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1 Introduction

R. G. Douglas introduced the notion of Hilbert module M over a function algebra
A and reformulated several questions of multi-variable operator theory in the
language of Hilbert modules. Having done this, it is possible to use techniques from
commutative algebra and algebraic geometry to answer some of these questions.
One of the very interesting examples is the proof of the Rigidity Theorem for Hilbert
modules [19, Section 3], which we discuss below.

A Hilbert module is a complex separable Hilbert space M equipped with a
multiplication

m : A → B(M), mp(f ) = p·f, f ∈ M, p ∈ A,

which is a continuous algebra homomorphism. Here B(M) denotes the algebra of
all bounded linear operators on M. The continuity of the module multiplication
means

‖mpf ‖ ≤ C ‖p‖ ‖f ‖, f ∈ M, p ∈ A

for some C > 0. Familiar examples are the Hardy and Bergman spaces defined
on bounded domains in Cd . Sometimes, it is convenient to consider the module
multiplication over the polynomial ring C[z] in d variables rather than a function
algebra. In this case, we require that

‖mpf ‖ ≤ Cp ‖f ‖, f ∈ M, p ∈ C[z]

for some Cp > 0. We make this “weak” continuity assumption throughout the paper.
In what follows, we will consider a natural class of Hilbert modules consisting of

holomorphic functions, taking values in Cn, defined on a bounded domain � ⊆ Cd .
Thus (i) we assume M ⊆ Hol(�, Cn). A second assumption (ii) is to require that
the evaluation functional

evz : M → Cn, evz(f ) := f (z),

is continuous and surjective, see [2, Definition 2.5]. Set

K(z, w) := evzev∗
w : � × � → Cn×n.

The function K, which is holomorphic in the first variable and anti-holomorphic in
the second variable is called the reproducing kernel of the Hilbert module M. A
further assumption (iii) is that C[z] ⊆ M is dense in M. A Hilbert module with
these properties is said to be an analytic Hilbert module. In this paper, we study a
class of Hilbert modules which are submodules of analytic Hilbert modules.
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From the closed graph theorem, it follows that mpf ∈ M for any f ∈ M
and p ∈ C[z]. Also, the density of the polynomials implies that the eigenspace
ker (mp − p(w))∗ is spanned by the vectors

Kw(·)ζ := K(·, w)ζ

for ζ ∈ Cn, i.e.,

ker (mp − p(w))∗ = Ran Kw,

see [15, Remark, p. 285]. Since the matrix K(w,w) is invertible by our assumption,
it follows that the dimension of the kernel {Kw(·)ζ : ζ ∈ Cn} is exactly n for
all w ∈ �. Clearly, the map w �→ Kw(·)ζ , ζ ∈ Cn is a holomorphic map on
�∗ := {w ∈ Cd : w ∈ �}. It serves as a holomorphic section of the trivial vector
bundle

E := {(w, v) : w ∈ �∗, v ∈ ker (mp − p(w))∗} ⊆ �∗ × M
with fibre

Ew = ker (mp − p(w))∗ = Ran Kw, w ∈ �∗.

A refinement of the argument given in [2] (which, in turn, is an adaptation of
ideas from [12]), then shows that the isomorphism class of the module M and the
equivalence class of the holomorphic Hermitian bundle E determine each other.
The case d = 1, originally considered in [12], corresponds to Hilbert modules
over the polynomial ring in one variable. The proof in [12], in this particular case,
has a slightly different set of hypotheses. In the paper [12], among other things, a
complete set of invariants for the equivalence class of E is given. If n = 1, as is well
known, this is just the curvature of the holomorphic line bundle E .

There is a natural notion of module isomorphism, namely, the existence of a
unitary linear map U : M → ˜M, which intertwines the module multiplications mp

and m̃p, that is,

Ump = m̃pU.

Clearly, a Hilbert module M over the polynomial ring C[z] is determined by the
commuting tuple of multiplication by the coordinate functions on M and vice-versa.
Thus the notion of module isomorphism corresponds to the usual notion of unitary
equivalence of two such d-tuples of multiplication operators by a fixed unitary. If
� : M1 → M2 is a module map, then it maps the eigenspace of M1 at w into
that of M2 at w. Thus �(K1(·, w)ζ ) ⊆ {K2(·, w)ξ : ξ ∈ Cn}, where Ki are the
reproducing kernels of the Hilbert modules Mi , i = 1, 2, respectively. Hence we
obtain a holomorphic map �� : � → Cn×n with the property

�K1(z, w) = ��(w)∗K2(z, w)
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for any fixed but arbitrary w. Thus any module map between two analytic Hilbert
modules is induced by a holomorphic matrix-valued function �� : � → Cn×n, see
[14, Theorem 3.7]. Moreover, if the module map is invertible, then ��(z) must be
invertible. Finally, if the module map is assumed to be unitary, then

K1(z, w) = ��(z) K2(z, w) �∗
�(w)

for all z,w ∈ �.

Let us describe, following [17], an instance of the Sz.-Nagy–Foias theory in the
language of Hilbert modules. Let T be a contraction on some Hilbert space M. The
module multiplication determined by this operator is the map mp(f ) = p(T )f ,
p ∈ C[z], f ∈ M. From the contractivity of T , it follows that ‖mp‖ ≤ ‖p‖ :=
sup{|p(z)| : z ∈ D} and in this case, the Hilbert module M is said to be contractive.
Now, assume that T ∗n → 0 as n → ∞. Then Sz.-Nagy–Foias show that there exists
an isometry R and a co-isometry R′ such that, for the unit disk D, the sequence

0 H 2 (D)
R

H 2 (D)
R 0 ,

where E and E ′ are a pair of (not necessarily finite dimensional) Hilbert spaces, is
exact. The map R is essentially the characteristic function of the contraction T and
serves to identify the contractive module M as a quotient module of H 2

E ′(D) by the
image of H 2

E (D) under the isometric map R.
For any planar domain �, a model theory for completely contractive Hilbert

modules over the function algebra Rat(�), consisting of rational functions with
poles off the closure �, has been developed by Abrahamse and Douglas in the paper
[1]. However, the situation is much more complicated for Hilbert modules over the
polynomial ring in d variables, d > 1.

1.1 The Normalized Kernel

We begin by recalling some notions from complex geometry. Let L be a holomor-
phic Hermitian line bundle over a complex manifold �. The Hermitian metric of L
is given by some smooth choice of an inner product ‖·‖2

w on the fibre Lw. There is
a canonical (Chern) connection on L which is compatible with both the Hermitian
metric and the complex structure of L. The curvature κ of the line bundle L on
any fixed but arbitrary coordinate chart, with respect to the canonical connection, is
given by the formula

κ(w) := −∂∂ log ‖γ (w)‖2 = −
∑

i,j

∂i∂j log ‖γ (w)‖2dwi ∧ dwj ,
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where γ is any non-vanishing holomorphic section of L. Since any two such
sections differ by multiplication by a non-vanishing holomorphic function, it is clear
that the definition of the curvature is independent of the choice of the holomorphic
section γ . Indeed, it is well known that two such line bundles are locally equivalent
if and only if their curvatures are equal. For holomorphic Hermitian vector bundles
(rank > 1) the local equivalence involves not only the curvature but also its covariant
derivatives, see [12].

In general, Lemma 2.3 of [32] singles out a frame γ (0) such that the metric has
the form: ‖γ (0)(w)‖2 = I + O(|w|2) and it follows that

κ(0) = −
∑

i,j

(

∂i∂j‖γ (0)(w)‖2)

|w=0dwi ∧ dwj .

In a slightly different language, fixing w0 ∈ �, a normalized kernel K(0) at
w0 is defined in [14, Remark 4.7(b)] by requiring that K(0)(z, w0) ≡ I . Setting
γ (0)(w) = K(0)

w , we see that the normalized kernel K(0) has no linear terms. There
is a neighborhood, say �0, of w0 on which K(z, w0) doesn’t vanish (for n = 1) or
is an invertible n × n-matrix (for n > 1). Set

�
(0)
� (z) = K(w0, w0)

1/2 K(z, w0)
−1, z ∈ �0.

Then

K(0)(z, w) := �
(0)
� (z) K(z, w) �

(0)
� (w)∗

is a normalized kernel on �0. Thus starting with an analytic Hilbert module M
possessing a reproducing kernel K, there is a Hilbert module M(0) possessing a
normalized reproducing kernel K(0), isomorphic to M. Now, it is evident that two
Hilbert modules are isomorphic if and only if there is a unitary U such that

K(0)
1 (z, w) = U K(0)

2 (z, w) U∗.

In other words, the normalized kernel is uniquely determined up to a fixed unitary.
In particular, if n = 1, then the two Hilbert modules are isomorphic if and only if
the normalized kernels are equal. We gather all this information in the following
proposition.

Proposition 1.1 The following conditions on any pair of (scalar) analytic Hilbert
modules over the polynomial ring are equivalent.

1. Two analytic Hilbert modules M1 and M2 are isomorphic.
2. The holomorphic line bundles L1 and L2 determined by the eigenspaces of the

analytic Hilbert modules M1 and M2, respectively, are locally equivalent as
Hermitian holomorphic bundles.
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3. The curvature of the two line bundles Li , i = 1, 2, are equal.
4. The normalized kernels K(0)

i , i = 1, 2, at any fixed but arbitrary point w0 are
equal.

2 Invariants for Submodules

In the paper [13], Cowen and Douglas pointed out that all submodules of the Hardy
module H 2(D) are isomorphic. They used this observation to give a new proof
of Beurling’s theorem describing all invariant subspaces of H 2(D). Although all
submodules of the Hardy module H 2(D) are isomorphic, the quotient modules
are not. Surprisingly enough, this phenomenon distinguishes the multi-variable
situation from the one variable case. Consider for instance the submodule H 2

(0,0)(D
2)

of all functions vanishing at (0, 0) in the Hardy space H 2(D2) over the bidisk D2.
Then the module tensor product of H 2

(0,0)(D
2) over the polynomial ring C[z] in two

variables with the one dimensional module Cw, (p,w) �→ p(w), is easily seen to
be

H 2
(0,0)(D

2) ⊗C[z] Cw =
{

C ⊕ C if w = (0, 0)

C if w �= (0, 0)
(2.1)

while H 2(D2) ⊗C[z] Cw = C. It follows that the submodule H 2
(0,0)(D

2) is not

isomorphic to the module H 2(D2), in stark contrast to the case of one variable.
The existence of non-isomorphic submodules of the Hardy module H 2(D2)

indicates that inner functions alone may not suffice to characterize submodules
in this case. It is therefore important to determine when two submodules of the
Hardy module, and also more general analytic Hilbert modules, are isomorphic.
This question was considered in [10] for the closure of some ideals I ⊆ C[z] in
the Hardy module H 2(D2) with the common zero set {(0, 0)}. It was extended to a
much larger class of ideals in the paper [3]. A systematic study in a general setting
culminated in the paper [19] describing a rigidity phenomenon for submodules of
analytic Hilbert modules in more than one variable. A different proof of the Rigidity
Theorem using the sheaf model was given in [9]. A slightly different approach to
obtaining invariants by resolving the singularity at (0, 0) was initiated in [16], and
considerably expanded in [9]. We describe this approach briefly.

A systematic study of Hilbert submodules of analytic Hilbert modules was
initiated in the papers [8, 9]. If I is an ideal in C[z], consider the submodule
˜M = [I] in an analytic Hilbert module M ⊆ Hol(�, C) obtained by taking the
closure of I. Let

�I := {z ∈ � : f (z) = 0 ∀ f ∈ I}
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denote the algebraic subvariety of � determined by I. For the reproducing kernel
K(z, w) of M, the vectors Kw ∈ M will in general not belong to the submodule
˜M. However, one has a truncated kernel ˜K(z, w) = ˜Kw(z) such that ˜Kw ∈ ˜M
for all w ∈ �, which induces a holomorphic Hermitian line bundle L̃ defined on
� \ �I , with fibre

L̃w = Ran ˜Kw, w ∈ � \ �I ,

and positive definite metric ˜K(w,w). This line bundle L̃ does not necessarily extend
to all of �. In fact, on the singular set �I the eigenspace of the submodule ˜M will
in general be higher dimensional. However, in the paper [9], using the monoidal
transform, a line bundle L̂ was constructed on a certain blow-up space �̂, with a
holomorphic map π : �̂ → �. (Actually, this construction holds locally, near any
given point w0 ∈ �I .) The restriction of this line bundle to the exceptional set
π−1(�I) in the blow-up space was shown to be an invariant for the submodule ˜M.

For the submodule ˜M = H 2
(0,0)(D

2) ⊆ H 2(D2) of the Hardy module,

corresponding to the point singularity (0, 0) ∈ � := D2, the above construction
can be made very explicit: The eigenspace of ˜M at w := (w1, w2) �= (0, 0) is the
one dimensional space spanned by the truncated kernel vector

˜Kw(z) := 1

(1 − w1z1)(1 − w2z2)
− 1 = w1z1 + w2z2 − w1z1w2z2

(1 − w1z1)(1 − w2z2)
. (2.2)

At (0, 0), this vector is the zero vector while the eigenspace of ˜M is two
dimensional, spanned by the vectors z1 and z2. We observe, however, that for

j = 1, 2 the limit
˜Kw(z)
wj

, along lines through the origin as w → 0, exists and is non-

zero. Parametrizing the lines through (0, 0) in D2 by w2 = ϑ1w1 or w1 = ϑ2w2, we
obtain the coordinate charts for the projective space P1(C). On these, we have

lim
w2=ϑ1w1, w→0

˜Kw(z)

w1
= z1 + ϑ1z2.

Similarly, we have

lim
w1=ϑ2w2, w→0

˜Kw(z)

w2
= z2 + ϑ2z1.

Setting s(ϑ1) := z1 + ϑ1z2 and s(ϑ2) = z2 + ϑ2z1 taking values in H 2
(0,0)(D

2),

we obtain a holomorphic Hermitian line bundle L̂ over projective space P1(C). The
metric of this line bundle is given by the formula

‖s(ϑj )‖2
˜M = 1 + |ϑj |2
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for j = 1, 2. It is shown in [16, Theorem 5.1], see also [9, Theorem 3.4], that
for many submodules of analytic Hilbert modules, the class of this holomorphic
Hermitian line bundle on the projective space is an invariant for the submodule.
Since the curvature is a complete invariant, it follows that in our case the curvature

κ(ϑj ) = (1 − |ϑj |2)−2dϑj ∧ dϑj

for the coordinate ϑj (j = 1, 2) is an invariant for the submodule H 2
(0,0)(D

2).
Often it is possible to determine when two submodules of an analytic Hilbert

module are isomorphic without explicitly computing a set of invariants. A particular
case is the class of submodules in an analytic Hilbert module which are obtained by
taking the closure of an ideal in the polynomial ring. Here the surprising discovery
is that many of these submodules are isomorphic if and only if the ideals are equal.
Of course, one must impose some mild condition on the nature of the ideal. For
instance, principal ideals have to be excluded. Several different hypotheses that
make this “rigidity phenomenon” possible are discussed in Section 3 of [19]. One
of these is the theorem of [19, Theorem 3.6]. A slightly different formulation given
below is Theorem 3.1 of [9].

Let � ⊂ Cd be a bounded domain. For k = 1, 2, let [Ik] be the closure in an
analytic Hilbert module M ⊆ Hol(�) of the ideal Ik ⊆ C[z].
Theorem 2.1 (Theorem 3.1, [9]) Assume that the dimension of [Ik]/[Ik]w is finite
and that the dimension of the zero set of these modules is at most d − 2. Also,
assume that every algebraic component of V (Ik) intersects �. Then [I1] and [I2]
are isomorphic if and only if I1 = I2.

In this paper we study submodules of (scalar valued) analytic Hilbert modules
(n = 1) which are related to higher-dimensional singularities. Starting with the
weighted Bergman spaces defined on a bounded symmetric domain, the submodules
are determined by a vanishing condition on a certain “Kepler variety”. The new
feature is that the singularity set is not a complete intersection (in the sense of
algebraic geometry) which means that the usual projectivization involving monoidal
transforms (blow-up process) is not sufficient for the resolution of singularities.
We will replace it by a higher-rank blow-up process, having as exceptional fibres
compact Hermitian symmetric spaces of higher rank instead of projective spaces.
The charts and analytic continuation we use are adapted to the geometry of the
Kepler variety. The simplest case of rank 1 reduces to the usual blow-up process.

In this setting we again obtain a rigidity theorem which is not a special case of
Theorem 2.1, since we do not consider different ideals (i.e. different subvarieties)
for the singular modules, but we consider a fixed subvariety and vary the underlying
“big” Hilbert module, by choosing an arbitrary coefficient sequence or, as a special
case, a K-invariant probability measure. This situation is most interesting in the
symmetric case, where one has a full scale of different Hilbert modules like
the weighted Bergman spaces. Then we show that the “truncated” kernel of the
submodule can be recovered from the reduction to the blow-up space. This is a kind
of rigidity in the parameter space instead of selecting different ideals.
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3 Jordan–Kepler Varieties

Hilbert modules and submodules defined by analytic varieties have been mostly
studied for domains � which are strongly pseudoconvex with smooth boundary,
or a product of such domains. From an operator-theoretic point of view, this is
natural since for strongly pseudoconvex (bounded) domains, Toeplitz operators
with continuous symbols (in particular, with symbols given by the coordinate
functions) are essentially normal, so that the Toeplitz C∗-algebra generated by
such operators is essentially commutative and has a classical Fredholm and index
theory. There are, however, interesting classes of bounded domains which are only
weakly pseudoconvex (and are therefore domains of holomorphy, by the Cartan—
Thullen theorem) with a non-smooth boundary. A prominent class of such domains
are the bounded symmetric domains of arbitrary rank r, which generalize the
(strongly pseudoconvex) unit ball, having rank r = 1. The Hardy space and
the weighted Bergman spaces of holomorphic functions on bounded symmetric
domains have been extensively studied from various points of view (see, e.g.,
[6, 21, 30]). More recently, irreducible subvarieties of symmetric domains, given
by certain determinant type equations, have been studied in [20] under the name
of “Jordan–Kepler varieties”. This terminology is used since the rank r = 2 case
corresponds to the classical Kepler variety in the cotangent bundle of spheres [11].

In order to describe bounded symmetric domains and their determinantal subva-
rieties, we will use the Jordan theoretic approach to bounded symmetric domains
which is best suited for harmonic and holomorphic analysis on symmetric domains.
For background and details concerning the Jordan theoretic approach, we refer to
[22, 26, 30].

Let V be an irreducible Hermitian Jordan triple of rank r, with Jordan triple
product denoted by {u; v;w}. The so-called spectral unit ball � ⊂ V is a bounded
symmetric domain. Conversely, every (irreducible) bounded symmetric domain can
be realized in this way. An example is the matrix space V = Cr×s with triple
product

{u; v;w} := uv∗w + wv∗u,

giving rise to the matrix ball

� = {z ∈ Cr×s : Ir − zz∗ > 0}.

In particular, for rank r = 1 we obtain the triple product

{u; v;w} := (u|v)w + (w|v)u

on V = Cd , with inner product (u|v), giving rise to the unit ball

� = {z ∈ Cd : (z|z) < 1}.
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Let G denote the identity component of the full holomorphic automorphism group
of �. Its maximal compact subgroup

K := {k ∈ G : k(0) = 0}

consists of linear transformations preserving the Jordan triple product. For z,w ∈ V

define the Bergman operator Bz,w acting on V by

Bz,wv = v − {z;w; v} + 1

4
{z{w; v;w}z}.

We can also write

Bz,w = I − D(z,w) + QzQw, (3.1)

where

D(z,w)v = {z;w; v},

and

Qzw := 1

2
{z;w; z}

denotes the so-called quadratic representation (conjugate linear in w). For matrices,
we have D(z,w)v = zw∗v + vw∗z, Qzw = zw∗z and hence

Bz,wv = (1r − zw∗)v(1s − w∗z). (3.2)

An element c ∈ V satisfying c = Qcc is called a tripotent. For matrices these are
the partial isometries. Any tripotent c induces a Peirce decomposition

V = V c
2 ⊕ V c

1 ⊕ V c
0 .

Now we introduce certain K-invariant varieties. Every Hermitian Jordan triple V

has a natural notion of rank defined via spectral theory. For fixed � ≤ r let

V̊� = {z ∈ V : rank(z) = �}

denote the Jordan–Kepler manifold studied in [20]. It is a KC-homogeneous
manifold whose closure is the Jordan–Kepler variety

V� = {z ∈ V : rank(z) ≤ �}.



Singular Hilbert Modules 435

We have

d� := dim V̊� = dc
2 + dc

1,

where

dc
2 = dim V c

2 = �(1 + a

2
(� − 1)),

dc
1 = dim V c

1 = �(a(r − �) + b).

Here a, b are the so-called characteristic multiplicities defined in terms of a joint
Peirce decomposition [26]. Moreover,

2dc
2 + dc

1

�
= 2(1 + a

2
(� − 1)) + a(r − �) + b = 2 + a(r − 1) + b = p

is the genus. As a fundamental property, there exists a Jordan triple determinant

 : V × V → C, (3.3)

which is a (non-homogeneous) sesqui-polynomial satisfying

det Bz,w = (z,w)p.

For (r × s)-matrices, we have p = r + s and

(z,w) = det(1r − zw∗)

as a consequence of (3.2). In particular, (z,w) = 1 − (z|w) in the rank 1 case
V = Cd . A Hermitian Jordan triple U is called unital if it contains a (non-unique)
tripotent u such that D(u, u) = 2·I. In this case U becomes a Jordan *-algebra with
unit element u under the multiplication

z ◦ w := 1

2
{z; u;w}

and involution

z∗ := Quz = 1

2
{u; z; u}.

This Jordan algebra has a homogeneous determinant polynomial N : U → C
defined in analogy to Cramer’s rule for square matrices. Every Peirce 2-space V c

2 is
a unital Jordan triple with unit c.
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One can show that the smooth part of V� (in the sense of algebraic geometry) is
precisely given by V̊�. Thus the singular points of V� form the closed subvariety
V�−1, which has codimension > 1, unless we have the case � = r for tube domains
(b = 0). This case will be excluded in the sequel. The center S� ⊂ V̊� consists of
all tripotents of rank �.

4 Hilbert Modules on Kepler Varieties

Combining the Kepler variety and the spectral unit ball, we define the Kepler ball

�� := � ∩ V�

for any 0 ≤ � ≤ r. The Kepler ball �� has singularities exactly at ��−1, so that the
smooth part of �� is given by

�̊� := V̊� ∩ �� = �� \ ��−1.

Apart from the case � = r on tube type domains, which we exclude here, the
singular set ��−1 ⊂ �� has codimension > 1. Combining this with the fact that
V� is a normal variety (so that the second Riemann extension theorem holds) it
follows that every holomorphic function on �̊� has a unique holomorphic extension
to ��. Henceforth we will identify holomorphic functions on �̊� with their unique
holomorphic extension to ��. For any K-invariant measure ρ on V̊� we have a polar
integration formula

∫

V̊�

dρ(z) f (z) =
∫

�c
2

dρc(t)

∫

K

dk f (k
√

t)

where ρc is a measure on the symmetric cone �c
2 of V c

2 [22] called the radial part
of ρ. Here

√
t denotes the Jordan algebraic square root in �c

2. As a special case,
consider the Riemann measure λ�(dz) on V̊� which is induced by the normalized
inner product on V. Denoting by �� the Koecher–Gindikin Gamma function of �c

2
[22], its polar decomposition is

∫

V̊�

λ�(dz)

πd�
f (z) = ��(

a�
2 )

��(
d
r
)��(

ar
2 )

∫

�c
2

dt Nc(t)
dc

1/�

∫

K

dk f (k
√

t). (4.1)

Here Nc is the Jordan algebra determinant on V c
2 normalized by Nc(c) = 1. For

� = r the Riemann measure on the open dense subset V̊r = V̊ ⊂ V agrees with the
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Lebesgue measure, and (4.1) gives the well-known formula
∫

V

dz

πd
f (z) = 1

�(d
r
)

∫

�e
2

dt Ne(t)
b

∫

K

dk f (k
√

t)

for any maximal tripotent e ∈ S = Sr . As a consequence of (4.1) we have for the
Kepler ball

∫

�̊�

λ�(dz)

πd�
(z, z)ν−p f (z)

= ��(
a�
2 )

��(
d
r
)��(

ar
2 )

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc

1/� Nc(c − t)ν−p

∫

K

dk f (k
√

t) (4.2)

since (k
√

t, k
√

t) = (
√

t,
√

t) = Nc(c − t) for all t ∈ �c
2 ∩ (c − �c

2).

As a fundamental fact [22, 30] of harmonic analysis on Jordan algebras and
Jordan triples, the Fischer–Fock reproducing kernel e(z|w), for the normalized K-
invariant inner product (z|w) on V, has a “Taylor expansion”

e(z|w) =
∑

m

Em(z, w)

over all integer partitions m = m1 ≥ m2 ≥ . . . ≥ mr ≥ 0, where
Em(z, w) = Em

w (z) are sesqui-polynomials which are K-invariant such that the
finite-dimensional vector space

Pm(V ) = {Em
w : w ∈ V }

is an irreducible K-module. These K-modules are pairwise inequivalent and span
the polynomial algebra P(V ). Let

(ν)m =
r

∏

j=1

(ν − a

2
(j − 1))mj

denote the multi-variable Pochhammer symbol. Let Nr+ denote the set of all
partitions of length ≤ r. Restricted to the Kepler variety we only consider partitions
in N�+ of length ≤ �, completed by zeroes at the end.

Lemma 4.1 For any partition m ∈ N�+ of length ≤ � we have

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc

1/� Nc(c − t)ν−p Nm(t) = ��(
d�

�
) ��(ν − d�

�
)

��(ν)

(d�/�)m

(ν)m
.

(4.3)
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Proof Applying [22, Theorem VII.1.7] to �c
2 yields

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc

1/� Nc(c − t)ν−p Nm(t) = ��(m + dc
1
�

+ dc
2
�

) ��(ν − p + dc
2
�

)

��(m + ν − p + dc
1+2dc

2
�

)

= ��(m + d�

�
) ��(ν − d�

�
)

��(m + ν)
= ��(

d�

�
) ��(ν − d�

�
)

��(ν)

(d�/�)m

(ν)m
. ��

Let du be the K-invariant probability measure on S� and put

(f |g)S�
=

∫

S�

du f (u) g(u) =
∫

K

dk f (kc) g(kc). (4.4)

Definition 4.2 Consider a coefficient sequence (ρm)m∈N�+ normalized by ρ0 = 1.

Define a Hilbert space M = Mρ of holomorphic functions on �� by imposing the
K-invariant inner product

(f |g)ρ :=
∑

m∈N�+

ρm(fm|gm)S�
. (4.5)

where fm ∈ Pm(V ) denotes the m-th component of f.

The subnormal case arises when the inner product (4.5) has the form

(f |g)ρ =
∫

dρ(z) f (z)g(z),

where ρ is a K-invariant probability measure on the closure of �� or a suitable K-
invariant subset which is a set of uniqueness for holomorphic functions. For the case
� = r , this was studied in detail for the tube type domains in [7] and completed for
all bounded symmetric domains in [5]. By [20, Proposition 4.4] the Hilbert space

M = Mρ := {φ ∈ L2(dρ) : φ holomorphic on ��}

has the coefficient sequence

ρm =
∫

�c
2

dρc(t) Nm(t)

given by the moments of the radial part ρc, which is a probability measure
on �c

2 (not necessarily of full support). As a special case the Hardy type inner
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product (4.4), corresponding to the K-invariant probability measure du on S�, has
the point mass at c as its radial part, showing that all radial moments ρm = 1.

It is clear that the Hilbert spaces Mρ defined by K-invariant measures are
analytic Hilbert modules as defined above (however, consisting of holomorphic
functions on a manifold �̊� instead of a domain). For more general coefficient
sequences ρm, one could in principle determine whether multiplication operators
by polynomials are bounded (using certain growth conditions on the coefficient
sequence), and whether the other requirements for analytic Hilbert modules hold.
Important examples are listed below where the reproducing kernels are given by
hypergeometric series. For the classical case � = r, the well-understood analytic
continuation of the scalar holomorphic discrete series of weighted Bergman spaces
on � = �r [21] shows that the Hilbert module property extends beyond the
subnormal case.

Proposition 4.3 For a given coefficient sequence ρm, M has the reproducing
kernel

K(z, w) =
∑

m∈N�+

(d/r)m

ρm

(ra/2)m

(�a/2)m
Em(z, w). (4.6)

Proof This follows from [20, Proposition 4.3] and the formula

dm

dc
m

= (d/r)m

(dc
2/�)m

(ra/2)m

(�a/2)m

obtained in [20, equation (5.5) in the proof of Theorem 5.1]. ��
We will now present some examples, where the reproducing kernel (4.6) can be

expressed in closed form as a multivariate hypergeometric series defined in general
by

(

α1, . . ., αp

β1, . . ., βq

)

p q

(z,w) =
∑

m

(α1)m · · · (αp)m

(β1)m · · · (βq)m
Em(z, w).

Applying (4.3) to m = 0 it follows that

ρν(dz) = ��(
d
r
)

��(
d�

�
)

��(
ra
2 )

��(
�a
2 )

��(ν)

��(ν − d�

�
)

λ�(dz)

πd�
(z, z)ν−p

is a probability measure on �̊�. Moreover, applying (4.3) to any m ∈ N�+ it follows
that the measure ρν has the coefficient sequence

ρν
m = (d�/�)m

(ν)m
.
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Thus the Hilbert space

Mν := {φ ∈ L2(dρν) : φ holomorphic on ��}

of holomorphic functions on �� has the reproducing kernel

K(z, w) =
∑

m∈N�+

(d/r)m

(d�/�)m

(ra/2)m

(�a/2)m
(ν)m Em(z, w) =

(

d
r
, ra

2 , ν
d�

�
, �a

2

)

3 2

(z, w).

In the classical case � = r we have the probability measure

dρν(z) = �(ν)

�(ν − d
r
)

dz

πd
(z, z)ν−p

on �, whose reproducing kernel is given by

K(z, w) =
∑

m∈Nr+

(ν)m Em(z, w) =
(

ν
)

1 0

(z, w) = (z,w)−ν

according to the Faraut–Korányi formula [21].

5 The Singular Set and Its Resolution

The only strongly pseudoconvex symmetric domains are the unit balls of rank r =
1. Here the singularity �0 consists of a single point {0}. The classical procedure
to resolve this singularity is the monoidal transformation (blow-up process) where
a point is replaced by a projective space of appropriate dimension. As the main
geometric result in this paper, we obtain a generalization of the blow-up process
for higher dimensional Kepler varieties and domains of arbitrary rank. The Jordan
theoretic approach leads to quite explicit formulas which generalize the equations
of the classical blow-up process of a point.

The general procedure outlined in Sect. 2 using monoidal transformations works
in the case where the singularity is given by a regular sequence g1, . . ., gm of
polynomials generating the vanishing ideal I. In this case the variety is a smooth
complete intersection. If m = d equals the dimension, this variety reduces to a single
point. The usual blow-up process around a point 0 ∈ Cd is the proper holomorphic
map

π : Ĉd → Cd
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where

Ĉd := {(w,U) : w ∈ Cd , U ∈ Pd−1, w ∈ U}

is the tautological bundle over Pd−1, with “collapsing map” π(w,U) := w. The
map π is biholomorphic outside the exceptional fibre π−1(0) = Pd−1. For the
Kepler varieties studied here the singular set ��−1 has higher dimension and is
not a complete intersection (unless � = 1). Thus a regular generating sequence of
polynomials does not exist. Instead, we use the harmonic analysis of polynomials
provided by the Jordan theoretic approach to study the singular set. The main idea is
to replace the projective space (a compact Hermitian symmetric space of rank 1) by
a compact Hermitian symmetric space of higher rank, namely the Peirce manifold

M� = {V c
2 : c ∈ S�}

of all Peirce 2-spaces of rank � in V. This can also be realized as the conformal
compactification of the Peirce 1-space V c

1 , for any rank � tripotent c. For example,

in the full matrix triple V = Cr×s the Peirce 1-space of c =
(

1� 0
0 0

)

∈ S� is given

by

V c
1 =

(

0 C�×(s−�)

C(r−�)×� 0

)

.

Hence, in this case, the Peirce manifold M� is the direct product of two Grassmann
manifolds

M� = Grass�(Cr ) × Grass�(Cs).

In the simplest case r = 1 we have V = Cd and for the tripotent c = (1, 0d−1)

we have V c
1 = (0, Cd−1). Its conformal compactification is V̂ c

1 = Pd−1, which is
the exceptional fibre of the usual blow-up process for 0 ∈ Cd . More generally, for
any non-zero tripotent c we have V c

2 = C·c and hence V c
1 becomes the orthogonal

complement c⊥ = Cd−1, with conformal compactification V̂ c
1 = Pd−1.

The standard charts of projective space Pd−1 have the form

τi : Cd−1 → Pd−1, τi(t1, . . ., t̂i , . . ., td ) := [t1 : . . . : 1i : . . . : td ]

using homogeneous coordinates on Pd−1. Note that for 1 ≤ i ≤ d, the rank 1
tripotent ci := (0, . . ., 0, 1, 0, . . ., 0) ∈ Cd has the Peirce 1-space

V
ci

1 := {(t1, . . ., ti−1, 0, ti+1, . . ., td ) : (t1, . . ., t̂i , . . ., td ) ∈ Cd−1}.
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In the higher rank setting, the Bergman operators (3.1) serve to define canonical
charts for the Peirce manifolds. For each tripotent c ∈ S� and every t ∈ V c

1 the
transformation Bt,−c ∈ KC preserves the rank. It follows that Bt,−cc ∈ V̊� has a
Peirce 2-space denoted by [Bt,−cc]. As shown in [29] the map

τc : V c
1 → M�, τc(t) := [Bt,−cc] (5.1)

is a holomorphic chart of M�. The range of the chart τc is

Mc := {U ∈ M� : NU(c) �= 0}.

Here NU : U → C denotes a Jordan algebra determinant of the Jordan triple
U which, as a Peirce 2-space, is of tube type. The Jordan determinant is only
defined after choosing a maximal tripotent in U as a unit element, but any two
such determinant functions differ by a non-zero multiple. It is shown in [29] that the
local charts τc of M�, for different tripotents c, c′ ∈ S�, are compatible and hence
form a holomorphic atlas on M�.

One can make the passage z �→ [z] to the Peirce 2-space more explicit by
introducing the so-called (Moore-Penrose) pseudo-inverse. Every element z ∈ V̊�

has a pseudo-inverse z̃ ∈ V̊� determined by the properties

Qzz̃ = z, Qz̃z = z̃, Qz Qz̃ = Qz̃ Qz.

Using the pseudo-inverse, the orthogonal projection onto the Peirce 2-space of V z
2

can be explicitly written down.

Lemma 5.1 The pseudo-inverse of z := Bt,−cc is given by

z̃ = Bt,−cB
−1
t,−t c.

Combining these remarks, the chart (5.1) can be written down explicitly. It
is also instructive to embed M� into the conformal compactification V̂ of the
underlying Jordan triple V (the compact Hermitian symmetric space that is dual
to the spectral unit ball �). According to [26] V̂ can elegantly be described using a
certain equivalence relation [z;w] for pairs z,w ∈ Z. As shown in [29], one may
identify the Peirce 2-space V z

2 with the equivalence class [z; z̃] ∈ V̂ . Thus the local
chart (5.1) associated to a tripotent c ∈ S� can also be expressed via the embedding

τc : V c
1 → M� ⊂ V̂

given by

τc(t) = [z; z̃],
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where z := Bt,−cc ∈ V̊� and z̃ is computed via Lemma 5.1. In the sequel this more
refined description of the local charts will not be needed.

Having found the exceptional fibre M� for the higher-rank blow-up process, we
now consider the tautological bundle

V̂� = {(w,U) ∈ V × M� : w ∈ U} ⊂ V� × M�

over M�, together with the collapsing map

π : V̂� → V�, π(w,U) := w

whose range is V�. In [20] this map is used to show that V� is a normal variety. This
property implies the so-called second Riemann extension theorem for holomorphic
functions, of crucial importance in the following. For each s ∈ V c

2 the rank � element

σc(s, t) := Bt,−cs (5.2)

has the same Peirce 2-space τc(t) as Bt,−cc. We define a local chart

ρc : V c
2 × V c

1 → V̂�

by

ρc(s, t) := (σc(s, t), τc(t)). (5.3)

By (5.2) the range of the chart ρc is

V̂ c
� := {(w,U) ∈ V̂� : U ∈ Ran τc} = {(w,U) ∈ V̂� : NU(c) �= 0}.

One shows that the charts ρc, for c ∈ S�, define a holomorphic atlas on V̂�, such that
the collapsing map π : V̂� → V� is holomorphic and is biholomorphic outside the
singular set. We call V̂�, together with the collapsing map the (higher rank) blow-up
of V�.

Proposition 5.2 For rank 1, let c := (1, 0). Then

ρc(s, t) := ((s, st), [1 : t]) = ((s, st), C(1, t)),

where s ∈ C and t ∈ Cd−1. Here [s : t] = [s : t1 : . . . : td−1] denotes the
homogeneous coordinates in Pd−1.
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Proof Clearly, V c
2 = C·c = (C, 0) = [1 : 0] and V c

1 = (0, Cd−1). Then

σc(s, t) = Bt,−cs =
(

1 + (0, t)

(

1
0

)

)

(s, 0)
(

(

1 0
0 1

)

+
(

1
0

)

(

0 t
)

)

= (s, 0)

(

1 t

0 1

)

= (s, st).

In particular, σc(1, t) = (1, t) has the Peirce 2-space τc(t) = C·(1, t) = [1 : t]. It
follows that

ρc(s, t) = (σc(s, t), τc(t)) = ((s, st), C·(1, t)) = ((s, st), [1 : t]).

��
More generally, taking for c = ei the i-th basis unit vector (1 ≤ i ≤ d) we obtain

local charts

ρi(ζ
i, ζ ′) = ((ζ i, ζ iζ ′), C(1i , ζ ′)) = ((ζ i, ζ iζ ′), [1i : ζ ′])

where ζ ′ = (ζ j )j �=i . The finitely many charts ρi (1 ≤ i ≤ d) form already a
covering. Using the grid approach to Jordan triples one can similarly choose finitely
many charts in the general case. However, for many arguments using K-invariance
it is more convenient to take the continuous family of charts (ρc)c∈S�

.

Since the analytic Hilbert modules considered here are supported on the Kepler
ball �� = � ∩ V� we restrict the tautological bundle to the open subset

�̂� := {(w,U) ∈ V̂� : w ∈ ��}
and obtain a collapsing map π : �̂� → �� by restriction. The main idea to study
singular submodules ˜M is now to construct a Hermitian holomorphic line bundle L̂
over �̂�, whose curvature will be the crucial invariant of ˜M.

Proposition 5.3 There exists a holomorphic line bundle L̂ on �̂� consisting of all
equivalence classes

[s, t, λ Nc(s)]c =
[

s′, t ′, λ Nc′(s′)
]

c′ (5.4)

with λ ∈ C. Here c, c′ ∈ S� are tripotents such that

ρc(s, t) = ρc′(s′, t ′) (5.5)

for (s, t) ∈ V c
2 × V c

1 and (s′, t ′) ∈ V c′
2 × V c′

1 .

Proof The condition (5.5) implies σc(s, t) = σc′(s′, t ′) and [σc(1, t)] = τc(t) =
τc′(t ′) = [σc′(1, t ′)]. This implies that Nc(s) and Nc′(s′) do not vanish. Since the
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quotient maps Nc′ (s′)
Nc(s)

satisfy a cocycle property, it follows that

[s, t, λ]c =
[

s′, t ′, λNc′(s′)
Nc(s)

]

c′

defines an equivalence relation yielding a holomorphic line bundle. ��
At this point we do not fix a Hermitian metric on the line bundle L̂ over �̂�.

The metric depends on the choice of singular submodules ˜M which will be defined
below.

6 Singular Hilbert Submodules

Consider the partition

1 := (1, . . ., 1, 0, . . ., 0)

of length �, with 1 repeated � times. Given the Hilbert module M = Mρ as above,
consider the K-invariant Hilbert submodule

˜M = {ψ ∈ M : ψ |V�−1 = 0}.

The formula (4.6) yields the truncated kernel in the form

˜K(z, w) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1
Em+1(z, w), (6.1)

corresponding to vanishing of order ≥ 1 on V�−1. Using the identity

(ν)m+1 = (ν + 1)m (ν)1

one can also express this using Pochhammer symbols for m instead of m + 1.

Lemma 6.1 Let V be a unital Jordan triple, with Jordan algebra determinant N.

Then we have

Em+1(z, w) = (d/r)m

(d/r)m+1
N(z)N(w) Em(z, w).

Proof For tube type we have

Em(e, e) = dm

(d/r)m
.
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Writing

Em+1(z, w) = cm N(z)N(w) Em(z, w)

it follows that

dm+1

(d/r)m+1
= Em+1(e, e) = cm Em(e, e) = cm

dm

(d/r)m
.

Since dm+1 = dm in the unital case, it follows that

cm = (d/r)m

(d/r)m+1
.

��
Lemma 6.2 For m ∈ N�+ we have for s ∈ V c

2 and t ∈ V c
1

Em+1(z, Bt,−cs) = (dc
2/�)m

(dc
2/�)m+1

Nc(PcB
∗
t,−cz) Nc(s) Em(z, Bt,−cs).

Proof Applying Lemma 6.1 to the tube type Peirce 2-space V c
2 of rank � implies

Em+1(z, Bt,−cs) = Em+1(B∗
t,−cz, s) = Em+1

c (PcB
∗
t,−cz, s)

= (dc
2/�)m

(dc
2/�)m+1

Nc(PcB
∗
t,−cz) Nc(s) Em

c (PcB
∗
t,−cz, s).

Since Em
c (PcB

∗
t,−cz, s) = Em(B∗

t,−cz, s) = Em(z, Bt,−cs), the assertion follows.
��

Since the truncated kernel ˜K of ˜M vanishes on the singular set V�−1 it cannot be
used directly to define a Hermitian line bundle over V�−1. Instead, we first consider
the module tensor product of H 2

0 (��) over the polynomial ring P(V ) with the
one dimensional module Cw, (p,w) �→ p(w). Similar as in (2.1) we have, as a
consequence of (6.1)

H 2
0 (��) ⊗P(V ) Cw =

{

C if w ∈ �̊�

P1(V ) if w ∈ ��−1
.

Here P1(V ) is the finite-dimensional K-module belonging to the partition 1. The
K-module P1(V ) has dimension > 1 (since we exclude the case � = r for tube
type, where P1(V ) is spanned by the Jordan algebra determinant N ). The ideal I
associated to the variety V�−1 is generated by P1(V ). For each w ∈ �� there is a
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“cross-section” P1(V ) → H 2
0 (��) given by

p(z) �→ p(z)·�w(z)

where

�(z,w) = K̂w(z) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc
2/�)m

(dc
2/�)m+1

Em(z, w). (6.2)

Then �w(z) ∈ M for each w ∈ ��. Let Ni, i ∈ I be an orthonormal basis of
P1(V ). Then there is a holomorphic vector subbundle E ⊂ �� ×M over the Kepler
ball ��, whose fibre at w ∈ V� is the span

Ew := 〈Ni(z) �w(z) : i ∈ I 〉 = P1(V )·�w ⊂ M.

The vector bundle E is independent of the choice of orthonormal basis Ni. Consider
the pull-back vector bundle

π∗

ˆ
π

over �̂�, under the collapsing map π. We note that the “canonical” choice of higher
rank vector bundle E over ��, with typical fibre P1(V ) associated with the quotient
module, is only possible for irreducible domains. In the reducible case (2.2) of the
bidisk there is no natural choice of a rank 2 vector bundle having the fibre < z1, z2 >

at the origin.

Proposition 6.3 For all (s, t) ∈ V c
2 ⊕ V c

1 we have

˜K(z, Bt,−cs) = Nc(PcB
∗
t,−cz) Nc(s) �(z, Bt,−cs).

Proof This follows from the computation

˜K(z, Bt,−cs) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1
Em+1(z, Bt,−cs)

=
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc
2/�)m

(dc
2/�)m+1

Nc(PcB
∗
t,−cz) Nc(s) Em(z, Bt,−cs)

= Nc(PcB
∗
t,−cz) Nc(s)

∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc
2/�)m

(dc
2/�)m+1

Em(z, Bt,−cs).��
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Now consider the holomorphic line bundle L̂ over the blow-up space �̂� defined
in Proposition 5.3.

Theorem 6.4 There exists an anti-holomorphic embedding L̂ ⊂ π∗E, defined on
each fibre L̂w,U ⊂ (π∗E)w,U = Ew by

[s, t, 1]c �→ Nc(B
∗
t,−cz) �Bt,−cs(z). (6.3)

In short,

[s, t, 1]c �→ Nc ◦ B∗
t,−c �Bt,−cs .

Proof First we show that the map (6.3) is well-defined via the local charts (5.3).
Suppose that c, c′ ∈ S� satisfy

ρc(s, t) = ρc′(s′, t ′),

where (s, t) ∈ V c
2 × V c

1 and (s′, t ′) ∈ V c′
2 × V c′

1 . Then we have

Bt,−cs = σc(s, t) = σc′(s′, t ′) = Bt ′,−c′s′.

It follows that ˜KBt,−cs = ˜KBt ′,−c′ s′ and Proposition 6.3 implies

Nc(s) [s, t, 1]c = ˜KBt,−cs = ˜KBt ′,−c′ s′ = Nc′(s′) [s′, t ′, 1]c′ .

Since Nc(s) and Nc′(s′) don’t vanish on the overlap of the charts, it follows that

[s, t, 1]c = Nc′(s′)
Nc(s)

[s′, t ′, 1]c′ =
[

s′, t ′, Nc′(s′)
Nc(s)

]

c′ .

Thus the map (6.3) respects the equivalence relation (5.4). Moreover, the map (6.3)
is anti-holomorphic in (s, t), with values in M. In order to see that the range belongs
to the span of Ni(z) �w(z), where w = Bt,−cs, choose holomorphic functions ci(t)

such that

Nc(B
∗
t,−cz) =

∑

i∈I

ci(t) Ni(z)

for all t ∈ V c
1 . It follows that

Nc(B
∗
t,−cz) �Bt,−cs(z) =

∑

i

Ni(z) ci(t) �(z, Bt,−cs) ∈ EBt,−cs . ��
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We are now able to define a Hermitian metric on the line bundle L̂ over �̂�. A
Jordan theoretic argument yields

Lemma 6.5 For t ∈ V c
1 we have

PcB
∗
t,−cBt,−cc = PcBt,−t c

and hence

Nc(B
∗
t,−cBt,−cc) = (t, t).

Here  denotes the Jordan triple determinant (3.3).

Proposition 6.6 For all (s, t) ∈ V c
2 ⊕ V c

1 we have

˜K(Bt,−cs, Bt,−cs) = (t, t) |Nc(s)|2 �(Bt,−cs, Bt,−cs).

Proof Since PcBt,−cB
∗
t,−cPc belongs to the structure group of V 2

c it follows from
Lemma 6.5 that

Nc(B
∗
t,−cBt,−cs) = Nc(B

∗
t,−cBt,−cc) Nc(s) = (t, t) Nc(s).

Now apply Proposition 6.3. ��
Proposition 6.7 For each submodule ˜M ⊂ M, with truncated kernel (6.1),
there exists a Hermitian metric on the line bundle L̂ over �̂�, given by the local
representatives

([s, t, 1]c|[s, t, 1]c) := (t, t) �(Bt,−cs, Bt,−cs).

For this metric, the embedding (6.3) is isometric.

Proof Since Proposition 6.6 implies

‖Nc(B
∗
t,−cz) �Bt,−cs(z)‖2 = ‖

˜KBt,−cs

Nc(s)
‖2 = 1

|Nc(s)|2
˜K(Bt,−cs, Bt,−cs)

= (t, t) �(Bt,−cs, Bt,−cs)

it follows that the embedding (6.3) is isometric. ��
Definition 6.8 The Hilbert module over �̂� associated with the Hermitian holo-
morphic line bundle L̂ will be called the reduction of ˜M, and denoted by M̂. Note
that this is different from the pull-back π∗E which is a vector bundle containing L̂
as a subbundle.

The following rigidity theorem for singular submodules on Kepler varieties is
our main analytic result.
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Theorem 6.9 Consider two K-invariant Hilbert modules ˜Mρ and ˜Mρ′ on ��,

for given coefficient sequences ρm and ρ′
m, respectively. Suppose that the reduced

Hilbert modules M̂ρ and M̂ρ′ on the blow-up space �̂� are equivalent. Then we
have equality ˜Mρ = ˜Mρ′ .

Proof The proof is an application of the ‘normalized kernel argument’ summarized
in Proposition 1.1. Consider the reproducing kernels K̂ρ and K̂ρ′

of the reduced
Hilbert modules. It suffices to consider a local chart V c

2 × V c
1 of �̂� for a given

tripotent c ∈ S� defined in (5.3). As a consequence of module equivalence for line
bundles, there exists a non-vanishing holomorphic function φ on the local chart
V c

2 × V c
1 of �̂� such that

K̂ρ′
(x, y) = φ(x) K̂ρ(x, y) φ(y). (6.4)

Putting y = 0 we obtain

1 = K̂ρ′
(x, 0) = φ(x) K̂ρ(x, 0) φ(0) = φ(x) φ(0).

Therefore φ is constant. After normalization, we may assume φ = 1. Then (6.4)
implies

K̂ρ′
(x, y) = K̂ρ(x, y)

for all x, y. In view of (6.2), this implies ρm+1 = ρ′
m+1 for all m ∈ N�+. By (6.1),

the singular submodules ˜M and ˜M′ have the same truncated kernel ˜K(z, w) =
˜K′(z, w). ��

7 Outlook and Concluding Remarks

For the Hardy module H 2(Dd) it is evident that not all submodules are of the
form [I], for some ideal I of the polynomial ring. (Here [I] is the closure of I
in H 2(Dd)). Ahern and Clark [4] show that all submodules (of the Hardy module)
of finite codimension are of this form. In general, if a submodule ˜M ⊆ M is not
of the form [I], then it is not covered by the known Rigidity theorems with only
one exception, namely [18, Theorem, pp. 70]. However, the geometric invariants
constructed in [9] and in the current paper, it is hoped, might be useful in studying a
much larger class of submodules. Recall that a submodule of an analytic Hilbert
module M based on the domain � defines a coherent analytic sheaf [8, 9]. It
possesses a Hermitian structure away from the zero variety and on this smaller open
set, we have a holomorphic Hermitian vector bundle, which determines the class
of the submodule. What we have shown here is that it has an analytic Hermitian
continuation to the blow-up space. This interesting phenomenon naturally leads to
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the notion of, what one may call a Hermitian sheaf and eventually determine the
equivalence class of these in terms of the geometric data already implicit in the
definition, as in the examples we have discussed here.

We conclude this paper with several remarks concerning interesting directions
for future research.

Remark 7.1 In [28] we consider more general Hilbert modules related to Kepler
varieties, where the integration does not take place on the Kepler ball �� but on
certain boundary strata, including the Hardy type inner product (4.4). These Hilbert
modules, and their submodules defined by a vanishing condition on ��−1 provide a
wider class of natural examples to which the above treatment is applicable.

Remark 7.2 It is easy to generalize the singular Hilbert modules treated in this
paper, defined by a vanishing condition of order 1 on the singular set, to vanishing
conditions of higher order. In this case the truncated kernel, generalizing (6.1), has
the form

˜K(z, w) =
∑

m∈N�+

(d/r)m+k

ρm+k

(ra/2)m+k

(�a/2)m+k

Em+k(z, w),

corresponding to vanishing of order ≥ k on V�−1. Here k = (k, . . ., k, 0, . . ., 0)

with k repeated � times. In principle, one could also start with an arbitrary partition
μ > 0 of length � and consider truncations such as

˜K(z, w) =
∑

n∈N�+, n≥μ

(d/r)n

ρn

(ra/2)n

(�a/2)n
En(z, w).

In this case one expects to have the finite-dimensional K-module Pμ(V ) occurring
as a quotient module. On the other hand, treating singularities where the rank
decreases by more than 1, for example V�−2 ⊂ V�, or the origin V0 = {0} as a
singularity in � = �r, seems to be more difficult.

Remark 7.3 In the maximal rank case � = r the ball �r = � is invariant
under the full non-linear group G. For tube type domains, the singular set �r−1
has codimension 1, defined by vanishing of the Jordan algebra determinant. This
case formally resembles the one-dimensional situation and is not covered by our
approach (it was excluded to begin with). On the other hand, let V be a Hermitian
Jordan triple not of tube type. There are three cases

• The rectangular matrices V = Cr×s with s > r.

• The skew-symmetric matrices V = CN×N
asym of odd order N = 2r + 1

• The exceptional Jordan triple V = O1×2
C of rank r = 2 and dimension 16.

For these cases the singular set

Vr−1 = {z ∈ V : rank(z) < r}
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has codimension > 1. The intersection

�r−1 := Vr−1 ∩ �

with the unit ball � ⊂ V is an analytic subvariety of �. For any automorphism
g ∈ G = Aut(�) we obtain another subvariety g(�r−1) ⊂ �. Since G acts on
the weighted Bergman spaces Mν = H 2

ν (�) one can consider submodules of Mν

defined by vanishing on �r−1 and g(�r−1), respectively, where g ∈ G does not
belong to K.

A similar situation arises for the so-called Mok embeddings

ιc : B → �

of the unit ball B = Bn into a symmetric domain � of higher rank, constructed in
[31]. Here c ∈ S1 is any rank 1 tripotent. These embeddings have the property that
the respective Bergman kernels satisfy

KB(x, y) = K�(ιc(x), ιc(y))

for all x, y ∈ B. Let Bc := ιc(B) ⊂ � be the image variety (whose defining
equations are explicitly known [31]) and consider, for g ∈ G, the subvariety g(Bc)

with associated Hilbert submodule ˜Mν ⊆ Mν defined by a vanishing condition on
g(Bc).

It would be of interest to study the reduced modules and rigidity problems for
singular submodules in such a G-equivariant setting.

Remark 7.4 Beyond the scalar case treated in this paper, analytic Hilbert modules
for higher rank vector bundles (n > 1) have recently attracted much attention [23–
25, 27] and should give rise to interesting singular submodules as well.
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