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Notations
H, E, Ex Hilbert spaces
B(&, &) The space of all bounded linear operators from £ to &,
B(E) The space of all bounded linear operators on £
D" Open unit polydisc in C"
H?(D") Hardy space on D"
H g D) &-valued Hardy space on D"
H gz& 5*)(]1])") Set of all B(E, £,)-valued bounded analytic functions on D".
(M, ..., M;,) n-tuple of multiplication operator by the coordinate

functions on HZ(D")

(1) All Hilbert spaces are assumed to be over the complex numbers.

(2) For a closed subspace S of a Hilbert space 7, we denote by Ps the orthogonal
projection of # onto S.

(3) For nested closed subspaces M € M> C H, the orthogonal projection of
M onto M is denoted by P/J\\,l/ll2

1 Introduction

Tuples of commuting isometries on Hilbert spaces are cental objects of study in
(multivariable) operator theory. This paper is concerned with the study of analytic
representations, joint invariant subspaces and C*-algebras of a certain class of tuples
of commuting isometries.

To be precise, let H be a Hilbert space, and let (Vi, ..., V,) be an n-tuple of
commuting isometries on . In what follows, we always assume that n > 2. Set

V=1YV
i=1
We say that (Vi,...,V,) is a pure n-isometry if V is a unilateral shift. A closed
subspace S C H2(ID") is said to be an invariant subspace of H*(D") if M,SCS
foralli = 1,...,n where M, is the multiplication operator by the coordinate

function z; on H2(ID"). Simpler (but complex enough) examples of pure n-isometry
can be obtained by taking restrictions of the n-tuple of multiplication operators by
coordinate functions (M;,, ..., M;,) on H 2(D") to invariant subspaces of H 2D
as follows. Given an invariant subspace S of H 2(D"), we let

Ry = My |s € B(S) @i=1,...,n).
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Then it is easy to see that (R;,, ..., R;,) is a pure n-isometry. We denote by 7(S)
the C*-algebra generated by the commuting isometries {R;,, ..., R;,}. We simply
say that 7 (S) is the C*-algebra corresponding to the invariant subspace S.

In this paper we aim to address three basic issues of pure n-isometries: (i) analytic
and canonical models for pure n-isometries, (ii) an abstract classification of joint
invariant subspaces for pure n-isometries, and (iii) the nature of C*-algebra 7 (S)
where S is a finite codimensional invariant subspace in H 2(D™). To that aim, for (i)
and (ii), we consider the initial approach by Berger et al. [6] from a more modern
point of view (due to Bercovici et al. [5]) along with the technique of [20]. For (iii),
we will examine Seto’s approach [26] more closely from “subspace” approximation
point of view.

We now briefly outline the setting and the main contributions of this paper. Let
& be a Hilbert space, and let ¢ € H, gf& (D). We say that ¢ is an inner function if

p(e)*p(e'!) = Ig¢ for almost every ¢ (cf. page 196, [21]). Recall that two n-tuples
of commuting operators (Ay, ..., Ay) on H and (By, ..., B,) on K are said to be
unitarily equivalent if there exists a unitary operator U : H — I such that UA; =
B;U foralli =1, ..., n. In [5], motivated by Berger et al. [6], Bercovici, Douglas
and Foias proved the following result: A pure n-isometry is unitarily equivalent to
a model pure n-isometry. The model pure n-isometries are defined as follows [5]:
Consider a Hilbert space &£, unitary operators {Uy, ..., U,} on £ and orthogonal
projections {Py, ..., P,} on €. Let {®y,..., ®,} C Hg()g)(]D)) be bounded B(£)-
valued holomorphic functions (polynomials) on D, where

Qi) =Ui(PF+zP)  (zeD),

andi =1, ..., n. Then the n-tuple of multiplication operators (Mg, ..., Mg,) on
H g (D) is called a model pure n-isometry if the following conditions are satisfied:

(@ U;U; =U;U;foralli, j=1,...n;

®) Ur---Uy = Ig;

(c) P+ Ui*PjUi =P; + U}‘Pin < Ig foralli # j; and

(d) P+UfPUIHUU;P3UU - -+ UfUS - Uy PyUp—y --- UaUy = Ig.

It is easy to see that a model pure n-isometry is also a pure n-isometry (see page
643 in [5]).

We refer to Bercovici et al. [3-5] and also [8-10, 12, 14, 15, 17, 19, 22, 26] and
[27, 28] for more on pure n-isometries, n > 2, and related topics.

Our first main result, Theorem 2.1, states that a pure r-isometry is unitarily
equivalent to an explicit (and canonical) model pure n-isometry. In other words,
given a pure n-isometry (Vi, ..., V,,) on H, we explicitly solve the above condi-
tions (a)—(d) for some Hilbert space &£, unitary operators {Uy, ..., U,} on £ and
orthogonal projections {Py, ..., P,} on & so that the corresponding model pure n-
isometry (Mo, ..., Mo, ) is unitarily equivalent to (V1, ..., V,,). This also gives a
new proof of Bercovici, Douglas and Foias theorem. On the one hand, our model
pure n-isometry is explicit and canonical. On the other hand, our proof is perhaps
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more computational than the one in [5]. Another advantage of our approach is the
proof of a list of useful equalities related to commuting isometries, which can be
useful in other contexts.

Our second main result concerns a characterization of joint invariant subspaces
of model pure n-isometries. To be precise, let VW be a Hilbert space, and let

(Mg, ..., Mg,) be a model pure n-isometry on H%V(ID)). Let S be a closed sub-
space of H]%V (D). In Theorem 3.1, we prove that S is invariant for (Me,, ..., Mo,)
on HI%V (D) if and only if there exist a Hilbert space W, an inner function ® <
Hg()W*,W) (D) and a model pure n-isometry (My,, ..., My,) on H)%V* (D) such that
S = 0H;, (D),
and
D;0 = OVY;,

foralli =1, ..., n. Moreover, the above representation is unique in an appropriate

sense (see the remark following Theorem 3.1).

The third and final result concerns C*-algebras corresponding to finite codimen-
sional invariant subspaces in H 2(D™). To be more specific, recall that if n = 1
and S and S’ are invariant subspaces of H>(D), then UT (S)U* = T(S') for
some unitary U : S — &'. Indeed, since S = 6 H*(DD) for some inner function
6 € H*° (D), it follows, by Beurling theorem, that U := My : H?(D) - Sisa
unitary and hence U*T (S)U = T (H?(DD)). Clearly, the general case follows from
this special case. For invariant subspaces S and S’ of H?(ID"), we say that 7 (S) and
T (S") are isomorphic as C*-algebras if UT (S)U* = T (S’) holds for some unitary
U :S — &'.1tis then natural to ask: If » > 1 and S and S’ are invariant subspaces
of H*>(D"), are 7 (S) and 7 (S’) isomorphic as C*-algebras?

In the same paper [6], Berger, Coburn and Lebow asked whether T (S) is
isomorphic to 7 (H2(D?)) for every finite codimensional invariant subspaces S in
H?(D?). This question was recently answered positively by Seto in [26]. Here we
extend Seto’s answer from HZ2(D?) to the general case H 2Dy, n > 2.

The rest of this paper is organized as follows. In Sect.2 we study and review
the analytic construction of pure n-isometries. We also examine a (canonical)
model pure n-isometry. A characterization of invariant subspaces is given in Sect. 3.
Finally, in Sect.4, we prove that 7(S) is isomorphic to 7 (H?(D")) where S is a
finite codimensional invariant subspaces in H 2(DM).

2 Pure n-Isometries and Model Pure n-Isometries

In this section, we first derive an explicit analytic representation of a pure n-
isometry. Then we propose a canonical model for pure n-isometries.
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For motivation, let us recall that if X on H is a bounded linear operator, then
X is a unilateral shift operator if and only if X and M, on H W) (D) are unitarily
equivalent. Here

W(X)=kerX*=H S XH,

is the wandering subspace for X (see Halmos [16]) and M, denotes the multipli-
cation operator by the coordinate function z on H, W( X)(ID)) that is, (M, f)(w) =

wf(w) forall f € H. W(X) (D) and w € D. Explicitly, if X is a unilateral shift on H,
then

oo
H= @OX'”W(X).

Hence the natural map Iy : H — W( X)(}D)) defined by
Mx(X"n) =z"n,
for all m > 0 and € W(X), is a unitary operator and
MxX = M, Tx.
We call [Ty the Wold-von Neumann decomposition of the shift X.

Now let ‘H be a Hilbert space, and let (Vq, ..., V;) be a pure n-isometry on H.
Throughout this paper, we shall use the following notation:

Vl =11V,
J#
foralli =1, ..., n. For simplicity, we also use the notation
W =W(),

and
W; = W(V;) and W; = W(V),

foralli =1,...,n. Since V. = II7_, V; and V; = V¥V foralli =1,...,n,itis
easy to see that

Wi, Wi €W,

foralli = 1,...,n. We denote by Py, and Py, the orthogonal projections of W
onto the subspaces W; and Wi, respectively.
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Theorem 2.1 Let (Vy,...,V,) be a pure n-isometry on a Hilbert space H, V =
I_, Vi, and let W = W(V). Let Tly : H — H)%V(]D)) be the Wold-von Neumann
decomposition of V. If\~/, = V'V and Wi = W(V;), then

[MyV; = Mg, Iy,
where
®i(2) = Ui(Pyy, +2Py).
forall z € D, and
Ui = (PwVi + Vi )lw,

is a unitary operatoron W andi = 1, ..., n. In particular, (Vy, ..., V,) on H and
Mg,, ..., Mg,) on H]%V (D) are unitarily equivalent.

Proof Let Iy : H — HﬁV(D) be the Wold-von Neumann decomposition of V.
Then
My V;ITy, € (M.,

and hence there exists ®; € ch(’w)(]]])) [16, 21] such that ITy V;IT}, = Mg, or,
equivalently,

[MyV; = Mg, Iy,
foralli =1, ..., n. Note that M¢, on H)%V(ID)) is defined by

(Mo, )(z) = ®i(2) f(2), (2.1)

for all f € H)%V(D), ze€ Dandi = 1,...,n. We now proceed to compute the
bounded analytic functions {®;}?_,. Our method follows the construction in [20].
In fact, a close variant of Theorem 2.1 below follows from Theorems 3.4 and 3.5 of
[20]. We will only sketch the construction, highlighting the essential ingredients for
our present purpose. Leti € {1, ...,n},z € D and n € V. By an abuse of notation,
we will also denote the constant function 7 in H]%V (D) corresponding to the vector
n € W by n itself. Then from (2.1), we have that

i (2)n = (Mo, n)(2) = (Iy V; Ty, n) (2).
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Now it follows from the definition of Iy that ITj,n = 7, and hence ®;(z)n =
Ty Vin)(z). But Iy = Py, + V;Vi*|yy yields that V;n = V; Py;, n + VV;*n and
thus

My Vin = Ty (Vi Py, 0 + V Vi)
= My (Vi Py, m) + My (V V")
= My (V; Py, m) + M. Ty (Vi*n),

as Iy V = M,Ily. Now, since V*(V;(I — V;V;)V*) = 0 and V*(V;n) = 0, it
follows that V; P, n € WV and \7;"77 € W. This implies that

My Vin = Vi Py, n+ M.V,

and so ®;(z)n = ViPy, n + Z\Z-*n. It follows that ®;(z) = Vily;, + ZVI’*|‘7I-WI- as
W = VW, @ W;. Finally, W = W; & V;W; implies that

- ViW, W,
V»* - 0 i 2 i

Ui = o S e R -
0 Vily, i

142 Viwi

is a unitary operator on V. Therefore
—I7.(P - L
P;(z) = U’(PW,- -I-ZPWi),

for all z € D. By definition of Uj, it follows that U; = (V; PW- + ‘7,-*)|W. This and

ViPy, = PwVi, (22)

yields U; = (Pyy Vi + Vi ). u

We now study the coefficients of the one-variable polynomials in Theorem 2.1
more closely and prove that the corresponding pure n-isometry (Mo, , ..., Mo,)
on H)%V (D) is a model pure n-isometry (see Sect. 1 for the definition of model pure
n-isometries).

Let (V1,...,V,) be a pure n-isometry on a Hilbert space H. Consider the ana-
lytic representation (Mo, ..., Mg,) on H&V(D) of (Vi,...,V,)asin Theorem 2.1.
First we prove that {U;}_, is a commutative family. Let p,q € {1,...,n} and
p % q. As W = ker V*, it follows that

(7% Y7 % _
VoV, lw = 0.
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Then using (2.2) we obtain
UpUy = (PWVy + VI (PwVy + VOlw
= (PwVp PwVy + Vi PwVy + PV, VAl
= (PwV,V, + #1;1,(] Vi Py, + Vo Py, VOl
= (PWV,V, + (#l;l’q V(P + v, Py, V)l

=PwV,Vy+ (1T Vi),
i#p.q

as (qu + VQPW,, Vq*)|W = Iy, and hence

v,Uu, =0,U,,
follows by symmetry. Now if I C {1, ..., n}, then the same line of arguments as
above yields
U = (Pw(I1T Vi) + (T Vi) lw. (2.3)
iel iel iel¢

In particular, since PyyV |y = 0, we have that

n
M U; = Iy.

i=1

The following lemma will be crucial in what follow.

Lemma2.2 Fix1 < j<n. Letl C{l,...,n},andletj ¢ I. Then

(H U; )PJ' (H Up=(C 0 Vo 1 VHlw—(Io V(I VHlw.
ielc\{j} iel°\{j} iel¢ jelc

Proof Since Pz, = Ly—PyV; V lw, we have Pl‘ = PyV; V w =V, V*|W
By once again usmg the fact that V* lw = PwV]w = 0, and by (2.3), one sees that

(ILUH Py, (ITU) = [(IT V) + Py y VoIV VFATPw(IT Vi) + (1T V)llw
iel Jiel iel ielc iel ielc

=( 0 W Pw(l'l Vlw

iel\{j}
=( I Vi)Vj‘(I —VVH(II Vlw
iel°\{j} iel

= I0 Vo I VHIw—(I VoI Vi9)lw
iel\{j} iel\{j} ielf iele

This completes the proof of the lemma. |
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Theorem 2.3 If (Vi,...,V,) be an n-isometry on a Hilbert space H, and let
Ui, ..., Uy, be unitary operators as in Theorem 2.1. Then

(@ UpU, =U,Upforp,g=1,...n,
® IT'_ Up = Iy,
1 1 1 1 . .
(@) (P, +UF P U = (P +USPE U < by (L<i < j <),

@) P +UPg Ui+ UfUs P UsUi++ T2 UDPY, (T4 Un = Dy
Proof By Lemma 2.2 applied to I = {p} and j = ¢, where p,q € {1, ...,n} and
p # q, we have

Uy P Up=C( T V(T V)l = VoV w,
i#p.q i#p.q

hence
(P +UsPE Up) = PwV,V, lw+ (T VOCTT VOlw = PwV,V, lw
P q i#p.q i#p,q

=(m Vo VOHIw
i#p.q i#p.q

< Iw.
Therefore by symmetry, we have
1 L L *pl
(P + U P Up) (qu +U, PWpUq) < Iw.

Finally, welet I; = {1,...,j — 1} forall 1 < j <mand I,;1 = {1,...,n}. Then
Lemma 2.2 implies that for | < j < n,

(1 U)PHnU)-[( m V(o VH—(I v><n VA lw-

iel; Wi iel b ielf, ielf, i€l

This and P\}V =W 171*|W imply that
1

PL +UrPL U +UUIPE ULU +~--+(”ﬁl U Pt ("ﬁl U =1
W, 1W21 12W321 i:lanizll_W.

This completes the proof of the theorem. |
As a corollary, we have:

Corollary 2.4 Let H be a Hilbert space and (Vy, ..., V,) be a pure n-isometry
on H. Let (Mo,, ..., Mgo,) be the pure n-isometry as constructed in Theorem 2.1,
and let (My,, ..., My,) on H;V (D), for some Hilbert space W, unitary operators
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{l},-}?:l and orthogonal projections {P;}!_, on W, be a model pure n-isometry.
Then:

(@ (Mo,, ..., Mo,) is a model pure n-isometry.
(b) (Vi,....,Vy)and (Mo, ..., Ms,) are unitarily equivalent.
© M,...,Vy)and (My,, ..., My,) are unitarily equivalent if and only if there

egcists a unitary operator W : W — W such that WU; = ﬁiW and WP; =
PiW foralli =1,...,n.

Proof Parts (a) and (b) follows directly from the previous theorem. The third part
is easy and readily follows from Theorem 4.1 in [20] or Theorem 2.9 in [5]. |

Combining Corollary 2.4 with Theorem 2.3, we have the following characteriza-
tion of commutative isometric factors of shift operators.

Corollary 2.5 Let £ be a Hilbert space, and let {®;}7_; C Hgf(’g) D) be a
commutative family of isometric multipliers. Then
n
MZ = H M@,a
i=1 ’
or, equivalently
n
'1'11 ®i(z) =zlg, (zeD)
=
if and only if, up to unitary equivalence, (Mo, ..., Mo,) is a model pure n-

isometry.

In other words, z/¢ factors as n commuting isometric multipliers {®;}_, in
Hg.c(’g) (D) if and only if there exist unitary operators {U;}?_, on £ and orthogonal
projections {P;}?_, on & satisfying the properties (a)—(d) in Theorem 2.3 such that

®;(z) = Ui(P+ +zP) foralli = 1,...,n.

3 Joint Invariant Subspaces

Let W be a Hilbert space. Let (Mo, ..., Me,) be a model pure n-isometry on
ng\/ (D), and let S be a closed invariant subspace for (Mg, ..., Mg,) on Hﬁv (D),
that is

Mq:.iS CcS,

forall i = 1,...,n. Then (M¢,ls,..., Mo,|s) is an n-tuple of commuting
isometries on S. Clearly

n n
'HI(MCDi |S) = (Hl MCD,')'S?
1= 1=
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and since

n

Mo, = M,

j=1

it follows that

n
(II1 Mo)ls = M:|s. (3.1
i=

that is, S is a invariant subspace for M, on H%V(D). Moreover, since M;|s is a
unilateral shift on S, the tuple (Mo, |s. ..., Mo,|s) is a pure n-isometry on S. Then
by Corollary 2.4 there is a model pure n-isometry (My,, ..., My,) on H;V(]D), for
some Hilbert space W, such that (Mo¢,ls, ..., Mo,|s) and (My,, ..., My,) are
unitarily equivalent. The main purpose of this section is to describe the invariant
subspaces S in terms of the model pure n-isometry (My,, ..., My,).

As a motivational example, consider the classical n = 1 case. Here the model
pure 1-isometry is the multiplication operator M, on Hﬁv (D) for some Hilbert space
W. Let S be a closed subspace of H]%V (D). Then by the Beurling [7], Lax [18] and
Halmos [16] theorem (or see page 239, Theorem 2.1 in [13]), S is invariant for M, if
and only if there exist a Hilbert space W, and an inner function ® € H l%?W*,W) D)
such that

S = OHy, (D).
Moreover, in this case, if we set
V = MZ |Sv

then W, = S 6 zSand V on S and M, on H‘%V* (D) are unitarily equivalent. This
follows directly from the above representation of S. Indeed, it follows that X =
Mg : H‘%V* (D) — ranMg = & is a unitary operator and

XM, = VX.

Now, we proceed with the general case.

Theorem 3.1 Letn > 1. Let W be a Hilbert space, (Mo, ..., Ms,) be a model
pure n-isometry on H)%V(]D)), and let S be a closed subspace of H%V(]D)). Then S
is invariant for (Mo, ..., Me,) on H)%V(D) if and only if there exist a Hilbert
space Wy, an inner function ® € Hfs?w*,W) (D) and a model pure n-isometry
My,,...,My,) on ng\/* (D) such that

S = ®Hy;, (D),
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and
;60 =0V,
forallj=1,...,n.
Proof Let (Mo, ..., Mg,) be a model pure n-isometry on HI%V (D), and let S be a
closed invariant subspace for (Mo, , ..., M¢,) on H%V (D). Let

Since S is an invariant subspace for M on H)%V(ID)) (see Eq. (3.1)), by Beurling, Lax
and Halmos theorem, there exists an inner function ® € HE‘EW* W) (D) such that S
can be represented as

S = OH;;, (D),
If1 <j <n,then

implies that ran (Mg i Meg) C ran Mg, and so by Douglas’s range and inclusion
theorem [11]

Mo Mo = MoMy,,
for some ¥; € Hg‘(’w*)(ﬂ))). Note that M¢; Mg is an isometry and |OV; f| =
W £l for each f € H)%V* (D). But then |My; fIl = | /|l implies that My, is an
isometry, that is, W; is an inner function, and hence

M\I’j = MZ)M::DJ.M@,

forall j =1,...,n.So

n
.Hl My, = (MEMo M) - - - (MGMo, Me).

1=
Now Pran My = Mo M and @ ,-@Hﬁv* D) < @H@V* (D) implies that
MeMgMo; Mo = Mo; Mo,

forall j =1,...,n. Consequently

n
IT

n
My, = Mg(jgl Mo, )M} = MEM- Mo = MEMo M. = M.,

J
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thatis, (My,, ..., My,) is a pure n-isometry on HI%V* (D). In view of Corollary 2.5,
this also implies that the tuple (My,, ..., My,) is a model pure n-isometry. This
completes the proof of the theorem. |

The representation of S is unique in the following sense: if there exist a Hilbert

. . . A o0 -.
space WV, an inner multiplier ® € HB(VV,W) (D) and a model pure n-isometry

2 — A2 O = O
(M\im R M\i,”) on HW(D) such that S = @HW(]D)) and ®;0 = OW; for all

i =1,...,n, then there exists a unitary 7 : W, — W such that

and
ir=tv;, (=1,...,n).

In other words, the model pure n-isometries (M\ill’ ""M\f/n) on H)%AV(ID)) and

My,, ..., My,) on HI%V* (D) are unitary equivalent (under the same unitary 7).
Indeed, the existence of the unitary t along with the first equality follows from the
uniqueness of the Beurling, Lax and Halmos theorem (cf. page 239, Theorem 2.1 in
[13]). For the second equality, observe that (see the uniqueness part in [19])

O1v;, = OU; = 9,0 = d,;0r1,

that is C:)r\ll,' = @‘if,"[, and so

foralli=1,...,n.

It is curious to note that the content of Theorem 3.1 is related to the question [1]
and its answer [24] on the classifications of invariant subspaces of I'-isometries. A
similar result also holds for invariant subspaces for the multiplication operator tuple
on the Hardy space over the unit polydisc in C" (see [19]).

Our approach to pure n-isometries has other applications to n-tuples, n > 2, of
commuting contractions (cf. see [9]) that we will explore in a future paper.

4 C*-Algebras Generated by Commuting Isometries

In this section, we extend Seto’s result [26] on isomorphic C*-algebras of invariant
subspaces of finite codimension in H 2(]D>2) to that in H2(D"), n > 2. Given a
Hilbert space H, the set of all compact operators from # to itself is denoted by
K (H). Recall that, for a closed subspace S € H 2(ID)”), we say that S is an invariant
subspace of H 2(ID)”) it M;;S C Sforalli =1,...,n. Also recall that in the case
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of an invariant subspace S of H>(D"), (R;,, ..., Rz, is an n-isometry on S where
R, =M |s € B(S) @i=1,...,n).

Lemma 4.1 If S is an invariant subspace of finite codimension in H*(D"), then

K(8) € T(S).

Proof Since T (S) is an irreducible C*-algebra (cf. [26, Proposition 2.2]), it is
enough to prove that 7 (S) contains a non-zero compact operator. As

n
T (o) — Mz M) = Pe € T(H*(D")),
1=

we are done when S = H2(ID"). Let us now suppose that S is a proper subspace of
HZ(ID)”). For arbitrary 1 <i < j < n, we have

(R}, R;;1= PsM; M;|s — PsM;; PsM |s = PsM_, Ps. M |s € K(S),

as St is finite dimensional. It remains for us to prove that [R}, R;;] # O for
some 1 < i < j < n.If not, then S is a proper doubly commuting invariant
subspace with finite codimension. As a result, we would have S = ¢ H 2(D") for
some inner function ¢ € H® (D") ([25]) and hence S has infinite codimension (see
the corollary in page 969, [2]), a contradiction. ]

In what follows, a finite rank operator on a Hilbert space will be denoted by F
(without referring to the ambient Hilbert space). Also, if M is an invariant subspaces
of HZ(D"), then we set

RM = M| p € BIM),

and simply write R;;,i = 1, ..., n, when M is clear from the context.

Lemma 4.2 Suppose M and M> are invariant subspaces of H*(D"), M; € M,
and dim(My© M) < oo. Then T(My) = {Pp,TIm, : T € T(M2)}. Moreover,

if L is a closed subspace of M and Péwz € T(Mpy), then Pé\/“ e T(My).

Proof Note that sz}/lz M, = RZ/:/“ and so, by taking adjoint, we have
Ppg, (R g, = (RI)*,

for all i = 1,...,n. Then Ry (RY')* = PMIRQ/‘ZPAAQ‘IZ(RﬁZ)*WI, i =
1, ..., n. This yields

M
R (R = Pag, R gy (R | g, — Paay R PR g (RY)

= Pt R (R |, + F,
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forall i, j = 1,....n, as dim(My © M;) < oo. Similarly (RZ/")*R3" =

PMI(Ré\j/lZ)*RZ/:/tle] + Fforalli,j = 1,...,n. Nowlet T} € T(M;) be a
finite word formed from the symbols

{Rz/j/ll’ (Ré_\’tl)* ti=1,...,n},

and let 7> € T (M3) be the same word but formed from the corresponding symbols
in

(RM2 (RM2)* 1i=1,....n).

Then T = Ppyq, T2| pmq, +F. Since both T(My) and {Ppq, Tlpq, : T € T (M)} are
closed subspaces of B(M ) and both contain all the compact operators in B(M),
it follows that T(M ;) = {Pp,TIam, @ T € T(Mp3)}. The second assertion now
clearly follows from the first one. |

A thorough understanding of co-doubly commuting invariant subspaces of finite
codimension is important to analyze C*-algebras of invariant subspaces of finite
codimension in H>(ID"). If S is a closed invariant subspace of H?(ID), then we know
that S =  H2(DD) for some inner function 8 € H> (D). To simplify notations, for a
given inner function § € H* (D), we denote

Sy =0H*D), and Qy = H*(D) o 6H* (D).

Also, given an inner function 6; € H®(D), 1 < i < n, denote by My, the
multiplication operator

(Mo, )21, ..., z0) = 60;(2) f (21, -5 20)

forall f € H 2(D") and (z1, .. ., z») € D". Recall now that an invariant subspace S
of H?(D") is said to be co-doubly commuting [23] if S = S¢ where

So=(Qp ® - ®Qy )t (4.1)
and ¢;, i = 1,...,n, is either inner or the zero function. We warn the reader that
the suffix @ in S¢ refers to the finite Blaschke products {¢; ?z |- Here, in view of
(4.1) (or see [23]), we have

(MgapM;fp)(M@qM;fq) = (Mgqu;q)(M(ppM;p)a

forall p,g=1,...,n,and

n
PS([) = IHZ(]D)II) - il:[](IHZ(Dn) - M%- M‘:r) (42)
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It also follows that
So = My, H*(D") + --- + M, H*(D").

Therefore, S¢ has finite codimension if and only if ¢; is a finite Blashcke product
foralli =1, ..., n. Moreover, it can be proved following the same line of argument
as Lemma 3.1 in [26] that if S is an invariant subspace of H?(ID") then S is of finite
codimension if and only if there exist finite Blaschke products ¢1, ..., ¢, such that

S CS.
Given Sg asin (4.1)and 1 <i < j < n, we define Qg[i, j] by
Qoli, j1= Qp ® Qpyy ® -+ ® Qyp, € HA(D/ ),

Lemma 4.3 Let {¢;}]_, be finite Blaschke products. If

Li=Qoll.n— 11" @ H*D), L2 = Qoll.n —11®S,,.

L3 = Qoll,n—11® H*(D), Ly = Qoll.n — 11 ® ¢uS,,
and

Ly = Qoll,n — 11® ¢, Qg

then Pz, Pr,, Pr and Ppv are in T (H*(D")) and PS‘D, PS‘D, PS,‘D and PS,‘,D are
! 2 2 2 10 Ly N L Yo
in T (So).

Proof Clearly Sp = L1 @® Lo, H*(D") = L1 ® L3and £, = L, ® L. By virtue of
Lemma 4.2, we only prove the lemma for H 2 (™). Since E/Z’ is finite-dimensional,
it follows, by Lemma 4.1, that sz/ e T(H*(D"). Since ¢; € H>®(D) is a finite
Blaschke product, it follows that ¢; is holomorphic in an open set containing the
closure of the disc, and hence My, = ¢;(M;,) € TH2*D) foralli = 1,...,n.
Then, by (4.2), Ps, € T(H*(D")). In view of Sp = L @ Lo, it is then enough to
prove only that P, € T(H 2(D")). This readily follows from the equality

n—1
Pe, = ( T Uppny = My, M)\ My, M.
=

This completes the proof of the lemma. |
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In particular, 7 (S¢) contains a wealth of orthogonal projections. This leads to
some further observations concerning the C*-algebra 7 (Sg). First, given Sg as in
(4.1), we consider the unitary operator U : H>(D") — Sg defined by

Iz, O Ly £y
U= 0' M TH = D.
Pn £3 £2

ThenU = Pg,+ My, Pg, and U* = PZ‘D +M;, sz“’. We have the following result:

Theorem 4.4 If {¢;}!_, are finite Blaschke products, then
U*T(Se)U = T(H*(D").

In particular, T(Se) and T (H*(D")) are unitarily equivalent.

Proof A simple computation first confirms that
U*R., U = M., € T(H*D"),
that is
M, € U*T(Se)U and R, € UT(H>*(D")U*.
Next,leti = 1,...,n — 1. Then
R,U = My, P, + R My, Pr, = My, P, + My, My, Pr,
as My, L3 = L2 € So, and so
U*R,U = (PS® + M};, PR%) (M, Pz, + Mz, My, Pr,)
= M, Pr, + P, M; My, Pry + My, Pr,M;; My, Pr;,

as M, L1 C Ly and M;;M,, L3 = M, L, C Sp. Then U*R,, U € T(H?*(D")) for
ali =1,...,n, by Lemma 4.3. In particular

U*T (Se)U C T(H*(D")).
On the other hand, since £, = £, & L7 and L7 is finite dimensional, it follows
that Pz, = Py + F.and thus U = U*|z, + U*|z + F. Now UM, U*|z, =

UM |z, = M|z, as zi£1 € L1 and hence

UMZ[ U*|L1 = RZl‘ |£1 b
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and on the other hand
UM, U*| gy = UMM, | gy) = UM, Ps, M)y = UR, R .

where Ry, = M, |s, . Moreover, since £3 = £, ®S3 and S3 is finite dimensional,
it follows that Pz, = P, + F, and thus

UMz1U*|LI’2 = Pr R, R;n |£’2 + My, Pr Ry, R:;n |£/2
= Pr, Ry R:;n|5/2 + My, Pr,R;, R;nm/z + F
_ pSo * So *
= PL1 RZiR(p,,|[:/2 + R%PL2 RZI.RW|£/2 + F,

and hence

S

* So [ * So So * So
UM, U* = R Plll + Pﬁl RZZ.R%PE/2 + R(p”P£2 R R<pn PE/2 + F.

By Lemma 4.3, it follows then that UM, U* € T (S¢) and so
UT(H*(D")U* C T(So).

Therefore, the conclusion follows from the fact that U*R,, U = M,, € T (H*(D")).
|

Now let S be an invariant subspace of finite codimension, and let Sp € S, as in
(4.1), for some finite Blashcke products {¢;}?_,. We proceed to prove that 7(S) is
unitarily equivalent to 7 (Sg). Let

m = dim(S © So¢).
Observe that
n

PS<1> = M(Pl M;l + (IHZ(]D)") - M‘pl M;1)<IH2(D") - il:IZ(IHz(Dn) - Mfﬂi M;z))’

and so

So = (Sp & HX@"™) ® (Qp ® Qol2,n1").

Lemma 4.5 PS

s
5, em2m-1) Lo, gopnnt € TS and

pSe

So
Sy @H2(D"1)’ Pgwleagcp[z,n]L € T(Sa).
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Proof First one observes that, by virtue of Lemma 4.2, it is enough to prove the
result for S. Note that M, S C S. Define Ry, € B(S) by Ry, = My, |s. Then
Ry, = ¢1(Mz))|s € T(S) and

Py, s = Ry, RS € T(S).

Now on the one hand

Spr ® HAD"™) = My, HX(D") = My, S & (M, HXD") © M,, 5),

also, My, H*(D") © M, S = My, (H*(D") © S) is finite dimensional, and hence
we conclude Psw] em2@1) € T(S). This along with dim (§ © S¢) < 00 and the
decomposition

S=(S, ® H* ") @ (Qy, ® Qol2, n]") & (S & So),

implies that PQ‘PI ®0o[2.nl* € T(S). This completes the proof of the lemma. |
For simplicity, let us introduce some more notation. Given g € N, let us denote
C® =C®---®CC H* D).
Note that C®9 is the one-dimensional subspace consisting of the constant functions
in HX(DY). Recalling dim(S & Sgp) = m(< 00), we consider the orthogonal
decomposition of Sy, @ H 2(Dn—1y as:
Sy @H D" =8518856S8;,

where

S| = (91 Q) ® C2=2 @ H2(D)
Sy = Symy, ® CE=2 @ H2(D)
S3 =8, ® (CB=2)L @ H2(D).

Finally, we define
L=8056 (2 ®Ql2.n1").

With this notation we have

So =519 L,
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and
S=S6Ss)DS1 D L.

Lemma 4.6 P§ € T(S) and ng € T(So) foralli =1,2,3.

Proof In view of Lemma 4.2, it is enough to prove that Pg e T(S),i=1,273.
Note that Pg gcen-2gn2m) € T(S) as

PS¢1®(C®(H—2)®H2(]D)) = PS¢1®H2(D”_1)(IS — X)PSwI®H2(D"_1)’
where

X = Z (_1)k+1Rz’_1 .. R.. R* ...R*

iy, 20y : Ziy ”
2<ij<--<ix<n—1

Therefore
P$3 = PSW] ®H2(Dr—1) — PS¢1®C®(”’2)®H2(D) S T(S)

Finally, since PSZ = RZ PSW] QCO-2) @ H2 (D) R;Im andS1 P S = S‘Pl ® (C@(n—Z) ®
H?(D), it follows that Ps, and Pg, are in 7(S). [ ]

Before we proceed to the unitary equivalence of the C*-algebras 7 (S) and
T (Se) we note that

91Qm = span {p1, 12, ..., @12" '}
Theorem 4.7 If S is a finite co-dimensional invariant subspace of H*(D") and

S C S for some finite Blaschke products {¢;}}_,, then T(S) and T (Se) are
unitarily equivalent.

Proof By noting that H>(D) = C®S,, we decompose S| as S = F| @ M where
Fi=@Qm)@C®" " and M) =(9Qm)®C*" 2 QS..

Taking into consideration dimF; = dim (S & Sg), we have a unitary V : F| —
S © So, and then, using the decompositions

Soe=F1dM; L.
and

S§=(E0Se)®S1DL,
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we see that
Vv 0 0
U=|0M 0| FioM DL~ (SOSe)DS1 DL,
0 0 I

defines a unitary from S to S. We claim that U*T (S)U = T (Sg). First we
prove that U*T (S)U C T (S¢). Since dimF; < oo, it suffices to prove that
U*R2U|Ml@/; € T(Se) forall i = 1,---,n. Observe first that UM, =
M; My =81 € So, M, 51 € 1 and M, L C L. Since

U*RSUlmiec = UMy, M3 |\, + My, |2,
and U* M, M} |\, = M2 M} | p, = M2 Ps, M | o4, it follows that
U*RS Ulpmyer = (RS®)X(RE®)*PRY + RSP PR € T(So).
Now for 1 < i < n, we have
U*RSUImyer = UMy M | M, + UMy,

where U*MZiM;‘n M, = MZiM;‘n |m, as z;S1 € S3 € L. On the other hand, since
282 € &3 we have z; £ € L and hence U*M;, | = M, |, whence

U*R2U|M1®L = Ri“’(RZ“’)*Pfjl + Rf‘b qu, € T(Sa).
Now we decompose M| as M| = K| & K1 where
Ki=(@Qm1)®C?"?®s, and K= (" 'C)@C?"? s,
Then
U*RSUIm, = UM M3 |, + U Moy M3 o = Mo, Mo M2 i, + Mo, M e

as My M7 Ky € S and MZIMZ*HI@] C &;. On the other hand, U*R§U|32@53 =
M, |s,08, as M, (S2 & S3) € S» @ S3 C L, and finally, by denoting N = Q,, ®
Qol2, n]i, we have

U*RSU|n = UM, | = U*(Is — P§)M;,|x + U*PS M, |-

Then S © 81 = (S 6 So) ® L and M; N C So implies that

S S
U*RSU|x = P7* My |\ + Mo, PS M, |y,

1
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and so
S So pS S S S S S So pS.
UR;UlmyeL = RO RE® (Rznd))*PICT + R (Ran))*PICT tR,® PSz%Ss
So pSe pS. So pSo pSe pS
+ PL(DRQCDPN(D + Ran) PS:DRm(D PJ\/’(I> + F.

This implies that U *Rfl U € T(So¢), and therefore U*T (S)U C T (Se). We now
proceed to prove the reverse inclusion U7 (Sg)U* € T (S). Since dim(S 6 Sp) <
00, it is enough to prove that URg¢U*|51@£ € T(S) foralli = 1,...,n. Once
again, note that U*S; = M| C Sg, z2M1 C My, 2,51 € St and z,£ C L.
Hence

URSU*|s,0c = UM2 |5, + UM, |z = M., |s, + M-, ..
that is
URSU*|s,6r = anpgl@c e T(S).

Now, for fixed 1 < i < n, we have z; M| € S and z; £ C L. Then

URSP U™ |50 = UM M., |5, + UM, |z
=M;M,|s, + M;lc
= RERS P§ + REPL € T(S).
Finally, we consider the decomposition S; = S} @ S|’ where
S) = (@1Qm1) @ C2"D @ HA(D) and S} = (912" 'C) ® C®"2 @ HX (D).
Then
URS?U*|s, = UM M., |5 + UM My, |50
= M;:,MZlenlﬂ + M M, |Sf

= Mz |$i + MZ|Mzn|Si’7
as 212,S; € My and z1z,S] € S>. Moreover
URSYU*|s,08, = UM, |s,08, = Mz |s5,65;-
as 21(S, & S3) € S, @ S;. From the definition of NV, it follows that

S S
URSU*|y = U Pyt My v+ U(ls, — Pig )Mz, |y,
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this in turn implies that
URS* U™ = M JD/@“MZ1 W+ PEM,, |+ F,
as Sp © M| = F1 @ L and Fj is finite dimensional. Therefore

S _ pS pS S pS pS S pS
URzld)U*'Sl@‘C_RZlPSi+RZIRZHP i,+RZlPSZ®S3

+ (RS)* Py M, P+ PERS Py + F € T(S).

Zn 1

This completes the proof of the theorem. |
On combining Theorems 4.4 and 4.7, we have the following:

Theorem 4.8 If S is a finite co-dimensional invariant subspace of H*(D"), then
T(S) and T (H?(D")) are unitarily equivalent.

In the case n = 2, the proof of the above result is considerably simpler and direct
than the one by Seto [26] (for instance, if » = 2, then | < i < n case does not
appear in the proof of Theorem 4.7).
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