMS), and iridium oxide (Prima).

One deficiency with current retinal implants is
the narrow field of view provided, due to the elec-
trode array size. Surgical constraints limit the size
of an eyewall incision to about 5 mm. Above that,
the risk of catastrophic loss of eye pressure during
surgery increases. The Argus II array is 20◦ (di-
agonally), while the prima and Alpha-IMS arrays
are less than 15◦. The suprachoroidal approach
can overcome this limitation, since no eyewall
incision is required, at the cost of higher stim-
ulus thresholds as described earlier. To achieve
both low thresholds (intraocular) and wide field,
two approaches have been proposed. For subreti-
nal arrays, a multi-implant approach may allow
peripheral perception. For example, in the case
of the Prima system, multiple microphotodiode
arrays would be implanted. For epiretinal arrays,
several groups have created prototype “wide-field
arrays” that have flexibility that allow unfold-
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ing of the array after implantation. Ameri et al.
described a foldable polyimide retinal electrode
array that could cover 34◦ of visual field [39].
The design featured “arms” around a central disk.
The arms were folded over the disk for insertion.
The passive array was successfully inserted in
cadaveric pig eye, demonstrating the feasibility
of this approach. A flexible retinal prosthesis,
including light sensitive elements, was developed
by Ferlauto and colleagues. This device is curved
to match the eye shape and can be folded for
insertion but still requires an insertion larger than
5 mm. Accelerated aging of this system suggests
a lifetime greater than 2 years [40].

20.4 Conclusion

Retinal prostheses are medical devices approved
by regulatory agencies and available for patients
with severe retinal degeneration. However, the
quality of vision provided is limited. Improve-
ments in technology will be needed to increase
upon the results from clinical trials of experimen-
tal devices. For more information on clinical trials
of retinal prosthesis, visit www.clinicaltrials.gov.
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Homework

1. List the three main functions of an electronic
retinal prosthesis.

2. The photoreceptors and bipolar cells are
sometimes referred to as analog cells and
retinal ganglion cells are sometimes referred
to as digital cells, in terms of how they
respond to stimuli. Explain why these terms
are used to describe each type of cell.

3. Why is a variable density of electrodes, with
high density in the center and low density in
the periphery, a desirable design for retinal
prostheses?

4. Name one advantage of an epiretinal
approach. Name on advantage of a subretinal
approach.

5. What feature of foveal structure will make
normal visual acuity (20/20) difficult to
achieve with electronic retinal implants?

6. Name two diseases that can be treated with
retinal implants. What type of disease is not
treatable?

7. What is a “silicon retina”? Why is such a de-
vice more useful for epiretinal vs. subretinal
implants.

8. List two challenges is making a curved elec-
trode array

9. Why is it difficult to provide peripheral vision
with retinal prostheses?

10. How can computer vision improve the perfor-
mance of someone with a retinal prostheses?
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Robert A. Linsenmeier and John B. Troy

Abstract

The retina is a small piece of the central ner-
vous system responsible for the first steps in
vision, so understanding how it works has
great importance for daily life. In addition,
features of the retina make it attractive as a
model neural system. The only input to the
retina is light, which can be easily manip-
ulated, and recordings have been made for
many decades from individual output cells of
the retina, the retinal ganglion cells (RGCs),
allowing application of linear (and to some ex-
tent nonlinear) systems analysis methods that
define the transfer functions of the retina. The
small, non-spiking photoreceptors and retinal
interneurons make recordings from these ear-
lier stages difficult in mammals, but this has
been partially surmounted by the ability to
record massed activity of some types of retinal
neurons, including photoreceptors and bipolar
cells, in the electroretinogram (ERG) in hu-
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mans as well as animals. ERG analyses have
led to models of signal processing prior to
the RGCs. Engineering methods in combi-
nation with physiology have thus elucidated
the basic features of the retinal network that
allow the convergence of signals from many
millions of photoreceptors to yield the center-
surround organization and response properties
of the primary types of RGCs in cats and
primates. However, some of the approximately
20 types of RGCs that send parallel signals to
the brain are still poorly understood. Recent
work has used isolated retinas and multielec-
trode arrays to record from many retinal gan-
glion cells simultaneously. Specific contribu-
tions of interneurons to the retinal circuits have
also been addressed with new methods, some
of which are reviewed here. Another aspect
of retinal bioengineering concerns the reti-
nal microenvironment. Diffusion models and
spatially precise intraretinal measurements of
oxygen and pH provide information about reti-
nal metabolism that is useful in understanding
dysfunction of the retina in some diseases.

Keywords

Retina · Retinal ganglion cell ·
Photoreceptor · Microelectrode array ·
Systems analysis · Electroretinogram ·
Retinal model · Bioengineering ·
Microenvironment

© Springer Nature Switzerland AG 2020
B. He (ed.), Neural Engineering, https://doi.org/10.1007/978-3-030-43395-6_21

581

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43395-6_21&domain=pdf
mailto:r-linsenmeier@northwestern.edu
https://doi.org/10.1007/978-3-030-43395-6_21


582 R. A. Linsenmeier and J. B. Troy

21.1 Introduction

The retina is a tiny piece of neural tissue, weigh-
ing less than 100 mg in humans, whose impor-
tance for bioengineers is out of proportion to its
size. It has long served as a model for understand-
ing complex parts of the nervous system, and it
has attracted a great deal of attention from neu-
roscientists of all types, including bioengineers.
The quantitative and systems approaches of engi-
neering have been central to the understanding of
retinal function for more than five decades. Many
of the retina’s properties hold up well in vitro,
and it is accessible tomicroelectrodes both in vivo
and in vitro. It has a modest number of principal
cell types, and the total number of output neurons
(retinal ganglion cells – RGCs) in each eye is
1.1 ± 0.4 million in humans [1], and much less
in non-primate mammalian species, numbers that
are almost manageable by comparison with the
outputs of other parts of the central nervous sys-
tem. The retina can be studied while it responds
to its natural input, patterns of light, which can
be controlled easily. For deeper neural structures,
one often has to make the choice between study-
ing responses to electrical stimulation, which is
unnatural, or responses to natural inputs from
other locations in the nervous system that may
be difficult to control or completely characterize.
The retina is also simpler than many areas of the
brain because there is almost no feedback from
the brain to the retina. In short, no other region of
comparable complexity provides the advantages
for study that the retina does.

The retina is also important for its role in
human lifestyles and performance, coupled with
its sensitivity to disease. A large part of the human
brain is devoted to visual processing, and all of
this relies on the transduction and initial visual
processing steps that occur in the retina. Both
our ability to receive information about the world
and our mobility within it are ordinarily strongly
dependent on vision. Unfortunately, the retina is
rather fragile, and a number of genetic, vascular,
and metabolic diseases interfere with its function.
Just as engineers can contribute to understanding
normal retinal function, they can help unravel the

etiology of disease and assist in providing treat-
ments for some of the many blinding diseases.

Diagnosing the problems of the diseased retina
and repairing or providing substitutes for its func-
tions are obviously within the purview of design-
oriented neural engineers. However, there is also
a large body of work by retinal bioengineers
in measuring and modeling normal retinal func-
tion. Understanding retinal neural mechanisms
will provide information for the design of artifi-
cial retinas.

This chapter focuses on aspects of retinal bio-
engineering related to mathematical modeling of
neural responses and the modeling of the retinal
microenvironment, and on experiments that pro-
vide inputs to that modeling or are used to vali-
date the modeling. While vertebrate retinas share
many similarities and a great deal of physiologi-
cal information has come from lower vertebrates,
this chapter is largely concerned with mammals.
Even across mammals, there are enough differ-
ences that one has to be careful in generalizing.
The topics covered here are at the intersection
of bioengineering and neuroscience and there has
been such a rich interplay that there is no clear line
between engineers and biologists. This chapter
covers a lot of ground. The references included
here should not be considered exhaustive but are
the ones that summarize areas and provide leads
into the rest of the literature.

This chapter omits a consideration of visual
prostheses [2–7], which are covered in a separate
chapter. It also omits topics at the intersection
of bioengineering and optics, which comprise
another exciting type of retinal bioengineering.
It is now possible to image individual retinal
photoreceptors in the human eye with adaptive
optics [8–10]. Also, optical imaging of the lam-
inated retinal structure via optical coherence to-
mography (OCT) [11–14] has become an essen-
tial diagnostic tool in a remarkably short period of
time. Scanning laser ophthalmoscopy (SLO) [15–
17] is less prevalent, but can also be important
in the identification of pathology. Laser-based
techniques are used for both diagnostic appli-
cations and therapeutic ones, for instance, pan-
retinal photocoagulation [18] and photodynamic
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therapy [19]. Yet another intersection between vi-
sion and engineering is in drug delivery, to avoid
frequent injections into the eye and obtain con-
tinuous dosing [20, 21], a particularly important
goal now that agents against vascular endothelial
growth factor (VEGF) have been shown to be
effective in several diseases.

Molecular and cellular therapies, particularly
for photoreceptor degenerations, are among the
most exciting innovations today, and engineers
are engaged in using these therapies. Gene trans-
fer to repair or rescue photoreceptors that would
otherwise degenerate has become a reality in cer-
tain cases [22, 23]. In addition, after photorecep-
tors are lost, the transfection of cells with pho-
toreceptive proteins, an application of the larger
area of optogenetics [24], can make second- and
third-order neurons light sensitive [25, 26].

21.2 The Neural Structure
and Function of the Retina

This section on retinal structure and function is
necessarily brief, and more comprehensive views
of the retina can be found in many books and
chapters [27–30], and a web textbook [31].

The retina is the innermost of three layers
comprising the posterior part of the eye (Fig.
21.1). An outer layer, the sclera is a fibrous coat
that provides most of the structural rigidity of
the eye and merges with the cornea in the front
of the eye. However, the eye maintains its shape
only because secretion of fluids from the ciliary
body (just behind the lens) keeps the intraocular
pressure at about 15 mm Hg above atmospheric.
Inside the sclera is the choroid, which is primarily
vascular, and supplies much of the nutrition that

Fig. 21.1 Structure of the three coats of the vertebrate
eye, the sclera on the outside, the choroid in the middle,
and the retina adjacent to the vitreous humor. The major
arteries and veins are also shown. The central retinal artery
enters through the optic nerve and feeds the capillaries
of the retinal circulation within the retina. The central
retinal vein drains the retinal circulation, leaving the eye

through the optic nerve. The completely separate choroidal
circulation is fed largely by short posterior ciliary arteries
that penetrate the sclera near the optic nerve. These in turn
distribute into a capillary bed called the choriocapillaris,
and the choroid is then drained by the vortex veins. (Copy-
right 2019 by Robert Morreale, CMI, all rights reserved)
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the retina, especially the photoreceptors, requires.
The retina itself is adjacent to the microcircu-
lation of the choroid. In humans, the retina is
only about 250 μm thick on the average. It is
thinner in the fovea and in the periphery, and
thicker adjacent to the fovea. The retinas of all
vertebrates share basic structural and physiolog-
ical similarities, but the description here concen-
trates on the retina of mammals, especially cats
and primates, which serve as the most relevant
models for understanding the human retina (Fig.
21.2), although mice have also gained importance
because of the availability of transgenic models.

21.2.1 Photoreceptors

At the back of the retina are the photoreceptor
cells, which contain many stacked disks in their
outer segments. The disk membranes contain the
visual pigment, which absorbs light and begins
the process of transducing it into electrical sig-
nals. In vertebrates, light leads to a hyperpolar-
ization of the photoreceptors, as described more
fully below. Photoreceptors in humans fall into
two classes, rods and cones. Rods mediate vision
over about 6 log units of illumination, from the
threshold of less than 0.001 quanta per second
per rod up to about the illumination at dawn and
twilight [29] (scotopic conditions). The ampli-
tude of rod responses then saturates, and cones
gradually take over and are responsible for vision
under the rest of the approximately 10 log units
of illumination over which we have vision [29,
34] (photopic conditions). Still, in order to cover
this entire range adequately, both rods and cones
(and subsequent neurons) must adapt, or adjust
their sensitivity, as mean illumination changes,
because the dynamic range at any given time for
a rod or a cone is only about 2 log units [29]. The
transition region where rods and cones may both
be involved is called the mesopic range.

There are four standard visual pigments in
humans, one in rods and the other three in cones.
All have the same light-absorbing component,
the chromophore retinal, which is derived from
vitamin A, but they vary slightly in the protein,
called opsin, to which the chromophore is at-

Fig. 21.2 Cell types and lamination of the mammalian
retina. At the top are the photoreceptors, which comprise
about half of the retinal thickness. The thinner photore-
ceptors are rods and the thicker ones are cones. They
are intermixed in most of the retina. At the outer plex-
iform layer (OPL), rods contact rod bipolars (RB) and
cones contact ON and OFF cone bipolars (OFF B and
ON B). Horizontal cells (H) also make synapses in the
OPL, receiving input from cones and providing feedback
to other cones. Horizontal cell processes are also found
in the rod-RB synaptic complex. Cell bodies of bipolar
cells, horizontal cells, and amacrine cells (represented
by one subtype, the AII) are found in the inner nuclear
layer. Connections of bipolars and amacrine cells to retinal
ganglion cells (RGCs) are found in the inner plexiform
layer in separate sublaminae for the ON and OFF systems.
RGC cell bodies are found in the ganglion cell layer and
their axons run in the nerve fiber layer. The connections
that are shown are the principal ones needed to explain
the circuitry of Fig. 21.3. Not shown are interplexiform
cells, whose cell bodies are in the inner nuclear layer, and
project from the inner plexiform to the outer plexiform, the
Müller cells, the principal glial cells of the retina, which
span all the layers except the outer and inner segments, and
astrocytes in the nerve fiber layer. (Modified from Wassle
and Boycott [33])

tached. All the pigments respond to light over a
wavelength range of more than half the complete
visual spectrum (400–750 nm) but the slight dif-
ferences in the proteins give the rods and each of
the three types of cones, called short-, middle-,
and long-wavelength (or S, M, and L) cones, an
absorbance maximum at different wavelengths.
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Rods absorb maximally at 500 nm, and the S,
M, and L cones absorb maximally at 419, 530,
and 568 nm, respectively, although these peaks
vary slightly among individuals. Comparison of
the outputs of different cones by second-order
neurons is required to extract a wavelength signal
and discriminate color. While full color vision
requires all three cone types, many humans, espe-
cially males, function reasonably well with only
one or two cone types. Thus, it is vision at high
illuminations, rather than color vision, that is the
critical function of cones in humans.

21.2.2 Retinal Circuits

Photoreceptors make their synapses in the outer
plexiform layer (Fig. 21.2). At this location, rods
and cones project to separate subtypes of bipo-
lar cells, which carry the signals forward, and
to horizontal cells, which then make lateral in-
hibitory connections back to other photorecep-
tors. The cell bodies of bipolar cells, horizontal
cells, and amacrine cells (along with Müller cells,
the principal glial cells of the retina) form the
inner nuclear layer, and the outputs of bipolar and
amacrine cells provide the input to several classes
of RGCs at the inner plexiform layer. The RGC
bodies along with some “displaced” amacrine
cells are located in the ganglion cell layer (GCL).
Because of the different requirements for visual
information going to different locations in the
brain, RGCs are of several different physiological
types, which are correlated with different anatom-
ical types [35–37]. Each of the major types of
RGCs tiles the retina, providing several overlap-
ping representations of the visual world [33, 38].
Because of the need to transmit signals over long
distances, RGCs and some amacrine cells [39]
fire action potentials. Other retinal neurons do not
support action potentials but instead control their
transmitter release by graded potential changes.

EachRGC sends an unmyelinated axon toward
the optic disc (also called the optic nerve head)
in the nerve fiber layer. The axons then pass
through a modified part of the sclera called the
lamina cribrosa at the optic disc. Past the lam-
ina cribrosa, the axons become myelinated and

project to higher structures ([36, 37]). The most
important of these are (1) the lateral geniculate
nucleus of the thalamus, which is the major relay
station for signals that travel to visual cortex to
mediate visual perception, and (2) the superior
colliculus in the midbrain, which uses visual in-
put to guide eye movements. The brain regions
that mediate the pupil response and the synchro-
nization of the circadian clock to light receive
input from a relatively small number of RGCs
that contain the visual pigment melanopsin. This
makes them intrinsically photosensitive [40–42],
although these RGCs also receive input from
bipolars fed by photoreceptors.

There are several pathways by which photore-
ceptor signals reach the ganglion cells. Mammals
have two main classes (and several subtypes) of
cone bipolar cells, depolarizing (ON) and hyper-
polarizing (OFF), that receive signals from the
cones, and another type called rod bipolars, which
connect only to the rods. Rod bipolars are all ON
bipolar cells. As with other retinal neurons, ON
and OFF refer to the stimulus polarity that depo-
larizes the cell. An increase in illumination leads
to a depolarization of ON bipolars and a hyper-
polarization of OFF bipolars, while a decrease in
illumination hyperpolarizes ON and depolarizes
OFF bipolars. All photoreceptors hyperpolarize
with illumination, so they can be regarded as “off”
cells, although that terminology is never used
for them. Connections from cones to OFF bipo-
lars therefore preserve the sign of the responses
(i.e., both cones and OFF bipolars hyperpolarize
upon illumination) and are fundamentally excita-
tory, while connections from cones and rods to
their respective ON bipolars require a sign rever-
sal, which implies an inhibitory connection (Fig.
21.3). The different properties of bipolar cells re-
sult from differences in their glutamate receptors.
Photoreceptor to horizontal cell connections are
excitatory, so horizontal cells are another type
of OFF cell. At the inner plexiform layer, where
bipolars connect to RGCs, the ON/OFF separa-
tion of bipolar cell response types is preserved
by segregated excitatory connections of ON cone
bipolar cells to ON-center RGCs, and OFF cone
bipolars to OFF-center RGCs [32]. These excita-
tory connections occur in separate sublamina of
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Fig. 21.3 Cellular connections underlying the center and
surround pathways of cone driven RGCs (left) and rod-
driven RGCs (right) in the mammalian retina. The ovals at
the top represent a spot centered on the receptive field of
cones or rods and also on the relevant bipolars or RGCs.
Shaded cells hyperpolarize in response to light, while clear
cells depolarize. Thus, if a shaded cell connects to a clear
cell, there is a sign-reversing or inhibitory synapse. In the

cone pathways, the on-off dichotomy arises at the OPL and
is preserved in the IPL. In the rod system, the situation
is more complex because all rod bipolars are depolarizing
(ON). The AII amacrine cells project to OFF-center RGCs
through sign reversing synapses, and to ON-center RGCs
through a gap junction with ON bipolars. (Modified from
Schiller [32], representing the work of many investigators)

the inner plexiform layer, so both the “axons” of
bipolar cells and dendrites of RGCs have to find
the correct sublamina (Figs. 21.2 and 21.3) [33,
43]. While this is clearly the basic pattern of con-
nectivity, there is some evidence for more com-
plexity [44, 45]. Further, ON- and OFF-center
RGCs are not exactly mirror images of each other,
but they have some distinct characteristics [46].
In most of the retina, there is convergence from
cones onto RGCs with at least a few cones con-
nected through bipolar cells to RGCs. However,
in primates, most of the RGCs with receptive
fields in the fovea (midget ganglion cells) each
connect to only one cone to preserve the high
spatial acuity afforded by the cone mosaic.

In general, rod and cone signals converge onto
the same RGCs, but the pathways are different.
Surprisingly, rod bipolars do not contact RGCs
directly. Interposed in the pathway from rod
bipolars to ON-center RGCs is an AII amacrine
cell connecting to ON cone bipolar cells via gap
junctions. Interposed in the pathway from rod
bipolars to OFF-center RGCs is the same AII
amacrine cell connecting via chemical synapses
to the OFF-center ganglion cell and OFF cone

bipolar (Figs. 21.2 and 21.3) [33, 47]. Because
the rod system is designed to detect low levels of
light, RGCs always collect information from
many rods, with the number being larger at
greater eccentricities. The connections shown
in Fig. 21.3 appear to be the most important ones
under very strong and very dim illumination, but
at intermediate levels of illumination, other signal
pathways exist [48–50].

21.2.3 Receptive Fields

One of the important concepts for understanding
the retina is the idea of a receptive field. The
receptive field of a neuron in the visual system is
defined to be that portion of visual space within
which light will influence the neuron’s behav-
ior. This part of visual space directly maps to a
particular region of the retina, so the receptive
field can also be discussed in terms of an area
or distance on the retinal surface. The receptive
field size is most often specified in terms of the
visual angle, as indicated in Fig. 21.4. One degree
of visual angle is about 0.294 mm on the retinal
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Fig. 21.4 Illustration of the concepts of retinal eccen-
tricity and visual angle. The fovea is defined to be at an
eccentricity of zero degrees. The eye is viewing an object
that subtends about ten degrees of visual angle, centered at
an eccentricity of about 20◦. This is a top view of a left eye,
because the blind spot (optic disk) is nasal to the fovea.
(Modified from Cornsweet [51])

surface in humans. For reference, a US quarter
held at arm’s length roughly subtends 2.4 degrees
of visual angle. The concept of eccentricity is
also important. If one looks straight at an object,
it is said to be at a visual eccentricity of zero
degrees. If one moves the quarter horizontally by
5 quarter diameters but still gazes straight ahead,
the quarter is now at an eccentricity of about 12
degrees off the visual axis of the eye.

To a first approximation, most retinal receptive
fields are circular, but their form and size change
as visual signals advance through the retina from
photoreceptors to RGCs. Photoreceptors have
simple small receptive fields, since it is mainly
the light falling on a particular photoreceptor

that influences its membrane potential. Bipolar
and ganglion cell receptive fields are somewhat
larger, because of convergence of signals from
the cells preceding them. As noted above, many
bipolars and RGCs are named for the influence
of increased light falling in the middle of the
receptive field, as shown in the top panels of
Fig. 21.5, which illustrates firing patterns and a
histogram of firing frequency for an ON-center
ganglion cell. As also shown in Fig. 21.5, a
reduction in illumination in the middle of the
receptive field of an ON-center ganglion cell
leads to the opposite effect as an increase in
illumination: a suppression of the response or
reduction in firing. Receptive fields of many
RGCs also have a “surround” region, or the
“surround mechanism,” as first proposed by
Kuffler [53]. Light falling outside of the middle
of the receptive field region in a larger, concentric
region has the opposite effect as light falling in
the middle of the receptive field, antagonizing the
effect of light on the center (bottom panels of Fig.
21.5). ON-center RGCs have OFF-surrounds and
OFF-center cells have ON-surrounds. In primates
and humans, color processing is added to some
of the ON- and OFF-center cells.

Figure 21.6 shows the receptive field organi-
zation of the midget cells in central retina (also
called P-type because they project to the parvo-
cellular layers of the lateral geniculate nucleus
(LGN)) and the parasol cells (also called M-
type because of their projection to magnocellular
layers of the LGN).Manymidget RGCs have red-
green opponency, with center signals dominated
by either M (“green”) or L (“red”) cones and
the surround being nonselective [54, 55]. Another
class, the “small bistratified” cells, have blue-
yellow color opponency, with blue (S-type) cones
contributing to the center and a combination of
cones contributing to the surround [56, 57]. Both
the center and surround of the parasol RGCs re-
ceive input fromMand L cones, and therefore can
signal luminance, but not color. As suggested in
this figure, P-type receptive fields are smaller than
those of M-type cells. After the LGN, both P and
M streams then project to different sublayers of
the thalamic input layer of visual cortex (layer 4).
From there, the signals at least partially diverge,
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Fig. 21.5 Simulations of typical responses of cat RGCs
to flashing stimuli. Top panels: Responses of an on-center
ganglion cell. The pictures show the spatial configuration
of the stimulus with respect to the center (inner circle)
and surround (outer circle) of the receptive field; trace
A shows the time course of the stimulus; B shows the
spike patterns in two repetitions of the stimulus; C shows
peristimulus time histograms (PSTHs) of the firing rate
averaged over several presentations. The odd-numbered
panels at the top show times when the cell is subjected to
a uniform gray background. In period two, the firing rate
is increased by presentation of a centered bright spot of
light. In period four, the centered stimulus is made dimmer
than the background, causing the firing rate to decrease.
The surround was not activated in this set of stimuli, but
if an annulus of light brighter than the background had
been presented to activate the surround, a response similar
to that in panel four would have been observed. Lower
panels: Responses of an off-center ganglion cell. The plan
of the figure is the same but now the dimming of a spot
activates the center (panel two), while the dimming of
the surround suppresses firing (panel four). Stimulation
of both center and surround evokes only small transient
response from the cell (panel six). (Enroth-Cugell and
Robson [52])

with M signals going more toward the dorsal
stream of further visual processing, associated
with motion and location of objects, and P signals
going to a ventral stream associated with form
vision.

Surrounds are sometimes said to be “in-
hibitory,” but this is incorrect in the sense of
synaptic inhibition, and surrounds are really
“antagonistic” to the centers. For instance, the
increased activity that occurs in the surround
pathway of an OFF-center ganglion cell when the
surround is illuminated depolarizes the ganglion
cell, which is not an inhibitory action. Also,
the surround pathway of an ON-center ganglion
cell exerts a net inhibitory effect on firing when
illumination is increased, but a net excitatory
effect when illumination is decreased. The
center and surround strengths are relatively well-
balanced, as described below, so diffuse flashes,
which stimulate both the center and surround,
cause only a small change in firing of RGCs, as
shown in the bottom panels of Fig. 21.5.

The first quantitative description of the recep-
tive field of RGCs suggested that the influence
of light was not uniform across the center (or sur-
round), but in each case had a Gaussian weighting
(Fig. 21.7), so that a stimulus in the middle of the
receptive field center would have a larger effect
than one near the edge of the center [58, 59].
This idea is still accepted as a good approxima-
tion for the roughly 40–60% of the RGCs in cat
[37] and a larger fraction in primate [60] whose
axons project to the lateral geniculate nucleus,
but, as described below, more detailed analyses
show the limitations of the Gaussianmodel. Other
RGCs (see below) have receptive fields that can-
not be described easily by the center-surround
model. Refinements of the basic Gaussian Center-
Surround Model have come from engineering
approaches, as described later.

It appears that horizontal cell feedback to pho-
toreceptors in the outer plexiform layer is respon-
sible for at least part of the surround signal [61–
66], which comes along with the center signal to
RGCs through bipolar cells. Part of the surround
of at least some RGCs also appears to be created
through amacrine cell inputs to RGCs at the inner
plexiform layer [65, 67].
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Fig. 21.6 Receptive field organization of parvocellular
(P-type), magnocellular (M-type), and small bistratified
RGCs in the primate retina. Plus means that increasing
illumination on a particular cone type projecting to the
ganglion cell increases the firing rate, and minus means
that stimulation of that cone type decreases firing rate.
Cells in the top row are ON-center and those in the bottom
row are OFF-center. P-type cells in the central retina have
the spectral properties indicated, with dominant input from

medium (M) or long (L) wavelength cones. Surrounds
have mixed L and M input, and may also have some input
from S cones. In M-type cells, L and M cone signals both
contribute to the center and surround, so these cells code
luminance rather than color. The small bistratified, blue-
yellow opponent cells have centers that are formed by
input from short wavelength (S) cones and their surrounds
have mixed L andM input. There are no comparable OFF-
center cells

21.2.4 Eccentricity and Acuity

Retinal structure and function vary considerably
with retinal eccentricity. On the optic axis of
primates and humans is the fovea, a region about
5◦ in diameter ([68]), in which the retina is thin-
ner. Here the second- and third-order neurons are
pushed aside, presumably for optical clarity, and
the photoreceptors extend long lateral processes
out to the bipolar cells that serve them. A smaller
region, about 600 μm in diameter, in the middle
of the fovea contains only cones. This area has
the best acuity and is ordinarily used for tasks
like reading. No other animals except birds of
prey have foveas, but many vertebrates have some
degree of specialization for higher acuity on the
optic axis and in a horizontal streak [69].

The concept of acuity is important in subse-
quent sections. The most obvious way to specify
acuity is to consider the minimum spacing that
is required between two points or lines in order
that they can be seen as distinct objects rather
than as a single object. This limit is set by the
point spread function of the optics [68], but the

eye is constructed so that the acuity that would be
predicted by the photoreceptor spacing, without
considering optical blur, is almost the same. That
is, retinal anatomy is well matched to the best
that the optics can do. Because these two ways
of looking at acuity give essentially the same
answer, we will discuss only the more intuitive
concepts based on detector spacing.

If one had a pattern of dark and light lines of
high contrast, i.e., a grating pattern, the minimum
detectable spacing between light lines would be
the spacing where two light lines were detected
by two different photoreceptors with another pho-
toreceptor receiving less light between them. The
minimal detectable line spacing is then twice the
spacing between centers of the detector elements,
which is about 2.5 μm in the fovea. (Photorecep-
tors are tightly packed, so this is also the diameter
of one photoreceptor.) The maximum resolution
in cycles of the grating that could be resolved per
degree is the inverse of this minimal spacing in
degrees. Therefore, if there are 300 μm across
the retinal surface per degree of visual angle, the
resolution limit or best acuity should be about:
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Fig. 21.7 Difference of
Gaussians receptive field
model, showing the
sensitivity distributions
across the receptive field
center, and across the
receptive field surround,
which is shown below the
horizontal line because it
produces antagonistic
responses. The rows of
responses show
hypothetical responses at
three locations in the
receptive field for an
ON-center cell for the
receptive field center and
surround, and
representations of the
ganglion cell membrane
potential (sum) and firing
rate (response). The
“response” rows show
truncated versions of the
membrane potential
because firing rate cannot
be negative. (Rodieck and
Stone [58])
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This is not far from the actual acuity of a
person with good vision and a small pupil ([68]).
A combination of factors gives the fovea the best
acuity. First, the photoreceptors are smaller there,
so a larger number can be packed in. Second,
foveal cones project through 1:1 connections (i.e.,
no convergence) through bipolar cells to midget
RGCs. In fact, there is divergence, with a single
foveal cone typically projecting to both one ON-
center and one OFF-center midget ganglion cell.
Third, the representation of this region in visual
cortex is large, so the detailed retinal information

from this region is not lost. More peripherally,
cone density falls and rod density rises, and the
two are intermixed in most of the retina, so acuity
decreases rapidly outside the fovea The periph-
eral retina is, however, important for both spatial
vision and motion detection.

Acuity is often specified in terms of the visual
ability of a person relative to the ability of a
“normal” observer. The familiar “20/20” (or in
metric units 6/6) vision means that an individual
(numerator) can see at 20 feet what a “normal”
person (denominator) can see at 20 feet. The
features of the test stimulus on a standard eye
chart that are just barely distinguishable on the
“20/20” row of the chart (e.g., the gap that makes
a “C” different from an “O” or one arm of an
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“E”) subtend 1 minute of arc for an observer
who is 20 feet away. A person with 20/100 vision
needs to be at 20 feet from the object to resolve
what a “normal” person can see at 100 feet. If
the poor acuity is due to optical imperfections
in the eye, such as myopia (nearsightedness) or
astigmatism, it can usually be corrected to 20/20
(or better) vision with lenses or corneal surgery.
If poor acuity is due to disease of the retina or
brain, the same system of acuity designations is
used, but the vision cannot be corrected optically.
A person is legally blind if vision in the best eye,
when best corrected, is no better than 20/200 or if
the visual field is less than 20◦ in diameter. This
is still useful vision for mobility but is frequently
called “low vision” rather than blindness.

21.3 Vasculature of the Retina

Many retinal diseases are fundamentally vascular
or have a vascular component, so it is important to
consider the dual circulation of the retina. There
are a number of more complete reviews of this
subject [70–73]. Metabolically, it is often useful
to think of the retina as two domains. The outer
retina, consisting primarily of photoreceptors, is
supplied mainly by the choroidal circulation. The
inner retina, consisting primarily of the second-
and third-order neurons and glia, is supplied by
the retinal circulation. Diseases that affect the
vasculature typically cause blindness by affecting
either the inner or outer retina initially, but rarely
both, and then there may be secondary effects on
the other region.

The choroidal circulation is behind the retina,
separated from it by the retinal pigment epithe-
lium (RPE) (Figs. 21.1 and 21.8). The choroidal
circulation has a very high flow rate, on the or-
der of 1000 ml/100 g-min [74], but in cat and
primate, this is normally sufficient to supply only
the photoreceptors, not other retinal neurons [75,
76]. The flow rate is high because the vessels
are large and the resistance is low. Choroidal
capillaries are fenestrated, and the blood-retinal
barrier, analogous to the blood-brain barrier, is
provided by the tight junctions between RPE cells
rather than by the choroidal endothelium. (The

RPE is also important for recycling bleached vi-
sual pigment, pumping fluid from the retina into
the choroid, and performing phagocytosis of tips
of photoreceptor outer segments [77].) Choroidal
blood flow is controlled by the autonomic ner-
vous system, and there is almost no matching of
its flow rate to the metabolic needs of the outer
retina, even though this circulation is of critical
importance to the photoreceptors. The choroidal
circulation exhibits some autoregulation in re-
sponse to changes in arterial pressure but less in
response to changes in intraocular pressure [71].

The retinal circulation supplies the inner half
of the retina in many animals (cat, primate, rat),
but others rely exclusively on the choroid (rabbit,
guinea pig). In humans, the central retinal artery
enters the eye at the optic nerve head and then
branches to form four retinal arteries that travel
superficially in the retina. These in turn branch
into a relatively typical arteriolar and capillary
network that forms two layers in most of the
inner retina, with the innermost layer in the inner
plexiform layer, and the deeper layer extending
as far as the outer plexiform layer. The retinal
circulation is similar to brain circulation, with a
flow rate of about 40 ml/100 g-min [78]. The
retinal circulation has tight junctions between
capillary endothelial cells that form the blood
retinal barrier. In contrast to the choroidal circu-
lation, it has no autonomic control but good au-
toregulation with respect to arterial pressure [72].
Retinal blood flow is also controlled by blood
gases [72] and changing metabolic demand in
the inner retina, particularly greater retinal neural
activity [70, 79, 80].

21.4 Major Retinal Diseases

It is estimated that there are nearly 15 million
blind or visually impaired people in the USA,
and for people over the age of 65, more than 10%
of the population is legally blind. Age-related
macular degeneration, glaucoma, and diabetic
retinopathy are the most prevalent retinal diseases
causing visual impairment [81]. Glaucoma and
diabetic retinopathy are especially significant
because they affect many working age adults.
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Fig. 21.8 Schematic of the relationship of the choriocap-
illaris and the retinal capillaries to the retinal neurons.
The choriocapillaris is separated from the photoreceptors

by the retinal pigment epithelial (RPE) cells. The retinal
circulation only occupies the inner half of the retina,
leaving the photoreceptors in an avascular region that is
more than 100 μm thick

A few diseases with lower prevalence also need
to be considered because of the potential for
bioengineering solutions. In this discussion,
we move from genetic disorders to vascular
disorders.

21.4.1 Retinitis Pigmentosa

The most common hereditary cause of blindness
is called retinitis pigmentosa (RP). It is estimated
to affect about 1 in 4000 [82] to 1 in 3000 [83].
There are more than 50 genetic defects in pho-
toreceptor or RPE proteins that lead to loss of
photoreceptors. These may be autosomal or sex-
linked and can be dominant or recessive. Many of
these diseases cause loss of rods first, with cone
degeneration following later (rod-cone degenera-
tion), but a few act in the reverse manner (cone-
rod degeneration). The inner retina seems largely
normal during the time when photoreceptors are
degenerating, but later there is often a loss and/or
disorganization of inner retinal neurons as well
[84, 85].

The time course of RP is variable, with some
types leading to blindness in adolescence, while
others progress more slowly. There are several
cases in which the genetic defect is known ex-

actly, and some in which an animal appears to
be a good model for the human disease [86, 87].
In some cases, it is clear why the genetic defect
kills photoreceptors. Gene transfer to the subreti-
nal space has been able to restore photoreceptor
structure, retinal electrical responses, and vision
in dogs [88, 89] and humans [22, 90–92]. Patients
with RP are also likely to be the first to benefit
from both electronic visual prostheses [2, 3, 5, 93]
and optoelectonic approaches [25, 94].

21.4.2 Macular Degeneration

Age-related macular degeneration (AMD or
ARMD) is a more prevalent photoreceptor
degeneration and is the leading cause of blindness
in the USA [81]. In one large study, some level
of AMD developed over 15 years in 14% of
individuals who were 43–86 with no AMD at
the beginning of the study, and 8% of individuals
over 75 developed the more severe “wet,” or
exudative form of AMD [95]. A hallmark of the
dry form of macular degeneration is the presence
of extracellular deposits called drusen between
the RPE and choroid. Drusen contain both
lipids and proteins, and are probably produced
by the RPE [96]. Some drusen can be present
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with no apparent symptoms; larger drusen are
associated with localized photoreceptor loss
[97]. Dry AMD sometimes proceeds to wet
AMD. In the wet form, which is responsible
for 75% of cases with severe visual loss, there
is choroidal neovascularization (CNV), in which
choroidal vessels proliferate, break through the
RPE, and enter the retina and vitreous [98]. The
vessels in all neovascularizations of the retina
are abnormal and may bleed or cause traction
on the retina, resulting in retinal detachment
or other damage. Laser treatment is sometimes
effective against CNV [19], but the remarkable
breakthrough in recent years is that blockers of
vascular endothelial growth factor, VEGF, given
intravitreally, can not only halt the progression of
wet AMD but can improve vision [99].

21.4.3 Glaucoma

Glaucoma is a slow neurodegenerative disease
that primarily affects RGCs rather than photore-
ceptors. The principal risk factor for glaucoma
is elevated intraocular pressure (IOP), from its
normal value of about 15 mm to 2 SD higher than
the mean, about 22 mmHg [100]. Glaucoma is
estimated to occur in 0.8–3 in 100 Caucasians,
but the incidence is higher in African Americans
[101]. The elevation of IOP is generally caused
by a decrease in the conductance (c – called
the “outflow facility”) to flow of the aqueous
humor out of the eye. The amount of fluid that
leaves depends on this conductance and on the
pressure between the inside of the eye (intraocular
pressure – IOP) and venous pressure. However,
the inflow of fluid is driven by active transport,
which does not depend on pressure, so the IOP
rises until it is high enough to make the outflow
equal the inflow.

High IOP probably causes damage to the
RGCs by reducing retinal or optic nerve blood
flow [102] and/or by compressing optic nerve
fibers as they pass through the lamina cribrosa.
Axonal compression blocks axonal transport and
causes retrograde degeneration of the RGCs
[68, 103]. As the disease progresses, there is
a loss of visual function. Glaucoma patients

usually exhibit a loss of sensitivity (elevation
of threshold) first in the mid periphery of the
nasal visual field (temporal retina), and the loss
gradually progresses closer to the central visual
field.

While high IOP is the single most important
risk factor, for glaucoma, some individuals with
elevated pressure (ocular hypertension) do not
exhibit the retinal symptoms of glaucoma. Others,
whose IOP is “normal,” still have visual loss
[101]. These individuals are classified as having
normal or low tension glaucoma.

The usual strategy in glaucoma involves drugs
to reduce the inflow of aqueous humor, even if the
pressure is already “normal” based on population
data. The inflow across the ciliary epithelium is
controlled by several different pumps and chan-
nels, so there are a variety of drugs that can
be effective [104]. When drugs are ineffective,
surgery, sometimes including insertion of a shunt
[105–107], is performed to increase the drainage
of fluid.

21.4.4 Diabetic Retinopathy

In both insulin-dependent (type 1) and non-
insulin-dependent (type 2) diabetes, elevated
blood glucose over many years can lead to
microvascular complications in several organs,
including the eye, the kidney, and peripheral
nerves. Almost all diabetic patients with a
disease duration greater than 20 years show some
signs of retinopathy [108]. The earliest clinical
signs of retinopathy are microaneurysms and
capillary leakage in the retinal circulation that
are especially apparent in fluorescein angiograms
[108]. At the microvascular level, there is a loss
of pericytes and endothelial cells [109], the two
cell types that comprise the blood-retinal barrier,
and plugging of capillaries with leukocytes and
platelets [110–112]. Clinically, the next stage is
further fluid leakage including hemorrhage, and
capillary nonperfusion in patches across the retina
[108]. With the loss of retinal capillaries in this
“background” or “preproliferative stage” comes
loss of visual function [113]. As the capillary
dropout progresses, there is proliferation of new,
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abnormal tufts of blood vessels, promoted in part
by vascular endothelial growth factor (VEGF).
The new vessels can grow out into the vitreous,
bleed, collapse, and shrink, and cause traction on
the retina. Since the retinal attachment to the back
of the eye is tenuous, this traction can detach the
retina from the RPE, leading to blindness [114,
115].

Another serious consequence of diabetes that
probably results from VEGF and the consequent
leakiness of retinal vessels is macular edema,
which distorts vision by disrupting the highly or-
dered photoreceptor mosaic. Placement of many
small laser burns (panretinal photocoagulation) is
often used to treat both macular edema and pro-
liferative retinopathy. Also, the same anti-VEGF
agents that are used in AMD appear to be useful
[116, 117]. However, both photocoagulation and
anti-VEGF agents are used only relatively late
and are not completely effective. Furthermore,
while the vascular symptoms can be treated, sep-
arate neural loss, probably unrelated to vascular
damage [118, 119], is untreatable.

21.4.5 Vascular Occlusive Disease

Like the brain, the retina is susceptible to vas-
cular occlusive events that occur from thrombi
or atherosclerosis in either the arteries or veins
[120]. These produce the retinal equivalent of
strokes. The most serious type of occlusion is
one that affects the central retinal artery, because
this prevents circulation to the entire inner retina.
Occlusion of a branch artery produces a scotoma
(blind spot) in the region supplied by that vessel
because there is no redundancy in the retinal
circulation, unlike that provided by the Circle
of Willis for the brain. Experimentally-produced
occlusions lead to irreversible damage to the pri-
mate retina if they last more than about 2 hours
[121], which is a much longer window for re-
covery than one has for the brain, possibly be-
cause the vitreous and choroid provide a small
reservoir of glucose. Many treatments have been
attempted, but none are accepted as a standard
in arterial occlusion. Venous occlusions are more
common. They often produce multiple hemor-

rhages in the retina, presumably because venous
pressure is elevated upstream of the occlusion,
but in some cases, venous occlusions may resolve
without permanent visual loss [122]. Venous oc-
clusions may, however, lead to neovasculariza-
tion in either the retina or the iris [123, 124],
probably because VEGF is produced in the retina
and diffuses to the anterior part of the eye [125],
and can also cause macular edema, presumably
because VEGF causes the retinal vasculature to
leak fluid. The anti-VEGF compounds, as well as
laser treatment [126, 127], are useful under these
conditions.

21.4.6 Retinal Detachment

A frequent result of proliferative diabetic
retinopathy is detachment of the retina. There are
other causes for detachment as well, including
trauma, severe myopia (in which the eye is too
large and the retina is stretched), detachments of
the vitreous from the retina, and retinal holes of
idiopathic origin [128]. In all cases, fluid gains
access to the subretinal space between the retina
and RPE, lifting the retina off and sometimes
detaching large areas. The photoreceptors, being
separated from the choroid and deprived of their
main source of nutrition [129, 130], undergo
apoptotic cell death unless the retina is reattached
by one of several surgical procedures that bring
the retina and eye wall closer together [128].
The quality of vision following these procedures
depends on the time between detachment and
reattachment and on whether the detachment had
reached the central part of the retina.

21.5 Engineering Contributions
to Understanding Retinal
Physiology
and Pathophysiology

Engineering approaches to understanding retinal
function date to the 1960s. Engineering methods
have been used by physiologists, psychophysi-
cists, and biomedical engineers who have con-
structed mathematical models of the retina with
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several goals in mind. These goals include pro-
viding a compact representation of a great deal
of data, extracting parameters that characterize
retinal function and then investigating how those
parameters vary with light and with retinal ec-
centricity, explaining and using the waveforms
of the electroretinogram for diagnostic purposes,
and creating systemsmodels whose transfer func-
tions are similar to those of the retina in order to
understand stages of signal transformation in the
retina or to create artificial vision systems. There
are models of many aspects of retinal function,
and even more of visual function, and it will not
be possible to review all of this work. Here we
review some of the major analytical threads that
constitute retinal bioengineering. Section 21.5.1
discussesmodels of how light is transduced by the
photoreceptors into an electrical signal that can
be recorded from the photoreceptors themselves,
or within the retina, or at the cornea in the elec-
troretinogram (ERG). Section 21.5.2 covers the
smaller effort that has gone into modeling aspects
of the electroretinogram that are generated by
second-order neurons. There is less of this work,
and little work onmodeling bipolar cell responses
in mammals, because it is difficult to record from
these small interneurons. Section 21.5.3 covers
some of the manymodels describing the receptive
field and response properties of single RGCs or
ensembles of RGCs in cats and monkeys. Sec-
tion 21.6 then addresses a completely different
category of models that characterize the retinal
microenvironment, focusing on nutrient and ionic
balance.

Models in these areas are all based on data,
rather than being completely theoretical. This
does not mean that they are necessarily the best
models or uniquemodels, but they are constrained
by the data and at least have descriptive validity.
These areas are also ones in which sustained
effort and refinement of models has taken place
over many years. These particular models, based
on data from nonhuman primates, cats, rabbits,
and more recently mice, also have led to conclu-
sions pertinent to the human retina.

Some models are omitted here, including most
models of information transfer through the catfish

[131–134] and tiger salamander retinas [135–
137], models that attempt to explain general prop-
erties of retinal responses [138, 139], models of
spatiotemporal transfer properties of horizontal
cells [140, 141], models of direction selectivity
[142, 143], and models of light and dark adapta-
tion [34, 144].

21.5.1 Photoreceptor Models

Models of photoreceptor function are intended
to quantify the relation between incident light
and photoreceptor hyperpolarization. There are
many reviews of the physiology and biophysics
of photoreceptors [145–147]. In darkness, pho-
toreceptors have resting potentials that are depo-
larized relative to those of many other neurons
(c. −30 mV), because their outer segments have
a cation-selective channel with a high Na+ and
Ca+2 conductance. More of these channels are
open in the dark than in the light, keeping the
cell depolarized. The number of channels that
are open, and therefore the current entering the
cell, is determined by the level of cGMP, be-
cause binding of cGMP to the channel holds it
open. Absorption of a photon causes activation of
rhodopsin, which then activates a G-protein (one
that requires GTP binding for activity) bound to
the photoreceptor discs, called transducin. Trans-
ducin in turn activates a phosphodiesterase, which
breaks down cGMP. Decreased cGMP closes the
channels, which decreases the inflow of Na+ and
Ca+2 and causes hyperpolarization. (The synthe-
sis of cGMP from GTP is controlled by light only
indirectly, when levels of Ca+2 in the cytoplasm
decrease and increase the activity of guanylate cy-
clase [148].) The light-evoked hyperpolarization
increases in amplitude with increasing illumina-
tion, up to a saturating value. The dependence
of response amplitude on illumination has often
been characterized by Eq. 21.2, which is some-
times called the Naka–Rushton equation [149]
when it is used in vision:

R = Rmax

(
I

I + σ

)
(21.2)
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where R is the response amplitude at intensity
I, Rmax is a maximum amplitude, and σ is the
illumination at half-saturation. Sometimes this
does not rise steeply enough to fit the data, so a
modified form is used in which n is greater than
1.0.

R = Rmax

(
I n

I n + σn

)
(21.3)

Amplitude-intensity data from higher order
visual neurons can also be well described by one
of these equations. In addition to an increase in
response amplitude with illumination, the time
course of the photoreceptor hyperpolarization
also speeds up with increasing illumination, and
the leading edge continues to become steeper
even after amplitude saturation occurs (Fig. 21.9).
The current that flows into the outer segments
is completed by current (mostly K+) flowing

out of the inner segments [150]. The current
flowing through individual photoreceptors can
be determined by sucking outer segments of
isolated photoreceptors into a pipette and forcing
the receptor current to flow through the electrode
[145, 151]. This clever method has been useful
in recording from photoreceptors that are too
small to be impaled by a standard intracellular
microelectrode.

In the intact retina, most of the return current
to complete the loop flows through adjacent ex-
tracellular fluid, but some of the receptor current
flows out of the retina and across the wall of the
eye before returning. The voltage drop associated
with this larger current loop produces a negative-
going signal as large as several hundred micro-
volts that can be recorded between the vitreous
humor or cornea and a reference electrode. This
makes it possible to record photoreceptor activity

Fig. 21.9 Responses of membrane current of a primate
rod (top) and cone (bottom) outer segment, each in re-
sponse to several brief stimuli of different intensities.
Responses were recorded by sucking the outer segment
of isolated photoreceptors into a pipette and recording the
current. The inward current in darkness of about −35 pA
is reduced by light. The rod reaches saturation, with all
channels closed, in the top two traces. All traces are
essentially the impulse responses of the photoreceptors

and are the inverse of the voltage changes that would
be observed with an intracellular electrode if the outer
segment could be isolated from the rest of the neuron. The
cone responses are characteristically faster. Amplitude as
a function of intensity for the two photoreceptors is plotted
at the right. The half-saturating intensity for the cones was
100 times that required for the rods. (Oyster [68]) (after
Baylor [145])
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Fig. 21.10 Left: Electroretinograms (ERGs) in response
to flashes of several intensities in the dark-adapted human
retina, showing the a-wave, originating in the photore-
ceptors as a suppression of the dark current, and the b-
wave, originating from the bipolars. Responses are larger

and faster at higher intensities. Right: Fits of the photore-
ceptor model (P3(t)) described in the text (with n = 4;
tp = 189 ms) to the early part of the ERGs. The intensities
used for the right half of the figure were 2–4 log scotopic
td-sec, which were higher than those on the left. (Hood and
Birch [153])

from the surface of the human eye as part of the
electroretinogram (ERG). The ERG manifesta-
tion of the photoreceptor signal is often called P3,
or PIII, because it was the third component of the
ERG to disappear following treatment with ether
or anoxia [152]. If the stimulus is very bright,
the initial part of P3 is observed in almost pure
form as the “a-wave” of the ERG (Fig. 21.10).
For up to about 15 msec after a brief flash, the a-
wave is a reasonably good reflection of the light-
dependent current in the outer segment. Even
though the ERG is a complex set of potential
changes, its clear advantage is that it can be used
to study retinal electrophysiology in the intact
human eye, and potentially to investigate how
disease processes affect different types of retinal
neurons.

The same models of photoreceptor activity
apply both to the signals from individual rods
and to the leading edge of the a-wave of the
ERG, as long as one uses diffuse light, which
stimulates many photoreceptors. There have been
two different approaches to modeling the onset of
photoreceptor activity that eventually converged
to the same mathematical form. One model fit-
ted families of a-wave responses to brief flashes
of different intensities to an input-output analy-
sis having a few characteristic parameters [153–
155]. The other attempted to characterize each of
the known steps in transduction by an equation

and then coupled these individual equations into
an overall model [146, 156].

21.5.1.1 Input-Output Analysis of Rod
Responses

The input-output analysis by Hood and Birch
that describes the data [155] consists of an n-
stage low-pass filter for r(t), the impulse-response
function of the photoreceptors, in which the time-
to-peak of the response is tp.

r(t) =
[(

t

tp

)
exp

(
1 −

(
t

tp

))](n−1)

(21.4)

Here each response is normalized to a peak
response of 1.0, so it does not depend on illu-
mination. The a-wave, called P3(i,t) in this anal-
ysis, depends on r(t) and on the intensity of a
brief flash of energy, i (where i is in scotopic
troland-seconds, a measure of light incident at the
cornea). P3(i,t) involves a second stage, which is
a saturating exponential nonlinearity:

P 3 (i, t)=
[
1 − exp

(− ln 2 · i · r(t)
σ

)]
RmP 3

(21.5)

This introduces two new variables. RmP3 is
the maximum amplitude of P3 in response to



598 R. A. Linsenmeier and J. B. Troy

Fig. 21.11 a: The first
40 msec of human ERGs in
response to brief flashes
ranging from 402 to
128,000
photoisomerizations per
rod. Each is the average of
four stimulus presentations
except at the highest
intensity, which is an
average of two. b: Fits
(dotted line) of the model
described in the text to the
early parts of these
responses. The same
parameters, A = 8.7 sec−2

and teff = 2.7 msec, were
used to fit all responses.
(Breton et al. [157])

bright flashes. It is assumed to be just the sum
of maximum responses of individual photorecep-
tors. The other new parameter is the semisatura-
tion constant, σ , which reflects the sensitivity of
the photoreceptor to light. It is the value of i · r(t)
at which P3(i,t) = RmP3/2. These two equations
were used to fit families of a-waves, setting tp and
n fixed and extracting RmP3 and σ . The chosen
value of n was 4, implying a four-stage filter.
The parameter tp is not directly observable in
a-wave recordings, because other waves intrude
before t reaches tp, so tp was set for human a-wave
recordings to be the value observed in primate
rods, 189 msec. Fits of this model for the human
a-wave are shown in Fig. 21.11.

21.5.1.2 Biochemically Based Analysis
of Rod Responses

Lamb and Pugh ([146, 156]) derived an alternate
model that was based on the biochemical steps
in transduction. In this very detailed model, also
presented in a simplified form by Breton et al.
[157], the dynamics of five major processes were
considered: (1) activation of rhodopsin by light,
(2) activation of transducin by rhodopsin, (3)
activation of PDE by activated transducin, (4)
hydrolysis of cGMP by activated PDE, and (5)
channel closure caused by the fall in cGMP. Other
models had taken similar approaches [158, 159],
but Lamb and Pugh started at the most molec-
ular level. Their model was the first to explic-



21 Retinal Bioengineering 599

itly consider that rhodopsin diffuses in the disc
membrane to cause activation of many transducin
molecules, which converts the step activation of
rhodopsin by a flash into a ramp increase in
transducin activity. Formally, it also allowed for
the longitudinal diffusion of cGMP in the cyto-
plasm, although only isotropic conditions (i.e.,
illumination of the whole outer segment) were
considered. It turned out that the overall gain
of transduction was an important parameter that
came from the model. This parameter has been
called A in subsequent work and was the product
of the gains of steps 2 through 5 above. “A”
was related to the characteristic time constant
of transduction, τφ, by A = τφ

−2. In terms of
timing, processes 2 and 4 above were found to
contribute substantially to the time course of the
flash responses, and the others were very fast by
comparison. A small delay called teff was also
needed to account for the onset of a noticeable
change in PDE activity. The overall response was
then:

R (Φ, t)=
[
1− exp

(
−1

2
Φ · A · [t−teff]2

)]
Rm

(21.6)

where � is the intensity in isomerizations of
rhodopsin, rather than scotopic troland-seconds.
These two intensity units are related by a constant
that depends on the optics and light-capturing ef-
ficiency of rods, and this is different for different
animals. While the Lamb and Pugh, and Hood
and Birch formulations look different, Hood and
Birch [153] showed that they had very similar
forms if t < tp, which are the only times at which
either model can be applied. The Lamb and Pugh
model was originally applied to salamander rod
responses, but it does a good job of fitting a-
waves from human ERGs as well [157]. For hu-
man rods, the amplification constant is about 100
times higher, which means that the responses
develop about 100 times faster than in poikilo-
thermic salamanders. The fits to the ERG a-wave
are even better if one rectifies certain simplify-
ing assumptions that were made originally [160].
These are (1) taking into account the photore-
ceptor membrane time constant, which was ig-

nored originally because the responses modeled
were current rather than voltage responses, (2)
allowing the isomerizations to take place over a
short interval rather than all at t = 0, and (3)
recognizing that for high intensity flashes, the
response time course will be on the time scale of
teff.

21.5.1.3 Responses to Steps of Light
The analyses described so far were only intended
to address the initial hyperpolarization of the pho-
toreceptor in response to very brief flashes. They
did not address the recovery of the response as
rhodopsin and the subsequent steps are inacti-
vated, or responses to steps rather than flashes of
light. In addition, the reproducibility of responses
to single photons, which underlies the very high
sensitivity of the retina, was not modeled. Cover-
ing activation and inactivation from brief flashes
to steps over the full range from single photon
responses to saturation is clearly a challenging
problem, but it has been addressed [161, 162].
The many required differential equations are too
numerous to reproduce here, as they include more
than 40 parameters, based on data from many
sources. The overall model includes kinetics of
the response to single photons, the calcium de-
pendence of cGMP synthesis, the inactivation of
rhodopsin by arrestin and rhodopsin kinase, and
an integration of the single flash responses to give
step responses. The match between the model and
step responses in the salamander retina, just one
of the types of comparisons between data and
model provided by Hamer et al. [161], is shown
in Fig. 21.12.

While step responses of photoreceptors can
be obtained experimentally from isolated pho-
toreceptors, another approach is needed to derive
the photoreceptor response in the intact retina.
When one uses a test flash to evoke an ERG
response from the retina, one usually obtains a
complex waveform. However, if a test flash is
followed at different intervals by a brief, bright
“probe” flash designed to drive the photoreceptor
current all the way to saturation (the “paired-
flash technique”), one can determine how far the
photoreceptors were from saturation before the
probe flash, and this allows reconstruction of the
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Fig. 21.12 Photocurrent responses to steps of light of
increasing intensity from a newt rod (red traces) and the
model of Hamer et al. described in the text (blue traces).
The model recovers more rapidly than the actual responses
at the end of stimulation, but a better match (dashed lines)
can be made by incorporating reversibility of rhodopsin
binding to arrestin. (Hamer et al. [161])

complete photoreceptor response to the test flash
(Fig. 21.13) [164–166]. Subsequent work on a
strain of mouse that is missing post-receptoral re-
sponses (the nob mouse) validated this approach
[167]. An extension of the paired flashmethod led
to the development of a descriptive equation that
characterized the complete time course of rod re-
sponses in mice, but this did not link biochemical
steps to their electrical consequences [168]. This
model was similar in form to Eq. 21.5 above, but
included the dynamics of what is supposed to be
the underlying single photon response.

21.5.1.4 Diagnostic Value of a-Wave
The ERG has always had some diagnostic value,
because it is the only objective measure of reti-
nal neural function available for use in humans.
Until the models discussed in Sect. 21.5.1.2 al-
lowed a deeper understanding of the waveforms,
however, most of the conclusions about retinal
function from ERGs were simply based on the
amplitude or timing of components in the re-
sponses to flashes of light. These may or may
not have been optimal for revealing particular
disease processes. With more quantitative mod-
els of the ERG, more detailed conclusions have
become possible, particularly with respect to re-
tinitis pigmentosa [169]. For example, it appears
that in photoreceptor degeneration caused by a

pro-23-his mutation in rhodopsin, the decrease
in amplitude of the a-wave cannot be explained
completely by loss of photoreceptors or disks, but
must involve a decrease in the gain of transduc-
tion [164]. These patients also have a delayed
recovery of rod responses. This is not always
the case, and in a different condition, Stargardt’s
disease, the amplitude decreases but recovery is
normal [170].

21.5.2 Post-Receptor ERG Analyses

21.5.2.1 B-Wave Analyses
If the photoreceptor models accurately described
the time course of P3 for times up to the time-
to-peak of the response, then the model fits
could be subtracted from the entire ERG to
reveal the time course of the remaining ERG
components. After the a-wave, the ERG is
dominated by the b-wave (also called P2 or
PII), which arises largely from the activity of
bipolar cells [171]. That “photoreceptor-free”
ERG waveform could then be used to derive a
model of the second level of retinal processing.
Such an analysis was done by Hood and Birch
[153, 172] and led to a three-stage model for
the b-wave, rather than the two stage model for
rods. Unfortunately, the photoreceptor voltage
responses seen in the mammalian ERG depart
from the predictions of Eqs. 21.5 and 21.6,
which are based on the photoreceptor current.
The voltage shows a partial rebound that is not
present in the photoreceptor current [173–175].
In some species, the rebound occurs because
voltage-dependent inner segment currents are
activated by hyperpolarization [176–178], but in
mammals, it is more likely a capacitive current
[179, 180]. The rebound means that a subtraction
of the photoreceptor activity from the ERG based
on photocurrent (Eqs. 21.5 and 21.6) subtracts
too much, even if one only considers times
shorter than the time-to-peak of the photoreceptor
impulse response.

Consequently, another approach is needed to
model the dynamics of the retina’s second stage.
To quantitatively address responses of second-
order cells in the ERG, Robson and Frishman
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Fig. 21.13 The paired flash technique for revealing the
entire time course of photoreceptor responses. a: Illus-
tration of the method with hypothetical data. The top
trace shows an ERG in response to the “test flash” of
moderate intensity followed after approximately 200 ms
by a “probe flash” designed to saturate the response of
the rods. The presence of the b-wave makes it impossible
to determine the time course or amplitude of the photore-
ceptor’s response to the test flash alone. The lower graph
shows amplitudes of the responses to the probe flashes
given at different times before and after a test flash, which

occurs at t = 0. The ERG in response to one probe flash,
labeled Am, is shown as a solid curve, and those at other
test-probe intervals are dashed. Am0 is the probe flash
amplitude when given alone. The curve connecting the
data points is the reconstructed response of the rod to the
test flash. b: Reconstructions of rod responses using the
method in part A. The test flashes were 11 scotopic td-sec
(squares), 44 scotopic td-sec (circles), and 320 scotopic td-
sec (triangles). Probe flashes in all cases were 1.2 × 104

scotopic td-sec. (Pepperberg et al. [163])

[171, 181, 182] blocked activity of neurons after
the bipolar cells in cats, with intravitreal appli-
cations of the glutamate antagonist N-methyl-
DL-aspartic acid (NMDLA). NMDLA blocks ac-
tivity at the inner plexiform layer, but not at
glutamatergic synapses at the outer plexiform
layer, so it should simplify the ERG if there
are any components from amacrine or RGCs.
Then, if one blocks the rod b-wave with a glu-

tamatergic agent, 2-aminophosphonobutyric acid
(APB), which acts at the outer plexiform layer,
one obtains a purely photoreceptor response. By
subtracting the APB-altered response from the
NMDA-altered response, one can isolate the b-
wave (and anything else that might come from the
middle of the retina). When this was done, a good
fit to the rising side of the rod b-wave could be
obtained with a six-stage process, of which three
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are carried forward from the main activation steps
in the photoreceptor, and the others are associated
with the response of the bipolars. On-bipolars
respond to glutamate with a G-protein mediated
cascade that was expected to introduce threemore
stages. The rising side of the isolated b-wave
could be fitted, therefore, by:

Rb(t) = k · I · (t − td)
5 (21.7)

where Rb(t) is the b-wave as a function of time,
k is a constant, I is illumination, and td is a brief
delay, less than 5 msec, which is primarily retinal,
but includes any small delay caused by filtering
during the recording. At present, there is nomodel
that describes the complete time course of the b-
wave.

This discussion of the ERG is necessarily sim-
plified and has not taken into account the other
components that exist. For instance, at very low
levels of illumination, one observes a different
negative going wave than the a-wave, called the
scotopic threshold response that arises in the in-
ner retina [183, 184]. Even at higher levels of
illumination, the a-wave may not be entirely due
to photoreceptors but may contain some inner
retinal contribution [185]. Retinal ganglion cell
behavior is not present in typical flash responses
but can contribute to ERGs if different stimu-
lus conditions, particularly patterned stimuli, are
used [186]. Finally, for animals with significant
numbers of cones, like primates, care must be
taken in analyzing the ERG to separate the faster
cone-mediated components from the slower rod-
mediated ones.

21.5.2.2 Computing ERGs from Specific
Retinal Areas

The ERG provides an objective electrophysiolog-
ical test of retinal function, but one of its disad-
vantages as a diagnostic tool has been the inability
to determine what region of the retina generates
the signal. The ERG represents summed activity
across the retina, so if the temporal half of the
retina were severely damaged, the ERG a- and b-
wave amplitudes might be approximately halved
relative to normal, but one could not infer from
the ERG that the damage was in the temporal
retina as opposed to a general loss of function

across the whole retina. For a major functional
deficit, ophthalmoscopic inspection might pro-
vide enough additional information to identify the
site of the problem, but for more subtle changes,
this is not the case. One might expect that local
stimulation of different parts of the retina with
a spot of light would be able to elicit a corneal
ERG from just the part of the retina stimulated.
However, in practice, when a bright flash is pre-
sented on a dark background, light scatters away
from the intended location of the stimulus and
produces responses across the retina, so localized
flashes do not allow one to isolate responses from
different regions. Studies were carried out in the
1950s that showed that a perfectly normal ERG
could be generated by flashing a light at the optic
disk, which, of course, has no photoreceptors,
and these studies emphasized the contribution of
scattered light [187]. One successful solution has
been the multifocal ERG [188]. In this technique,
one presents a grid of approximately 100 flashing
elements to a region 20–50◦ in diameter (Fig.
21.14). The elements are hexagons of varying
size, so the grid looks like a distorted honeycomb.
Each element turns on and off with a pseudoran-
dom sequence called an m sequence [190], uncor-
related with the behavior of any other element.
Because there is a reasonably high mean level
of illumination (typically in the photopic range)
in all elements over time, light scattered from
bright to dark regions has less influence on the
cells in the darker regions than it would if the
dark regions were dark-adapted. This means that
signals are generated reasonably specifically in
the part of the retina corresponding to each ele-
ment. The local responses from each element are
invisible until a cross correlation is done between
the voltage and the pattern of stimulation for each
element, but then one can extract components of
the signal that are correlated with the activity of
each retinal element. One can look at different
orders (kernels) of these multifocal responses, but
the first-order ones look very much like miniature
ERGs. There is no new mechanistic model pro-
vided by this technique, but it is an application of
engineering methods to derive more information.
This has received wide application across a spec-
trum of retinal diseases [189].



21 Retinal Bioengineering 603

Fig. 21.14 Left: Stimulus pattern used to elicit the mul-
tifocal ERG. This pattern has 241 elements that can be
turned on and off independently, and subtend the central
23 degrees of the visual field. The center panel shows
miniature ERG responses at each location obtained by
cross-correlation of the voltage with the stimulus pattern.
Note that the largest signals, which come from small

patches of the fovea, are about three orders of magnitude
smaller than those that are obtained when a full field flash
is given (Figs. 21.10 and 21.11). The right panel is a 3D
map of the ERGs from each region. The black arrow shows
that there is a small response from the blind spot. The red
arrow illustrates a region that was known to have an RPE
defect and generated smaller responses. (Lai et al. [189])

Another approach to noninvasively isolate the
responses of small patches of retina involves the
use of multiple electrodes in a contact lens placed
on the cornea [191, 192]. The signals recorded
by each electrode are slightly different, like the
responses recorded with multiple EEG electrodes
on the scalp, and with an electrical model of the
eye, one can solve an inverse problem to deter-
mine where different responses were generated.
It is then possible to use more traditional diffuse
flash stimuli, rather than the multifocal stimulus.

21.5.3 Ganglion Cell Models

At the other end of the retina from photoreceptors
are RGCs.Most ganglion cell models to this point
have treated the retina as a black box receiving
light inputs and generating neural outputs. Re-
membering that the RGCs are the only output
from the retina to the brain, it is important to
characterize the retinal output and understand the
several parallel channels of information that com-
prise this output, and this does not require specific
understanding or modeling of the photorecep-
tors or interneurons. Also, because RGCs are the
only retinal cell type (apart from a minority of
amacrine cells) that fire action potentials and can
be studied with extracellular recordings, it has

been feasible to record from them in vivo for
70 years. A great deal of this work was originally
on the cat retina and then on primates in vivo,
but most recent studies of RGCs are in vitro with
single electrodes or multielectrode recordings in
mice and primates. Ganglion cell responses are
only present in the ERG under special stimulation
conditions, and even then it is not possible to
separate the responses of different types of RGCs,
so essentially everything we know about ganglion
cell behavior comes from animal studies. There
are several reviews of the vast ganglion cell lit-
erature in cats and nonhuman primates [36, 37,
57, 193–196]. The discussion below focuses on
models. Recent reviews cover many aspects of the
benefits and limitations of different ganglion cell
models and experimental strategies [197, 198].

21.5.3.1 Systems Analysis
Systems analysis techniques began to be applied
to the retina by Enroth-Cugell and Robson [199].
This engineering approach dominated much of
retinal physiology, not just the thinking of en-
gineers. They used stationary “grating” patterns
whose contrast was sinusoidally modulated in
one dimension in space, and temporally varied
either sinusoidally or as a square wave in time.
Grating patterns are characterized by a luminance
profile L:
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L (x, t) = Lmean + L1 sin (2πkx + ϕ) ∗M(t)

(21.8)

where L1 is the sinewave amplitude (Lmax−Lmean),
x is distance in visual angle in degrees, k is
spatial frequency, usually expressed in cycles
per degree of visual angle, φ is the phase of
the grating with respect to the receptive field,
and M is the sinusoidal or square wave temporal
reversal. Grating patterns are shown in Fig. 21.15.
Alternately, “drifting” gratings have been used,
in which the temporal modulation is caused
by a continuous variation in spatial phase at a
frequency of f Hz:

L (x, t) = Lmean + L1 sin (2πkx − f t) (21.9)

Contrast refers to the amplitude of the sine
wave divided by the mean illumination, the
Rayleigh contrast [34]:

C = L1/Lmean = (Lmax − Lmin) / (Lmax + Lmin)

= (Lmax − Lmin) / (2Lmean)

(21.10)

where L is mean, maximum, or minimum lu-
minance of the pattern. Sinusoidal patterns have
become standard for this field because arbitrary
patterns can be represented by the Fourier sum
of such patterns. To the extent that the retina
operates linearly, retinal responses to arbitrary
stimuli can be predicted by knowing the spatial
and temporal tuning curves of RGCs. Further, un-
like flashing spots, gratings are effective stimuli
for probing all levels of the visual system, includ-
ing visual cortical neurons and psychophysical
analyses of human performance [201]. An alter-
native to the use of sinusoidal gratings that does
not assume linearity is the use of pseudorandom
[202] or white noise stimuli [203, 204], which can
reveal nonlinear behavior, and we will consider
the insights that these have provided below.

21.5.3.2 X and Y Cells in Cat
Enroth-Cugell and Robson [52, 199] discovered
that two prominent classes of RGCs in the cat
retina, which are believed to make up most of the

RGCs projecting through the lateral geniculate to
visual cortex, could be discriminated by whether
the light distribution in the receptive field was
reported on linearly or nonlinearly by the RGCs.
For the X cells, the linearity was quite remark-
able. It was possible to position a high spatial
frequency stationary grating on the receptive field
so that contrast reversal of the light and dark bars
led to no response from the cell, even though
the photoreceptors and bipolar cells must all have
been producing responses (Fig. 21.15). Shifting
the phase of the grating with respect to the recep-
tive field away from this “null position” yielded
large responses from the cell at the fundamental
frequency of contrast reversal. For Y cells, there
was no null position; all positions of the grating
evoked responses from the cell indicating that
summation of light was nonlinear (Fig. 21.15).
As also shown in Fig. 21.15, the X-Y distinction
proved to be a fundamental property of the cells,
independent of adaptation level [200]. X and Y
cells differ not only in spatial summation, but in
receptive field size [205, 206], and soma and den-
dritic field size [205–208], with Y cell receptive
fields being about three times as broad as X cells
at any eccentricity. The conduction velocity of Y
cell axons is also faster because they have larger
axons [205, 209].

Hochstein and Shapley [210, 211] further an-
alyzed Y cells and showed that both X and Y
cells had a linear response at the fundamental fre-
quency of temporal modulation whose amplitude
depended on the phase of the grating with respect
to the receptive field (Fig. 21.16). In addition, Y
cells had an additional nonlinear response that
could be characterized as a second harmonic that
was independent of phase [211] and was most
pronounced at high spatial frequencies. For Y
cells, the second harmonic was at least twice
as large as the fundamental at some spatial fre-
quency, and for X cells, the second harmonic
was always less than the fundamental, providing
quantitative support for a true dichotomy between
these cell types [211] rather than a range of prop-
erties. This work led to an important modification
of the center-surround model of RGCs to include
small, nonlinear subunits (Fig. 21.17; [210, 212])
that may arise from the behavior of amacrine cells
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Fig. 21.15 Difference in spatial summation between X
and Y type cat retinal RGCs. At the top are sinusoidal
grating patterns positioned in odd symmetry (spatial phase
of zero degrees) and even symmetry (spatial phase of 90◦)
on the receptive field. The grating contrast reversed with
the timing shown at the bottom of the figure. The top four
histograms are from an X cell at two background levels
separated by three log units, illustrating that summation is
linear at both backgrounds, because there is no response to

the grating in odd symmetry. The bottom four histograms
are from a Y cell at two backgrounds separated by four log
units, showing that the Y cell generates frequency doubled
responses at both backgrounds when the grating is in odd
symmetry. The contrasts were as follows: a: 0.2; b: 0.2;
c: 0.7; d: 0.3; e: 0.07; f: 0.03; g: 0.4; and h: 0.2. The
spatial frequency was chosen to be above the peak of the
contrast sensitivity curve for the fundamental response.
(Linsenmeier and Jakiela [200])

[213]. The work on cat RGCs also clearly showed
that there were parallel streams of information
leaving the retina other than the on-off dichotomy
that had been identified by Kuffler [53] and work
on other species continues to explore the different
parallel pathways.

21.5.3.3 Difference of Gaussians Model
of the Receptive Field

Enroth-Cugell and Robson [199] also quantita-
tively described the spatial transfer functions of

cat X cells, i.e., their contrast sensitivities as a
function of spatial frequency, and the transfer
functions of the linear part of cat Y cell receptive
fields were analyzed later [206, 210]. Contrast
sensitivity is the reciprocal of the contrast needed
to evoke a small fixed response from the cell at
the fundamental frequency of contrast reversal
or grating movement. This measure was adopted
rather than response amplitude for two reasons.
First, Enroth-Cugell and Robson were interested
in linear behavior, so they wished to remain in
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Fig. 21.16 Spatial phase
dependence of the linear
(fundamental) and
nonlinear (second
harmonic) responses of an
X cell (top) and a Y cell
(bottom) to
contrast-reversing gratings,
as shown at the top. X cells
have negligible second
harmonic responses, while
Y cells have nonlinear
responses that are present
at all contrasts, and which
are larger than responses of
the linear center receptive
field mechanism at high
spatial frequencies.
(Enroth-Cugell and
Robson [52])

Fig. 21.17 Modification of the difference of Gaussians
receptive field model to account for the nonlinear re-
sponses of Y cells. The data are consistent with the exis-
tence of a number of subunits, each smaller than the center,
within the receptive field. Each subunit generates either a

half-wave or full-wave rectified response that appears as
a frequency doubling in response to stationary gratings,
and may appear as an elevation of the mean rate of firing
in response to a drifting grating. (Hochstein and Shapley
[210])



21 Retinal Bioengineering 607

the linear part of the response versus contrast
relationship. The responses they recorded of 10–
15 impulses/sec in amplitude [214] allowed them
to ensure that the response amplitudes were in
that linear range. Second, they wanted to be able
to relate their findings to measures of human
visual performance, which were beginning to use
systems analysis techniques at about the same
time. It is feasible to determine the minimum
contrast at which a person sees a grating (i.e.,
the contrast sensitivity), but not the sizes of the
neural responses in the human retina or brain.
The results of measuring contrast sensitivity as
a function of spatial frequency were interpreted
as the spatial frequency domain representation of
the spatial “Difference of Gaussians” model [58].
The point weighting function, expressed in radial
coordinates, assumes a linear addition of center
(c) and surround (s) and is given by:

cW(r) = Wc(r)–Ws(r)

= Kc exp
[−(r/rc)2

]
–Ks exp

[−(r/rs)2
]

(21.11)

The corresponding spatial frequency represen-
tation is:

S (ν) = Sc (ν) –Ss (ν)

= Kcπrc
2 exp

[
–(πrcν)

2
]

–Ksπrs
2 exp

[
–(πrsν)

2
]

(21.12)

where W is the sensitivity as a function of radial
position, and S is the contrast sensitivity (the
reciprocal of the contrast required for a particular
small response amplitude) at spatial frequency ν.
The K’s and r’s are the maximum sensitivities
and characteristic radii (at K/e) of the center and
surround, as shown in Fig. 21.18. This model fits
the spatially linear parts of the responses of both
X and Y cells [199, 206, 211].

As noted in Sect. 21.2.3, monkey RGCs pro-
jecting to the LGN are generally designated P
(or midget) and M (or parasol) rather than X and
Y for which they are not generally considered
exact homologs. All P cells have linear spatial
summation, but M cells may have spatially linear
or nonlinear behavior [195, 215]. Thus, primate

Fig. 21.18 Panel a: The characteristic parameters, ra-
dius and peak sensitivity for the center mechanism in
the Difference of Gaussians model in spatial coordinates.
Similar parameters define the surround. Panel b: Symbols
show the response of an on-center X cell to gratings of
different spatial frequencies at a temporal drift rate of 2Hz.
Fits of the Difference of Gaussians model to these data
yielded the solid curve, which was comprised of the spatial
frequency tuning curves for the center (C) and surround
(S). The C curve and the solid curve are the same at high
spatial frequencies, because high spatial frequencies are
invisible to the surround. The receptive field profile in a
was generated from the parameters obtained for this cell.
(Linsenmeier et al. [206])

cells identified as X would include not only P
cells, but some M cells as well. In addition, as
noted earlier, some P cells and small bistratified
primate RGCs have color opponency [56, 195,
216, 217]. The Difference of Gaussians model
developed for cat RGCs also describes concen-
trically organized primate RGCs [218]. There is
evidence from experiments with chromatic stim-
uli that the surroundmechanism of at least some P
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Fig. 21.19 Relation between the peak sensitivity and size
of the center and surround for primate M and P RGCs. The
slope of the line for centers of P andM cells and surrounds
of P andM cells is about−2 on this log-log plot, indicating
that peak sensitivity is inversely proportional to the area of
the center or surround. (Croner and Kaplan [218])

cells is absent in the middle of the receptive field
[216], which is not predicted by the model, and
that circular symmetry is an oversimplification
[38, 54]. However, for both cat X and Y and
primate P and M cells, this model is valuable
because it allows an analysis of how the different
receptive field parameters depend on eccentricity,
and how they depend on each other. For instance,
the larger the receptive field center, the lower the
peak sensitivity under photopic conditions (Fig.
21.19) [206, 218], and this tradeoff works in such
a way that the integral under the center Gaussian
is almost independent of center radius. Also, de-
spite adjustments in all the individual parameters
characterizing the receptive field, the integrated
strength of the surround relative to the center
tends to be fairly tightly constrained (average of
0.73 in cat [206] and 0.55 in monkey [218]). The
Difference of Gaussians model also fits receptive
fields of cat and primate LGN cells [219, 220].

21.5.3.4 Gaussian Center-Surround
Models

The Difference of Gaussians model works when
the center and surround responses are temporally

180◦ out of phase and can be regarded as sub-
tractive, but this is true for only some temporal
frequencies. In order to deal with the limitations
of the original Difference of Gaussians Model,
several investigators [214, 219–223] used models
that can be called “Gaussian Center-Surround
Models,” which allowed the temporal phases of
both center and surround to vary with temporal
frequency. These have five to eight parameters,
rather than the four parameters of the Difference
of Gaussiansmodel. The response in theGaussian
Center-Surround Model of Frishman et al. [223]
had six parameters, allowing center and surround
responsivity to vary with temporal frequency, ω,

R (ν, ω) = Rc (ν, ω)+ Rs (ν, ω) (21.13)

R is responsivity of the cell or of the center
or surround, a new term that means amplitude
divided by contrast. It is used only when the
response is small enough that it is in the linear
part of the response versus contrast function and
is functionally equivalent to sensitivity. R can be
expressed in terms of magnitude and phase of the
center and surround components:

| R (ν, ω)| eiP (ν,ω)

= |Rc (0, ω)| eiPc(ω)−[π ν rc(ω)]2

+ | Rs (0, ω)| eiPs(ω)−[π ν rs (ω)]2

(21.14)

Here the quantities in the absolute value sym-
bols represent the strengths of the center and
surround. It turned out that not only temporal
phase but also center and surround radii, and
center and surround strength, had to be allowed to
vary with temporal frequency [221, 223]. When
this was combined with the fact that center and
surround strength vary with spatial frequency, the
overall behavior of RGCs depended strongly on
temporal frequency. This can be seen in both tem-
poral frequency tuning curves at selected spatial
frequencies (Fig. 21.20) and spatial frequency
tuning curves at selected temporal frequencies,
which were fitted by Eq. 21.14 (Fig. 21.21).
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Fig. 21.20 Dependence of the temporal tuning curve of
cat X cells on the spatial properties of the stimulus. On
the left are the amplitude and phase of the responses for
17 on-center X cells when the stimulus was a diffuse
field (i.e., zero spatial frequency) that stimulated both
center and surround. In the center and right panels are

similar temporal tuning curves for spatial frequencies at
the peak of the spatial tuning curve, which may involve
some surround, and at a spatial frequency above the peak,
where the response is solely due to the center. Responsivity
is response divided by contrast. (Frishman et al. [223])

21.5.3.5 More Complex Retinal
Ganglion Cell Models

Unfortunately, while models can be fitted to
individual spatial and temporal frequency tuning
curves to investigate the parameter space, this
does not mean that there is a comprehensive
systems model that can predict spatiotemporal
behavior completely, even for X cells. Another
model represented each stage of processing
by cable equations, and either a feedforward
or feedback loop was used to represent the
interaction of center and surround [224]. While
this model did fit data reasonably well, it did not
take advantage of the existing Gaussian models.
Extensions of the Gaussian analyses have been
made to investigate ganglion cell properties at
different adaptation levels [222, 225–227], but
there is no comprehensive model.

In the work discussed so far, the stimuli were
modulated at one temporal frequency at a time. A
more general approach is to use white noise or a
sum of discrete temporal frequencies as stimuli. It
is then possible to use first-order responses (i.e.,
those response components at the input tempo-
ral frequencies) as an alternative way of inves-
tigating linear behavior. By measuring second-
and higher-order components present in the re-
sponses, one could also investigate nonlinear be-
havior. Victor and Shapley [202, 228, 229] took
this approach and used a sum of six or eight
sinusoids that were nearly incommensurate in
temporal frequency (i.e., no individual test fre-
quency was an integer multiple of another and
could not be created by a sum or difference of two
others). This series of studies cannot be reviewed
completely here, but it supported most of the
fundamental conclusions about X and Y cells
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Fig. 21.21 Dependence of the spatial tuning curve of
cat X cells on the temporal frequency for four temporal

frequencies (2, 40, 52, and 60 Hz). Solid lines are fits to
the Gaussian Center-Surround model described in the text.
(Frishman et al. [223])

outlined above. One striking new result of their
work, however, was the finding of a “contrast
gain control” as shown in Fig. 21.22 [202]. On
the right are responses of a Y cell to individual
sinusoidal stimuli at different contrasts, showing
the intuitive result that the shape of the temporal
tuning curve is independent of contrast. However,
on the left, a sum of sinusoids was used, and in
this case, the responses at low temporal frequency
increase little with contrast, and it is only those at
higher temporal frequencies that grow with con-
trast. Thus, the presence of stimulus components

at high temporal frequencies made the cell almost
“ignore” increases in contrast at low temporal
frequencies. This behavior was observed more
strongly in Y cells than in X cells, but occurred
in both. As shown in the lower part of the figure,
the temporal phase of the response components
also shifted with contrast.

21.5.3.6 Multielectrode Recordings
The work discussed so far was nearly all per-
formed by recording responses from one cell at a
time. Early work to investigate correlations of re-
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Fig. 21.22 One manifestation of the contrast gain con-
trol. On the left are responses elicited from a Y cell
when six stimuli were presented simultaneously at differ-
ent temporal frequencies (shown on abscissa). The points
show the amplitude and phase of the fundamental at each
temporal frequency. The stimuluswas a stationary bar, half

a degree in diameter, positioned to produce amaximal fun-
damental response and reversing in contrast sinusoidally.
Each curve represents a different contrast (0.0125, 0.025,
0.05, and 0.10 per sinusoid from bottom to top). On the
right are responses of the same cell when each temporal
frequency was presented separately. (Shapley and Victor
[202])

sponses of adjacent or nearly adjacent RGCs was
done by Mastronarde [230–232], who used two
electrodes. His work showed that the discharges
of like type (e.g., pairs of ON-center) retinal
RGCs with overlapping receptive field centers
had positive correlations in their firing patterns,
while the discharges of RGCs with unlike over-
lapping receptive fields (e.g., an ON-center and
OFF-center pair) were correlated negatively.

In the mid-1990s, it became possible to extract
the retina and lay it on a bed of electrodes, so
that the discharges of multiple RGCs could be
recorded simultaneously [233], and subsequent
improvements of the technique have been used

for salamander, mouse, rabbit, and primate retina.
The basic design is shown in Fig. 21.23. The
retina is stimulated with an array containingmany
pixels of temporal white noise, and spikes are
collected on hundreds of electrodes, whose sig-
nals aremultiplexed. Receptive fields can be char-
acterized by spike-triggered averaging (STA), a
key analytical tool in this approach. STA analyzes
spike trains to determine which pixels were reli-
ably bright or dim before a spike from a particular
neuron, and therefore which pixels are in the
cell’s receptive field. Investigators can thereby
map the receptive fields of all the cells of a
particular subtype in a patch of retina. Using this
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Fig. 21.23 Multielectrode recording. The left panel
shows a retina placed ganglion cell side down on an array
of electrodes like that shown in the upper right. A lens
is used to create an image of the stimulus on the retina.
The stimulus is composed of many pixels, the luminance
of which varies over several levels stepwise with a pattern
governed by white noise so that is uncorrelated with the

temporal pattern of other pixels. Cross correlation of spike
trains and the stimulus pattern allows the definition of
receptive fields of many cells simultaneously. Positions
and shapes of receptive fields of cells recorded from one
retina are shown at the lower right for ON and OFFM cells
(top) and ON and OFF P cells (bottom). (Litke et al. [234])

approach, Gauthier et al. [38] further explored the
concept that each type of ganglion cell type tiles
the retina, so that several parallel representations
of the visual scene are transmitted to the brain.
The new result was that each type of ganglion cell
(M and P, ON and OFF center) is used optimally.
The receptive fields were not exactly circular,
but an “indentation” in the receptive field of one
cell was matched by a “protrusion” in the recep-
tive field of the adjacent cell; they interlocked,
as shown for one class of cells in Fig. 21.24.
This meant that there was little overlap, and little
space in the visual field that was not covered.
The shapes were not randomly distributed. Math-
ematical rotation of each receptive field about
its center always led to more overlap and less
coverage [38].

Multielectrode recordings have also furthered
our understanding of the correlations between
spike trains of neighboring cells. For P cells, there
is some level of synchronization between spike

timing of adjacent RGCs that can be seen in
cross correlations [235, 236], probably because of
common inputs rather than connections between
the RGCs themselves. The question of whether
these correlations are useful or important could be
answered only with a model [237]. The filters in
the full model are shown in Fig. 21.25. These only
roughly correspond to physical entities but do
mimic responses of real cells. Each ganglion cell
is represented by a spatiotemporal filter, which is
essentially a receptive field, followed by a non-
linearity to represent the spike generation mecha-
nism, followed by a Poisson process to create the
actual spike timing. There is also a “post-spike
filter” that feeds back to modify the nonlinear-
ity, essentially accounting for voltage-dependent
conductances that come into play after spikes.
Spiking of one ganglion cell is coupled to other
cells to modify their firing, and this brings in the
synchrony. The model can be tuned to match the
firing rates of cells and the correlations observed
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Fig. 21.24 Detailed receptive field center shapes for all
the ON-center M (parasol) and ON-center P cells (midget)
in a patch of primate retina. Because the responsivity of
cells is maximal in the middle of the receptive field and
then falls off gradually, there is no absolute measure of
size, so the boundaries of the receptive fields were defined
by setting a specific response level that was uniform for

all cells, about 36% of the peak response for this particular
sample. Small white areas represent overlap in the recep-
tive fields.With receptive fields mapped precisely, they are
not oval, but mesh to leave few gaps between cells. Holes
in the midget array probably reflect failure to record from
some cells rather than the absence of cells. (Gauthier et al.
[38])

between pairs of cells in a patch of retina. But,
the coupling can also be left out of the model to
explore its effect. The coupling had no effect on
averaged responses, so a traditional analysis us-
ing repeated presentations and poststimulus time
histograms would not reveal any role for the cou-
pling. However, coupling did give a population
response in spike timing to a single presentation
that was less noisy than the population response
where no correlations existed. Further, the full
model with coupling contained about 20% more
information, in the sense that it wasmore accurate
in decoding spike trains to provide a representa-
tion of the original stimulus than a model without
coupling, as shown in Fig. 21.25. It was still better
than a model that left out both coupling and the
post-spike filter (Poisson model) and an earlier
model with linear decoding [238]. In general, the
multielectrode work and models that use it have
given us a clearer picture of the information that
the retina sends to the brain.

21.5.3.7 Other Types of Retinal
Ganglion Cells

The X and Y cells comprise 40–60% of the RGCs
in cat [37], and M, P, and bistratified cells com-
prise about 75% of the retinal RGCs in primates
[239]. As noted above, these are all concentri-
cally center-surround organized, and they make

up much of the projection to higher visual cen-
ters. The RGCs accounting for the balance of
the retinal output typically have axons that all
conduct more slowly, but they are heterogenous in
terms of other properties. Some project to visual
cortex, but many do not, and appear to subserve
roles other than perception. In cat, these were
lumped together in a diverse group called W
cells by Stone and Fukuda [209]. One of their
approximately seven types ofW cells is the highly
linear “Q cell” [214, 240], also called sluggish-
sustained [205] or tonic W cells [209, 241]. Their
spatial summation is similar to that of X cells,
but they have receptive field centers similar in
size to Y cells, and have lower peak sensitivity.
All other W cells appear to have nonlinear spatial
summation [241, 242]. Phasic W cells (sluggish
transient cells [205]) have spatial summation sim-
ilar to Y cells, but poor sensitivity to gratings,
and most can be characterized by a Difference
of Gaussians model. Directionally selective cells
and ON-OFF RGCs have receptive fields that are
not well described by a Difference of Gaussians
model [241, 243]. Our understanding of the re-
ceptive field properties of some of the more rare
ganglion cell types advanced significantly over
the past decade [244–247], but there is still more
to do. There are at least 17 morphologically dis-
tinct types of retinal RGCs in primates [239, 248]
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Fig. 21.25 Panel A illustrates a full coupled model of
ganglion cell spiking designed to investigate the impor-
tance of correlations in the timing of spikes between adja-
cent RGCs. The model is shown for two RGCs, with filters
between the light input and the spike output as described
in the text. Panel B shows a test of the model’s ability to

identify the pattern of illumination from spike trains, with
light input at the top, p(s), and spike trains at the bottom.
Panel C shows that the full model, with coupling, had a
higher signal to noise ratio than the same model without
coupling, or than a Poisson model missing coupling and
the post-spike filter, or an earlier linear decoding model.
(Pillow et al. [237])

and arguments have been made for more than
30 physiological types in mouse [249, 250]. This
does not necessarily mean that mice have more
types than primates (or for that matter cats or
other mammals) but reflects the fact that enough
cells have been studied in mice that one can
differentiate these many types reliably. Mammals
are generally believed to have many RGCs that
are at least similar across species.

21.5.4 Retinal Connectivity Models

A newer line of work than the black box RGC
models referred to in Sects. 21.5.3.2, 21.5.3.3,
21.5.3.4, and 21.5.3.5 still require ganglion cell
responses as their main source of data but have
revealed more about the connections of first- and
second-order neurons to RGCs, so they are called
retinal connectivity models here. This is a grow-
ing area, partly enabled by multielectrode record-
ings, and always using isolated retinas. For ex-
ample, such models have enabled a better un-
derstanding of how different types of primate
cones connect to RGCs [54, 55, 251]. Only two
examples of retinal connectivity models will be
described, one from the tiger salamander retina
[252], and one from mouse retina [63].

The strategy used by Real et al. in the work on
tiger salamander [252] was to build increasingly
complexmodels, constrained by some known fea-
tures of retinal anatomy and cellular responses,
but with some novel features. These were fit-
ted to data on RGC spike timing that had been
recorded in multielectrode array recordings in
response to a set of 0.066 mm wide vertical bars
in which the intensity of each one flickered in-
dependently, but repeatedly over gray levels at
60 Hz. The model parameters were obtained by
optimizing fits to STAs for 80% of the data, and
the quality of fits was judged by investigating the
variance from actual responses when the mod-
els were tested with the other 20% of the data.
One advantage of using salamander was that in
addition to testing the models against RGC data,
it was possible to record from bipolar cells with
intracellular recordings to determine if they had
the features predicted by the models. As noted
above, there are many types of RGCs, so the
models had to account for at least some differ-
ent types. Figure 21.26 shows the second model
and the final one; all the models were of essen-
tially two stages: a bipolar cell module (BCM)
incorporating photoreceptor responses and hori-
zontal cell responses and a ganglion cell mod-
ule (GCM). The first model was an LN (linear-
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Fig. 21.26 Models of retinal circuitry in the tiger sala-
mander retina. One of the simpler models is shown in
a, and the most complex model is shown in b. Stimuli
were narrow vertical bars as shown at the top. The models
had a bipolar cell module (BCM) and a ganglion cell
module (GCM)which varied in complexity across models.
c shows how much of the spike train of real ganglion cells
could be explained by different models. Increasing the
complexity of the model improved the ability to explain
variance in spike trains for individual cells (dots) and

on the average (black bars). Models are named for the
sequence of elements, where L = linear, N = nonlinear
(rectifying), F= feedback, S= summation, andD= delay.
Panel d shows, for the LNSN model, the spatiotemporal
response of an individual BCM (top), the weighting (S)
of these BCMs feeding into an ON-center ganglion cell
(middle), and the derived spatiotemporal response of the
ganglion cell (bottom), which has the expected response
features of a ganglion cell. (Real et al. [252])

nonlinear) model (not shown), in which bipo-
lar cell responses are linear transfer functions
with different temporal properties followed by a
rectifying nonlinearity. The LNSN model (Fig.
21.26a) retained these features and added a non-
linearity (N) before summation (S) of the bipolar
cell outputs. These additions and forcing the bipo-
lar cell “modules” to be the same allowed a reduc-
tion in the total number of parameters relative to
the LN model from 187 to 68. The fifth model
tested (Fig. 21.26b) added feedback (F) at two
stages, and a delay (D) in the surround relative to
the center, and led to the final LNFDSNF model.
The ability of the models to account for ganglion

cell behavior increased for all ganglion cells with
the complexity of the model, but without an in-
crease in the number of parameters, as shown
in Fig. 21.26c (gray lines), so that on average,
only 26% of the variance was explained by the
LN model, but 42% was accounted for by the
LNFDSNF model. The improvement for individ-
ual ganglion cells was quite variable. As an exam-
ple of the way the models were developed, Fig.
21.26d shows, at the bottom, the spatiotemporal
behavior of an OFF ganglion cell derived from
the STA that was the input to the modeling; at
the top, the best spatiotemporal filter representing
the BCM feeding into this ganglion cell; and in
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the middle, the weighting and spatial positions
of the multiple bipolar cell modules (represented
by dots) that gave the ganglion cell response at
the bottom. Even the best models left room for
improvement, because, for instance, the model
did not allow spatiotemporal differences among
the bipolars feeding into particular ganglion cells.
Nevertheless, by recording from bipolar cells,
the authors were able to show that bipolars had
characteristics that the model predicted.

The exact role of horizontal cells (H cells)
in shaping the responses of retinal cells has
been unclear, except for the knowledge that
they contribute to the surround. Pharmacological
suppression of the responses of H cells is possible
with certain glutamate antagonists, but this
also suppresses off bipolar cells and therefore
does not specifically reveal the role of H cells.
Drinnenberg et al. [63] found that they could use
viral delivery to transfect a chloride channel
called PSAM (pharmacologically selective
actuator molecule) selectively into mouse H
cells, and then, when PSAM ligand was supplied
to the isolated retina at 3 μM to open those
channels, feedback from all H cells to cones
could be blocked. This is shown in Fig. 21.27a,
b, where pink denotes PSAM-expressing H cells
and green shows cones, which were transfected
with GCaMP6s, a fluorescent calcium reporter.
Figure 21.27b shows responses of GCaMP6s
to a small spot of light (gray) illustrating the
expected decrease in cone synapse Ca+2 when
cones hyperpolarize during illumination. The
response to a larger spot (black) shows lateral
inhibition of the cone due to H cell feedback.
When H cells were clamped at a hyperpolarized
potential by opening the PSAM-channel with the
PSAM ligand, their responses could no longer be
modulated by light, and the cone response was the
same for large and small spots, that is, it no longer
exhibited a surround. This allowed Drinnenberg
et al. [63] go on to investigate RGC responses
with and without H cell contributions. As in
other recent work, many RGCs were recorded
simultaneously with multielectrode arrays. They
found six separate effects of H cells, three in ON

RGCs and three in OFF RGCs. Figure 21.27c, d
illustrates one of these effects for each type of cell
in response to large spots. In Fig. 21.27c, raster
displays show the timing of ganglion cell spikes
before (black), during (orange), and after (dark
blue) the application of PSEM ligand in response
to two levels of stimulus contrasts for one cell.
Orange throughout the figure shows responses in
the absence of H cells. As one might expect, the
role of horizontal cells in the response of this ON
class of RGCs was to make the response more
transient, without altering the peak, suggesting
that the H cell input was slow or delayed. In Fig.
21.27d, amore transient class ofOFF cells had the
peak off response enhanced without H cells in the
circuit (arrows). For both of these effects, H cells
reduced spiking in an approximately subtractive
way, but in others, the role of horizontal cells was
to sharpen the response of RGCs and increase
gain. None of the effects were observed in all cells
of a particular class even in the same retina but
were robust enough to allow the formulation of a
model (Fig. 21.27e) in which three filters (blue,
pink, green) plus rectifiers represent the effect of
H cells in different pathways in the inner retina.
Potentially all of these could sum at the ganglion
cell level, which is represented at the bottom of
Fig. 21.27e by a straight pathway and a derivative
pathway, accounting for sustained and transient
RGCs, and then by the usual rectifier due to the
spike mechanism. Figure 21.27h shows what
each of these filters does separately. Drinnenberg
et al. found that all six of the effects of PSEM
could be accounted for by different combinations
of filters in the retinal circuit, as illustrated in Fig.
21.27f for the sustained ON cells of Fig. 21.27c
and in Fig. 21.27g for the transient OFF cells
of Fig. 21.27d. The model recapitulated all the
features of the responses in terms of increases
and decreases in responses and in gain changes,
and suggested that RGCs that were not affected
by PSEM may have received input from only the
fastest pathways in Fig. 21.27e. Drinnenberg et
al. went on to successful tests of other predictions
of the model.
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Fig. 21.27 Role of horizontal cells in retinal circuits. a:
Retinal structure, highlighting cones (green) and horizon-
tal (H) cells genetically targeted to contain PSEM sensitive
Cl− channels (pink). b: Cone synaptic terminal responses
to large and small spots of light. On the left, the large spot
produces a smaller response due to H cell feedback; on the
right, both spots produce the same response when PSEM
ligand is applied to the retina, presumably clamping the
H cell near the Cl− equilibrium potential and preventing
feedback. c and d: Responses of an ON-center and an
OFF-center ganglion cell. Stimulus traces to the left show
the part of the response affected by PSEM ligand. Raster

plots of individual spikes during several stimulus presen-
tations are collected into the histograms below. Responses
before and after PSEM are shown in black; responses in
the presence of PSEM are shown in orange. e: Retinal
model showing filters (colored blocks) between cones and
ganglion cells, each of which is affected to some extent
by eliminating H cell feedback, as shown by the modeled
filters in panel h. f and g:Modeled ganglion cell responses,
using appropriate combinations of filters as shown below
the responses, and matching the behavior of the ganglion
cells shown in panels c and d. (Drinnenberg et al. [63])

21.6 Engineering and the Retinal
Microenvironment

A completely different set of engineering
approaches has been used to study the retinal
microenvironment and retinal metabolism. The
microenvironment refers to the composition of
the extracellular space surrounding the neurons,
in terms of ion distributions, nutrient and waste
product concentrations, and extracellular volume.
These properties can be studied with intraretinal
microelectrodes sensitive to ions (e.g., K+, Ca+,

and H+) and gases (O2 and NO in particular).
Diffusion models can then be fitted to the data
to understand both the fluxes of these substances
through the retina and cellular metabolism. This
work is important because alterations in the
microenvironment, caused either by vascular
dysfunction or cellular dysfunction, are often
the aspect of disease that leads to retinal cell
death. In addition, these measurements can
often give a different kind of insight into retinal
cell physiology. However, unlike the modeling
discussed earlier, where electrophysiological data
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provided almost all of the information on which
the models were constructed, the microelectrode
techniques are not the only way to study the
microenvironment. A full understanding, which
we will not attempt here, requires the use of many
complimentary techniques, including recordings
of retinal activity, biochemical measurements
of various metabolites, optical measurements
of intracellular ion concentrations and retinal
vascular oxyhemoglobin saturation, histological
measurements of cytochrome oxidase and
of the uptake of a non-metabolizable sugar
(deoxyglucose), and measurements of blood
flow. The microenvironment also includes
molecules used to signal between cells, such
as neurotransmitters and paracrine substances
like melatonin, but in general, there are no
techniques available to measure these with spatial
and temporal precision.

21.6.1 Oxygen

One of the important constituents of the
microenvironment is O2, and there are several
reviews of this subject [253–256]. Normally,
the metabolism of the retina is limited by the
availability of O2, which cannot be stored in
tissue. Hypoxia, the lack of O2, clearly plays
a role in diabetic retinopathy, retinopathy of
prematurity, and retinal vascular occlusive
disease, and may be involved in any situation
where blood flow is compromised. Oxygen
partial pressure, PO2, can be measured with
O2-sensitive polarographic electrodes, which
chemically reduce O2 and yield a current
proportional to the concentration of O2 at the
tip of the electrode. Microelectrodes have a
spatial resolution approaching one μm and have
response times of milliseconds [257]. They can
be used to map the PO2 as a function of position
across the retina (PO2 profiles), and this has been
done in several species. The animals fall into two
categories: those with both a choroidal circulation
and a retinal circulation, such as human, monkey,
cat, pig, and rat, and those whose retinas have no
retinal circulation, including rabbit and guinea
pig, and therefore rely on only the choroidal

Fig. 21.28 A profile of oxygen tension across the cat
retina during dark adaptation. The recording was made
with an oxygen microelectrode that was first advanced
through the retina in steps to the choriocapillaris and then
was withdrawn continuously at 2 μm/sec to the vitreous.
Evidence of retinal capillaries is visible as peaks in the
inner half of the retina. The correspondence to retinal
layers is shown at the bottom

circulation. The gradient of O2 across the retina
of a cat under dark-adapted conditions is shown
in Fig. 21.28. There is a deep trough in the outer
half of the retina because O2 supplied from both
circulations is consumed by the photoreceptors.
In the inner retina, there are typically peaks and
valleys depending on proximity of the electrode
to capillaries of the retinal circulation.

Oxygen moves only by simple diffusion, and
it diffuses equally well through membranes as
through intracellular and extracellular space, so
the tissue can be modeled as homogeneous. In the
most general terms, O2 diffusion is described by:

Dk∇2P +Q = k · ∂P/∂t (21.15)

where D is the diffusion coefficient of O2

(cm2/sec), k is the O2 solubility (ml O2-ml
retina−1-mm Hg−1), P is the partial pressure
(mm Hg or torr), Q is the utilization of O2 (ml
O2 − 100 g−1-min−1), and ∇P is the second
spatial derivative of P (mm Hg/cm2). This
equation only applies in a region that can be
assumed to have a homogeneous value of Q, so
the challenge is to define a region where this
can be applied, and specify appropriate boundary
conditions. Most analyses performed to date have
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attempted to fit data such as that shown in Fig.
21.28 to the diffusion equation and extract a value
for Q under steady state conditions (darkness
or steady illumination), so the right side of the
equation is set to zero.

Equation 21.15 can be applied to the outer
half of the retina, which can be considered to
be an avascular slab of tissue, with O2 supply
only from the boundaries at the choriocapillaris
and about half way through the retina, where
the retinal circulation begins. The curvature of
the retina is negligible with respect to its thick-
ness. In this slab, O2 is assumed to diffuse only
in one dimension, along the photoreceptors; any
lateral gradients are expected to be very small.
Using these geometrical simplifications, one can
fit models with different numbers of layers to O2

profiles in order to determine howmany layers are
needed to fit the data and to extract values for Q.
Again, this is a very unusual aspect of the retina.
Other parts of the CNS are not amenable to such
models because of the much more complicated

geometry of the circulation. The earliest retinal
model, by Dollery et al. [258], was a simulation of
the outer retina as one layer before any intraretinal
PO2 recordings were available. These authors
reached the somewhat surprising conclusion that
while there was adequate O2 at the boundaries of
the outer retina, the PO2 was likely to be almost
zero somewhere in the tissue. The first intrareti-
nal measurements were made in cats [259], and
revealed steep gradients of O2 in the outer retina
during light adaptation, but under this condition,
PO2 was not unusually low. Measurements in the
dark-adapted cat retina, however, a condition in
which the metabolic rate was known to be higher
from prior work [260, 261], supported the idea
that part of the outer retina had a very low PO2

[76, 262]. Subsequent work [263] led to a model
for O2 diffusion in the outer retina (Fig. 21.29)
that had three layers rather than the one used by
Dollery et al. [258], and all subsequent models
derive from this one [265–273]. The solution to
Eq. 21.15 under these conditions is:

P1(x) = a1x + b1 0 ≤ x ≤ L1

P2(x) = (Q2/2Dk) x2 + a2x + b2 L1 ≤ x ≤ L2

P3(x) = a3x + b3 L2 ≤ x ≤ L

(21.16)

where the constants ai and bi for each of the three
layers are determined from the boundary con-
ditions [263]. The boundary conditions include
specified PO2 values at the choroid (x = 0) and
at the outer-inner retinal border (x = L), about
half way through the retina, as well as matching
of PO2s and O2 fluxes at L1 and L2, the borders
between layers.

The fits of this model to data yielded values for
the PO2s at the choroid and inner retinal boundary
(PC and PL), the locations of the boundaries, L1
and L2, and a value for Q2/Dk in the middle layer,
the only layer in which consumption was found
to be necessary. The initial fitting of the model
to PO2 profiles placed the boundaries between
regions at locationswhere it appeared that the out-
ermost layer was the outer segments, the middle
layer was the inner segments, and the third layer

corresponded to the cell bodies of photorecep-
tors in the outer nuclear layer. Mitochondria are
present only in the inner segments [274], so this
model agreed with the anatomy. The value of Q2

was very high, on the order of 20 ml O2/100g-
min [76, 266], which is about five times the
O2 consumption of brain tissue [275]. This high
consumption, in combination with the relatively
long distance between the inner segments and the
choriocapillaris, which is the closest circulation,
is responsible for the very low PO2s observed in
the inner segment layer. However, because most
of the outer retina uses no O2, the QO2 averaged
across the outer retina is not remarkably high. The
model was originally applied to cat retina, but it
also describes oxygenation of primate [75, 276]
and rat [268, 273, 277]. In rat, the normal min-
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Fig. 21.29 The structure
of the oxygen model used
to describe the profile of
oxygen in the outer half of
the retina. Only the middle
layer, corresponding to the
photoreceptor inner
segments, has a non-zero
oxygen consumption. The
parameters that are
adjustable during fitting
are PC , PL, L1, L2, and Q2.
(Linsenmeier and
Pournaras [264];
Linsenmeier and Zhang
[254])

imum PO2 is higher, which the modeling shows
is a result of shorter inner segments and a higher
inner retinal boundary PO2 [277].

The low PO2 in the inner segment layer under
normal conditions suggested that photoreceptors
would be at risk if arterial PO2 were reduced or
if choroidal blood flow were reduced by elevated
intraocular pressure [278], or if the retina were
detached [129]. In fact, all these conditions do
reduce photoreceptor O2 consumption [76, 130,
278]. In addition, drusen under the retina in AMD
also limit O2 diffusion to the inner segments [254]
and may account for the loss of photoreceptors
specifically over drusen.

In general, the same equations cannot be ap-
plied to the inner retina, because there are vessels
embedded in the tissue, reflected in the peaks
in the inner retina in Fig. 21.28, that make it
impossible to reduce the geometry to a one di-
mensional problem. The three-dimensional vas-
cular geometry is difficult to measure, and there
are no three-dimensional data to use in fits to
a three-dimensional model. Cringle et al. [268,
279] attempted to circumvent this problem and
analyze the metabolism of the inner retina of
rats by using an eight-layer model, five for the
inner retina, avoiding the layers containing retinal
capillaries, but the errors in this are unknown.
Another strategy for extending the model into the
inner retina is to block the circulation of the inner
retina so that all of the O2 is derived from the

choroid and provide enough O2 in the choroid
to supply the entire retina. In this case, another
layer representing the inner retina can be added
to the three-layer model described above [266],
although one then relies on values being the same
as would exist if the circulation were normal. A
diffusion model of the inner retina also applies
when the inner retina is avascular, as in guinea
pig [256, 280, 281] and rabbit [282] The inner
retina in these animals receives very little O2,
however, and has lowO2 consumption, so they are
not good models for human retinal metabolism.
A third approach to understand the inner retina is
to try to couple the amount of O2 extracted from
the retinal circulation, measured with oximetry,
to the distribution of O2 in the inner retina [267,
269, 272], but it is difficult to assess the validity
of these models.

21.6.2 Ion Distribution

The tip of a microelectrode can be filled with
a resin that is selectively permeable to a partic-
ular ion, allowing the recording of the Nernst
potential for that ion across the resin. When this
electrode is placed in the retina, measurements
of extracellular ion concentrations can be made
with 1μm resolution. A great deal of information
leading to understanding of retinal neural activity
has come from studies of K+ in the retina [283–
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291], because light-evoked changes in K+ alter
the membrane potentials of Muller cells and RPE
cells, creating several ERG components. Mea-
surements of Ca+2 have been important in re-
vealing photoreceptor transduction mechanisms
[292–294]. Measurements of H+ are the only
way to obtain information about retinal glycolytic
metabolism on a detailed spatial scale [295–302].

Unfortunately, only a few studies have coupled
ion measurements to quantitative diffusion mod-
els. There are only two mathematical models of
K+ fluxes [289, 303]. Modeling the transport of
ions through the retina is complicated. The tissue
cannot be treated as homogeneous, because ions
diffuse only through ECF, and require facilitated
or active transport across membranes. In order
to describe extracellular transport, the concepts
of tortuosity of the extracellular space, λ, and
fraction of the total volume that is extracellular,
α, have to be introduced, so the general equation
developed for ion diffusion in the brain byNichol-
son and coworkers [304–306] includes correc-
tions for these factors:

(
D/λ2

)∇2C +Q/α = ∂C/∂t (21.17)

Values for α are on the order of 0.1, and λ
is on the order of 1.5. Once these modifications
have been made to the diffusion equation, one can
attempt to define production rates and fluxes in
the extracellular space. For ions, which are not
actually produced or consumed, “production” is

actually the extrusion of the ion from cells and its
appearance extracellularly, and “consumption” is
the uptake of the ion by cells. Ions may, of course
diffuse in or out of the retina as well, and, as
with the O2 models, this is covered by setting the
boundary conditions so that there are fluxes that
depend on the gradients between the tissue and
the boundaries.

21.6.2.1 H+ Distribution
and Production

Using Eq. 21.17 as a basis, an analysis of H+ dif-
fusion and production was done for the cat retina
[299, 300]. Like the O2 diffusion model described
above, the pH model was one-dimensional, ap-
plied only to the avascular outer retina, and re-
quired the same three layers to fit the data. A
H+ profile across the retina, obtained with an
ion-selective H+ electrode, and the correspond-
ing fitted model are shown in Fig. 21.30. The
curvature of the profile is opposite to that of
the O2 profile, because H+ is produced, while
O2 is consumed. Two layers, the inner segments
and outer nuclear layer, were found to produce
H+. H+ production is believed to reflect the high
rate of glycolytic ATP production in the retina,
which is found even under aerobic conditions for
reasons that are not entirely clear. The H+ model
is not completely satisfactory, because the H+
production rates were far below those that were
expected on the basis of lactate production in
the outer retina [307], even though there should

Fig. 21.30 Gradients and modeling of hydrogen ion in
the cat retina. The profile was recorded with an ion-
selective H+ microelectrode. For the model fitted to this
data, the outer half of the retina was comprised of three

layers, of which layers 2 and 3 produced H+ and the
outer segments (layer 1) did not. Values of H+ production
derived from this model are believed to be underestimates
of actual H+ production. (Modified from Padnick-Silver
and Linsenmeier [299])



622 R. A. Linsenmeier and J. B. Troy

be a 1:1 stoichiometry between lactate and H+.
This meant that some H+ is probably cleared or
buffered so rapidly that it is never seen as H+,
and the values of production derived from the
model underestimate total H+ production. Buffer-
ing of H+ appeared to be of great importance in
preventing the retina from becoming very acidic
[298, 308, 309]. Animals in which isoforms of
carbonic anhydrase have been knocked out have
abnormal light responses [310]. Whether changes
in pH play a role in disease is not yet known, but
there are alterations of pH gradients in diabetic
cats and rats [311, 312].

21.6.2.2 Retinal Extracellular Volume
Another line of investigation has explored
whether retinal extracellular volume changes
under any physiological or pathological con-
ditions. In brain and brain slices, extracellular
volume (α) decreases during hypoxia [306] and
during stimulation [313]. This would affect the
diffusion of all molecules in the extracellular
space. The technique of measuring changes in α

in the brain [304] involved using a micropipette
to introduce an impermeant cation, such as
tetramethylammonium (TMA+), into the ECF. Its
concentration was then followed over time with
“K+” microelectrodes, which, in the presence
of TMA+, become TMA+ electrodes, because
they are almost 200 times more sensitive to
TMA+ than to K+ [314]. Because TMA+ is not
produced or consumed and does not enter cells,
its concentration changes are caused by ECF
volume changes and by diffusion of TMA+ away
from the injection pipette. If one holds constant
the amount of TMA+ injected, then differences
in the concentration versus time curves before
and after a manipulation, such as hypoxia, reveal
differences in volume under the two conditions.

A modification of this approach was taken in
the isolated frog [315] and chick retinas [292,
316, 317] and the intact cat retina [314, 318].
In this work, a uniform initial concentration of
TMA+ could be achieved by adding it to the
bathing solution of the isolated retina, or injecting
enough in the cat vitreous to achieve an equi-
librium ECF concentration of about 5 mM. Dur-
ing illumination [TMA+] was found to change

in a way that was consistent with an increase
in ECF in the subretinal space (but not the rest
of the retina) [314, 315, 317]. Pharmacological
experiments suggested that this hydration of the
subretinal space was probably initiated by the
light-induced decrease in [K+] in the subretinal
space [288, 290]. The decrease in [K+] reduces
the activity of a Na/K/Cl transporter at the api-
cal membrane of the RPE. That transporter is a
major driving force for water transport out of the
retina, so water transport decreases and the space
hydrates. The model that was developed for the
subretinal space of chick retina [316] was:

∂C (x, t)

∂t
= Ds • ∂

2C (x, t)

∂x2
− C (x, t)

α

∂α

∂t
(21.18)

where Ds is an apparent diffusion coefficient for
the subretinal space that includes the tortuosity
and α is again the ECF volume. The first term on
the right represents the diffusion of TMA+ into
a region of lower concentration, and the second
term reflects the change in volume with time, to
be obtained by fitting data to the model. Figure
21.31 shows two situations. In A, a step change
of volume (delta volume) was used as the input to
the model and the resulting concentration change
(delta concentration) showed a steep decrease
followed by a recovery. The recovery was due to
diffusion of TMA+ from the inner retina into this
increased volume. An example is shown in Fig.
21.31b. A curve of dC/dt similar to those actually
observed is shown as delta C.When the calculated
step response in Awas deconvolved from this, the
resulting delta volume was computed as the solid
line. Here a 7% concentration change, which was
the magnitude of the change observed, implied
a 20% increase in α. In cat, a similar model
suggested that illumination could increase α by
60% on average [314, 318]. These are very large
changes and would require shrinkage of RPE
cells or photoreceptors. A limitation of the model
is that it assumed that the light-evoked volume
change was sustained during illumination, and
that the transient nature of the TMAconcentration
change was due solely to diffusion of TMA into
the subretinal space. If the model had allowed for



21 Retinal Bioengineering 623

Fig. 21.31 Model of the extracellular volume change
of the subretinal space in the isolated chick retina-RPE-
choroid preparation during illumination. Tetramethylam-
monium ion (TMA+) was added to the bathing solution
to produce a concentration of TMA+ that was initially
uniform across the retina. (a) The delta volume trace
represents a step increase in subretinal extracellular vol-
ume, and the lower trace shows how TMA+ concentration
would be expected to change in response to this. The con-

centration decreases because TMA+ is diluted and then
recovers because TMA+ diffuses into the outer retina from
the inner retina. b. The diffusion response in a was decon-
volved from a curve simulating an actual concentration
change during illumination (delta C), yielding a derived
volume change. While this is a simulation, the delta C
curve closely matches actual concentration changes with
light. (Govardovskii et al. [316])

recovery of the volume during sustained illumi-
nation, the derived volume changes would have
been smaller. This could well be true, as pumping
rates adjust during maintained illumination, and
the estimated changes should probably be re-
garded as upper limits. The failure to account for
possible transience in the volume change could
also explain the apparent inconsistency that the
derived value of α in cat retina did not recover
after the end of sustained illumination. Using
the TMA approach, hypoxemia was found to de-
crease the ECF volume by as much as a factor of
four [318], which is also probably an upper limit.

21.6.2.3 Net Changes in Ion
Distribution with Light

The concentration changes for different ions are
not affected by the changes in volume; the micro-
electrodes measure them accurately. But the mea-
sured changes in ion concentration do not directly
indicate the amount of the ions entering or leaving
the subretinal space, because water changes as
well. So far, the only attempt to describe all
the ionic and volume changes in the subretinal
space during illumination [292] was done for the
isolated chick retina-RPE. This allowed the con-
centration changes to be converted to amounts of

ions entering or leaving the subretinal space. The
sign of the concentration change and the amount
of ions turned out to be the same for Na+ and
K+, but for Cl−, a small decrease in concentration
coupled with a larger increase in volume, implied
that the amount of Cl− was increasing in the ECF.

21.7 Opportunities

Retinal bioengineering has contributed greatly to
our overall understanding of the retina, explaining
retinal function in terms of quantitative models
of the electroretinogram, photoreceptor function,
ganglion cell function, and transport of O2 and
ions. Retinal models of these processes may not
be exact descriptions at present and will evolve.
However, the tradition in retinal research is not
to propose simply theoretical models but ones
that are strongly based on, and constrained by,
data. These have provided descriptions of retinal
function in terms of parameters with clear physi-
ological meaning.

Nevertheless, many opportunities are open.
First, we cannot quite predict the full optic
nerve response that would result from an
arbitrary visual stimulus with properties chosen
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from the full range of luminance, contrast,
color, and spatiotemporal properties. It would
also be useful to understand how the brain’s
interpretation of the retinal signal would be
influenced by different degrees of failure or
loss in the ganglion cell output. Understanding
these system properties might be necessary to
optimize the design of visual prostheses or to
design robotic systems with good vision. Second,
while there are descriptive models of ganglion
cell behavior in terms of spatial and temporal
properties of the receptive field, we are at an
early stage of linking that behavior to the role of
each anatomical cell type and synapse between
photoreceptors and RGCs. Models of bipolar,
horizontal cell, and amacrine cell behavior are
beginning to provide this, as indicated in Sect.
21.5.4, and it may be that further applications
of the “chemigenetic” technique of knocking
out different types of cells will prove extremely
fruitful in this regard, as long as this does not
lead to adaptive changes within the retina that
would confuse us. Similarly, we know a great
deal about the microenvironment at a descriptive
level, but linkage with the underlying metabolic
processes at the cellular or biochemical level
has only been attempted occasionally [319].
Third, optical tests are currently the most
frequently used for detecting ocular disease
but are still based largely on retinal anatomy.
Noninvasive retinal electrophysiological and
psychophysical measurements could be more
sensitive to early functional deficits, before
anatomy is compromised. These tests have come
a longway in terms of understanding their basis in
retinal cellular behavior, but more work remains
to make them specific. Fourth, repair of the
diseased retina is generally not possible, although
for some genetic and age-related diseases, there
are several promising approaches (gene transfer,
stem cells, retinal prostheses). However, in
many cases, the best we can do at present is
hold the line against further loss with VEGF
antagonists, steroids, or laser photocoagulation.
Finally, a further understanding of the retinal
microenvironment can potentially lead to an
understanding of the etiology of vascular and
metabolic diseases, and to improved treatments.
For example, measurements and modeling of O2

have predicted that something as simple as O2

inspiration, if maintained for long enough, would
have substantial benefits in retinal detachment
and vascular occlusive diseases [254].
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Homework

1. Calculate the relative gNa/gK (or PNa/PK if
you prefer) for a photoreceptor whose resting
potential in the dark is −30 mV. Make reason-
able assumptions for ENa and EK (or Na+ and
K+ concentrations) and assume that Cl− is at
equilibrium. How does this differ from most
neurons at rest?

2. The dark current of photoreceptors is about
−30 pA. Assume all the current is carried by
Na+. All the Na+ has to be pumped out of the
inner segment (IS) to maintain the normally
low intracellular [Na+]i. The pump exchanges
3 Na+ for 2 K+ as usual, and each pump cycle
(i.e., 3 Na+) requires one molecule of ATP.
(a) What is the usage of ATP/min in the dark

for an individual rod? (This is not the
only function requiring ATP but it is by
far the largest in the dark-adapted retina.
Actually about 85% of the current is due
to Na+, and 15% is due to Ca+2, but Ca+2

is pumped out by a secondary active trans-
porter that moves Ca+2 out and Na+ in
in the outer segment, which makes the
load of Na+ higher than assumed in the
problem statement.)

(b) There are 180,000 rods per mm2 at the
peak of rod density. The IS are about
25 μm long. As noted in the text, other
layers of the outer retina use no oxygen,
so this ATP usage is over a volume of
1 mm2 × 25 μm. Roughly what is the
oxygen usage of the IS, in μM-ml−1-
min−1 of IS volume (essentially per gram
since tissue density is about 1.05 g/ml),
if all of the metabolism is oxidative
metabolism (1 glucose + 6 O2 → 6
CO2 + 6 H2O). Also assume that 36moles
of ATP are produced per mole of glucose.
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(After you do the calculation, you will
be able to compare this with the typical
oxygen consumption of the brain, which
is around 2 μmoles O2-ml−1-min−1 or
as it is often expressed, 4 ml O2-100g−1-
min−1.)

3. The ganglion cell center and surround are usu-
ally viewed as being antagonistic to each other,
but this is actually true only for certain stim-
ulus conditions, as in Fig. 21.18. Under what
conditions do the center and surround of gan-
glion cells add rather than subtract? Justify
your answer.

4. Gauthier et al. [38] hypothesized that the
receptive fields of primate retinal ganglion
cells were arranged to tile the retina (or visual
world). They suggested that the interdigitation
of adjacent receptive fields was not random
but was nearly optimal, with minimal gaps
between ganglion cells and minimum overlap
of receptive fields. Using RF data like those
shown in Fig. 21.24, suggest a method to test
this hypothesis.

5. Figure 21.14 shows that the small ERG sig-
nals that comprise the multifocal ERG vary
in amplitude across the visual field. In fact,
the stimulus elements are not equal in size,
and the smaller elements in the middle of the
stimulus array (left) produce the largest re-
sponses (right). Generate at least one testable
hypothesis about why this might be true, rec-
ognizing that the ERG comes largely from
photoreceptors (here cones) and bipolar cells.

6. The chapter shows difference of Gaussian re-
ceptive field profiles for selected cat retinal
ganglion cells, but as noted in Fig. 21.19,
primate retinal ganglion cells can be charac-
terized in the same way. Receptive fields vary
a great deal across the retina.
(a) For the P (midget) cells with the smallest

and largest receptive field centers, plot the
sensitivity of center and surround of the
receptive field in spatial coordinates, as in
Fig. 21.18a. For the larger P cell, also show
the surround sensitivity multiplied by 10.
The cells in Fig. 21.19 were recorded be-
tween about 1 and 35 degrees of eccentric-
ity. For convenience, the centers and sur-
rounds of P cells from Croner and Kaplan
[218] are shown separately below.

(b) In response to a large (or diffuse) stimulus,
both center and surround will be maxi-
mally activated. The area under the cen-
ter curve represents this “integrated center
strength” and is Kcrc2. The integrated sur-
round strength is Ksrs2. For these two cells,
compare the integrated center strengths.
Also, what is the strength of the surround
relative to the strength of the center? From
your graphs of the center and surround, the
answers to these questions may surprise
you, but they seem to reveal a logic about
the way ganglion cell receptive fields vary
with eccentricity.

(c) What is the highest spatial frequency that
each of these cells can detect? (In the
units of the figures and the equation in
the text, this is where contrast sensitivity
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falls to 0.01, meaning that 100% contrast
is needed.)

7. Which eye diseases could a retinal prosthe-
sis be used to treat and why? What is the
definition of legal blindness in the USA in
terms of visual acuity? No currently available
retinal prosthesis has succeeded in providing
this minimal level of acuity. Why do you think
that this is the case and what has limited our
ability to reach this standard?

8. Barlow and Levick in Fig. 7 of their 1965
paper “The mechanisms of directionally se-
lective units in the rabbit’s retina” (Journal of
Physiology 178, 477–504) proposed a model
for the receptive field of a rabbit retinal gan-
glion cell that has directional selectivity. It is
known now that retinal ganglion cells with
similar receptive field properties exist in most,
if not all, vertebrate retinas, including those of
the primate. Suggest a model for the creation
of directional selectivity based on retinal cir-
cuitry involving bipolar and amacrine cells.
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Abstract

Tissue engineering is the use of engineering
methods to replace, replicate, or improve
biological tissues. Neural tissue engineering
involves the integrated use of biomaterials,
cellular engineering, and drug delivery
technologies with the purpose of protect-
ing, repairing, or regenerating cells and
tissues of the nervous system. Through the
introduction of biochemical, topographic,
immunomodulatory, and other types of cues,
tissues can be therapeutically controlled to
direct growth and tissue function in order
to overcome biological constraints on tissue
repair and regeneration. These strategies can
be applied when injury or disease occurs in
the brain, spinal cord, for damaged peripheral
nerves, or to improve chronic functionality of
implantable neural interfaces. In this chapter,
we present an overview of neural tissue
engineering using examples of therapeutic
systems including nerve conduits, implantable
hydrogels, delivery of neurotrophic factors
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and stem cells, genetic approaches to
tissue engineering, immunomodulation, and
electrical stimulation.
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22.1 Introduction

Tissue engineering is the use of engineering
methods to replace, replicate, or improve
biological tissues. Tissue engineering evolved out
of the field of material science, as biologically
mimicking or biologically supporting material
chemistries were discovered that could support
and sustain cellular growth at tissue scales.
Broadly speaking, a suitable material substrate
can provide a scaffolding to cells and tissues and
be tailored to provide a wide variety of effects
from supporting specific multicellular structures,
to coincident immune system modulation,
to supporting sustained release of growth-
supportive chemical agents.

However, before we proceed with examples of
tissue engineering approaches in nervous system,
it is important to first understand the underlying

© Springer Nature Switzerland AG 2020
B. He (ed.), Neural Engineering, https://doi.org/10.1007/978-3-030-43395-6_22

639

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43395-6_22&domain=pdf
mailto:j.lyon@duke.edu
mailto:ravi@duke.edu
mailto:lohitash@uga.edu
https://doi.org/10.1007/978-3-030-43395-6_22


640 J. G. Lyon et al.

tissue physiology of the brain, and what the par-
ticular engineering challenges are that this unique
physiology elicits.

22.1.1 Tissues of the Nervous System

The physiology of the nervous system can be
divided into three distinct superstructures—the
brain, the spinal cord, and the peripheral nervous
system (PNS)—each with its own distinctive tis-
sue makeup. Together, the brain and spinal cord
are also known as the central nervous system
(CNS). The PNS can be further subdivided into
the somatic and autonomic nervous systems. The
somatic nervous system includes sensory neurons
such as the dorsal root and the cranial ganglia
which provide sensory information to the CNS,
while the autonomic nervous system, which is
further divided into the sympathetic, parasym-
pathetic, and enteric nervous systems, controls
stress response, maintains homeostasis, and reg-
ulates gut function.

22.1.1.1 Cells and Tissues of the Brain
At a cellular level, the nervous system is
especially complex. In the brain, the tissue
is mainly comprised of neurons and glia,
although recent efforts focused on unraveling
transcriptomic and functional maps have revealed
a staggering diversity and complexity of these
cells [1, 2]. Broadly, neurons can be classified
based on anatomic morphology, electrophys-
iological features, interconnectivity, locality,
transcriptomic phenotype, or neurotransmitter
production profile (e.g., cells that arise in the
cerebellum, are GABAergic/inhibitory, have a
large number of dendritic spines, and express
Purkinje cell protein 4 are considered Purkinje
neurons). The cellular diversity can also be
region-dependent, as the various substructures of
the brain (e.g., cerebellum, thalamus, substantia
nigra, etc.) all have specific functional roles
that require a particular cellular makeup and
connective architecture. For tissue engineering
purposes, it is important to understand this
uniqueness and how it can impact tissue
functionality.

Glial cells also come in many varieties and
are typically classified as astrocyte, microglia,
oligodendrocyte, or ependymal cell. Astrocytes
are particularly important in neural tissue engi-
neering as they play roles in maintaining neural
tissue structure and have profound responses to
traumatic injury or inflammation. Astrocytes play
a critical role in maintaining the unique vascu-
lature of the brain, known as the blood–brain
barrier (BBB) [3], which is a selective barrier that
protects the brain and prevents direct contact with
blood and its constituents. In the brain, instead
of blood, the cerebrospinal fluid (CSF) is the
extracellular fluid substrate, and under homeosta-
sis is connected outside the brain via regulated
transport in the BBB, the CSF-producing choroid
plexus cells in the ventricles, and the local lym-
phatic and glymphatic systems recently discov-
ered in the meninges [4–6]. The understood role
of these systems is to simply allow neurons to
function undisturbed, and breaches of these dur-
ing injury or pathology have considerable effects
on normal nervous system tissue and function.

After an injury to the CNS, astrocytes be-
come reactive in response to the inflammation
and trauma to the CNS leading to a situation
known as “reactive astrogliosis” [7]. Reactive
astrocytes, which are identified histologically by
the relative upregulation of glial fibrillary acidic
protein (GFAP) and other intermediate filament
proteins such as vimentin, produce a host of bene-
ficial molecules such as proteases and protease in-
hibitors, neurotrophic factors, and cytokines that
facilitate remodeling of the lesion site and pre-
vent neuronal dysfunction [8]. In addition to the
production of beneficial molecules, reactive as-
trocytes are responsible for the formation of “glial
scar” consisting of chondroitin sulfate proteo-
glycans (CSPGs) [9], which are components of
the neural extracellular matrix (ECM) that have
long been believed to inhibit neural regeneration.
A more detailed analysis of CSPG linked gly-
cosaminoglycans (GAGs) has revealed the pres-
ence of neurite growth-promoting and inhibitory
CS-GAGs, which might influence the growth per-
missiveness of glial scar [10–12].

Glial cells also play an important role in regu-
lating the CNS immune system. Due to the highly
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regulated nature of the brain’s blood supply, the
CNS is considered an “immune-privileged” zone,
and thus, it incurs an altered profile of resident
and infiltrating immune cells relative to the sys-
temic immune system. In the brain, a population
of restingmicroglial cells that are spread through-
out the brain serve instead as the primary immune
sentinel and are responsible for monitoring injuri-
ous events [13]. Infection or injury to the CNS re-
sults in the activation of resting microglia. These
“reactive microglia” are known to be involved in
a wide range of processes that include regulation
of astrocytic differentiation, antigen presentation,
and immune response by local secretion of pro-
inflammatory cytokines [14–16].

The glial cells known as oligodendrocytes are
important in CNS regeneration in cases where
loss or recovery of myelination is a factor, as
these cells are responsible for maintaining an in-
sulating layer of myelin around CNS axons [17].
These cells can be found migrating throughout
the brain, though they originate in specific regions
the spinal cord, ganglionic eminence, and ventral
forebrain [18, 19]. Injury to the CNS typically re-
sults in the simultaneous destruction of oligoden-
drocytes and myelin, leaving behind a sharply de-
marcated focal demyelinated lesion. This leads to
a subsequent remyelination of axons, facilitated
by the triggering of oligodendrocyte progenitor
cells to a regenerative phenotype by factors se-
creted by reactive astrocytes and microglia [20].

22.1.1.2 Tissue and Cells of the Spinal
Cord

The spinal cord is a structured tube of nervous
tissue that extends further into the body from
the brainstem. The spinal column is made of 31
segments of vertebrae divided into the cervical,
thoracic, lumbar, and sacral regions. In each seg-
ment, particular sensory and motor nerve roots
emerge bilaterally from the column and serve
as the connection between the PNS, extending
further into the body. The PNS connects to the
CNS via spinal roots: dorsal roots (afferent) or
ventral roots (efferent). Though distinct from the
brain, the spinal cord mainly shares the same
cellular milieu; however, it contains significantly
less regional variety than in the brain, consist-

ing mostly of regularly structured descending/as-
cending neurons, spinal interneurons, and spinal
nerves.

The spinal cord, like the brain, possesses
meningeal layers and is saturated with CSF.Much
like the brain, the spinal cord is rendered immune
privileged via the blood–spinal cord barrier,
which is similar to the BBB, yet is considered
morphologically and functionally distinct [21].

22.1.1.3 Tissue and Cells of the
Peripheral Nervous System

The cellular makeup of the PNS is radically dis-
tinct from the CNS. Peripheral nerves are a net-
work of nervous tissue bundles that connect the
CNS to the body’s nonneural tissues, organs,
and extremities, and provide the underlying sen-
sory and control relay system of the body. These
nerves are encased in layers of connective tissue
that form the inner endoneurium, perineurium,
and the outer epineurium.

Another major difference from the CNS is
that the PNS has only one class of glial cell,
Schwann cells, which are responsible for a variety
of functions. Myelinating Schwann cells, akin to
oligodendrocytes of the CNS, provide axons with
an insulating layer of myelin [22]. This process
is brought about by binding of Schwann cells to
NRG1, a Schwann cell growth, maturation, motil-
ity, and myelin thickness regulating factor, which
is presented to them by NRG1-expressing axons
[23]. In instances of injury to the PNS, Schwann
cells facilitate regeneration of the transected pe-
ripheral nerve by forming the necessary cellular
substrate [24, 25], secreting trophic factors [26],
and forming the basal lamina [27].

Importantly, unlike the CNS, the PNS is in
direct contact with the systemic blood supply
and immune system, and is not considered to be
“immune privileged.”

22.1.2 Targets of Tissue Engineering
Approaches in the Nervous
System

Neural tissue engineering may be able to ad-
dress challenges for which there may be no other
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medical solution. These challenges fall into three
categories: injury, disease, and implant integra-
tion. In tissue engineering, we often look at the
resultant pathophysiology from these challenges
as a way to identify specific biological responses
that can serve as therapeutic targets that may be
corrected, manipulated, or replaced, with the goal
of reducing or repairing the consequent tissue
damage.

22.1.2.1 Nervous System Injuries
Traumatic brain injuries (TBIs) result from
contact injuries to the head leading to contusion,
intracranial hemorrhage, and axonal damage [28,
29]. Survivors of TBI experience several mild
to severe disabilities ranging from loss of motor
function, cognitive disorders, and depression.
TBI is also known to accelerate the onset of
several neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases.

The pathophysiology of TBI is characterized
by a sequence of primary and secondary events.
Primary events are triggered by acute excitotoxic-
ity and ischemia resulting from loss of blood flow.
Coincident lactic acid accumulation results in an
anaerobic environment and leads to membrane
permeation, depletion of ATP, failure of ion chan-
nels, and the onset of edema [30]. The secondary
stage of TBI is characterized by continued nerve
damage, cellular degradation, and excitotoxicity.
Eventually, the structural degradation of nucleo-
somal DNA by caspases and other endonucleases
leads to the triggering of apoptosis that culmi-
nates in long-term cellular dysfunction and tissue
loss depending on TBI severity.

Spinal cord injuries (SCIs) result from trau-
matic blows or penetrating wounds to the spinal
cord, most often resulting in a crush or contusion
of the cord. A majority of patients that survive
SCI suffer paralysis and lifelong disability rang-
ing from bladder and bowel dysfunction to respi-
ratory and heart complications, depending upon
the severity of the injury. Although the patho-
physiology of SCI has been well understood, to
date there is no effective treatment for the condi-
tion [31].

In primary stages of SCI, the environment
surrounding the injury forms a lesion site that is

occupied by cellular and myelin debris. These
lesion sites further support degradation of injured
nerves as they become local sources of myelin
inhibitors such as myelin-associated glycopro-
tein, oligodendrocyte myelin glycoprotein, and
an oligodendrocyte-associated neurite growth
inhibitor, Nogo-A [32, 33]. Secondary events in
SCI involve invasion of the lesion site by reactive
astrocytes and other immune cells that begin
forming an “astroglial” scar that is also associated
with increased secretion of growth-promoting
and inhibitorymolecules called CSPGs. Together,
these molecules can form a significant physical
and molecular barrier to nerve regeneration post-
CNS injury. Recent reports demonstrating robust
axonal growth post-spinal cord injury (SCI),
and despite the presence of glial scar containing
growth permissive and inhibitory CSPGs [34],
confirm these previous observations and question
the rather oversimplified characterization of glial
scar-associated CSPGs as inhibitors of nerve
regeneration.

Injury to the CNS results in the failure of
transected axons regenerating past the lesion site.
This phenomenonwas illustrated by Ramón yCa-
jal [35], where the ends of transected axons were
described as forming “dystrophic” end-bulbs that
were thought to be incapable of regenerating.
However, subsequent studies have shown that
neurons explanted from the injured CNS had the
ability to grow into peripheral nerve bridges, in-
dicating that transected CNS axons possibly do
not readily regenerate within the lesioned CNS
due to the prevalence of a nonpermissive native
environment [36]. Further studies have led to the
understanding that these “end-bulbs,” although
dystrophic, are nevertheless highly active struc-
tures that are trapped in a nonpermissive environ-
ment [37] that have the capacity to be coaxed into
a regenerative state.

Peripheral nerve injuries (PNIs) account for
nearly 2.8% of all hospital trauma cases [38]
and mainly result from injuries such as vehicle
collisions, gunshot wounds, and other penetrating
trauma that induce mechanical stretch, laceration,
compression, and deformation of nerves in the
periphery [39] or the stretching or crushing of
nerves by fractured bones resulting from falls
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[40]. Besides accident-related trauma, PNIs
can arise from surgical injuries inflicted as a
consequence of surgical tumor removal, or due
to improper care during the perioperative period,
or can arise as a consequence of the adverse
neurotoxic effects of chemotherapeutic drugs
[41]. Diabetic neuropathies are also increasingly
common, nontraumatic, peripheral neuropathies
that occur in 5% of patients suffering from
diabetes mellitus type-1 and in 20% suffering
from type-2 [42]. These types of neuropathies
also occur in patients suffering from other forms
of acquired diabetes, and when left untreated,
result in loss of sensation, impairmuscle function,
and lead to a tangled mass of nerves that cause
severe pain, thereby accounting for a number of
amputations.

Injuries to the peripheral nerve are typically
classified according to severity as either neu-
rapraxia, axonotmesis, or neurotmesis [43]. Neu-
rapraxia is a mild block without any loss of nerve
continuity that leads to only transient loss of nerve
function. Axonotmesis results from axonal tran-
section and disruption of the surrounding myelin,
with little or no disruption of the epineurium
and the perineurium. Injuries of this nature have
an excellent prognosis of complete recovery due
to the remaining epineurial and perineurial net-
works. Neurotmesis involves complete transec-
tion of the nerve without any preservation of
the mesenchymal network. Injuries of this nature
have a poor prognosis and can only be treated via
surgical intervention and proper management of
nerve inhibitory molecules.

When peripheral nerves are subjected to
chronic compression or transection, Schwann
cells are damaged, leading to demyelination of
the nerve segment. Depending on the severity
of the injury, degeneration of the distal end
begins, leading to the onset of a characteristic
active degenerative process (known as Wallerian
degeneration) within the first 24 h after injury
(Fig. 22.1) [44]. Myelin debris at the lesion
site induces the accumulation of macrophages
and Schwann cells that produce, along with
other growth factors, a basal lamina consisting
of aligned matrix proteins called the bands
of Büngner, which forms the foundation for

nerve regeneration [45, 46]. In crush injuries
where the endoneurium is not completely
destroyed, sprouting neurofibrils from the
proximal end form an axon that is guided by
the bands of Büngner along the endoneurial
tube to the target organ. This process is severely
impaired when a nerve is sectioned, due to the
presence of gap-containing fibroblasts and scar-
associated CSPGs that negatively affect nerve
regeneration.

Injuries to peripheral nerve are considered eas-
ier to treat than CNS injuries due to the secre-
tion of aligned ECM and neurotrophic factors
by Schwann cells and macrophages that enable
axonal elongation, eventually restoring neuronal
function. Spontaneous regeneration of PNS in-
juries takes placewhen nerve gaps are <10mm. In
these cases, end-to-end and end-to-side suturing
can be done to facilitate repair. In nerve gaps
>10 mm, however, nerve ends cannot be sutured
due to increased tension on the nerve. In such
cases, nerve gaps can be bridged by the use of
autologous nerve grafts and nerve conduits made
from biological or synthetic materials. Autolo-
gous nerve grafting is a procedure that involves
explantation of a nerve segment from the patient’s
own body (e.g., from the sural nerve) and im-
planted into the nerve gap. Although autologous
nerve grafts are the current “gold standard” in
treating peripheral nerve injuries, inherent disad-
vantages such as donor site morbidity, presence
of painful neuromas, and the need for secondary
surgery make the use of nerve conduits fabricated
from natural and synthetic materials an attractive
treatment alternative.

22.1.2.2 Degenerative Disease
of the Nervous System

Diseases of the nervous system where rampant
neurodegeneration occurs may be addressed
through the development of tissue engineering
strategies that protect or regenerate nervous
tissues. There exist numerous human pathologies
where neurodegeneration is rampant, either
as an indirect effect of injurious breach of
the BBB or through some unique etiology.
The most common of these disorders include
Alzheimer’s disease, Parkinson’s disease, prion



644 J. G. Lyon et al.

Fig. 22.1 Schematic
diagram of the regenerative
sequence of injured
peripheral nerve. Initially,
plasma collects and
develops into a fibrin clot.
This fibrin matrix provides
a platform upon which
Schwann cells and
fibroblasts are able to
migrate out of either nerve
stump. These cells are
responsible for the
formation of the
extracellular matrix that
directs neurite extension.
(Reprinted from
Mukhatyar et al. [44].
Copyright (2009) with
permission from
Wiley-VCH Verlag GmbH
& Co. KGaA)

disease, Huntington’s disease, and multiple
sclerosis. The exact progression of many of
these diseases is active area of research, and
the details are beyond the scope of this chapter.
However, what is important to note for tissue
engineering consideration is that each of these
diseases has a specific way in which the nervous
system cellular milieu is affected, and therein
lies a specific set of tissue engineering targets,
whether those targets are simply to ameliorate a
particular symptom or to reengineer the nervous
tissue in order to protect from or correct the
underlying disease. For instance, in Parkinson’s
disease, tremors or bradykinesia occurs due to
the death of a particular subset of dopaminergic
cells, and these symptoms in some cases are
diminished by the use of pharmaceuticals or
deep brain stimulation in the thalamus [47]. A
tissue engineering approach could potentially
replace function by implantation of Parkinson’s
resistant dopaminergic cells, or through gene
therapy that blocks the pathway bywhich the cells
undergo apoptosis prior to the development of
symptoms. Again, this only works if the etiology

is well understood, and even so, many of these
diseases have complicated etiologies that further
produce challenges to engineering therapeutic
solutions.

22.1.2.3 Neural Device Integration
With the emergence of neural interfaces and
neural implants such as deep brain stimula-
tors, vagal nerve stimulators, or implantable
brain–computer interfaces, tissue engineering
approaches can help to reduce the consequent
foreign body inflammatory response, improve
integration, or even be used to support innervation
and afferent/efferent nervous connectivity of
implantable organs or nonnervous tissues. Tissue
engineering the integration of devices with
the nervous system has the parallel goals of
minimized tissue trauma, maximized efficiency
of transmission/signal propagation, and access
to a more complex and precise density of sense
and control. Many implantable systems can be
considered a form of local, chronic injury (e.g.,
small stab wounds for penetrating electrodes),
and can incur mechanical disruption of organized
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Fig. 22.2 Schematic illustration and the working model of chronic electrode failure. (Reprinted from Saxena et al. [49]
Copyright (2013) with permission from Elsevier)

nervous tissues, breaches of the BBB, and an
undesired influx of inflammatory or immune
cells [48, 49].

In the case of insertable electrodes, the work-
ing model is that penetrating electrodes incur a
chronic BBB breach (Fig. 22.2). This in turn leads
to a feedback loop wherein infiltrating myeloid
cells produce neurotoxic and pro-inflammatory
cytokines that induce reactive gliosis, leading to
further production of pro-inflammatory factors
and increased BBB permeability. The accumula-
tion of these neurotoxic factors eventually leads
to a chronic inflammatory state that induces neu-
rodegeneration and loss of electrode functional-
ity. Tissue engineering strategies have the poten-
tial to improve these situations, either via en-
hancing acute or chronic tissue tolerance to an
implanted foreign body, directing immunomod-

ulation to decrease the overall inflammatory re-
sponse, or by the design of tissue engineered elec-
trode coatings that facilitate improved tissue inte-
gration and prolonged electrode function [50].

22.2 Tissue Engineering
Technologies

22.2.1 Material Infrastructure for
Regeneration

The primary approach to neural tissue engineer-
ing is to develop a post-injury environment that
can facilitate structural regeneration, as well as
to provide the necessary signaling cues to pro-
mote cellular tropism and growth, and eventual
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regeneration of cells and tissues. Below, we begin
our discussion of tissue engineering technologies
with the technologies that provide an infrastruc-
tural basis for repair strategies.

22.2.1.1 Nerve Conduits for PNS Repair
Nerve conduits are typically tubular in design to
enable bridging of a nerve gap and to facilitate
a closed environment for the proliferation of cells
and accumulation of growth factors. Conduits can
be designed to present aligned topographies and
trophic factors released by nano−/microparticles
embedded in 3D gels made from natural and
synthetic polymers. Silicone conduits were the
first generation of nerve conduits used to bridge
nerve gaps [51]. However, their poor porosity,
rigidity, and inability to allow for swelling led to
the exertion of compressive forces and scarring of
the regenerating nerve ultimately leading to their
failure [52].

Next-generation nerve conduits made use of
biologically derived materials (e.g., collagen)
as conduits and hydrogel substrates [53, 54].
Conduits containing collagen hydrogels were
found to perform better than hollow or saline-
filled conduits, and performed the same as
autografts when used to bridge short nerve
gaps [55]. More recently, Bozkurt et al. [56]
showed that microstructured collagen conduits
seeded with Schwann cells that possessed aligned
topography resembling the endoneurial tubes
induced significant Schwann cell migration,
formation of bands of Büngner, and axonal
regeneration. Collagen, however, has the
potential of inducing an immune response
and, therefore, gelatin, a hydrolyzed version
of collagen, has found application in nerve
conduit design either in its native form or in
combination with other polymeric biomaterials
such as polycaprolactone (PCL) [57]. In addition
to collagen hydrogel fillers, other biologically
derived materials such as fibrin [58–60], agarose
[61–64], chitosan [65–67], alginate [68], and
hyaluronic acid [69, 70] have also been used as
structural substrates in PNS regeneration.

Synthetic biodegradable polymers can also
be used to fabricate conduits with several nano-
and microscale structural features that can be

exploited to enhance nerve regeneration. The
design criteria for these conduits involve size
requirements such as length and diameter,
permeability, topography, swelling ratio,
degradation rate, size of degradation products,
and their clearance [71, 72]. Conduits made from
biodegradable polymers can be designed with
internal scaffolding to enhance the endogenous
regenerative potential by bolstering fibrin cable
formation, and in the case of longer nerve
gaps, to substitute fibrin cable activity by
providing internally aligned topographical cues
and micropatterned substrates to encourage
Schwann cell and axonal migration (Fig. 22.3)
[73–75]. Additionally, biodegradable polymer
conduits can be used as reservoirs of growth
factors which can be released in a sustained
manner along with the slow degradation of the
polymer.

Nerve conduits made from biodegradable
polymers such as poly(L-lactic acid) (PLLA),
polyglycolic acid (PGA), and poly(lactic-
co-glycolic) acid (PLGA) have been used
to successfully bridge 8–10 mm nerve gaps
[76–80]. Porous PLLA conduits were also
reported to match autograft performance in
a 10 mm sciatic nerve defect [78]. Although
biodegradable polymer conduits provide control
over design, inherent disadvantages such as
cellular incompatibility, mismatch with neuronal
tissue, toxic by-products of degradation, and
rapid degradation of constructs [72, 81] led to the
use of biocompatible polymers such as poly(3-
hydroxybutyrate) (PHB) and poly(L-lactide-co-
m-caprolactone) (PCL). These materials can also
be blended with other natural biopolymers such
as collagen, gelatin, and chitosan to enhance cell
attachment and migration [82–85]. In spite of
the various benefits of using biopolymer-based
nerve conduits, they are yet unable to match the
performance of autologous nerve grafts in longer
nerve gaps (>10 mm) and possibly need to be
supplemented with trophic agents and growth
factors to achieve this outcome.

Although nerve conduitsmade from biodegrad-
able polymers do avoid problems of donor site
morbidity and immune rejection, they still do
not present regenerating nerves with the native
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Fig. 22.3 Nerve regeneration through aligned construct
and presence of both migrated Schwann cells and en-
dogenously deposited laminin protein. Representative im-
munostained images of (a) nerve regeneration and (b)
migrated Schwann cells from both proximal and distal
nerve stump. Polysulfone nerve conduit. Magnified and
immunostained images of (c) endogenously deposited
laminin and (d) regenerating axons, from box in (a).
(e) Combined image of laminin (green), axon (red), and
aligned fiber films (blue). Arrows indicate fiber films.

Scale bar: 200 μm. (f) Representative NF160 (a marker
for axons) immunostained aligned construct (transverse
cross section, 5 mm from proximal nerve stump). Scale
bar: 500 μm. (g) Regenerated axons (red) encircled by
laminin+ pocket structures (green) from box in (f). Ar-
rowheads indicate blood vessels, and inset shows mag-
nified axons and laminin+ pocket structures. Arrows in-
dicate laminin+ pocket structures without regrown axon.
(Reprinted from Kim et al. [73] Copyright (2008) with
permission from Elsevier)

topography and cellular adhesion sites presented
by native ECM. Acellular nerves are typically
cadaver or donor nerve tissue that is extensively
decellularized by a process that involves
detergent washing, enzymatic degradation of
CSPGs, and gamma sterilization. The resulting
decellularized product retains the structural,
topographical, and biochemical features of
native nerve tissue while avoiding problems of
immune rejection. The most commonly used
acellular nerve product being used clinically for
peripheral nerve repair is Avance® processed

nerve graft (AxoGen, Inc., Alachua, Florida). In
vivo studies comparing autografts to Avance®

acellular nerves and Integra NeuraGen® type-
1 collagen conduits in 14 mm and 28 mm
rat sciatic nerve defects revealed that nerve
regeneration in autografts was better than both
Avance® and Integra NeuraGen® allografts. The
Avance® allograft, however, showed better nerve
regeneration and innervation of distal ends than
Integra NeuraGen® collagen conduits [86]. In the
long term, better decellularization techniques that
preserve the basal lamina, along with delivery of
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cultured Schwann cells and nerve growth factors,
can lead to much improved acellular nerve
grafts that could possibly challenge autograft
performance.

22.2.1.2 Implantable Hydrogels for
CNS Regeneration

In CNS injuries such as TBI and SCI, secondary
injury contributes to progressive necrosis and
cavitation of the lesion site leading to lack of
parenchymal continuity and hence the absence
of any significant nerve regeneration. While
the role of excitotoxic necrosis has been well
established in the past, the triggering of apoptotic
pathways post-CNS injury is also implicated as
an important contributor to traumatic ischemic
damage of the CNS [40]. In these instances, the
use of hydrogel-based scaffolds to provide nerve
growth-enhancing substrates while providing
structural stability is an attractive means of
promoting endogenous nerve and tissue repair.
Hydrogels are water-insoluble polymers that
swell in water and exhibit tissue-like properties.
Their macroporous properties enable attachment
of cells and promote ion and nutrient exchange,
eventually forming the path to tissue regrowth.
From a tissue engineering standpoint, hydrogels
need to be biocompatible and non/minimally
immunogenic, biodegradable or bioresorbable
to circumvent the need for later surgical
removal, compatible for in situ gelling to enable
conformation to defect, should enable robust
ECMand cell attachment, and promote outgrowth
of axonal processes [87, 88].

A variety of naturally occurring polymers
have been used in hydrogels for CNS tissue
engineering. Collagen, when used in vitro,
has shown cell attachment and neuritogenesis
[89, 90]; however, the same was not observed
when collagen gels were implanted in a spinal
cord defect [91]. In comparison, collagen gels
supplemented with growth factors induced
neuritogenesis and reduced cavitation of the CNS
defect [92–94]. Methylcellulose and hyaluronic
acid copolymer have been used in spinal cord
repair to create a fast gelling hydrogel that
displays reduced inflammatory response and

improved functional recovery [95]. Hyaluronic
acid when combined with poly-D-Lysine and
implanted as a solid sponge was found to
encourage migration of neurons and astrocytes in
a model for TBI [96]. Agarose, a polysaccharide
derived from red algae, is known for its
biocompatibility and has been used with great
success for neurite regeneration [87, 97–99].
Thermo-reversible agarose hydrogels containing
lipid microtubes allowed the sustained release
of a growth factor and facilitated 3D neurite
extension in vivo while inducing a minimum
inflammatory response (Fig. 22.4) [100]. This
effect was further potentiated when BDNF was
released in combination with constitutively active
forms of the Rho GTPases Cdc42 and Rac1 (Fig.
22.5) [101].

Self-assembling nanofiber peptide hydrogel
scaffolds are one of the more promising delivery
systems being employed for CNS repair. “Self-
assembly” of these scaffolds is mediated by
non-covalent bonds between hydrophilic and
hydrophobic peptides to form nanofibers that are
on the order of 10–20 nm. These scaffolds further
organize to form hydrogels that can be used to
deliver a variety of proteins and small molecules
safely and efficaciously [102, 103]. Since these
scaffolds are devoid of chemical crosslinkers
and are wholly composed of peptides, their
degradation products are nontoxic and can be
used by cells for growth and repair. Second, their
nanostructure is closer to that of native ECM
and can therefore provide cells with their natural
microenvironment [104, 105]. In vitro studies
using self-assembled, laminin-derived isoleucin-
lysine-valine-alanine-valine (IKVAV) hydrogels
to encapsulate neural progenitor cells were found
to selectively enhance growth and differentiation
of neurons over the length of the study (22 days)
[106]. Previously, an in vivo study using hamster
optic tract transection followed by transplantation
of a self-assembling nanofiber scaffold was found
to promote significant repair and regeneration as
evidenced by histology and functional recovery
[107]. Self-assembling nanofiber scaffolds that
were pre-culturedwith neural progenitor cells and
Schwann cells exhibited good tissue integration
and robust cell migration and blood vessel
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Fig. 22.4 Schematic of spinal cord hemisection injury
model and delivery of enzyme to the lesion site. The 1%
SeaPrep agarose gel-microtube scaffold is implanted on

top of the lesion and covered with stiffer 0.7% SeaKem
agarose gel to keep the scaffold in place. (Reprinted from
Lee et al. [100])

formation when transplanted into a spinal cord
dorsal column transection [108]. IKVAV self-
assembling nanofibers have also been shown to
reduce astrogliosis and cell death, and promote
regeneration of sensory and motor fibers in a
mouse model of spinal cord compression injury
[109].

In addition to hydrogels made from naturally
occurring polymers, synthetic polymers have also
found extensive application in CNS repair as they
can be mechanically tailored to suit neural tissue
and provide long-term structural support when
needed. Poly(2-hydroxyethyl methacrylate)
(pHEMA) sponge-laden guidance channels
showed axonal elongation when implanted in
an SCI [110]; however, these channels were also
found to collapse after implantation and needed
to be reinforced to be functional [111]. When
pHEMA and a similar but more biocompatible
polymer, poly(hydroxypropyl methacrylate)
(pHPMA), were implanted unmodified into a
cortical lesion, migration of axons and astrocytes
was observed in both cases although better
connective tissue formation was observed in
the case of pHPMA [112]. Further modification
of pHPMA with cell-adhesive peptides such
as the fibronectin-derived arginylglycylaspartic
acid (RGD) or IKVAV peptides also resulted in
better axonal outgrowth and favorable wound
repair [113, 114]. Poly(N-isopropyl acrylamide)
(PNIPAAm) is another nonbiodegradable
polymer that is being extensively applied for
biomedical purposes due to its thermo-reversible
characteristics that enable phase transition to a

low viscosity polymer at <20 ◦C and rapid gelling
at physiological temperatures. Additionally,
copolymerization with other naturally occurring
and synthetic polymers can yield a copolymer
with a variety of desirable characteristics [115].
PNIPAAm–polyethylene glycol copolymers
were found to match the compressive modulus
of native neuronal tissue and also facilitated the
sustained release of neurotrophic factors over a
period of 4 weeks [116].

22.2.2 Neurotrophic Factors

Neurotrophic growth factors play important
roles in regulating axonal growth, survival,
neurotransmission, and plasticity, and positively
influence nerve regeneration after injury to the
nervous system [117]. An important family of
neurotrophic factors are neurotrophins, a class
of neuron-supporting molecules including nerve
growth factor (NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), and
neurotrophin 4/5 (NT-4/5); ciliary neurotrophic
factor (CNTF); and glial cell line-derived
growth factor (GDNF) [117, 118]. While a
majority of these neurotrophic factors elicit
favorable response on axonal growth, the effect
of individual growth factors on axonal elongation
after injury depends heavily on the severity of
the injury, neuronal cell type, and population of
growth factor receptors. Neurotrophic factors
induce axonal elongation in a chemotactic
manner and hence need to be present in high
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Fig. 22.5 Characterization of CST+ axons extending
through CS-56+ regions proximal to lesion site. (a)
Schematic of the inhibitory regions quantified is depicted
with the inhibitory region magnified in a schematic to
the right. For axon quantification in CS-56+ inhibitory
regions, axons were placed into three categories: axons
that stopped before the proximal interface of the inhibitory
region, axons that stopped within the inhibitory region,
and axons that passed the distal interface of the inhibitory
region. (b) Image of BDA (green) and CS-56 (red) at the
proximal side of the lesion site. Thewhite box ismagnified
at the bottom right corner demonstrating how the BDA+
axons stall at the CS-56+ regions. (c–e) Images of BDA+
axons and CS-56+ inhibitory regions proximal to the
lesion site. The white box represents the image overlaid
with BDA. (c) and (d) The axons stopped in the middle of
the CS-56+ regions for the controls, whereas in (e), it can
be seen that with CA-Rac1 treatment, the axons cross the

distal interface of the inhibitory region shown with a black
dotted line as indicated with a white arrow. (f) Percentage
of axons in CS-56+ inhibitory regions. A significantly
higher percentage of axons crossed the distal interface
of the inhibitory region in the BDNF, CA-Cdc42, and
CA-Rac1 compared to the untreated and agarose controls.
Also, the axons in the controls stopped at the proximal
interface of the inhibitory region at a significantly higher
percentage than in the spinal cords treated with CA-Rac1.
(g) In the spinal cords treated with CA-Rac1, the axons ex-
tended a significantly further distancewithin the inhibitory
region than the untreated and agarose controls. One-way
ANOVAand Tukey’s test were used to statistically analyze
the data. [(a) and (c) p < 0.05 compared to untreated
control, and (b) and (d) p < 0.05 compared to agarose
control]. The data represent mean ± SEM. (Reprinted
from Jain et al. [101])

enough concentrations at the lesion site in order
to facilitate nerve regeneration.

NGF is a potent initiator of sensory axon
growth and is upregulated at the lesion site after
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both CNS and PNS injuries [119, 120]. NGF,
when continuously infused over a period of
14 days into the dorsal root entry zone of a spinal
cord inflicted with a peripheral dorsal root crush,
showed a 37% increase in sensory axons entering
the dorsal root entry zone when compared to
before infusion [121]. The continuous delivery of
NGF using polymer nerve conduits and PLG
microspheres was shown to increase nerve
regeneration in the CNS [121–123] and in the
PNS when compared to nerve conduits filled
with NGF [122, 124, 125]. Excessive dosing of
NGF, however, has its problems and most often
leads to unwanted plasticity and sprouting of
uninjured sensory nerves [126, 127].

BDNF, NT-3, and NT-4/5 are also known to
promote motor and sensory neuron outgrowth
and survival [128, 129]. NT-3-secreting nerve
conduits implanted in a mid-thoracic spinal cord
lesion showed an increase in axonal length of
corticospinal axons distal to the lesion [130],
whereas BDNF and NT-3 infusions have been
shown to prevent death of corticospinal neurons
after axotomy [131], indicating possibly that NT-
3 when administered alone promotes regenera-
tion while NT-3 and BDNF together prevent cell
death. NT-4/5 has been reported to promote nerve
regeneration in both the CNS and PNS [128, 132].

CNTF is found in large amounts in adult ro-
dent sciatic nerves and within the cytoplasm of
myelinating Schwann cells and astrocytes [133],
and is also found to be upregulated after injury to
the CNS [134]. Studies conducting CNTF infu-
sions reportedly promote axon regeneration after
injury to the spinal cord [135] and the PNS [136].
In PNS injuries, the occurrence of cell death post-
injury is found to coincide with the low expres-
sion of levels of CNTF, and wherein local admin-
istration of CNTF was found to prevent cell death
and degeneration of neuronal cell bodies post-
injury [137]. Overexposure to CNTF, however, is
known to induce reactive gliosis, a phenomenon
that induces secretion of nerve inhibitory CSPGs,
thereby creating an inhibitory environment for
regenerating nerves [138, 139].

GDNF is known to induce neuronal outgrowth
of sensory neurons through the PNS–CNS tran-
sition zone [123, 127, 140], promote survival

of sensory and autonomous neurons [141], and
induce survival and outgrowth of motor neurons
after injuries to the CNS and PNS [142].

While it is evident that neurotrophic factors
are critical for the survival and regeneration of
neurons after injury to the CNS and PNS, their
efficacy can be improved delivering locally, and
at precise concentrations that are beneficial for re-
generating neurons. This can be achieved through
the tailoring of the delivery substrate materials
to achieve temporal and spatial control, or, as
discussed later in this chapter, via gene therapy
approaches.

22.2.3 Cellular Engineering
Approaches

Cells are an excellent delivery vehicle that can po-
tentially be used in combinationwith biomaterial-
based repair strategies to deliver extracellular ma-
trix (ECM), trophic factors, and cell adhesion
molecules. Glial cells such as Schwann cells,
astrocytes, and oligodendrocytes as well as neural
precursor cells and other stem cell types are being
investigated for their transplantation potential to
support nerve repair.

22.2.3.1 Stem Cells
The potential for nerve regeneration after injury
to the nervous system was traditionally thought
to be limited due to the absence of significant
neurogenesis. Using thymidine as a label for mi-
tosis, Joseph Altman demonstrated that cell di-
vision does occur in the hippocampus [143] and
olfactory bulb [144], and that the potential for
neurogenesis does indeed exist. However, it was
only when neuronal precursor cells isolated from
the forebrain were shown to differentiate into
neurons [145, 146] that the potential of stem cell
therapy for nerve regeneration was fully realized
[147].

A number of stem cell types are currently
being investigated to treat CNS and PNS injuries.
Stem cells are of interest in tissue engineering and
repair as they have the propensity to replace the
lost or injured cells, have immunomodulatory
effects, and can induce neuroprotection and
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remyelination cascades [31]. Transplantation of
embryonic stem cell (ESC)-derived neural pro-
genitor cells into injured spinal cords reportedly
differentiated into astrocytes, oligodendrocytes,
and neurons, and ESC-treated animals also
showed better weight support and hind limb
coordination when compared to sham-treated
animals [148]. While ESCs are advantageous
given their capacity to differentiate into multiple
cell types, these cells carry ethical concerns and
have the potential—when differentiation goes
awry—to be tumorigenic [149]. Other stem
cell types such as hematopoietic stem cells,
mesenchymal stem cells, and umbilical cord
blood stem cells can be made to differentiate
into neuronal cells, but must undergo laborious
protocols for transdifferentiation into neural cells.

Alternatively, neural stem cells (NSCs) are
adult stem cells that have the potential to in-
tegrate into the cellular milieu of the nervous
system and therefore are a rational choice when
considering stem cell therapy for CNS and PNS
injuries. The use of NSCs in nerve regeneration
has been investigated in the recent past owing
to their potential for differentiation into multi-
ple cell types such as neurons, astrocytes, and
oligodendrocytes; self-renewal and production of
homologous new cells after injury; capacity for
ex vivo genetic modification; and transplantabil-
ity. Neural stem cells have been isolated from
the spinal cord, brain [150], muscle [151], bone
marrow, and umbilical cord blood [152]. The iso-
lation of NSCs from muscle and peripheral blood
has nevertheless become controversial since the
discovery that NSCs have been found to populate
the hematopoietic system and muscles after in-
jury. Studies have shown that NSCs committed to
becoming neurons and glia changed to expressing
endothelial markers when cocultured with human
endothelial cells by cell fusion-mediated acquisi-
tion of lineage-specific determinants [105]. Fur-
thermore, it was found that myogenic conver-
sion of NSCs required their direct contact with
muscle cells, suggesting that spontaneous cell
fusion between inducing and induced cells is
required for myogenic conversion [153]. There
is also the potential to directly convert a pa-
tient’s nonneural cells toward functional nervous

system cells through a process known as direct
reprogramming. Vierbuchen et al. showed that by
using a combination of three transcription factors,
adult mouse fibroblasts could be reprogrammed
directly into functional neurons in vitro [154].
More recent studies have since followed, show-
ing that this technique can produce a variety of
specific, therapy-relevant neuronal cells and glial
from both fibroblasts and astrocytes, in vitro and
in vivo [155–158].

NSCs are clearly useful as a means to obtain
otherwise difficult-to-obtain adult cell types.
For example, Schwann cells play an important
role in nerve repair and regeneration after CNS
and PNS injuries; however, obtaining a mature
population of Schwann cells for nerve repair
involves creating a neurological defect. In these
situations, NSCs can be used to play the role of
Schwann cells due to their ability to differentiate
into neurons and myelinating glial cells [159].
Polysialylated neural cell adhesion molecule
(NCAM)-positive NSCs when transplanted into a
focal demyelinating spinal cord lesionwere found
to generate both oligodendrocytes and Schwann
cells, and completely remyelinated axons in the
CNS lesions [160]. Human NSCs transplanted
into the lumbar cord of injured adult nude rats
showed extensive differentiation into neurons
and synapse formation with host motor neurons
[161]. In a combinatorial approach, NSCs were
transplanted using a PLGA scaffold constructed
from a 50:50 blend of PLGA and PLGA + poly-
L-Lysine into an adult rat spinal cord hemisection
model. Open-field locomotion results indicated
that animals implanted with scaffolds containing
NSCs induced a significantly greater functional
recovery in the sub-chronic phase that extended
into the chronic phase (70 days post-injury) when
compared to animal groups implanted with NSCs
alone or lesion controls [162]. These results
should nevertheless be interpreted with caution
since functional recovery may have resulted from
tissue preservation rather than regeneration.

Besides their use as therapies for cell
replacement, neuroprotection, regeneration, and
remyelination, human mesenchymal stem cells
(hMSCs) and NSCs are also known to play an
important role in modulating the immune system
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by limiting the immune response following
an injury to the CNS. In mice treated with
hMSCs after a transient common carotid artery
occlusion, a marked reduction in neuronal
death was associated with the upregulation of
neuroprotective genes and downregulation of
ischemia-induced inflammatory genes [163].
Adult neural progenitor cells when delivered
into the cerebrospinal fluid (CSF) along with a
myelin-derived peptide resulted in functional
recovery after SCI, possibly by modulating
the endogenous T-cell and microglial immune
response [106].

The work done with the previously described
implantable hydrogels systems can also be reap-
propriated to simultaneously engineer and im-
prove the transplantation of stem cell therapies
as well as provide a direct biochemical benefit
to neuroprotection. In a controlled cortical impact
model of TBI, Betancur et al. showed that NSCs
encapsulated in chondroitin sulfate glycosamino-
glycan (CS-GAGs) hydrogels into the lesion site
provided superior neuroprotection and reparative
benefit when compared to NSCs alone (Fig. 22.6)
[164]. CS-GAG matrices with and without NSCs
were demonstrated to have a beneficial effect on
injured CNS. The CS-GAG matrix also had the
added benefit of being able to maintain the un-
differentiated state of the NSCs, thus prolonging
the period of effective “bystander effect,” and
leading to a significant enhancement in neural
tissue protection after injury.

In summary, NSC therapy for treatment of
CNS and PNS injuries is potentially a safe, non-
tumorigenic method of providing trophic and cel-
lular replacement after injury. Additionally, their
beneficial effects can be further enhanced by ex
vivo gene therapy and by combinatorial cell ther-
apy to achieve long-term functional outcomes.

22.2.3.2 Genetic Engineering
Neurotrophic growth factors are traditionally de-
livered via continuous infusion [131, 135] and
more recently by slow-releasing biodegradable
polymers [165]. Although these systems success-
fully deliver prolonged doses of growth factors,
lack of control over concentrations can result in
the delivery of extremely high doses of these

factors, leading to inconsistent results and adverse
effects [126, 127, 138, 139]. Additionally, it is
believed that temporal control over neurotrophic
factor concentration is required to facilitate ax-
onal regeneration into target organs [166], a chal-
lenge that is not easily addressed by the afore-
mentioned deliverymethods. Amore targeted and
controlled approach to deliver these factors and
that can be tuned to temporally regulate their
expression is the use of ex vivo delivery of cells
engineered to express them.

Fibroblasts have been extensively engineered
as a model cell type for the delivery of
NGF, NT-3, BDNF, and GDNF. Genetically
engineered cells expressing different growth
factors are reported to induce different patterns of
regeneration. NGF-expressing fibroblasts when
introduced into acutely and chronically injured
spinal cord lesions have been shown to induce
growth of sensory and noradrenergic axons
into the fibroblast graft [167–169]. Fibroblasts
expressing NT-3, however, seemed to induce
growth of corticospinal axons around the graft
and into the spared gray matter [130]. Behavioral
analysis of animals graftedwith NT-3-expressing,
using tests where animals are trained to cross a
horizontal ladder toward a food source, revealed
that animals that received NT-3-expressing grafts
had fewer foot slips when compared to control
(reporter gene expressing) grafts. These effects
were found to persist in graft-implanted animals
for 6 weeks and 3 months post-injury [130].

Fibroblasts engineered to express BDNF,
when implanted in dorsal-over hemisection
lesions, have been shown to induce outgrowth
of sensory, noradrenergic, and motor axons,
and prevent the death of corticospinal neurons
[170]. BDNF- and NT-3-releasing fibroblast
grafts, when implanted in a contusion injury,
induced far greater outgrowth and myelination
of cholinergic and sensory axons than the
reporter gene expressing control [171, 172]. In
other studies, Schwann cells expressing BDNF,
when implanted into a completely transected
spinal cord, were able to elicit growth of
cerulospinal and raphespinal axons [173]—in
contrast, fibroblasts expressing BDNF were
unable to induce the same in T-8 contusion
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Fig. 22.6 Impact of
chondroitin sulfate
glycosaminoglycans
(CS-GAGs) and neural
stem cells (NSCs) on
extent of neuronal presence
after TBI. (a–d) Nissl
staining on brain sections
obtained 4 weeks post-TBI.
(e) Quantification of Nissl
staining indicates that the
combination of CS-GAG
and NSC approached
neuronal densities in
uninjured sham controls
(∗p < 0.05; ns: not
significant). (Reprinted
with permission from
Betancur et al. [164]
Copyright (2017)
American Chemical
Society)

injuries [172]. The reasons for these conflicting
results are unknown and can at least be attributed
to differences in the injury models used. While
a high rate of cell survival has been reported for
transplanted genetically engineered fibroblasts
[174–176], studies conducted to date suggest
that the best chances of behavioral recovery after
SCI occur when grafts are placed at acute time

points rather than chronic time points, when
the need for growth factor presence is the most
and the chances of secondary lesions caused by
graft placement are minimal. For example, when
engineered fibroblasts secreting BDNF and NT-
3 were transplanted into C3/C4 hemisectioned
adult rats at a chronic time point 6 weeks after
injury, partial sprouting and neuroprotection
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were observed although regeneration was modest
[177]. These results indicate that although partial
recovery can be observed in sensory-motor
tasks in transplanted animals, overall behavioral
recovery is modest, possibly due to additional
damage caused by graft placement at chronic
time points. At 14 weeks after transplantation of
BDNF- and NT-3-expressing fibroblasts, it was
found that NT-3- and BDNF-expressing grafts
provided greater neuroprotection and modest
growth of regenerating axons when compared to
control grafts. NT-3-secreting grafts significantly
reduced retrograde degeneration and atrophy of
the red nucleus, and both NT-3- and BDNF-
secreting grafts promoted modest growth of
rubrospinal axons, and also partially rescued
and protected axotomized supraspinal neurons
from atrophy [176].

GDNF-expressing fibroblast grafts, when
implanted in mid-thoracic lesions, induced the
outgrowth of hypoglossal motor and sensory
axons and induced an increase in expression
of the growth-related protein calcitonin gene-
related peptide. This was also accompanied by
an increase in numbers of myelinating and non-
myelinating Schwann cells [166, 178, 179].

Although cellular grafts expressing neu-
rotrophic factors induce axonal migration into
grafts, continuous expression of these factors
may prevent regenerating axons from leaving the
grafts to reinnervate target tissue. Controlling
gene expression such that neurotrophic factor
expression is turned “on” in order to encourage
axonal ingress into the graft and turned “off”
to facilitate axonal egress out of the graft may
ultimately enable patterning of axonal growth.
This process of controlling gene expression
involves placing the gene of interest in an
autoregulatory retroviral cassette that enables
reversible transgene expression in response to
tetracycline [180]. When animals inflicted with
injuries to the fimbria–fornix were injected in the
medial septum with retroviral NGF-expressing
fibroblasts, a significant outgrowth of cholinergic
neurons was observed 2 weeks post-injury. In
contrast, when animals implanted with NGF-
expressing grafts were fed water containing
doxycycline, NGF expression was turned off,

and the number of cholinergic neurons was
similar to those found in the reporter gene
expressing controls [181]. In a more recent
study, tetracycline-inducible expression of BDNF
by genetically modified fibroblasts was also
achieved, showing that transient growth factor
expression was sufficient to sustain regenerating
axons for prolonged periods of time in spinal
cord lesions [182].

22.2.3.3 Gene Therapy
Nerve regeneration in CNS lesions and over long
gaps in PNS defects requires sustained availabil-
ity of neurotrophic growth factors. Injection or in-
fusion of recombinant proteins and neurotrophic
growth factors is inefficient due to low diffusivity
and consequently requires the administration of
high treatment doses. Gene therapy is one tool
by which in situ production of these molecules
can be achieved. The first stage of this process
involves identifying and isolating the target genes
of interest. The isolated genes are then cloned into
a construct that contains information for stable
expression of the gene in the target organism.
The gene of interest is then carried and stably
incorporated into a random location in the tar-
get organism’s genome by a vector of choice.
The process of gene therapy in the context of
treating CNS/PNS injuries involves transduction
and transfection of therapeutic genes via viral or
nonviral means, and subsequent gene expression
in a subset of cells that can then be used to make
the therapeutic proteins of interest.

Nonviral means of gene delivery involve direct
injection of naked plasmid DNA, lipid-mediated
transfection techniques, direct delivery of DNA
using gene guns, and more recently targeted de-
livery of DNA encapsulated biodegradable ma-
trices using surface targeting of cell-specific lig-
ands [118]. Direct injection of naked DNA re-
sults in variable gene expression possibly due
to nonspecific uptake and cleavage by resident
endonucleases. DNA delivery via gene guns is
a more efficient method of naked DNA delivery
that typically results in high transduction rates but
also results in tissue damage due to the process of
forcibly inducing gene delivery via high voltage
and pressure [118]. Cationic lipid transfection
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agents are commonly used to transfect cells in
vitro; however, variable transfection efficiencies
and cell toxicity issues plague the use of these
agents, making their use for gene therapy applica-
tions challenging [183]. More advanced nonviral
gene delivery systems using cell-specific recep-
tor binding peptides to deliver genes to target
cells [184] and gene-activated matrices (GAMs)
to present genes of interest immobilized within
a biodegradable matrix allow for more targeted
gene delivery and sustained protein production
within CNS lesions [185].

Although nonviral vectors have a number of
advantages, their variable delivery efficiencies
and inability to transport genes of interest across
an intact nuclear membrane make the use of vi-
ral gene delivery methods an attractive alterna-
tive. To date, several modes of viral gene deliv-
ery using retrovirus (RV), adenovirus (AV), and
adeno-associated virus (AAV) vectors have been
tested in various tissue and animal types, with
adenovirus [186–188] and herpes simplex virus
(HSV) [189, 190] being mostly used for gene
transfer to the nervous system. Individual viral
vectors have both advantages and disadvantages
that need to be assessed before being consid-
ered for any particular application. RV has the
ability to stably integrate genes of interest into
the genome, but stable transduction is wholly
dependent upon the ability of the infected cell to
undergo mitotic cell division. AV is the vector
of choice for gene transfer into nonmitotic cells
such as neurons; however, infected cells induce an
immune response that limits their application in
vivo. HSV is capable of delivering a large payload
of DNA; however, lack of stable transduction
and cytotoxicity are some of the disadvantages
of these vectors [191]. To circumvent drawbacks
of traditional viral vectors and to provide a safe
and efficient alternative for use in humans, hy-
brid/chimeric viral vectors that combine desirable
characteristics of conventional viral vectors have
been developed for gene therapy applications in
the nervous system [192–194]. Viruses are also a
favorable substrate for engineering tissue speci-
ficity, as different serotypes have different base-
line invasion preferences, and can be further engi-
neered or mutated to discover viral chimeras that

favor certain cells and tissues. Murlidharan et al.
showed this with anAAV chimera designed to tar-
get neurons preferentially over glia [195]. Using
this AAV construct, they were able to deliver an
in vivo gene-editing payload (CRISPR/Cas9) that
could further increase the specificity of therapy
through targeting knockout of a schizophrenia
risk gene. These viral technologies, along with
advances in gene editing payloads, are promising
platforms for tissue engineering especially when
there is a clear underlying genetic etiology.

22.2.4 Immunomodulation

Another tissue engineering strategy is to target
the endogenous immune system as a means
of diminishing or managing the immune-
mediated effects on tissue degeneration. In
particular, the inflammation-relevant plasticity of
monocytes/macrophages makes them especially
attractive as targets for phenotype modulation. A
short-term (3 week) study using a 15 mm nerve
gap model demonstrated that delivery of the
immunomodulatory cytokine interleukin 4 (IL-
4) could polarize injury-local macrophages to
express more “pro-healing” phenotypes [196].
Pro-healing modulation of macrophages led
to an increase in Schwann cell recruitment
and axonal growth as compared to scaffold
controls without chemical intervention and
faired dramatically better than in cases where
the pro-inflammatory cytokine interferon γ

was introduced. The premise of the study was
that local immunomodulation led to a bias of
the local immune microenvironment triggering
a regenerative biochemical cascade involving
Schwann cells and neuronal processes, eventually
leading to improved repair.

In a later study, Mokarram et al. further
showed that recruitment rather than direct mod-
ulation of the constituent immune system could
have a dramatic impact on PNS repair [197]. In
this study, fractalkine was delivered from a nerve
repair conduit in a long-gap nerve transection
model and was shown to preferentially recruit
reparative monocytes, leading to a significant
improvement in bridging, over gold-standard
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Fig. 22.7 The effect of fractalkine (FKN) and interleukin
4 (IL-4) on axonal growth. (a) After nerve axotomy, auto-
graft or scaffolds containing IL-4 or FKN were sutured
to the injured ends of the nerve using the critical gap
size of 15 mm. After 4 weeks (b) immunohistochemical
staining was performed for axons (NF160, red) and nuclei

(blue, DAPI) at the distal nerve stump. (c) The number
of regenerated axons indicated a significant improvement
using FKN over IL-4 (p < 0.01) though autograft led to the
most regenerated axons (p < 0.0001 vs. IL-4; p < 0.05 vs
FKN). (Reprinted from Mokarram et al. [197])

cytokinemodulation strategies, and reaching very
close to the measures of regeneration found using
autografts (including axonal count, percentage of
myelinated axons, and improved neuromuscular
responses measured using electrophysiology)
(Fig. 22.7).

22.2.5 Electrical Stimulation for
Repair and Regeneration

Electrical stimulation of the nervous system has
been shown to accelerate plasticity and promote

recovery and rehabilitation after injury [198,
199]. Electrical activity is known to stabilize
the synapse, induce gene expression changes,
and facilitate neurogenesis. The mechanism
by which electrical activity induces these
outcomes, however, is largely unclear. It is
believed that increased electrical activity of the
neurons induces the influx and accumulation
of intracellular calcium which then triggers a
secondary cascade–mediated synthesis of “early
genes.” Protein products of these early genes are
then responsible for activation of “late genes” that
control neurogenesis [200]. Therefore, a genetic
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neuroprosthesis can be developed by controlling
the electrical activity of the neuron [201, 202].

Direct current (DC) is generally applied for
electrical stimulation of nerves due to the endoge-
nous presence of DC voltage gradients within
tissues [203]. In early studies, the application of
DC electric fields (approx. 100 mV/mm) from an
electrode-containing, silicone conduit onto the
dorsal half of guinea pig spinal cords showed
robust regeneration of axons into the conduit
when compared to control guidance channels
[204, 205]. The DC currents used for electrical
stimulation in these studies, however, was known
to damage both electrode and associated tissue
[201]. Since these early studies, the efficacy
of DC stimulation parameters has been widely
investigated with several reports demonstrating
DC stimulation-induced improvements in
network plasticity and repair [206–208].

Alternating current (AC) has also been used to
electrically stimulate peripheral nerve regenera-
tion. Early studies have shown that low-frequency
electrical stimulation using AC was effective to
help enable reinnervation of de-innervated mus-
cles [209, 210]. Animals that were electrically
stimulated at frequencies of 1–4Hz for 15–30min
after nerve crush injury reportedly regained toe
spread function and reinnervation of the flexor
muscles within 6 days after injury, and it was
more effective if stimulation regimes were initi-
ated immediately after injury [209, 211]. These
effects, however, could also be due to more ef-
fective sprouting and reinnervation rather than
regeneration [212].

To test whether these effects were also true for
transected nerves, femoral nerves were transected
and sutured, and animals were subjected to 20 Hz
of electrical stimulation along with retrograde
labeling of neurons to count the number of regen-
erating axons [213]. In these studies, it was noted
that although the motor axons did not reinnervate
into motor pathways immediately after transec-
tion and suture, the axons did indeed progres-
sively regenerate over time and eventually rein-
nervated the target muscle 4 weeks post-injury. In
a subsequent study conducted to assess the effects
of time of stimulation, transected and sutured

femoral nerves were stimulated at 20 Hz fre-
quency proximal to repair site over multiple time
periods. Results from these studies showed that
electrical stimulation over a period of 1 h led to a
significant increase in DRG neurons regenerating
into cutaneous and muscle branches, and that
these neurons were associated with a significant
increase in expression of growth-associated pro-
tein 43 (GAP-43) mRNA and BDNF 2 days post-
injury when compared to sham-treated and other
stimulation time points [198]. In more recent
studies, functional electrical stimulation (FES)
has been used in rats that were inflicted with a
complete SCI at T8 and T9. After implantation
of FES probes to measure hind limb movement
3 weeks post-injury, dividing cells were labeled
with bromodeoxyuridine (BrdU). Half the ani-
mals that received BrdU were termed the “cell-
birth” group and sacrificed immediately after ad-
ministration, while the other half, termed the “cell
survival” group, were sacrificed after 7 days. Re-
sults from these studies showed that FES induced
an 82–86% increase in cell birth, which is sus-
tained in the “cell survival” group. Results from
these cells showed the expression of stem cell and
glial cell markers such as nestin, NG2, GFAP, and
APC in FES rats [214]. Other recent studies also
show that short periods of electrical stimulation
lead to a significant increase in expression of
nerve growth-associated genes such as GAP-43,
alongwith enhanced protein expression of growth
factors such as BDNF and insulin-like growth
factor-1 [198, 215, 216]. Goldberg et al. showed
that the rather slow outgrowth of retinal ganglion
cell axons mediated by peptide growth factors is
markedly increased when the cells were electri-
cally stimulated at physiological levels, proving
that electrically stimulated neurons utilize peptide
growth factors for survival and axonal outgrowth
better than unstimulated neurons [217].

22.3 Conclusion

The factors and circumstances that influence
nerve regeneration after injury to the CNS and
PNS are complex. This chapter provides a review
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of currently available technologies to engineer
nervous tissue regeneration. In the future, CN-
S/PNS regeneration strategies should continue to
evolve an interdisciplinary approach that includes
a sound understanding of the underlying molec-
ular and cellular environment post-injury, and
an applied knowledge of the rapidly progressing
fields of biomaterials, gene therapy, stem cell
biology, and neural prostheses. A combination of
these fields and technologies can be applied to
design multipronged strategies along the path to
enabling neural regeneration, with the ultimate
goal of restoring functional recovery.

Homework

1. Outline the components of the two major
subdivisions of the nervous system.

2. What are the main functions of the blood–
brain and the blood–spinal cord barriers?

3. Why are astrocytes important to consider as
a cellular target for neural tissue repair?

4. State two unique attributes of neural
tissue.

5. What are the long-term consequences of CNS
injuries?

6. What are glial cells present in the PNS
called?

7. Name one application of implantable neural
devices.

8. How do polymeric nerve conduits containing
internal scaffolding facilitate nerve regenera-
tion?

9. Why would neural stem cells be preferential
to other stem cell types in repairing CN-
S/PNS tissues?

10. What are the desired characteristics of an
implantable material?

11. When would gene therapy be favorable to the
use of genetically engineered cells?
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ELM, 547
LSTM, 549
MLP/feedforward network, 547
ReLU, 547
RNN, 549

Artificial neuron-glia network (ANGN), 559
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Ascending reticular activating systems
description, 41
intralaminar midline, 41
and limbic, 41–46
subthalamus, 41

Astigmatism, 49
Astrocytes, 3, 4
Astroglia, 3
Asynergia/dyssynergia, 30
Attention-based BCIs, 165–166
Attitudinal reflexes, 27
AUC, see Area under the curve (AUC)
Auditory evoked potentials (AEPs), 163–165
Auditory sensations, 57–58
Augmented reality (AR), 156
Autocorrelation function, 416
Autocorrelation matrix, 109–110
Auto-encoder (AE)

brain image classification, 450–451
brain image registration, 451
decoder, 449
encoder, 449
SAEs, 449, 450
SCAEs, 450
structure, 449
unsupervised models, 448, 449

Automated external defibrillators (AEDs), 116
Autonomic ganglion, 32, 33
Autonomic nervous system (ANS), 37

adrenal medulla, 34, 35
autonomic ganglion, 32, 33
central organization, 34–35
homeostasis, 32
neurotransmitters, 32, 34
parasympathetic system, 32, 33
sympathetic system, 32, 33

Autoregression (AR), 98, 149, 418, 512, 544
advantageous, 107
characterizing, 107
diagnostic power, 109
dominant frequency analysis, 107
dominant frequency peaks, 108–109
FFT, 107, 108
mathematical formulation, 107–108
modified spectrum, 107, 108
NS, 109
parameters, 108
power spectrum, 108–109

Autoregressive feedforward models, 559
Autoregressive moving average (ARMA), 107

B
Backpropagation, 436, 437
Band-pass filter, 72, 149–151
Bandwidth, 66, 69, 73, 76, 79, 81, 82, 85, 98, 107, 111,

114, 140
Basal ganglia

brain stem nuclei, 21

and cerebral cortex, 41
Parkinson’s disease, 31
symptoms, 31
and thalamocortical interactions, 234
and thalamus, 23, 24

Basal gangliathalamo-cortical motor network, 227
Basic life support (BLS), 116
Bayesian algorithm (BSFE), 321
Bayesian classifiers, 151
Bayesian neural network (BNN), 559
Bayesian theory, 396–397
BBB, see Blood–brain barrier (BBB)
BCI applications

neurofeedback, 156
replacing lost communication, 153
replacing lost motor function and neuroplasticity, 154
supplementing normal function, 154–156
VR and AR, 156

BCI performance assessment and training
communication systems, 168
intra-system and inter-system performance

comparisons, 168
signal acquisition protocols, 167
system performance assessment, 168–170
user performance assessment, 168

BCIs, see Brain–computer interfaces (BCIs)
BDNF, see Brain-derived neurotrophic factor (BDNF)
Beamformer techniques, 398
Benchtop experimental setups, 66
Beta band, 99, 100, 106, 145, 147
Beta oscillations, 232
Beta waves, 44, 45, 99
BF, see Biceps femoris (BF)
B-field energy, 249
Biceps femoris (BF), 320
Bidirectional BMI, 215
Biofeedback/neurofeedback machines, EEG

absence status epilepticus, 102, 103
applications, 103
brain states and disease conditions, 103
finger skin resistance/temperature, 102
frequency-following response, 102
frequency/spectral domain methods, 103
joint-time frequency methods, 104
μ-rhythm suppression, 102–104
signal analysis methods, 103
time-domain measurements, 103

Bioinstrumentation design and neuromodulation, 225
Biological computational paradigm, 293
Biological sources, light, 304
Biophysical models, 392, 500
Biopotentials

anatomical structures, 65–66
BCI, 65
cellular-scale resolution, 66
characteristics, 72
ECoG, 66
EEG, 66
electrode arrays, 66
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and electrodes (see Electrodes)
EMG, 66
MEAs, 66
μECoG, 66
neural instrument, 67
spatial resolution, 66
spatiotemporal characteristics, 66, 67

Biot–Savart law, 253
Biphasic active recharge patterns, 229
Bipolar derivation, 148
Bipolar/tripolar concentric electrodes, 386
Bispectrum, 105
Bistability, 480–481
Blindness, 308
Blood–brain barrier (BBB), 640
Blood oxygenation level-dependent (BOLD), 140, 143,

401, 404
blood and tissue susceptibility, 334
deoxygenated hemoglobin, 334
oxygenated hemoglobin, 333
synchronization, 334
tissue contrast, 333

BLS, see Basic life support (BLS)
BM, see Boltzmann machine (BM)
BMIs, see Brain-machine interfaces (BMIs)
BNN, see Bayesian neural network (BNN)
BOLD, see Blood oxygenation level-dependent (BOLD)
BOLD response, neural activity

biophysical basis, 334
CBF, 335
CBV, 335
CMRO2, 334
elevation, 334
feasibility, 335
hemodynamic changes, 335

BOLD time series analysis
block-design paradigm, 337
boxcar function, 339
correlation-based method, 337
experimental paradigm, 337
least-squares estimation, 339
linear time-invariant system, 337
mapping brain activations, 337
multivariate pattern analysis, 340
neural responses, 339, 340
neurovascular coupling, 338, 339
regression parameters, 338
stimulation condition, 338
subject-level statistic, 340
sustained neural response, 340
visual thalamus, 338
voxel index, 337
voxel time series, 337

Boltzmann constant, 76
Boltzmann machine (BM), 559
Boundary element method, 388, 389
Bradykinesia scores, 220
Brain

ability, 58, 60

label-free PACT, 364, 365
nervous system activity, 8
PAM

brain vasculature, single-cell resolution, 364
label-free histology, 364

populations of glial cells, 4
skull, 8
spectral PAT, 366
and spinal cord, 7–9
three-dimensional spatial resolution, 8

Brain center, 35
Brain–computer interfaces (BCIs), 65, 86–88, 529

adaptive controllers and user interface, 137–138
applications (see BCI applications)
bidirectional, 133
brain-to-device control, 138
clinical and practical validation, 170–171
CNS activity, 133
components, 135–136
definition, 132–133
dependent and independent, 134–135
EEG, 102, 131–132
efficiency and inefficiency, 172–173
expectations, 170
goal, 132
hybrid, 135
neuromuscular disorders, 131, 132
output, 133–134
peer-reviewed, 174
performance assessment and training (see BCI

performance assessment and training)
reciprocal learning, 173–174
research and development, 136–137
signal acquisition (see Signal acquisition)
signal processing (see Signal processing)
signals, 138–139
training, 171–172

Brain-controlled FES
closed-loop iBMI-FES system, 211
EMG, 210
firing rate, 210
flexible and dexterous movements, 211
motor cortex, 210
neural activity, 210
nonlinear function, 210
paralyzed people, 211
point-to-point movements, 212
SCI, 212
virtual reality, 212

Brain-controlled robot’s reaching and grasping, 187
Brain-derived neurotrophic factor (BDNF), 649
Brain electric source model, 387
Brain image analysis

cGAN, 455, 456
CycleGAN, 454, 455
dEa-GAN, 455, 457
Ea-GANs, 455, 457
GANs, 454–456
gEa-GAN, 455, 457
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Brain image analysis (cont.)
PET, 454, 455
Pix2Pix, 455

Brain image augmentation, 457–459
Brain image classification, 442, 450–451
Brain image pre-processing, 434–435
Brain image registration, 451
Brain image segmentation, 443–445
Brain–machine interfaces (BMIs), 86

communication, 189
decoders, 191
description, 186
iBMI (see Intracortical BMI (iBMI))
M1, 193
reaching and grasping, 188
robotic arms and motorized wheelchair, 191
sensory feedback, 191
speed and accuracy, 191
See also Brain–computer interfaces (BCIs)

Brain stem
anatomical locations, 23
cerebellum and spinal cord, 30, 31
classification, 22
decerebrate rigidity, 30
equilibrium, 22
lateral vestibular nucleus, 23
midbrain, 30
muscle/limb movements, 22
nuclei and functional regions, 22
red nucleus, 23
reticular formation, 23

Brain stimulation applications, 282
Brain stimulation technology, 294
Brain-to-brain communications, 166–167
Brain waves

alpha, 44
beta, 44
characteristics, 43
delta, 44
EEG, 43–45
electrical recordings, 43
theta, 44

Broca’s speech region, 27, 28
BS, see Burst suppression (BS)
BSMART software package, 427
Burg algorithm, 108
Bursting, 478
Burst suppression (BS)

anesthetic-induced, 121
and bursting, 123
detection, 106
EEG, 105
pattern, 101

C
CA, see Cardiac arrest (CA)
Caenorhabditis elegans, 299, 510, 511
Canonical HRF, 335

Capsular hemiplegia, 32
Cardiac arrest (CA)

AEDs, 116
BLS, 116
clinical trials, 117
CPR, 116
detecting and counting bursts, 118–119
EEG and entropy

burst counts, 119
CPR and ROSC, 119, 120
framework, 120
IQ, 120, 121
qEEG analysis, 120, 121
spiky bursts, 119
temporal and spectral indicators, 119

hypoxic-asphyxic, 117–119
ICDs, 116
and infant asphyxic episodes, 117
multi-institutional groups, 116–117
neurological complications, 116
neurological injury, 116
NS, 117–119
orexin, 121–123
survivors, 116

Cardiopulmonary resuscitation (CPR), 116, 119, 120
CARTOOL, 404
Cataracts, 49
Catecholamines, 34
Causal connectivity

BSMART software package, 427
eConnectome, 427, 428
Granger causality, 415, 427
MATLAB-based toolbox, 427

Causal mapping, 237
CBF, see Cerebral blood flow (CBF)
CBV, see Cerebral blood volume (CBV)
CCD, see Cortical current density (CCD)
CDS, see Correlated double sampling (CDS)
Cell membranes, 465, 468
Cellular neuroscience, 466
Central auditory system, 58–60
Central nervous system (CNS), 132, 173, 640

components/organelles, 1
control center, 7
convergence, 5–6
and dendrites, 4
divergence, 5–6
IPSPs, 7
memory and learning, 4
nerve cells, 1, 2
sensory axis, 7, 10
somatovisceral sensibility, 17–18
synaptic plasticity, 4
synaptogenesis, 4
temporal and spatial facilitation, 6

Central thermoregulation
active evaporation, 41
conduction, 41
conserve heat, 40
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convection, 41
effector responses, 40
heat loss, 41
heat production, 40
passive evaporation, 41
radiation, 41

Central vestibular system, 26–27
Centromedian-parafascicular (Cm-Pf), 233
Cerebellum, 186

adiadochokinesia, 30
afferent connections, 23
anatomical locations, 23
asynergia/dyssynergia, 30
ataxia, 30
cerebellar cortex, 23
dysmetria, 30
intention tremors, 30
nystagmus, 30
vertigo, 30

Cerebral blood flow (CBF), 306, 335, 364
Cerebral blood volume (CBV), 335
Cerebral metabolic rate of oxygen (CMRO2), 334
Cerebrospinal fluid (CSF), 640
CES, see Cranial electrotherapy stimulation (CES)
CFC, see Cross-frequency coupling (CFC)
CGH, see Computer-generated holography (CGH)
Charge balance, 74, 82, 118, 226
Charge transfer resistance, 69
Chlamydomonas reinhardtii, 295
Cholinergic synapses, 34
Chondroitin sulfate proteoglycans (CSPGs), 640
Chronically implanted devices, 224
Chronic brain recordings, 239
Chronic nerve recordings

ENG recordings, 322
fascicles control plantar, 322
GN and TA, 322
information transfer rate, 323
ITR, 323
post-implantation, 323
RMS, 322
SNR ranged, 323

Ciliary muscle, 49, 50
Ciliary neurotrophic factor (GDNF), 649
Circular E-field pattern, 250
Circular/ring array-based PACT (RA-PACT), 357, 358
Clamping circuits

Ag/AgCl filament, 77
current clamp, 78
dynamic clamp, 78–79
membrane voltage, 77
patch clamp electrode, 77
voltage clamp, 77–78

Classification decoders
Bayes’ rule, 198
class prediction, 198
conditional probability, 198
decision boundaries, 199
Gaussian distribution, 197, 199

ITR, 200
joint probability, 199
K discrete classes, 196
MLE, 199
neural activity, 198, 199
neuron’s spiking activity, 196
performance, 200
Poisson and conditionally independent, 200
probability distributions, 197
probability model, 197
single-neuron, 198
speed accuracy trade-off, 200
spike counts, 197
training data, 196
training phase, 196
unambiguous, 197

CLEAR-ECoG, see Ultra-flexible carbon-layered
electrode array ECoG (CLEAR-ECoG)

Clinical programming, 225, 234, 238
Clonus/tremor reflex, 12
Closed-loop DBS, 80
Closed-loop DBS systems development

analog-to-digital conversion, 233
beta oscillations, 232
biomarkers characterization, 232
clinical programming, 234
Cm-Pf, 233
cortical electrodes, 234
dyskinesias, 234
ECoG, 233
EMG, 233
front-end filtering, 233
general characteristics, 234
GPi peak theta activity, 232
medication refractory movement disorders, 231
movement disorders, 234
neural signals, 234
NeuroPace device, 233
next-generation neurostimulators, 232
Parkinsonian beta band, 232
Parkinson’s disease, 232
RMS, 234
smarter implantable neurostimulators, 235
smart system, 231
stimulation amplitude, 233

Closed-loop neurofeedback, 67, 80
Closed-loop neuroprosthesis, 67
Closed-loop retina prostheses, 80
Clustered regularly interspaced short palindromic repeats

(CRISPR), 308
Cm-Pf, see Centromedian-parafascicular (Cm-Pf)
CMRR, see Common-mode rejection ratio (CMRR)
CNN, see Convolutional neural network (CNN)
CNS, see Central nervous system (CNS)
Cochlea, 56, 57
Code-modulated VEP (c-VEP), 163
Cognitive control, 511
Cognitive tasks, 171–172
Coherence function, 417



674 Index

Coil forces, 251–252
Coil heating, 251
Cold and warmth, 39, 40
Common-mode rejection ratio (CMRR)

active grounding, 83–84
differential sensing circuit, 82
input impedance-boosting techniques, 82–83
noise and interference, 74

Common spatial pattern analysis (CSP), 149
Complex intraocular fluid flow mechanism, 568
Complex-valued transformation, 113
Computational models, 229, 231, 283
Computer-generated holography (CGH), 303, 306
Conditional GANs (cGANs), 453, 455
Conductance-based models, 464
Cone photoreceptors, 51, 52
Conserve heat, 40
Constant-Q/quality factor analysis, 111
Contemporary DBS therapy, 224
Continuous decoders intracortical control

Kalman (see Kalman filter)
OLE, 203
PVA, 201–203
trajectory, 200

Continuous wavelet transform (CWT), 110, 538
analog/digital filtering theory, 111
analytic function, 114
bandpass filter functions, 111
complex-valued transformation, 113
definition, 110
Fourier transform, 113
frequency domain, 113
Gaussian function, 111, 113
Hilbert transforms, 114
larger-scale factor generates, 111
Morlet wavelet, 111–113
mother/basic wavelet, 111
notion of scale, 111
RID, 114
smaller-scale function, 111
smoothed WVD, 114
STFT, 114
T-F reciprocity, 112
TFRs, 114
voices, 113
wide frequency range, 113
WVD, 114

Contralateral hippocampal, 238
Control energy, 509, 510
Control input, 507
Controllability, 507–508, 512, 515
Control muscles, 186
Control neural activity

human brain, 511
neuronal control, model organisms, 510–511

Control response, 506–507
Control theory, see Linear systems theory
Conventional monophasic stimulator, 250
Conventional sinusoidal biphasic rTMS devices, 250

Conventional sinusoidal biphasic stimulator, 250
Convergence, 5–6, 18, 52
ConvNet/CNN, 549
Convolutional kernels, 438
Convolutional layers, 438, 440
Convolutional neural network (CNN)

brain image
classification, 442
segmentation, 443–445

combination, 441
convolutional layers, 438
deep learning models, 437
dropout, 437
FCNs, 439–441
fully connected layers, 439
MICNN, 442
MLPs, 437, 438
pooling layers, 438
receptive field, 437
residual learning, 439–440
sparse connectivity, 437, 439
U-Net, 440–441
weight sharing, 437

Core temperature, 39, 46
Correlated double sampling (CDS), 81
Cortical control signal, 210
Cortical current density (CCD)

Bayesian theory, 396–397
CPI, 393
dipole source models, 393
DSL, 392
inverse problem, 426
linear inverse filters, 393–395
regularization parameters, 395–396

Cortical imaging technique, 405
Cortical potential imaging (CPI), 392
Corticorubral and corticoreticular tracts, 24
Corticospinal and corticobulbar tracts, 24
Cost-sensitive SVMs (CSVMs), 544
Cough reflex, 12
Coulomb gauge, 253, 254
Coupled autoregressive models, 419
CPI, see Cortical potential imaging (CPI)
CPR, see Cardiopulmonary resuscitation (CPR)
Cranial electrotherapy stimulation (CES), 274, 277, 280
Craniosacral system, 32, 33
CRISPR, see Clustered regularly interspaced short

palindromic repeats (CRISPR)
Crossed extensor reflex, 12–13
Cross-frequency coupling (CFC), 539–540
Cross talk, 80
Crystallography, 298
CSF, see Cerebrospinal fluid (CSF)
CSP, see Common spatial pattern analysis (CSP)
CSPGs, see Chondroitin sulfate proteoglycans (CSPGs)
CSVMs, see Cost-sensitive SVMs (CSVMs)
Cuff electrodes, 316
Cuff transfer function, 326
Current balancing IA, 76–77
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Current clamp, 78
Current control, 281
Current flow modeling

brain current flow, 283
computational models, 283
DOF, 284
electrode size and position, 283
FEM, 284
field/current density streamlines, 284
focal transcranial stimulation, 284
HD electrodes, 284
home-based system, 284
montages and electrode designs, 283
MRI, 284
neurophysiological and behavioral changes, 283
volume conduction models, 283

Current transfer capacity, 69
Cutaneous receptors, 22
Cutaneous thermoreception, 39–40
c-VEP, see Code-modulated VEP (c-VEP)
CWT, see Continuous wavelet transform (CWT)
Cycle GAN (CycleGAN), 454, 455, 457, 458, 460

D
DBS, see Deep brain stimulation (DBS)
DBS electrode design/innovation

computational modeling, 229
novel lead designs, 229
VTA, 229

DBS emerging neurological indications
ACC, 235
Alzheimer’s disease, 235
associated burdens, 235
food consumption, 236
large-scale clinical trials, 236
OCD, 235
Parkinson’s disease, 235
potential targets, 235
PPN and MS, 235
PTSD, 236
surgical target, 235
TBI, 235

DBS imaging and computational tools
anatomical structures, 230
cathodic and anodic stimulation, 231
computational models, 231
diffusion tensor imaging, 231
dynamic visualization, 231
MRI, 231

DBS instrumentation
implantable biomedical, 225
monopolar stimulation, 226
novel waveform patterns, 226
rechargeable IPGs, 226
regulated voltage stimulation, 226
stimulation waveform, 226

DBS therapeutic mechanisms
basal gangliathalamo-cortical motor network, 227

functional imaging studies, 226
LFP, 227
macroscale effect, 226
macroscale electrodes, 226
Parkinson’s disease, 226
reported inhibited activity, 226
stimulation-induced regular pattern, 227

DC, see Direct current (DC)
DCS, see Direct cortical stimulation (DCS)
DCT, see Doppler coherence tomography (DCT)
dEa-GAN, see Discriminator-induced Ea-GAN

(dEa-GAN)
Decerebrate rigidity, 30
Decoder calibration, 204
Deconvolutional layers, 440
Deep brain stimulation (DBS), 132, 493

applications, 224
clinical outcomes, 225
closed-loop systems (see Closed-loop DBS systems

development)
contemporary therapy, 224
definition, 223
electrical stimulation, 224
electrode design/innovation, 229–230
electrophysiological recordings, 225
emerging indications, 235–236
imaging and computational tools, 230–231
implantable components, 225
instrumentation technology (seeDBS instrumentation)
neurosurgical treatment option, 223
nonsurgical approaches, 236–238
novel temporal patterns, 227–229
Parkinson’s disease treatment, 224
scientific and technical advance treatment, 224
therapeutic effects, 224
therapeutic mechanisms, 226–227

Deep learning
AE (see Auto-encoder (AE))
ANN, 434
brain image analysis, 434, 459
brain image pre-processing, 434–435
CNN (see Convolutional neural network (CNN))
GANs (see Generative adversarial networks (GANs))
GPUs, 459
neural network models, 435–437
neuroimages, 434
neuroimaging-based applications, 459
RNNs (see Recurrent neural networks (RNNs))
semi-supervised, 434
supervised, 434
unsupervised, 434
See also Deep neural network

DeepMedic, 443–445
Deep neural network, 149
Degree of freedom (DoF), 284, 318
Delta waves, 44, 45, 99, 107
Dendrites, 1, 2, 4
Dendritic channel expression, 481–482
Dendritic excitability, 482
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Dendritic spines, 4
Depolarization, 3, 7, 14, 26, 145, 146
Depolarizes, 3, 78
Desynchronization, 100, 102, 121
Detecting and counting bursts, 118–119
Detrended fluctuation analysis (DFA), 104–105
Device output commands, 136
Device safety, 252
Device-to-brain technologies, 134, 135
Device voltage compliance, 282
DFA, see Detrended fluctuation analysis (DFA)
dFC, see Dynamic functional connectivity (dFC)
Diabetic retinopathy, 593–594
Difference amplifier, 74, 75
Differential-difference amplifier, 77
Digital micro-mirror device (DMD), 303
Digital optical phase conjugation (DOPC), 303, 304
Digital signal processing (DSP), 67, 72, 79, 80
Dipolar current source, 70
Dipole models, 380, 387
Dipole source localization (DSL)

brain electric source model, 390
ECD, 390
ECG/MEG, 390
vs. electric potential, 391
iterative procedure, 391
LCMV, 392
magnetic fields, 391
MUSIC, 392
PCA, 391
spatiotemporal source localization, 391
spurious dipoles, 391
statistical parametric maps, 392
volume conductor properties, 391

Direct cortical stimulation (DCS), 133
Direct current (DC), 274
Directed transfer function (DTF), 423
Discrete TFRs, 115
Discrete wavelet transform (DWT), 115, 116
Discriminator-induced Ea-GAN (dEa-GAN), 455, 457
Disk approximation, 71
“Displaced” amacrine cells, 570, 585
Displacement current, 252
Distribution model, 387
Divergence, 5–6
DLPFC, see Dorsolateral prefrontal cortex (DLPFC)
DMD, see Digital micro-mirror device (DMD)
DoF, see Degree of freedom (DoF)
Dominant frequency, 108–109
Dominant frequency analysis, 107
DOPC, see Digital optical phase conjugation (DOPC)
Doppler coherence tomography (DCT), 306
Dorsal cochlear nucleus, 58
Dorsal premotor cortex (PMd), 194
Dorsolateral prefrontal cortex (DLPFC), 283
Double-cone coils, 250
Driven right leg (DRL), 83–84
DRL, see Driven right leg (DRL)

Dropout, 437
Dry electrode, 276
DSL, see Dipole source localization (DSL)
DSP, see Digital signal processing (DSP)
DTF, see Directed transfer function (DTF)
DWT, see Discrete wavelet transform (DWT)
Dyadic scheme, 115
Dynamical brain networks

exogenous control, 501–502
Hodgkin-Huxley model, 499–501
linear systems, 501
model linearization, 503–505
neurons, 499
realism vs. tractability, 500
spatial consideration, 500–501
temporal consideration, 500–501
Wilson-Cowan model, 499, 500

Dynamic clamp, 78–79
Dynamic functional connectivity (dFC), 448
Dynamic impedance, 282
Dynamic motor signals, 328

E
Ea-GANs, see Edge-aware conditional GAN models

(Ea-GANs)
Ear-EEG, 85
ECD, see Equivalent dipole model (ECD)
ECG, see Electrocardiography (ECG)
ECM, see Extracellular matrix (ECM)
ECoG, see Electrocorticography/electrocorticogram

(ECoG)
μECoG, seeMicroelectrocortigography (μECoG)
ECT, see Electroconvulsive therapy (ECT)
EDA, see Electrodermal activity (EDA)
Edge-aware conditional GAN models (Ea-GANs), 455
EEG, see Electroencephalogram (EEG)
EEG applications

BCI, 102
biofeedback machines, 102–104
CA, 116–123
epilepsy monitoring, 101, 102
sleep studies, 101–102

EEG bands
alpha, 99, 100
autoregressive frequency, 98
beta, 99, 100
delta, 99
gamma, 99–100
nonparametric and parametric, 98–99
theta, 99

EEG-based BCI systems
AEPs, 163–165
attention-based BCIs, 165–166
brain-to-brain communications and interactions,

166–167
categorization, 157
external/exogenous, 157
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general-purpose software platforms
BCI2000, 157, 158
OpenViBE, 157–158

hybrid, 165
internal/endogenous, 157
offline analyses, 157
P300, 160, 161
quadcopter, 159
robotic arm in humans, 160
SMRs, 158–160
VEPs, 160–163

EEGLAB, 404
EEG/MEG

anatomic connectivity measurements, 426
brain electrical activity, 383
causal connectivity, 427
CCD (see Cortical current density (CCD))
cortical network activity, 426
CPI, 392
deeper sources, 385
dipole source, 383
DSL, 390–392
DTF, 424, 426
ECoG-based connectivity analysis, 426
eConnectome, 425, 426
electrical potential, 389
electrodes, 383
electromagnetic activity, 385
forward solutions, 388–389
imaging modalities, 427
magnetic field, 389
magnetic flux, 384
multichannel data acquisition system, 390
network connectivity, 425
nonlinear interpolations, 383
pseudo-colors, 383
sEEG, 385
source models, 387–389
spatial resolution, 386
temporal components, 383
VCD (see Volume current density (VCD))
visualization tools, 383
volume conductor models, 383, 387, 388
volume source scanning method, 426

Efferent connections
motor cortex, 24
visual cortex and subcortical structure, 53

Efferent neurons, 5
Eigenanalysis, 110
Eigenvalue decomposition (EVD), 541
EIT, see Electrical impedance tomography (EIT)
Electrical activity

ADPs, 480
AHPs, 480
bistability, 480–481
bursting, 478
electrophysiological characteristics, 478
post-inhibitory rebound spiking, 481
Spike-frequency adaptation, 480

squid giant axon, 477
STOs, 478–480

Electrical impedance tomography (EIT), 84
Electrical recordings, 43
Electrical synapses, 489
Electric field models, 231

boundary conditions, 255
boundary element, 255
cerebrospinal fluid, 256
conductivity values, 255
fundamental limitations, 256–257
MEG, 256
MRI, 255
Ohm’s law, 256
uniform and isotropic conductivity, 255

Electric potentials
chemical potential, 467
Nernst-Planck equation, 468
Nernst potential, 468
passive membrane, 467
potassium ions, 467
reversal potential, 468

Electrocardiography (ECG), 83
Electrochemical electrode, 275
Electrochemical reactions, 275
Electroconvulsive therapy (ECT), 272, 274, 276, 279, 285
Electrocorticography/electrocorticogram (ECoG), 136

BCI, 86–88
biomarkers, 234
causal connectivity, 425
causal source activity, 424
cerebral cortex, 66
chronically implantable neural interfaces, 86
definition, 392
DTF, 423, 424
ENIAC, 86, 88
epidural, 71, 84
functional connectivity, 423
IDTF, 424
implantable high-density, 89
mECoG, 86
minimally invasive, 86, 87
motor cortex, 233
next-generation neural interfaces and applications, 86,

88
opportunities, 305
recordings, 234, 392
spatiotemporal resolution, 86
surrogate data method, 423, 424
3D source spacing, 399
time series, 423
transparent, 305

Electrode arrays, 294
Electrode-based stimulation system, 294
Electrode design, 272
Electrode-electrolyte double-layer interface, 68
Electrode impedances, 282
Electrode interfaces, 316
Electrode preparation technique, 275
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Electrode resistance
body resistance, 281
electrode-skin resistance, 281
quality electrode design, 281
reproducibility and tolerability, 281
resistance measurement circuit, 281
skin irritation, 281

Electrodermal activity (EDA), 85
Electrodes, 380

characterization, 68
component, 68
current transfer capacity, 69
electrode-electrolyte double-layer interface, 68
half-cell potential, 69
impedance

non-polarizable, Faradaic electrodes, 68, 69
polarizable, non-Faradaic electrodes, 68, 69

and instrumentation
in-ear placement, 85–86
scale and invasiveness, 84, 85
temporal, spatial and spectral resolution, 84

noise, 69
penetrating, 86, 88
properties, 68
signal degradation, 68
volume conduction, 70–72
water window, 69

Electrode–tissue interface, 226
Electroencephalogram (EEG), 131, 141–143

acquired as evoked, 98
advantages, 98
applications, 101–104
bands, 98–100
brain electrical activity, 380, 382, 383
brain waves, 43–45
clinical uses, 98
dipole models, 380
electric potentials, 380
electrodes, 98, 380
electromagnetic fields, 380, 381, 383
ERPs/ERFs, 382
event-related potentials, 98
frequency domain methods, 106–116
HFOs, 381
IFCN, 97
magnetic fluxes, 380
MEG, 380
montage of electrodes, 98
MVPA, 386, 387
neuronal synchrony, 380
paroxysmal discharges, 101, 102
recordings, 97–98
signal processing methods, 98
spatial sampling, 382
SQUID, 381, 382
time-domain method, 104–106

Electrolyte interface, 275
Electromagnetic radiation, 49
Electromyography (EMG), 66, 136, 210, 211, 233, 261

Electroneurogram (ENG), 315, 319, 322
Electrophysiological and imaging methods

EEG, 262
EMG, 261
epidural recordings, 262
fMRI and PET, 262–263
fNIRS, 262

Electrophysiological connectome (eConnectome), 404,
425–428

Electrophysiological measurements
directed cortical interactions, 422–423
ECoG, 424
E/MEG, 424–427

Electrophysiological source imaging (ESI), 149
anatomical constraint, 405
brain electric activity, 404
CARTOOL, 404
cortical imaging technique, 405
DSL, 405
EEG (see Electroencephalogram (EEG))
EEGLAB, 404
EEG/MEG mapping (see EEG/MEG)
functional constraint, 405
linear inverse filter, 405
MEG (seeMagnetoencephalography (MEG))
OpenMEEG, 404
regularization technique, 405
SL, 386
subject-specific head models, 404
temporal constraint, 405
3D brain tomographic imaging, 405
2D cortical imaging, 405

Electrophysiology, 69, 83, 85, 133, 138, 143, 144, 149,
159, 304, 511

Electroretinogram (ERG), 595
Element-element interactions, 498
ELM, see Extreme learning machines (ELM)
Embedded algorithms, 150
EMD, see Empirical mode decomposition (EMD)
EMG, see Electromyography (EMG)
EMG interference and rejection

benchtop testing, 319
BF and ST, 320
contamination, 319
external shielding, 319
high-pass filter, 320
interference, 320
near-zero correlation coefficients, 320
phase digital filter, 320
SNR increasing, open bandwidth, 321

Empirical mode decomposition (EMD), 544, 545
Encapsulated neural interfacing acquisition chip

(ENIAC), 86, 88
Encapsulation, 215
Energy efficiency and repetitive TMS, 249–250
Energy spectral density, 107
ENG, see Electroneurogram (ENG)
ENIAC, see Encapsulated neural interfacing acquisition

chip (ENIAC)
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Entropy
CA, 119–121
IQ, 115–116

Envelope-extraction method, 149, 151
Epidural ECoG, 84
Epidural recordings, 262
Epilepsy

AEDs, 536
antiepileptic therapies, 536
brain

arithmetic progression, 536
CWT, 538
function, 536
LFOs, 537
Scalp EEG, 536
wavelet function, 538

CFC, 539–540
definition, 535
EEG-based machine learning approaches, 536
machine intelligence, 536
model performance, 540–541
monitoring, 101, 102
seizure detection/forecasting (see Seizure

detection/forecasting)
seizures, 536
WPC, 538–539

EPSPs, see Excitatory post-synaptic potentials (EPSPs)
Equilibrium

central vestibular system, 26–27
macular organs, 25–26
secondary sensory cells, 25
semicircular canals, 26
vestibular organ, 25, 26
vestibular reflexes, 27

Equivalent dipole model (ECD), 387, 388, 390
ERG, see Electroretinogram (ERG)
ERPs, see Event-related potentials (ERPs)
ESI, see Electrophysiological source imaging (ESI)
Essential tremor, 229
Eustachian (auditory) tubes, 56
EVD, see Eigenvalue decomposition (EVD)
Event-related block-design paradigm, 336
Event-related design, 336
Event-related desynchronization (ERD), 140, 145, 146
Event-related potentials (ERPs), 102, 132, 145–147, 160,

165
Event-related synchronization (ERS), 140, 145
Evoked potentials/(magnetic) fields/event-related

potentials and/fields (ERPs/ERFs), 382
Excitability

electric potentials, 467–468
Hodgkin-Huxley model (see Hodgkin-Huxley model)
resting potential, 468–470
voltage-gated conductances, 470

Excitable membranes
electrical circuits

membrane capacitance, 465
membrane conductance, 465–466

normalized units, 466
passive membrane, 466

lipid membrane, 465
membrane properties, 465

Excitation states
definition, 2, 3

Excitatory post-synaptic potentials (EPSPs), 6, 7, 10
Extension leads/connectors, 225
External stimuli/events, 382
Extracellular matrix (ECM), 640
Extrafascicular approaches, 316
Extra-lemniscal system, 18
Extreme learning machines (ELM), 558
Eye and retina

amacrine cells, 569, 570
ARGUS I, 574
ARGUS II, 574
complex intraocular fluid flow mechanism, 568
cones, 569
eye disease, 572
fovea, 571
glial cells, 570
ILM, 571
Mueller cell end plates, 570
photoreceptors, 569, 570
retina Implants, 574
retina lines, 569
retinal prosthesis

artificial vision approaches, 572
optic nerve prosthesis, 573
retinal implants, 573
subretinal approach, 573

signal transmission, 570
subretinal implant system, 575
system OFF, 575
uvea, 569

Eye movements, 54, 55

F
FA, see Factor analysis (FA)
Factor analysis (FA), 526
False prediction rate (FPR), 544
Faraday’s electrical constant, 2
Faraday’s law, 252
Fast computational modeling, 229
Fast Fourier transform (FFT), 98–99, 107, 108
Fatigue-resistant muscle fibers, 214
FCNs, see Fully convolutional networks (FCNs)
FDA, see Food and Drug Administration (FDA)
FDA-cleared protocols, 264
Feature extraction, 135

artifact/noise removal, 148–149
feature selection and dimensionality reduction,

150–151
methods, 149–150
signal enhancement, 148–149
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Feature translation
algorithm, 136
algorithms, 151
continuous, 152–153
discrete, 153

Feedback-based neuromodulation system, 316
Feed-forward networks, 435, 492
Feed-forward programmed movement, 29
FEF, see Frontal eye fields (FEF)
FEM, see Finite element method (FEM)
FES, see Functional electrical stimulation (FES)
FES electrodes, 209
FFT, see Fast Fourier transform (FFT)
Fiber numerical aperture, 302
Fight/flight reaction, 34
Filter algorithms, 150
FINE, see Flat interface nerve electrode (FINE)
Fingerprint, 192
Finite element method (FEM), 72, 284, 325, 326, 388,

390, 392
Finite element model, 324
First-order low-pass filter, 259
Fisher discriminants, 151
Flaccid paralysis, 32
Flat interface nerve electrode (FINE), 317–319
Flexible polymer-based multielectrode arrays, 193
Flexor hyperactivity, 29–30
Flexor reflex, 12
Flicker noise, 81
fMRI, see Functional magnetic resonance imaging

(fMRI)
FMRIB Software Library (FSL), 435
FMRI naturalistic paradigm

auditory stimulation, 344
challenges and opportunities, 345
inter-subject functional connectivity analysis, 344
model-based analysis, 344
naturalistic stimuli, 344
natural visual paradigm, 344
reproducibility, 344
stimulus-response relationship, 344
yielding inter-subject functional connectivity, 344

fNIRS, see Functional near-infrared spectroscopy
(fNIRS)

1/f noise, 81
Focal underdetermined system solution (FOCUSS), 400
Focused transducer, 361
Focused ultrasound, 236–237
FOCUSS, see Focal underdetermined system solution

(FOCUSS)
Food and Drug Administration (FDA), 226
Forward problem, 388–389
Fourier transform (FT), 113

autocorrelation function, 106
FFT, 98–99, 107, 108

FPR, see False prediction rate (FPR)
Free electrolyte, 276
Frequency domain methods

nonparametric spectral methods, 106–107

parametric, 107–109
wavelets, 110–116

Frequency-following response, 102
Frequency-modulated VEP (f-VEP), 161
Frontal eye fields (FEF), 521
Front-end amplifier noise model, 80–81
FSL, see FMRIB Software Library (FSL)
FT, see Fourier transform (FT)
Fully connected bidirectional LSTM (Full-BiLSTM)

model, 448
Fully connected layers, 439
Fully convolutional networks (FCNs), 439, 445
Fully differential capacitively coupled amplifier, 75, 76
Fully differential operational amplifier, 74
Functional connectivity

coupled autoregressive models, 419
Granger causality (see Granger causality)
stochastic processes (see Stochastic processes)
variable model, 419

Functional electrical stimulation (FES), 154, 188
alpha motor neurons, 208
biphasic/charge-balanced pulses, 209
brain-controlled (see Brain-controlled FES)
challenges, 212–214
cortical control signals, 209, 210
electrodes, 209
motor unit, 209
myoelectric control, 209
neuromuscular junction, 209
neuromuscular stimulation, 208
requirements, 208
stimulation amplitude, 209
surface stimulation, 209
waveform patterns, 209

Functional imaging, 226, 307, 415, 416, 433, 457
Functional magnetic resonance imaging (fMRI), 8, 138,

143–144, 262, 263, 401–404
emphasis, 332
functional mapping, 341–342
HRF (see Hemodynamic response function (HRF))
human psychological and cognitive studies, 332
naturalistic paradigm (see fMRI naturalistic paradigm)
resting state, 342–343
time series analysis (see BOLD time series analysis)

Functional motor and sensory connections, 316
Functional near-infrared spectroscopy (fNIRS), 138, 144,

262
f-VEP, see Frequency-modulated VEP (f-VEP)

G
Galvanostat, 78
Gamma/alpha fibers, 326
Gamma band, 99–100
Ganglion cell models

complex, 609–610
Gaussian center-surround model, 608–609
Gaussians model vs. receptive field, 605–608
multielectrode recordings, 610–613
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systems analysis, 603–604
types, 613–614
X/Y cells in cat, 604–605

GANs, see Generative adversarial networks (GANs)
Gastrocnemius (GN), 322
Gated recurrent unit (GRU), 447, 550
Gating, 2, 5
Gaussian center-surround model, 608–609
Gaussian distribution, 197
Gaussian function, 111, 113
Gaussian noise, 204, 326
Gaussian process factor analysis (GPFA), 526
Gauss’s law, 254
GDNF, see Glial cell line-derived growth factor (GDNF)
Gene c-fos–a marker, 237
Gene delivery mechanism, 298–299
Generalized cross-validation (GCV) method, 396
Generalized linear model (GLM), 485, 487, 526

biophysically based models, 48
LNP, 487
neuronal spiking activity, 486
neurophysiological data, 486
Poisson process, 486
processing stages, 486
simple models, 485
spike history dynamics, 486–487

Generative adversarial networks (GANs)
brain image

analysis, 451, 454–457
augmentation, 457–459

cGANs, 453, 455
CNN-based deep learning models, 452
CycleGAN, 454
discriminative models, 452
Pix2Pix, 453–454
unsupervised learning, 452

GENESIS, 493
Genetically encoded photoactuators., 298
Genetic engineering methods, 298
GFAP, see Glial fibrillary acidic protein (GFAP)
Glabrous (hairless), 20
Glaucoma, 50, 593
Glia cells, 3
Glial cell line-derived growth factor (GDNF), 649
Glial cells, 4
Glial fibrillary acidic protein (GFAP), 640
GLM, see Generalized linear model (GLM)
Globus pallidus interna (GPi), 223
Glycosaminoglycans (GAGs), 640
GN, see Gastrocnemius (GN)
Goldman-Hodgkin-Katz (GHK) equation, 468
Golgi tendon organs (GTOs), 17, 22
GPFA, see Gaussian process factor analysis (GPFA)
GPi, see Globus pallidus interna (GPi)
Granger causality

alpha oscillations, 421, 422
autoregressive models, 418
electrophysiological measurements (see

Electrophysiological measurements)

functional connectivity, 415
lesion techniques, 421
LFP, 421
neural transmission, 415
neuronal ensembles, 418
neuronal interactions, 415
5-node oscillatory network, 420
pairwise analysis, 420
spectral measure, 419
spectral power, 419
spectral representations, 419
stationary time series, 418
stochastic processes, 415
time series, 419
variable model, 419–421

Green function, 352
GRU, see Gated recurrent unit (GRU)
GTOs, see Golgi tendon organs (GTOs)
Gyromagnetic ratio, 332

H
Hairy skin, 20
Half-cell potential, 69
Halobacterium salinarum, 295
Hand-muscle MEP, 263
HDE, see Humanitarian device exemption (HDE)
Heating function, 352
Heat production, 40
Helmholtz layer, 69
Hemodynamic response function (HRF)

block-design paradigm, 336
BOLD response prediction, 336
BOLD signal, 335
boxcar function, 336
event-related design, 336
event-unrelated signal, 336
MATLAB-based SPM software, 335
M-sequence, 336
neurovascular coupling, 335
overlapping responses, 336
statistical parametric mapping, 336

Hemoglobin, 356
Henneman’s size principle, 212
H-FCN, see Hierarchically fully convolutional network

(H-FCN)
HFOs, see High-frequency oscillations (HFOs)
HI, see Hypoxic ischemic (HI)
Hidden Markov model (HMM), 151, 553
Hierarchically fully convolutional network (H-FCN),

442, 443
HIFU, see High-intensity focused ultrasound (HIFU)
High-definition (HD) electrodes

EEG electrodes, 281
electrolyte spread, 281
interior dimensions, 280
montage, 280
skin contact, 280
tDCS waveforms, 280
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High-density microelectrodes, 84
High-frequency oscillations (HFOs), 381
High-intensity focused ultrasound (HIFU), 236, 237
High-pass filter, 72
High SNR amplification, neural signals

chronic recording, 318
electrode arrays, 319
FINE, 318
hybrid bionic systems, 318
mainstream neural amplifiers, 318
novel design implementation, 318
OTAs, 319
ultralow-noise neural amplifier, 319

High-speed sensorimotor interactions, 173
Hilbert transforms, 114
Hippocampal neurons, 237
Hjorth descriptors, 105, 106
HMM, see Hidden Markov model (HMM)
Hodgkin-Huxley model

action potential, 475
conductance-based models, 464
depolarization, 474
hyperpolarization, 474, 475
ionic conductances, 471, 475
ionic currents, 475
K+

conductance, 471–472
current, 472–473

membrane capacitance, 473
Na+

conductance, 471–472
current, 472–473

neuronal models, 470
normalized units, 473–474
propagating activity, 475–477
refractory period, 475
space clamp, 470–471
squid giant axon, 470, 475
threshold, 475
time evolution, 473
voltage clamp, 470–471

Hodgkin–Huxley-type equations, 260
Homeostasis

cardiovascular responses, 36, 37
definition, 35
hormone system, 36
multilevel/multi-hormone feedback mechanisms, 36
structures, 37

HRF, see Hemodynamic impulse response function
(HRF)

Human cerebral cortex, 7
Humanitarian device exemption (HDE), 235
Human nervous system, 1, 2

anatomy and functioning, 8
Hybrid imaging technique, 350
Hybrid platforms

OCT, 306–307
ofMRI, 307–308
optical/nonoptical recording, 304

optogenetic neural probes, 304–305
two-photon optogenetic stimulation, 305–306

Hyperopia, 49
Hyperpolarization, 474, 475, 478
Hyperthermia, 39
Hypokinetic/hyperkinetic symptoms, 234
Hypothalamo-pituitary system, 36
Hypothalamus

afferent and efferent pathways/connections, 35, 36
cardiovascular responses, 37
functional organization, 36, 38
inferior brain, 35
medial regions, 35
neuroendocrine interface, 36
spinobulboreticular pathways, 35, 36
upper brain stem and limbic system, 35

Hypothermia, 39
Hypoxic-asphyxic cardiac arrest, 117–119
Hypoxic ischemic (HI), 109

I
IA, see Instrumentation amplifiers (IA)
iBMI, see Intracortical BMI (iBMI)
iBMI-controlled FES, 188
iBMI-FES system, 211
ICA, see Independent component analysis (ICA)
ICDs, see Implantable cardioverter defibrillators (ICDs)
ICs, see Integrated circuits (ICs)
IDR, see Input dynamic range (IDR)
IDTF, see Integrated DTF (IDTF)
IEDs, see Interictal epileptiform discharges (IEDs)
iEEG, see Intracranial EEG (iEEG)
IFCN, see International Federation of Clinical

Neurophysiology (IFCN)
ILM, see Internal limiting membrane (ILM)
Image reconstruction, 353–354
Imaging-based measurements, 433
Imaging methods

MRI, 98
PET, 98

IMFs, see Intrinsic mode functions (IMFs)
Impedance, 281
Implantable cardioverter defibrillators (ICDs), 116
Implantable pulse generator (IPG), 225, 226
Implanted electrode array, 225
Implanted electrodes, 232
Impulse response, 505–506
Incremental membrane polarization, 285
Independent component analysis (ICA), 149, 343
Indium tin oxide (ITO), 305
Induced E-field waveform, 251
Induced electric field

boundary condition, 255
charge accumulation, 254
closed-form solution, 254
conductivity boundaries, 254
Coulomb gauge, 253
Gauss’s law, 254
homogeneous medium, 253
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Laplace’s equation, 254
Lenz’s law, 254
normal component, 255
Ohm’s law, 254
symmetric geometry, 255

In-ear placement, 85–86
“Informational lesioning” hypothesis, 227
Information quantity (IQ), 115–116, 120, 121
Information transfer rate (ITR), 161, 163, 168, 169, 200,

323
Infrared (IR), 305
Inhibitory postsynaptic potentials (IPSPs), 7
Inner product, 509, 510
Input dynamic range (IDR), 79–80
Input impedance-boosting techniques, 82–83
Instrumentation amplifiers (IA)

architectures, 74, 75
CMRR, 74
current balancing, 75–77
difference amplifier, 74, 75
differential-difference amplifier, 77
fully differential capacitively coupled amplifier, 75,

76
high input impedance, 74
3-opamp, 74–76
switched-capacitor, 75, 76

Integrate-and-fire models
conductances, 482
LIF, 482–484
neuron, 482
passive membrane, 482
QIF, 484
RIF, 484
simple models, 484–485

Integrate-and-fire neural model, 259, 260
Integrated circuits (ICs), 84
Integrated DTF (IDTF), 424
Integrating electromagnetic and hemodynamic imaging

adaptive Wiener filter, 403
CCD, 403
EEG/MEG source imaging, 401
fMRI, 401–404
neuronal activity, 401

Interference, CMRR, 82–84
Interictal epileptiform discharges (IEDs), 537
Internal limiting membrane (ILM), 571
International Federation of Clinical Neurophysiology

(IFCN), 97
International 10/20 system, 141, 142
Interneurons, 5
Inter-pulse interval, 263
Inter-subject functional connectivity analysis, 344
Interventional procedures, 294, 295
Interventional psychiatry, 293
Intracellular recording and clamping circuits,

77–79
Intracortical BMI (iBMI)

ALS, 189
basic science, 216

BrainGate, 187
building better electrodes, 215–216
components, 189–191
electrode implementation, 186
extrinsic motor control, 187
feasibility, 189
FES (see Functional electrical stimulation (FES))
goal, 188
inputs, 191
kinematic control signals, 207
neural activity, 188
paralysis, 188
rat motor cortex, 187
recordings (see Neural signal recordings)
restoring somatosensory feedback, 215

Intracortical spelling devices, 196
Intracranial EEG (iEEG), 544
Intrafascicular interface, 316
Intraocular pressure (IOP), 593
Intrinsic and extrinsic motor control variables,

187
Intrinsic mode functions (IMFs), 545
Intrinsic time-scale decomposition, 546
Invasive brain stimulation techniques, 285
Invasive techniques

complementary imaging techniques, 140
cortical surface, 140–141
intracortical, 140

Inverse AR filtering, 107
Inverse estimation techniques

beamformer techniques, 398
ECoG, 399
LWMN, 398
MN, 397
MUSIC algorithm, 398
sEEG, 399
SOZs, 398
3D source imaging techniques, 398
WMN, 397

Inverse problem, 386, 389, 392, 393, 395,
399, 402

Inverse reconstruction methods, 354, 357
Inverting and non-inverting amplifier, 74
Inverting operational amplifiers, 73–74
In vitro applications, 298
Ionic conductances, 471
Ionotropic synaptic transmission, 488
IOP, see Intraocular pressure (IOP)
IPSPs, see Inhibitory postsynaptic potentials (IPSPs)
IQ, see Information quantity (IQ)
IQ values, 122
IR, see Infrared (IR)
Iris, 49
ITO, see Indium tin oxide (ITO)
ITR, see Information transfer rate (ITR)

J
Joint receptors, 22
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K
Kalman filter

additive Gaussian noise, 204
arm moving, 203
constraints, 203
covariance matrix, 204
decoder calibration, 204, 207
explicit assumptions, 206
Gaussian random variables, 205
high-performance closed loop iBMI, 206
intuitions, 204
Kalman gain, 206
linear Gaussian relationships, 204, 205
movement kinematics, 205
movement velocity, 205
multivariate linear regression, 205
Newton’s law, 204
observation model, 205
one-step prediction, 205, 206
position and acceleration, 204
state model, 204, 205

KCL, see Kirchhoff’s current law (KCL)
Kinematic signals, 195
Kirchhoff’s current law (KCL), 73, 466
Kronecker delta, 110
Kubelka-Munk model, 301

L
Label-Free Histology-Like PAM, 364
LA-PACT, see Linear array-based PACT (LA-PACT)
Laplacian weighted minimum-norm (LWMN), 397, 398
Larmor frequency, 332
Laser diodes (LD)/super-luminescence light-emitting

diodes (SLED), 300
Laser pulses, 308
Latent factor analysis via dynamical systems (LFADS),

526
Lateral geniculate, 53
Lateral hypothalamus (LH), 236
Lateral intraparietal area (LIP), 528
Lateral vestibular nucleus, 23
LCMV, see Linearly constrained minimum variance

(LCMV)
Leaky integrate-and-fire (LIF), 483–484
Leaky integratormodel, 259
Leaky ReLu, 444
Learning algorithms, 343
Learning vector quantization (LVQ), 158
Lemniscal system, 18
Lens and cornea, 49, 50
Lesion techniques, 421
Levinson recursive solution to Yule-Walker equations,

108
LFADS, see Latent factor analysis via dynamical systems

(LFADS)
LFOs, see Low-frequency oscillations (LFOs)
LFP, see Local field potential (LFP)
LH, see Lateral hypothalamus (LH)
LIF, see Leaky integrate-and-fire (LIF)

LIFE, see Longitudinal intrafascicular electrode (LIFE)
Ligand-gated ion channels, 2
Light delivery mechanism

biological sources, 304
light-guiding systems, 300–302
light-tissue interaction, 299–300
spatial light modulators, 302–304

Light-guiding systems
fiber numerical aperture, 302
glass-made capillary, 302
Kubelka-Munk model, 301
LED/SLED, 300
MEMS, 302
no-absorption assumption, 301
optical fibers, 300
practical formulation, 300
spectral sensitivity, 302
VoA, 302

Light-sensitive proteins, 294
Light-tissue interaction

absorption coefficient, 300
brain tissue optical properties, 300
closed-loop control procedures, 300
DOT, 300
electromagnetic theory, 300
parameters, 300
protocol/feedback, 299
RTE, 300
statistical methods, 300
target area, 299

Limbic reticular activating systems, 41–46
Limbic systems

anatomy, 41
brain areas, 41
emotional behaviors, 41
gray matter, 41
learning and memory, 41, 43
monoaminergic system, 41

Limited voltage stimulation, 282
Linear array-based PACT (LA-PACT), 357
Linear classifiers, 151
Linear inverse filters

EEG/MEG measurements, 393
electrodes/sensors, 394
general inverse, 394
TIK, 395

Linearly constrained minimum variance (LCMV), 392
Linear-nonlinear-Poisson (LNP), 486
Linear systems theory

brain network dynamics, 513
cognitive function, 513
connectivity, 505, 513
controllability, 507–508, 513
controlling dynamical neural systems, 511
control response, 506–507
control strategies, 513
control theory, 513
convolution vs. control input, 507
dimensionality, 512
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disease, 514
impulse response, 505–506
intervention, 514
limitation, 512
minimum energy control, 509–510
model validation, 512
neural activity, 505
nonlinear dynamical systems, 512
numerical stability, 512
therapeutic intervention, 505

LIP, see Lateral intraparietal area (LIP)
LLF, see Low-level features (LLF)
L1-norm methods, 399
LNP, see Linear-nonlinear-Poisson (LNP)
Local field potential (LFP), 86, 147, 421, 536

band-pass filtering, 193
membrane potentials, 191
neural signal, 192
recordings, 227

Long-interval intracortical inhibition, 263
Longitudinal intrafascicular electrode (LIFE), 316
Longitudinal relaxation, 333
Long short-term memory (LSTM) model, 446–447, 549
Low-frequency oscillations (LFOs), 537
Low-level features (LLF), 450, 451
Low-pass filter, 72
Luciferin, 304
LVQ, see Learning vector quantization (LVQ)
LWMN, see Laplacian weighted minimum-norm

(LWMN)

M
Machine intelligence, applications

AED treatments, 556, 557
EEG signals, 554
SOZ electrodes, 555
SVM classifier, 554, 555

Machine learning algorithms, 137–138, 557
Macular organs, 25–26
Magnetic field, 253
Magnetic resonance imaging (MRI), 98, 255

bulk magnetization, 333
gyromagnetic ratio, 332
hydrogen protons, 332
Larmor frequency, 332
longitudinal relaxation, 333
magnetic field, 332
NMR, 332
on resonance, 333
RF excitation, 332
RF signals, 333
spinning protons, 332
transverse plane, 332
transverse relaxation, 333

Magnetoencephalography (MEG), 84, 143, 555
brain electrical activity, 380, 382
dipole models, 380
electrophysiological principles, 381
external stimuli/events, 382

HFOs, 381
MVPA, 386, 387
neurons, 380
sensitive magnetic flux detector, 381
SQUID, 382

Mahalanobis distance-based classifiers, 151
Major depressive disorder (MDD), 283
MATLAB-based toolbox, 427
Maximum likelihood estimation (MLE), 199
Maxwell’s equations, 70
MCI, seeMild cognitive impairment (MCI)
MDD, seeMajor depressive disorder (MDD)
MEAs, seeMultielectrode arrays (MEAs)
Mechanoreception

definition, 19
glabrous (hairless) and hairy skin, 20
Meissner corpuscles, 20
Merkel’s disks, 20
Pacinian corpuscles, 20
properties, 19
Ruffini corpuscles, 20
touch points, 19, 20

mECoG, seeModular-ECoG (mECoG)
Medical-grade tES devices, 286
MEG, seeMagnetoencephalography (MEG)
Meissner corpuscles, 20
Membrane capacitance, 465
Membrane conductance, 465–466
Membrane depolarization, 258
Membrane polarization, 285
Membrane voltage, 77
MEMS, seeMicro-electromechanical systems (MEMS)
MEMS-based galvanometers, 303
MEPs, seeMotor-evoked potentials (MEPs)
Merkel’s disks, 20
Metabotropic receptors, 490
Method of Images (MoI), 71, 72
MICNN, seeMulti-instance CNN (MICNN)
Microbial halorhodopsin NpHR, 298
Microbial rhodopsin, 295
Microelectrocortigography (μECoG), 66, 86
Micro-electromechanical systems (MEMS), 302, 303
Microglia, 3
Microwires, 193
Midbrain, 30
Middle temporal (MT) area, 528
Mild cognitive impairment (MCI), 450
Mindful meditation, 172
Minimum energy control, 509–510
Minimum-norm (MN), 397
Minimum-norm least-squares (MNLS), 394, 395
Mitigate flicker noise, 81
Mixture-of-experts model, 543
MLE, seeMaximum likelihood estimation (MLE)
MLP, seeMultilayer perception (MLP)
MN, seeMinimum-norm (MN)
MNLS, seeMinimum-norm least-squares (MNLS)
Model-based analysis, 344
Model-based time series analysis, 341
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ModelDB, 494
Model linearization

controlled neural system, 503
linear system, 503, 504
non-linear system, 503

Modern DBS therapy, 225
Modular-ECoG (mECoG), 86
MoI, seeMethod of Images (MoI)
Monoaminergic system, 41
Monophasic E-field pulses, 257
Monophasic waveform, 272
Monopolar stimulation, 226
Monopole model, 387
Monosynaptic stretch reflex, 10–12
Morlet wavelet, 111–113
MOS transistor, 81
Motor aphasia, 27
Motor control, 186

afferents (sensory inputs)
CNS, 15
GTOs, 17
muscle spindles, 16–17

basal ganglia, 24, 25
brain stem, 22–23
cerebellum, 23
motor cortex, 23–24
motor neuron recruitment, 28–29
pathophysiology, 29–32
relative hierarchical/functional organization, 21–22
speech, 27–28
spinal cord, 22
thalamus, 24, 25
voluntary movement, 21–22

Motor cortex, 186, 193
anatomical locations, 23
capsular hemiplegia, 32
corticorubral and corticoreticular tracts, 24
corticospinal and corticobulbar tracts, 24
definition, 23
efferent connections, 24
motor abilities, 31
premotor areas, 24
primary, 24
stroke, 32
supplementary motor cortex area, 24

Motor-evoked potentials (MEPs), 261–264, 267
Motor imagery, 171, 173
Motor neuron recruitment

development of motor skill, 28–29
feed-forward programmed movement, 29
inverse function, 28
motor task group, 28
muscle/limb forces, 28
sensory feedback, 29
size principle, 28

Motor neurophysiology
BMI output device, 195
controlled stimulation, 195
firing rate, 195

forces and muscle activity, 195
M1, 193, 195
muscle-like input signal, 196
PMd and PPC, 193, 196
PMv and SMA, 194, 196
S1, 194
velocity/ acceleration, 195

Motor task group, 28
Motor threshold, 263
Mouse thymus cell antigen 1 (Thy1) promoter, 299
Movement intent recovery

commercial interface, 317
DoF, 318
EMG-controlled/myoelectric device, 317
fascicle activity, 318
FINE, 317
ideal motor interface, 318
limb injuries, 317
prosthetic control, 317
SNR, 318
wrapping electrodes, 318

MRI, seeMagnetic resonance imaging (MRI)
MS, seeMultiple sclerosis (MS)
M-sequence, 336
mu-band, 99
Multielectrode arrays

flexible polymer-based, 193
microwires, 193
recording technology, 193
silicon-based arrays, 193

Multielectrode arrays (MEAs), 66
Multi-instance CNN (MICNN), 442
Multilayer perception (MLP), 435, 436
Multimodal imaging, 402
Multiple sclerosis (MS), 235
Multiple signal classification (MUSIC) algorithm,

109–110, 392, 398
Multiple signaling pathways, 307
Multiscale imaging, 356
Multiunit activity, 191, 192
Multivariate autoregressive (MVAR), 420, 423
Multivariate pattern analysis (MVPA), 386, 387
μ-rhythm suppression, 102–104
Muscarinic, 34
Muscle-based skills, 173, 174
Muscle spindles, 16–17, 22
MVAR, seeMultivariate autoregressive (MVAR)
MVPA, seeMultivariate pattern analysis (MVPA)
Myelin, 3
Myoelectric control, 209
Myopia, 49

N
NA, see Numerical aperture (NA)
NAcc, see Nucleus accumbens (NAcc)
National Heart, Lung, and Blood Institute (NHLBI),

116–117
National Institute of Neurological Disorders and Stroke

(NINDS), 117
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National Institutes of Health (NIH), 116
Natural recruitment order, 213
Natural sensory and motor fibers, 318
NDS, see Neurological deficit score (NDS)
Near-infrared (NIR), 357
Negative feedback control system, 37, 38, 41, 42
Neocortical pyramidal neurons, 482
Nernst equation, 2
Nernst-Planck equation, 468
Nernst/reversal potential, 468, 471, 473, 488
Nerve-electrode interface, 317
Nerve growth factor (NGF), 649
Net noise contributions, 81–82
Neural activation models

biphasic stimulation, 260
cell geometry, 260
E-field waveform, 260
Hodgkin–Huxley-type equations, 260
membrane depolarization, 259, 260
predictions, 259
rheobase, 259
second-order partial differential equation, 260

Neural activities, PAT
imaging brain diseases, whole brain level, 366, 367
imaging brain glucose metabolism, 367–368
large-scale networks, 366
monitoring brain hemodynamic responses, 366
PACT, 370, 371
TAT, 371
voltage-/calcium-sensitive indicators, 368–370

Neural depolarization, 249
Neural engineering

EEG, 86, 88
electrodes and instrumentation, 84–86
experiment and biological model, 85
penetrating electrodes, 86, 88

Neuralink, 216
Neural instrument

AFE, 67
closed-loop neuroprosthesis, 67
DSP, 67
neurofeedback capabilities, 67
wireless closed-loop, 67

Neural interfaces
ADC, 67
AFE, 72–77
BCIs (see Brain–computer interfaces (BCIs))
DSP, 67
intracellular recording and clamping circuits,

77–79
Neural modeling

BRIAN, 495
CellML, 496
computational models, 463, 464
databases, 495, 496
dynamical systems models, 489
electrical activity (see Electrical activity)
electrophysiological behaviors, 487
excitability (see Excitability)

excitable membranes (see Excitable membranes)
generalized linear model, 485–486
GENESIS, 493
Hodgkin-Huxley model (see Hodgkin-Huxley model)
integrate-and-fire models (see Integrate-and-fire

models)
laudable approach, 487
medicine, 493
ModelDB, 494
NEST, 493
NEURON, 493
neurons, 487
nonlinear dendritic process

dendritic channel expression, 481–482
dendritic excitability, 482

short-term synaptic plasticity, 490
single neurons (see Single neurons)
synapse models, 488–490

Neural network (NN), 149, 151, 296
activation function, 436
backpropagation, 436, 437
feed-forward neural network, 435
mini-batch size, 437
MLP, 435, 436
neurons, 435
SGD, 437

Neural recording and stimulation, 70–72
Neural recording properties, FINE

EMG contamination, 323
fascicles, 323
finite element model, 324
motor neural activity, 323
NEURON model, 324–325
open bandwidth neural, 323
representative spectra, 326–327
single fiber action potential, 325–326

Neural signal recordings
LFP, 191, 192
multiunit activity, 191, 192
single-unit activity, 191, 192

Neural signals, 190, 195
ERPs, 146–147
P300 ERP, 145–147
SCP, 145, 146
SMRs, 144–145
spikes and local field potentials, 147

Neural systems, 500
Neuroendocrine interface, 36
Neurofeedback, 135, 156
Neuroimaging, PAT

brain (see Brain)
neurological diseases, 363
non-optical imaging modalities, 364

Neurological deficit score (NDS), 117, 118
Neurological diseases, 363
Neurological injury/disorders, 186
Neuromodulation, 134, 135, 235, 280, 282, 295
Neuromuscular junctions, 10, 12, 208
Neuronal action potentials, 138
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Neuronal circuits
antagonist inhibition, 8–9, 11
feedback inhibition, 9, 11
forward inhibition, 9, 11
lateral inhibition, 9, 11
positive feedback, 9
reflexes (see Reflexes)
synaptic depression, 9
synaptic potentiation, 9

Neuronal control
C. elegans, 510, 511
sensory receptor neurons, 511
simple model, 510
structural controllability, 510

Neuronal membrane depolarization
assumptions, 258
cable equation, 258
cell membranes, 258
charge accumulation, 258
E-field direction, 259
first-order low-pass filter, 259
leaky integratormodel, 259
membrane depolarization, 258
pyramidal neurons, 259

Neuronal population code
BCIs, 529
correlation, pair of neurons

encoding, 522
measures, 524
noise correlation, 523
sensory neurons, 521
tuning curves, 523

decoding frameworks, 530
single neurons, 520–521
“spikes”, 519
synchrony, pair of neurons

CCG, 525, 526
measures, 524
shuffled correlation, 525
spiking activity, 525

Neurons, 435
action potential, 324
afferents, 5
CNS, 3, 5
cytoarchitectural organization, 24
definition, 2
efferents, 5
interneurons, 5
ion selective channels, 2
membrane currents, 325
model MRG axon, 325
plasma membrane, 1–2
Ranvier/active membrane, 325
receptive fields, 15

NeuroPace device, 233
Neurophysiology

ANS (see Autonomic nervous system (ANS))
CNS (see Central nervous system (CNS))
equilibrium (see Equilibrium)

homeostasis, 35–37
hypothalamus, 35–37
maintenance of posture (see Posture)
motor system (seeMotor control)
neuronal circuits (see Neuronal circuits)
neurons (see Neurons)
pain, 46–49
reticular activating systems, 41–46
sensory systems (see Sensory systems)
somatovisceral sensibility, 17–20
sound and hearing, 54–58
synapses (see Synapses)
thermoregulation, 37–41
vision, 49–55

Neuropixels, 88
Neuroplasticity, 154
Neuroprosthesis, 154
Neuroscience, 366
Neurostimulators, 225, 226
Neurotransmitter acetylcholine, 208
Neurotransmitters

ANS, 32, 34
CNS, 133
dopamine, 31
presynaptic, 5

Neurovascular coupling, 335
Neutral (comfort) zone, 39
Next-generation neurostimulators, 232
NGF, see Nerve growth factor (NGF)
NHLBI, see National Heart, Lung, and Blood Institute

(NHLBI)
Nicotinic, 34
NIH, see National Institutes of Health (NIH)
NINDS, see National Institute of Neurological Disorders

and Stroke (NINDS)
NIR, see Near-infrared (NIR)
NMDA, see N-Methyl-D-aspartic acid (NMDA)
N-Methyl-D-aspartic acid (NMDA), 482, 488, 489, 493
NMR, see Nuclear magnetic resonance (NMR)
NN, see Neural network (NN)
Nociceptors, 47, 48
Node analysis technique, 73
Noise, 55

AFE, 80
in biopotential recording, 80
electrodes, 69
front-end amplifier noise model, 80–81
input referred noise, 80
net noise contributions, 81–82
SNR, 80

Noninvasive EEG-based BCI technology, 159
Noninvasive methodology, 238
Noninvasive recording technology, 172
Noninvasive techniques

EEG, 141–143
fMRI, 143–144
fNIRS, 144
MEG, 143

Non-inverting operational amplifier, 73
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Nonlinear decoder, 212
Nonlinear dendritic process

dendritic channel expression, 481–482
dendritic excitability, 482

Nonlinear interpolations, 383
Nonlinear inverse techniques

L1-norm methods, 399, 401
L2-norm methods, 399, 401
MEG/EEG measurements, 399–401
nonparametric algorithm, 400
SCEA, 400
3D EEG/MEG, 399
weighted norm minimization, 400

Nonparametric spectral methods, 106–107
Non-polarizable, Faradaic electrodes, 68, 69
Nonrapid eye movement (NREM) sleep, 102
Non-REM sleep, 45
Nonspecific sensory pathways, 18, 19
Noradrenaline, 34
Normalized separation (NS), 109, 117–119
Novel temporal patterns, stimulation

biphasic pulse patterns, 229
bradykinesia scores, 228
computational models, 229
essential tremor, 227
impact, 227
non-regular patterns, 229
Parkinsonian basal ganglia, 229
Parkinson’s diseases, 228
rechargeable neurostimulators, 229
regular pulse train, 227

NS, see Normalized separation (NS)
Nuclear magnetic resonance (NMR), 332
Nucleus accumbens (NAcc), 235, 236
Numerical aperture (NA), 300, 301
Nyquist sampling theorem, 360

O
OAT, see Optoacoustic tomography (OAT)
Obsessive compulsive disorder (OCD), 235
OCD, see Obsessive compulsive disorder (OCD)
OCT, see Optical coherence tomography (OCT)
Oddball paradigm, 145, 163
ODEs, see Ordinary differential equations (ODEs)
ofMRI, see Optogenetic functional magnetic resonance

imaging (ofMRI)
OLE, see Optimal linear estimator (OLE)
Oligodendroglia, 3
One-dimensional control signals, 209
One-step prediction, 205, 206
3-opamp IA, 74–76
Open-loop transconductance amplifier, 76
OpenMEEG, 404
Operational amplifiers (opamps)

configurations, 73
filtering, 72
fully differential amplifier, 74
inverting amplifier, 73–74
KCL, 73

node analysis technique, 73
non-inverting, 73

Operation transconductance amplifiers (OTAs), 83, 319
Opsins

allmicrobial rhodopsins, 295
bioprospecting and searching, 296
Ca2+, 298
computer-controlled laser module, 296
crystallography, 298
freshwater algae, 295
high-energy blue wavelengths, 296
implanting light guides, 296
light sensitivity, 298
microbial halorhodopsin, 298
microbial rhodopsin, 295
photon interaction, 295
photosensitive optogenetic proteins, 295
SFO, 298
single-celled microorganisms, 295
spectral sensitivity, 296
in vivo applications, 297
Volvox ChR, 296

Optical-acoustic detectors, 353
Optical coherence tomography (OCT), 582

angiography, 306
DBF, 306
DCT, 306
monitor vascular dynamics, 307
multiple signaling pathways, 307
neurovascular coupling, 306
optical imaging method, 306

Optical contrasts, 350, 357, 364
Optical-resolution PAM (OR-PAM), 362, 363, 366–369,

373
Optical sensors, 353
Optical stimulation paradigms, 298
Optimal linear estimator (OLE)

arm trajectories, 203
assumptions, 203
Bayes’ rules, 203
cosine tuning model, 203
encoding model, 203
firing rates, 203
preferred directions, 203

Optoacoustic tomography (OAT), 349
Optogenetic functional magnetic resonance imaging

(ofMRI)
BOLD signal, 307, 308
coherence tomography, 307
fMRI imaging, 307
laser pulses, 308
light absorption and heat generation, 308
neuroscience research, 307
OCT, 307
thalamus/hippocampus, 307

Optogenetic neural probes
CLEAR-ECoG, 305
ECoG, 305
electrode recording site, 304
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Optogenetic neural probes (cont.)
electrophysiology, 304
fiber electrode assemblies, 305
graphene electrodes, 305
ITO, 305
light-guiding structures, 304
NIR and IR, 305
signal-to-noise ratio, 305
STN, 304

Optogenetics
electrode-based brain interface, 295
hybrid brain interface platforms, 295
optical recording techniques, 295
tools (see Optogenetics tools)

Optogenetic stimulation, 296
blindness, 308
clinical applications, 308
CRISPR, 308
electrode-based brain interface platforms, 308
human trials, 308
neurological and psychiatric disorders, 309
photodetectors, 309
photoreceptor cells, 308
spatial-temporal stimulation pattern, 308
therapeutic procedures, 308
troubling feature, 308

Optogenetics tools
gene delivery mechanism, 298–299
opsins (see Opsins)
target species, 299

Ordinary differential equations (ODEs), 473, 477, 484,
548

Orexin
administration, 122
deficiency, 121
intraventricular injection, 121–122
IQ values, 122
NDS, 122, 123
ORXA, 122, 123
post-ROSC, 122

OR-PAM, see Optical-resolution PAM (OR-PAM)
ORXA, 122, 123
Oscillations, 417
Ossicles, 56, 57
OTAs, see Operation transconductance amplifiers (OTAs)
Oval window, 56

P
Pacemaker, 225
Pacinian corpuscles, 20
PACT, see Photoacoustic computed tomography (PACT)
Pain

classification, 46, 47
description, 46
detection, 46
intensity

effective reactions, 46
mechanical/thermal/chemical stimuli, 46–47
neuralgia, 47, 48

neurostimulation, 49
neurosurgical, 49
nociceptors, 47, 48
pharmacological, 48
physical, 48
points, 46, 47
projected pain, 47, 48
referred pain, 47, 48
somatosensory modalities, 47
tissue-damaging/noxious, 46

Paired-pulse paradigms, 263–264
Paired-pulse protocol, 259
Pairwise correlations

dimensionality reduction, 526
FA, 526
machine learning, 526
neurons to behavior, relating

binocular rivalry paradigm, 527
choice probability, 528
FA, 527
GPFA, 529
single-neuron activity, 527

PCA, 526
recording technologies, 527
single-neuron metrics, 526

PAM, see Photoacoustic microscopy (PAM)
PA-PACT, see Planar array-based PACT (PA-PACT)
Papez memory circuit, 235
Parametric (modeling) methods

AR, 107–109
ARMA, 107
inverse AR filtering, 107
MUSIC algorithm, 109–110
standard values, 107

Paraplegia, 29
Parasympathetic postganglionic synapses, 34
Parasympathetic system, 32, 33
Parkinsonian basal ganglia, 229
Parkinsonian beta band, 232
Parkinson’s disease, 31, 223, 227, 228
Parkinson’s/electrode arrays, 294
Paroxysmal discharges

nonperiodic, 101
nonsinusoidal and periodic, 101, 102
shape characteristics, 101
sinusoidal, 101
symmetry of alpha activity, 101

Paroxysmal disorders, 234
Parseval’s theorem, 107
Partial directed coherence (PDC), 423
Passive membrane, 466
PAT, see Photoacoustic tomography (PAT)
Patch clamp electrode, 77
Pathophysiology, motor control

basal ganglia, 31
brain stem, 30, 31
cerebellum, 30
deep brain stimulation electrodes, 29
motor cortex, 31–32
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spinal cord, 29–30
PA waves, 353
PCA, see Principal component analysis (PCA)
PDC, see Partial directed coherence (PDC)
Pearson product-moment correlation coefficient

(PPMCC), 168
Pedunculopontine nucleus (PPN), 235
Penetrating electrodes, 86, 88
Penetration depth problem, 297
Performance quality, 79
Period-amplitude model, 105
Periodic auto-zeroing, 81
Peripheral nervous system (PNS), 132, 640
Peripheral paralysis, 30
Peristimulus time histograms (PSTHs), 588
Persistent activity

biological system, 494
neurons, 493
recurrent excitation, 492
spike-frequency adaptation, 493

PET, see Positron emission tomography (PET)
P300 event-related potential (ERP), 145–147
Phase locking value (PLV), 554
Phase-modulated VEP (p-VEP), 163
Phase-modulating SLMs, 303
Photoacoustic computed tomography (PACT)

array-based PACT system, 361
inverse reconstruction methods, 357
LA-PACT, 357
Nyquist sampling theorem, 360
RA-PACT, 357, 358
reconstructed images, 361
SA-PACT, 358, 359
spatial resolution, 360
spatial sampling frequency, 360, 361

Photoacoustic detection, 353
Photoacoustic (PA) effect, 349
Photoacoustic microscopy (PAM)

acoustic detection, 361
AR-PAM, 362, 363
focused transducer, 361
OR-PAM, 362, 363, 373

Photoacoustic tomography (PAT)
biomedical imaging modalities, 350
classification, 354, 355
computed tomography, 357
endogenous contrasts, 356, 357
exogenous contrast, 357
forward solution, 352–353
hemoglobin, 356
hybrid imaging technique, 350
image reconstruction, 353–354
implementations, 354
molecular imaging, 350
multiscale imaging, 356
2-NBDG, 372
neural activities (see Neural activities, PAT)
neural imaging (see Neural imaging, PAT)
NIR, 357

non-ionizing laser pulses, 349
OAT, 349
optical excitation

stress relaxation time, 351
thermal relaxation time, 351

optical imaging, 350
PACT (see Photoacoustic computed tomography

(PACT))
PAM (see Photoacoustic microscopy (PAM))
PA wave, 350
photoacoustic detection, 353
photoacoustic equation, 352
scale spatial resolutions, 355
versatile contrasts, 356

Photocurrent responses, 600
Photoreceptors, 584–585

cone, 51, 52
rhodopsin, 51
rod, 50–52
transduction process

CNS, 53
convergence and divergence, 52
definition, 52
human brain, 53
lateral geniculate, 53
monocularly vs. binocularly vision, 54
subcortical structure, 53
superior colliculi, 53
visual cortex, 53

Photosensitive proteins, 296
Phototransduction, 570
Piezoelectric-based detectors, 353
Pink noise, 81
Pix2Pix GANs, 453–454
Place theory, 58
Planar array-based PACT (PA-PACT), 359,

360
Plasma membrane, 1–2
Plasticity, 4, 490
PMOS transistor, 81
PNN, see Probabilistic neural network (PNN)
PNS, see Peripheral nervous system (PNS)
Poikilotherms, 37
Point spread function (PSF), 360
Poisson process, 486
Polarizable, non-Faradaic electrodes, 68, 69
Polysynaptic reflexes, 12
Pooling layers, 438
Population vector algorithm (PVA)

biologically inspired, 202
classification decoders, 202
cosine-tuned neuron, 201
description, 201
neuron’s activity, 201
neuron’s firing rate, 201
neuron’s tuning parameters, 201
preferred direction, 201
uniform distribution, 202
weighted vector sum, 201



692 Index

Positron emission tomography (PET), 98, 235, 262, 367,
454, 455, 457, 458

Posterior parietal cortex (PPC), 143, 193, 194
Post-inhibitory rebound spiking, 481
Post-resuscitative and initial Utility in Life Saving Efforts

(PULSE), 116
Post-traumatic stress disorder (PTSD), 235
Postural reflexes, 27
Posture

afferent inputs/pathways, 25
body positions, 24
efferent pathways, 25
goal-directed movements, 24
maintenance, 25

Potassium conductance, 471–472
Potassium ions, 467
Potentiostat, 77
Power consumption, 79, 81
Power spectral density, 107
Power spectrum, 106–109
PPC, see Posterior parietal cortex (PPC)
PPMCC, see Pearson product-moment correlation

coefficient (PPMCC)
PPN, see Pedunculopontine nucleus (PPN)
Preferred direction, 201
Premotor cortex (PMd), 193, 196
Pre-pulse, 214
Presbyopia, 49
Primary motor cortex (M1), 193, 196
Principal component analysis (PCA), 149, 392, 526
Principal eigenvectors, 110
Probabilistic neural network (PNN), 547, 558
Propagation

action potential, 477
Hodgkin-Huxley model, 475
intracellular medium and membrane, 477
membrane potential, 476
myelin sheath, 477
nonlinear partial differential equation, 477
physiological parameters, 477

Pseudo-resistors, 76
PSF, see Point spread function (PSF)
PSTHs, see Peristimulus time histograms (PSTHs)
PULSE, see Post-resuscitative and initial Utility in Life

Saving Efforts (PULSE)
Pulse trains, 264–265
Pupil, 49
PVA, see Population vector algorithm (PVA)
p-VEP, see Phase-modulated VEP (p-VEP)

Q
qEEG analysis, 120, 121
Quadratic integrate-and-fire (QIF) model, 484
Quadriplegia, 29
Quasi-static, 252
Quasi-static approximation, 258

R
Radial basis function (RBF), 543, 548
Radiation, 41
Rapid eye movement (REM) sleep, 45–46, 102
RBF, see Radial basis function (RBF)
RBM, see Restricted Boltzmann machines (RBM)
Real-time fMRI (rtfMRI), 144
Rear-infrared (NIR), 305
Recalibrated feedback intention-trained Kalman filter

(ReFIT-KF), 207
Receiver operating characteristic (ROC) curve, 528, 541
Receptive fields, 15
Rechargeable neurostimulators, 229
Reciprocal inhibition, 9
Rectified linear unit (ReLU), 436, 547
Recurrent excitation, 492
Recurrent neural networks (RNNs), 445, 549

LSTM, 446–447
non-linear units, 445
time series data, 447–448
types of layers, 445, 446

Red nucleus, 23
Reduced inference distribution (RID),

114
ReFIT-KF, see Recalibrated feedback intention-trained

Kalman filter (ReFIT-KF)
Reflexes

clonus/tremor reflex, 12
CNS, 10, 11
cough reflex, 12
crossed extensor reflex, 12–13
flexor reflex, 12
monosynaptic stretch reflex, 10–12
neuromuscular junctions, 10, 12
peripheral effects, 10, 11
peripheral receptor, 9
polysynaptic reflexes, 12
reflex facilitation, 10
suckling reflex, 12

Reflex times, 13
Refractory period, 475
Regularization parameters, 395–396
ReLU, see Rectified linear unit (ReLU)
Repetitive TMS (rTMS), 264
Residual connection, 440
Residual entropy, 119
Residual learning, 439–440
Resonate-and-fire (RIF) model, 484
Resting membrane potential, 1, 2
Resting motor threshold, 263
Resting potential, 468–470
Resting state fMRI

functional connectivity, 342
functional network pattern, 343
ICA, 343
InstaCorr implemented, 342
learning algorithms, 343
mapping, 343
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networks, 343
predefined experimental paradigm, 342
seed-based correlation, 342
statistical parametric mapping, 342
temporal correlation, 342

Resting-state fMRI (RS-fMRI), 448
Resting state networks, 343
Restricted Boltzmann machines (RBM), 559
Resuscitation Outcomes Consortium (ROC), 116
Reticular activating systems

arousal/inhibition, 42
brain regions and neural pathways, 42, 44
brain waves, 43–45
definition, 42
limbic and ascending, 41–46
modulation, 42
sleep, 45–46
stimulations, 42
thalamocortical system, 43
wakefulness, 43

Reticular formation, 23
Retina, 49–51, 582

acuity, 589–591
bioengineering opportunities, 623–624
choriocapillaris vs. retinal capillaries, 592
circuits, 585–586
disease (see Retinal disease)
eccentricity, 589–591
engineering approaches

extracellular volume, 622–623
hydrogen ion, 621–622
ion distribution, 620–621
net changes, 623
oxygen, 618–620

fields, 586–589
function, 583–584
ganglion (see Ganglion cell models)
mammals, 584
photoreceptors, 584–585
physiology/pathophysiology, 594–595

biochemically based analysis, 598–599
diagnostic value of a-wave, 600
input-output analysis, 597–598
photoreceptor model, 595–597
response to light, 599–600

post-receptor ERG analyses
B-wave analyses, 600–602
specific retinal areas, 602–603

structure, 583
vasculature, 591

Retinal acuity, 589–591
Retinal circuits, 585–586
Retinal connectivity models, 614–617
Retinal detachment, 594
Retinal disease

AMD, 592–593
diabetic retinopathy, 593–594
glaucoma, 593
retinal detachment, 594

RP, 592
vascular occlusive disease, 594

Retinal eccentricity, 589–591
Retinal fields, 586–589
Retinal ganglion cells (RGCs), 582
Retinal molecule, 295
Retinal pigment epithelium (RPE), 591
Retinal prostheses

blindness, 567, 572
camera, 575–576
definition, 567
eye and retina (see Eye and retina)
image processing, 576–577
retinal degeneration, 571
retinal stimulating electrode arrays, 577–578

Retinitis pigmentosa (RP), 592
Return of spontaneous circulation (ROSC), 119, 120
Reversal potential, 468
RF excitation, 332
RGCs, see Retinal ganglion cells (RGCs)
Rheobase, 259
Rhodopsin, 51
RID, see Reduced inference distribution (RID)
Riemannian geometry–based method, 152
RMS, see Root-mean-square (RMS)
RNNs, see Recurrent neural networks (RNNs)
Robotic limb, 215, 216
Robust control mechanism, 317
ROC, see Resuscitation Outcomes Consortium (ROC)
Rod photoreceptors, 50–52
Root-mean-square (RMS), 234, 322
ROSC, see Return of spontaneous circulation (ROSC)
RPE, see Retinal pigment epithelium (RPE)
RS-fMRI, see Resting-state fMRI (RS-fMRI)
rtfMRI, see Real-time fMRI (rtfMRI)
rTMS, see Repetitive TMS (rTMS)
Ruffini corpuscles, 20

S
Saccades, 54
Sacculi, 25, 26
SAEs, see Stacked auto-encoders (SAEs)
SA-PACT, see Spherical array-based PACT (SA-PACT)
SCAEs, see Stacked convolutional auto-encoders

(SCAEs)
Scala media, 56
Scala tympani, 56
Scala vestibuli, 56
Scanning laser ophthalmoscopy (SLO), 582
SCEA, see Self-coherence enhancement algorithm

(SCEA)
Schwann cells, 3
SCI, see Spinal cord injury (SCI)
SCPs, see Slow cortical potentials (SCPs)
Secondary sensory cells, 25
Second-order partial differential equation, 260
Second-order polynomial, 117
Second-order Volterra operations, 105
Seed-based correlation, 342, 343
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sEEG, see Stereo-EEG (sEEG)
Segmental reflexes, 34
Segmentation analysis, EEG, 105
Segregated functional circuit model, 224
Seizure detection/forecasting

deep neural networks (see Artificial neural networks
(ANN))

EEG signals, 541
linear methods, 542

binary classification, 542
CSVMs, 544
FPR, 544
iEEG, 544
logistic regression model, 542
regularization, 544
SVMs, 543, 544

machine learning algorithms, 542
model performance, improving

AUC, 551, 552
EEG signal, 550, 554
EEG state classifier, 551
ensemble models, 552
HMM, 553
MLP, 552
state classification, 548
unsupervised learning algorithms, 553

tree-based methods, 544
Seizure detection methods, 105
Seizure-onset zones (SOZs), 398, 537
Self-adhesive electrodes

AC stimulation, 279
cranial stimulation devices, 280
current flow-suited stimulation, 280
DC stimulation, 279
female pin connection, 279
head stimulation, 279
noninvasive neuromodulation, 280
skin surface, 278
use, 278

Self-coherence enhancement algorithm (SCEA), 400
Semicircular canals, 25, 26
Semimembranosus (SM), 3207
Semitendinosus (ST), 320
Sensitive magnetic flux detector, 381
Sensorimotor control, 216
Sensorimotor rhythms (SMRs), 132, 144–145, 158–160
Sensory aphasia, 27, 28
Sensory areas, 193
Sensory receptors

cutaneous afferents, 15, 16
membrane potential, 14
physical stimulus, 14
receptive fields, 15
relative densities, 15
skeletal muscles, 15
spinal dermatomes, 15

Sensory systems
accommodation, 14
afferents, 13, 15–17

and effectors, 13
modalities, 13, 14
perception, 14
quality, 13–14
quantity, 14
receptors, 14–15
threshold stimulus, 14

Separation algorithm derivation
BSFE, 321
chronic dog preparation, 322
EEG, 321
elements, 321
extrafascicular electrodes, 321
lead field matrix, 321
proportional motor activity, 321
sLORETA and FOCUSS, 321

SFO, see Step-function opsin (SFO)
SGD, see Stochastic gradient descent (SGD)
Shannon entropy, 115
Short-interval intracortical inhibition, 263
Short-term synaptic plasticity, 490
Short-time Fourier transform (STFT), 114, 538
Short-wave ripples, 84
Signal acquisition

brain signals, 135
goal of, 139
invasive techniques, 139–141
neural signals, 144–147
noninvasive techniques, 141–144
and processing, 170

Signal correlation/rsignal, 522
Signal degradation, 215
Signal matrix, 110
Signal processing

feature extraction, 148–151
feature translation, 151–153

Signal-to-noise ratio (SNR), 79–81, 261, 305
Silicon-based arrays, 193
Silicon-controlled rectifiers, 249
Simple models, 484–485, 498, 510
SiNAPS multi-shank probe, 88
Single fiber action potential, FINE simulation

NEURON simulation, 325
parameters, 325
recorded signal, 325
transfer function, 325

Single hamstring EMG, 320
Single neurons

feed-forward networks, 491
network models, 491
persistent activity, 492–493

Single pulses, 263
Single-unit activity, 191, 192
Skull stripping, 435
SL, see Surface Laplacian (SL)
SLD, see Square law detector (SLD)
Sleep

alert wakefulness, 45
definition, 45
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EEG, 101–102
mechanisms, 46
quiet wakefulness, 45
REM, 45–46
slow wave, 45
types, 45

SLM, see Spatial light modulators (SLM)
SLO, see Scanning laser ophthalmoscopy (SLO)
Slope detector methods, 106
Slow cortical potentials (SCPs), 132, 145, 146
Slow eye movements, 54
Slow wave sleep, 45
SM, see Semimembranosus (SM)
SMA, see Supplementary motor area (SMA)
Smell (olfactory), 58–60
Smoothed WVD, 114
SMRs, see Sensorimotor rhythms (SMRs)
SNR, see Signal-to-noise ratio (SNR)
Sodium conductance, 471–472
Somatosensation, 215
Somatosensory feedback, 215
Somatovisceral sensibility

associative system, 18
CNS, 17–18
extra-lemniscal system, 18
lemniscal system, 18
limbic system, 18
mechanoreception, 19–20
motor system, 18
nonspecific sensory pathways, 18, 19
signaling pathways, 17, 18
somatosensory projection areas in cortex, 19
specific sensory pathways, 18, 19
vegetative system, 18

SOS, see Speed of sound (SOS)
Sound and hearing

auditory sensations, 57–58
central auditory system, 58–60
definition, 54–55
functional anatomy

cochlea, 56
ear canal, 56
Eustachian (auditory) tubes, 56
malleus, 56
middle and inner ear sensory structures, 56, 57
ossicles, 56, 57
receptors, 57
scala media, 56
scala tympani, 56
scala vestibuli, 56
spiral ganglion, 57
stria vascularis, 57

musical quality, 55
noise, 55
oscillations, 55
place theory, 58
sound pressure, 55, 56
tone, 55, 56

Sound pressure, 55, 56

Source models, 387–388
SOZs, see Seizure-onset zones (SOZs)
Sparsity-enforcing regularizations, 397
Spastic hemiplegia, 32
Spatial facilitation, 6, 7
Spatial light modulators

CGH, 303
DMD, 303
DOPC, 303, 304
large-scaled networks, 302
LED arrays, 303
MEMS-based galvanometers, 303
SLM, 303
stimulation patterns, 303

Spatial light modulators (SLM), 299, 303
Spatial resolution, 84
Spatiotemporal source localization, 391
Specific sensory pathways, 18, 19
Spectral analysis, 106–107
Spectral resolution, 84
Spectral sensitivity, 297
Speech, 27–28
Speech synthesizer, 196
Speech transcription program, 196
Speed of sound (SOS), 354
Spherical array-based PACT (SA-PACT), 358, 359
Spike-frequency adaptation, 480, 493
Spike history dynamics, 486
Spikes, 147
Spike sorting, 192
Spinal cord

and brain, 7–9
flexor hyperactivity, 29–30
motor control, 22
paraplegia, 29
peripheral paralysis, 30
quadriplegia, 29
reflex flexion, 30
spinal shock, 29

Spinal cord injury (SCI), 35, 132, 134, 154, 7186
Spinal shock, 29
Spiral ganglion, 57
SPM, see Statistical parametric mapping (SPM)
Sponge-based electrode

CES devices, 277
conductive rubber, 278
conventional paradigm, 278
effective electrode size, 276
headgear, 276
NeuroConn, 277
nonsalinized water, 278
pre-saturated, 278
protocols, 277
reusable conductive rubber electrode, 277

Sponge stimulation, 286
Square law detector (SLD), 119
SQUID, see Superconducting quantum interference

device (SQUID)
SSVEP, see Steady-state visual evoked potential (SSVEP)
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SSVEP-based BCI speller, 163, 164
ST, see Semitendinosus (ST)
Stacked auto-encoders (SAEs), 449, 450
Stacked convolutional auto-encoders (SCAEs), 450, 451
Standard stimulation waveform, 226
State model, 204, 205
State-of-the-art communication BMIs, 200
State-of-the-art source models, 387
Static reflexes, 27
Static temperature sensations, 39
Stationary stochastic processes, 416, 417
Statistical parametric mapping (SPM), 336, 435
Statokinetic reflexes, 27
Statolith organs, 25
Steady-state visual evoked potential (SSVEP), 147, 161
Step-function opsin (SFO), 298, 306
Stereo-EEG (sEEG), 385
Stereotactic surgery, 224
STFT, see Short-time Fourier transform (STFT)
Stimulus sequence design, 161, 162
STN, see Subthalamic nucleus (STN)
Stochastic gradient descent (SGD), 437
Stochastic processes

autocorrelation function, 416
autocovariance function, 416
coherence function, 417
cross-correlation function, 417
functional connectivity, 417
neural time series, 416, 417
oscillations, 417
periodogram method, 417
stationary process, 416, 417

STOs, see Subthreshold oscillations (STOs)
Stroke, 32
Structural controllability, 510
Subcortical regions, 186
Subject-specific head models, 404
Subthalamic nucleus (STN), 224, 304
Subthreshold oscillations (STOs), 478–480
Suckling reflex, 12
Sudden unexpected death in epilepsy (SUDEP), 536
SUDEP, Sudden unexpected death in epilepsy (SUDEP)
Superconducting quantum interference device (SQUID),

143, 381, 382
Superior colliculi, 53
Supplementary motor area (SMA), 194, 196
Support vector machine (SVM), 450, 541, 543–546,

548–558
Support vector machines (SVM), 151
Surface Laplacian (SL), 148, 386
Surrogate data method, 423, 424
SVM, see Support vector machine (SVM)
Switched-capacitor IA, 75, 76
Symmetric geometry, 255
Sympathetic nervous system, 34
Sympathetic system, 32, 33
Synapses

activation variable, 488
alpha function, 488

AMPA, 488
anatomy, 3, 5
electrical, 489
ionotropic synaptic transmission, 488
membrane potential, 489
metabotropic receptors, 490
nerve cells, 5
neurons, 4, 488
NMDA, 488, 489
postsynaptic effect, 488
voltage waveforms, 489

Synaptic facilitation, 6, 7
Synaptic plasticity, 4
Synaptogenesis, 4
Systemic nervous system, 5

T
TA, see Tibialis anterior (TA)
tACS, see Transcranial alternating current stimulation

(tACS)
Target species, optogenetic experiments

C. elegans, 299
cortical tissue, 299
Drosophila, 299
FMRI, 299
Zebrafish, 299

Task-based fMRI, functional mapping
brain research, 342
clinical applications, 341
localization, 341
model-based time series analysis, 341
neuromodulation techniques, 342
neuropathological diagnosis, 341
neuroscientific impact, 342
preclinical animal models, 342
psychological mechanism, 342
somatotopic organization, 341

Taste (gustatory), 58–60
TAT, see Thermoacoustic tomography (TAT)
TBIs, see Traumatic brain injuries (TBIs)
TC, see Threshold crossings (TC)
tDCS, see Transcranial direct-current stimulation (tDCS)
Teager energy operator (TEO), 105–106, 119
Teager-Kaiser energy algorithm, 105–106
Temporal-domain processing, 148–149
Temporal facilitation, 6, 7
Temporal interference, 237–238
Temporal resolution, 84
TEO, see Teager energy operator (TEO)
tES, see Transcranial electrical stimulation (tES)
tES biophysics/mechanisms, 285
tES devices and dose

AC types, 272
anode electrode, 274
brain stimulation, 272
DC types, 274
ECT, 272
electrode design, 272
electrodes, 274
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powered current-controlled stimulator, 274
pulses, 272
ramp up and ramp down, 274
subclasses, 272
waveform, 271, 274

tES devices tolerability, 285–286
tES electrodes

cardinal functions, 275
clinical trials, 274
design, 274
electrochemical changes, 275
electrochemistry, 275
functions, 275
head anatomical landmark., 275
interface, 275
limited-intensity tES techniques, 274
selection and preparation, 274
self-adhesive (see Self-adhesive electrodes)
separation mechanism, 275
skin irritation risk, 275
sophisticated placement techniques, 275
sponge electrode (see Sponge-based electrode)
sponge/paste, 275
types, 276

tES use
clinical and behavioral interventions, 283
direct cortical modulation, 283
electrode montage, 283
MDD, 283

TFRs, see Time-frequency representations (TFRs)
tFUS, see Transcranial focused ultrasound (tFUS)
Thalamocortical (TC) system, 43, 478
Thalamus, 24, 25, 223, 224, 231
Thermal noise, 80–81
Thermoacoustic tomography (TAT), 371
Thermoregulation

central thermoregulation, 40–41
core temperature, 39
cutaneous thermoreception, 39–40
heat energy, 37
homeothermic, 37
hypothalamus, 37
negative feedback control system, 37, 38,

41, 42
optimal temperature, 37
poikilothermic, 37

Theta waves, 44, 99
Thoracolumbar system, 32, 33
Three-dimensional subcortical structures, 231
3D source imaging, 397
Threshold crossings (TC), 192
Threshold stimulus, 14
Tibialis anterior (TA), 322
TIK, see Tikhonov regularization (TIK)
Tikhonov regularization (TIK), 395
TIME, see Transverse intrafascicular multichannel

electrode (TIME)
Time-domain method

amplitude distribution, 104

anesthesia monitoring, 104, 105
bispectrum, 105
DFA, 104–105
Hjorth descriptors, 105
period-amplitude model, 105
period/interval analysis, 104
segmentation analysis, 105
Teager-Kaiser energy algorithm, 105–106

Time-frequency (T-F) distribution, 113
Time-frequency (T-F) reciprocity, 112
Time-frequency representations (TFRs), 114, 149, 152
Time-modulated VEP (t-VEP), 161
Time series data, RNN, 447–448
Tissue engineering

cellular approaches
gene therapy, 655–656
genetic, 653–655
stem cells, 651–653

electrical stimulation, 657–658
immunomodulation, 656–657
nervous system

cells/tissues of brain, 640–641
PNS, 641
spinal cord, 641

targets
degenerative disease, 643–644
nervous system injuries, 642–643
neural device integration, 644–645

technologies
CNS injuries, 648–649
material approach, 645–646
nerve conduits, 646–648

TMS, see Transcranial magnetic stimulation (TMS)
TMS biophysics

charge balanced, 258
electrical stimulation, 258
monophasic electrical, 258
neural activation models, 259–260
neuronal membrane depolarization, 258–259

TMS circuit topology
circuit series resistance, 247
coil current, 247
conventional biphasic stimulator, 249
conventional monophasic stimulator, 247
damping resistor R, 249
independent control, 249
monophasic pulse, 249
monophasic stimulator, 249
resonant circuit, 247
silicon-controlled rectifiers, 247, 249
underdamped sinusoidal current, 249

TMS coils
coil forces, 250–252
coil heating, 250
double-cone coil, 250
E-field waveform, 250
ferromagnetic core, 250
magnetic field B proportional, 250
single circular winding, 250
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TMS devices
coils, 250–252
pulse generators, 247–250
safety, 252

TMS–EEG signal, 262
TMS-induced E-field, 256
TMS physics

approximations, 252
B-field, 253
conductive biological tissues, 253
displacement current, 252
E-field, 252
electric field models (see Electric field models)
Faraday’s law, 252
induced electric field, 253–255
magnetic field, 253
quasi-static, 252

TMS pulse generators
circuit topology, 247–249
energy efficiency and repetitive TMS, 249–250

TMS stimulation paradigms
clinical applications, 264–265
paired pulses, 263–264
pulse train, 264
research applications, 265
single pulses, 263

TMS stimulation responses measuring
behavioral changes, 260
behavior cognition characterization, 261
brain blood oxygenation, 260
electrophysiological and imaging methods, 261–263

Tone, 55, 56
Tourette syndrome, 234
tPCS, see Transcranial pulsed current stimulation (tPCS)
Traditional moving-average method, 149, 150
Transcranial, 280
Transcranial alternating current stimulation (tACS), 272,

283
Transcranial direct-current stimulation (tDCS), 274, 283,

285
Transcranial electrical stimulation (tES), 132, 271
Transcranial focused ultrasound (tFUS), 132
Transcranial magnetic stimulation (TMS), 132, 166, 167

brain stimulation, 206
description, 246
devices (see TMS devices)
E-field (see TMS electric fields)
electrical stimulation, 246
imaging modalities, 265
magnetic nerve stimulation, 246
phosphenes, 246
TES, 246
tolerability advantage, 246

Transcranial pulsed current stimulation (tPCS), 272, 283
Transcranial random noise stimulation (tRNS), 274
Transverse intrafascicular multichannel electrode

(TIME), 316
Transverse plane, 332
Transverse relaxation, 333

Traumatic brain injuries (TBIs), 235, 642
Tree-based methods

decision tree, 544
k-nearest neighbors, 545
logistic model trees, 546
random forest, 546
recursive algorithm, 545

Tremors, 30
Trial and error method, 217
tRNS, see Transcranial random noise stimulation (tRNS)
Truncated singular value decomposition (TSVD),

394–396
TSVD, see Truncated singular value decomposition

(TSVD)
t-VEP, see Time-modulated VEP (t-VEP)
Twisted pair, 82
2D Fabry-Perot (FP), 359
Two-photon optogenetic stimulation

ChR2-positive neurons, 306
depolarization, 306
electron-photon interaction, 306
opsins, 306
phototoxicity effects, 306
SFO, 306
TPM, 305

U
UBP, se Universal back–projection (UBP)
Ultra-flexible carbon-layered electrode array ECoG

(CLEAR-ECoG), 305
Ultralow-noise amplifier, 328
Ultrasonic detectors, 353, 354
Unconscious internal modalities, 13
U-Net, 440–441, 443, 445
Universal back-projection (UBP), 353
Unsupervised learning, 448, 449
USEA, see Utah Slanted Electrode Array (USEA)
US Food and Drug Administration (FDA), 193, 264
Utah array, 86, 88, 193, 194
Utah Slanted Electrode Array (USEA), 316
Utriculi, 25, 26

V
Variational mode decomposition (VMID), 547
Vascular endothelial growth factor (VEGF), 583, 594
Vascular occlusive disease, 594
VCD, see Volume current density (VCD)
VC/VS, see Ventral capsule and ventral striatum (VC/VS)
VEGF, see Vascular endothelial growth factor (VEGF)
Ventral capsule and ventral striatum (VC/VS), 235
Ventral cochlear nucleus, 58
Ventral oralis (VO), 235
Ventral premotor cortex (PMv), 194, 196
Ventromedial hypothalamus (VMH), 236
VEP, see Visual evoked potentials (VEPs)
Vestibular organ, 25, 26
Vestibular reflexes, 27
Vim couples, 234
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Virtual reality (VR), 156
Vision

astigmatism, 49
bright/dark contrasts, 49, 50
cataracts, 49
electromagnetic radiation, 49
eye movements, 54, 55
functional anatomy, 49, 50
glaucoma, 50
hyperopia, 49
luminescence/luminous intensity, 49
myopia, 49
presbyopia, 49
receptor transduction process, 52–54
retina, 49, 50
visual focusing system, 49–50
visual receptor cells, 50–52

Visual cortex, 53
Visual evoked potentials (VEPs), 131, 147, 160–163
Visual receptor cells, 50–52
VMH, see Ventromedial hypothalamus (VMH)
VMID, see Variational mode decomposition (VMID)
VO, see Ventral oralis (VO)
VoA, see Volume of activation (VoA)
Voices, 113
Voltage-based threshold, 192
Voltage-/calcium-sensitive indicators, 368–370
Voltage clamp, 77–78
Voltage-controlled stimulation, 282
Voltage-gated conductances, 470
Voltage-gated ion channels, 2
Voltage limits, 281
Volterra filter, 105
Volume conduction models, 283
Volume conduction theory

anisotropy, 72
bipolar recording, 70
cable equation, 70
dipolar current source, 70
disk approximation, 71
electrical potential, 70, 71
electrical recording, 70–72

homogeneous and isotropic, 71
Maxwell’s equations, 70
medium, 72
MoI, 71, 72
stimulation, 70–72
transmembrane currents, 70

Volume conductor models, 255, 387, 388
Volume current density (VCD)

integrating electromagnetic and hemodynamic,
401–404

inverse estimation techniques, 397–399
nonlinear inverse techniques, 399–401
3D source imaging, 397

Volume of activation (VoA), 302
Volume of tissue activation (VTA), 229, 230
Volume source scanning method, 426
Volvox carteri, 296
Volvox ChR, 296
VR, see Virtual reality (VR)
VTA, see Volume of tissue activation (VTA)

W
Warburg impedance, 69
Water window, 69
Waveform patterns, 209
Wavelet phase coherence (WPC), 538–539
Wavelets

CWT, 110–114
DWT, 115
and entropy, 115–116

Wavelet transform (WT), 115
Wearable sensor-based DBS, 234
Weighted minimum-norm (WMN), 397
Whole brain imaging, 366, 367
Wigner-Ville distribution (WVD), 114
Wilson-Cowan model, 499, 500
WMN, seeWeighted minimum-norm (WMN)
WPC, seeWavelet phase coherence (WPC)
Wrapper algorithms, 151
WT, seeWavelet transform (WT)
WVD, seeWigner-Ville distribution (WVD)
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