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Notations

H, E , E∗ Hilbert spaces

B(E, E∗) The space of all bounded linear operators from E to E∗
B(E) The space of all bounded linear operators on E
D

n Open unit polydisc in Cn

H 2(Dn) Hardy space on D
n

H 2
E (Dn) E-valued Hardy space on D

n

H∞
B(E,E∗)(D

n) Set of all B(E, E∗)-valued bounded analytic functions on D
n.

(Mz1 , . . . , Mzn ) n-tuple of multiplication operator by the coordinate

functions on H 2(Dn)

(1) All Hilbert spaces are assumed to be over the complex numbers.
(2) For a closed subspace S of a Hilbert spaceH, we denote by PS the orthogonal
projection of H onto S.
(3) For nested closed subspaces M1 ⊆ M2 ⊆ H, the orthogonal projection of
M2 onto M1 is denoted by P

M2
M1

.

1 Introduction

Tuples of commuting isometries on Hilbert spaces are cental objects of study in
(multivariable) operator theory. This paper is concerned with the study of analytic
representations, joint invariant subspaces andC∗-algebras of a certain class of tuples
of commuting isometries.

To be precise, let H be a Hilbert space, and let (V1, . . . , Vn) be an n-tuple of
commuting isometries onH. In what follows, we always assume that n ≥ 2. Set

V = n

�
i=1

Vi.

We say that (V1, . . . , Vn) is a pure n-isometry if V is a unilateral shift. A closed
subspace S ⊆ H 2(Dn) is said to be an invariant subspace of H 2(Dn) if Mzi

S ⊆ S
for all i = 1, . . . , n where Mzi

is the multiplication operator by the coordinate
function zi on H 2(Dn). Simpler (but complex enough) examples of pure n-isometry
can be obtained by taking restrictions of the n-tuple of multiplication operators by
coordinate functions (Mz1, . . . ,Mzn) on H 2(Dn) to invariant subspaces of H 2(Dn)

as follows. Given an invariant subspace S of H 2(Dn), we let

Rzi
= Mzi

|S ∈ B(S) (i = 1, . . . , n).
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Then it is easy to see that (Rz1, . . . , Rzn) is a pure n-isometry. We denote by T (S)

the C∗-algebra generated by the commuting isometries {Rz1 , . . . , Rzn}. We simply
say that T (S) is the C∗-algebra corresponding to the invariant subspace S .

In this paper we aim to address three basic issues of pure n-isometries: (i) analytic
and canonical models for pure n-isometries, (ii) an abstract classification of joint
invariant subspaces for pure n-isometries, and (iii) the nature of C∗-algebra T (S)

where S is a finite codimensional invariant subspace in H 2(Dn). To that aim, for (i)
and (ii), we consider the initial approach by Berger et al. [6] from a more modern
point of view (due to Bercovici et al. [5]) along with the technique of [20]. For (iii),
we will examine Seto’s approach [26] more closely from “subspace” approximation
point of view.

We now briefly outline the setting and the main contributions of this paper. Let
E be a Hilbert space, and let ϕ ∈ H∞

B(E)
(D). We say that ϕ is an inner function if

ϕ(eit )∗ϕ(eit ) = IE for almost every t (cf. page 196, [21]). Recall that two n-tuples
of commuting operators (A1, . . . , An) on H and (B1, . . . , Bn) on K are said to be
unitarily equivalent if there exists a unitary operator U : H → K such that UAi =
BiU for all i = 1, . . . , n. In [5], motivated by Berger et al. [6], Bercovici, Douglas
and Foias proved the following result: A pure n-isometry is unitarily equivalent to
a model pure n-isometry. The model pure n-isometries are defined as follows [5]:
Consider a Hilbert space E , unitary operators {U1, . . . , Un} on E and orthogonal
projections {P1, . . . , Pn} on E . Let {�1, . . . , �n} ⊆ H∞

B(E)
(D) be bounded B(E)-

valued holomorphic functions (polynomials) on D, where

�i(z) = Ui(P
⊥
i + zPi) (z ∈ D),

and i = 1, . . . , n. Then the n-tuple of multiplication operators (M�1, . . . ,M�n) on
H 2
E (D) is called a model pure n-isometry if the following conditions are satisfied:

(a) UiUj = UjUi for all i, j = 1, . . . n;
(b) U1 · · · Un = IE ;
(c) Pi + U∗

i PjUi = Pj + U∗
j PiUj ≤ IE for all i 
= j ; and

(d) P1 +U∗
1P2U1 +U∗

1U∗
2P3U2U1 +· · ·+U∗

1U∗
2 · · · U∗

n−1PnUn−1 · · · U2U1 = IE .

It is easy to see that a model pure n-isometry is also a pure n-isometry (see page
643 in [5]).

We refer to Bercovici et al. [3–5] and also [8–10, 12, 14, 15, 17, 19, 22, 26] and
[27, 28] for more on pure n-isometries, n ≥ 2, and related topics.

Our first main result, Theorem 2.1, states that a pure n-isometry is unitarily
equivalent to an explicit (and canonical) model pure n-isometry. In other words,
given a pure n-isometry (V1, . . . , Vn) on H, we explicitly solve the above condi-
tions (a)–(d) for some Hilbert space E , unitary operators {U1, . . . , Un} on E and
orthogonal projections {P1, . . . , Pn} on E so that the corresponding model pure n-
isometry (M�1, . . . ,M�n) is unitarily equivalent to (V1, . . . , Vn). This also gives a
new proof of Bercovici, Douglas and Foias theorem. On the one hand, our model
pure n-isometry is explicit and canonical. On the other hand, our proof is perhaps
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more computational than the one in [5]. Another advantage of our approach is the
proof of a list of useful equalities related to commuting isometries, which can be
useful in other contexts.

Our second main result concerns a characterization of joint invariant subspaces
of model pure n-isometries. To be precise, let W be a Hilbert space, and let
(M�1 , . . . ,M�n) be a model pure n-isometry on H 2

W (D). Let S be a closed sub-
space of H 2

W (D). In Theorem 3.1, we prove that S is invariant for (M�1 , . . . ,M�n)

on H 2
W (D) if and only if there exist a Hilbert space W∗, an inner function � ∈

H∞
B(W∗,W)

(D) and a model pure n-isometry (M�1 , . . . ,M�n) on H 2
W∗(D) such that

S = �H 2
W∗(D),

and

�i� = ��i,

for all i = 1, . . . , n. Moreover, the above representation is unique in an appropriate
sense (see the remark following Theorem 3.1).

The third and final result concerns C∗-algebras corresponding to finite codimen-
sional invariant subspaces in H 2(Dn). To be more specific, recall that if n = 1
and S and S ′ are invariant subspaces of H 2(D), then UT (S)U∗ = T (S ′) for
some unitary U : S → S ′. Indeed, since S = θH 2(D) for some inner function
θ ∈ H∞(D), it follows, by Beurling theorem, that U := Mθ : H 2(D) → S is a
unitary and hence U∗T (S)U = T (H 2(D)). Clearly, the general case follows from
this special case. For invariant subspaces S and S ′ of H 2(Dn), we say that T (S) and
T (S ′) are isomorphic as C∗-algebras if UT (S)U∗ = T (S ′) holds for some unitary
U : S → S ′. It is then natural to ask: If n > 1 and S and S ′ are invariant subspaces
of H 2(Dn), are T (S) and T (S ′) isomorphic as C∗-algebras?

In the same paper [6], Berger, Coburn and Lebow asked whether T (S) is
isomorphic to T (H 2(D2)) for every finite codimensional invariant subspaces S in
H 2(D2). This question was recently answered positively by Seto in [26]. Here we
extend Seto’s answer from H 2(D2) to the general case H 2(Dn), n ≥ 2.

The rest of this paper is organized as follows. In Sect. 2 we study and review
the analytic construction of pure n-isometries. We also examine a (canonical)
model pure n-isometry. A characterization of invariant subspaces is given in Sect. 3.
Finally, in Sect. 4, we prove that T (S) is isomorphic to T (H 2(Dn)) where S is a
finite codimensional invariant subspaces in H 2(Dn).

2 Pure n-Isometries and Model Pure n-Isometries

In this section, we first derive an explicit analytic representation of a pure n-
isometry. Then we propose a canonical model for pure n-isometries.
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For motivation, let us recall that if X on H is a bounded linear operator, then
X is a unilateral shift operator if and only if X and Mz on H 2

W(X)
(D) are unitarily

equivalent. Here

W(X) = kerX∗ = H � XH,

is the wandering subspace for X (see Halmos [16]) and Mz denotes the multipli-
cation operator by the coordinate function z on H 2

W(X)
(D), that is, (Mzf )(w) =

wf (w) for all f ∈ H 2
W(X)

(D) and w ∈ D. Explicitly, if X is a unilateral shift onH,
then

H = ∞⊕
m=0

XmW(X).

Hence the natural map �X : H → H 2
W(X)

(D) defined by

�X(Xmη) = zmη,

for all m ≥ 0 and η ∈ W(X), is a unitary operator and

�XX = Mz�X.

We call �X theWold-von Neumann decomposition of the shift X.
Now let H be a Hilbert space, and let (V1, . . . , Vn) be a pure n-isometry on H.

Throughout this paper, we shall use the following notation:

Ṽi = �
j 
=i

Vj ,

for all i = 1, . . . , n. For simplicity, we also use the notation

W = W(V ),

and

Wi = W(Vi) and W̃i = W(Ṽi),

for all i = 1, . . . , n. Since V = �n
i=1Vi and Ṽi = V ∗

i V for all i = 1, . . . , n, it is
easy to see that

Wi , W̃i ⊆ W,

for all i = 1, . . . , n. We denote by PWi
and PW̃i

the orthogonal projections of W
onto the subspaces Wi and W̃i , respectively.
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Theorem 2.1 Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H, V =
�n

i=1Vi , and let W = W(V ). Let �V : H → H 2
W (D) be the Wold-von Neumann

decomposition of V . If Ṽi = V ∗
i V and W̃i = W(Ṽi) , then

�V Vi = M�i
�V ,

where

�i(z) = Ui(PW̃i
+ zP ⊥

W̃i
),

for all z ∈ D, and

Ui = (PWVi + Ṽi
∗
)|W ,

is a unitary operator on W and i = 1, . . . , n. In particular, (V1, . . . , Vn) on H and
(M�1 , . . . ,M�n) on H 2

W (D) are unitarily equivalent.

Proof Let �V : H → H 2
W (D) be the Wold-von Neumann decomposition of V .

Then

�V Vi�
∗
V ∈ {Mz}′,

and hence there exists �i ∈ H∞
B(W)

(D) [16, 21] such that �V Vi�
∗
V = M�i

or,
equivalently,

�V Vi = M�i
�V ,

for all i = 1, . . . , n. Note that M�i
on H 2

W (D) is defined by

(M�i
f )(z) = �i(z)f (z), (2.1)

for all f ∈ H 2
W (D), z ∈ D and i = 1, . . . , n. We now proceed to compute the

bounded analytic functions {�i}ni=1. Our method follows the construction in [20].
In fact, a close variant of Theorem 2.1 below follows from Theorems 3.4 and 3.5 of
[20]. We will only sketch the construction, highlighting the essential ingredients for
our present purpose. Let i ∈ {1, . . . , n}, z ∈ D and η ∈ W . By an abuse of notation,
we will also denote the constant function η in H 2

W (D) corresponding to the vector
η ∈ W by η itself. Then from (2.1), we have that

�i(z)η = (M�i
η)(z) = (�V Vi�

∗
V η)(z).



Joint Invariant Subspaces and C∗-Algebras 153

Now it follows from the definition of �V that �∗
V η = η, and hence �i(z)η =

(�V Viη)(z). But IW = PW̃i
+ Ṽi Ṽ

∗
i |W yields that Viη = ViPW̃i

η + V Ṽ ∗
i η and

thus

�V Viη = �V (ViPW̃i
η + V Ṽ ∗

i η)

= �V (ViPW̃i
η) + �V (V Ṽ ∗

i η)

= �V (ViPW̃i
η) + Mz�V (Ṽ ∗

i η),

as �V V = Mz�V . Now, since V ∗(Vi(I − Ṽi Ṽ
∗
i )V ∗

i ) = 0 and V ∗(Ṽ ∗
i η) = 0, it

follows that ViPW̃i
η ∈ W and Ṽ ∗

i η ∈ W . This implies that

�V Viη = ViPW̃i
η + MzṼ

∗
i η,

and so �i(z)η = ViPW̃i
η + zṼ ∗

i η. It follows that �i(z) = Vi |W̃i
+ zṼ ∗

i |
ṼiWi

as

W = ṼiWi ⊕ W̃i . Finally, W = Wi ⊕ ViW̃i implies that

Ui =
[
Ṽ ∗

i |
ṼiWi

0

0 Vi |W̃i

]
:

ṼiWi

⊕
W̃i

→
Wi

⊕
ViW̃i

,

is a unitary operator on W . Therefore

�i(z) = Ui(PW̃i
+ zP ⊥

W̃i
),

for all z ∈ D. By definition of Ui , it follows that Ui = (ViPW̃i
+ Ṽi

∗
)|W . This and

ViPW̃i
= PWVi, (2.2)

yields Ui = (PWVi + Ṽi
∗
)|W . �

We now study the coefficients of the one-variable polynomials in Theorem 2.1
more closely and prove that the corresponding pure n-isometry (M�1 , . . . ,M�n)

on H 2
W (D) is a model pure n-isometry (see Sect. 1 for the definition of model pure

n-isometries).
Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H. Consider the ana-

lytic representation (M�1, . . . ,M�n) onH 2
W (D) of (V1, . . . , Vn) as in Theorem 2.1.

First we prove that {Uj }nj=1 is a commutative family. Let p, q ∈ {1, . . . , n} and
p 
= q. As W = kerV ∗, it follows that

Ṽ ∗
p Ṽ ∗

q |W = 0.
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Then using (2.2) we obtain

UpUq = (PWVp + Ṽ ∗
p )(PWVq + Ṽ ∗

q )|W
= (PWVpPWVq + Ṽ ∗

p PWVq + PWVpṼ ∗
q )|W

= (PWVpVq + �
i 
=p,q

V ∗
i PW̃q

+ VpPW̃p
Ṽ ∗

q )|W

= (PWVpVq + ( �
i 
=p,q

V ∗
i )(PW̃q

+ ṼqPW̃p
Ṽ ∗

q ))|W

= (PWVpVq + ( �
i 
=p,q

V ∗
i ))|W ,

as (PW̃q
+ ṼqPW̃p

Ṽ ∗
q )|W = IW , and hence

UpUq = UqUp,

follows by symmetry. Now if I ⊆ {1, . . . , n}, then the same line of arguments as
above yields

�
i∈I

Ui = (PW (�
i∈I

Vi) + ( �
i∈I c

V ∗
i ))|W . (2.3)

In particular, since PWV |W = 0, we have that

n

�
i=1

Ui = IW .

The following lemma will be crucial in what follow.

Lemma 2.2 Fix 1 ≤ j ≤ n. Let I ⊆ {1, . . . , n}, and let j /∈ I . Then

(�
i∈I

U∗
i )P ⊥

W̃j
(�
i∈I

Ui) = ( �
i∈I c\{j}

Vi)( �
i∈I c\{j}

V ∗
i )|W − ( �

i∈I c
Vi)( �

i∈I c
V ∗

i )|W .

Proof Since PW̃j
= IW−PW Ṽj Ṽ

∗
j |W , we have P ⊥

W̃j

= PW Ṽj Ṽ
∗
j |W = Ṽj Ṽ

∗
j |W .

By once again using the fact that V ∗|W = PWV |W = 0, and by (2.3), one sees that

(�
i∈I

U∗
i )P ⊥

W̃j
(�
i∈I

Ui) = [(�
i∈I

V ∗
i ) + PW ( �

i∈I c
Vi)]Ṽj Ṽ

∗
j [PW (�

i∈I
Vi) + ( �

i∈I c
V ∗

i )]|W

= ( �
i∈I c\{j}

Vi)Ṽ
∗
j PW (�

i∈I
Vi)|W

= ( �
i∈I c\{j}

Vi)Ṽ
∗
j (I − V V ∗)(�

i∈I
Vi)|W

= ( �
i∈I c\{j}

Vi)( �
i∈I c\{j}

V ∗
i )|W − ( �

i∈I c
Vi)( �

i∈I c
V ∗

i )|W

This completes the proof of the lemma. �
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Theorem 2.3 If (V1, . . . , Vn) be an n-isometry on a Hilbert space H, and let
U1, . . . , Un be unitary operators as in Theorem 2.1. Then

(a) UpUq = UqUp for p, q = 1, . . . n,
(b)

∏n
p=1 Up = IW ,

(c) (P ⊥
W̃i

+ U∗
i P ⊥

W̃j

Ui) = (P ⊥
W̃j

+ U∗
j P ⊥

W̃i

Uj ) ≤ IW (1 ≤ i < j ≤ n),

(d) P ⊥
W̃1

+U∗
1P ⊥

W̃2
U1+U∗

1U∗
2P ⊥

W̃2
U2U1+· · ·+ (�

n−1
i=1 U∗

i )P ⊥
W̃n

(�
n−1
i=1 Ui) = IW .

Proof By Lemma 2.2 applied to I = {p} and j = q, where p, q ∈ {1, . . . , n} and
p 
= q, we have

U∗
pP ⊥

W̃q
Up = ( �

i 
=p,q
Vi)( �

i 
=p,q
V ∗

i )|W − ṼpṼp
∗|W ,

hence

(P ⊥
W̃p

+ U∗
pP ⊥

W̃q
Up) = PW ṼpṼp

∗|W + ( �
i 
=p,q

Vi)( �
i 
=p,q

V ∗
i )|W − PW ṼpṼp

∗|W

= ( �
i 
=p,q

Vi)( �
i 
=p,q

V ∗
i )|W

≤ IW .

Therefore by symmetry, we have

(P ⊥
W̃p

+ U∗
pP ⊥

W̃q
Up) = (P ⊥

W̃q
+ U∗

q P ⊥
W̃p

Uq) ≤ IW .

Finally, we let Ij = {1, . . . , j − 1} for all 1 < j ≤ n and In+1 = {1, . . . , n}. Then
Lemma 2.2 implies that for 1 < j ≤ n,

( �
i∈Ij

Ui)P
⊥
W̃j

( �
i∈Ij

U∗
i ) = [( �

i∈I c
j+1

Vi)( �
i∈I c

j+1

V ∗
i ) − ( �

i∈I c
j

Vi)( �
i∈I c

j

V ∗
i )]|W .

This and P ⊥
W̃1

= Ṽ1Ṽ
∗
1 |W imply that

P ⊥
W̃1

+ U∗
1P ⊥

W̃2
U1 + U∗

1U∗
2P ⊥

W̃3
U2U1 + · · · + (

n−1
�
i=1

U∗
i )P ⊥

W̃n
(
n−1
�
i=1

Ui) = IW .

This completes the proof of the theorem. �
As a corollary, we have:

Corollary 2.4 Let H be a Hilbert space and (V1, . . . , Vn) be a pure n-isometry
on H. Let (M�1, . . . ,M�n) be the pure n-isometry as constructed in Theorem 2.1,
and let (M�1 , . . . , M�n) on H 2

W̃ (D), for some Hilbert space W̃ , unitary operators
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{Ũi}ni=1 and orthogonal projections {Pi}ni=1 on W̃ , be a model pure n-isometry.
Then:

(a) (M�1, . . . ,M�n) is a model pure n-isometry.
(b) (V1, . . . , Vn) and (M�1, . . . , M�n) are unitarily equivalent.
(c) (V1, . . . , Vn) and (M�1 , . . . ,M�n) are unitarily equivalent if and only if there

exists a unitary operator W : W → W̃ such that WUi = ŨiW and WPi =
P̃iW for all i = 1, . . . , n.

Proof Parts (a) and (b) follows directly from the previous theorem. The third part
is easy and readily follows from Theorem 4.1 in [20] or Theorem 2.9 in [5]. �

Combining Corollary 2.4 with Theorem 2.3, we have the following characteriza-
tion of commutative isometric factors of shift operators.

Corollary 2.5 Let E be a Hilbert space, and let {�i}ni=1 ⊆ H∞
B(E)

(D) be a
commutative family of isometric multipliers. Then

Mz = n

�
i=1

M�j
,

or, equivalently

n

�
i=1

�j(z) = zIE , (z ∈ D)

if and only if, up to unitary equivalence, (M�1, . . . , M�n) is a model pure n-
isometry.

In other words, zIE factors as n commuting isometric multipliers {�i}ni=1 in
H∞
B(E)

(D) if and only if there exist unitary operators {Ui}ni=1 on E and orthogonal
projections {Pi}ni=1 on E satisfying the properties (a)–(d) in Theorem 2.3 such that
�i(z) = Ui(P

⊥
i + zPi) for all i = 1, . . . , n.

3 Joint Invariant Subspaces

Let W be a Hilbert space. Let (M�1 , . . . ,M�n) be a model pure n-isometry on
H 2
W (D), and let S be a closed invariant subspace for (M�1, . . . ,M�n) on H 2

W (D),
that is

M�i
S ⊆ S,

for all i = 1, . . . , n. Then (M�1 |S , . . . ,M�n |S) is an n-tuple of commuting
isometries on S . Clearly

n

�
i=1

(M�i
|S) = (

n

�
i=1

M�i
)|S ,



Joint Invariant Subspaces and C∗-Algebras 157

and since

n

�
j=1

M�j
= Mz,

it follows that

(
n

�
i=1

M�i
)|S = Mz|S , (3.1)

that is, S is a invariant subspace for Mz on H 2
W (D). Moreover, since Mz|S is a

unilateral shift on S , the tuple (M�1 |S , . . . ,M�n |S) is a pure n-isometry on S . Then
by Corollary 2.4 there is a model pure n-isometry (M�1 , . . . ,M�n) on H 2

W̃ (D), for

some Hilbert space W̃ , such that (M�1 |S , . . . ,M�n |S) and (M�1, . . . ,M�n) are
unitarily equivalent. The main purpose of this section is to describe the invariant
subspaces S in terms of the model pure n-isometry (M�1 , . . . , M�n).

As a motivational example, consider the classical n = 1 case. Here the model
pure 1-isometry is the multiplication operator Mz on H 2

W (D) for some Hilbert space
W . Let S be a closed subspace of H 2

W (D). Then by the Beurling [7], Lax [18] and
Halmos [16] theorem (or see page 239, Theorem 2.1 in [13]), S is invariant for Mz if
and only if there exist a Hilbert spaceW∗ and an inner function � ∈ H∞

B(W∗,W)
(D)

such that

S = �H 2
W∗(D).

Moreover, in this case, if we set

V = Mz|S ,

then W∗ = S � zS and V on S and Mz on H 2
W∗(D) are unitarily equivalent. This

follows directly from the above representation of S . Indeed, it follows that X =
M� : H 2

W∗(D) → ranM� = S is a unitary operator and

XMz = V X.

Now, we proceed with the general case.

Theorem 3.1 Let n > 1. Let W be a Hilbert space, (M�1 , . . . ,M�n) be a model
pure n-isometry on H 2

W (D), and let S be a closed subspace of H 2
W (D). Then S

is invariant for (M�1 , . . . ,M�n) on H 2
W (D) if and only if there exist a Hilbert

space W∗, an inner function � ∈ H∞
B(W∗,W)

(D) and a model pure n-isometry

(M�1 , . . . ,M�n) on H 2
W∗(D) such that

S = �H 2
W∗(D),
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and

�j� = ��j ,

for all j = 1, . . . , n.

Proof Let (M�1, . . . ,M�n) be a model pure n-isometry on H 2
W (D), and let S be a

closed invariant subspace for (M�1, . . . ,M�n) on H 2
W (D). Let

W∗ = S � zS.

Since S is an invariant subspace for Mz on H 2
W (D) (see Eq. (3.1)), by Beurling, Lax

and Halmos theorem, there exists an inner function � ∈ H∞
B(W∗,W)

(D) such that S
can be represented as

S = �H 2
W∗(D),

If 1 ≤ j ≤ n, then

�jS ⊆ S,

implies that ran (M�j
M�) ⊆ ran M�, and so by Douglas’s range and inclusion

theorem [11]

M�j
M� = M�M�j

,

for some �j ∈ H∞
B(W∗)(D). Note that M�j

M� is an isometry and ‖��jf ‖ =
‖�jf ‖ for each f ∈ H 2

W∗(D). But then ‖M�j
f ‖ = ‖f ‖ implies that M�j

is an
isometry, that is, �j is an inner function, and hence

M�j
= M∗

�M�j
M�,

for all j = 1, . . . , n. So

n

�
i=1

M�i
= (M∗

�M�1M�) · · · (M∗
�M�nM�).

Now Pran M� = M�M∗
� and �j�H 2

W∗(D) ⊆ �H 2
W∗(D) implies that

M�M∗
�M�j

M� = M�j
M�,

for all j = 1, . . . , n. Consequently

n

�
j=1

M�j
= M∗

�(
n

�
j=1

M�j
)M∗

� = M∗
�MzM� = M∗

�M�Mz = Mz,
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that is, (M�1 , . . . ,M�n) is a pure n-isometry on H 2
W∗(D). In view of Corollary 2.5,

this also implies that the tuple (M�1, . . . , M�n) is a model pure n-isometry. This
completes the proof of the theorem. �

The representation of S is unique in the following sense: if there exist a Hilbert
space Ŵ , an inner multiplier �̂ ∈ H∞

B(Ŵ,W)
(D) and a model pure n-isometry

(M
�̂1

, . . . ,M
�̂n

) on H 2
Ŵ (D) such that S = �̂H 2

Ŵ (D) and �i�̂ = �̂�̂i for all

i = 1, . . . , n, then there exists a unitary τ : W∗ → Ŵ such that

� = �̂τ,

and

�̂j τ = τ�j (j = 1, . . . , n).

In other words, the model pure n-isometries (M
�̂1

, . . . , M
�̂n

) on H 2
Ŵ (D) and

(M�1 , . . . ,M�n) on H 2
W∗(D) are unitary equivalent (under the same unitary τ ).

Indeed, the existence of the unitary τ along with the first equality follows from the
uniqueness of the Beurling, Lax and Halmos theorem (cf. page 239, Theorem 2.1 in
[13]). For the second equality, observe that (see the uniqueness part in [19])

�̂τ�i = ��i = �i� = �i�̂τ,

that is �̂τ�i = �̂�̂iτ , and so

τ�i = �̂iτ,

for all i = 1, . . . , n.
It is curious to note that the content of Theorem 3.1 is related to the question [1]

and its answer [24] on the classifications of invariant subspaces of 
-isometries. A
similar result also holds for invariant subspaces for the multiplication operator tuple
on the Hardy space over the unit polydisc in C

n (see [19]).
Our approach to pure n-isometries has other applications to n-tuples, n ≥ 2, of

commuting contractions (cf. see [9]) that we will explore in a future paper.

4 C∗-Algebras Generated by Commuting Isometries

In this section, we extend Seto’s result [26] on isomorphic C∗-algebras of invariant
subspaces of finite codimension in H 2(D2) to that in H 2(Dn), n ≥ 2. Given a
Hilbert space H, the set of all compact operators from H to itself is denoted by
K(H). Recall that, for a closed subspace S ⊆ H 2(Dn), we say that S is an invariant
subspace of H 2(Dn) if Mzi

S ⊆ S for all i = 1, . . . , n. Also recall that in the case
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of an invariant subspace S of H 2(Dn), (Rz1 , . . . , Rzn) is an n-isometry on S where

Rzi
= Mzi

|S ∈ B(S) (i = 1, . . . , n).

Lemma 4.1 If S is an invariant subspace of finite codimension in H 2(Dn), then
K(S) ⊆ T (S).

Proof Since T (S) is an irreducible C∗-algebra (cf. [26, Proposition 2.2]), it is
enough to prove that T (S) contains a non-zero compact operator. As

n

�
i=1

(IH 2(Dn) − Mzi
M∗

zi
) = PC ∈ T (H 2(Dn)),

we are done when S = H 2(Dn). Let us now suppose that S is a proper subspace of
H 2(Dn). For arbitrary 1 ≤ i < j ≤ n, we have

[R∗
zi
, Rzj

] = PSM∗
zi
Mzj

|S − PSMzj
PSM∗

zi
|S = PSMzj

PS⊥M∗
zi
|S ∈ K(S),

as S⊥ is finite dimensional. It remains for us to prove that [R∗
zi
, Rzj

] 
= 0 for
some 1 ≤ i < j ≤ n. If not, then S is a proper doubly commuting invariant
subspace with finite codimension. As a result, we would have S = ϕH 2(Dn) for
some inner function ϕ ∈ H∞(Dn) ([25]) and hence S has infinite codimension (see
the corollary in page 969, [2]), a contradiction. �

In what follows, a finite rank operator on a Hilbert space will be denoted by F

(without referring to the ambient Hilbert space). Also, ifM is an invariant subspaces
of H 2(Dn), then we set

RM
zi

= Mzi
|M ∈ B(M),

and simply write Rzi
, i = 1, . . . , n, when M is clear from the context.

Lemma 4.2 SupposeM1 andM2 are invariant subspaces of H 2(Dn),M1 ⊆ M2
and dim(M2�M1) < ∞. Then T (M1) = {PM1T |M1 : T ∈ T (M2)}. Moreover,

if L is a closed subspace of M1 and P
M2
L ∈ T (M2), then P

M1
L ∈ T (M1).

Proof Note that RM2
zi

|M1 = R
M1
zi

and so, by taking adjoint, we have

PM1(R
M2
zi

)∗|M1 = (RM1
zi

)∗,

for all i = 1, . . . , n. Then R
M1
zi

(R
M1
zj

)∗ = PM1R
M2
zi

P
M2
M1

(R
M2
zj

)∗|M1 , i =
1, . . . , n. This yields

RM1
zi

(RM1
zj

)∗ = PM1R
M2
zi

IM2(R
M2
zj

)∗|M1 − PM1R
M2
zi

P
M2
M2�M1

(RM2
zi

)∗|M1

= PM1R
M2
zi

(RM2
zj

)∗|M1 + F,
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for all i, j = 1, . . . , n, as dim(M2 � M1) < ∞. Similarly (R
M1
zj

)∗RM1
zi

=
PM1(R

M2
zj

)∗RM2
zi

|M1 + F for all i, j = 1, . . . , n. Now let T1 ∈ T (M1) be a
finite word formed from the symbols

{RM1
zi

, (RM1
zi

)∗ : i = 1, . . . , n},

and let T2 ∈ T (M2) be the same word but formed from the corresponding symbols
in

{RM2
zi

, (RM2
zi

)∗ : i = 1, . . . , n}.

Then T1 = PM1T2|M1+F . Since both T (M1) and {PM1T |M1 : T ∈ T (M2)} are
closed subspaces of B(M1) and both contain all the compact operators in B(M1),
it follows that T (M1) = {PM1T |M1 : T ∈ T (M2)}. The second assertion now
clearly follows from the first one. �

A thorough understanding of co-doubly commuting invariant subspaces of finite
codimension is important to analyze C∗-algebras of invariant subspaces of finite
codimension inH 2(Dn). If S is a closed invariant subspace ofH 2(D), then we know
that S = θH 2(D) for some inner function θ ∈ H∞(D). To simplify notations, for a
given inner function θ ∈ H∞(D), we denote

Sθ = θH 2(D), and Qθ = H 2(D) � θH 2(D).

Also, given an inner function θi ∈ H∞(D), 1 ≤ i ≤ n, denote by Mθi
the

multiplication operator

(Mθi
f )(z1, . . . , zn) = θi(zi)f (z1, . . . , zn)

for all f ∈ H 2(Dn) and (z1, . . . , zn) ∈ D
n. Recall now that an invariant subspace S

of H 2(Dn) is said to be co-doubly commuting [23] if S = S� where

S� = (Qϕ1 ⊗ · · · ⊗ Qϕn)
⊥, (4.1)

and ϕi , i = 1, . . . , n, is either inner or the zero function. We warn the reader that
the suffix � in S� refers to the finite Blaschke products {ϕi}ni=1. Here, in view of
(4.1) (or see [23]), we have

(MϕpM∗
ϕp

)(Mϕq M
∗
ϕq

) = (Mϕq M
∗
ϕq

)(MϕpM∗
ϕp

),

for all p, q = 1, . . . , n, and

PS�
= IH 2(Dn) − n

�
i=1

(IH 2(Dn) − Mϕi
M∗

ϕi
). (4.2)
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It also follows that

S� = Mϕ1H
2(Dn) + · · · + MϕnH

2(Dn).

Therefore, S� has finite codimension if and only if ϕi is a finite Blashcke product
for all i = 1, . . . , n. Moreover, it can be proved following the same line of argument
as Lemma 3.1 in [26] that if S is an invariant subspace of H 2(Dn) then S is of finite
codimension if and only if there exist finite Blaschke products ϕ1, . . . , ϕn such that

S� ⊆ S.

Given S� as in (4.1) and 1 ≤ i < j ≤ n, we define Q�[i, j ] by

Q�[i, j ] = Qϕi
⊗ Qϕi+1 ⊗ · · · ⊗ Qϕj

⊆ H 2(Dj−i+1).

Lemma 4.3 Let {ϕi}ni=1 be finite Blaschke products. If

L1 = Q�[1, n − 1]⊥ ⊗ H 2(D), L2 = Q�[1, n − 1] ⊗ Sϕn,

L3 = Q�[1, n − 1] ⊗ H 2(D),L′
2 = Q�[1, n − 1] ⊗ ϕnSϕn

and

L′′
2 = Q�[1, n − 1] ⊗ ϕnQϕn,

then PL1 , PL2 , PL′
2
and PL′′

2
are in T (H 2(Dn)) and P

S�

L1
, P

S�

L2
, P

S�

L′
2
and P

S�

L′′
2
are

in T (S�).

Proof Clearly S� = L1 ⊕L2, H 2(Dn) = L1 ⊕L3 and L2 = L′
2 ⊕L′′

2. By virtue of
Lemma 4.2, we only prove the lemma for H 2(Dn). Since L′′

2 is finite-dimensional,
it follows, by Lemma 4.1, that PL′′

2
∈ T (H 2(Dn)). Since ϕi ∈ H∞(D) is a finite

Blaschke product, it follows that ϕi is holomorphic in an open set containing the
closure of the disc, and hence Mϕi

= ϕi(Mzi
) ∈ T (H 2(Dn)) for all i = 1, . . . , n.

Then, by (4.2), PS�
∈ T (H 2(Dn)). In view of S� = L1 ⊕ L2, it is then enough to

prove only that PL2 ∈ T (H 2(Dn)). This readily follows from the equality

PL2 =
( n−1

�
i=1

(IH 2(Dn) − Mϕi
M∗

ϕi
)
)
MϕnM

∗
ϕn

.

This completes the proof of the lemma. �
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In particular, T (S�) contains a wealth of orthogonal projections. This leads to
some further observations concerning the C∗-algebra T (S�). First, given S� as in
(4.1), we consider the unitary operator U : H 2(Dn) → S� defined by

U =
[
IL1 0
0 Mϕn

]
:
L1

⊕
L3

→
L1

⊕
L2

.

Then U = PL1 +MϕnPL3 and U∗ = P
S�

L1
+M∗

ϕn
P
S�

L2
. We have the following result:

Theorem 4.4 If {ϕi}ni=1 are finite Blaschke products, then

U∗T (S�)U = T (H 2(Dn)).

In particular, T (S�) and T (H 2(Dn)) are unitarily equivalent.

Proof A simple computation first confirms that

U∗RznU = Mzn ∈ T (H 2(Dn)),

that is

Mzn ∈ U∗T (S�)U and Rzn ∈ UT (H 2(Dn))U∗.

Next, let i = 1, . . . , n − 1. Then

Rzi
U = Mzi

PL1 + Rzi
MϕnPL3 = Mzi

PL1 + Mzi
MϕnPL3 ,

as MϕnL3 = L2 ⊆ S�, and so

U∗Rzi
U = (P

S�

L1
+ M∗

ϕn
P
S�

L2
)(Mzi

PL1 + Mzi
MϕnPL3)

= Mzi
PL1 + PL1Mzi

MϕnPL3 + M∗
ϕn

PL2Mzi
MϕnPL3 ,

as Mzi
L1 ⊆ L1 and Mzi

MϕnL3 = Mzi
L2 ⊆ S�. Then U∗Rzi

U ∈ T (H 2(Dn)) for
al i = 1, . . . , n, by Lemma 4.3. In particular

U∗T (S�)U ⊆ T (H 2(Dn)).

On the other hand, since L2 = L′
2 ⊕ L′′

2 and L′′
2 is finite dimensional, it follows

that PL2 = PL′
2

+ F , and thus U∗ = U∗|L1 + U∗|L′
2

+ F . Now UMzi
U∗|L1 =

UMzi
|L1 = Mzi

|L1 as ziL1 ⊆ L1 and hence

UMzi
U∗|L1 = Rzi

|L1,
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and on the other hand

UMzi
U∗|L′

2
= U(Mzi

M∗
ϕn

|L′
2
) = U(Mzi

PS�
M∗

ϕn
)|L′

2
= U(Rzi

R∗
ϕn

)|L′
2
,

where Rϕn = Mϕn |S�
. Moreover, since L3 = L2⊕S⊥

� and S⊥
� is finite dimensional,

it follows that PL3 = PL2 + F , and thus

UMzi
U∗|L′

2
= PL1Rzi

R∗
ϕn

|L′
2
+ MϕnPL3Rzi

R∗
ϕn

|L′
2

= PL1Rzi
R∗

ϕn
|L′

2
+ MϕnPL2Rzi

R∗
ϕn

|L′
2
+ F

= P
S�

L1
Rzi

R∗
ϕn

|L′
2
+ RϕnP

S�

L2
Rzi

R∗
ϕn

|L′
2
+ F,

and hence

UMzi
U∗ = Rzi

P
S�

L1
+ P

S�

L1
Rzi

R∗
ϕn

P
S�

L′
2

+ RϕnP
S�

L2
Rzi

R∗
ϕn

P
S�

L′
2

+ F.

By Lemma 4.3, it follows then that UMzi
U∗ ∈ T (S�) and so

UT (H 2(Dn))U∗ ⊆ T (S�).

Therefore, the conclusion follows from the fact thatU∗RznU = Mzn ∈ T (H 2(Dn)).
�

Now let S be an invariant subspace of finite codimension, and let S� ⊆ S , as in
(4.1), for some finite Blashcke products {ϕi}ni=1. We proceed to prove that T (S) is
unitarily equivalent to T (S�). Let

m := dim(S � S�).

Observe that

PS�
= Mϕ1M

∗
ϕ1

+ (IH 2(Dn) − Mϕ1M
∗
ϕ1

)
(
IH 2(Dn) − n

�
i=2

(IH 2(Dn) − Mϕi
M∗

ϕi
)
)
,

and so

S� =
(
Sϕ1 ⊗ H 2(Dn−1)

)
⊕

(
Qϕ1 ⊗ Q�[2, n]⊥

)
.

Lemma 4.5 PS
Sϕ1⊗H 2(Dn−1)

, PS
Qϕ1⊗Q�[2,n]⊥ ∈ T (S) and

P
S�

Sϕ1⊗H 2(Dn−1)
, P

S�

Qϕ1⊗Q�[2,n]⊥ ∈ T (S�).
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Proof First one observes that, by virtue of Lemma 4.2, it is enough to prove the
result for S . Note that Mϕ1S ⊆ S . Define Rϕ1 ∈ B(S) by Rϕ1 = Mϕ1 |S . Then
Rϕ1 = ϕ1(Mz1)|S ∈ T (S) and

PMϕ1S = Rϕ1R
∗
ϕ1

∈ T (S).

Now on the one hand

Sϕ1 ⊗ H 2(Dn−1) = Mϕ1H
2(Dn) = Mϕ1S ⊕

(
Mϕ1H

2(Dn) � Mϕ1S
)
,

also, Mϕ1H
2(Dn) � Mϕ1S = Mϕ1(H

2(Dn) � S) is finite dimensional, and hence
we conclude PSϕ1⊗H 2(Dn−1) ∈ T (S). This along with dim (S � S�) < ∞ and the
decomposition

S = (Sϕ1 ⊗ H 2(Dn−1)) ⊕ (Qϕ1 ⊗ Q�[2, n]⊥) ⊕ (S � S�),

implies that PQϕ1⊗Q�[2,n]⊥ ∈ T (S). This completes the proof of the lemma. �

For simplicity, let us introduce some more notation. Given q ∈ N, let us denote

C
⊗q = C ⊗ · · · ⊗ C ⊆ H 2(Dq).

Note that C⊗q is the one-dimensional subspace consisting of the constant functions
in H 2(Dq). Recalling dim(S � S�) = m(< ∞), we consider the orthogonal
decomposition of Sϕ1 ⊗ H 2(Dn−1) as:

Sϕ1 ⊗ H 2(Dn−1) = S1 ⊕ S2 ⊕ S3,

where ⎧⎪⎪⎨
⎪⎪⎩

S1 = (ϕ1Qzm) ⊗ C
⊗(n−2) ⊗ H 2(D)

S2 = Szmϕ1 ⊗ C
⊗(n−2) ⊗ H 2(D)

S3 = Sϕ1 ⊗ (C⊗(n−2))⊥ ⊗ H 2(D).

Finally, we define

L = S2 ⊕ S3 ⊕
(
Qϕ1 ⊗ Q�[2, n]⊥

)
.

With this notation we have

S� = S1 ⊕ L,
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and

S = (S � S�) ⊕ S1 ⊕ L.

Lemma 4.6 PS
Si

∈ T (S) and P
S�

Si
∈ T (S�) for all i = 1, 2, 3.

Proof In view of Lemma 4.2, it is enough to prove that PS
Si

∈ T (S), i = 1, 2, 3.
Note that PSϕ1⊗C⊗(n−2)⊗H 2(D) ∈ T (S) as

PSϕ1⊗C⊗(n−2)⊗H 2(D) = PSϕ1⊗H 2(Dn−1)(IS − X)PSϕ1⊗H 2(Dn−1),

where

X =
∑

2≤i1<···<ik≤n−1

(−1)k+1Rzi1
· · · Rzik

R∗
zi1

· · ·R∗
zik

.

Therefore

PS3 = PSϕ1⊗H 2(Dn−1) − PSϕ1⊗C⊗(n−2)⊗H 2(D) ∈ T (S).

Finally, since PS2 = Rm
z1

PSϕ1⊗C⊗(n−2)⊗H 2(D)R
∗m
z1

and S1 ⊕ S2 = Sϕ1 ⊗ C
⊗(n−2) ⊗

H 2(D), it follows that PS1 and PS2 are in T (S). �
Before we proceed to the unitary equivalence of the C∗-algebras T (S) and

T (S�) we note that

ϕ1Qzm = span {ϕ1, ϕ1z, . . . , ϕ1z
m−1}.

Theorem 4.7 If S is a finite co-dimensional invariant subspace of H 2(Dn) and
S� ⊆ S for some finite Blaschke products {ϕi}ni=1, then T (S) and T (S�) are
unitarily equivalent.

Proof By noting that H 2(D) = C⊕Sz, we decompose S1 as S1 = F1⊕M1 where

F1 = (ϕ1Qzm) ⊗ C
⊗(n−1), and M1 = (ϕ1Qzm) ⊗ C

⊗(n−2) ⊗ Sz.

Taking into consideration dimF1 = dim (S � S�), we have a unitary V : F1 →
S � S�, and then, using the decompositions

S� = F1 ⊕ M1 ⊕ L.

and

S = (S � S�) ⊕ S1 ⊕ L,



Joint Invariant Subspaces and C∗-Algebras 167

we see that

U =
⎡
⎣V 0 0
0 M∗

zn
0

0 0 IL

⎤
⎦ : F1 ⊕ M1 ⊕ L → (S � S�) ⊕ S1 ⊕ L,

defines a unitary from S� to S . We claim that U∗T (S)U = T (S�). First we
prove that U∗T (S)U ⊆ T (S�). Since dimF1 < ∞, it suffices to prove that
U∗RS

zi
U |M1⊕L ∈ T (S�) for all i = 1, · · · , n. Observe first that UM1 =

M∗
zn
M1 = S1 ⊆ S�, MznS1 ⊆ S1 and MznL ⊆ L. Since

U∗RS
zn

U |M1⊕L = U∗MznM
∗
zn

|M1 + Mzn |L,

and U∗MznM
∗
zn

|M1 = M2
zn

M∗
zn

|M1 = M2
zn

PS�
M∗

zn
|M1 , it follows that

U∗RS
zn

U |M1⊕L = (RS�
zn

)2(RS�
zn

)∗PS�

M1
+ RS�

zn
P
S�

L ∈ T (S�).

Now for 1 < i < n, we have

U∗RS
zi
U |M1⊕L = U∗Mzi

M∗
zn

|M1 + U∗Mzi
|L,

where U∗Mzi
M∗

zn
|M1 = Mzi

M∗
zn

|M1 as ziS1 ⊆ S3 ⊆ L. On the other hand, since
ziS2 ⊆ S3 we have ziL ⊆ L and hence U∗Mzi

|L = Mzi
|L, whence

U∗RS
zi
U |M1⊕L = RS�

zi
(RS�

zn
)∗PS�

M1
+ RS�

zi
P
S�

L ∈ T (S�).

Now we decompose M1 as M1 = K1 ⊕ K̃1 where

K1 = (ϕ1Qzm−1) ⊗ C
⊗(n−2) ⊗ Sz and K̃1 = (ϕ1z

m−1
C) ⊗ C

⊗(n−2) ⊗ Sz.

Then

U∗RS
z1

U |M1 = U∗Mz1M
∗
zn

|K1 + U∗Mz1M
∗
zn

|K̃1
= MznMz1M

∗
zn

|K1 + Mz1M
∗
zn

|K̃1
,

as Mz1M
∗
zn
K1 ⊆ S1 and Mz1M

∗
zn
K̃1 ⊆ S2. On the other hand, U∗RS

z1
U |S2⊕S3 =

Mz1 |S2⊕S3 as Mz1(S2 ⊕ S3) ⊆ S2 ⊕ S3 ⊆ L, and finally, by denoting N = Qϕ1 ⊗
Q�[2, n]⊥, we have

U∗RS
z1

U |N = U∗Mz1 |N = U∗(IS − PS
S1

)Mz1 |N + U∗PS
S1

Mz1 |N .

Then S � S1 = (S � S�) ⊕ L and Mz1N ⊆ S� implies that

U∗RS
z1

U |N = P
S�

L Mz1 |N + MznP
S�

S1
Mz1 |N ,
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and so

U∗RS
z1

U |M1⊕L = RS�
zn

RS�
z1

(RS�
zn

)∗PS�

K1
+ RS�

z1
(RS�

zn
)∗PS�

K̃1
+ RS�

z1
P
S�

S2⊕S3

+ P
S�

L RS�
z1

P
S�

N + RS�
zn

P
S�

S1
RS�

z1
P
S�

N + F.

This implies that U∗RS
z1

U ∈ T (S�), and therefore U∗T (S)U ⊆ T (S�). We now
proceed to prove the reverse inclusion UT (S�)U∗ ∈ T (S). Since dim(S � S�) <

∞, it is enough to prove that UR
S�
zi

U∗|S1⊕L ∈ T (S) for all i = 1, . . . , n. Once
again, note that U∗S1 = M1 ⊆ S�, znM1 ⊆ M1, znS1 ⊆ S1 and znL ⊆ L.
Hence

URS�
zn

U∗|S1⊕L = UM2
zn

|S1 + UMzn |L = Mzn |S1 + Mzn |L,

that is

URS�
zn

U∗|S1⊕L = RS
zn

PS
S1⊕L ∈ T (S).

Now, for fixed 1 < i < n, we have ziM1 ⊆ S3 and ziL ⊆ L. Then

URS�
zi

U∗|S1⊕L = UMzi
Mzn |S1 + UMzi

|L
= Mzi

Mzn |S1 + Mzi
|L

= RS
zi
RS

zn
PS
S1

+ RS
zi
PL ∈ T (S).

Finally, we consider the decomposition S1 = S ′
1 ⊕ S ′′

1 where

S ′
1 = (ϕ1Qzm−1) ⊗ C

⊗(n−2) ⊗ H 2(D) and S ′′
1 = (ϕ1z

m−1
C) ⊗ C

⊗(n−2) ⊗ H 2(D).

Then

URS�
z1

U∗|S1 = UMz1Mzn |S ′
1
+ UMz1Mzn |S ′′

1

= M∗
zn

Mz1Mzn |S ′
1
+ Mz1Mzn |S ′′

1

= Mz1 |S ′
1
+ Mz1Mzn |S ′′

1
,

as z1znS ′
1 ⊆ M1 and z1znS ′′

1 ⊆ S2. Moreover

URS�
z1

U∗|S2⊕S3 = UMz1 |S2⊕S3 = Mz1 |S2⊕S3 ,

as z1(S2 ⊕ S3) ⊆ S2 ⊕ S3. From the definition of N , it follows that

URS�
z1

U∗|N = UP
S�

M1
Mz1 |N + U(IS�

− P
S�

M1
)Mz1 |N ,
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this in turn implies that

URS�
z1

U∗|N = M∗
zn

PS
M1

Mz1 |N + PS
L Mz1 |N + F,

as S� � M1 = F1 ⊕ L and F1 is finite dimensional. Therefore

URS�
z1

U∗|S1⊕L = RS
z1

PS
S ′
1
+ RS

z1
RS

zn
PS
S ′′
1

+ RS
z1

PS
S2⊕S3

+ (RS
zn

)∗PS
M1

Mz1P
S
N + PS

L RS
z1

PS
N + F ∈ T (S).

This completes the proof of the theorem. �
On combining Theorems 4.4 and 4.7, we have the following:

Theorem 4.8 If S is a finite co-dimensional invariant subspace of H 2(Dn), then
T (S) and T (H 2(Dn)) are unitarily equivalent.

In the case n = 2, the proof of the above result is considerably simpler and direct
than the one by Seto [26] (for instance, if n = 2, then 1 < i < n case does not
appear in the proof of Theorem 4.7).
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