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Preface

The IWOTA 2018 was held at East China Normal University, Shanghai from July
23–27. To honor Ronald G. Douglas’ expansive and profound contributions to
mathematics, in particular his monumental contribution to operator theory research
in China for the past 30 years, the organizers had planned to take this occasion to
celebrate his 80th birthday. Sadly, Ron passed away at Brazos Valley Hospice in
Bryan, Texas on February 27. The organizers thus decided to make this Proceeding
of IWOTA 2018 a special memorial volume. In addition to papers pertinent to
the themes of the conference, this volume collected papers from some of his
collaborators and former students. Included also is an article by physicist Michael
R. Douglas which gives a personal account of his father’s influence.

Ron was born on December 10, 1938 in Osgood, Indiana. He earned his doctorate
at Louisiana State University in 1962. His first paper was in measure theory and
it was published in 1964 by Michigan Mathematical Journal. Ron’s early career
research centered mostly around classical operator theory topics such as invariant
subspaces, Toeplitz operators, operator model theory, and C∗-algebras, and he soon
emerged as one of the leaders in these fields. But in Ron’s view, there is indeed
no fence within mathematics. His work on operator theory extended naturally to
complex geometry. The definition of Cowen–Douglas operator was announced at a
symposium at Williamstown, Massachusetts in 1975. This notion made it possible
to use geometric tools such as holomorphic bundle and curvature to study unitary
equivalence of operators. The foundation of Brown–Douglas–Fillmore theory was
laid in a 1977 joint paper. Although its original intention was to use topological
methods to classify essentially normal operators, it in fact gave a simple analytic
version of K-homology. This work turned out to be fundamental to noncommutative
geometry and topology. His later work focused mainly on multivariable operator
theory and in particular its analytic framework Hilbert modules in function spaces.
The notion of Hilbert module was announced in a conference at Timişoara and
Herculane, Romania in 1984. In response to Shunhua Sun’s invitation, Ron gave
a series of lectures on this topic at Sichuan University, China in 1985. A more
extensive treatment was later carried out in a book coauthored with V. I. Paulsen in
1989. This framework greatly propelled the development of multivariable operator
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viii Preface

theory. A difficult problem in this field is the Arveson–Douglas conjecture which
connects essentially normal Hilbert modules with algebraic geometry, differential
equations, index theory, and K-homology.

Each of Ron’s aforementioned visionary work has nurtured a large community
of scholars. This volume contains a number of papers and surveys in these fields.
In this regard, it serves as a testimony that Ron’s mathematical ideas are still very
much alive. In closing, we would like to thank the contributors to this volume and the
many unnamed reviewers of the articles. Special thanks go to Huaxin Lin, Guoliang
Yu, the local organizers Xiaoman Chen, Kunyu Guo, Qin Wang, Yi-Jun Yao, and the
many volunteer helpers from East China Normal University and Fudan University,
without whom this grand scale conference would not have been possible. This
IWOTA 2018 is also indebted to East China Normal University, Fudan University,
and the U.S. National Science Foundation (award no. 1800780) for their financial
support.

St. Louis, MO, USA Xiang Tang
Albany, NY, USA Rongwei Yang
January 28, 2020
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Following in the Footsteps of Ronald
G. Douglas

Michael R. Douglas

Abstract Many of you knew my father Ronald Douglas as a mentor, a collaborator
or a colleague. While I never wrote a paper with him, he was a powerful influence
on my own career. Some of my most important works, such as those on Dirichlet
branes and noncommutative geometry, turned out to have strong connections with
his work. In this talk I will reminisce a bit and describe a few of these works and
connections.

As I reflect on my father’s life, I realize in how many ways I followed in his
footsteps. I was one of his three children, growing up in Ann Arbor and then
Stony Brook, and our father showed us how attractive the academic life could be—
bringing back gifts and photos from conferences in exotic countries, hosting dinner
parties for visiting friends and colleagues from around the world. Just as appealing
were the simple things: his home office filled with books, some of which he had
written, or his freedom to come home early from work when we needed him, say to
help with a difficult project for school.

We made several long family trips which had a huge influence on me: especially
a sabbatical semester in Newcastle-upon-Tyne in 1973, and a summer in France
in 1970 which included a month in Les Houches. There our mother (his first wife
Nancy) would take us walking in the mountains, while our father attended the well
known summer school which that year was on statistical mechanics and quantum
field theory. Arthur Jaffe has some nice reminiscences of that meeting in [1]. Later
as a young string theorist and mathematical physicist, when I would meet older
colleagues, I was often told that it was not for the first time, they remembered me
from when I was little, many from that meeting.

This trip was also the seed of what would become a lifelong relationship with
France. A year in 1990 visiting Volodya Kazakov and Edouard Brezin at the
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2 M. R. Douglas

Laboratoire de Physique Theorique of the ENS in Paris, my collaboration with Alain
Connes and Albert Schwarz at the IHES, my many visits there between 1999 and
2008 as the Louis Michel chair, and my current role as chairman of the Friends of
IHES, all were in some way fulfilling that early attraction to French and European
culture, to physics and to mathematics.

Although I was fascinated by mathematics, I chose to major in theoretical physics
in college, in part just to avoid following too closely in my father’s footsteps.
Operators were something I used in quantum mechanics, but my mathematical
education did not include operator algebras. In grad school I did take a course in
mathematical methods with Barry Simon, but that focused on topology as used to
study solitons and instantons. I had by then heard the initials BDF, but I have to
admit that when I first tried to read the paper, and for many years after that, I did not
understand any of it. Still, later on my own research would turn out to have many
points of contact with his, both by choice and by chance.

The most direct influence came in the early 1990s. In 1988, my first year as a
postdoc at Chicago, I started working with Steve Shenker on random matrix theory.
As many of you know, the usual starting point for this theory is the discussion of
matrix ensembles such as the Gaussian unitary ensemble, defined by the following
integral over N ×N hermitian matrices,

∫

∏

1≤i,j≤N
dMi,j e

−NtrM2
,

where the measure is independent and uniform for each of the matrix elements. We
were particularly interested in generalizations such as

Z[N,λ] ≡
∫

∏

1≤i,j≤N
dMi,j e

−N
(

1
2 trM2+ λ

3 trM3
)

where λ is a real parameter.
Our interest in this was not because M was an operator, or any other property of

the matrixM . Rather, it was because of a combinatorial interpretation of the integral,
first pointed out in the physics literature by Gerard ’t Hooft. It is a generating
function for the number of planar triangulations of a genus g Riemann surface with
F faces, call this Zg,F ,

Z[N,λ] =
∑

g,F

N2−2gλF Zg,F .

This is explained in many references such as [3], and very recently in section 4 of
[4], so I will not repeat it here.

One can go on, as proposed by Migdal and collaborators in the mid-1980s, to
regard the terms in this expansion at fixed g as defining a discrete approximation
to two-dimensional quantum gravity. The idea is that a planar triangulation can
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be thought of as defining a Riemannian metric on the surface, with curvature
concentrated at each of the vertices. This is a very special class of metrics, but if one
only looks at the total curvature for regions containing many triangles, since in two
dimensions the only invariant of a metric is the curvature scalar, one can argue that
a general metric can be approximated this way. Thus, a sum over all triangulations
is some sort of approximation to an integral over all Riemannian metrics, which
is what physicists mean by the term quantum gravity. The specific results will of
course depend on the choice of triangles versus squares or some other class of
diagrams, but if we just look at the asymptotics for F large, it is plausible that
some aspects of the results are universal, and thus can be thought of as properties
of a random Riemannian metric. This turns out to be true, and has even been shown
rigorously in some cases [5].

Now, two-dimensional quantum gravity can be thought of as a simplified “toy”
model of the quantum version of Einstein’s theory of general relativity, but it can
also be thought of as a simplified model of the two-dimensional world-sheet of a
string as defined in superstring theory. Our goal was to understand the latter and
in particular to find a model in which one could compute results for all genus
g, and perhaps resum them to get a “nonperturbative string theory.” To this end,
we developed what we called the double scaling limit of taking N → ∞ and
λ→ λc (the location of the singularity controlling the large F asymptotics) holding
an appropriate combination fixed. In this limit, the universal quantities could be
computed exactly in terms of a solution of the Painlevé I equation, related to the
integrable KdV hierarchy as first argued in [6].

This work was quite influential, to the point where my father started hearing
about it from other physicists. This brings me to the story of the second time I
went to visit Chen Ning Yang at Stony Brook. My father knew him well of course
and brought me to visit him when I was first deciding where to go to graduate
school and what to study. Yang explained that although particle physics might look
attractive, one had to keep in mind that ultimately it was based on experiments done
at colliders, and that the progress in such experiments was becoming more and more
difficult. In fact, he counseled me against going into the field. So I took his advice,
and decided to go to Caltech to work with John Hopfield on his new theory of neural
networks. This was fall 1983, but in the summer of 1984 came the famous paper of
Green and Schwarz on anomaly cancellation in ten-dimensional superstrings. Soon
most of my fellow graduate students were working on string theory, and I was caught
up in the excitement as well. But I had not forgotten Yang’s advice, and was rather
worried about what he would say when I returned to visit him in 1990. But he had
heard of my work too, and told me that perhaps I had been right not to follow his
advice.

After many discussions on random matrix theory with my father, he suggested I
talk to Dan Voiculescu. As you all know, Voiculescu had developed a framework
called free probability theory, which axiomatized the key properties of random
matrix integrals in the large N limit. This theory has been very influential in
mathematics, but what was more attractive about it for a physicist was that it led
to very simple and intuitive calculational tools, such as the R-transform and S-
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transform for additive and multiplicative free convolutions. Inspired by this, several
physicists including Rajesh Gopakumar and David Gross, Matthias Staudacher, as
well as Miao Li and myself, used free probability both to simplify the existing
random matrix works and to solve new problems, most notably a problem raised by
Is Singer of characterizing the master field for two-dimensional Yang–Mills theory.

Dan Voiculescu also invited me to a workshop he organized at the Fields
Institute in March 1995, which I attended along with Tony Zee, a theoretical
physicist who had moved from quantum field theory into statistical mechanics and
condensed matter theory. This is a good point for me to comment on the difficulties
of communication between physicists and mathematicians. Mathematicians often
complain that they can’t understand physicists because they never define what they
are talking about, but it is just as difficult to follow a talk based on precise definitions
which one is seeing for the first time, or even worse which are not spelled out in the
talk. Now as a string theorist and as my father’s son, I had some experience in
interpreting mathematics, but Tony found the talks impenetrable and I remember
having to give him many translations. Still this was time well spent, as Tony went
on to write many papers using these ideas with Edouard Brezin and others, and free
probability theory is now a well established tool in condensed matter physics.

While I first learned about the connection between random matrix theory and free
probability theory from my father, the most direct connection between the topics of
our research came a bit later and as a surprise to both of us. Now already by the
time of the workshop I just recalled, string theorists including myself were moving
on to a new topic, duality in supersymmetric field theory, epitomized by the famous
Seiberg–Witten solution of N = 2 super Yang–Mills theory. That summer came
the 1995 Strings conference held at USC, at which Chris Hull and Paul Townsend
proposed their unification of superstring dualities, and Edward Witten gave the first
talk on M theory. This was the beginning of the second superstring revolution, the
most exciting part of my scientific career. For the next three years, almost every
month there would be a new discovery which would force us to completely rethink
our concept of string theory and our research directions.

Arguably the most important of these discoveries was the central role of the
Dirichlet brane, explained at the end of 1995 by the late Joe Polchinski [7]. Now
from the beginning of string theory, people had studied both open strings, maps from
an oriented interval into space-time, and closed strings, maps from the circle into
space-time. And during the 1970s it was realized that quantizing the open strings
produced Yang–Mills theory, while quantizing the closed strings produced general
relativity. One sign that this made sense was that whereas a closed string is in some
sense unique, an open string can have “charged quarks” at its ends which couple to
a background U(N) Yang–Mills connection. In plainer mathematical terms, let V
be the defining representation of the Yang–Mills gauge group U(N), and let U(P)

be the holonomy for a path P of the Yang–Mills connection acting on V . Then the
“coupling” means that we redefine the operator expressing the motion of the string
from an initial interval Ii to a final interval If , by tensoring it with U(P0)⊗U†(P1),
where P0 is a path from the “left” end of Ii to the left end of If , and P1 is a path
from the “right” end of Ii to the right end of If . In the limit that the length of the
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interval goes to zero, we have P0 = P1 and this amounts to taking the holonomy in
the adjoint representation. But in general it is different.

In the physical applications of string theory, the strings are very small and this
difference is rather subtle. But one can vary the construction to make it much more
evident. For example, one could take the two ends of the open string to couple to
two different Yang–Mills connections. Next, although the original definition of the
open string allowed its ends to move anywhere in space-time, it is also consistent
to constrain the end to a single point, or to an affine subspace of Minkowski
space-time. In the terms of the path integral formalism this amounts to putting
Dirichlet boundary conditions on the coordinates of the embedding map and thus
the nomenclature. And once one considers a more general metric on space-time,
one generalizes the constraint from an affine subspace to an arbitrary submanifold.
Thus, the full definition of an open string requires maing a choice for each of the two
ends i = 0, 1 of the string, of data (�i,Ai) where �i is a submanifold of space-time
and Ai is a connection on �i .

All this had been pointed out by Dai, Leigh and Polchinski in 1989 [8], but what
Polchinski showed in 1995 was that the Dirichlet brane could also be interpreted
in closed string theory, as the natural object carrying Ramond–Ramond charge.
Without going deeply into the physics, each string theory (and M theory) has a
finite list of gauge fields. The philosophy of superstring duality then states that each
of these gauge fields is associated to two fundamental objects, one carrying electric
charge under the field and the other carrying magnetic charge. These fundamental
objects were then the key to understanding the strong coupling behavior of the
theory. Using arguments from supersymmetry, one could compute the mass of
every fundamental object as a function of parameters, and then whichever was the
lightest object would be “the” fundamental object in that regime. As an example,
in the closed superstring theories, one of the gauge fields is the so-called “Neveu–
Schwarz two-form field,” for which the closed string is the fundamental object. And
consistent with the philosophy, one finds that if the string coupling is weak, all of
the other candidate fundamental objects have large mass. Now these other masses
are proportional to an inverse power of the string coupling, so for strong coupling
a different object will be the lightest. Which one depends on the theory. In the IIa
superstring, one finds that the lightest object at strong coupling is a particle which is
electrically charged under the “Ramond–Ramond one-form field,” and treating it as
fundamental leads to the identification of the strong coupling limit of IIa theory as
M theory. But when this argument was made, there was no understanding of what
this special particle might actually be in string theory terms. Polchinski showed that
it is in fact the Dirichlet brane constrained to live at a point in space and move along
a world-line in time, the so-called D-particle.

Hopefully the reader will not need to follow the details to see that the discovery
of such a simple and intuitive idea led to another revolution in our understanding.
My own contributions to these developments largely focused on the geometric
interpretation of Dirichlet branes. It turned out that by just knowing how to calculate
with Dirichlet branes, and following one’s nose, one could rederive and extend many
important mathematical results relating noncommutative algebra and geometry. This
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line of work began with Witten’s “Small instantons in string theory” [9] and my
[10], which rederived the ADHM construction of instanton moduli spaces this way,
and with my joint work [11] with Greg Moore, which rederived and generalized the
Kronheimer–Nakajima construction of four-dimensional self-dual metrics and their
instanton moduli spaces.

Why do Dirichlet branes lead to noncommutative geometry? There should be a
purely conceptual explanation of this point, but let me give the original argument
in terms of the algebra of coordinates on space-time. In the physics of string
theory, rather than work directly with the strings, one often proceeds through an
intermediate step of “effective field theory,” in which one identifies the subset of all
of the degrees of freedom which are needed to describe the problem at hand. This
is closely related to the idea of separating fast and slow variables in the analysis
of ODE’s and PDE’s, and to the renormalization group. In particular, the relation
I described earlier between open strings and Yang–Mills theory is an example;
the effective theory of open strings is Yang–Mills theory. Following the physical
arguments which lead to a Yang–Mills connection in the case of open strings moving
in all of space-time, and modifying them to the case of a Dirichlet brane associated
with the submanifold � of space-time, we find that the counterpart of the Yang–
Mills connection is a map from� to its normal bundleN�, describing deformations
of the embedding of �. Combining this with the “coupling” argument we gave
earlier, this map to the normal bundle is tensored with an adjoint action of a gauge
group for a Yang–Mills connection on �, becoming a map

X : � → N� ⊗ End(V ),

an intrinsically noncommutative object. While a general map of this type would
contain far more data than a deformation of an embedding, the Yang–Mills
equations also generalize to a flatness condition on the deformation,

[δX, δX] ∼ 0.

In the simplest cases, say of Dirichlet branes in Minkowski space-time, this is zero
and we conclude that the deformation lives in a diagonal subgroup of End(V ), in
other words it is like a direct sum of N independent deformations. This is the case
that reduces to ordinary commutative geometry. But in more general problems the
right hand side is more interesting, and one finds that the Dirichlet branes realize a
noncommutative geometry.

Now I had lectured at the 1995 Les Houches lectures organized by Alain Connes
and Krzysztof Gawedzki, though not about Dirichlet branes as this was the summer
and these developments were still to come. But our writeups were not due until
1996, so after the Dirichlet brane revolution I decided that this was a much more
interesting subject and I devoted part of my Les Houches write-up to it [12]. I had
been intrigued by Connes’ lectures there about his work relating noncommutative
gauge theory and the Standard Model, and in my writeup I had a passage comparing
and contrasting the two pictures, that of Connes and that from Dirichlet branes, for
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how noncommutative geometry related to physics. When Alain saw this, I think
he was happy to see a string theorist giving his work the attention it deserved, and
perhaps this entered into the discussions which led the IHES to offer me a permanent
position late in 1996. By then I was convinced that noncommutative geometry had
a deep relationship to Dirichlet branes, and I happily accepted the position on a trial
basis. This led to a visit in the fall of 1997 and my collaboration with Alain and
Albert Schwarz in which we explained how M theory could be compactified on the
noncommutative torus. This was hugely influential and is still my most cited paper.

Although for family reasons I did not take up the permanent position, I continued
to visit the IHES frequently and during these visits I enjoyed discussions with
Maxim Kontsevich and his many visitors. Maxim had a somewhat different concept
of noncommutative geometry, based on algebraic geometry and concepts such as the
derived category of coherent sheaves. This was extremely difficult for a physicist
to get any purchase on, but as I continued to develop the geometry of Dirichlet
branes I found myself learning more and more of this mathematics, including quiver
algebras, tilting equivalences, and deformation theory. One point where Maxim’s
intuition was of immediate guidance was the role of the superpotential, which in
his terms was a reduction of the holomorphic Chern–Simons action. But the real
prize in the story was the role of the derived category of coherent sheaves, which
Maxim had brought in to formulate his homological mirror symmetry conjecture.
Since the Dirichlet brane theory was in some sense a generalization of Yang–Mills,
I and other physicists had brought in all of the successful approaches to Yang–Mills,
including the Donaldson–Uhlenbeck–Yau theorem and the necessary prerequisite
of stability of holomorphic bundles. Gradually we realized that the right approach
to understanding Dirichlet branes on Calabi–Yau manifolds was to generalize the
concepts entering this theorem. Thus holomorphic bundles became coherent sheaves
and then the derived category of coherent sheaves, and we were able to see how
to get all of these generalizations out of the physical constructions. On the other
hand there was no counterpart in the derived category of the stability condition of
DUY. During 1999–2000 I asked many mathematicians about this, and the universal
opinion was that it did not and could not exist, because there was no concept of
subobject in a derived category. Still, the physics said it had to exist.

The resolution of this contradiction involved a great deal of additional input
from string theory, which led to the formulation of �-stability [14], a definition of
stability which made sense for a derived category. With Paul Aspinwall we showed
that this formulation passed several nontrivial consistency checks, but at this point
the development was becoming too difficult for our physics techniques. Happily we
were able to the explain the ideas to mathematicians, as in my ICM lecture [15] and
most importantly at the M theory workshop we organized at the Newton Institute in
the winter of 2002. There Tom Bridgeland took up the mantle and was able to turn
these ideas into rigorous mathematics, now generally referred to as a Bridgeland
stability condition [16]. Much of this story is explained in our book [17].

While the rich structure of algebraic geometry allowed us to go very far, so far
this has only been for a small subset of the space-times possible in string theory,
the Calabi–Yau manifolds. For more general spaces one needs to start with more
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general foundations, and the most general mathematical context in which one study
the Dirichlet brane is K theory, as pointed out by Edward Witten and especially by
Greg Moore. This brings me to what is probably the most direct connection between
my father’s and my own respective bodies of research.

In 1982, working with Paul Baum, my father published “Index Theory, Bordism
and K-homology.” [2]. The introduction states that it was completed during a visit
to the IHES, I believe the family visit we made that summer. One of the stories we
still tell about that visit is about Bastille Day, when we went into Paris to watch the
fireworks. We had taken public transit (the RER), and as some of you will know, this
stops running around 1 in the morning, so we took care to leave a bit early to catch
our train. Unfortunately, so many other spectators had similar constraints that the
Metro was jam-packed, and we only made it in time for the last train. And the last
train did not go all the way to Bures, it stopped in Massy-Palaiseau, several miles
away. By the time we realized where the taxi stop was, they were all taken. So we
had to make the long hike home, under the moonlight. Still we made the best of
it, singing and playing word games, until my sister sprained her ankle, and we had
to carry her the rest of the way. The sun was just coming up as we arrived at the
Ormaille.

Despite having to watch us, evidently my father found time to do some work, and
the resulting paper is (I am told) a classic in K theory. I will not get any farther than
the first definition, however, which is that for a cycle in K-homology [2]:

Definition 1 A cycle for K0(X) is a triple (σ0, σ1, T ) where σ0 and σ1 are ∗-
representations of the algebra of complex continuous bounded functions on X, and
T is a bounded intertwining operator.

Amazingly enough, in [13] Jeff Harvey and Greg Moore showed that one can derive
this definition from Dirichlet branes as well. This uses the physical idea of “tachyon
condensation,” and since the map T in the definition corresponds physically to a
tachyon, Harvey and Moore even used the same notation for it. This is (more or
less) the reduction to K theory of the derived category constructions I was working
out at the same time.

So I was destined to walk in my father’s footsteps after all. Fortunately he had
chosen some very fruitful directions to walk in, and I am eternally grateful for that
and for all that we shared together.
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contractive operator tuple T = (T1, . . . , Td) having T = T1 · · · Td equal to a
completely nonunitary contraction. We identify additional invariants G�,W� in
addition to the Sz.-Nagy–Foias characteristic function �T for the product operator
T so that the combined triple (G�,W�,�T ) becomes a complete unitary invariant
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1 Introduction

A major development in the theory of nonnormal operator theory was the Sz.-Nagy
dilation theorem (any Hilbert-space contraction operator T can be represented as
the compression of a unitary operator to the orthogonal difference of two invariant
subspaces) and the concomitant Sz.-Nagy–Foias functional model for a completely
nonunitary contraction operator (we refer to [42] for a complete treatment). Since
then there have been many forays into extensions of the formalism to more general
settings. Perhaps the earliest was that of Andô [9] who showed that any pair of
commuting contractions can be dilated to a pair of commuting unitary operators,
but the construction had no functional form like that of the Sz.-Nagy–Foias model
for the single-operator case and did not lead to a functional model for a commutative
contractive pair. Around the same time the Commutant Lifting Theorem due to
Sz.-Nagy et al. [42] appeared, with a seminal special case due to Sarason [49].
It was soon realized that there is a close connection between the Andô Dilation
Theorem and Commutant Lifting (see [47, Section 3]). However in the same paper
of Parrott it was shown that Andô’s result fails for d commuting contractions as
soon as d ≥ 3. Arveson [11] gave a general operator-algebraic/function-algebraic
formulation of the general problem which also revealed the key role of the property
of complete contractivity as opposed to mere contractivity for representations of
operator algebras.

Since the appearance of [21], much work has focused on the d-tuple of coordinate
multipliers Mz1, . . . ,Mzd on the Hardy space over the polydisk H 2

Dd as well as
the coordinate multipliers Mζ1 , . . . ,Mζd on the Lebesgue space over the torus
L2
Td and variations thereof as models for commuting isometries, and the quest for

Wold decompositions related to variations of these two simple examples. While the
most definitive results are for the doubly-commuting case (see [40, 50, 52]), there
has been additional progress developing models to handle more general classes of
commuting isometries [29, 30, 56, 57]. One can then study examples of commutative
contractive tuples by studying compressions of such commutative isometric tuples
to jointly coinvariant subspaces (see e.g. the book of Douglas and Paulsen [35] for an
abstract approach and work of Yang [61]). This work has led to a wealth of distinct
new types of examples with special features, including strong rigidity results (see
e.g. [36]). In case the commutative contractive tuple itself is doubly commuting,
one can get a rather complete functional analogue of the Schäffer construction of
the minimal unitary dilation (see [24, 58]).



Commuting Contractions 13

More recent work of Agler and Young along with collaborators [1, 6, 7], inspired
by earlier work of Bercovici et al. [18] having motivation from the notion of
structured singular-value in Robust Control Theory (see [18, 38]), explored more
general domains on which to explore the Arveson program: a broad overview of
this direction is given in Sect. 2.2 below. Followup work by Bhattacharyya and
collaborators (including the second author of the present manuscript) [22, 23, 25–
28] as well as of Sarkar [51] found analogues of the Sz.-Nagy–Foias defect operator

DT = (I − T ∗T ) 1
2 and a more functional form for the dilation and model theory

results established for these more general domains (specifically, the symmetrized
bidisk 	 and tetrablock domain E to be discussed below).

The goal of the present paper is to adapt these recent advances in the theory
of 	- and E-function-theoretic operator theory to the original Andô-Parrott setting
where the domain is the polydisk Dd and the associated operator-theoretic object is
a operator-tuple T = (T1, . . . , Td) of commuting contraction operators on a Hilbert
space H. Specifically, we adapt the definition of Fundamental Operators, originally
introduced in [25] for 	-contractions and then adapted to E-contractions in [22],
to arrive at a definition of Fundamental Operators {Fj1, Fj2 : j = 1, . . . , d} for a
commutative contractive operator tuple T = (T1, . . . , Td). We then show that the
set of Fundamental Operators can be jointly Halmos-dilated to another geometric
object which we call an Andô tuple as it appears implicitly as a key piece in Andô’s
construction of a joint unitary dilation in [9] for the pair case. While the set of
Fundamental Operators is uniquely determined by T , there is some freedom in the
choice of Andô tuple associated with T . With the aid of an Andô tuple, we are
then able to construct a (not necessarily commutative) isometric lift for T which has
the form of a Berger–Coburn–Lebow (BCL) model (as in [21]) for a commutative
isometric operator-tuple. While any commutative isometric operator-tuple can be
modeled as a BCL-model, there is no tractable characterization as to which BCL-
models are commutative, except in the d = 2 case. For the d = 2 case it can
be shown that there is an appropriate choice of the Andô tuple which leads to a
commutative BCL-model—thereby giving a more succinct proof of Andô’s original
result. For the general case where d ≥ 3, we next show how the noncommutative
isometric lift constructed from the Andô tuple can be cut down to the minimal
isometric-lift space for the single product operator T = T1 · · · Td to produce an
analogue of the single-variable lift for the commutative tuple situation which we
call a pseudo-commutative contractive lift of T . For the case where T = T1 · · ·Td
is completely nonunitary, we model the minimal isometric-lift space for T as the

Sz.-Nagy–Foias functional-model space

[

H 2(DT ∗ )
��T

L2(DT )

]

for T based on the Sz.-

Nagy–Foias characteristic function �T for T and we arrive at a functional model
for the whole commutative tuple T = (T1, . . . , Td) consistent with the standard
Sz.-Nagy–Foias model for the product operator T = T1 · · · Td . Let us mention that
the basic ingredients of this model already appear in the work of Das et al. [31] for
the pure-pair case (d = 2 and T = T1T2 has the property that T ∗n → 0 strongly
as n → ∞). This leads to the identification of additional unitary invariants (in
addition to the characteristic function �T ) so that the whole collection {G,W,�T }
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(which we call a characteristic triple for the commutative contractive tuple T ) is a
complete unitary invariant for T for the case where T = T1 · · ·Td is completely
nonunitary. Here G = {Gj1,Gj2 : j = 1, . . . , d} consists of the Fundamental
Operators for the adjoint tuple T ∗ = (T ∗1 , . . . , T ∗d ) and W = {W�1, . . . ,W�d }
consists of a canonically constructed commutative unitary tuple of multiplication
operators on the Sz.-Nagy–Foias defect model space ��T · L2(D�T ) with product

equal to multiplication by the coordinate Mζ on ��T · L2(D�T ), all of which is
vacuous for the case where T = T1 · · ·Td is pure. Let us also mention that we
obtain an analogue of the Sz.-Nagy–Foias canonical decomposition for a contraction
operator, i.e.: any commutative contractive operator tuple T splits as an orthogonal
direct sum T = T u ⊕ T c where T u is a commutative unitary operator-tuple and
T c is a commutative contractive operator tuple with T = T1 · · · Td completely
nonunitary. As the unitary classification problem for commutative unitary tuples can
be handled by the spectral theory for commuting normal operators (see [10, 34]),
the results for the case where T = T1 · · · Td is completely nonunitary combined
with the spectral theory for the commutative unitary case leads to a model theory
and unitary classification theory for the general class of commutative contractive
operator-tuples.

Let us mention that Bercovici et al. [14–16] have also recently obtained a wealth
of structural information concerning commutative contractive tuples. This work also
builds off the BCL-model for the commutative isometric case, but also derives
additional insight concerning the BCL-model itself. There also appears the notion of
characteristic function for a commutative contractive operato-tuple, but this is quite
different from our notion of characteristic function (simply the Sz.-Nagy–Foias
characteristic function of the single operator equal to the product T = T1 · · ·Td ).

The paper is organized as follows. After the present Introduction, Sect. 2 on
preliminaries provides (1) a reference for some standard notations to be used
throughout, (2) a review of the rational dilation problem, especially in the context of
the specific domains 	 (symmetrized bidisk) and E (tetrablock domain), including
some discussion on how these domains arise from specific examples of the
structured singular value arising in Robust Control theory, (3) some background
on Fundamental Operators in the setting of the symmetrized bidisk, along with
some additional information (4) concerning Berger–Coburn–Lebow models for
commutative isometric-tuples [21] and (5) concerning the Douglas approach [32]
to the Sz.-Nagy–Foias model theory which will be needed in the sequel. Let us
also mention that the present manuscript is closely related to our companion paper
[13] where the results of the present paper are developed directly for the pair case
(T = (T1, T2) is a commutative contractive operator-pair) from a more general
point of view where additional details are developed. Finally this manuscript and
[13] subsume the preliminary report [54] posted on arXiv.

Acknowledgements Finally let us mention that this paper is dedicated to the
memory of Ron Douglas, a role model and inspiring mentor for us. Indeed it is his
approach to the Sz.-Nagy–Foias model theory in [32] which was a key intermediate
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step in our development of the multivariable version appearing here. In addition his
recent work with Bercovici and Foias [14–16] has informed our work as well.

2 Preliminaries

2.1 Notation

We here provide a reference for a core of common notation to be used throughout
the paper.

Given an operator A on a Hilbert space X , we write

• ν(A) = numerical radius of A= sup{|〈Ax, x〉X | : x ∈ X with ‖x‖ = 1}.
• ρspec(A) = spectral radius of A = sup{|λ| : λ ∈ C and λI − A not invertible}.
• If T ∈ L(X ) with ‖T ‖ ≤ 1, then DT denotes the defect operator of T defined as

DT = (I − T ∗T ) 1
2 and DT = Ran DT .

• Given the set of d indices {j : 1 ≤ j ≤ d}, (j) denotes the tuple of d − 1 indices
(1, . . . , j − 1, j + 1, . . . , d).

• For a d-tuple (T1, T2, . . . , Td) of operators and an index j such that 1 ≤ j ≤ d ,
T(j) denotes the operator T1 · · ·Tj−1Tj+1 · · · Td .

2.2 Domains with Motivation from Control: The Symmetrized
Bidisk G and the Tetrablock E

The symmetrized bidisk G is the domain in C2 defined as

G = {(s, p) ∈ C
2 : ∃ (λ1, λ2) ∈ D

2 such that s = λ1+λ2 and p = λ1λ2}. (2.1)

The study of this domain from a function-theoretic and operator-theoretic point of
view was initiated in a series of papers by Agler and Young starting in the late
1990s (see [3–8]) with original motivation from Robust Control Theory (see [38]
and the papers of Bercovici et al. [17–20]). The control motivation can be explained
as follows.

A key role is played by the notion of structured singular value introduced in the
control literature by Packer and Doyle [45]. The structured singular valueμ�(A) of
a N ×N matrix over C with respect to an uncertainty set � (to be thought of as the
admissible range for an additional unknown variable � which is used to parametrize
the set of possible true plants around the chosen nominal (oversimplified) model
plant) is defined to be

μ�(A) = [sup{r ∈ R+ : I −�A invertible for � ∈ � with ‖�‖ ≤ r}]−1
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After appropriate normalizations, it suffices to test whether μ�(A) < 1;

μ�(A) < 1 ⇔ I − A� invertible for all � ∈ � with ‖�‖ ≤ 1.

In the control theory context, this appears as the test for internal stability not only for
the nominal plant but for all other possible true plants as modeled by the uncertainty
set �. In practice the uncertainty set is taken to be the set of all matrices having a
prescribed block diagonal structure.

For the case of 2× 2 matrices, there are three possible block-diagonal structures:

�full =
{[

z11 z12

z21 z22

]

: zij ∈ C

}

= all 2× 2 matrices.

�scalar =
{[

z 0
0 z

]

: z ∈ C

}

= all scalar 2× 2 matrices.

�diag =
{[

z1 0
0 z2

]

: z1, z2 ∈ C

}

= all diagonal matrices.

An easy exercise using the theory of singular-value decompositions is to show
that

μ�full(A) = ‖A‖.

To compute μ�scalar (A), one can proceed as follows. Given A = [

a11 a12
a21 a22

]

, from
the definitions we see that

μ�scalar (A) < 1 ⇔ det

([

1− za11 −za12

−za21 1− za22

])

�= 0 for all z with |z| ≤ 1

⇔ 1− (trA)z+ (detA)z2 �= 0 for all z with |z| ≤ 1. (2.2)

Thus the decision as to whether μ�scalar(A) < 1 depends only on trA and detA, i.e.,
on trA = λ1 + λ2 and detA = λ1λ2 where λ1, λ2 are the eigenvalues of A. This
suggests that we define a map πG : C2×2 → C2 by

πG(A) = (trA, detA)

and introduce the domain

G
′ ={x = (x1, x2) ∈ C

2 : ∃A = [ a11 a12
a21 a22

] ∈ C
2×2

with πG(A) = x and μ�scalar(A) < 1}. (2.3)

Note next that the first form of the criterion (2.2) for μ�scalar (A) < 1 can also be
interpreted as saying that A has no inverse-eigenvalues inside the closed unit disk,
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i.e., all eigenvalues of A are in the open unit disk, meaning that ρspec(A) < 1. In this
way we see that the symmetrized bidisk G (2.1) is exactly the same as the domain
G′ given by (2.3). This equivalence gives the connection between the symmetrized
bidisk and the structured singular value A �→ μ�scalar(A).

Noting that similarity transformations

A �→ A′ = SAS−1 for some invertible S

preserve eigenvalues and using the fact that ρspec(A) < 1 if and only if A is
similar to a strict contraction (known as Rota’s Theorem [48] among mathematicians
whereas engineers think in terms of X = S∗S � 0 being a solution of the Linear
Matrix Inequality A∗XA−X ≺ 0—see e.g. [38, Theorem 11.1 (i)]), we see that yet
another characterization of the domain G is

G = {x = (s, p) ∈ C
2 : ∃A ∈ C

2×2 with πG(A) = x and ‖A‖ < 1}. (2.4)

The fact that one can always write down a companion matrix A whose characteristic
polynomial det(zI −A) is equal to a given polynomial 1− sz+ps2 leads us to one
more equivalent definition of G:

G = {(s, p) ∈ C
2 : 1− sz+ pz2 �= 0 for |z| ≤ 1}. (2.5)

The closure of G is denoted by 	.
A similar story holds for the tetrablock domain E defined as

E = {x = (x1, x2, x3) ∈ C
3 : 1− x1z − x2w + x3zw �= 0 whenever |z| ≤ 1, |w| ≤ 1}

(2.6)

(the analogue of definition (2.5) for the symmetrized bidisk G) and its connection
with the structured singular value A �→ μ�diag(A). From the definitions we see that,
for A = [ a11 a12

a21 a22

]

,

μ�diag(A) < 1 ⇔ det

([

1 0
0 1

]

−
[

z 0
0 w

] [

a11 a12

a21 a22

])

�= 0 for |z| ≤ 1, |w| ≤ 1

⇔ 1− za11 − wa22 + zw · detA �= 0 whenever |z| ≤ 1, |w| ≤ 1.

This suggests that we define a mapping πE : C2×2 → C
3 by

πE
([

a11 a12
a21 a22

]) = (a11, a22, a11a22 − a12a21)

and we define a domain E by

E = {x = (x1, x2, x3) ∈ C
3 : ∃A ∈ C

2×2 with πE(A) = x and μ�diag(A) < 1}.
(2.7)
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If x = (x1, x2, x3) belongs to E as defined in (2.6) above, we can always take

A =
[

x1 x1x2−x3
1 x2

]

to produce a matrix A with πE(A) = (x1, x2, x3) and then this A

has the property that μ�diag(A) < 1. Thus definitions (2.6) and (2.7) are equivalent.
Among the many equivalent definitions of E (see [1, Theorem 2.2]), one of the more
remarkable ones is the following variation of definition (2.7):

E={x=(x1, x2, x3) ∈ C
3 : ∃A ∈ C

2×2 with πE(A) = x and ‖A‖ < 1}. (2.8)

That (2.7) and (2.8) are equivalent can be seen as a consequence of the 2s + f

theorem in the control literature (with s = 0, f = 2 so that 2s + f = 2 ≤ 3)—see
[38, Theorem 8.27], but is also proved in [1] directly.

While the original motivation was the control theory connections, most of
the ensuing research concerning the domains G and E focused on their role
as new concrete domains to explore operator- and function-theoretic questions
concerning general domains in Cd . One such question is the rational dilation
problem formulated by Arveson [11]. Let us assume that K is a compact set in
Cd (as is the case for K equal to 	 = G or E). Suppose that we are given a
commutative tuple T = (T1, . . . , Td) of Hilbert space operators with Taylor joint
spectrum contained in K (if the Hilbert space H is finite-dimensional, one can take
Taylor joint spectrum to mean the set of joint eigenvalues). If r is any function
holomorphic in a neighborhood of K ( if K is polynomially convex, one can take
r to be polynomial) any reasonable functional calculus can be used to define r(T ).
We say that T is aK-contraction (sometimes also phrased as K is a spectral set for
T ), if for all r ∈ Rat(K) (rational functions holomorphic in a neighborhood of K)
it is the case that the following von Neumann inequality holds:

‖r(T )‖B(H) ≤ ‖r‖∞,K = sup
z∈K
{|r(z)|}

where B(H) is the Banach algebra of bounded linear operators on H with the
operator norm. Let us say that operator tuple U = (U1, . . . , Ud) is K-unitary if
U is a commutative tuple of normal operators with joint spectrum contained in the
distinguished boundary ∂eK of K . We say that T has a K-unitary dilation if there
is a K-unitary operator-tuple U on a larger Hilbert space K containing H such that
r(T ) = PHr(U)|H for all r ∈ RatK . If T has a K-unitary dilation U , it follows
that

‖r(T )‖ = ‖PHr(U)|H‖ ≤ ‖r(U)‖ = sup
z∈∂eK

|r(z)|

(by the functional calculus for commutative normal operators)

= sup
z∈K

|r(z)| (by the definition of the distinguished boundary)
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and it follows that T has K as a spectral set. The rational dilation question asks: for
a given compact set K , when is it the case that the converse direction holds, i.e., that
T being a K-contraction implies that T has a K-unitary dilation U? For the case of

K equal to the closed polydisk D
d
, the rational dilation question is known to have

an affirmative answer in case d = 1 (by the Sz.-Nagy dilation theorem [43]) as well
as d = 2 (by the Andô dilation theorem [9]) but has a negative answer for d ≥ 3 by
the result of Parrott [47]. For the case of K = 	 it is known that the rational dilation
question has an affirmative answer ([7, 25]) while the case of K = E was initially
thought to be settled in the negative [46] but now appears to be still undecided [12].

It is known that existence of a K-unitary dilation for T is equivalent to the
existence of a K-isometric lift for T . Here a commutative operator-tuple V =
(V1, . . . , Vd) defined on a Hilbert space K+ is said to be a K-isometry if there is a
K-unitary d-tuple U = (U1, . . . , Ud) on a Hilbert space K containing K+ such that
K+ is invariant for U and U restricted to K+ is equal to V , i.e.,

UjK+ ⊂ K+ and Uj |K+ = Vj for j = 1, . . . , d.

Then we say that the K-contraction T has a K-isometric lift if there is a K-isometric
operator-tuple V on a Hilbert space K+ containing H such that V is a lift of T , i.e.,
for each j = 1, . . . , d ,

V ∗j H ⊂ H and V ∗j |H = T ∗j .

It is known that a K-contraction T has a K-unitary dilation if and only if T has a K-
isometric lift. In practice K-isometric lifts are easier to work with, so in the sequel
we shall only deal with K-isometric lifts. This point has been made in a number of
places (see e.g. the introduction in [12]).

We define a couple of terminologies here. To add flexibility to the construction
of such lifts, we often drop the requirement that H be a subspace of K+ but instead
require only an isometric identification map � : H → K+. We summarize the
precise language which we shall be using in the following definition.

Definition 2.1 We say that (�,K+, S = (S1, . . . , Sd)) is a lift of T = (T1, . . . , Td)

on H if

• � : H→ K+ is isometric, and
• S∗j �h = �T ∗j h for all h ∈ H and j = 0, 1, 2, . . . , d .

A lift (�,K+, S) of T is said to be minimal if

K+ = span{Sm1
1 S

m2
2 · · · Smd

d h : h ∈ H,mj ≥ 0}.

Two lifts (�,K+, S) and (�,′ K′+, S ′) of the same (T1, . . . , Td) are said to be
unitarily equivalent if there is a unitary operator τ : K+ → K′+ so that

τSj = S′j τ for each j = 1, . . . , d, and τ� = �′.
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It is known (see Chapter I of [42]) that when K = D, any two minimal isometric
lifts of a given contraction are unitarily equivalent. However, minimality in several

variables does not imply uniqueness, in general. For example, two minimal D
2
-

isometric lifts need not be unique (see [41]).
Instead of E-contraction, the terminology tetrablock contraction was used in

[22]. We follow this terminology.

2.3 Fundamental Operators

For our study of commutative contractive tuples T = (T1, . . . , Td), we shall have
use for the following theorem concerning 	-contractions. We refer back to Sect. 2.1
for other notational conventions.

Theorem 2.2 Let (S, T ) be a 	-contraction on a Hilbert spaceH. Then

1. (See [25, Theorem 4.2].) There exists a unique operatorF ∈ B(DT )with ν(F ) ≤
1 such that

S − S∗T = DT FDT .

2. (See [22, Lemma 4.1].) The operator F in part (1) above is the unique solution
X = F of the operator equation

DT S = XDT +X∗DT T .

This theorem has been a major influence on further developments in the theory
of both 	-contractions [26, 27] and tetrablock contractions [22, 28, 53]. The unique
operator F in Theorem 2.2 is called the fundamental operator of the 	-contraction
(S, T ).

2.4 Models for Commutative Isometric Tuples

The following result of Berger, Coburn and Lebow for commutative-tuples of
isometries is a fundamental stepping stone for our study of commutative-tuples of
contractions.

Theorem 2.3 Let d ≥ 2 and (V1, V2, . . . , Vd) be a d-tuple of commutative
isometries acting on K. Then there exit Hilbert spaces F and Ku, unitary opera-
tors U1, . . . , Ud and projection operators P1, . . . , Pd on F , commutative unitary
operatorsW1, . . . ,Wd on Ku, such that K can be decomposed as

K = H 2(F)⊕Ku (2.9)
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and with respect to this decomposition

Vj = MUjP
⊥
j +zUjPj

⊕Wj , V(j) = MPjU
∗
j +zP⊥j U∗j

⊕W(j) for 1 ≤ j ≤ d,

(2.10)

and V = V1V2 · · ·Vd = Mz ⊕W1W2 · · ·Wd.

Proof See Theorem 3.1 in [21] as well as [14, Section 2] for a different perspective.
��

Definition 2.4 Given two Hilbert spaces F , E , d projections P1, P2, . . . , Pd

in B(F), d unitaries U1, U2, . . . , Ud in B(F), and d commuting unitaries
W1,W2, . . . ,Wd in B(E), the tuple

(F , E, Pj , Uj ,Wj )
d
j=1

will be referred to as a BCL tuple. We shall call the tuple of isometries acting on
H 2(F)⊕ E given by

(MU1P
⊥
1 +zU1P1

⊕W1,MU2P
⊥
2 +zU2P2

⊕W2, . . . ,MUdP
⊥
d +zUdPd

⊕Wd) (2.11)

the BCL model associated with the BCL tuple (F , E, Pj , Uj ,Wj )
d
j=1.

Remark 2.5 If P and U are a projection and a unitary acting on a Hilbert space F ,
then one can check that the multiplication operator MU(P⊥+zP ) acting on H 2(F) is
an isometry. It should however be noted that given d projections P1, P2, . . . , Pd and
unitaries U1, U2, . . . , Ud on F , the tuple of isometries

(MU1P
⊥
1 +zU1P1

,MU2P
⊥
2 +zU2P2

, . . . ,MUdP
⊥
d +zUdPd

)

need not be commutative, in general. Necessary conditions for such a tuple of
isometries to be commuting are given in Theorem 3.2 of [21]:

U1U2 · · ·Ud = IF , UiUj = UjUi for 1 ≤ i, j ≤ d,

Pj1 + U∗j1
Pj2Uj1 + U∗j2

U∗j1
Pj3Uj1Uj2 + · · · + U∗jd−1

· · ·U∗j1
PjnUj1 · · ·Ujd−1 = IF

for (j1, j2, . . . , jd ) ∈ Sd (2.12)

where Sd is the permutation group on d indices {1, 2, . . . , d}. When d = 2, these
necessary conditions (2.12) simplify to

U2 = U∗1 and P2 = IF − P1. (2.13)

which turn out to be sufficient as well for the d = 2 case.
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It is well known that an arbitrary family of commutative isometries has a com-
mutative unitary extension (see [42, Proposition I.6.2]). The Berger–Coburn–Lebow
model for commutative isometries gives some additional information regarding such
extensions.

Lemma 2.6 Let V = (V1, V2, . . . , Vd) be a d-tuple of commutative isometries on a
Hilbert spaceH and V = V1V2 · · ·Vd . Then V has a commutative unitary extension
Y = (Y1, Y2, . . . , Yd) such that Y = Y1Y2 · · · Yd is the minimal unitary extension of
V .

Proof See [21, Theorem 3.6]. ��

2.5 Canonical Commutative Unitary Tuple Associated with a
Commutative Tuple of Contractions

Let (T1, T2, · · · , Td) be a d-tuple of commutative contractions on a Hilbert space
H and T = T1T2 · · · Td . Since T is a contraction, the sequence T nT ∗n converges in
the strong operator topology. Let Q be the positive semidefinite square root of the
limit operator, so

Q2 := SOT- lim T nT ∗n. (2.14)

Then the operator X∗ : Ran Q→ Ran Q defined densely by

X∗Q = QT ∗, (2.15)

is an isometry because for all h ∈ H,

〈Q2h, h〉 = lim
n→∞〈T

nT ∗nT ∗h, T ∗h〉 = 〈QT ∗h,QT ∗h〉. (2.16)

Let W∗
D on RD ⊇ Ran Q be the minimal unitary extension of X∗. Define the

operator ̂ODT ∗ ,T ∗ : H→ H 2(DT ∗) as

̂ODT ∗ ,T ∗(z)h =
∞
∑

n=0

znDT ∗T ∗nh, for every h ∈ H. (2.17)

Then the operator �D : H→ H 2(DT ∗)⊕RD defined by

�D(h) = ̂ODT ∗ ,T ∗(z)h⊕Q(h) =
∞
∑

n=0

znDT ∗T ∗nh⊕Qh (2.18)
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is an isometry and satisfies the intertwining property

�DT
∗ = (Mz ⊕WD)

∗�D (2.19)

(see e.g. [32, Section 4]. We conclude that with the isometry VD defined on KD :=
H 2(DT ∗)⊕RD as

VD := Mz ⊕WD, (2.20)

(�D,KD, VD) is an isometric lift of T . One can furthermore show that this lift is
minimal as well (see [32, Lemma 1]).

If we now recall that T = T1, T2, . . . , Td , we see that for all h ∈ H and i =
1, 2, . . . , d ,

〈TiQ2T ∗i h, h〉 = lim〈T n(TiT
∗
i )T

∗nh, h〉 ≤ lim〈T nT ∗nh, h〉 = 〈Q2h, h〉.

By the Douglas Lemma [33], this implies that there exists a contraction X∗i such
that

X∗i Q = QT ∗i . (2.21)

Since T = (T1, T2, . . . , Td) is commutative, it is evident that (X1,X2, . . . , Xd) is a
commutative tuple of contractions and that

X∗1 · · ·X∗d = X∗,

where X∗ is as in (2.15). Since X∗ is an isometry, so also is each Xi . By
Lemma 2.6 we have a commutative unitary extension (W∗

∂1,W
∗
∂2, . . . ,W

∗
∂d ) of

(X∗1,X∗2 , . . . , X∗d) on the same space RD ⊇ RanQ, where the minimal unitary
extension W∗

D of X∗ acts and

WD = W∂1W∂2 · · ·W∂d. (2.22)

Note that this means

RD = span{Wn
Dx : x ∈ RanQ and n ≥ 0}. (2.23)

The tuple

W∂ := (W∂1,W∂2, . . . ,W∂d ) (2.24)

will be referred to as the canonical commutative unitary tuple associated with
(T1, T2, . . . , Td). We next show that the canonical tuple of commutative unitary
operators is uniquely determined by the tuple (T1, T2, . . . , Td).
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Lemma 2.7 Let T = (T1, T2, . . . , Td) on H and T ′ = (T ′1, T ′2, . . . , T ′d ) on H′ be
tuples of commutative contractions. Let W∂ = (W∂1,W∂2, . . . ,W∂d) on RD and
W ′

∂ = (W ′
∂1,W

′
∂2, . . . ,W

′
∂d ) on R′D be the W ′

∂ = (W ′
∂1,W

′
∂2, . . . ,W

′
∂d ) on R′D

be the respective commutative tuples of unitaries obtained from T and T ′ as above,
respectively. If T is unitarily equivalent to T ′ via the unitary similarity φ : H→ H′,
then so are W∂ and W ′

∂ via the induced unitary transformation τφ : RD → R′D
determined by τφ : Wn

DQh→ W ′n
DQ′φh. In particular, if T = T ′, thenW∂ = W ′

∂ .

Proof That the tuples W∂ and W ′
∂ are obtained from T and T ′ respectively means

that

W∗
∂jQ = QT ∗j , W ′∗

∂jQ
′ = Q′T ′∗j for each j = 1, 2, . . . , d,

WD =
∞
∏

j=1

W∂j , W ′
D =

∞
∏

j=1

W ′
∂j , (2.25)

where Q2 = SOT-limn→∞ T nT ∗n and Q′2 = SOT-limn→∞ T ′nT ′∗n with T =
T1T2 · · ·Td and T ′ = T ′1T ′2 · · · T ′d . We shall show that set of Eqs. (2.25) is all that is
needed to prove the lemma.

So suppose that the tuples T and T ′ are unitarily equivalent via the unitary
similarity φ : H → H′. By definitions of Q and Q′, it is easy to see that φ

intertwines Q and Q′ also and hence φ takes RanQ onto RanQ′. By (2.25) it
follows that φ intertwines W∗

∂j |RanQ and W ′∗
∂j |RanQ′ for each j = 1, 2, . . . , d .

Now remembering the formula (2.23) for the spaces RD and R′D , we define
τφ : RD → R′D by

τφ : Wn
Dx �→ W ′n

D φx, for every x ∈ RanQ and n ≥ 0

and extend linearly and continuously. It is evident that τφ is unitary and intertwines
WD and W ′

D . For a non-negative integer n, j = 1, 2, . . . , d and x in RanQ, we
compute

τφW∂j (W
n
Dx) = τφW

n+1
D

d
∏

j �=i=1

W∗
∂ix = W ′n+1

D φ

⎛

⎝

d
∏

j �=i=1

W∗
∂ix

⎞

⎠

= W ′n+1
D

d
∏

j �=i=1

W ′∗
∂i φx = W ′

∂1W
′n
D φx = W ′

∂j τφ(W
n
Dx).

and the lemma follows. ��
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3 Fundamental Operators for a Tuple of Commutative
Contractions

The following result reduces the study of commutative contractive d-tuples to the
study of a family of 	-contractions. This enables us to apply the substantial body of
existing results concerning 	-contractions to the study of commutative contractive
operator-tuples.

Proposition 3.1 Let d ≥ 2 and T = (T1, T2, . . . , Td) be a d-tuple of commutative
contractions on a Hilbert space H and let T = T1 · · · Td . Then for each j =
1, 2, . . . , d and w ∈ D, the pair

(Sj (w), T (w)) := (Tj +wT(j), wT ) (3.1)

is a 	-contraction, where T(j) := T1 . . . Tj−1Tj+1 . . . Td .

Proof Note that for each j = 1, 2, . . . , d and w ∈ D, the pair (Sj (w), T (w)) is
actually the symmetrization of two commutative contractions, viz., Tj and wT(j).
Since every such pair is a 	-contraction, the result follows. ��

Proposition 3.1 allows us to apply the	-contraction theory to obtain fundamental
operators associated with a d-tuple of commutative contractions. This is the main
result of this section.

Theorem 3.2 Let d ≥ 2 and T = (T1, T2, . . . , Td) be a d-tuple of commutative
contractions on a Hilbert spaceH and let T = T1T2 · · · Td . Then
1. For each i = 1, 2, . . . , d , there exist unique bounded operators Fi1, Fi2 ∈

B(DT ) with ν(Fi1 +wFi2) ≤ 1 for all w ∈ D such that

Ti − T ∗(i)T = DT Fi1DT ,

T(i) − T ∗i T = DT Fi2DT . (3.2)

2. For each i = 1, 2, . . . , d , the pair (Fi1, Fi2) as in part (1) is the unique solution
(Xi1,Xi2) = (Fi1, Fi2) of the system of operator equations

DT Ti = Xi1DT +X∗i2DT T,

DT T(i) = Xi2DT +X∗i1DT T . (3.3)

Proof Note first that Proposition 3.1 ensures us that for all w ∈ T, the pairs
(Si(w), T (w)) := (Ti + wT(i), wT ) are 	-contractions. Hence by Theorem 2.2
there exist operators Fi(w) ∈ B(DT ) such that

Si(w)− Si(w)
∗T (w) = DT Fi(w)DT
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which in turn simplifies to

(Ti − T ∗(i)T )+w(T(i) − T ∗i T ) = DT Fi(w)DT . (3.4)

Let us introduce the notation

L0 = Ti − T ∗(i)T , L1 = T(i) − T ∗i T , L(w) = L0 + wL1

so that we can write (3.4) more compactly as

L(w) = DT Fi(w)DT . (3.5)

Our goal is to show that then necessarily Fi(w) has the pencil form

Fi(w) = Fi1 +wFi2 (3.6)

for some uniquely determined operators Fi1 and Fi2 in B(DT ). Note that we recover
L0 and L1 from L(w) via the formulas

L0 = L(0), L1 = L(w)− L(0)

w
for any w ∈ D \ {0}.

Since L(0) = DT Fi(0)DT , it is natural to set

Fi1 = Fi(0). (3.7)

Similarly, since we recover L1 from L(w) via the formula

L1 = L(w)− L(0)

w
for any w ∈ D \ {0},

it is natural to set

Fi2 = Fi(w)− Fi(0)

w
for w ∈ D \ {0}. (3.8)

To see that the right-hand side of (3.8) is independent of w, we note that

L1 = L(w)− L(0)

w
= DT

Fi(w)− Fi(0)

w
DT .

Since L1 is independent of w and (Fi(w)− Fi(0))/w ∈ B(DT ), it follows that, for
any two points w,w′ ∈ D \ {0}, we have

DT

(

Fi(w)− Fi(0)

w
− Fi(w

′)− Fi(0)

w′

)

DT = 0.
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From the general fact

X ∈ L(DT ), DT XDT = 0 ⇒ X = 0, (3.9)

it follows that Fi(w)−Fi(0)
w

= Fi(w
′)−Fi(0)
w′ and hence Fi2 is well-defined by (3.8).

From the definitions we see that L0+wL1 = DT (Fi1+wFi2)DT and hence, again
by the uniqueness statement (3.9), we have established that Fi(w) has the pencil
form (3.6) as wanted.

Finally Eqs. (3.2) now follow by equations coefficients in the pencil identity
L(w) = DT T (w)DT .

To prove part (2), we see by part (2) of Theorem 2.2 that for each i = 1, 2, . . . , d
and w ∈ T, the operator Fi(w) is the unique operator that satisfies

DT Si(w) = Fi(w)DT + Fi(w)
∗DT T (w).

Hence it follows that for all w ∈ T we have

DT (Ti +wT(i)) = (Fi1 +wFi2)DT +w(Fi1 +wFi2)
∗DT T .

A comparison of the constant terms and the coefficients of w gives the equations
in (3.3).

The uniqueness part follows from that of the function Fi(w) as follows. If F ′i1
and F ′i2 are operators on DT that satisfy (3.3), then setting Fi(w)

′ := F ′i1 + wF ′i2
gives

DT Si(w) = Fi(w)
′DT + Fi(w)

′∗DT T (w).

By the uniqueness in part (2) of Theorem 2.2, we conclude Fi(w) = Fi(w)
′ proving

Fi1 = F ′i1 and Fi2 = F ′i2 for all i = 1, 2, . . . , d . ��
Definition 3.3 For a d-tuple T = (T1, T2, . . . , Td) of commutative contractions on
a Hilbert space H, the unique operators {Fi1, Fi2 : i = 1, 2, . . . , d} obtained in
Theorem 3.2 are called the fundamental operators of T . The fundamental operators
of the adjoint tuple T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ) will be denoted by {Gi1,Gi2 : i =
1, 2, . . . , d}.

The following is a straightforward consequence of Theorem 3.2.

Corollary 3.4 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions
on a Hilbert space H. Then the fundamental operators {Gi1,Gi2 : i = 1, . . . , d}
of the adjoint tuple T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ) are the unique operators satisfying the
systems of equations

{

T ∗i − T(i)T
∗ = DT ∗Gi1DT ∗ and

T ∗(i) − TiT
∗ = DT ∗Gi2DT ∗

(3.10)
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and

{

DT ∗T ∗i = Gi1DT ∗ +G∗i2DT ∗T ∗ and
DT ∗T ∗(i) = Gi2DT ∗ +G∗i1DT ∗T ∗

(3.11)

for each i = 1, 2, . . . , d:

We next note some additional properties of the fundamental operators. These
properties will not be used in this paper but are of interest in their own right.

Proposition 3.5 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contrac-
tions on a Hilbert spaceH and T = T1T2 · · ·Td . Let {Fj1, Fj2 : j = 1, . . . , d} and
{Gj1,Gj2 : j = 1, . . . , d} be the fundamental operators of T and T ∗, respectively.
Then for each j = 1, 2, . . . , d ,

1. TFj1 = G∗j1T |DT
;

2. DT Fj1 = (TjDT −DT ∗Gj2T )|DT , DT Fj2 = (T(j)DT −DT ∗Gj1T )|DT ;
3. (F ∗j1DTDT ∗ − Fj2T

∗)|DT ∗ = DTDT ∗Gj1 − T ∗G∗j2 and
(F ∗j2DTDT ∗ − Fj1T

∗)|DT ∗ = DTDT ∗Gj2 − T ∗G∗j1.

Proof Let (T1, T2) be a commutative pair of contractions on a Hilbert space H. We
claim that the triple (T1, T2, T1T2) is a tetrablock contraction or equivalently the
closure of the tetrablock domain E as in (2.6) is a spectral set for (T1, T2, T1T2). Let
πD2,E : D2 → E be the map defined by

πD2,E : (z1, z2) �→ (z1, z2, z1z2) (3.12)

and let f be any polynomial in three variables. Then by Andô’s theorem

‖f (T1, T2, T1T2)‖ = ‖f ◦ πD2,E(T1, T2)‖ ≤ ‖f ◦ πD2,E‖∞,D2 ≤ ‖f ‖∞,E.

Therefore the triple (T1, T2, T1T2) is a tetrablock contraction whenever (T1, T2) is a
commutative pair of contractions.

Thus, given a d-tuple T = (T1, T2, . . . , Td) of commutative contractions on a
Hilbert space H, there is an associated family of tetrablock contractions, viz.,

(Tj , T(j), T ), j = 1, 2, . . . , d. (3.13)

Hence parts (1), (2), and (3) of Proposition 3.5 follow immediately from Lemmas 8,
9 and 10 of [28], respectively. ��
Remark 3.6 We note that a result parallel to Theorem 3.2 appears in the theory of
tetrablock contractions (see [22, Theorem 3.4], namely: if (A,B, T ) is a tetrablock
contraction, then [22] that there exists two bounded operators F1, F2 acting on DT

with ν(F1 + zF2) ≤ 1, for every z ∈ D such that

A− B∗T = DT F1DT and B − A∗T = DT F2DT .
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Moreover, Corollary 4.2 in [22] shows thatF1, F2 are the unique operators (X1,X2)

such that

DTA = X1DT +X∗2DT T, DT B = X2DT +X∗1DT T .

These unique operators F1, F2 are called the fundamental operators of the tetra-
block contraction (A,B, T ).

Furthermore, it is possible to arrive at the result of Theorem 3.2 via applying
these results to the special tetrablock contractions (3.13). Our proof of Theorem 3.2
instead relies only on the properties of fundamental operators for 	-contractions.

4 Joint Halmos Dilation of Fundamental Operators

The following notion of dilation for the case d = 1 goes back to a 1950 paper of
Halmos [39], hence our term joint Halmos dilation.

Definition 4.1 For a tuple A = (A1, A2, . . . , Ad) of operators on a Hilbert space
H, a tuple B = (B1, B2, . . . , Bd) of operators acting on a Hilbert space K
containing H is called a joint Halmos dilation of A, if there exists an isometry
� : H→ K such that Ai = �∗Bi� for each i = 1, 2, . . . , d .

Lemma 4.2 Let d ≥ 2 and (T1, T2, . . . , Td) be a d-tuple of commutative contrac-
tions onH and T = T1T2 · · · Td .
1. Let α = (j1, . . . , jk) be a k-tuple such that 1 ≤ j1 < j2 < · · · < jk ≤ d .

Consider the k-tuple (Tj1, Tj2, . . . , Tjk ) and define Tα = Tj1 · · · Tjk . Let �α :
DTα → DTj1

⊕DTj2
⊕ · · · ⊕DTjk

be the operator defined by

�α : DTαh �→
DTj1

Tj2 · · · Tjkh⊕DTj2
Tj3 · · · Tjkh⊕ · · · ⊕DTjk−1

Tjkh⊕DTjk
h (4.1)

for all h ∈ H. Then�α is an isometry.
2. For each j = 1, 2, . . . , d , the operator

�j : DT → DT1 ⊕DT2 ⊕ · · · ⊕DTd

given by

�j : DT h �→ DTj T(j)h⊕�(j)DT(j)h, for all h ∈ H (4.2)

is an isometry, where �(j) for the tuple (j) = (1, . . . , j − 1, j + 1, . . . , d) is as
in (4.1).
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3. For each j = 1, 2 . . . , d , the operator U∗j : Ran �j → DT1 ⊕DT2 ⊕ · · · ⊕ DTd

defined by

U∗j : DTj T(j)h⊕�(j)DT(j)h �→ DTj h⊕�(j)DT(j)Tjh for all h ∈ H (4.3)

is an isometry.
4. After possibly enlarging the Hilbert space DT1 ⊕ DT2 ⊕ · · · ⊕ DTd to a larger

Hilbert space

F := DT1 ⊕DT2 ⊕ · · · ⊕DTd ⊕ E

for some auxiliary Hilbert space E ,

(a) the isometries U∗j in part (3) can be extended to be unitary operators on F
(still denoted as U∗j ).

(b) for each j = 1, 2 . . . , d , there exists a unitary operator τj on F such that

τj�j = �1, (4.4)

where τ1 = IF .

Proof of Part (1) Note that the norm of the vector on the RHS of (4.1) is

‖DTj1
Tj2 · · · Tjkh‖2 + ‖DTj2

Tj3 · · ·Tjkh‖2 + · · · + ‖DTjk−1
Tjkh‖2 + ‖DTjk

h‖2

(4.5)

Making use of the general fact that if T is a contraction on a Hilbert space H, then
‖DT h‖2 = ‖h‖2 − ‖T h‖2 for every h ∈ H, we can convert (4.5) to the telescoping
sum

(‖Tj2 · · · Tjkh‖2 − ‖Tj1Tj2 · · ·Tjkh‖2)+ (‖Tj3 · · · Tjkh‖2 − ‖Tj2Tj3 · · · Tjkh‖2)

+ · · · + (‖Tjkh‖2 − ‖Tjk−1Tjkh‖2)+ (‖h‖2 − ‖Tjkh‖2).

= ‖h‖2 − ‖Tj1Tj2 · · · Tjkh‖2 = ‖h‖2 − ‖Tαh‖2 = ‖DTαh‖2.

This shows that �α is an isometry.

Proof of Part (2) Use the fact that �(j) is an isometry by Part (1) to get

‖DTj T(j)h‖2 + ‖�(j)DT(j)h‖2 = ‖DTj T(j)h‖2 + ‖DT(j)h‖2

= (‖T(j)h‖2 − ‖T h‖2)+ (‖h‖2 − ‖T(j)h‖2) = ‖DT h‖2.

Proof of Part (3) By a similar computation as done in Part (2), one can show that
the norms of the vectors DTj T(j)h⊕�(j)DT(j)h and DTj h⊕�(j)DT(j)Tjh are the
same for every h in H.
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Proof of Part (4) Denote by D the Hilbert space DT1⊕DT2⊕· · ·⊕DTd . If for each
j = 1, 2, . . . , d ,

dim(D � {DTj T(j)h⊕�(j)DT(j)h : h ∈ H})
= dim(D � {DTj h⊕�(j)DT(j)Tjh : h ∈ H}), (4.6)

then clearly the isometric operators U∗j defined as in (4.3) extend to unitary
operators on DT1 ⊕ DT2 ⊕ · · · ⊕ DTd . Then we may define unitary operators τj
on D by

τj = U1U
∗
j . (4.7)

(so in particular τ1 = ID). Note next that

τ : �jDT h = DTj T(j)h⊕�(j)DT(j)h �→ DT1T(1)h⊕�(1)DT(1)h = �1DT h

Hence τj is a well-defined unitary operator on all of D satisfying the intertwining
relation (4.4). If any of the equalities in (4.6) does not hold, then we add an infinite
dimensional Hilbert space E to DT1 ⊕DT2 ⊕ · · · ⊕DTd so that (4.6) does hold with
D replaced by

F := DT1 ⊕DT2 ⊕ · · · ⊕DTd ⊕ E .

This proves (4). ��
Notation For the adjoint tuple (T ∗1 , T ∗2 , . . . , T ∗d ), the symbols F ,�j ,Uj , τj intro-
duced in Lemma 4.2 will be changed to Fj∗,�j∗, Uj∗ and τj∗, respectively. In
addition to this, we denote by Pj and Pj∗ the projections of F and F∗ onto DTj and
DTj∗ , respectively.

Definition 4.3 Let d ≥ 2 and T = (T1, T2, . . . , Td) be a d-tuple of commutative
contractions. Let F ,�j ,Uj be as in Lemma 4.2, and for j = 1, 2, . . . , d let Pj

denote the projection of F onto DTj . Then we say that the tuple (F ,�j , Pj , Uj )
d
j=1

is an Andô tuple for T .

Theorem 4.4 Let d ≥ 2, T = (T1, T2, . . . , Td) be a d-tuple of commutative
contractions on a Hilbert space H, (F ,�j , Pj , Uj )

d
j=1 be an Andô tuple for T

and {Fj1, Fj2 : j = 1, 2, . . . , d} be the fundamental operators for T . Then
1. For each j = 1, 2 . . . , d , the pair (Fj1, Fj2) pair of partial isometries, viz.,

(Fj1, Fj2) = �∗j (P⊥j U∗j , UjPj )�j . (4.8)
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2. With the unitaries τj as obtained in part (5) of Lemma 4.2, there is a joint Halmos
dilation for the set {Fj1, Fj2 : j = 1, 2, . . . , d}, viz.,

(Fj1, Fj2) = �∗1(τjP⊥j U∗j τ ∗j , τjUjPj τ
∗
j )�1, for each j = 1, 2, . . . , d.

(4.9)

Proof of (1) The proof of this part uses the uniqueness of the fundamental opera-
tors. For h, h′ ∈ H we have

〈DT�
∗
jP

⊥
j U∗j �jDT h, h

′〉
= 〈P⊥j U∗j (DTj T(j)h⊕�(j)DT(j)h),DTj T(j)h

′ ⊕�(j)DT(j)h
′〉

= 〈0⊕�(j)DT(j)Tjh,DTj T(j)h
′ ⊕�(j)DT(j)h

′〉
= 〈DT(j) Tjh,DT(j)h

′〉 = 〈(Tj − T ∗(j)T )h, h
′〉.

Therefore DT�
∗
jP

⊥
j U∗j �jDT = Tj − T ∗(j)T . By a similar computation one can

show that DT�
∗
jUjPj�jDT = T(j) − T ∗j T . By Theorem 3.2, the fundamental

operators are the unique operators satisfying these equations. Hence (4.8) follows.

Proof of (2) This follows from the property (4.4) of the unitaries τj : τj�j = �1,
for each j = 1, 2, . . . , d . Using this in (4.8), we obtain (4.9). ��

5 Non-commutative Isometric Lift of Tuples of Commutative
Contractions

As was mentioned in connection with the rational dilation problem in Sect. 2.2, it

can happen that a D
d
-contraction fails to have a D

d
-isometric lift once d ≥ 3, unlike

the case of d = 1 and d = 2. Note that a D
d
-contraction consists of a commutative

d-tuple T = (T1, . . . , Td) of contraction operators, while a D
d
-isometry consists

of a commutative d-tuple of isometries. Here we show that, even for the case of a

general d ≥ 3, a D
d
-contraction always has a (in general noncommutative) isometric

lift V = (V1, . . . , Vd).
Let T be a contraction on a Hilbert space H. Schäffer [55] showed that the

following 2× 2 block operator matrix

V S =
[

T 0
e∗0DT Mz

]

: H⊕H 2(H)→ H⊕H 2(H) (5.1)

is an isometry and hence a lift of the contraction T . Here, e0 : H 2(H) → H is the
“evaluation at zero” map: e0 : g �→ g(0). For a given d-tuple T = (T1, . . . , Td)
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of contraction operators, let V S
j be the Schäffer isometric lift of Tj , for each 1 ≤

j ≤ d . Then the tuple V S := (V S
1 , V

S
2 , . . . , V

S
d ) is an (in general noncommutative)

isometric lift of T .
It is of interest to develop other constructions for such possibly noncommutative

isometric lifts which have more structure and provide additional insight. Our next
goal is to provide one such construction where the (possibly noncommutative)
isometric lift of the given commutative contractive d-tuple T = (T1, . . . , Td) has
the form of a (possibly noncommutative) BCL model. The starting point for the
construction is an Andô tuple (F∗,�j∗, Pj∗, Uj∗)dj=1 of T ∗, with the BCL model
for the lift then having the form

(Mτj∗(Uj∗P⊥j∗+zUj∗Pj∗)τ∗j∗
⊕W∗

∂j )
d
j=1,

where W∂ := (W∂1,W∂2, . . . ,W∂d) is the canonical commutative unitary tuple
associated with the commutative contractive T as in (2.24), and where τj (j =
1, . . . , d) are unitaries acting on F as in Part (5) of Lemma 4.2. We first need a
preliminary lemma.

Lemma 5.1 Let d ≥ 2, (T1, T2, . . . , Td) be a d-tuple of commutative contractions
and (F ,�j , Pj , Uj )

d
j=1 be an Andô tuple for (T1, T2, . . . , Td). Then the operator

identities

P⊥j U∗j �jDT + PjU
∗
j �jDT T = �jDT Tj ,

UjPj�jDT + UjP
⊥
j �jDT T = �jDT T(j) (5.2)

hold for j = 1, . . . , d .

Proof Let j be some integer between 1 and d , and h be in H. Then

P⊥j U∗j �jDT h+ PjU
∗
j �jDT T h

= P⊥j U∗j (DTj T(j)h⊕�(j)DT(j)h)+ PjU
∗
j (DTj T(j)T h⊕�(j)DT(j)T h)

= P⊥j (DTj h⊕�(j)DT(j)Tjh)+ Pj (DTj T h⊕�(j)DT(j)TjT h)

= (0⊕�(j)DT(j)Tj h)+ (DTj T h⊕ 0) = DTj T(j)Tjh⊕�(j)DT(j)Tjh

= �jDT Tjh.

The proof of the second equality in (5.2) is similar to that of the first one. ��
Theorem 5.2 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions,
W∂ := (W∗

∂1,W
∗
∂2, . . . ,W

∗
∂d ) be the canonical commutative unitary tuple associ-

ated with T as in (2.24), let (F∗,�j∗, Pj∗, Uj∗)dj=1 be an Andô tuple for T ∗, and
let T = T1T2 · · · Td . Then
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1. For each 1 ≤ j ≤ d , define the isometries �j∗ : H→ H 2(F∗)⊕RD as

�j∗h = (IH 2 ⊗�j∗)̂ODT ∗ ,T ∗h⊕Qh. (5.3)

Then the identities

�j∗T ∗j = (M∗
Uj∗P⊥j∗+zUj∗Pj∗

⊕W∗
∂j )�j∗

�j∗T ∗(j) = (M∗
Pj∗U∗j∗+zP⊥j∗U∗j∗

⊕W∗
(∂j))�j∗ (5.4)

hold for 1 ≤ j ≤ d , i.e. for each j = 1, 2, . . . , d ,

(

�j∗,MUj∗P⊥j∗+zUj∗Pj∗ ⊕W∂j ,MPj∗U∗j∗+zP⊥j∗U∗j∗ ⊕W(∂j),Mz ⊕WD

)

(5.5)

is an isometric lift of (Tj , T(j), T ).
2. With the unitaries τj∗ obtained as in part (4) of Lemma 4.2 applied to

(T ∗1 , T ∗2 , . . . , T ∗d ), we have for each j = 1, 2, . . . , d ,

⎧

⎪

⎨

⎪

⎩

�1∗T ∗j = (M∗
τj∗(Uj∗P⊥j∗+zUj∗Pj∗)τ∗j∗

⊕W∗
∂j )�1∗

�1∗T ∗(j) = (M∗
τj∗(Pj∗U∗j∗+zP⊥j∗U∗j∗)τ∗j∗

⊕W∗
(∂j))�1∗,

(5.6)

i.e. if we denote the projections τj∗Pj∗τ ∗j∗ and unitaries τj∗Uj∗τ ∗j∗ by P ′j∗ and
U ′j∗, respectively, then the d-tuple of (in general non-commutative) isometries

(M(U ′j∗P ′⊥j∗ +zU ′j∗P ′j∗) ⊕W∂j )
d
j=1 (5.7)

is a lift of (T1, T2, . . . , Td) via the embedding�1∗ : H→ H 2(F∗)⊕RD .

Proof of Part (1) For every h ∈ H, we have for each j = 1, 2, . . . , d ,

(M∗
Uj∗P⊥j∗+zUj∗Pj∗

⊕W∗
∂j )�j∗h

=
∑

n≥0

znP⊥j∗U∗j∗�j∗DT ∗T ∗nh+
∑

n≥0

znPj∗U∗j∗�j∗DT ∗T ∗n+1h⊕W∗
∂jQh

=
∑

n≥0

zn(P⊥j∗U∗j∗�j∗DT ∗ + Pj∗U∗j∗�j∗DT ∗T ∗)T ∗nh⊕QT ∗j h

=
∑

n≥0

zn�j∗DT ∗T ∗j T ∗nh⊕QT ∗j h = �j∗T ∗j h

where we use the first equation in (5.2)) for the last step.
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A similar computation using the second equation in (5.2) leads to the second
equation in (5.4).

Proof of Part (2) It follows from property (4.4) of τj and the definition (5.3) of
�j∗ that

((IH 2 ⊗ τj∗)⊕ IR)�j∗ = �1∗, for each j = 1, 2, . . . , d.

Using this in (5.4) one obtains (5.6). ��
Remark 5.3 Note that for a given d-tuple T = (T1, T2, . . . , Td) of commutative
contractions, if there exists an Andô tuple of T ∗ such that the d-tuple of isometries
given in (5.7) is commutative, then there exists a commutative isometric lift of T .

Therefore a priori, we have a sufficient condition for dilation in D
d
.

Remark 5.4 Note that in the terminology of Definition 2.1, the context of part (2)
of Theorem 5.2 the collection of objects (�D,H

2(F∗) ⊕ RD, V ), where we set
V = (V1, . . . , Vd) with

Vj = MU ′j∗P ′⊥j∗ +zUj∗P ′j∗
⊕W∂j for j = 1, . . . , d (5.8)

is a (not necessarily commutative) isometric lift for of (T1, . . . , Td), where
the construction involves only an Andô tuple (F∗,�j∗, Pj∗, Uj∗)dj=1 for T =
(T1, . . . , Td). Note also that the presentation (5.8) shows that (V1, . . . , Vd) is
just the (not necessarily commutative) BCL-model associated with the BCL-tuple
(F∗,RD,P∗j , U∗j ,W∂j )

d
j=1 as in Definition 2.4.

6 Pseudo-Commutative Contractive Lifts and Models
for Tuples of Commutative Contractions

One disadvantage of dilation theory in D
d

(d ≥ 2) is that there is no uniqueness of
minimal isometric lifts when such exist, even in the case d = 2 (where at least we
know such exist)—unlike the classical case d = 1. We next identify an alternative
generalization of the notion of isometric lift for the d = 1 case, which, as we shall
see, always exists and has good uniqueness properties.

Definition 6.1 For a given d-tuple T = (T1, T2, . . . , Td) of commutative contrac-
tions acting on a Hilbert space H, we say that (�,K, S, V ) is a pseudo-commutative
contractive lift of (T1, T2, . . . , Td, T ), where S = (S1, S2, . . . , Sd) and T =
T1T2 · · ·Td , if

1. � : H → K is an isometry such that (�,K, V ) is the minimal isometric lift of
the single operator T , and
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2. with S′j = S∗j V for each 1 ≤ j ≤ d , the pairs (Sj , V ), (S′j , V ) are commutative
and

(S∗j , S′∗j )� = �(T ∗j , T ∗(j)).

Remark 6.2 Note that we do not assume that the tuples S = (S1, S2, . . . , Sd) and
S′ = (S′1, S′2, . . . , S′d ) be commutative but we do require that each of the pairs
(Sj , V ) and (S′j , V ) be commutative. Also one can show that the validity of the
equation S′j = S∗j V implies the validity of the equation Sj = S′∗j V for each j =
1, 2, . . . , d as follows:

S′j = S∗j V ⇒ S′∗j = V ∗Sj ⇒ S′∗j V = V ∗SjV = V ∗V Sj = Sj .

Suppose that (V1, V2, . . . , Vd) on K is a commutative isometric lift of a given d

tuple of commutative contractions T = (T1, T2, . . . , Td) on H via an isometric
embedding � : H → K. Let us denote by V the isometry V1V2 · · ·Vd . Then
with V ′j := V1 · · ·Vj−1Vj+1 · · ·Vd for j = 1, 2, . . . , d , we see that part (2) in
Definition 6.1 is satisfied. However, the lift (�,K, V ) of T = T1T2 · · · , Td need
not be minimal, i.e. condition (1) in Definition 6.1 may not hold.

The next theorem shows that for a given tuple T of commutative contractions,
a pseudo-commutative contractive lift exists and any two such lifts are unitarily
equivalent in a sense explained in the theorem.

Theorem 6.3 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions
acting on a Hilbert space H and let T = T1T2 · · · Td . Then there exists
a pseudo-commutative contractive lift of (T1, T2, . . . , Td, T ). Moreover, if
(�1,K1, S, V1) and (�2,K2, R, V2) are two pseudo-commutative contractive lifts
of (T1, T2, . . . , Td , T ), where S = (S1, S2, . . . , Sd) and R = (R1, R2, . . . , Rd),
then (�1,K1, S, V1) and (�2,K2, R, V2) are unitarily equivalent in the sense of
Definition 2.1.

Proof of Existence Roughly the idea is that a pseudo-commutative contractive
lift of T = (T1, . . . , Td) arises as the compression of the Andô-tuple-based
noncommutative isometric lift constructed in Theorem 5.2 to the minimal lift space
for the single contraction operator T = T1 · · · Td . Precise details are as follows.

We use the Douglas model for the minimal isometric lift of the single contraction
operator T = T1 · · · , Td as described in Sect. 2.5, namely

(H 2(DT ∗)⊕RD,�D,VD = Mz ⊕WD)

as in (2.18), (2.19), and (2.20). We let (W∂1, . . . ,W∂d) be the canonical unitary
tuple associated with (T1, . . . , Td) as in (2.24), and let {Gi1,Gi2 : i = 1, . . . d} be
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the fundamental operators associated with T ∗ = (T ∗1 , . . . , T ∗d ) as in (3.10). Set

SD := (SD1 , SD2 , . . . , SDd )

:= (MG∗11+zG12 ⊕W∂1,MG∗21+zG22 ⊕W∂2, . . . ,MG∗d1+zGd2 ⊕W∂d) (6.1)

and

S′D := (S′D1 , S′D2 , . . . , S′Dd )

:= (MG∗12+zG11 ⊕W(∂1),MG∗22+zG21 ⊕W(∂2) . . . ,MG∗d2+zGd1 ⊕W(∂d)).

(6.2)

We shall show that

(�D,KD = H 2(DT ∗)⊕RD, S
D,Mz ⊕WD) (6.3)

is a pseudo-commutative contractive lift of T = (T1, . . . , Td).
Toward this goal let us first note that part (1) of Theorem 4.4 for the d tuple T ∗,

we get

(Gj1,Gj2) = �∗j∗(P⊥j∗U∗j∗, Uj∗Pj∗)�j∗ for each j = 1, 2, . . . , d, (6.4)

where (F∗,�j∗, Pj∗, Uj∗)dj=1 is an Andô tuple for T ∗. We now recall the construc-
tion of a noncommutative isometric lift described in Theorem 5.2. Notice that the
isometries �j∗ : H→ H 2(F∗)⊕RD as in (5.3) can be factored as

�j∗h =
[

(IH 2 ⊗�j∗) 0
0 IRD

] [

̂ODT ∗ ,T ∗(z)h
Qh

]

=
[

(IH 2 ⊗�j∗) 0
0 IRD

]

�Dh.

(6.5)

Therefore from the first equation in (5.4) we get for each j = 1, 2, . . . , d ,

�DT
∗
j h =

[

(IH 2 ⊗�∗j∗) 0

0 IRD

]

⎡

⎣

M∗
Uj∗P⊥j∗+zUj∗Pj∗

0

0 W ∗
∂j

⎤

⎦

[

(IH 2 ⊗�j∗) 0
0 IRD

]

�Dh

=
⎡

⎣

M∗
�∗j∗Uj∗P⊥j∗�j∗+z�∗j∗Uj∗Pj∗�j∗

0

0 W ∗
∂j

⎤

⎦�Dh

=
[

M∗
G∗j1+zGj2

0

0 W ∗
∂j

]

�Dh.
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Consequently, we have for each j = 1, 2, . . . , d ,

�DT
∗
j = (M∗

G∗j1+zGj2
⊕W∗

∂j )�D = SD∗j �Dh (6.6)

Similarly starting with the second equation in (5.4) and proceeding as above we
obtain

�DT
∗
(i) = (M∗

G∗i2+zGi1
⊕W∗

(∂i))�D = S′D∗i �D. (6.7)

Then with VD = Mz ⊕ WD , the Douglas isometric lift of T = T1T2 · · ·Td as
discussed in Sect. 2.5, it follows from the equality (see (2.22))

WD = W∂1W∂2 · · ·W∂d

that S′Dj = SD∗j VD for each j = 1, 2, . . . , d . As we have already noted,
(�,KD, VD) is a minimal isometric lift of T . Therefore part (1) of Definition 6.1
is satisfied. Also it follows from definitions (6.1) and (6.2) that the pairs (Sj , VD)
and (S′j , VD) are commutative for each j = 1, 2, . . . , d . And finally from Eqs. (6.6)
and (6.7) we see that part (2) of Definition 6.1 is also satisfied. Consequently, (6.3)
is a pseudo-commutative contractive lift of (T1, T2, . . . , Td, T ). ��
Proof of Uniqueness in Theorem 6.3 The strategy is to show that any pseudo-
commutative contractive lift (�,K, S, V ) is unitarily equivalent to the canonical-
model pseudo-commutative contractive lift (�D,KD, S

D, VD), as constructed in
the existence part of the proof, Since (�, V ) and (�D, VD) are two minimal
isometric dilations of T = T1T2 · · · Td , there exists a unitary τ : K → KD such
that τV = VDτ and τ� = �D. We show that this unitary does the rest of the job.

Without loss of generality we may assume that (�, V ) = (�D, VD). Due to this
reduction all we have to show is that S = SD and S ′ = S′D . First let us suppose

Sj =
[

Aj Bj

Cj Dj

]

and S′j =
[

A′j B ′j
C′j D′j

]

(6.8)

for each j = 1, 2, . . . , d with respect to the decomposition KD = H 2(DT ∗)⊕RD .
Since each Sj commutes with VD = Mz ⊕WD , we have

[

Aj Bj

Cj Dj

] [

Mz 0
0 WD

]

=
[

Mz 0
0 WD

] [

Aj Bj

Cj Dj

]

⇔
[

AjMz BjWD

CjMz DjWD

]

=
[

MzAj MzBj

WDCj WDDj

]

. (6.9)

It is well-known that any operator that intertwines a unitary and a pure isometry is
zero (see e.g. [44, page 227] or [13, Chapter 3]), hence Bj = 0 for j = 1, 2, . . . , d .
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Since each S′j commutes with V also, by a similar computation with S′j , we have
B ′j = 0 for each j = 1, 2, . . . , d . From the identity of (1,1)-entries in (6.9) we see
that

Aj = Mϕj and A′j = Mϕ′j , for some ϕj , ϕ′j ∈ H∞(B(DT ∗)). (6.10)

Hence Sj and S′j have the form

Sj =
[

Mϕj 0
Cj Dj

]

, S′j =
[

Mϕ′j 0

C′j D′j

]

. (6.11)

Since S′j = S∗j V and hence also by Remark 6.2 Sj = S′∗j V , we then have

[

Mϕ′j 0

0 D′j

]

=
[

M∗
ϕj

C∗j
0 D∗j

]

[

Mz 0
0 WD

]

=
[

M∗
ϕj
Mz C

∗
j WD

0 D∗jWD

]

,

[

Mϕj 0
0 Dj

]

=
[

M∗
ϕ′j

C′∗j
0 D′∗j

]

[

Mz 0
0 WD

]

=
[

M∗
ϕ′j
Mz C

′∗
j WD

0 D′∗j WD

]

. (6.12)

From equality of the (1, 2) entries we see that

0 = C∗j WD, 0 = C′∗j WD.

As WD is unitary, in particular WD is surjective and we may conclude that in fact
Cj = 0, C′∗j = 0 and the form (6.11) for Sj and S′j collapses to

Sj =
[

Mϕj 0
0 Dj

]

, S′j =
[

Mϕ′j 0

0 D′j

]

. (6.13)

Looking next at the identities Mϕ′j = M∗
ϕj
Mz and Mϕj = M∗

ϕ′j
Mz for each j =

1, 2, . . . , d in terms of power series expansions of ϕj and ϕ′j then leads to

ϕj(z) = ˜G∗j1 + z˜Gj2 and ϕ′j (z) = ˜G∗j2 + z˜Gj1 for j = 1, 2, . . . , d (6.14)

for some ˜Gj1, ˜Gj2 ∈ B(DT ∗). We shall eventually see that {˜Gj1, ˜Gj2 : j =
1, 2, . . . , d} is exactly the set of fundamental operators {Gj1,Gj2 : j = 1, 2, . . . , d}
for T ∗.

Let us now analyze the second components in (6.13) involving the operator tuples
(D1,D2, . . . ,Dd) and (D′1,D′2, . . . ,D′d ). From the relations

(S∗j , S′∗j )�D = �D(T
∗
j , T

∗
(j))
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we have for all h ∈ H,

D∗jQh = QT ∗j h and D′∗j Qh = QT ∗(j)h,

which by (2.21) implies that D∗j |RanQ = X∗j , for each j = 1, 2, . . . , d . Since each
Sj and S′j commute with VD , Dj and D′j commute with WD and since WD is a
unitary, D∗j and D′∗j also commute with WD . Using this we have for every ξ ∈
RanQ and n ≥ 0,

D∗j (Wn
D)ξ = Wn

DD
∗
j ξ = Wn

DX
∗
j ξ = Wn

DW
∗
j ξ = W∗

j W
n
d ξ

D′∗j (Wn
D)ξ = Wn

DD
′∗
j ξ = Wn

DX
∗
(j)ξ = Wn

DW
∗
(j)ξ = W∗

(j)W
n
d ξ.

As the set of elements of the form Wn
Dξ is dense in RD , we conclude that

Dj = Wj and D′j = W(j) for each j = 1, 2, . . . , d. (6.15)

To show that Gj1 = ˜Gj1, by the uniqueness result in part (2) of Theorem 3.2 it
suffices to show that

DT ∗Gj1DT ∗ = DT ∗˜Gj1DT ∗ . (6.16)

for j = 1, . . . , d . The fundamental operator Gj1 is characterized as the unique
solution of

DT ∗Gj1DT ∗ = T ∗j − T(j)T
∗ (6.17)

As S is a pseudo-commutative contractive lift of T with embedding operator �D ,
we have by Definition 6.1 the intertwining conditions

S∗j �D = �DT
∗
j , S′∗j �D = �DT

∗
(j), W∗

D�D = �DT
∗

from which we also deduce that

T(j) = T(j)�
∗
D�D = �∗DS′j�D.

We may then compute

T ∗j − T(j)T
∗ = �∗D�D(T

∗
j − T(j)T

∗) = �∗DS∗j �D −�∗D�D�
∗
DS

′
j�DT

∗

= �∗D(S∗j − S′jW∗
D)�D = �∗D(S∗j − S∗j WDW

∗
D) = �∗DS∗j (I −WDW

∗
D)

= �∗D

[

M∗
ϕj
(I −MzM

∗
z ) 0

0 0

]

= �∗D
[

(I −MzM
∗
z )⊗ ˜Gj1 0

0 0

]

= ̂O∗DT ∗ ,T ∗
(

(I −MzM
∗
z )⊗ ˜Gj1

)

. (6.18)
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From the general formula

̂O∗DT ∗ ,T ∗ :
∞
∑

n=0

hnz
n �→

∞
∑

n=0

T nDT ∗hn

for the action of the adjoint observability operator O∗DT ∗ ,T ∗ and combining (6.17)
and (6.18), we finally arrive at

DT ∗Gj1DT ∗ = ̂O∗DT ∗ ,T ∗
(

(I −MzM
∗
z )⊗ ̂Gj1

)

DT ∗ = DT ∗˜Gj1DT ∗

and (6.16) follows as wanted.
A similar computation shows that

D∗T Gj2DT ∗ = T ∗(i) − TiT
∗ = · · · = DT ∗˜Gj2DT ∗

for j = 1, . . . , d from which it follows that ˜Gj2 = Gj2 as well. This completes the
proof of uniqueness in Theorem 6.3. ��
Remark 6.4 The proof of the existence part of Theorem 6.3 actually gives a
canonical model (6.1)–(6.2) for an arbitrary pseudo-commutative contractive lift of
a given commutative contractive operator-tuple T = (T1, . . . , Td). By compressing
the operators SD to the subspace

HD = (H 2(DT ∗)⊕RD)� Ran�D,

we arrive at a Douglas-type functional model for the original commutative con-
tractive operator tuple. The precise statement is: Let T = (T1, T2, . . . , Td) be a
d-tuple of commutative contractions on a Hilbert space H and T = T1T2 · · · Td .
Let {Gi1,Gi2 : i = 1, . . . , d} be the fundamental operators of the adjoint
tuple T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ) and W∂ = (W∂1,W∂2, . . . ,W∂d) be the canonical
commutative unitary-operator tuple associated with T as in (2.24). Then the tuple
(T1, . . . , Td, T ) is unitarily equivalent to

PHD
(MG∗11+zG12 ⊕W∂1, . . . ,MG∗d1+zGd2 ⊕W(∂d),Mz ⊕WD)|HD

, (6.19)

and (T(1), . . . , T(d), T ) is unitarily equivalent to

PHD
(MG∗12+zG11 ⊕W(1), . . . ,MG∗d2+zGd1 ⊕W(d),Mz ⊕WD)|HD

, (6.20)

where HD = (H 2(DT ∗)⊕RD)� Ran�D .

We saw in the above proof of uniqueness that the unitary involved in two
pseudo-commutative contractive lifts (�1,K1, S, V1) and (�2,K2, R, V2) is the
same unitary that is involved in the unitary equivalence of the two minimal isometric
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lifts (�1,K1, V1) and (�2,K2, V2) of T . Since such a unitary is unique (see the
proof of Theorem I.4.1 in [42]), we have the following consequence of Theorem 6.3.

Corollary 6.5 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contrac-
tions acting on a Hilbert space and T = T1T2 · · · Td . If (�1,K1, S, V1) and
(�2,K2, R, V2) be two pseudo-commutative contractive lifts of (T1, T2, . . . , Td , T )

such that (�1,K1, V1) = (�2,K2, V2), then S = R.

We end this section with another model for tuples of commutative contractive
operator-tuples. This model will be used crucially in the next section where we
analyze characteristic tuples for a given commutative contractive operator-tuple.

Sz.-Nagy and Foias gave a concrete functional model for the minimal isometric
dilation for the case of a completely nonunitary (c.n.u.) contraction (see [42] for
a comprehensive treatment). In their construction of this functional model appears
what they called the characteristic function for a contraction operator T on a Hilbert
spaceH, a contractive analytic function on the unit disk D defined explicitly in terms
of T via the formula

�T (z) := [−T + zDT ∗(IH − zT ∗)−1DT ]|DT
: DT → DT ∗ for z ∈ D. (6.21)

Also key to their analysis is the so-called defect of the characteristic function �T

defined a.e. on the unit circle T as

�T (ζ ) := (I −�T (ζ )
∗�T (ζ ))

1/2, (6.22)

where �T (ζ ) is the radial limit of the characteristic function. There it is shown that
(�NF , VNF ) is a minimal isometric dilation of T , where VNF is the isometry

VNF := Mz ⊕Mζ |�T L
2(DT )

on KNF := H 2(DT ∗)⊕�TL2(DT ) (6.23)

and �NF : H→ KNF is some isometry with

HNF := Ran�NF =
[

H 2(DT ∗)

�T L2(DT )

]

�
[

�T

�T

]

·H 2(DT ). (6.24)

It is shown in [13] that, in case T is completely nonunitary, the isometric embedding
�NF has the explicit formula

�NF = (IH 2⊗DT ∗ ⊕ umin)�D, (6.25)

where umin : RD → �TL2(DT ) is a unitary that intertwinesWD and Mζ |�T L2(DT )
.

Let us introduce the notation

W�j := uminW∂ju
∗
min, Umin := ((IH 2 ⊗DT ∗)⊕ umin (6.26)
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for unitary operators W�j on �TL2(DT ) for j = 1, . . . , d and a unitary operator

Umin : RD → �TL2(DT ). Then we have

UminVD = VNFUmin and Umin�D = �NF .

Using this relation between �D and �NF we have the following intertwining
relations that follow from (6.6) and (6.7), respectively.

�NF T
∗
i = (M∗

G∗i1+zGi2
⊕W∗

�i )�NF , �NF T
∗
(i) = (M∗

G∗i2+zGi1
⊕W∗

(�i))�NF .

(6.27)

Equations (6.27) then provide us a Sz.-Nagy–Foias type functional model for tuples
of commutative contractions.

Theorem 6.6 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions
on a Hilbert space H such that the contraction operator T = T1T2 · · · Td is c.n.u.
Let {Gi1,Gi2 : i = 1, . . . , d} be the fundamental operators of the adjoint tuple
T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ) and let the model space HNF be as in (6.24). Then
(T1, . . . , Td, T ) is unitarily equivalent to

PHNF
(MG∗11+zG12 ⊕W�1, . . . ,MG∗

d1+zGd2 ⊕W�d,Mz ⊕Mζ |�T L2(DT )
)|HNF

,

(6.28)

and (T(1), . . . , T(d), T ) is unitarily equivalent to

PHNF
(MG∗12+zG11 ⊕W(�1), . . . ,MG∗d2+zGd1 ⊕W(�d),Mz ⊕Mζ |�T L2(DT )

)|HNF
.

(6.29)

Remark 6.7 Equations (6.27) also provide us another model for pseudo-
commutative contractive lifts, at least for the case where the T = T1 · · · Td is
c.n.u. Indeed, let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions on
a Hilbert space H, T = T1T2 · · · Td and let {Gi1,Gi2 : i = 1, . . . , d} be the set of
fundamental operators of the adjoint tuple T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ). Let us set

SNF := (SNF
1 , SNF

2 , . . . , SNF
d )

:= (MG∗11+zG12 ⊕W�1,MG∗21+zG22 ⊕W�2, . . . ,MG∗d1+zGd2 ⊕W�d) (6.30)

S′NF := (S′NF
1 , S′NF

2 , . . . , S′NF
d ),

:= (MG∗12+zG11 ⊕W(�1),MG∗22+zG21 ⊕W(�2) . . . ,MG∗d2+zGd1 ⊕W(�d)). (6.31)



44 J. A. Ball and H. Sau

Then it follows from the definition and from Mζ |�T L2(DT )
= W�1W�2 · · ·W�d

that S′NF
j = SNF∗

j VNF for each j = 1, 2, . . . , d , where VNF is the minimal
isometric lift of T as defined in (6.23). Hence by Eqs. (6.27) it follows that
the tuple (�NF ,KNF , S

NF , VNF ) is a pseudo-commutative contractive lift of
(T1, T2, . . . , Td , T ).

7 Characteristic Triple for a Tuple of Commutative
Contractions

Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions on a Hilbert
space H and (F∗,�j∗, Pj∗, Uj∗)dj=1 be an Andô tuple for T ∗ = (T ∗1 , T ∗2 , . . . , T ∗d ).
Let {Gj1,Gj2 : j = 1, 2, . . . , d} be the set of fundamental operators of T ∗. Then
note that by part (2) of Theorem 4.4 we have

(Gj1,Gj2) = �∗1∗(τj∗P⊥j∗U∗j∗τ ∗j∗, τj∗Uj∗Pj∗τ ∗j∗)�1∗ for j = 1, 2, . . . , d.
(7.1)

Definition 7.1 Let T = (T1, T2, . . . , Td) be a d-tuple of commutative contractions
on a Hilbert space, G� := {Gj1,Gj2 : j = 1, 2, . . . , d} be the set of fundamental
operators of T ∗ and W� := (W�1,W�2, . . . ,W�d) be the tuple of commutative
unitaries as in (6.26). The triple (G�,W�,�T ) is called the characteristic triple for
T , where �T is the characteristic function for the contraction T = T1T2 · · ·Td .

Note that the expression (7.1) of the fundamental operators of T ∗ indicates
the dependence of the characteristic triple on a choice of an Andô tuple for T ∗.
However, the uniqueness part of Theorem 3.2 says that the fundamental operators
are uniquely determined by T . Consequently, the characteristic triple, despite its
apparent dependence on a choice of an Andô tuple, turns out to be uniquely
determined already by the d-tuple T of commutative contractions. In fact, as
Theorem 7.3 below explains, the characteristic triple (up to the natural notion
of equivalence to be defined next) is a complete unitary invariant for tuples of
commutative contractions.

Definition 7.2 Let (D,D∗,�), (D′,D′∗,�′) be two purely contractive analytic
functions. Let G = {Gj1,Gj2 : j = 1, 2, . . . , d} on D∗, G′ = {G′j1,G

′
j2 : j =

1, 2, . . . , d} on D′∗ be two sets of contraction operators and W = (W1,W2, . . . ,Wd)

on ��L2(D), W′ = (W ′
1,W

′
2, . . . ,W

′
d ) on ��′L2(D′) be two tuples of commuta-

tive unitaries such that their product is Mζ on the respective spaces. We say that the
two triples (G,W,�) and (G′,W′,�′) coincide if:
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(i) (D,D∗,�) and (D′,D′∗,�′) coincide, i.e., there exist unitary operators u :
D→ D and u∗ : D∗ → D∗ such that the diagram

DT DT ∗

u u∗

DT
(z)

DT ∗

(7.2)

commutes for each z ∈ D.
(ii) The same unitary operators u, u∗ as in part (i) satisfy the additional intertwining

conditions:

G
′ = (G′1,G′2) = u∗Gu∗∗ = (u∗G1u

∗∗, u∗G2u
∗∗, . . . , u∗Gdu

∗∗),

W
′ = (W ′

1,W
′
2) = ωuWω∗u = (ωuW1ω

∗
u, ωuW2ω

∗
u, . . . , ωuWdω

∗
u),

where ωu : ��L2(D)→ ��′L2(D) is the unitary map induced by u according
to the formula

ωu := (IL2 ⊗ u)|
��L2(D)

. (7.3)

Theorem 7.3 Let T = (T1, T2, . . . , Td) on H and T ′ = (T ′1, T ′2, . . . , T ′d) on H′
be two tuples of commutative contractions. Let (G�,W�,�T ) and (G′�,W′

�,�T ′)
be the characteristic triples of T and T ′, respectively, where T = T1T2 . . . , Td and
T ′ = T ′1T ′2 · · · , T ′d . If T and T ′ are unitarily equivalent, then (G�,W�,�T ) and
(G′�,W′

�,�T ′) coincide.
Conversely, suppose in addition that T and T ′ are c.n.u. with characteristic

triples (G�,W�,�T ) and (G′�,W′
�,�T ′) coinciding. Then T and T ′ are unitarily

equivalent.

Proof First let us suppose that T and T ′ be unitarily equivalent via a unitary
similarity U : H→ H′. Then

U(I − T ∗T ) = (I − T ′∗T ′)U and U(I − T T ∗) = (I − T ′T ′∗)U (7.4)

and the functional calculus for positive operators implies that U induces two unitary
operators

u := U |DT
: DT → DT ′ and u∗ := U |DT ∗ : DT ∗ → DT ′∗ . (7.5)

A consequence of the Sz.-Nagy–Foias theory [42] is that u∗�T u
∗ = �T ′ showing

�T and �T ′ coincide, i.e., condition (i) holds.



46 J. A. Ball and H. Sau

As for condition (ii), note that since the fundamental operators satisfy the
fundamental equations (3.10), one can easily deduce using (7.4) that

u∗(Gj1,Gj2) = (G′j1,G
′
j2)u∗ for each j = 1, 2, . . . , d, (7.6)

where G� = {Gj1,Gj2 : j = 1, 2, . . . , d} and G′� = {G′j1,G
′
j2 : j = 1, 2, . . . , d}.

It remains to establish the unitary equivalence of W� and W
′
� via ωu = (IL2 ⊗

u)|
�T L

2(DT )
. To this end, we consider the tuple (˜�, ˜K,˜S, ˜S ′, ˜V ), where ˜K = KNF

and ˜V = VNF as in (6.23) and where

˜� :=((IH 2 ⊗ u∗∗)⊕ ω∗u)�′NFU : H→ H 2(DT ∗)⊕�TL2(DT )

˜S :=(˜S1,˜S2, . . . ,˜Sd ) :=
(MG∗11+zG12 ⊕W ′′

1 ,MG∗21+zG22 ⊕W ′′
2 , . . . ,MG∗d1+zGd2 ⊕W ′′

d )

˜S′ :=(˜S′1,˜S′2, . . . ,˜S′d ) :=
(MG∗12+zG11 ⊕W ′′

(1),MG∗22+zG21 ⊕W ′′
(2) . . . ,MG∗d2+zGd1 ⊕W ′′

(d)) (7.7)

with

W
′′ := (W ′′

1 ,W
′′
2 , . . . ,W

′′
d ) := ωuW�ω

∗
u = (ωuW�1ω

∗
u, ωuW�2ω

∗
u, . . . , ωuW�dω

∗
u).

By tracing through the intertwining properties of the unitary identification maps
U and ωu, one can see that actually ˜� = �NF . A further consequence of these
intertwining properties is that the tuple

(�NF ,KNF , S
NF , S ′NF , VNF )

as in (6.30) and (6.30) being a pseudo-commutative contractive lift of T implies
that (�,KNF ,˜S,˜S

′
, VNF ) is a pseudo-commutative contractive lift of T as well. A

direct application of Corollary 6.5 then tells us that W′′ =W�, i.e.,

ωuW�jω
∗
u = W�j for j = 1, . . . , d

and condition (ii) in Definition 7.2 is now verified as wanted.
Conversely, assume that the product operators T and T ′ are c.n.u. and T and

T ′ have characteristic triples which coincide. By Theorem 6.6 each of T and T ′
is unitarily equivalent to its respective Sz.-Nagy–Foias functional model. It is now
a straightforward exercise to see that the unitary identification maps u and u∗ in
the definition of the coincidence of the characteristic triples leads to a unitary
identification of the model spaces HNF and H′NF which also implements a unitary
similarity of the respective model operator tuples (6.28) and (6.29) associated with
T and T ′. This completes the proof of Theorem 7.3. ��
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We next introduce the notion of admissible triple for a collection {G,W,�} of
the same sort as appearing in Definition 7.2 but which satisfies some additional
conditions; the additional conditions correspond to what is needed to conclude that
the triple arises as the characteristic triple for some contractive commutative tuple
T .

Definition 7.4 Suppose that (D,D∗,�) is a purely contractive analytic function,
G = {Gj1,Gj2 : j = 1, . . . , d} is a collections of operators on D∗, W =
{W1, . . . ,Wd } is a commutative d-tuple of unitary operators on ��L2(D) such
that:

1. Each MG∗j1+zGj2 is a contraction operator on H 2(D∗).
2. W1 · · ·Wd = Mζ |��L2(D)

.

3. The spaceQ� :=
[

�
��

]

H 2(D) ⊂
[

H 2(D∗)
��L

2(D)

]

is jointly invariant for the operator

tuple

{[

MG∗
j1+zGj2

0

0 Wj

]

: j = 1, . . . , d

}

.

4. With K� =
[

H 2(D∗)
��L2(D)

]

and H� = K� � Q� and with operators Tj on H�

defined by

Tj = PH(�)

[

MG∗j1+zGj2 0

0 Wj

]

∣

∣H(�)
for j = 1, . . . , d, (7.8)

the operator-tuple (T1, . . . ,Td ) is commutative with product (in any order) then
given by

T1 · · ·Td = PH(�)

[

Mz 0
0 Mζ

]

∣

∣H(�)
.

Then we shall say that the collection {G,W,�} is an admissible triple and that
the commutative contractive operator-tuple T = (T1, . . . ,Td ) acting on the space
H(�) (7.8) is the functional model associated with the admissible triple {G,W,�}.

Let us note that the functional model associated with an admissible triple
{G,W,�} also displays a pseudo-commutative contractive lift for its functional-
model commutative, contractive operator tuple T, namely:

S :=
{[

MG∗j1+zGj2 0

0 Wj

]

: j = 1, . . . , d

}

, V =
[

Mz 0
0 Mζ

]

S′ :=
{[

MG∗j2+zGj1 0

0 W(j)

]

: j = 1, . . . , d

}

.
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Note also that it easily follows from the definitions that the characteristic triple
for a commutative contractive d-tuple T is an admissible triple. Furthermore the
functional model associated with the characteristic triple (G�,W�,�T ) is the same
as the functional model obtained by considering (G�,W�,�T ) as an admissible
triple. The content of Theorem 6.6 is that any commutative contractive tuple T is
unitarily equivalent to its associated functional model T.

Our next goal is to indicate the reverse path: how to go from an admissible triple
to a characteristic triple for some commutative contractive pair T . We state the result
without proof.

Theorem 7.5 If (G,W,�) is an admissible triple, then (G,W,�) is a character-
istic triple for some contractive operator tuple. More precisely, the admissible triple
(G,W,�) coincides with the characteristic triple (G�,W�,�T) of its functional
model.

Since model theory and unitary classification for commuting tuples of unitary
operators can be handled by spectral theory, the importance of the next result is that
the c.n.u. restriction on T = T1 · · · Td appearing in Theorem 6.6 and Theorem 7.3
is not essential. This result for the case d = 1 goes back to Sz.-Nagy et al. [42].

Theorem 7.6 Let T = (T1, T2, . . . , Td) be a commutative contractive operator-
tuple acting on a Hilbert space H. Then there corresponds a decomposition of H
into the orthogonal sum of two subspaces reducing each Tj , j = 1, 2, . . . , d , say
H = Hu ⊕Hc, such that with

(T1u, T2u, . . . , Tdu) = (T1, T2, . . . , Td)|Hu
,

(T1c, T2c, . . . , Tdc) = (T1, T2, . . . , Td)|Hc
, (7.9)

Tu = T1uT2u · · · Tdu is a unitary and Tc = T1cT2c · · · Tdc is a completely nonunitary
contraction. Moreover, then Tu⊕ Tc with respect toH = Hu⊕Hc is the Sz.-Nagy–
Foias canonical decomposition for the contraction operator T = T1T2 · · · Td .
Proof Let {Fj1, Fj2 : j = 1, 2, . . . , d} be the set of fundamental operators of T .
Then by Theorem 3.2, for each j = 1, 2, . . . , d , we have

Tj − T ∗(j)T = DT Fj1DT and T(j) − T ∗j T = DT Fj2DT . (7.10)

By part (1) of Theorem 4.4 each of Fj1 and Fj2 are contractions. Consequently, we
have for every ω and ζ in T

IDT
− Re(ωFj1) ≥ 0 and IDT

− Re(ζFj2) ≥ 0. (7.11)

Adding together the two inequalities (7.11) then gives

2IDT
− Re(ωFj1 + ζFj2) ≥ 0 for all ω, ζ ∈ T. (7.12)
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Recall that the fundamental operators act on DT = Ran DT . Therefore inequal-
ity (7.12) is equivalent to

2D2
T − Re(ωDT Fj1DT + ζDT Fj2DT ) ≥ 0, for all ω, ζ ∈ T,

By (7.10) we see that this in turn is the same as

2D2
T − Re(ω(Tj − T ∗(j)T ))− Re(ζ(T(j) − T ∗j T )) ≥ 0, for all ω, ζ ∈ T.

(7.13)

Let

T =
[

Tu 0
0 Tc

]

: Hu ⊕Hc → Hu ⊕Hc (7.14)

be the canonical decomposition of T into unitary piece Tu and completely nonuni-
tary piece Tc. We show below that each Tj is block diagonal with respect to the
decomposition H = Hu ⊕Hc. Toward this end, we first suppose that with respect
to the decomposition H = Hu ⊕Hc for each j = 1, 2, . . . d we have

Tj =
[

Aj Bj

Cj Dj

]

and T(j) =
[

Ej Kj

Lj Hj

]

. (7.15)

Apply (7.13) to obtain that for each j = 1, 2, . . . , d ,

[

0 0
0 2D2

Tc

]

− Re

(

ω

[

Aj − E∗j Tu Bj − L∗j Tc
Cj −K∗j Tu Dj −H ∗

j Tc

])

− Re

(

ζ

[

Ej − A∗j Tu Kj − C∗j Tc
Lj − B∗j Tu Hj −D∗j Tc

])

≥ 0, for all ω, ζ ∈ T. (7.16)

In particular, the (1, 1)-entry in this inequality must satisfy

P
j

11(ω, ζ ) := Re(ω(Aj − E∗j Tu))+ Re(ζ(Ej − A∗j Tu)) ≤ 0, for all ω, ζ ∈ T,

(7.17)

which implies that

P
j

11(ω, 1)+ P
j

11(ω,−1) = 2 Re(ω(Aj − E∗j Tu)) ≤ 0 and

P
j
11(1, ζ )+ P

j
11(−1, ζ ) = 2 Re(ζ(Ej − A∗j Tu)) ≤ 0.

It is an elementary exercise to show that, if a bounded operator X such that
Re(ζX) ≤ 0 for all ζ ∈ T, then X = 0 (see e.g. Lemma 2.4 in [25]). We apply
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this fact to conclude that

Aj = E∗j Tu and Ej = A∗j Tu for each j = 1, 2, . . . , d. (7.18)

This shows that the (1, 1)-entry of the matrix on the left-hand side of (7.16) is zero.
Since the matrix is positive semi-definite, the (1, 2)-entry (and hence also the (2, 1)-
entry) is also zero, i.e., for all ω, ζ ∈ T

P
j
12(ω, ζ ) := ω(Bj − L∗j Tc)+ ω̄(C∗j − T ∗u Kj )+ ζ(Kj − C∗j Tc)+ ζ̄ (L∗j − T ∗u Bj ) = 0,

which in particular implies that

P
j (ω) := P

j

12(ω, 1)+ P
j

12(ω,−1) = 2ω(Bj − L∗j Tc)+ 2ω̄(C∗j − T ∗u Kj ) = 0

for every ω ∈ T. This implies the first two of the following equations while the last
two are obtained similarly:

Bj = L∗j Tc, C∗j = T ∗u Kj , Kj = C∗j Tc and L∗j = T ∗u Bj . (7.19)

Commutativity of each Tj with T gives

AjTu = TuAj , BjTc = TuBj , CjTu = TcCj and TcDj = DjTc,

(7.20)

while commutativity of T(j) with T implies

EjTu = TuEj , KjTc = TuKj , LjTu = TcLj and TcHj = HjTc.

(7.21)

Using the last equation in (7.19) and the third equation in (7.21) we get

B∗j T 2
u = LjTu = TcLj = TcB

∗
j Tu.

As Tu is unitary, this leads to

B∗j Tu = TcB
∗
j . (7.22)

Using the second equality in (7.20) together with (7.22) leads to

TcT
∗
c B

∗
j = TcB

∗
j T

∗
u = B∗j = B∗j T ∗u Tu = T ∗c B∗j Tu = T ∗c TcB∗j ,

which implies that Tc is unitary on RanB∗j for j = 1, 2, . . . , d . Since Tc is
completely nonunitary, each Bj must be zero. By similar arguments one can show
that Cj = 0, for each j = 1, 2, . . . , d . This completes the proof. ��
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Remark 7.7 We note that a proof of Theorem 7.6 is given in [13] for the pair case
(d = 2). It is of interest to note that the general case can be reduced to the pair case
simply by applying the result for the pair case to the special pair (Tj , T(j)) for each
j = 1, . . . , d . Our proof on the other hand is a direct multivariable proof.

Remark 7.8 (Examples and Special Cases) If we consider the special case with
T = V is a commutative tuple of isometries V = (V1, . . . , Vd) with product
operator V = V1 · · ·Vd c.n.u. (i.e., V is a pure isometry or shift operator), then the
associated characteristic function �V is zero, and the model theory presented here
amounts to the BCL-model for commuting isometries as in Theorem 2.3. In detail,
the characteristic triple collapses to the first component G which has the additional
structure of the form

Gj1 = P⊥j U∗j , Gj2 = UjPj

for a collection of projection operators Pj and unitary operators Uj on a space
F (j = 1, . . . , d) forming a BCL-tuple (Definition 2.4) for which the associated
isometric operator-tuple Vj (with Wj trivial for j = 1, . . . , d) is commutative. The
difficulty in writing down examples is that there is no explicit way to write down
such operator tuples G so that the associated isometric-tuple V is commutative.

As we have seen in Sect. 2.4, given such a collection of operators forming a BCL-
tuple as in Definition 2.4 (with W taken to be trivial for simplicity), the operators
Vj = MG∗j1+zGj2 (j = 1, . . . , d) form an isometric tuple but there are no explicit
criteria for deciding when it is the case that this is a commutative isometric tuple,
unless d = 1, 2.

Similarly from Theorem 7.5, to construct examples of commutative contractive
tuples, it suffices to construct examples of admissible triples. At its core, according
to Definition 7.4, an admissible triple consists of a pure contractive operator function
(D,D∗,�) together with a collection of operators G = {Gj1,Gj2 : 1 ≤ j ≤ d} on

D∗, and a commutative unitary tuple W = {Wj : 1 ≤ j ≤ d} acting on ��L2(D)

satisfying auxiliary conditions (1)–(5). While conditions (1) and (2) are not so
difficult to analyze, the joint-invariance property in condition (3) and the joint-
commutativity property in condition (4) are mysterious: for a general � there is
no apparent way to write down interesting explicit examples of potential admissible
triples (G,W,�) which satisfy these additional properties, even for the d = 2
case. In case � is inner, the W-component becomes trivial, condition (1) is just the
requirement that the operator pencil Gj(z) = G∗j1 + zGj2 have H∞-norm at most
1 but one is still left with the nontrivial requirement (3) that MG∗j1+zGj2 leave the

subspace M�H
2(D) invariant. Unlike the case for the BCL-model for commutative

isometric tuples, this flaw happens even in the d = 2 case.
An example which may be tractable is the case where the commutative contrac-

tive tuple T = (T1, . . . , Td) acts on a finite-dimensional Hilbert space X and has a
basis of joint eigenvectors. Similar examples are discussed in [2, 16].
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More detail on all these issues will appear in forthcoming work of the authors
[13].
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Abstract Given a bounded linear operator T with canonical polar decomposition
T ≡ V |T |, the Aluthge transform of T is the operator �(T ) := √|T |V√|T |. For
P an arbitrary positive operator such that VP = T , we define the extended Aluthge
transform of T associated with P by �P (T ) :=

√
PV

√
P . First, we establish

some basic properties of �P ; second, we study the fixed points of the extended
Aluthge transform; third, we consider the case when T is an idempotent; next, we
discuss whether �P leaves invariant the class of complex symmetric operators. We
also study how �P transforms the numerical radius and numerical range. As a key
application, we prove that the spherical Aluthge transform of a commuting pair of
operators corresponds to the extended Aluthge transform of a 2× 2 operator matrix
built from the pair; thus, the theory of extended Aluthge transforms yields results
for spherical Aluthge transforms.
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1 Introduction

The Aluthge transform for a bounded operator T acting on a Hilbert space H was
introduced by A. Aluthge in [1]. If T ≡ V |T | is the canonical polar decomposition
of T , the Aluthge transform �(T ) is given as �(T ) := √|T |V√|T |. One of
Aluthge’s motivations was to use this transform in the study of p-hyponormal and
log-hyponormal operators. Roughly speaking, the idea was to convert an operator,
T , into another operator, �(T ), which shares with the first one many spectral
properties, but which is closer to being a normal operator. Over the last two decades,
substantial and significant results about �(T ), and how it relates to T , have been
obtained by a long list of mathematicians who devoted considerable attention to this
topic (see, for instance [2, 4, 9, 12–15, 20–23, 25–27, 30–33]). Aluthge transforms
have been generalized to the case of powers of |T | different from 1

2 [5, 7, 8, 28] and
to the case of commuting pairs of operators [10, 11].

In this paper, we set out to extend the Aluthge transform in a different direction.
Starting with the canonical polar decomposition T ≡ V |T |, we consider the class
of positive operators P such that VP = V |T |, that is, all positive operators P that
mimic the action of |T | in the canonical polar decomposition. For each such P we
then define the extended Aluthge transform as �P (T ) :=

√
PV

√
P . Naturally, the

classical Aluthge transform is simply �|T |(T ).
We first study the basic properties of this new operator transform, and how it

relates to the classical Aluthge transform. We do this in Sect. 2. We then study, in
Sect. 3, the fixed points of the extended Aluthge transform, in an effort to see what
is the correct generalization of quasinormality to this new environment. Third, in
Sect. 4 we consider the case when T is an idempotent. Next, we discuss whether
�P leaves invariant the class of complex symmetric operators (Sect. 7).

We also study how �P transforms the numerical radius and numerical range;
we do this in Sect. 8. As a key application, we prove that the spherical Aluthge
transform of a commuting pair of operators (introduced in [10] and further studied in
[11]) corresponds to the extended Aluthge transform of a 2×2 operator matrix built
from the pair; thus, the theory of extended Aluthge transforms is well positioned to
yield new results for spherical Aluthge transforms.

Along the way, we strive to maintain contact with the classical Aluthge trans-
form, in an effort to shed light on how this new extended Aluthge transform can help
unravel the relative position of |T | within the equation V |T | = T . For instance, we
prove in Sect. 2 that |T | is the smallest positive solution of the equation VP = T .
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2 The Extended Aluthge Transform

Let H denote a (complex, separable) Hilbert space, and let B(H) denote the C∗-
algebra of bounded linear operators on H. For T ∈ B(H), let T ≡ V |T | be the

canonical polar decomposition of T ; that is, |T | := (T ∗T ) 1
2 , V is a partial isometry,

and kerV = ker |T | = kerT . The Aluthge transform of T is the operator �(T ) :=
|T | 1

2 V |T | 1
2 .

Consider now an arbitrary positive operator P ∈ B(H) such that VP = T . The
extended Aluthge transform of T associated with P is the operator

�P (T ) := P
1
2 VP

1
2 .

Lemma 2.1 For P as above,

|T | ≤ P.

Proof

|T |2 = T ∗T = PV ∗VP ≤ P 2,

since V is a contraction. It follows that |T | ≤ P . ��

Corollary 2.2 For P as above,

kerP ⊆ ker |T | .

Corollary 2.3 For P as above,

Ran |T | ⊆ RanP,

whereM denotes the closure of the linear spaceM.

Lemma 2.4 For P as above, |T | commutes with P .

Proof

V |T | = VP  ⇒ (|T | − P)H ⊆ kerV = ker |T | .
It follows that

|T | (|T | − P) = 0  ⇒ |T |2 = |T |P  ⇒ |T |2 = (|T |2)∗
= (|T |P)∗ = P |T |  ⇒ |T |P = P |T | . ��

Lemma 2.5 For P as above,

P |Ran|T | = |T | |Ran|T |.
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Proof By the Proof of Lemma 2.4, we have

P |T | x = |T |Px = |T | |T | x (all x ∈ H) .

It follows that P and |T | agree on Ran |T |. ��
Lemma 2.6 Write H = Ran |T | ⊕ kerT . Then

|T | =
(

A 0
0 0

)

and

P =
(

A 0
0 B

)

,

where A := |T | |Ran|T | and B := P |ker T .

Proof By Lemma 2.5, P leaves Ran |T | invariant, so Ran |T | is a reducing subspace
for P . ��

Consider now the orthogonal decomposition

H = Ran |T | ⊕ (RanB ⊕ kerP),

where the orthogonal sum in parentheses equals ker |T |. Then

|T | =
⎛

⎝

A 0 0
0 0 0
0 0 0

⎞

⎠

and

P =
⎛

⎝

A 0 0
0 C 0
0 0 0

⎞

⎠ .

Observe that P = |T | if and only if C = 0. We wish to find the matrix for V . Recall
that kerV = ker |T |. Therefore,

V =
⎛

⎝

X 0 0
Y 0 0
Z 0 0

⎞

⎠ .

Since V ∗V is the projection onto (kerV )⊥ = Ran |T |, we must have

X∗X + Y ∗Y + Z∗Z = IRan|T |.
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Since VP = V |T |, it follows that

⎛

⎝

X 0 0
Y 0 0
Z 0 0

⎞

⎠

⎛

⎝

A 0 0
0 C 0
0 0 0

⎞

⎠ =
⎛

⎝

X 0 0
Y 0 0
Z 0 0

⎞

⎠

⎛

⎝

A 0 0
0 0 0
0 0 0

⎞

⎠ .

Also,

T =
⎛

⎝

XA 0 0
YA 0 0
ZA 0 0

⎞

⎠ . (2.1)

Then

�(T ) = |T | 1
2 V |T | 1

2 =
⎛

⎜

⎝

A
1
2 XA

1
2 0 0

0 0 0
0 0 0

⎞

⎟

⎠
, (2.2)

while

�P (T ) = P
1
2 VP

1
2 =

⎛

⎜

⎝

A
1
2 0 0

0 C
1
2 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

X 0 0
Y 0 0
Z 0 0

⎞

⎟

⎠

⎛

⎜

⎝

A
1
2 0 0

0 C
1
2 0

0 0 0

⎞

⎟

⎠
=
⎛

⎜

⎝

A
1
2 XA

1
2 0 0

C
1
2 YA

1
2 0 0

0 0 0

⎞

⎟

⎠
.

(2.3)

Therefore,

�(T )∗�(T ) =
⎛

⎜

⎝

A
1
2 X∗AXA

1
2 0 0

0 0 0
0 0 0

⎞

⎟

⎠

and

�P (T )
∗�P (T ) =

⎛

⎜

⎝

A
1
2 X∗AXA

1
2 + A

1
2 Y ∗CYA 1

2 0 0
0 0 0
0 0 0

⎞

⎟

⎠
.

As a consequence,

|�P (T )| ≥ |�(T )|



60 C. Benhida and R. E. Curto

and

‖�P (T )‖ ≥ ‖�(T )‖ .

As is well known, the Aluthge transform is homogeneous, that is �(λT ) =
λ�(T ) for every λ ∈ C. The following result shows what form of homogeneity
holds for the extended Aluthge transform.

Proposition 2.7 Let T ≡ V |T | be the canonical polar decomposition of T , and let
P be a positive operator such that T = VP . For λ ∈ C we have

�|λ|P (λT ) = λ�P (T ).

Proof Without loss of generality, assume that λ �= 0, and let λ ≡ eiθ |λ| be its
canonical polar decomposition. Then

λT = eiθV |λ| |T | = (eiθV )(|λ| |T |)

is the canonical polar decomposition of λT . Moreover,

λT = eiθV |λ|P = (eiθV )(|λ|P),

so that

�|λ|P (λT ) = (|λ|)1/2P
1
2 eiθV (|λ|)1/2P

1
2 = λP 1/2VP 1/2 = λ�P (T ).��

��
In an entirely similar way, one can establish the following result.

Proposition 2.8 Let T ≡ V |T | be the canonical polar decomposition of T , and let
P be a positive operator such that T = VP . Let U be a unitary operator on H.
Then

�UPU∗(UT U∗) = U�P (T )U
∗.

We now discuss an extension of the so-called *-Aluthge transform, used by P.Y.
Wu [30] and T. Yamazaki [32] to prove [30, Theorem 1] (cf. Theorem 8.4). This
transform is defined as �(T )(∗) := √|T ∗|V√|T ∗|. It is not difficult to prove that
�(T )(∗) = (�(T ∗))∗; thus, �(T )(∗) = V�(T )V ∗.

We will now obtain the proper analog for the extended Aluthge transform. Let
T = V |T | = VP where T = V |T | is the canonical polar decomposition of T . It
is well known that T ∗ = V ∗|T ∗| is the canonical polar decomposition of T ∗. Now
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observe that, with the notation from Sect. 2, we have

PV ∗ =
⎛

⎝

A 0 0
0 C 0
0 0 0

⎞

⎠

⎛

⎝

X∗ Y ∗ Z∗
0 0 0
0 0 0

⎞

⎠ =
⎛

⎝

AX∗ AY ∗ AZ∗
0 0 0
0 0 0

⎞

⎠

and

V ∗V =
⎛

⎝

X∗ Y ∗ Z∗
0 0 0
0 0 0

⎞

⎠

⎛

⎝

X 0 0
Y 0 0
Z 0 0

⎞

⎠ =
⎛

⎝

X∗X + Y ∗Y + Z∗Z 0 0
0 0 0
0 0 0

⎞

⎠ =
⎛

⎝

I 0 0
0 0 0
0 0 0

⎞

⎠ .

It follows that

(V ∗V )PV ∗ =
⎛

⎝

I 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝

AX∗ AY ∗ AZ∗
0 0 0
0 0 0

⎞

⎠ =
⎛

⎝

AX∗ AY ∗ AZ∗
0 0 0
0 0 0

⎞

⎠ = PV ∗.

(2.4)

As a result, V ∗V
√
PV ∗ = √PV ∗.

To state the following result, we first recall that the canonical polar decomposi-
tion of T ∗ is T ∗ = V ∗ |T ∗|. Since T = VP we get T ∗ = PV ∗, and using (2.4) we
obtain T ∗ = PV ∗ = (V ∗V )PV ∗ = V ∗(V PV ∗). Moreover, VPV ∗ is a positive
operator, so we may consider the extended Aluthge transform of T ∗ associated with
VPV ∗.

Proposition 2.9 With T , V and P as above, we have

�VPV ∗(T ∗) = V�P (T )
∗V ∗.

Proof

�VPV ∗(T ∗) =
√
VPV ∗V ∗

√
VPV ∗

= (V
√
PV ∗)V ∗(V

√
PV ∗)

= V
√
PV ∗V ∗V

√
PV ∗

= V
√
PV ∗(V ∗V

√
PV ∗)

= V
√
PV ∗

√
PV ∗

= V (
√
PV ∗

√
P )V ∗

= V�P (T )
∗V ∗.

.

��
Corollary 2.10 In the case when P = |T | we have

�(T ∗)∗ = V�(T )V ∗.
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Proof We first observe that V |T |V ∗ = |T ∗|, which is established as follows:
T = V |T | and T ∗ = V ∗ |T ∗| imply that V ∗ |T ∗| = |T |V ∗, and therefore
V |T |V ∗ = V V ∗ |T ∗| = |T ∗|. Next, we use Proposition 2.9 to conclude that
�(T ∗) = V�(T )∗V ∗. Finally, we take adjoints to get �(T ∗)∗ = V�(T )V ∗. ��

We end this section with a result about orthogonal direct sums.

Proposition 2.11 Let Ti ≡ Vi |Ti | be the canonical polar decomposition of Ti (i =
1, 2), and let Pi be a positive operator such that Ti = ViPi (i = 1, 2). Then

�P1⊕P2(T1 ⊕ T2) = �P1(T1)⊕�P2(T2).

3 Fixed Points of the Extended Aluthge Transform

It is well known that the fixed points of the classical Aluthge transform are the
quasinormal operators, that is, those operators T = V |T | such that V and |T |
commute. In this section we study the class of operators which are fixed points for
the extended Aluthge transform. In what follows, we frequently use the matricial
decompositions introduced in Sect. 2. From (2.1) and (2.3), we easily see that

�P (T ) = T ⇐⇒

⎧

⎪

⎨

⎪

⎩

A
1
2 XA

1
2 = XA

C
1
2 YA

1
2 = YA

0 = ZA.

Recall that RanA is dense in Ran |T |. Thus, ZA = 0 ⇒ Z = 0. Also,

(A
1
2 X −XA

1
2 )A

1
2 = A

1
2 XA

1
2 −XA = 0  ⇒ A

1
2 X = XA

1
2

and therefore

AX = A
1
2 A

1
2 X = A

1
2 XA

1
2 = XA

1
2 A

1
2 = XA.

It follows that A and X commute. Finally,

(C
1
2 Y − YA

1
2 )A

1
2 = C

1
2 YA

1
2 − YA = 0  ⇒ C

1
2 Y = YA

1
2

so that

CY = C
1
2 (C

1
2 Y ) = C

1
2 YA

1
2 = YA

1
2 A

1
2 = YA.
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We then have:

⎧

⎨

⎩

AX = XA

CY = YA

Z = 0,

which readily implies

V |T | = PV

and

VP = PV.

It follows that kerP reduces V .
We summarize the previous discussion in the following result.

Theorem 3.1 Let P ∈ B(H) be a positive operator such that VP = T , and assume
that�P (T ) = T . Then T commutes with P , V commutes with P , and kerP reduces
T and V .

Corollary 3.2 In Theorem 3.1, assume that P = |T |, so that�P (T ) = �(T ) = T .
Then T is quasinormal (i.e., |T | commutes with V , or equivalently, |T | commutes
with T ).

4 The Case of T Idempotent

In this section we consider the case when T is an idempotent, that is, T 2 = T . From
(2.1) it easily follows that

⎧

⎨

⎩

XAXA = XA

YAXA = YA

ZAXA = ZA.

Since RanA is dense in Ran |T |, we have

⎧

⎨

⎩

XAX = X

YAX = Y

ZAX = Z,
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and therefore

⎧

⎨

⎩

X∗XAX = X∗X
Y ∗YAX = Y ∗Y
Z∗ZAX = Z∗Z.

Since X∗X + Y ∗Y + Z∗Z = IRan|T |, we readily obtain

AX = IRan|T |.

As a result,

A
1
2 XA

1
2 = IRan|T |.

(For, given x ∈ RanA
1
2 one has

〈

(A
1
2 XA

1
2 )A

1
2 x,A

1
2 x
〉

= 〈AXAx, x〉 = 〈Ax, x〉 =
〈

A
1
2 x,A

1
2 x
〉

,

and it follows that A
1
2 XA

1
2 = I on RanA

1
2 = Ran |T |.)

Using (2.2) we readily see that �(T ) is the projection from H onto Ran |T |;
using (2.3) we see that

�P (T ) =
⎛

⎜

⎝

I 0 0

C
1
2 YA

1
2 0 0

0 0 0

⎞

⎟

⎠
.

Since AX = IRan|T |, we know that A is right invertible on Ran |T |, therefore

invertible (as an operator on Ran |T |). We summarize the previous discussion in
the following result.

Theorem 4.1 Let T be an idempotent. Then

�(T ) =
⎛

⎝

I 0 0
0 0 0
0 0 0

⎞

⎠ .

and

�P (T ) =
⎛

⎜

⎝

I 0 0

C
1
2 YA

1
2 0 0

0 0 0

⎞

⎟

⎠
,

with A invertible.
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The information we have gathered is somewhat optimal, as the following
example shows.

Example 4.2 Given a, b ∈ R, let

T :=
⎛

⎝

1 0 0
a 0 0
b 0 0

⎞

⎠ ∈ M3(C).

Let δ := √1+ a2 + b2. It is straightforward to verify that T 2 = T , with canonical
polar decomposition

T =
⎛

⎝

1 0 0
a 0 0
b 0 0

⎞

⎠ ≡ V |T | =
⎛

⎝

1
δ

0 0
a
δ

0 0
b
δ

0 0

⎞

⎠

⎛

⎝

δ 0 0
0 0 0
0 0 0

⎞

⎠ .

For f > 0 let

P ≡ Pδ,f :=
⎛

⎝

δ 0 0
0 f 0
0 0 0

⎞

⎠ .

Then

�(T ) =
⎛

⎝

1 0 0
0 0 0
0 0 0

⎞

⎠

and

�P (T ) =
⎛

⎜

⎝

1 0 0

a

√

f
δ

0 0

0 0 0

⎞

⎟

⎠
.

Notice in particular that V does not commute with P , so T is not a fixed point
for �P . Moreover, �(�P (T )) �= �P (T ); however, �(�(�P (T ))) = �(�P (T )).
Also, as expected, �(T ) is a projection, while �P (T ) is again an idempotent.
Therefore, it makes sense to repeat this construction (with a new δ and a new f )
to obtain the iterate �P2(�P (T )), which is again an idempotent. One can then
study the asymptotic behavior of these iterates, in a manner resembling the results
in [3, 12, 22] and [29] for the classical Aluthge transform. We plan to report on the
behavior of the iterates of the extended Aluthge transform in a forthcoming paper.

��
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5 Some Useful Identities

We devote this section to the proof of some identities involving T , its classical
Aluthge transform �(T ) and the extended Aluthge transform �P (T ). First, recall
from (2.2) and (2.3) that

�(T ) =
⎛

⎜

⎝

A
1
2 XA

1
2 0 0

0 0 0
0 0 0

⎞

⎟

⎠
and �P (T ) =

⎛

⎜

⎝

A
1
2 XA

1
2 0 0

C
1
2 YA

1
2 0 0

0 0 0

⎞

⎟

⎠
.

Direct matrix calculation shows that

�(T )P = �(T ) |T | ,

consistent with Lemma 2.4. Similarly, one obtains the following result.

Proposition 5.1 (Intertwining Property) For T , P , �(T ) and �P (T ) as in
Sect. 2, we have:

|T | 1
2 �P (T )P

1
2 = P

1
2 �(T ) |T | 1

2 .

We briefly pause to recall an important feature of the class C2 of Hilbert-Schmidt
operators on H. Recall that the inner product of two Hilbert-Schmidt operators S
and T is given by

〈S, T 〉C2
:= Tr(T ∗S).

The class C2 is a Hilbert space, with norm ‖S‖2 := (〈S, S〉C2
)

1
2 = (Tr(S∗S)) 1

2 . For
E and F in the class C2, consider the operator matrix

⎛

⎝

E 0 0
F 0 0
0 0 0

⎞

⎠ .

Then

∥

∥

∥

∥

∥

∥

⎛

⎝

E 0 0
F 0 0
0 0 0

⎞

⎠

∥

∥

∥

∥

∥

∥

2

2

=
〈

⎛

⎝

E 0 0
F 0 0
0 0 0

⎞

⎠ ,

⎛

⎝

E 0 0
F 0 0
0 0 0

⎞

⎠

〉

C2

= Tr(E∗E+F ∗F) = ‖E‖2
2+‖F‖2

2 .

A direct consequence of this calculation is the following result.
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Theorem 5.2 Let T be a Hilbert-Schmidt operator. Then

‖�P (T )‖2
2 = ‖�(T )‖2

2 +
∥

∥

∥C
1
2 YA

1
2

∥

∥

∥

2

2
.

6 An Application: The Spherical Aluthge Transform

In this section we will show how the spherical Aluthge transform (introduced in [10]
and [11]) can be obtained as a particular case of the extended Aluthge transform, for
a suitable positive operator P . Given a commuting pair T ≡ (T1, T2) of operators

acting on H, let Q := (T ∗1 T1 + T ∗2 T2)
1
2 . Clearly, kerQ = kerT1

⋂

kerT2. For
x ∈ kerQ, let Vix := 0 (i = 1, 2); for y ∈ RanQ, say y = Qx, let Viy := Tix (i =
1, 2). It is easy to see that V1 and V2 are well defined, and extend continuously to
RanQ. We then have

(

T1

T2

)

=
(

V1Q

V2Q

)

=
(

V1

V2

)

Q, (6.1)

as operators from H to H⊕H. Moreover, this is the canonical polar decomposition

of

(

T1

T2

)

. It follows that

(

V1

V2

)

is a partial isometry from (kerQ)⊥ onto Ran

(

T1

T2

)

.

The spherical Aluthge transform of T is ̂T ≡ (̂T1, ̂T2), where

̂Ti := Q
1
2 ViQ

1
2 (i = 1, 2) (cf. [10, 11]).

Lemma 6.1 (cf. [11]) ̂T is commutative.

We now let

�(T ) :=
(

T1 0
T2 0

)

∈ B(H ⊕H).

It is clear that

|�(T )| =
(

Q 0
0 0

)

.

We also let V := (V1, V2). (Notice that V is not necessarily commuting.) Finally, let

�(V) :=
(

V1 0
V2 0

)

.
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Lemma 6.2 With T and V as above,�(T ) = �(V) |�(T )| is the canonical polar
decomposition of �(T ).

Proof This is straightforward from the fact that (6.1) is the canonical polar

decomposition of

(

T1

T2

)

. ��

Consider now the positive operator

P ≡ P(Q) :=
(

Q 0
0 Q

)

.

Then

�(V)P = �(V) |�(T )| = �(T ).

We wish to study the extended Aluthge transform �P (�(T )).

Theorem 6.3 With T and P as above,

�P (�(T )) = �(̂T ).

Proof

�(̂T ) =
(

̂T1 0
̂T2 0

)

=
(

Q
1
2 V1Q

1
2 0

Q
1
2 V2Q

1
2 0

)

=
(

Q
1
2 0

0 Q
1
2

)

(

V1 0
V2 0

)

(

Q
1
2 0

0 Q
1
2

)

= P
1
2 �(V)P

1
2 = �P (�(T )).

��
Remark 6.4 Proposition 6.3 shows that the spherical Aluthge transform can be
expressed in terms of the extended Aluthge transform of the 2× 2-operator matrix
�(T ). ��
Observation 6.5 For the spherical Aluthge transform, the operator P is uniquely
determined by the commuting pair T ; that is, the pair T determines Q, which in
turn determines P . ��

7 Extended Aluthge Transforms of Complex Symmetric
Operators

Recall that a conjugationC on a Hilbert space H is an antilinear map satisfying: (1)
C2 = I ; and (2) 〈Cx,Cy〉 = 〈y, x〉. An operator T ∈ B(H) is said to be complex
symmetric if there exists a conjugation C such that T ∗ = CTC.
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If T = U |T | is the canonical polar decomposition of T , one may use a
generalization of a theorem of Godič and Lucenko to write U = CJ where J is
a partial conjugation supported on Ran(|T |) such that J |T | = |T |J , where T is a
C-complex symmetric operator (see [17, Theorem 2]); as a result, T = CJ |T |. (For
additional results, see [6, 7, 16, 18] and [19].)

Of course, J can be extended to a conjugation J̃ (which, with minor abuse of
notation, we will usually denote again by J (cf. [5])) acting on the whole space H,
without affecting the equation T = CJ |T |. In this case, it was proven in [15] that

the Aluthge transform �(T ) = |T | 1
2 U |T | 1

2 is also complex symmetric, with the
conjugation J̃ .

Theorem 7.1 ([15]) Let T be a complex symmetric operator. Then�(T ) is complex
symmetric.

We will now establish that the extended Aluthge transform does not preserve
the property of being complex symmetric. To this end, we will focus attention on a
special class of finite rank operators. Let n be an integer and assume that n ≥ 2. For
a finite family of complex numbers λ ≡ λ1, · · · , λn−1 consider the operator

T (λ) :=
n−1
∑

i=1

λiei+1 ⊗ ei,

where e1, · · · , en, · · · are elements of an orthonormal basis for H, and for vectors
x, y ∈ H we denote by x⊗ y the rank-one operator (x⊗ y)(z) := 〈z, y〉 x (z ∈ H).
Without loss of generality we may assume that λi > 0 for all i = 1, · · · , n− 1. The
results, however, will be stated for complex λi ’s. It is easy to see that T admits the
following matricial representation:

T (λ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0
λ1 0 0 . . . . . . 0

0 λ2 0
. . .

. . . 0
...

...
. . .

. . .
. . . 0

...
...

...
. . . 0 0

0 0 . . . . . . λn−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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It is straightforward to see that

V (λ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0
1 0 0 . . . . . . 0

0 1 0
. . .

. . . 0
...
...
. . .

. . .
. . . 0

...
...

...
. . . 0 0

0 0 . . . . . . 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

|T (λ)| =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1

λ2
. . .

λn−1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

are the factors in the canonical polar decomposition of T (λ). Let γ be a given
positive real number, and consider a positive operator Pγ (λ) of the form

Pγ (λ) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1

λ2
. . .

λn−1

γ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(7.1)

We now recall the following result, proved in [34, Theorem 3.1], appropriately
adjusted to our situation.

Proposition 7.2 Let T (λ) ≡ ∑n−1
i=1 λiei+1 ⊗ ei be as above. Then T is complex

symmetric if and only if |λi | = |λn−i | (1 ≤ i ≤ n− 1).

For the class of operators T (λ) we now determine which λ’s and γ ’s give rise to
a complex symmetric extended Aluthge transform �Pγ (λ).

Theorem 7.3 Let T (λ) and γ be as above, and let �Pγ (λ)(T (λ)) be the associated
extended Aluthge transform. Then�Pγ (λ)(T (λ)) is complex symmetric if and only if
γ |λn−1| = |λ1λ2| and |λiλi+1| = |λn−iλn−i+1| for every 2 ≤ i ≤ n− 2.



The Extended Aluthge Transform 71

Proof We have

�Pγ (λ)(T (λ)) =
√

Pγ (λ)V
√

Pγ (λ)

=

⎛

⎜

⎜

⎜

⎜

⎝

√
λ1

. . . √
λn−1 √

γ

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
1 0

1
. . .

. . . 0
1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

√
λ1

. . . √
λn−1 √

γ

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0√
λ1λ2 0 0 . . . . . . 0

0
√
λ2λ3 0

. . .
. . . 0

...
...

. . .
. . .

. . . 0
...

...
...
√
λn−2λn−1 0 0

0 0 . . . 0
√
γλn−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From Proposition 7.2 we see that for �Pγ (λ) to be complex symmetric one needs

{ |λ1λ2| = |γ λn−1|
|λiλi+1| = |λn−iλn−i+1| f or2 ≤ i ≤ n− 2,

as desired. ��
Corollary 7.4 Let T (λ) and γ be as above. Then T (λ) and its extended Aluthge
transform �Pγ (λ)(T (λ)) are both complex symmetric if and only if

(i) (when n is odd) γ = |λ1| = |λ2| = · · · = |λn−1|;
(ii) (when n is even)

{ |λ1| = |λ3| = · · · = |λn−1|
γ = |λ2| = |λ4| = · · · = |λn−2| .

Remark 7.5

(i) For t ∈ [0, 1], one may define the generalized extended Aluthge Transform as
follows:

�Pγ (λ)(T (λ); t) := Pγ (λ)
tV Pγ (λ)

1−t .

As in the classical case, �Pγ (λ)(T (λ); 1
2 ) = �Pγ (λ)(T (λ)) is the extended

Aluthge transform, and �Pγ (λ)(T (λ); 0) = T ; also, �Pγ (λ)(T (λ); 1) is the
analog of the so called Duggal transform.
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(ii) As in the classical case, the generalized extended Aluthge transform of a
complex symmetric operator may fail to be complex symmetric (except for the
cases t = 0 and t = 1

2 (see [34] and [5]). ��
Let us consider the same class of operators T (λ), this time looking at the

generalized extended Aluthge transforms. As before, Pγ is given by (7.1).

�Pγ (λ)(T (λ); t) :=
(

Pγ (λ)
)t
V
(

Pγ (λ)
)1−t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λt1
λt2

. . .

λtn−1
γ t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
1 0

1
. . .

. . . 0
1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1−t
1

λ1−t
2

. . .

λ1−t
n−1

γ 1−t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0
λt2λ

1−t
1 0 0 . . . . . . 0

0 λt3λ
1−t
2 0

. . .
. . . 0

...
...

. . .
. . .

. . . 0
...

...
... λtn−1λ

1−t
n−2 0 0

0 0 . . . . . . γ tλ1−t
n−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using again Proposition 7.2, we obtain the following result.

Theorem 7.6 Let T (λ) and γ be as above. Then the generalized extended Aluthge
transform �Pγ (λ)(T (λ); t) is complex symmetric if and only if γ t |λn−1|1−t =
|λ2|t |λ1|1−t and |λi+1|t |λi |1−t = |λn−i+1|t |λn−i |1−t for every 2 ≤ i ≤ n− 2.

Rather surprisingly, for the case γ > 0, the generalized extended Aluthge
transforms allows one to simplify the conditions describing complex symmetry, in
the sense that if we start with T (λ) complex symmetric, there is one condition that
ensures that all �Pγ (λ)(T (λ); t) are complex symmetric operators. Namely, we
have the following result.

Corollary 7.7 Let T (λ) and γ be as above. Then T (λ) and its generalized extended
Aluthge transforms �Pγ (λ)(T (λ); t) (0 ≤ t ≤ 1) are all complex symmetric if and
only if

(i) (when n is odd) γ = |λ1| = |λ2| = · · · = |λn−1|;
(ii) (when n is even)

{ |λ1| = |λ3| = · · · = |λn−1|
γ = |λ2| = |λ4| = · · · = |λn−2| .
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8 The Numerical Range and the Extended Aluthge
Transform

For an operator A ∈ B(H), recall that the numerical range W(A) of A is defined as

W(A) := {〈Ax, x〉 : x ∈ H with ‖x‖ = 1}.

The following lemmas are interesting and useful; they appear in [30] and the
references therein.

Lemma 8.1 Let A and B be operators on H such that A = X∗BX for some
contraction X. Then W(A) ⊆ co(W(B) ∪ {0})∧. If, in addition, X is a coisometry,
then we also haveW(B) ⊆ W(A).

Lemma 8.2 (Heinz Inequality) Let A, X and B be operators on H, and assume
that A and B are positive. Then the following inequalities hold:

(i) ‖ArXBr‖ ≤ ‖AXB‖r‖X‖1−r for r ∈ [0, 1].
(ii) ‖ArXBr‖ ≥ ‖AXB‖r‖X‖1−r for r > 1.

From the last result we can derive the following lemma (see [30]).

Lemma 8.3 Let A and X be operators onH, and assume that A is positive. Then

‖ArXA1−r − zI‖ ≤ ‖AX − zI‖r‖XA− zI‖1−r , for all r ∈ [0, 1] and z ∈ C

The previous results were used to prove the following inclusion.

Theorem 8.4 ([30], Theorem 1) Let T be an operator onH. Then

W(�(T )) ⊆ W(T )

We now turn our attention to the extended Aluthge transform.

8.1 Numerical Range for Extended Aluthge Transforms

We begin with a natural question.

Question 8.5 Is Theorem 8.4 still true for the extended Aluthge transform?

We’ll show here that Theorem 8.4 is not true for all extended Aluthge transforms.
However we have a relationship connecting the numerical ranges.
Recall that we have following decompositions

T =
⎛

⎝

XA 0 0
YA 0 0
ZA 0 0

⎞

⎠ �(T ) =
⎛

⎝

√
AX
√
A 0 0

0 0 0
0 0 0

⎞

⎠ �P (T ) =
⎛

⎝

√
AX
√
A 0 0√

CY
√
A 0 0

0 0 0

⎞

⎠
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Then, we have

W(�(T )) ⊆ W(�P (T )) and W(�(T )) ⊆ W(T ).

It has been shown in [24, Theorem 4.1] that the numerical range of an upper
triangular matrix of the form

A =
⎛

⎝

p 0 0
x p 0
y z p

⎞

⎠

when xyz = 0 is the closed disc centered at p and with radius 1
2

√|x|2 + |y|2 + |z|2.
So, if

T =
⎛

⎝

0 0 0
α 0 0
0 β 0

⎞

⎠ ,

and we recall that

Pγ =
⎛

⎝

|α| 0 0
0 |β| 0
0 0 γ

⎞

⎠ ,

it follows that

(i) W(T ) = D̄
(

0, 1
2

√|α|2 + |β|2).
(ii) W(�(T )) = D̄

(

0, 1
2

√|α||β|).
(iii) W(�Pγ (T )) = D̄

(

0, 1
2

√|α||β| + |β|γ
)

.

As expected, we have

{

W(�(T )) ⊆ W(T )

W(�(T )) ⊆ W(�Pγ (T )).

Remark 8.6

(i) We may choose α, β and γ in the previous example such that the inclusions
above are strict; see Fig. 1.

(ii) W(�Pγ (T )) and W(T ) are not comparable in general, unless we impose
restrictions on γ . For example, observe that if γ ≤ |α| in the previous
discussion, then W(�Pγ (T )) ⊆ W(T ), with equality holding if and only if
γ = |α| = |β|. ��
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|α||β| = r2

|α||β| + |β|γ1 = r2; (γ1 > 0)

|α||β| + |β|γ2 = r2; (γ2 > γ1)

|α|2 + |β|2 = r2

In this region there exist α, β, γ such that |α|2 + |β|2 < r2 and |α||β| + |β|γ > r2;
as a consequence, W (ΔPγ

(T )) W (T ).

Fig. 1 Graphs of radii in Remark 8.6

Acknowledgments The authors are grateful to the referee for some helpful suggestions that
improved the presentation.
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Open Problems in Wavelet Theory

Marcin Bownik and Ziemowit Rzeszotnik

Abstract We present a collection of easily stated open problems in wavelet theory
and we survey the current status of answering them. This includes a problem
of Larson ((2007) Unitary systems and Wavelet sets. In: Wavelet analysis and
applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel, pp
143–171) on minimally supported frequency wavelets. We show that it has an
affirmative answer for MRA wavelets.

Keyword Wavelets

Mathematics Subject Classification (2010) Primary: 42C40, Secondary: 46C05

1 Introduction

The goal of this paper is twofold. The first goal is to present a collection of open
problems on wavelets which have simple formulations. Many of these problems are
well-known, such as connectivity of the set of wavelets. Others are less known, but
nevertheless deserve a wider dissemination. At the same time we present the current
state of knowledge about these problems. These include several results giving a
partial progress, which indicate inherent difficulties in answering them. One of
such problems was formulated by Larson [43] and asks about frequency supports
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of orthonormal wavelets. Must they contain a wavelet set? The second goal of the
paper is to give an affirmative answer to this problem for the class of MRA wavelets.

2 One Dimensional Wavelets

In this section we discuss problems in wavelet theory that remain unanswered even
in the classical setting of one dimensional dyadic wavelets. Many of these problems
have higher dimensional analogues which also remain open.

Definition 2.1 We say that ψ ∈ L2(R) is an o.n. wavelet if the collection of
translates and dyadic dilates

ψj,k(x) := 2j/2ψ(2j x − k), j, k ∈ Z (2.1)

forms an o.n. basis of L2(R).

2.1 Connectivity of Wavelets

One of the fundamental areas in the theory of wavelets is the investigation of
properties of the collection of all wavelets as a subset of L2(R). The most prominent
problem in this area was formulated independently by D. Larson and G. Weiss
around the year 1995.

Problem 2.1 Is the collection of all orthonormal wavelets (as a subset of the unit
sphere in L2(R)) path connected in L2(R) norm?

Despite several attempts and significant initial progress Problem 2.1 remains
open. In addition, variants of Problem 2.1 for Parseval wavelets and Riesz wavelets
are also open. A strong initial thrust toward answering this problem was given by
a joint work by a group of authors from Texas A&M University and Washington
University led by D. Larson and G. Weiss, respectively. The paper [60] written
by the Wutam consortium gave a positive answer to Problem 2.1 for the class of
MRA wavelets. A concept of a multiresolution analysis (MRA) is one of the most
fundamental in the wavelet theory. It was introduced by Mallat and Meyer [46, 47].

Definition 2.2 A sequence {Vj : j ∈ Z} of closed subspaces of L2(R) is called a
multiresolution analysis (MRA) if

(M1) Vj ⊂ Vj+1,
(M2) f (·) ∈ Vj ⇐⇒ f (2·) ∈ Vj+1,
(M3)

⋂

j∈Z Vj = {0},
(M4)

⋃

j∈Z Vj = L2(R),
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(M5) There exists ϕ ∈ V0 such that its integer translates (ϕ(· − k))k∈Z form an
o.n. basis of V0.

We say that an o.n. wavelet ψ ∈ L2(R) is associated with an MRA {Vj : j ∈ Z} if
ψ belongs to the orthogonal complement V1 � V0 of V0 inside V1.

A Fourier transform defined initially for ψ ∈ L1(R) ∩ L2(R) is given by

ψ̂(ξ) =
∫

R

ψ(x)e−2πixξ dx ξ ∈ R.

There is a simple characterization of MRA wavelets in terms of the wavelet
dimension function, see [38, Theorem 7.3.2]. The notion of the wavelet dimension
function was introduced by Auscher in [1] and studied in [3–5, 18, 52].

Theorem 2.1 Let ψ ∈ L2(R) be an orthonormal wavelet. Then ψ is an MRA
wavelet if and only if

Dψ(ξ) :=
∞
∑

j=1

∑

k∈Z
|ψ̂(2j (ξ + k))|2 = 1 for a.e. ξ ∈ R.

The main theorem of the Wutam consortium [60, Theorem 4] shows that the
collection of all MRA wavelets is path connected.

Theorem 2.2 Let ψ0 and ψ1 be two MRA wavelets which are not necessarily
associated with the same MRA. Then, there exists a continuous map � : [0, 1] →
L2(R) such that �(0) = ψ0, �(1) = ψ1, and �(t) is an MRA wavelet for all
t ∈ [0, 1].

Another fundamental connectivity result for the class of minimally supported
frequency (MSF) wavelets was obtained by Speegle [56].

Definition 2.3 Let ψ ∈ L2(R) be an o.n. wavelet. We say that ψ is an MSF wavelet
if its frequency support

supp ψ̂ = {ξ ∈ R : ψ̂(ξ) �= 0}

has minimal Lebesgue measure (equal 1).

Equivalently, ψ ∈ L2(R) is an MSF wavelet if and only if |ψ̂ | = 1W for
some measurable set W ⊂ R, known as wavelet set, which satisfies simultaneous
translation and dilation tiling of R. That is,

• {W + k}k∈Z is a partition of R modulo null sets, and
• {2jW }j∈Z is a partition of R modulo null sets.

Speegle [56, Theorem 2.5 and Corollary 2.6] has shown the following result.
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Theorem 2.3 The wavelet sets are path-connected in the symmetric difference
metric. Consequently, the collection of MSF wavelets forms a path connected subset
of L2(R).

Besides the last two results, little is known about the connectivity problem
for general o.n. wavelets. However, there is a partial evidence that the answer to
Problem 2.1 is affirmative. The following result characterizing wavelet dimension
function was shown in [18].

Theorem 2.4 Let ψ ∈ L2(R) be an orthonormal wavelet. Then its wavelet
dimension function

D(ξ) = Dψ(ξ) =
∞
∑

j=1

∑

k∈Z
|ψ̂(2j (ξ + k))|2 ξ ∈ R, (2.2)

satisfies the following 4 conditions:

(D1) D : R→ N ∪ {0} is a measurable 1-periodic function,
(D2) D(ξ)+D(ξ + 1/2) = D(2ξ)+ 1 for a.e. ξ ∈ R,
(D3)

∑

k∈Z 1�(ξ + k) ≥ D(ξ) for a.e. ξ ∈ R, where

� = {ξ ∈ R : D(2−j ξ) ≥ 1 for j ∈ N ∪ {0}},

(D4) lim infj→∞D(2−j ξ) ≥ 1 for a.e. ξ ∈ R.

Conversely, for any function D satisfying the above 4 conditions, there exists an
orthonormal MSF wavelet ψ such that (2.2) holds for a.e. ξ ∈ R.

In light of Theorems 2.3 and 2.4 the affirmative answer to Problem 2.1 would
follow from the following conjecture. Our joint work [17] was meant as an initial
step toward this conjecture.

Conjecture 2.1 Let D be any wavelet dimension function, i.e., D satisfies (D1)–
(D4). Then, the collection of o.n. wavelets with the same dimension function

{ψ ∈ L2(R) : ψ is an o.n. wavelet and Dψ = D}.

is a path connected subset of L2(R).

Variants of Problem 2.1 have been studied for other classes of wavelets such as
Parseval wavelets. We say that ψ ∈ L2(R) is a Parseval wavelet if its wavelet system
is a Parseval frame. That is,

∑

j,k∈Z
|〈f,ψj,k〉|2 = ||f ||2 for all f ∈ L2(R).

This problem also remains open in its full generality. Paluszyński, Šikić, Weiss,
and Xiao showed the connectivity for the class of MRA Parseval wavelets [48, 49],
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which is an extension of Theorem 2.2. Moreover, Garrigós, Hernández, Šikić, Soria,
Weiss, and Wilson showed that the class of Parseval wavelets satisfying very mild
conditions on their spectrum is also connected [33, 34]. Likewise, a variant of
Problem 2.1 for Riesz wavelets, which was posed by Larson [42, 43], is also open.
However, the same problem for frame wavelets was solved by the first author [10].

A frame wavelet, or in short a framelet, is a function ψ ∈ L2(R) such that the
wavelet system (3.1) forms a frame for L2(R). Hence, we require the existence of
constants 0 < c ≤ d <∞ such that

c||f ||2 ≤
∑

j,k∈Z
|〈f,ψj,k〉|2 ≤ d||f ||2 for all f ∈ L2(R). (2.3)

We say that a wavelet system is Bessel if only the upper bound holds in (2.3). Then
we have the following result [10, Theorem 3.1].

Theorem 2.5 The collection of all framelets

Wf = {ψ ∈ L2(R) : ψ is a framelet}.

is path connected in L2(R).

2.2 Wavelets for H 2(R)

Auscher in his influential work [2] has solved two problems on wavelets. He has
shown that all biorthogonal wavelets satisfying mild regularity conditions come
from biorthogonal MRAs. In particular, we have the following result [2, Theorem
1.2].

Theorem 2.6 Let ψ ∈ L2(R) be an o.n. wavelet such that:

• ψ̂ is continuous on R,
• |ψ̂(ξ)| = O((1+ |ξ |)−α−1/2) as |ξ | → ∞ for some α > 0.

Then, ψ is an MRA wavelet.

The original formulation in [2] has one more condition, |ψ̂(ξ)| = O(|ξ |α) as
ξ → 0, which is not essential. The proof of Theorem 2.6 is actually not that difficult
in light of Theorem 2.1. It suffices to observe that the regularity conditions imply
that series defining the wavelet dimension function (2.2) is uniformly convergent
on compact subsets of R \ Z. Since D is integer-valued and periodic, it must be a
constant function (equal to 1).

The other problem solved by Auscher deals with the Hardy space

H 2(R) = {f ∈ L2(R) : f̂ (ξ) = 0 for ξ ≤ 0}.
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Meyer [47] has shown the existence of o.n. wavelets in the Schwartz class. His
famous construction produces a band-limited wavelet ψ such that ψ̂ ∈ C∞ has
compact support. He has asked if it is possible to such nice wavelets also in the
Hardy space H 2(R). Auscher [2, Theorem 1.1] has shown that this is not possible,
see also [38, Theorem 7.6.20].

Theorem 2.7 There is no o.n. wavelet ψ ∈ H 2(R) satisfying the regularity
assumptions as in Theorem 2.6. In particular, there is no ψ in the Schwartz class
such that {ψj,k}j,k∈Z is an o.n. basis of H 2(R).

This leaves open the problem of existence of Riesz wavelets which was posed by
Seip [55]. We say that ψ is a Riesz wavelet for H = H 2(R) or L2(R) if the wavelet
system is a Riesz basis of H. A Riesz basis in a Hilbert space H can be defined as
an image of an orthonormal basis under an invertible operator on H. Every Riesz
basis has a dual Riesz basis. However, the dual of Riesz wavelet system might not
be a wavelet system. If it is, then we say that ψ is a biorthogonal (Riesz) wavelet.

Problem 2.2 Does there exist a Riesz wavelet ψ in H 2(R) such that ψ belongs to
the Schwartz class?

Auscher [2] has shown that the answer is negative for biorthogonal Riesz
wavelets. However, Auscher’s result does not preclude the existence of more general
types of Riesz wavelets for which wavelet dimension techniques are not applicable.

2.3 Minimality of MSF Wavelets

Larson [43] has posed an interesting problem about frequency supports of wavelets.
Must the support of the Fourier transform of a wavelet contain a wavelet set?
This problem stems from the observation that there are two ways of describing
minimality of frequency support. The first one is that supp ψ̂ has the smallest
possible Lebesgue measure (equal to 1), which is used in the actual definition of
an MSF wavelet. The second possibility is to insist that the support is minimal
with respect to the inclusion partial order. It is not known whether these two
natural definitions of minimality of frequency supports are the same. This is the
essence of the following problem posed by Larson in late 1990s although its official
formulation appeared only in [43].

Problem 2.3 Is it true that for any orthonormal wavelet ψ ∈ L2(R), there exists a
wavelet set W such that such that W ⊂ supp ψ̂?

A positive answer to this problem was given by the second author [53] for the
class of MRA wavelets. A special case of Theorem 2.8 for band-limited MRA
wavelets was shown in [61].

Theorem 2.8 Suppose that ψ ∈ L2(R) is an MRA wavelet. Then there exists a
wavelet setW such thatW ⊂ supp ψ̂ .
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In Sect. 4 we give the proof of Theorem 2.8. Despite this initial progress, not
much is known about frequency supports of non-MRA wavelets where Problem 2.3
remains wide open. The second author and Speegle [54] have investigated this
problem using the concept of an interpolation pair of wavelet sets, which was
introduced by Dai and Larson in [28].

2.4 Density of Riesz Wavelets

Another fundamental problem posed by Larson [43] asks about density of Riesz
wavelets.

Problem 2.4 Is the collection of all Riesz wavelets dense in L2(R)?

Larson in [43] gives several pieces of evidence why the answer to Problem 2.4
might be affirmative. For example, if ψ0 and ψ1 are o.n. wavelets, then their convex
combination (1 − t)ψ0 + tψ1 is a Riesz wavelet for all t ∈ R possibly with the
exception of t = 1/2. Hence, a line connecting any two o.n. wavelets is in the norm
closure of the set of Riesz wavelets. In the case of frame wavelets the first author
has shown the following positive result [10, Theorem 2.1]. A similar density result
was independently obtained by Cabrelli and Molter [22].

Theorem 2.9 The collection of all framelets

Wf = {ψ ∈ L2(R) : ψ is a framelet}.

is dense in L2(R).

In addition, Han and Larson [36] has shown that any f ∈ L2(R) can be
approximated in L2(R)-norm by a sequence {ψk}k∈N ⊂Wf of asymptotically tight
frame wavelets. Namely, if 0 < ck ≤ dk < ∞ denote the lower and the upper
frame bounds of ψk , then dk/ck → 1 as k → ∞. However, the situation changes
drastically if we restrict ourselves to the class of tight frame wavelets. These are
functions ψ ∈ L2(R) satisfying (2.3) with equal bounds c = d . Then the answer
becomes negative by Bownik [12, Corollary 2.1].

Theorem 2.10 The collection of all tight frame wavelets

Wtf = {ψ ∈ L2(R) : ψ is a tight framelet}.

is not dense in L2(R).

A partial positive result related to Problem 2.4 was obtained by Cabrelli and
Molter [22], where the authors proved that any f ∈ L2(Rn) can be approximated
in L2(Rn) norm by Riesz wavelets associated to expansive dilation matrices A and
lattices of translates 	; for definitions see Sect. 3. However, both dilations A and
lattices 	 vary with the accuracy of approximation. Hence, Problem 2.4 remains
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open, since it asks about density of Riesz wavelets for a fixed (dyadic) dilation and
a fixed lattice of translates (integers).

2.5 Intersection of Negative Dilates

Yet another fundamental problem in the theory of wavelets was posed by Baggett in
1999. Baggett’s problem asks whether every Parseval wavelet ψ must necessarily
come from a generalized multiresolution analysis (GMRA). A concept of GMRA
was introduced by Baggett et al. [4] as a natural generalization of MRA.

Definition 2.4 A sequence {Vj : j ∈ Z} of closed subspaces of L2(R) is called a
multiresolution analysis (MRA) if (M1)–(M4) in Definition 2.2 hold and the space
V0 is shift-invariant

(M5’) f (·) ∈ V0  ⇒ f (· − k) for all k ∈ Z.

To formulate Baggett’s problem we also need a concept of space of negative
dilates.

Definition 2.5 Let ψ ∈ L2(R) be a frame wavelet. A space of negative dilates of
ψ is defined as

V (ψ) = span{ψj,k : j < 0, k ∈ Z}. (2.4)

We say that ψ is associated with a GMRA {Vj : j ∈ Z} if V (ψ) = V0.

Suppose that ψ ∈ L2(Rn) is a Parseval wavelet. Then, we can define spaces

Vj = Dj (V (ψ)) j ∈ Z,

where Df (x) = √2f (x) is a dilation operator. Baggett has shown that a sequence
{Vj : j ∈ Z} satisfies all properties of GMRA (M1), (M2), (M4), and (M5’) possibly
with the exception of (M3). Hence, it is natural to ask the following question.

Problem 2.5 Let ψ be a Parseval wavelet with the space of negative dilates V =
V (ψ). Is it true that

⋂

j∈Z
Dj (V (ψ)) = {0}?

Despite its simplicity Problem 2.5 is a difficult open problem and only partial
results are known. The authors proved in [16] that if the dimension function (also
called multiplicity function) of V (ψ) is not identically ∞, then the answer to
Problem 2.5 is affirmative. A generalization of this result was shown in [12].
Problem 2.5 is not only interesting for its own sake, but it also has several
implications for other aspects of the wavelet theory. For example, it was shown
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in [16] that a positive answer would imply that all compactly supported Parseval
wavelets come from a MRA, thus generalizing the well-known result of Lemarié-
Rieusset [2, 44] for compactly supported (orthonormal) wavelets. However, there is
some evidence that the answer to Problem 2.5 might be negative. The authors in [16]
have shown examples of (non-tight) frame wavelet ψ such that its space of negative
dilates is the largest possible V (ψ) = L2(R). In fact, the following theorem was
shown in [11, Theorem 8.20].

Theorem 2.11 For any δ > 0, there exists a frame waveletψ ∈ L2(R) such that:

(i) the frame bounds of a wavelet system {ψj,k : j, k ∈ Z} are 1 and 1+ δ,
(ii) the space V of negative dilates of ψ satisfies V (ψ) = L2(R),
(iii) ψ̂ is C∞ and all its derivatives have exponential decay,
(iv) ψ has a dual frame wavelet.

2.6 Extension of Wavelet Frames

A more recent problem was proposed by Christensen and his collaborators [24, 25].

Problem 2.6 Suppose ψ is Bessel wavelet with bound < 1. Does there exist ψ ′
such that the combined wavelet system

{ψj,k : j, k ∈ Z} ∪ {ψ ′j,k : j, k ∈ Z}.

generated by ψ and ψ ′ is a Parseval frame?

The original formulation of Problem 2.6 asks for an extension of a pair of
Bessel wavelets to a pair of dual frames. Hence, Problem 2.6 is a simplified version
of a problem proposed in [24]. Despite partial progress in a subsequent work of
Christensen et al. [25], either formulation of this problem remains open. It is worth
adding that an analogue of Problem 2.6 for Gabor Bessel sequences has been proven
in [24, Theorem 3.1].

2.7 A Simple Question that Nobody has Bothered to Answer

The last problem illustrates the difficulty of determining whether a function is a
frame wavelet or not. The following problem was proposed by Weber and the first
author [21].

Problem 2.7 For 0 < b < 1 define ψb ∈ L2(R) by ψ̂b = 1(−1,−b)∪(b,1). For what
values of 1/8 < b ≤ 1/6, is ψb a frame wavelet?

The above range of parameter b seems to be the hardest in determining a frame
wavelet property of ψb . Outside of this range, the following table lists properties of
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ψb which were shown in [21].

Range of b Property of ψb Dual frame wavelets of ψb

b = 0 not a frame wavelet no duals exist

0 < b ≤ 1/8 frame wavelet (not Riesz) no duals exist

1/6 < b < 1/3 not a frame wavelet no duals exist

1/3 ≤ b < 1/2 biorthogonal Riesz wavelet a unique dual exists

b = 1/2 orthonormal wavelet a unique dual exists

1/2 < b < 1 not a frame wavelet no duals exist

3 Higher Dimensional Wavelets

In this section we concentrate on problems involving higher dimensional wavelets.
Most of the one dimensional problems discussed in Sect. 2 have higher dimensional
analogues. Rather surprisingly, their higher dimensional analogues have definitive
answers for certain classes of dilation matrices. Subsequently, we shall focus on
problems which have been resolved in one or two dimensions, but remain open in
higher dimensions.

We start by a higher dimensional analogue of Definition 2.1.

Definition 3.1 Let A ∈ GLn(R) be n × n invertible matrix. Let 	 ⊂ Rn be a full
rank lattice. We say that ψ ∈ L2(Rn) is an o.n. wavelet associated with a pair (A, 	)
if the collection of translates and dilates

ψj,k(x) := | detA|j/2ψ(Ajx − k), j ∈ Z, k ∈ 	, (3.1)

forms an o.n. basis of L2(R).

A typical choice for 	 is a standard lattice Zn. Moreover, we can often reduce to
this case by making a linear change of variables. Indeed, suppose that 	 = PZn for
some P ∈ GLn(R). Then, ψ ∈ L2(Rn) is an o.n. wavelet associated with (A, 	)

if and only if | detP |1/2ψ(P ·) is an o.n. wavelet associated with (P−1AP,Zn).
Hence, the choice of a standard lattice 	 = Zn is not an essential restriction.

For some of the problems discussed in this section, it is imperative that we
allow more than one function generating a wavelet system. Hence, more generally
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a (A, 	) wavelet is a finite collection {ψ1, . . . , ψL} ⊂ L2(Rn), so that the
corresponding wavelet system

{ψl
j,k : l = 1, . . . , L, j ∈ Z, k ∈ Z

n}

is an o.n. basis of L2(Rn).

3.1 Known Results

A typical assumption about a dilation A is that it is expansive or expanding. That
is, all of eigenvalues λ of A satisfy |λ| > 1. This is the class of dilations for which
most of the higher dimensional wavelet theory has been developed. In addition, it is
often assumed that a dilation A has integer entries, or equivalently

AZn ⊂ Z
n. (3.2)

The latter condition assures that higher dimensional analogue of the classical
dyadic wavelet system has nested translation structure across all its scales. Indeed, a
wavelet system at scale j ∈ Z is invariant under translates by vectors in A−jZn.
It is often desirable that a wavelet system at j + 1 scale, which is invariant
under A−j−1Zn, includes all translations at j scale. This is the main reason for
imposing the invariance condition (3.2). For such class of expansive dilations
Problems 2.1, 2.3, and 2.5 all remain open.

On the antipodes lie dilations A farthest from preserving the lattice Zn, satisfying

Z
n ∩ (AT )j (Zn) = {0} for all j ∈ Z \ {0}, (3.3)

where AT is the transpose of A. Somewhat surprisingly, more is known about
wavelets associated with such dilations than those satisfying (3.2).

Theorem 3.12 Assume that A ∈ GLn(R) is an expansive matrix satisfying (3.3).
Then, the following hold:

(i) The collection of all o.n. wavelets associated to (A,Zn) is path connected in
L2(R) norm.

(ii) The collection of all Parseval wavelets associated to (A,Zn) is path connected
in L2(R) norm.

Proof Bownik [8] and Chui et al. [26] any expansive dilation A satisfying (3.3)
admits only minimally supported frequency (MSF) wavelets. That is, any o.n.
wavelet associated with A must necessarily be MSF, see also Theorem 3.6. Thus,
Problem 2.1 for dilations A satisfying (3.3) is reduced to the connectivity of MSF
wavelets in the setting of real expansive dilations. Fortunately, the one dimensional
result of Speegle on the connectivity of MSF dyadic wavelets, Theorem 2.3, also
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works in higher dimensional setting by Speegle [56, Theorem 3.3]. Combining these
two results yields part (i).

Part (ii) was shown in [13, Theorem 2.4]. Its proof relies on a fact characterizing
L2 closure of the set of all tight frame wavelets associated with a dilation A

satisfying (3.3). A function f ∈ L2(Rn) belong to this closure if and only if its
frequency support W = supp f̂ satisfies

|W ∩ (k +W)| = 0 for all k ∈ Z
n \ {0}. (3.4)

This enables the reduction of the connectivity problem to the class of MSF Parseval
wavelets. This are wavelets of the form ψ̂ = 1W , such that:

• the translates {W + k}k∈Zn pack Rn, i.e., (3.4) holds, and
• {(AT )jW }j∈Z is a partition of Rn modulo null sets.

By the result of Paluszyński et al. [49, Theorem 4.2], the collection of all MSF
Parseval wavelets is path connected. Although this result was shown in [49] only
for dyadic wavelets in one dimension, it can be generalized to higher dimensions as
Speegle’s generalizations [56] in the setting of expansive dilations. ��

We finish by observing that Problem 2.3 has an immediate affirmative answer for
dilations satisfying (3.3). Likewise, Problem 2.5 also has an affirmative answer, for
example, using intersection results in [12]. However, it needs to be stressed out that
the space of negative dilates V (ψ) does not need to be shift-invariant, see [19].

3.2 Characterization of Dilations

One of the most fundamental problems in wavelet theory asks for a characterization
of dilations for which o.n. wavelets exist. Although this problem has been explicitly
stated by Speegle [57] and Wang [59], it has been studied earlier in late 1990s.

Problem 3.1 For what dilations A ∈ GLn(R) and lattices 	 ⊂ Rn, there exist an
orthonormal wavelet associated with (A, 	)?

A more concrete version of Problem 3.1 asks for a characterization of dilations
admitting MSF wavelets.

Definition 3.2 Let (A, 	) be a dilation-lattice pair. We say that W ⊂ Rn is an
(A, 	)-wavelet set if

(t) {W + γ }k∈	 is a partition of Rn modulo null sets, and
(d) {AjW }j∈Z is a partition of Rn modulo null sets.

In analogy to the one dimensional setting, frequency support of an MSF wavelet
associated with (A, 	) is necessarily (AT , 	∗)-wavelet set, where 	∗ is the dual
lattice of 	. Hence, we have the following variant of Problem 3.1.
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Problem 3.2 Characterize pairs of dilations A ∈ GLn(R) and lattices 	 ⊂ Rn for
which wavelet set exists.

Translation tiling (t) exists for any choice of a lattice 	 and is known as a
fundamental domain. The existence of dilation tiling (d) has been investigated by
Larson et al. [45]. They have shown that there exists a measurable set W ⊂ R

n of
finite measure satisfying (d) if and only if | detA| �= 1. Despite these two simple
facts, the problem of simultaneous dilation and translation tiling remains open.

The first positive result in this direction was obtained by Dai et al. [29].

Theorem 3.2 If A is an expansive matrix and 	 is any lattice, then (A, 	)-wavelet
set exists.

A significant progress toward resolving Problem 3.2 has been obtained by
Speegle [57], which was then carried by Ionescu and Wang [39], who have given
a complete answer in two dimensions. Here we present a simpler, yet equivalent,
formulation of their main result [39, Theorem 1.3].

Theorem 3.3 Suppose A ∈ GL2(R), | detA| > 1, and 	 ⊂ R2 is a full rank
lattice. There exists (A, 	)-wavelet set ⇐⇒

V ∩ 	 = {0}, (3.5)

where V is the eigenspace corresponding to an eigenvalue λ ofA satisfying |λ| < 1.
In particular, if all eigenvalues |λ| ≥ 1, then V = {0} and (3.5) holds automatically.

As an illustration of subtleness of Theorem 3.3 we give the following example.

Example 3.1 Let 	 = Z2 and α ∈ R. Then, the following holds true:

• MSF wavelet does not exist for A =
[

3 0
α 1/2

]

for any α ∈ R.

• MSF wavelet exists for AT =
[

3 α

0 1/2

]

⇐⇒ α ∈ R \Q.

Lemvig and the first author [14] have shown the following result on the ubiquity
of MSF wavelets. For any choice of dilation A ∈ GLn(R) with | detA| �= 1, there
exists (A, 	)-wavelet set for almost every full rank lattice 	. In fact, a slightly
stronger result holds.

Theorem 3.4 Let A be any matrix in GLn(R) with | detA| �= 1. Let 	 ⊂ Rn be
any full rank lattice. Then there exists (A,U	)-wavelet set for almost every (in the
sense of Haar measure) orthogonal matrix U ∈ O(n).

The proof of Theorem 3.4 relies on techniques from geometry of numbers and
involves estimates on a number of lattice points in dilates of the unit ball of the
form Aj(B(0, 1)), where j ∈ Z. Since Aj(B(0, 1)) is a convex symmetric body,
this number is at least its volume up to a proportionality constant depending solely
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on the choice of 	. If the corresponding upper bound holds

#|	 ∩ Aj(B(0, 1))| ≤ C max(1, | detA|j ) for all j ∈ Z, (3.6)

then many results in wavelet theory, such as characterizing equations, hold. The
main result in [14] shows that (3.6) holds for almost every choice of a lattice 	,
which is then used to prove Theorem 3.4.

The expectation is that the answers to Problems 3.1 and 3.2 are actually the same.
In other words, if there exists an o.n. wavelet associated with (A, 	), then there also
exists an MSF wavelet associated with (A, 	). However, this is unknown since even
more basic problem involving Calderón’s formula remains open.

3.3 Calderón’s Formula

Problem 3.3 was implicitly raised by Speegle [56] and explicitly formulated in [14].

Problem 3.3 Does Calderón’s formula

∑

j∈Z
|ψ̂((AT )j ξ)|2 = 1 for a.e. ξ ∈ R

n (3.7)

hold for any orthonormal (or Parseval) wavelet ψ associated with (A, 	)?

Bownik and Lemvig [14] Problem 3.3 has affirmative answer for pairs (A, 	)

such that its dual pair (AT , 	∗) satisfies the lattice counting estimate (3.6). Indeed,
(3.7) is the first of two equations characterizing Parseval wavelets, which has been
studied by a large number of authors both for expansive [6, 23, 26, 31, 51] and non-
expansive dilations [35, 37]. The second equation states that for all α ∈ 	∗

∑

j∈Z,(AT )−jα∈	∗
ψ((AT )−j ξ)ψ̂((AT )−j (ξ + α)) = δα,0 for a.e. ξ ∈ R

n.

(3.8)

The expectation is that the equations (3.7) and (3.8) characterize Parseval wavelets
for all possible pairs (A, 	). This has been shown for expansive dilations [26],
dilations expanding on a subspace [35, 37], and more generally satisfying the lattice
counting estimate (3.6). However, Problem 3.3 remains as a formidable obstacle
toward this goal. An example in [15, Example 3.1] and more recent work [32] are
an evidence of looming difficulties.
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3.4 Well-localized Wavelets

A variant of Problem 3.1 asks for a characterization of dilations for which well-
localized o.n. wavelets exist. We say that a function ψ ∈ L2(Rn) is well-localized
if both ψ and ψ̂ have polynomial decay. That is, for some large N > 0, we have

ψ(x) = O(|x|−N) as |x| → ∞ and ψ̂(ξ) = O(|ξ |−N) as |ξ | → ∞.

Problem 3.4 Let 	 = Zn be the lattice of translates. For what expansive dilations
A do there exist well-localized wavelets (possibly with multiple generators)?

Note that in Problem 3.4 it is imperative that we allow multiple generators of a
wavelet system. Indeed, suppose that A is an integer expansive matrix, i.e., (3.2)
holds. If � = {ψ1, . . . , ψL} ⊂ L2(Rn) is a well-localized o.n. wavelet associated
with an integer dilation, then the number L of generators must be divisible by
| detA| − 1. This is a consequence of the fact that the wavelet dimension function
defined as

D�(ξ) :=
L
∑

l=1

∞
∑

j=1

∑

k∈Zn

|ψ̂l ((AT )j (ξ + k))|2

satisfies a higher dimensional analogue of Theorem 2.4. In particular,D� is integer-
valued and satisfies

∫

[0,1]n
D�(ξ)dξ = L

| detA| − 1
.

If � consists of well-localized functions, then the series defining D� converges
uniformly and hence it must be constant. Thus, L is divisible by | detA| − 1.

Daubechies [30, Chapter 1] asked whether “there exist orthonormal wavelet
bases (necessarily not associated with a multiresolution analysis), with good time-
frequency localization, and with irrational a.” A partial answer was given by Chui
and Shi [27] who showed that all wavelets associated with dilation factors a such
that aj is irrational for all j ≥ 1 must be minimally supported frequency (MSF). A
complete answer was given by the first author [9] who proved the following result.

Theorem 3.5 Suppose a is an irrational dilation factor, a > 1. If � =
{ψ1, . . . , ψL} is an orthonormal wavelet associated with a, then at least one of
ψl is poorly localized in time. More precisely, there exists l = 1, . . . , L such that
for any δ > 0,

lim sup
|x|→∞

|ψl(x)||x|1+δ = ∞.



92 M. Bownik and Z. Rzeszotnik

On the other hand, Auscher [1] proved that there exist Meyer wavelets (smooth and
compactly supported in the Fourier domain) for every rational dilation factor. Com-
bining Auscher’s result with Theorem 3.5 gives a complete answer to Problem 3.4
in one dimensional case. Well-localized orthonormal wavelets can only exist for
rational dilation factors and they are non-existent for irrational dilations.

In higher dimensions Problem 3.4 remains a challenging open problem. A partial
answer was given by the first author in [8].

Theorem 3.6 Suppose A is an expanding matrix such that (3.3) holds. If � =
{ψ1, . . . , ψL} is an o.n. wavelet associated with A, then � is combined MSF, i.e.,
⋃L

l=1 supp ψ̂l has a minimal possible measure (equal to L).

Since any combined MSF wavelet must satisfy

L
∑

l=1

|ψ̂l (ξ)|2 = χW(ξ) for a.e. ξ,

for some measurable set W ⊂ Rn, at least one ψl is not be well-localized in time.
Moreover, Speegle and the first author [19] showed that Theorem 3.6 is sharp, in the
sense that it has a converse. The converse result states that if all wavelets associated
with an expanding dilation A are MSF, then A must necessarily satisfy (3.3).

To obtain a satisfactory (even partial) answer to Problem 3.4, it is also necessary
to construct well-localized wavelets for large classes of expansive dilations. A
natural class of well-localized wavelets are r-regular wavelets introduced by Meyer
[47]. We recall that a function ψ is r-regular, where r = 0, 1, 2, . . ., or ∞, if ψ is
Cr with polynomially decaying partial derivatives of orders ≤ r ,

∂αψ(x) = O(|x|−N) as |x| → ∞ for all |α| ≤ r, N > 0.

For any integer dilation A, which supports a self-similar tiling of Rn, Strichartz
[58] constructed r-regular wavelets for all r ∈ N. However, there are examples in
R

4 of dilation matrices without self-similar tiling [40, 41]. In [7] the first author
has shown that for every integer dilation and r ∈ N, there is an r-regular wavelet
basis with an associated r-regular multiresolution analysis. However, the question
of existence of∞-regular wavelets in higher dimensions is still open.

3.5 Meyer Wavelets for Integer Dilations

Schwartz class is defined as a collection of all∞-regular functions on Rn.

Problem 3.5 Do Schwartz class wavelets exist for integer expansive dilations A

and lattice 	 = Zn?
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One dimensional wavelet in the Schwartz class is a famous example of Meyer
[47], which can be adapted to any integer dilation factor a ≥ 2. In two dimensions
an affirmative answer to Problem 3.5 was given by Speegle and the first author [20].

Theorem 3.7 For every expansive 2 × 2 integer dilation A, there exists an o.n.
wavelet consisting of (| detA| − 1) band-limited Schwartz class functions.

Hence Problem 3.5 needs to be answered only in dimensions ≥ 3. It is valid to
ask the same question for a larger class of dilations with rational entries. Auscher’s
result [1] on Meyer wavelets for rational dilations indicates that this might be a valid
expectation.

3.6 Schwartz Class Wavelets

We end by stating not that serious, yet curious problem. The only known construc-
tion of wavelets in the Schwartz class is a Meyer wavelet which is a band-limited
function. Hence, it is natural ask the following question.

Problem 3.6 Suppose ψ is an orthonormal wavelet such that ψ belongs to the
Schwartz class. Is ψ̂ necessarily compactly supported?

4 Proof of Theorem 2.8

Let ψ be an MRA wavelet as in Definition 2.2. A function ϕ given in the condition
(M5) of Definition 2.2 is called a scaling function. For this function there exists
a 1-periodic low-pass filter m ∈ L2([0, 1]) and a 1-periodic high-pass filter h ∈
L2([0, 1]) such that ϕ̂(2ξ) = m(ξ)ϕ̂(ξ), ψ̂(2ξ) = h(ξ)ϕ̂(ξ) and the matrix

[

h(ξ) h(ξ + 1
2 )

m(ξ) m(ξ + 1
2 )

]

(4.1)

is unitary for a.e. ξ ∈ R. In particular,

|ψ̂(2ξ)|2 = |ϕ̂(ξ)|2 − |ϕ̂(2ξ)|2 for a.e. ξ ∈ R. (4.2)

Moreover, ϕ̂ satisfies the following conditions for a.e. ξ ∈ R:

(F1) ϕ̂(2ξ) = m(ξ)ϕ̂(ξ) for some measurable 1-periodic function m,
(F2) limj→∞ |ϕ̂(2−j ξ)| = 1,
(F3)

∑

k∈Z |ϕ̂(ξ + k)|2 = 1.

In fact, properties (F1)–(F3) characterize scaling function for an MRA by Hernán-
dez and Weiss [38, Theorem 7.5.2].
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A scaling set is a measurable subset S ⊂ R, such that the characteristic function
1S satisfies the above three conditions. This translates into the following conditions
(see [50])

(S1) S ⊂ 2S,
(S2) limj→∞ 1S(2−j ξ) = 1,
(S3)

∑

k∈Z 1S(ξ + k) = 1.

If (S1)–(S3) are satisfied, then W = 2S \ S is a wavelet set, as defined above
Theorem 2.3.

In order to find a wavelet set W in the support of ψ̂ we will find a scaling set S
in the support of ϕ̂ and we shall prove that the wavelet set W = 2S \ S is contained
in the support of ψ̂ .

Towards this goal we start with the following basic lemma.

Lemma 4.1 Let A ⊂ R be a set of a finite measure. If K is a measurable subset of
R satisfying (S3), then

lim
n→∞

∣

∣

∣

∣

⋃

k∈Z\{0}
(A+ 2nk) ∩K

∣

∣

∣

∣

= 0.

Proof Condition (S3) implies that the measure of K satisfies |K| = 1. Let ε > 0.
Since A and K have a finite measure there is an M ∈ N such that |A∩[−M,M]c| ≤
ε
2 and |K ∩ [−M,M]c| ≤ ε

2 . Let A0 = A ∩ [−M,M]c, A1 = A ∩ [−M,M] and
K0 = K ∩ [−M,M]c, K1 = K ∩ [−M,M]. We have that

∣

∣

∣

∣

⋃

k∈Z\{0}
(A+ 2nk) ∩K

∣

∣

∣

∣

≤
∣

∣

∣

∣

⋃

k∈Z\{0}
(A+ 2nk) ∩K0

∣

∣

∣

∣

+
∣

∣

∣

∣

⋃

k∈Z\{0}
(A0 + 2nk) ∩K1

∣

∣

∣

∣

+
∣

∣

∣

∣

⋃

k∈Z\{0}
(A1 + 2nk) ∩K1

∣

∣

∣

∣

.

Clearly, |⋃k∈Z\{0}(A+ 2nk) ∩K0| ≤ |K0| ≤ ε
2 . Also there is an N ∈ N such that

|⋃k∈Z\{0}(A1 + 2nk) ∩ K1| = 0 for n ≥ N . Moreover, since K satisfies (S3), we
have
∣

∣

∣

∣

⋃

k∈Z\{0}
(A0 + 2nk) ∩K1

∣

∣

∣

∣

≤
∣

∣

∣

∣

⋃

k∈Z
(A0 + k) ∩K

∣

∣

∣

∣

≤
∑

k∈Z

∫

R

1A0(ξ − k)1K(ξ) dξ

=
∫

A0

∑

k∈Z
1K(ξ + k) dξ = |A0| ≤ ε

2
.

Therefore, |⋃k∈Z\{0}(A + 2nk) ∩ K| ≤ ε, which implies that the limit of the
measures is zero. ��
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For the next lemma we define a 1-periodization of a set E ⊂ R by

EP =
⋃

k∈Z
(E + k).

Lemma 4.2 If a measurable set S′ ⊂ R satisfies (S1), (S2), and

∑

k∈Z
1S ′(ξ + k) ≥ 1 for a.e. ξ ∈ R, (4.3)

then there exists a scaling set contained in S′.

Proof By (4.3) there is a measurable set K ′ ⊂ S′ satisfying (S3). Let K0 = S′ ∩
[− 1

2 ,
1
2 ] and K = K0 ∪ (K ′ \ KP

0 ). Clearly, K is a subset of S′ satisfying (S3).
Moreover, since (S2) holds for S′ we conclude that (S2) holds for K0 and, therefore,
for K , which contains K0.

For an integer n ≥ 0 define

En = 2−nK \
∞
⋃

j=n+1

((2−jK)P \ 2−jK).

We claim that S =⋃∞
n=0 En is a scaling set contained in S′. For n ≥ 0 we have that

En ⊂ 2−nK ⊂ 2−nS′ ⊂ S′, where the last inclusion follows from (S1) for S′. This
proves that S ⊂ S′ and it remains to show that S satisfies (S1)–(S3).

To prove the inclusion S ⊂ 2S, it is enough to check that En ⊂ 2En+1 for n ≥ 0.
Since 2EP ⊂ (2E)P holds for every E ⊂ R we have that

En = 2−nK \
∞
⋃

j=n+2

((2−j+1K)P \ 2−j+1K)

⊂ 2−nK \
∞
⋃

j=n+2

(2(2−jK)P \ 2−j+1K) = 2En+1.

Thus, (S1) holds for S.
We have already observed that K satisfies (S2). Hence, (S2) for S will follow

from the equality limj→∞ 1S(2−j ξ) = 1 for a.e. ξ ∈ K . Let us fix ξ ∈ K . Since we
have already proven that S ⊂ 2S, the above equality is satisfied if there is an n ≥ 0
such that 2−nξ ∈ S. Consider for n ≥ 0

Bn = 2n
∞
⋃

j=n+1

((2−jK)P \ 2−jK)
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and B = ⋂∞
n=0 Bn ∩K . If ξ /∈ B, then ξ /∈ Bn ∩K for some n ≥ 0. Since ξ ∈ K ,

this implies that 2−nξ /∈ 2−nBn; that is,

2−nξ ∈ 2−nK \
∞
⋃

j=n+1

((2−jK)P \ 2−jK) = En ⊂ S.

That S satisfies (S2) will follow, if we show that B has measure zero. Clearly, |B| ≤
lim infn→∞ |Bn ∩K|. Since K satisfies (S3) we have

(2−jK)P \ 2−jK =
⋃

k∈Z\{0}
(2−jK + k)

for j ≥ 0. Therefore, for n ≥ 0

Bn = 2n
∞
⋃

j=n+1

⋃

k∈Z\{0}
(2−jK + k) =

∞
⋃

j=n+1

⋃

k∈Z\{0}
(2n−jK + 2nk)

=
∞
⋃

j=1

⋃

k∈Z\{0}
(2−jK + 2nk) =

⋃

k∈Z\{0}
(A+ 2nk),

where A =⋃∞
j=1 2−jK . Since (S3) for K gives that |K| = 1, A is of finite measure

|A| ≤∑∞
j=1 |2−jK| = 1. From Lemma 4.1 it follows that limn→∞ |Bn ∩K| = 0,

which shows that B has measure zero. Hence S satisfies (S2).
Proving that S satisfies (S3) is equivalent to showing that modulo null sets SP =

R and

(S + k) ∩ S = ∅ for k ∈ Z \ {0}. (4.4)

To see that the intersection is empty it is enough to check that

(En + k) ∩ Em = ∅ for k ∈ Z \ {0}, m, n ≥ 0.

Without loss of generality we can assume that m ≤ n. If m = n, then

(En + k) ∩ En ⊂ (2−nK + k) ∩ 2−nK = 2−n((K + 2nk) ∩K) = ∅

for k ∈ Z \ {0}, since K satisfies (S3). Likewise,

(En + k) ∩ 2−nK ⊂ (2−nK + k) ∩ 2−nK = ∅

for k ∈ Z \ {0}. Thus, En + k ⊂ (2−nK)P \ 2−nK . If m < n, then En + k ⊂
⋃∞

j=m+1(2
−jK)P \ 2−jK . This implies that (En + k) ∩ Em = ∅ for k ∈ Z \ {0}

and hence (4.4) holds.
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The last step of the proof is to show that SP = R (modulo null sets). Since K

satisfies (S3), it is enough to prove that K ⊂ SP . For n ≥ 0 let

Cn =
∞
⋃

j=n+1

(2−jK)P and C =
∞
⋂

n=0

Cn ∩K.

Let ξ ∈ K . If ξ /∈ C0, then ξ ∈ K \ C0 ⊂ E0 ⊂ S. Therefore, we can concentrate
on the case when ξ ∈ C0. Since Cn+1 ⊂ Cn, it is clear that either ξ ∈ C or there is
an n′ ≥ 1 such that ξ ∈ Cn′−1 \ Cn′ . If the latter is satisfied, then ξ ∈ (2−n′K)P .
Therefore, there is an l ∈ Z such that ξ + l ∈ 2−n′K . Moreover, since ξ does not
belong to Cn′ , neither does ξ + l. This gives us ξ + l ∈ 2−n′K \ Cn′ ⊂ En′ ⊂ S.
This proves that ξ ∈ SP .

We close the proof by showing that C has measure zero. Indeed, |C| ≤
lim infn→∞ |Cn ∩ K|. Since K satisfies (S3), for any measurable E ⊂ R we have
that |EP ∩K| = |E|, therefore

|Cn ∩K| ≤
∞
∑

j=n+1

|(2−jK)P ∩K| =
∞
∑

j=n+1

|2−jK| = 2−n|K| = 2−n,

proving that |C| = 0. Thus, we have shown that (S3) holds for S and this ends the
proof of the lemma. ��

The above lemma immediately yields the following

Proposition 4.3 For every scaling function ϕ there exists a scaling set contained in
the support of ϕ̂.

Proof Let S′ be the support of ϕ̂. Since ϕ̂ satisfies conditions (F1)–(F3), it is clear
that S′ satisfies (S1), (S2) and (4.3). Therefore, by Lemma 4.2, there exists a scaling
set contained in S′. ��
Finally we can conduct the proof of Theorem 2.8.

Proof of Theorem 2.8 Let ψ be an MRA wavelet and ϕ its associated scaling
function. By Proposition 4.3 there is a scaling set S contained in supp ϕ̂. We want
to show that the wavelet set W = 2S \ S is contained in supp ψ̂ .

From (4.2) it follows that |ψ̂(ξ)|2 = |ϕ̂( ξ2 )|2 − |ϕ̂(ξ)|2. Therefore

supp ψ̂ = (2 supp ϕ̂) \D, where D = {ξ ∈ R : |ϕ̂( ξ
2
)| = |ϕ̂(ξ)|}.

Clearly, W = 2S \ S ⊂ 2 supp ϕ̂. Thus, in order to establish that W ⊂ supp ψ̂ , it
is enough to prove that W ∩ D = ∅ or, equivalently, that 2S ∩ D ⊂ S. Assume
that ξ ∈ 2S ∩ D, then |ϕ̂( ξ2 )| = |ϕ̂(ξ)| > 0, because ξ

2 ∈ S. This implies that

|m(
ξ
2 )| = 1, where m is the low-pass filter of ϕ. Thus, the unitarity of (4.1) and
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1-periodicity of m gives that m(
ξ
2 + k

2 ) = 0 for all odd integers k. Hence, for such

k we obtain that ϕ̂(ξ + k) = m(
ξ
2 + k

2 )ϕ̂(
ξ
2 + k

2 ) = 0. This already implies that
ξ ∈ S. Indeed, since S satisfies (S3), there is an l ∈ Z such that ξ + l ∈ S. Thus,
ϕ̂(ξ + l) �= 0, so l must be even. Obviously, ξ

2 + l
2 ∈ S

2 ⊂ S and ξ
2 ∈ S. Therefore,

(S3) for S implies that l = 0 and ξ ∈ S follows. ��
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48. M. Paluszyński, H. Šikić, G. Weiss, S. Xiao, Generalized low pass filters and MRA frame
wavelets, J. Geom. Anal. 11 (2001), 311–342.

49. M. Paluszyński, H. Šikić, G. Weiss, S. Xiao Tight frame wavelets, their dimension functions,
MRA tight frame wavelets and connectivity properties, Adv. Comput. Math. 18 (2003), 297–
327.
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When Is Every Quasi-Multiplier
a Multiplier?

Lawrence G. Brown

Dedicated to the memory of Ronald G. Douglas

Abstract We answer the title question for σ -unital C∗-algebras. The answer is that
the algebra must be the direct sum of a dual C∗-algebra and a C∗-algebra satisfying
a certain local unitality condition. We also discuss similar problems in the context of
HilbertC∗-bimodules and imprimitivity bimodules and in the context of centralizers
of Pedersen’s ideal.

Keywords Multiplier · Quasimultiplier · Hilbert C∗-bimodule · Imprimitivity
bimodule · Calkin algebra

Mathematics Subject Classification (2010) AMS subject classification: 46L05

1 Introduction

Let A be a C∗-algebra and A∗∗ its Banach space double dual, also known as its
enveloping von Neumann algebra. An element T of A∗∗ is called a multiplier of A
if T a ∈ A and aT ∈ A, ∀a ∈ A. Also T is a left multiplier if T a ∈ A, ∀a ∈ A,
T is a right multiplier if aT ∈ A, ∀a ∈ A and T is a quasi-multiplier if aT b ∈ A,
∀a, b ∈ A. The sets of multipliers, left multipliers, right multipliers and quasi-
multipliers are denoted respectively byM(A),LM(A),RM(A), andQM(A). More
information about multipliers, etc. can be found in [12, §3.12].

We believe that quasi-multipliers were first introduced to operator algebraists
in [2]. It was shown there that a self-adjoint element h of A∗∗ is a multiplier if
and only if ±h satisfy a certain semicontinuity property, and self-adjoint quasi-
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multipliers are characterized similarly with a weaker semicontinuity property. The
fact that these semicontinuity properties are in general different was one of the key
“complications” discovered in [2]. We will not use semicontinuity theory in any
proofs in this paper.

Multipliers of C∗-algebras have many important applications. In particular they
play a crucial role in the theory of extensions of C∗-algebras, as shown in [9], and
they are used in KK-theory. Quasi-multipliers, though less important, also have
applications as shown, for example, in [3, 13], and [8]. (Note that [8] contains the
results of [13]).

It is obvious that QM(A) = M(A) if A is commutative, and more generally
if A is n-homogeneous. Also QM(A) = M(A) if A is elementary, and therefore
also if A is dual; i.e., if A is the direct sum of elementary C∗-algebras. It follows
from [3, Theorem 4.9] that if LM(A) = M(A) for a σ -unital C∗-algebra A, then
also QM(A) = M(A). (This is shown also without σ -unitality in Proposition 3.7
below.) Therefore it is sufficient to consider the title question.

My association with Ron Douglas was very beneficial to and influential in my
career. In particular my interests in multipliers and Calkin algebras arose from this
association.

2 Preliminaries

A C∗-algebra A is called locally unital if there is a family {Ij } of (closed, two-
sided) ideals such that (

∑

Ij )
− = A and for each j there is uj in A such that

(1 − uj )Ij = Ij (1 − uj ) = {0}. Here 1 is the identity of A∗∗. Since this concept
may not be completely intuitive, we will explore what it means.

Proposition 2.1 If I is an ideal of A, then there is u in A such that (1 − u)I =
I (1 − u) = {0} if and only if there is an ideal J such that IJ = {0} and A/J is
unital.

Proof If u is as above, let J be the closed span of A(1 − u)A. Then clearly IJ =
{0}. Also the image of u is an identity for A/J , since, for example, the fact that
((1−u)a)∗(1−u)a ∈ J implies that (1−u)a ∈ J . Conversely if J is as above, let u
be an element of A whose image is the identity of A/J , then (1−u)I ⊂ I∩J = {0},
and similarly I (1 − u) = {0}. ��

Note that it follows from the above that u may be taken to be a positive
contraction. The following lemma is undoubtedly known but we don’t know a
reference.

Lemma 2.2 If I and J are ideals of a C∗-algebra A such that IJ = {0}, A/I is
unital, and A/J is unital, then A is unital.

Proof Let u and v be elements of A such that the image of u is the identity of A/I
and the image of v is the identity of A/J . Then both u and v map to the identity of
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A/(I + J ). Therefore u− v = x + y with x ∈ I and y ∈ J . If w = u− x = v+ y,
then w gives the identity both modulo I and modulo J . Therefore w is an identity
for A. ��

We denote by primA the primitive ideal space of A. The basic facts about primA

can be found in [12, §4.1].

Proposition 2.3 The C∗-algebra A is locally unital if and only if:

(i) Every compact subset of primA has compact closure, and
(ii) For every closed compact subset of primA the corresponding quotient algebra

is unital.

Proof If A is locally unital let {Ij } be as in the definition. Then {primIj } is an open
cover of primA. If K is a compact subset of primA, then there are Ij1 , . . . , Ijn such
that K ⊂ ⋃n

1 primIjl . By Proposition 2.1 and Lemma 2.2 there is an ideal J such
that (Ij1 + · · · + Ijn)J = {0} and A/J is unital. It follows that if L = hull(J ), then
L is compact and closed, and L ⊃⋃n

1 primIjl ⊃ K . This implies both (i) and (ii).
Now assume (i) and (ii). There is an open cover {Uj } of primA, such that each

Uj is contained in a compact set Kj . If Ij is the ideal corresponding to Uj , then
A = (

∑

Ij )
−. If Lj = Kj and Jj = ker(Lj ), then A/Jj is unital and Jj Ij = {0}.

��
Note that a dual C∗-algebra is locally unital if and only if all of the elementary

C∗-algebras in its direct sum decomposition are finite dimensional. This follows
from the above proposition, or it can be deduced directly from the definition.

If A = {Ax : x ∈ X} is a continuous field of C∗-algebras over a locally compact
Hausdorff space X, then the corresponding C∗-algebra is the set of continuous
sections of A vanishing at ∞. Of course n-homogeneous C∗-algebras arise in this
way, where eachAx is isomorphic to the algebra of n×n matrices. The local unitality
of such algebras is discussed in the next proposition.

Proposition 2.4 Let A be the C∗-algebra arising from a continuous field of
C∗-algebras {Ax} over a locally compact Hausdorff space X. If each Ax is unital
and if the identity section is continuous, then A is locally unital. Conversely, if each
Ax is simple and A is locally unital, then each Ax is unital and the identity section
is continuous.

Proof For the first statement let {Uj } be an open cover of X such that each Uj is
compact. If Ij is the set of continuous sections vanishing outside of Uj , then Ij is
an ideal of A and A = (

∑

Ij )
−. If fj is a continuous scalar–valued function on X

vanishing at ∞ such that fj (x) = 1, ∀x ∈ Uj , let uj = fj1. Then uj ∈ A and
(1− uj )Ij = Ij (1− uj ) = {0}.

Now assume each Ax is simple and A is locally unital. Note that primA can now
be identified with X. If K is a compact subset of X, then the corresponding quotient
algebra is obtained from the restriction of the continuous field to K . It follows from
Proposition 2.3 that this algebra is unital. Therefore each Ax , x ∈ K , is unital
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and the identity section is continuous on K . Since X is locally compact, the result
follows. ��

Note that A arises from a continuous field of simple C∗-algebras over a locally
compact Hausdorff space if and only if primA is Hausdorff. We provide an example
to show that the simplicity is necessary in the second statement of Proposition 2.4.
Let X = [0, 1] and let Ax = C ⊕ C for x �= 0. Let A0 = C, identified with
C ⊕ {0} ⊂ C ⊕ C. So A is the set of continuous functions f from [0, 1] to C ⊕ C

such that f (0) ∈ C⊕ {0}. Clearly the identity section of this continuous field is not
continuous. But A is commutative and therefore locally unital.

We now establish some notations and record some facts that will be used
throughout the next section. Let e be a strictly positive element of a σ -unital
C∗-algebra A. Strictly positive elements are discussed in [12, §3.10]. One property
is that the kernel projection of e in the von Neumann algebra A∗∗ is 0. Another is
that the sets eA,Ae, and eAe are dense in A.

We will also use the concept of open projection, see [1] or the end of [12, §3.11].
Certain projections in A∗∗ are called open, and there is an order–preserving bijection
between open projectious and hereditary C∗-subalgebras of A. If p is the open
projection for the hereditary C∗-subalgebraB then B = (pA∗∗p) ∩ A and any
approximate identity for B converges to p in the strong topology of A∗∗. Also p is
central in A∗∗ if and only if B is an ideal, and for general p the central cover of p
in A∗∗ is the open projection for the ideal of A generated by B.

If U is an open subset of (0,∞), then the spectral projection χU(e) is an
open projection. The corresponding subalgebra B is the hereditary C∗-algebraB
generated by f (e), where f is any continuous function on [0,∞) such that U =
{x : f (x) �= 0}. If U = (ε,∞), we will denote the corresponding subalgebra by
Bε , and if U = (0, ε) we will denote the subalgebra by Cε . Also we denote by Iε
the ideal generated by Cε . (The reason we are looking at subsets of (0,∞) instead
of [0,∞) is that the kernel projection of e is 0.)

If p and q are open projections with corresponding subalgebras C and B, let
X(p, q) denote the closed linear span of CAB. Two facts that we don’t need are
that X(p, q) = (pA∗∗q) ∩ A and that a (in A) is in X(p, q) if and only if a∗a ∈ B

and aa∗ ∈ C. A fact that we do need is that X(p, q) = {0} if and only if p and
q are centrally disjoint in A∗∗. This follows from the fact that the strong closure of
X(p, q) in A∗∗ is pA∗∗q .

The following lemma is probably known, but we don’t know a reference.

Lemma 2.5 If A is an infinite dimensional C∗-algebra, then A contains an infinite
sequence {Bn} of mutually orthogonal non-zero hereditary C∗-subalgebras.
Proof By [10, 4.6.14] A contains a self-adjoint element h whose spectrum, σ(h),
is infinite. Therefore σ(h) contains a cluster point x0. Then there is a sequence
{xn} ⊂ σ(h) such that xn �= x0, xn �= xm for n �= m, xn �= 0, and {xn} converges to
x0. It is a routine exercise to find mutually disjoint open sets Un such that xn ∈ Un.
For each n find a continuous function fn such that fn(xn) �= 0, fn(0) = 0, and
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fn(x) = 0 for x not in Un. Then let Bn be the hereditary C∗-algebra generated by
fn(h). ��

3 Results and Concluding Remarks

Throughout this section, up to and including the proof of theorem 3.4, A is a σ–
unital C∗-algebra, e is a strictly positive element of A, and the notations of the
previous section apply. The following is the main lemma.

Lemma 3.1 If ε > 0 and {Bn} is an infinite sequence of mutually orthogonal
hereditary C∗-algebras of Bε such that Bn ∩ I 1

n
�= {0}, ∀n, thenQM(A) �= M(A).

Proof Let pn = χ(0, 1
n
)(e) and let qn be the open projection for Bn. Since Bn∩I 1

n
�=

{0} and the central cover of pn is the open projection for I 1
n

, pn and qn are not

centrally disjoint in A∗∗. Therefore X(pn, qn) �= {0}. Since χ
(θ, 1

n )
(e) converses to

pn as θ ↘ 0, it follows that also X(χ
(θ, 1

n )
(e), qn) �= 0 for θ sufficiently small. Then

we can recursively choose nk and θk such that nk → ∞,
∑∞

1
1
nk

< ∞, 0 < θk <
1
nk

, 1
nk+1

< θk , and X(χ
(θk,

1
nk

)(e), qnk ) �= {0}. Choose ak ∈ X(χ
(θk,

1
nk

)
(e), qnk )

such that ‖ak‖ = 1. Then the ak’s are mutually orthogonal in the sense that a∗k al =
aka

∗
l = 0 for k �= l. Thus T = ∑∞

1 ak exists in A∗∗. Since eT = ∑∞
1 eak and

‖eak‖ ≤ 1
nk

, then eT ∈ A. Since Ae is dense in A, this implies that T ∈ RM(A) ⊂
QM(A). We claim that T �∈ M(A). If f is a continuous function such that f (0) = 0
and f (x) = 1 for x ≥ ε, then Tf (e) = T . Thus T ∈ M(A) implies T ∈ A. To
see that this is not so, let rk = χ(θk, 1

nk
)(e). Since ‖rke‖ → 0 and eA is dense in A,

T ∈ A would imply ‖rkT ‖ → 0. But rkT = ak and ‖ak‖ = 1. ��
Lemma 3.2 IfQM(A) = M(A) and I =⋂∞

1 I 1
n
, then I is a dual C∗-algebra and

a direct summand of A.

Proof If ε > 0, then it is impossible to find infinitely many non-zero mutually
orthogonal hereditary C∗-subalgebras of Bε ∩ I . By Lemma 2.5 Bε ∩ I is finite
dimensional. This implies that id (Bε∩I), the ideal generated by Bε∩I , is the direct
sum of finitely many elementary C∗-algebras. Since I is the limit of id (Bε ∩ I) as
ε ↘ 0, it follows that I is dual. If z is the open central projection for I , the fact that
Bε ∩ I is finite dimensional implies that zχ(ε,∞)(e) is a finite rank projection in the
dual C∗-algebra I . It then follows from spectral theory that ze ∈ I . This implies that
z ∈ M(A), whence I is a direct summand of A. ��
Lemma 3.3 IfQM(A) = M(A) and

⋂∞
1 I 1

n
= {0}, then ∀ε > 0, ∃δ > 0 such that

IδBε = {0}.
Proof If Iδ ∩ Bε is finite dimensional for some δ > 0, then dim (I 1

n
∩ Bε) must

stabilize at some finite value as n increases. It follows that the set I 1
n
∩ Bε also
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stabilizes, and hence I 1
n
∩ Bε = {0} for n sufficiently large. Therefore we may

assume Iδ ∩ Bε is infinite dimensional, ∀δ > 0.

Case 1 There is δ > 0 such that Bε ∩ Iδ ∩ I 1
n
, is an essential ideal of Bε ∩ Iδ , ∀n.

Then, using Lemma 2.5, choose a sequence {Bn} of non-zero mutually orthogonal
hereditary C∗–subalgebras of Bε ∩ Iδ . By the essential property Bn ∩ I 1

n
�= 0, ∀n.

So Lemma 3.1 gives a contradiction.

Case 2 For each δ > 0, there is n such that Bε ∩ Iδ ∩ I 1
n

is not essential in Bε ∩ Iδ .

Then we can construct nk recursively so that nk+1 > nk and Bε ∩ I 1
nk+1

is not

essential in Bε ∩ I 1
nk

. Then for each k there is a non-zero hereditary C∗–subalgebra

Bk of Bε ∩ I 1
nk

such that Bk is orthogonal to I 1
nk+1

. Again Lemma 3.1 produces a

contradiction. ��
Theorem 3.4 If A is a σ -unital C∗-algebra, then QM(A) = M(A) if and only if
A is the direct sum of a dual C∗-algebra and a locally unital C∗-algebra.

Proof Assume QM(A) = M(A). By Lemma 3.2 A = I ⊕ A1 where I is a dual
C∗-algebra and A1 satisfies the hypothesis of Lemma 3.3. For each δ > 0, A1/Iδ
is unital, since f (e) maps to a unit for A1/Iδ for any continuous function f such
that f (x) = 1 for x ≥ δ. So if Jε is the ideal generated by Bε and IδBε = {0},
then by Lemma 1.1, there is u in A such that (1 − u)Jε = Jε(1 − u) = {0}. Since
A1 = (

∑

J 1
n
)−, we have shown that A1 is locally unital.

Now assume A = A0 ⊕ A1 where A0 is dual and A1 is locally unital. (For this
part we don’t need σ–unitality.) Then QM(A0) = M(A0), since A0 is an ideal in
A∗∗0 . Let A1 = (

∑

Iα)
−, as in the definition of locally unital. For each α, the weak

closure of Iα in A∗∗1 will be denoted by I∗∗α (to which it is isomorphic). Then I∗∗α is
an ideal in A∗∗1 . If (uα − 1)Iα = {0}, then also (uα − 1)I∗∗α = {0}. If T ∈ QM(A1)

and x ∈ Iα , then since T x ∈ I∗∗α , T x = uαT x ∈ A1. Therefore T ∈ LM(A). A
symmetrical proof shows also that T ∈ RM(A). ��
Corollary 3.5 If A is a σ -unital primitive C∗-algebra, then QM(A) = M(A) if
and only if A is either elementary or unital.

Proof If A is primitive, primA has a dense point. Since singleton sets are compact,
Proposition 2.3 implies A is unital if it is locally unital. ��

Combining the theorem with [4, Theorem 3.27], we obtain:

Corollary 3.6 If A is a σ -unital C∗-algebra, then the middle and weak forms of
semicontinuity coincide inA∗∗ if and only ifA is the direct sum of a dualC∗-algebra
and a locally unital C∗-algebra.

It occurred belatedly to us that since many of the applications of quasi-multipliers
concern quasi-multipliers of imprimitivity bimodules or Hilbert C∗-bimodules, it
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might make sense to consider the title question in a broader context. In proposi-
tion 3.7 below, whose proof is purely formal, the imprimitivity bimodule case is
reduced to what has already been done. Example 3.8 below deals with what are
probably the simplest examples of Hilbert C∗-bimodules that are not impimitivity
bimodules. Although we have a solution for these examples, it has not immediately
inspired a conjecture for the general case. But Example 3.8 does suggest that it may
be easier to find when QM(X) = M(X) than to answer the constituent questions
whether LM(X) ⊂ RM(X) or RM(X) ⊂ LM(X).

Hilbert C∗-bimodules were introduced in [13] as a generalization of imprimitiv-
ity bimodules. If X is an A− B Hilbert C∗-bimodule, then X has a linking algebra
L. Then L is a C∗-algebra endowed with two multiplier projections p and q , such
that p + q = 1, pLp is identified with A, qLq is identified with B, and pLq is
identified with X. The existence of Lmay be taken as a working definition of Hilbert
C∗-bimodule. Then X is an A− B imprimitivity bimodule if and only if each of A
and B generates L as an ideal. Linking algebras of imprimitivity bimodules were
introduced in [7].

If X and L are as above, then we define M(X) = pM(L)q , LM(X) =
pLM(L)q , RM(X) = pRM(L)q , and QM(X) = pQM(L)q . Note that X∗∗
can be identified with pL∗∗q . It is not hard to see that for T ∈ X∗∗, T ∈ M(X)

if and only if aT ∈ X and T b ∈ X, ∀a ∈ A, b ∈ B, T ∈ LM(X) if and
only if T b ∈ X, ∀b ∈ B, T ∈ RM(X) if and only if aT ∈ X, ∀a ∈ A,
and T ∈ QM(X) if and only if aT b ∈ X, ∀a ∈ A, b ∈ B. Because it is
no longer true that RM(X) = LM(X)∗, there are more than one question to
consider. Since M(X) = LM(X) ∩ RM(X), there are actually only two questions.
Namely, we ask whether QM(X) = LM(X), which turns out to be equivalent
to RM(X) ⊂ LM(X), and whether QM(X) = RM(X), which is equivalent to
LM(X) ⊂ RM(X).

Proposition 3.7 Let A be a C∗-algebra.

(i) Then LM(A) = M(A) if and only ifQM(A) = M(A).
Let X be an A− B Hilbert C∗–bimodule.

(ii) ThenQM(X) = LM(X) if and only if RM(X) ⊂ LM(X).
(iii) ThenQM(X) = RM(X) if and only if LM(X) ⊂ RM(X)

Let X be an A− B imprimitivity bimodule and L its linking algebra.
(iv) ThenQM(X) = LM(X) if and only ifQM(A) = M(A).
(v) ThenQM(X) = RM(X) if and only ifQM(B) = M(B).

(vi) ThenQM(X) = M(X) if and only ifQM(L) = M(L).

Proof

(i) Assume LM(A) = M(A) and T ∈ QM(A). If a ∈ A, then aT ∈ LM(A).
Hence aT ∈ M(A) and AaT ⊂ A. Since A2 = A, this implies QM(A) ⊂
RM(A). Since QM(A) = QM(A)∗ and LM(A) = RM(A)∗, we also have
QM(A) ⊂ LM(A), whence QM(A) = M(A).
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(ii) Since RM(X) ⊂ QM(X), one direction is obvious. So assume RM(X) ⊂
LM(X) and let T ∈ QM(X). For b ∈ B, T b ∈ RM(X). Therefore T bB ⊂ X.
Since B2 = B, it follows that T ∈ LM(X).

(iii) is similar to (ii).
(iv) First assume QM(X) = LM(X) and let T ∈ QM(A). If x ∈ X, then T x ∈

RM(X) ⊂ QM(X). Therefore T x ∈ LM(X) ⊂ LM(L). So if y ∈ X, then
T xy∗ = T 〈x, y〉A ∈ A. Since X is an imprimitivity bimodule, 〈X,X〉A spans
a dense subset of A. Thus we have shown QM(A) = M(A).

Now assume QM(A) = M(A) and T ∈ QM(X). If x ∈ X, then T x∗ ∈
RM(A) ⊂ QM(A). Therefore T x∗ ∈ M(A) ⊂M(L). So for y ∈ X, T x∗y =
T 〈x, y〉B ∈ X. Since the span of 〈X,X〉B is dense in B, this shows that T ∈
LM(X).

(v) is similar to (iv)
(vi) Since one direction is obvious, assume QM(X) = M(X). By (iv) and (v),

then QM(A) = M(A) and QM(B) = M(B). Note that X∗ is a B −A Hilbert
C∗–bimodule, QM(X∗) = QM(X)∗, and M(X∗) = M(X)∗. So for each of
the four components of L, we have that every quasi-multiplier is a multiplier.
Therefore QM(L) =M(L). ��

In connection with (iv) and (v) note that A is strongly morita equivalent to B if
and only if an A − B imprimitivity bimodule exists. Several important properties
of C∗-algebras are preserved by strong morita equivalence. The property of being
a dual C∗-algebra is so preserved but local unitality is not preserved. It is easy to
construct examples of strongly morita equivalent separable C∗-algebras A and B

such that QM(A) = M(A) but QM(B) �= M(B)

Example 3.8 Let H1 and H2 be Hilbert spaces and let X = K(H2,H1), the space
of compact operators from H2 to H1. Then X is a K(H1) − K(H2) imprimitivity
bimodule, but X can also be made into an A − B Hilbert C∗-bimodule in many
ways. We just take A and B to be C∗-subalgebras of B(H1) and B(H2) such that
A ⊃ K(H1) and B ⊃ K(H2). Now X∗∗ can be identified with B(H2,H1), the space
of all bounded linear operators from H2 to H1. (Note that L ⊂ B(H1 ⊕ H2).) For
T ∈ X∗∗, T ∈ LM(X) if and only if T b is compact, ∀b ∈ B. This is equivalent
to T ∗TB ⊂ K(H2). In other words, T ∈ LM(X) if and only if the image of T ∗T
in the Calkin algebra of H2 is orthogonal to the image of B in this Calkin algebra.
Similarly T ∈ RM(X) if and only if the image of T T ∗ in the Calkin algebra of H1
is orthogonal to the image of A in this Calkin algebra. To analyze this, we add some
reasonable hypotheses. Assume that each of H1 and H2 is separable and infinite
dimensional and that each of A and B is σ -unital. Note that any non-zero projection
in the Calkin algebra can be lifted to a projection which is necessarily of infinite
rank and that if P and Q are infinite rank projections in B(H1) and B(H2) there is a
partial isometry U such that UU∗ = P and U∗U = Q. Looking at H1 for example,
we see that there is a Calkin projection, namely 1, which fails to annihilate the
Calkin image of A if and only if A �= K(H1). Also it was essentially shown in [6]
that there is a non-zero Calkin projection which does annihilate the Calkin image of
A if and only if 1 /∈ A. Then we see that LM(X) ⊂ RM(X) if and only if either
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1 ∈ B (which causes LM(X) to be small) or A = K(H1) (which causes RM(X) to
be big), and RM(X) ⊂ LM(X) if and only if either 1 ∈ A or B = K(H2). Also
QM(X) = M(X) if and only if either both A and B contain 1 or both A = K(H1)

and B = K(H2). Of course the last case is the case when X is an imprimitivity
bimodule.

Although Example 3.8 may deal with the simplest examples, it may actually be
exceptional. In support of this, we point out that in [5] the case where A has an
infinite dimensional elementary direct summand was the “bad” case.

As an after–afterthought, there is another way to generalize the problem of this
paper. Namely, consider questions like the title question in the context of centralizers
of Pedersen’s ideal. We will discuss this informally. The interested reader can fill in
the details with the help of the discussion of centralizers in [12, §3.12] and the
discussion of Pedersen’s ideal in [12, §5.6]. We think the appropriate question is
whether every locally bounded quasi-centralizer of Pedersen’s ideal comes from a
double centralizer, and the answer, if A is σ -unital, is the same as before. Namely,
A must be the direct sum of a dual C∗-algebra and a locally unital C∗-algebra.
If we drop the local boundedness hypothesis, then A must be locally unital. The
reason for this last assertion is that it was shown in [11] that every double centralizer
of Pedersen’s ideal is locally bounded, and it was pointed out in [5] that if A has
an infinite dimensional elementary direct summand, then there definitely are non-
locally bounded quasi-centralizers of Pedersen’s ideal. Our reason for preferring the
first version of the question is that we consider non-locally bounded centralizers to
be pathological.

To prove the forward direction of the assertion above, note that the hypothesis
implies that every T in QM(A) comes from a double centralizer C. Since C

is locally bounded and agrees with the bounded T on Pedersen’s ideal, then C

is bounded. Thus C comes from a multiplier and QM(A) = M(A). For the
converse, the case of dual C∗-algebras is trivial. If A is locally unital, let Ij and
uj be as in the definition of local unitality. It is not hard to see that each Ij is
contained in Pedersen’s ideal and that uj may be taken in Pedersen’s ideal. (Actually
Pedersen’s ideal is

∑

Ij in this case.) Then the argument for the converse direction
of Theorem 3.4 applies.
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LetA be a d×d integral matrix with eigenvaluesβ1, · · · , βd . A is called expansive if
min{|β1|, · · · , |βd |} > 1. A is called dyadic if | det(A)| = 2. We define the operator
DA as

(DAf )(,t) ≡ (
√

2)f (A,t), ∀f ∈ L2(Rd), ∀,t ∈ R
d .

The operators T,� and DA are unitary operators on L2(Rd ).
Let {s,n | ,n ∈ Zd } be a solution to the following system of equations (1.1)

associated with a d × d expansive dyadic integral matrix A:

{∑

,n∈Zd h,nh,n+,k = δ,0,k, ,k ∈ AZd,
∑

,n∈Zd h,n =
√

2.
(1.1)

The set � = {,n ∈ Z
d | s,n �= 0} is the support of {s,n | ,n ∈ Z

d }. If � is a finite set,
then {s,n} is called a finite solution. Define the operator � on L2(Rd) as

� ≡
∑

,n∈�
s,nDAT,n.

When � is finite the operator � has a non-zero fixed point ϕA (Lawton [4] and
Bownik [2]),

ϕA = �ϕA. (1.2)

This ϕA is the scaling function associated with matrix A and it induces a Parseval
frame wavelet ψA associated with matrix A. It satisfies the two-scale relation:

ϕA =
∑

,n∈�
s,nDAT,nϕA. (1.3)

We will say that ϕA is derived from the solution S. This scaling function ϕA
associated with matrix A is generated by a solution S = {s,n} to the system of
Eqs. (1.1). The scaling function ϕA induces a Parseval frame wavelet ψA associated
with matrix A as defined in Definition 1.1.

Definition 1.1 Let A be an expansive dyadic integral matrix. A function ψA ∈
L2(Rd) is called a Parseval frame wavelet associated with A, if the set

{Dn
AT,� ψA | n ∈ Z, ,� ∈ Z

d }

forms a normalized tight frame for L2(Rd). That is

‖f ‖2 =
∑

n∈Z,,�∈Zd

|〈f,Dn
AT,� ψA〉|2, ∀f ∈ L2(Rd).



Isomorphism in Wavelets II 113

If the set is also orthogonal, then ψA is an orthonormal wavelet for L2(Rd )

associated with A.

2 Definition of Isomorphisms

Let A be an expansive dyadic integral matrix. Let W(A, d) be the collection of
all scaling functions in L2(Rd) associated with A and solutions to the system of
Eq. (1.1). Define W(d) ≡⋃AW(A, d). The union is for all d×d expansive dyadic
integral matrices. Define W ≡ ⋃

d≥1 W(d). This is the set of scaling functions in
all dimensions.

In particular, let W0(A, d) be the collection of all scaling functions in L2(Rd )

associated with A and finite solutions to the system of Eq. (1.1). Define W0(d) ≡
⋃

AW0(A, d). The union is for all d×d expansive dyadic integral matrices. Define
W0 ≡⋃d≥1 W0(d).

Let A be a d × d expansive dyadic integral matrix and ϕA ∈ W(A, d) which is
derived from the solution {a,n | ,n ∈ Zd } to (1.1). Denote the support of this solution
as �A, and SA = {a,n | ,n ∈ �A}.

A reduced system of equations E(�A,A,d) from system of Eqs. (1.1) can be
obtained by the following steps:

Step 1 For ,n ∈ Zd\�A, replace all variables h,n in (1.1) by 0.
Step 2 Then remove all trivial equations “0 = 0”.
Step 3 If there are redundant equations, choose and keep one and remove the

other identical equations.

Note that, the discussion of the reduced system of equations E(�A,A,d) from the
support �A does not depend on the existence of a solution SA. This gives flexibility
in the discussion.

Denote the family of all such reduced systems of equations by E. A reduced
system of equations E(�A,A,d) has the following form:

{

∑

,n∈�A
h,nh,n+,k = δ,0,k, ,k ∈ �E

A,
∑

,n∈�A
h,n =

√
2.

(2.1)

The index set �E
A in (2.1) is a subset of AZd . The equation in E(�A,A,d) that

corresponding to ,k ∈ �E
A is

∑

,n∈�A

h,nh,n+,k = δ,0,k.

This set �E
A might not be unique due to the Step 3 above. However, it is fixed in

discussion. It is clear that SA is a solution to (2.1).
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Similarly, for an s × s expansive dyadic integral matrix B and �B ⊂ Zs , the
reduced system of equation is

E(�B,B,s) :
{

∑

,m∈�B
h′,mh

′
,m+,� = δ,0,�, ,� ∈ �E

B,
∑

,m∈�B
h′,m =

√
2.

(2.2)

Definition 2.1 E(�A,A,d), E(�B,B,s) ∈ E are isomorphic, or E(�A,A,d) ∼ E(�B,B,s)

if there exist

(a) a bijection θ : �A → �B and
(b) a bijection η from an index set �E

A of E(�A,A,d) onto an index set �E
B of

E(�B,B,s)

with the following properties: for each ,k ∈ �E
A , the equation in E(�B,B,s) generated

by ,� ≡ η(,k) is obtained by replacing h,n by h′
θ(,n) and δ,0,k by δ,0,� in the equation in

E(�A,A,d) generated by ,k.

In each of the examples in Sects. 4 and 5 we will list the corresponding
matrices A and B, sets �A, �A, mappings θ, η. The related systems of equations
(SA, E(�A,A,d)) and (SB, E(�B,B,s)) are reduced. We check each of the cases with
computer programs. For simplicity we omit the details.

Let SA = {a,n | ,n ∈ �A} be a solution to (2.1) and SB = {b ,m | ,m ∈
�B} be a solution to (2.2). Let ϕA, ϕB ∈ W be the scaling functions derived
from (SA, E(�A,A,d)) and (SB, E(�B,B,s)) respectively. Notice that d and s can be
different.

Definition 2.2 The scaling functions ϕA, ϕB are algebraically isomorphic, or ϕA -
ϕB , if E(�A,A,d) ∼ E(�B,B,s) with bijection θ and η. And

bθ(,n) = a,n,∀,n ∈ �A.

It is clear that the isomorphism of the reduced system of equations guarantees
the isomorphism of the scaling functions derived from the solutions of the reduced
system of equations. We have

Lemma 2.3 For isomorphic systems E(�A,A,d) and E(�B,B,s) with bijection θ from
�A to �B , if SA = {a,n | ,n ∈ �A} is a solution to E(�A,A,d), then the set SB ≡
{b ,m = aθ−1( ,m) | ,m ∈ �B} is a solution to E(�B,B,s). Moreover, the scaling functions
derived from (SA, E(�A,A,d)) and (SB, E(�B,B,s)) are algebraically isomorphic.

Definition 2.4 Let U and V be subsets of W .

1. The set U is isomorphically embedded into V ,

U . V,

if for each ϕU in U there is an element ϕV ∈ V such that ϕU - ϕV .
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2. If U . V and V . U , U and V are isomorphically identical, or

U ∼= V .

We have

Theorem 2.5

W(1) .W(2) .W(3) . · · · ,

that is, the sequence {W(d) | d ∈ N} is an ascending sequence.
In [3], we proved that

Theorem 2.6

W0(1) ∼=W0(2) ∼=W0(3) ∼= · · · ,

that is, each ϕ ∈W0 is isomorphic to a one dimensional scaling function inW0(1).

The purpose of this paper is to prove Theorem 2.5 and present examples for both
Theorems 2.5 and 2.6.

3 Proof of Theorem 2.5

Let s be a natural number and d ≤ s and B be a s × s expansive dyadic integral
matrix. To prove Theorem 2.5, we need to find a function ϕB ∈W0(s) for any given
ϕA ∈W0(d) such that ϕA - ϕB .

By the Smith Normal Form for integral matrices [1] A = UDV , where U,V are
integral matrices of determinant±1, and D a diagonal matrix with the last diagonal
entry 2 and all other diagonal entries 1. Let ,e1, . . . , ,ed be the standard basis for Zd .
Note that VZ

d = Z
d and UZ

d = Z
d . We have

Z
d = span{,e1, . . . , ,ed−1, 2,ed} ·∪

(

span{,e1, . . . , ,ed−1, 2,ed} + ,ed
)

= DZ
d ·∪ (DZ

d + ,ed) = DVZ
d ·∪ (DVZ

d + ,ed)
= UDVZ

d ·∪ U(DVZ
d + ,ed) = AZd ·∪(AZd + U ,ed

)

.

Let ,�A ≡ U ,ed . It follows that, for any d × d expansive dyadic integral matrix A,
there exists a vector ,�A ∈ Zd\AZd such that

Z
d = AZd ·∪(,�A + AZd).
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The same proof shows that there exists a vector ,�B ∈ Z
s\BZs such that

Z
s = BZs ·∪(,�B + BZs ).

Since d ≤ s, we can consider Rd as subspace of Rs . Let {,e1, ,e2, · · · , ,es} be the
standard basis for Rs . We will further assume that the first d vectors of the basis,
{,e1, ,e2, · · · , ,ed} be the standard basis for Rd .

Define the mapping � from Zd to Zs .

�(,n) =
{

BA−1(,n), if ,n ∈ AZd,
,�B + BA−1(,n− ,�A), if ,n ∈ ,�A + AZd .

(3.1)

This is a well-defined mapping on Zd since Zd = AZd ·∪(,�A + AZd ) with range
�(Zd) ⊂ Zs . Since detB �= 0 and A has an inverse on AZd with range contained in
�(Zd) ⊆ Zs , the mapping � is an injection. We have �(,0) = ,0. Also, if �(,x) = ,0
for some ,x ∈ Zd then ,x = ,0.

Lemma 3.1 For ,n ∈ Zd and ,k ∈ AZd , we have

�(,n+ ,k) = �(,n)+�(,k).

Proof Since ,k ∈ AZd , �(,k) = BA−1(,k). We have
Since ,k ∈ AZd , ,n + ,k ∈ AZd iff ,n ∈ AZd . Also ,n + ,k ∈ ,�A + AZd iff

,n ∈ ,�A + AZd . So we have

�(,n)+�(,k) = BA−1(,k)+
{

BA−1(,n), ,n ∈ AZd

,�B + BA−1(,n− ,�A), ,n ∈ ,�A + AZd

=
{

BA−1(,n+ ,k), ,n ∈ AZd

,�B + BA−1((,n+ ,k)− ,�A), ,n ∈ ,�A + AZd

= �(,n+ ,k).

��
Lemma 3.2 If ,n1, ,n2 ∈ Z

d and ,� ≡ �(,n2) − �(,n1) ∈ BZs , then there exists a
vector ,k ∈ AZd such that ,� = �(,k), and ,n2 = ,n1 + ,k.
Proof Since �(,n2)−�(,n1) = ,� ∈ BZd , by Eq. (3.1) we have only two cases.

Case 1 Both �(,n1),�(,n2) are inBZs . By Eq. (3.1), n1 = Aλ1, n2 = Aλ2 for some
vectors λ1, λ2 ∈ Zd . Denote ,k = Aλ2 − Aλ1 ∈ AZd . So ,� = �(,n2) − �(,n1) =
BA−1(Aλ2)−BA−1(Aλ1) = BA−1(Aλ2−Aλ1) = �(,k). We have ,� = �(,k) and
,n2 − ,n1 = ,k.

Case 2 Both �(,n1),�(,n2) are in ,�B + BZs . By Eq. (3.1), n1 = ,�A + Aλ1, n2 =,�A + Aλ2 for some vectors λ1, λ2 ∈ Zd . Denote ,k = Aλ2 − Aλ1 ∈ AZd . So
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,� = �(,n2)−�(,n1) = (,�A+BA−1(Aλ2))− (,�A+BA−1(Aλ1)) = BA−1(Aλ2 −
Aλ1) = �(,k). We have ,� = �(,k) and ,n2 − ,n1 = ,k. ��

For matrix B, the system of equation in (1.1) becomes

{

∑

,m∈Zs h′,mh
′
,m+,� = δ,0,�, ,� ∈ BZs ,

∑

,m∈Zs h′,m =
√

2.
(3.2)

Consider the reduced system E(�A,A,d) with index set �E
A . Define θ ≡ �|�A and

η ≡ �|�E
A

. Denote �B ≡ θ(�A). Since � is an injection from Zd to Zs , θ is a
bijection from �A to �B .

Let SA = {a,n | ,n ∈ �A} be a solution to E(�A,A,d).
Define

b ,m ≡
{

a
θ−1( ,m)

, if ,m ∈ �B,

0, if ,m ∈ Zs\�B.

SB ≡ {b ,m | ,m ∈ �B}.

To prove that ϕB - ϕA, by Definition 2.2, we only need to show that

1. The system of equation

{

∑

,m∈�B
h′,mh

′
,m+,� = δ,0,�, ,� ∈ η(�E

A),
∑

,m∈�B
h′,m =

√
2.

(3.3)

is the reduced system of equations E(�B,B,s). Or equivalently, the set η(�E
A) is

an index set for E(�B,B,s), denoted as �E
B . This is Lemma 3.3 below.

2. The set SB ≡ {b ,m | ,m ∈ �B} is a solution to (3.3) by Lemma 2.3.

Lemma 3.3 The set η(�E
A) is an index set for E(�B,B,s).

Proof Let ,k ∈ �E
A. A reduced equation in E(�A,A,d) generated by ,k has the

following form:

∑

,n∈�A

h,nh,n+,k = δ,0,k. (3.4)

We will show that ,� ≡ η(,k) ∈ BZs generates an reduced equation in E(�B,B,s). We
write

∑

,m∈Zs

h′,mh′,m+,� = δ,0,�
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Note that h′,m = 0 for ,m /∈ �B , so the above equation is the same as

∑

,m∈�B

h′,mh′,m+,� = δ,0,�. (3.5)

By definition of θ, η and the fact that �B ≡ θ(�A), we have

∑

,n∈�A

h′θ(,n)h′θ(,n)+η(,k) = δ,0η(,k)

By Lemma 3.1, θ(,n+ ,k) = θ(,n)+�(,k) = θ(,n)+ η(,k), thus

∑

,n∈�A

h′θ(,n)h′θ(,n+,k) = δ,0η(,k)

Replace h′
θ(,n) with h,n, h′

θ(,n+,k) with h,n+,k and δ,0η(,k) with δ,0,k , We obtained the same

equation as (3.4). Since (3.4) is non-trivial, (3.5) is non-trivial as well. Furthermore,
(3.5) is a reduced equation in E(�B,B,s). It is clear that different elements in η(�E

A)

generate different equations in E(�B,B,s).
Next, we will show that every (non-trivial) equation in E(�B,B,s) can be generated

by an element in η(�E
A). Let the following be a non-trivial equation in E(�B,B,s)

generated by ,�0 ∈ BZs :

∑

,m∈�B

h′,mh′,m+,�0
= δ,0,�0

. (3.6)

Denote ,m = θ(,n), where ,n ∈ �A ⊂ Zd :

∑

θ(,n)∈�B

h′θ(,n)h′θ(,n)+,�0
= δ,0,�0

.

By Lemma 3.2, there exists ,k0 ∈ AZd such that ,�0 = �(,k0):

∑

�(,n)∈�B

h′�(,n)h′�(,n)+�(,k0)
= δ,0�(,k0)

.

By Lemma 3.1,

∑

�(,n)∈�B

h′�(,n)h′�(,n+,k0)
= δ,0�(,k0)

.

Replace h′
�(,n) with h,n, h′

�(,n+,k0)
with h,n+,k0

and δ,0�(,k0)
with δ,0,k0

, we have
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∑

,n∈�A

h,nh,n+,k0
= δ,0,k0

.

It is clear that this is a reduced non-trivial equation in E(�A,A,d) generated by ,k0.
On the other hand, since this is a reduced non-trivial equation in E(�A,A,d), it is
generated by an element ,k in its index set �E

A . It follows that ,� ≡ η(,k) ∈ �E
B

generates the same equation as (3.6). Hence �E
B = η(�E

A) is an index set for
E(�B,B,s). ��

The proof of Theorem 2.5 is completed.

4 Examples from Higher Dimensions to One Dimension

Examples for Theorem 2.6 are presented in this section.
The sublattice AZd generated by the d × d expansive dyadic integral matrix A

can be further simplified by changing of basis:

Proposition 4.1 ([3]) Let d ≥ 1 be a natural number and A a d × d expansive
dyadic integral matrix. Then Rd has a basis { ,fj | j = 1, . . . , d} with properties
that, under this new basis, a vector ,k is in AZd if and only if the last coordinate of
,k is an even number. That is, under this new basis, we have

AZd = {(,x, 2n) | ,x ∈ Z
d−1, n ∈ Z}. (4.1)

Hence, for simplicity, all matrices discussed in the examples in this section will have
this property (4.1). Let A be a d×d expansive dyadic integral matrix with properties
(4.1).

For a natural number N ≥ 1, define

�d,N ≡ [0, 2N)d ∩ Z
d = {(n1, · · · , nd) | 0 ≤ n1, · · · , nd ≤ 2N − 1

}

. (4.2)

The set �d,N contains 2dN elements in Zd .
For vector ,n = (n1, n2, · · · , nd−1, nd) ∈ Zd , define the function σ

d,N
: Zd → Z

as:

σ
d,N

(,n) =
d
∑

j=1

nj · 4(j−1)N. (4.3)
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Define fd,N : Zd → Z:

fd,N (,x, y) ≡
⌊y

2

⌋

2(2d−3)N+2 +
{

2σ
d−1,N (,x) y even

2σ
d−1,N (,x)+ 1 y odd

∀,x ∈ Z
d−1, y ∈ Z

(4.4)

where / y2 0 gives the greatest integer that is less than or equal to y
2 .

Define mappings θd,N and ηd,N as follows:

θd,N
(

(,x, y)) ≡ fd,N(,x, y), (,x, y) ∈ �d,N (4.5)

ηd,N
(

(,x, y)) ≡ fd,N(,x, y), (,x, y) ∈ �E
d,N . (4.6)

θd,N, ηd,N are injections on �d,N and �E
d,N respectively.

Denote

�A = �d,N .

�E
A = {,n = (,x, 2j) ∈ Z

d | σ
d,N

(,n) ≥ 0; ,n ∈ (−2N, 2N)d ∩ Z
d }.

θ = θd,N .

η = ηd,N .

�1 = θ(�A).

�E
1 = η(�E

A).

With the above settings, the following Theorem collects some results from Section
4 of [3]. This is a special version of Theorem 2.6.

Theorem 4.2

1. The systems of equations E(�A,A,d) is a reducing system and�E
A is an index set.

2. The systems of equations E(�1,[2],1) is a reducing system and �E
1 is an index set.

3. The systems of equations E(�A,A,d) and E(�1,[2],1) are isomorphic with bijections
θ and η:

E(�A,A,d) ∼ E(�1,[2],1).

Example Let A =
[−1 2
−2 2

]

and B = [2].
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Choose �A = �2,1 = {(0, 0), (0, 1), (1, 0), (1, 1)}. It is clear that E(�A,A,2) below
is a reduced system of equation:

E(�A,A,2) :
⎧

⎨

⎩

h00 + h10 + h01 + h11 =
√

2
h2

00 + h2
10 + h2

01 + h2
11 = 1

h00 · h10 + h01 · h11 = 0.

The bijections defined in (4.5) and (4.6) become

θ(x, y) = ⌊y
2

⌋

4+
{

2x y even
2x + 1 y odd

(x, y) ∈ �A;

η(x, y) = ⌊y
2

⌋

4+
{

2x y even
2x + 1 y odd

(x, y) ∈ �E
A = {(0, 0), (1, 0)}.

The mappings are:

�A �B = θ(�A) �E
A �E

B = η(�E
A)

(0, 0) 0 (0, 0) 0
(0, 1) 1
(1, 0) 2 (1, 0) 2
(1, 1) 3

Under the above mapping, the corresponding isomorphic systems of equations
are

E(�A,A,2) : E(�B,B,1) :
⎧

⎨

⎩

h00 + h10 + h01 + h11 =
√

2
h2

00 + h2
10 + h2

01 + h2
11 = 1

h00 · h10 + h01 · h11 = 0.

⎧

⎨

⎩

h0 + h1 + h2 + h3 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 = 1

h0 · h2 + h1 · h3 = 0.

Example Let A =
[−1 2
−2 2

]

and B = [2]. Choose �A = �2,3 = {(x, y) | 0 ≤
x, y ≤ 23 − 1}. The index set �E

A for E(�A,A,2) is {(x, y) | −7 ≤ x ≤ 7, y ∈
{2, 4, 6} or 0 ≤ x ≤ 7, y = 0}}.

The bijections defined in (4.5) and (4.6) become

θ(x, y) = ⌊y
2

⌋

23+2 +
{

2x y even
2x + 1 y odd

(x, y) ∈ �A;

η(x, y) = ⌊y
2

⌋

23+2 +
{

2x y even
2x + 1 y odd

(x, y) ∈ �E
A.
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The mappings are:

θ(x, y) 0 1 2 3 4 5 6 7

0 0 1 32 33 64 65 96 97
1 2 3 34 35 66 67 98 99
2 4 5 36 37 68 69 100 101
3 6 7 38 39 70 71 102 103
4 8 9 40 41 72 73 104 105
5 10 11 42 43 74 75 106 107
6 12 13 44 45 76 77 108 109
7 14 15 46 47 78 79 110 111

η(x, y) 0 2 4 6

−7 18 50 82
−6 20 52 84
−5 22 54 86
−4 24 56 88
−3 26 58 90
−2 28 60 92
−1 30 62 94
0 0 32 64 96
1 2 34 66 98
2 4 36 68 100
3 6 38 70 102
4 8 40 72 104
5 10 42 74 106
6 12 44 76 108
7 14 46 78 110

For example, θ(4, 3) = 41 according to the above mapping table. �B = θ(�A)

is the content listed in the table for θ and �E
B = η(�E

A) is the content listed in the
table for η. The corresponding isomorphic systems of equations can be obtained:

E(�A,A,2) : E(�B,B,1) :
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

,n∈�A

h,n = √2

∑

,n∈�A

h2
,n = 1

∑

,n∈�A

h,n · h,n+,k = 0, ,k ∈ �E
A

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

m∈�B

hm = √2

∑

m∈�B

h2
m = 1

∑

m∈�B

hm · hm+� = 0, � ∈ �E
B.
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Example Let A =
⎡

⎣

0 0 -1
1 0 0
0 2 0

⎤

⎦ and B = [2]. Choose �A = �3,1 = {(,x, y) | ,x =

(n1, n2), y = n3, 0 ≤ n1, n2, n3 ≤ 21 − 1}. The index set �E
A for E(�A,A,3) is

{(0, 0, 0), (1, 0, 0), (−1, 1, 0), (0, 1, 0), (1, 1, 0)}.
The bijections defined in (4.5) and (4.6) become

θ(,x, y) = ⌊y
2

⌋

23+2 +
{

2σ2,1(,x) y even
2σ2,1(,x)+ 1 y odd

(,x, y) ∈ �A;

η(,x, y) = ⌊y
2

⌋

23+2 +
{

2σ2,1(,x) y even
2σ2,1(,x)+ 1 y odd

(,x, y) ∈ �E
A.

Where σ2,1(n1, n2) =∑2
j=1 nj · 4(j−1) by Eq. (4.3).

The mappings are:

�A �B = θ(�A)

(0, 0, 0) 0
(0, 0, 1) 1
(1, 0, 0) 2
(1, 0, 1) 3
(0, 1, 0) 8
(0, 1, 1) 9
(1, 1, 0) 10
(1, 1, 1) 11

�E
A �E

B = η(�E
A)

(0, 0, 0) 0
(1, 0, 0) 2
(-1, 1, 0) 6
(0, 1, 0) 8
(1, 1, 0) 10

Example Let A =
⎡

⎣

0 0 -1
1 0 0
0 2 0

⎤

⎦ and B = [2]. Choose �A = �3,2 = {(,x, y) | ,x =

(n1, n2), y = n3, 0 ≤ n1, n2, n3 ≤ 22−1}. The index set �E
A for E(�A,A,3) contains

74 elements as shown later.
The bijections defined in (4.5) and (4.6) become

θ(,x, y) = ⌊y
2

⌋

26+2 +
{

2σ2,2(,x) y even
2σ2,2(,x)+ 1 y odd

(,x, y) ∈ �A;

η(,x, y) = ⌊y
2

⌋

26+2 +
{

2σ2,2(,x) y even
2σ2,2(,x)+ 1 y odd

(,x, y) ∈ �E
A.

Where σ2,2(n1, n2) =∑2
j=1 nj · 4(j−1) by Eq. (4.3).
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The mappings are:

θ(,x, y) 0 1 2 3

(0, 0) 0 1 256 257
(1, 0) 2 3 258 259
(2, 0) 4 5 260 261
(3, 0) 6 7 262 263
(0, 1) 32 33 288 289
(1, 1) 34 35 290 291
(2, 1) 36 37 292 293
(3, 1) 38 39 294 295
(0, 2) 64 65 320 321
(1, 2) 66 67 322 323
(2, 2) 68 69 324 325
(3, 2) 70 71 326 327
(0, 3) 96 97 352 353
(1, 3) 98 99 354 355
(2, 3) 100 101 356 357
(3, 3) 102 103 358 359

η(,x, y), y = 0
,x = (x1, x2) 0 1 2 3

−3 26 58 90
−2 28 60 92
−1 30 62 94
0 0 32 64 96
1 2 34 66 98
2 4 36 68 100
3 6 38 70 102

η(,x, y), y = 2
,x = (x1, x2) −3 −2 −1 0 1 2 3

−3 154 186 218 250 282 314 346
−2 156 188 220 252 284 316 348
−1 158 190 222 254 286 318 350
0 160 192 224 256 288 320 352
1 162 194 226 258 290 322 354
2 164 196 228 260 292 324 356
3 166 198 230 262 294 326 358

For example, θ(3, 2, 1) = 71, η(2, 1, 0) = 36, η(2, 1, 2) = 292 according to
the above mapping tables. �B = θ(�A) is the content listed in the table for θ and
�E

B = η(�E
A) is the content listed in the 2 tables for η. We omit the corresponding
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isomorphic systems of equations as it can be easily populated from the table content
of η.

So far, all examples are with �A of the form�d,N . Next we will show an example
with �A a proper subset of �d,N .

Example Let A =
⎡

⎣

0 0 -1
1 0 0
0 2 0

⎤

⎦ and B = [2].

Choose �A = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (2, 3, 2), (2, 3, 3), (3, 3, 2),
(3, 3, 3)}. Notice that this support set �A is properly contained in �3,2, which is
the support of the previous example. The index set �E

A for E(�A,A,3) contains 5
elements as shown later.

The mappings are:

�A �B = θ(�A) �E
A �E

B = η(�E
A)

(0, 0, 0) 0 (0, 0, 0) 0
(0, 0, 1) 1
(1, 0, 0) 2 (1, 0, 0) 2
(1, 0, 1) 3

(1, 3, 2) 354
(2, 3, 2) 356 (2, 3, 2) 356
(2, 3, 3) 357
(3, 3, 2) 358 (3, 3, 2) 358
(3, 3, 3) 359

The corresponding isomorphic systems of equations are:

E(�A,A,3) :
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h0,0,0 + h0,0,1 + h1,0,0 + h1,0,1 + h2,3,2 + h2,3,3 + h3,3,2 + h3,3,3 =
√

2
h2

0,0,0 + h2
0,0,1 + h2

1,0,0 + h2
1,0,1 + h2

2,3,2 + h2
2,3,3 + h2

3,3,2 + h2
3,3,3 = 1

h0,0,0h1,0,0 + h0,0,1h1,0,1 + h2,3,2h3,3,2 + h2,3,3h3,3,3 = 0
h1,0,0h2,3,2 + h1,0,1h2,3,3 = 0
h0,0,0h2,3,2 + h0,0,1h2,3,3 + h1,0,0h3,3,2 + h1,0,1h3,3,3 = 0
h0,0,0h3,3,2 + h0,0,1h3,3,3 = 0;

E(�B,B,1) :
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

h0 + h1 + h2 + h3 + h356 + h357 + h358 + h359 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 + h2

356 + h2
357 + h2

358 + h2
359 = 1

h0h2 + h1h3 + h356h358 + h357h359 = 0
h2h356 + h3h357 = 0
h0h356 + h1h357 + h2h358 + h3h359 = 0
h0h358 + h1h359 = 0.
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5 From Lower Dimensions to Higher Dimensions

In this section we provide an example for Theorem 2.5.

Example Let A =
[

1 -2
2 -2

]

, �A =
[

-1
-1

]

, and B =
⎡

⎣

0 -1 2
1 0 -2
0 -1 0

⎤

⎦,

�B =
⎡

⎣

1
-1
0

⎤

⎦. Choose �A = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 3}.

The mappings are:

�A �B = θ(�A) �E
A �E

B = η(�E
A)

(0, 0) (0, 0, 0) (0, 0) (0, 0, 0)
(0, 1) (1, -2, 0)
(0, 2) (0, -2, -1) (0, 2) (0, -2, -1)
(0, 3) (1, -4, -1)
(1, 0) (0, 1, 1) (1, 0) (0, 1, 1)
(1, 1) (1, -1, 1)
(1, 2) (0, -1, 0) (1, 2) (0, -1, 0)
(1, 3) (1, -3, 0)

The corresponding isomorphic systems of equations are:

E(�A,A,2) :
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

h0,0 + h0,1 + h0,2 + h0,3 + h1,0 + h1,1 + h1,2 + h1,3 =
√

2
h2

0,0 + h2
0,1 + h2

0,2 + h2
0,3 + h2

1,0 + h2
1,1 + h2

1,2 + h2
1,3 = 1

h0,0h0,2 + h0,1h0,3 + h1,0h1,2 + h1,1h1,3 = 0
h0,0h1,0 + h0,1h1,1 + h0,2h1,2 + h0,3h1,3 = 0
h0,0h1,2 + h0,1h1,3 = 0;

E(�B,B,3) :
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

h0,0,0 + h1,-2,0 + h0,-2,-1 + h1,-4,-1 + h0,1,1 + h1,-1,1 + h0,-1,0 + h1,-3,0 =
√

2
h2

0,0,0 + h2
1,-2,0 + h2

0,-2,-1 + h2
1,-4,-1 + h2

0,1,1 + h2
1,-1,1 + h2

0,-1,0 + h2
1,-3,0 = 1

h0,0,0h0,-2,-1 + h1,-2,0h1,-4,-1 + h0,1,1h0,-1,0 + h1,-1,1h1,-3,0 = 0
h0,0,0h0,1,1 + h1,-2,0h1,-1,1 + h0,-2,-1h0,-1,0 + h1,-4,-1h1,-3,0 = 0
h0,0,0h0,-1,0 + h1,-2,0h1,-3,0 = 0.
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Nevanlinna-Pick Families and Singular
Rational Varieties

Kenneth R. Davidson and Eli Shamovich

We dedicate this to the memory of Ronald G. Douglas. His work
has inspired many of us.

Abstract The goal of this note is to apply ideas from commutative algebra
(a.k.a. affine algebraic geometry) to the question of constrained Nevanlinna-Pick
interpolation. More precisely, we consider subalgebras A ⊂ C[z1, . . . , zd ], such
that the map from the affine space to the spectrum of A is an isomorphism except
for finitely many points. Letting A be the weak-∗ closure of A in Md—the
multiplier algebra of the Drury-Arveson space. We provide a parametrization for
the Nevanlinna-Pick family of Mk(A) for k ≥ 1. In particular, when k = 1 the
parameter space for the Nevanlinna-Pick family is the Picard group of A.

1 Introduction

Let D denote the unit disc in the complex plane. The Nevanlinna-Pick interpolation
problem is to find an analytic function f : D → D, such that at the prescribed set
of points F = {z1, . . . , zn} ⊂ D, the function f attains some prescribed values,
namely f (zj ) = wj , with w1, . . . , wn given. A clean and elegant solution for this
problem was obtained by Pick [22] and Nevanlinna [20, 21]. Such a function f

exists if and only if the Pick matrix
[

1−wiwj

1−zi zj
]n

i,j=1
is positive semi-definite. In fact,

the same still holds if one replaces the scalars wi with matrices.
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In [27] Sarason gave an operator theoretic interpretation to the Nevanlinna-Pick
interpolation problem. He observed that the problem can be formulated in terms
of a commutant lifting problem on a subspace of the Hardy space H 2 = H 2(D).
Note that the expression k(z,w) = 1

1−zw̄ that appears in the Pick matrix is in

fact the Szego kernel, the reproducing kernel of H 2. The multiplier algebra of
H 2, namely the algebra of all functions f such that fH 2 ⊂ H 2, turns out to be
H∞, the algebra of all bounded functions on the disc. Let BF be the Blaschke
product that vanishes on F . It is a bounded function and thus a multiplier on H 2.
Furthermore, multiplication by BF is an isometry on H 2. Thus we can consider the
subspace MF = H 2 � BFH

2. Let PMF be the orthogonal projection on MF . For
every f ∈ H∞, let Mf be the multiplication operator defined by f on H 2. Let
IF ⊂ H∞ be the ideal of functions that vanish on F . Sarason showed that the map
f �→ PMFMf PMF induces an isometry on H∞/IF .

Abrahamse in [1] replaced the disc with a multiply connected domain in ! ⊂
C. He showed that in this case one cannot consider a single reproducing kernel
Hilbert space, but one must consider a family of kernels parametrized by the torus
Rg/Zg , where the connectivity of ! is g + 1. Each point of the parameter space
corresponds to a character χ of the fundamental group π1(!) and we associate to χ

the function space of χ-automorphic functions on !. These spaces were considered
in the case of the annulus by Sarason in [26]. The work of Abrahamse generated
a lot of interest (see for example [7, 28] for the treatment of the question of which
subspaces of the parameter space are sufficient for a particular interpolation datum
and what subspaces are sufficient for all data). The term Nevanlinna-Pick family
was coined to describe the situation where a family of kernels is sufficient to solve
the Nevanlinna-Pick problem.

The first author, Paulsen, Raghupathi and Singh in [11] observed that
Nevanlinna-Pick families arise naturally in the setting of the disc, provided one
considers a constrained interpolation question. They consider H∞

1 , the algebra of
all bounded analytic functions on the disc with vanishing derivative at the origin.
They prove that there is a Nevanlinna-Pick family parametrized by the projective
2-sphere. Following their work, Raghupathi generalized their results to the case
of algebras of the form C1 + BH∞, where B is a Blaschke product [23], and
proved that constrained interpolation on the disc combined with an action of a
Fuchsian group yields Abrahamse’s result in [24]. In [6] Ball, Bolotnikov and ter
Horst have generalized the result of [11] to the matrix-valued case and showed
that one can parametrize the Nevanlinna-Pick families for Mk(H

∞
1 ) by a disjoint

union of Grassmannians. A dual parametrization using test functions was provided
by Dritschel and Pickering [16] in the case of the Neil parabola and much more
generally by Dritschel and Undrakh [17]. The former was used by Dritschel, Jury
and McCullough [15] to study rational dilations on the Neil parabola.

Finally, the first author jointly with Hamilton in [10] used the predual fac-
torization property A1(1) to show that every weak-∗ closed subalgebra A of the
multiplier algebra of a complete Nevanlinna-Pick space has a Nevanlinna-Pick
family. In particular, they have considered the algebra Md of multipliers on the
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Drury-Arveson space H 2
d . The Drury-Arveson space is a complete Nevanlinna-Pick

space by [2, 13]. Arias and Popescu [4] show that Md has the property A1(1).
However, the parametrization in [10] given for the Nevanlinna-Pick family of a
weak-∗ closed subalgebra A ⊂Md is by all Md -cyclic vectors in H 2

d .
The goal of this note is to provide a concrete description for the parameters of

Nevanlinna-Pick families for a certain class of weak-∗ closed subalgebras of Md .
Note that the algebra H∞

1 is generated by z2 and z3 and can be viewed as the
pullback of bounded analytic functions on the cuspidal cubic (also known as the
Neil parabola) in D2. Cusp algebras such as this one were considered first by Agler
and McCarthy in [3]. Let us consider algebras A ⊂ C[z1, . . . , zd ] = Pd , such that
the induced map from the affine space to the spectrum of A is a biholomorphism
outside finitely many points. The key idea is to consider the largest common ideal in
c ⊂ A ⊂ Pd , called the conductor ideal (see Sect. 2 for the definition). By analogy
to [1], we want to consider line (and more generally vector) bundles on the spectrum
of A. Fortunately, we can describe them rather easily by considering the free A/c-
submodules M ⊂ (Pd/c)

⊕k , such that M ⊗ (Pd/c) ∼= (Pd/c)
⊕k (compare to [9]).

We set A ⊂Md to be the weak-∗ closure of A.
In Sect. 2 we will collect some necessary information about the conductor ideal

in the topological setting. In Sect. 3 we show that the parameter space for the
Nevanlinna-Pick family is the Picard group of A, i.e, the group of isomorphism
classes of line bundles on the spectrum of A. In Sect. 4 we will prove that Mk(Md)

has the property A1(1) acting on Mk(H
2
d ) by transposed right multiplication and

provide a description of the parameter space for the Nevanlinna-Pick families of
Mk(A) for k ≥ 2. Lastly, in Sect. 5 we prove the M6(Md) does not have A1(1)
acting on H2

d ⊗ C6. This implies that one cannot avoid considering vector bundles
on the singular variety if one wants to do constrained matrix-valued Nevanlinna-
Pick interpolation.

2 The Conductor Ideal

The idea of conductor ideal is quite old in commutative algebra and algebraic
number theory. Let A ⊂ B be two rings. Then the conductor of A in B is the ideal
of elements a ∈ A, such that aB ⊂ A. Alternatively, the conductor is the annihilator
of the A-module B/A. It turns out that the conductor is an ideal of B and it is the
largest ideal common to A and B.

We are going to discuss topological algebras, hence we make these definitions in
our setting. All algebras considered in this section are unital and commutative. Let
A ⊂ B ⊂ B(H) be two weak-∗ closed operator algebras. We assume that A is a
closed subalgebra of B.

Definition 2.1 The conductor ideal is the ideal c ⊂ A defined by

c = {f ∈ A | fB ⊂ A}.
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For every g ∈ B and every f ∈ c we have fgB ⊂ fB ⊂ A. Thus c is an ideal
of B. Furthermore, it is clearly the largest ideal with this property.

Lemma 2.2 Let A ⊂ B be as above and let c be the conductor. Then c is weak-∗
closed and we have the commutative diagram

(2.1)

The vertical arrows are quotient maps and the horizontal ones are embeddings.
Furthermore, A = π−1(A/c) as a subspace of B.

Proof Let aα → a be a weak-∗ convergent net, with aα ∈ c. Since multiplication
is separately weak-∗ continuous, for every b ∈ B, aαb → ab. Since A is closed
ab ∈ A. Hence a ∈ c.

Now it is clear that A ⊂ π−1(A/c), so let f ∈ π−1(A/c). Hence there exists
a ∈ A, such that f − a ∈ c, but c ⊂ A and we are done. ��

Recall that Lat(A) denotes the lattice of A-invariant subspaces of H. Let us
write C = cH. It is clear that C is both A and B-invariant subspace. Hence, the
compression map B→ B(C⊥) is a completely contractive and weak-∗ continuous
homomorphism. The kernel of this map contains c and thus makes C⊥ into a B/c-
module (and also an A/c-module).

Definition 2.3 LetN ⊂ C⊥ be anA/c-invariant subspace. We defineHN = N⊕C.
It is clear that HN ∈ Lat(A).

Let us assume that the kernel of the compression to C⊥ is precisely c. This is
valid forMd , the multiplier algebra of Drury-Arveson space as the following lemma
shows.

Lemma 2.4 If J is an ideal ofMd , the multiplier algebra of Drury-Arveson space,

then compression to IH 2
d

⊥
is completely isometrically isomorphic toMd/J .

Proof We use the fact that Md is equal to the compression of the non-commutative
analytic Toeplitz algebra Ld (acting on full Fock space F2

d ) to symmetric Fock
space, which is the orthogonal complement of the range of the commutator ideal
C. This identification is a special case of [12, Theorem 2.1]. This result shows that
if I ⊂ Ld is a weak-∗ closed ideal, then the kernel of the compression onto the
complement of its range is precisely I and the quotient is completely isometric
isomorphic to Ld/I. The corresponding result for Md holds for weak-∗ closed
ideals J of Md by applying the result to the preimage of J in Ld . ��

Note that if ξ ∈ H is B-cyclic, then C = cξ and the cyclic module Aξ =
A/cPC⊥ξ ⊕ C, where PC⊥ is the orthogonal projection onto C⊥. We record this in
the following proposition.
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Proposition 2.5 Assume that c is precisely the kernel of the compression of B
to C⊥. Then the cyclic modules Aξ , where ξ is B-cyclic are in one-to-one
correspondence with cyclic A/c-submodules of C⊥.

3 Nevanlinna-Pick Families: The Scalar Case

Let H 2
d , for d ∈ N, denote the Drury-Arveson space. Recall that this space is a

reproducing kernel space of analytic functions on Bd , the unit ball of Cd , with
reproducing kernel kd(z,w) = 1

1−〈z,w〉 . We will denote by Md the algebra of

multipliers of H 2
d . In particular, for d = 1, H 2

1 = H 2(D) and M1 = H∞(D).
We will write simply H 2 and H∞ for H 2

1 and M1, respectively. Note that since
Md is a multiplier algebra of a reproducing kernel Hilbert space, it is weak-∗
closed. Let A ⊂ Md be a weak-∗ closed subalgebra. We fix a set of points
F = {z1, . . . , zn} ⊂ Bd and assume for simplicity that A separates F . Let IF ⊂ A
be the weak-∗ closed ideal of functions that vanish on F . We say that ξ ∈ H 2

d is
outer if it is Md -cyclic. For the convenience of the reader we recall some material
from [10].

Definition 3.1 We say that a weak-∗ closed subalgebra A ⊂ B(H) has property
A1(1), or alternatively that A has property A1(1) acting on H, if for every weak-
∗ continuous functional ϕ on A with ‖ϕ‖ < 1, there exist ξ, η ∈ H, such that
‖ξ‖, ‖η‖ < 1 and ϕ(f ) = 〈f ξ, η〉 for every f ∈ A.

The following result was established in [4, Proposition 6.2] and an alternative
argument is found in [10, Theorem 5.2].

Theorem 3.2 (Arias-Popescu) LetA ⊂Md be a weak-∗ closed operator algebra.
Then A has A1(1) and furthermore, ξ may be chosen to be outer.

As was shown in [1], [11] and [23], to understand constrained interpolation we
need to consider families of kernels. By [10, Lemma 2.1], every cyclic A-submodule
L ⊂ H 2

d is a reproducing kernel Hilbert space with respect to a kernel kL defined
on all of Bd .

Definition 3.3 (Davidson-Hamilton) Let A ⊂ Md be a weak-∗ closed sub-
algebra. We say that a collection of kernels {kLj }j∈J associated with cyclic
A-submodules is a Nevanlinna-Pick family, if for every set of points F =
{z1, . . . , zn} ⊂ Bd separated by A and complex scalars w1, . . . , wn, there exists
f ∈ A, such that f (z�) = w�, for all � = 1, . . . , d and ‖f ‖ ≤ 1 if and only if the
Pick matrices

[

(1−wkwell)k
Lj (zk, z�)

]n

k,�=1

are positive for every j ∈ J .
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By [10, Theorem 5.5] every weak-∗ closed subalgebra of Md admits a
Nevanlinna-Pick family parametrized by the outer functions. This parameter family
is not described in detail and our goal is to show that for finitely many constraints,
this family is parametrized by a finite-dimensional manifold.

Set Pd = C[z1, . . . , zd ]. Let ψ : Cd → Ce be a polynomial map that is an
isomorphism outside a finite set of points. LetA ⊂ Pd be the corresponding algebra,
i.e., the image of Pe under ψ∗ and A = A

w∗ ⊂Md . The spectrum of A is the ring
of polynomial functions on the image of Cd . This is a rational variety with finitely
many singular points. Let α1, . . . , α� be the points in the fibers over the singular
points in the image. Let mj be the maximal ideal corresponding to αj . Recall that if
p ⊂ Pd is a prime ideal, an ideal q is called p-primary, if the only associated prime
of Pd/q is p. By [18, Proposition 3.9] we have that there exists k ∈ N, such that
pk ⊂ q ⊂ p. By primary decomposition there exist mj -primary ideals qj , such that
c = q1∩· · ·∩q�. Thus by the Chinese remainder theoremPd/c ∼= Pd/q1×· · ·Pd/q�.

Now Pd/qj is naturally embedded into Pd/m
kj
j and thus the dual space of Pd/qj

can be identified with the quotient of the space spanned by the functionals taking
the value of the polynomial and its derivatives up-to total order kj at the point αj .

From now on we will assume that all the points of the support of c lie in Bd , the
unit ball of Cd . Let c ⊂ A be the conductor ideal of A. Then the conductor of A in
Md is the weak-∗ closure of c.

Lemma 3.4 A = Pd ∩ A.

Proof One inclusion is obvious. On the other hand the dual space of Pd/c is
spanned by the functionals of evaluation of the polynomial and its derivatives at
the points αj . The fiber square (2.1) tells us that A is precisely the preimage of A/c
in Pd/c. Since A/c is a subspace ofPd/c it is given by the vanishing of finitely many
functionals. If f ∈ Pd \A, then there exists a functional in (Pd/c)

∗ that vanishes on
A/c and does not vanish on the image of f . Now note that the evaluation functionals
and the valuation of derivatives at points inside the disk are weak-∗ continuous
functionals on Md . Therefore we can conclude that if f ∈ Pd \A, then f /∈ A. ��

The following is a generalization of the Helson-Lowdenslager Theorem in the
case when d = 1 (compare with [11, Theorem 1.3] in the case of H∞

1 ).

Theorem 3.5 Let d = 1 and write P1 = C[z] and M1 = H∞. Let N ⊂ L2(T)

be an A-invariant closed subspace, that is not invariant for H∞. Then there exists
an A/c-submodule M ⊂ C[z]/c, such that N = JH 2

M , where J is an unimodular
function.

Proof The proof is essentially the proof in [11]. Set ˜N = H∞N . Recall that
every ideal in C[z] is principal and thus c is generated by fc = ∏k

j=1(z − αj )
mj .

Additionally, we have a Blaschke product Bc, such that C = BcH
2. By the classical

Helson-Lowdenslager theorem, either ˜N is L2(E) for some measurable E ⊂ T

or ˜N = JH 2 for some unimodular function J . In the former case, note that z
is a unitary on ˜N and thus fc acts as an invertible operator. We conclude that
˜N = fc ˜N ⊂ N and this contradicts our assumption that N is not H∞-invariant.
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In the latter case, we have that ˜N = JH 2 ⊃ N ⊃ JBcH
2, where all of the

containments are strict by assumption (since c is an ideal of C[z] as well). Hence
there exists a subspace 0 �= M � C[z]/c, such that N = JM⊕JBcH

2. Since N is
invariant under A, it then follows immediately that M is in fact an A/c-submodule
of C[z]/c. ��

By Lemma 2.4, we may apply Proposition 2.5 to the conductor ideal of a
subalgebra A of the multiplier algebra Md . Therefore the cyclic A-submodules of
H 2
d of the form Aξ , where ξ is outer, are parametrized by cyclic A/c submodules of

Pd/c. Since outer functions do not vanish, the image of an outer function in Pd/c
is a unit. Let us denote the unit group of the Artinian ring Pd/c by (Pd/c)

× and the
unit group of A/c by (A/c)×.

Now let ξ1, ξ2 be outer and assume that Aξ1 = Aξ2. Let us denote fj = PC⊥ξj ,
for j = 1, 2. Since Aξj = fjA/c ⊕ C, implies that f1A/c = f2A/c. Thus there
exists a unit u ∈ A/f c, such that f1 = f2u. Clearly, if such a unit exists, then
f1A/c = f2A/c and thus Aξ1 = Aξ2. Hence we obtain the following lemma.

Lemma 3.6 Let A ⊂ Md be as above, then A has a Nevanlinna-Pick family
parametrized by (Pd/c)

× / (A/c)×.

We can actually give a better geometric description of the parameter space.
Consider again the conductor square (2.1) and by [25, Equation 1.4] we have an
exact sequence:

1 A× ι P×
d × (A/ )×

α

(Pd/ )×

Pic(A) Pic(A/ ) × Pic(C[z]).

Here the first map is ι : C× ∼= A× → P×d × (A/c)× ∼= C×× (A/c)× is ι(t) = (t, t).
The second map is α(t, f ) = tf−1. Now it is clear that the image of α is precisely
(A/c)× and additionally since Pic(Pd) = 1 (see for example [19, Theorem 1.6]).
Finally, we note that A/c is an Artinian ring and thus is a finite product of Artinian
local rings. We conclude that Pic(A/c) = 1. This allows us to simplify the exact
sequence into

1 (A/ )× (C[z]/ )× Pic(A) 1 .

Thus Pic(A) = (C[z]/c)× / (A/c)×. We summarize this discussion in the following
theorem.

Theorem 3.7 Let A ⊂ Md be a weak-∗ closure of a subring A ⊂ Pd that arises
from a parametrization of a singular rational variety with isolated singular points.
Then A admits a Nevanlinna-Pick family parametrized by the Picard group of A.
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This is analogous to the situation in [1] as we have a collection of line bundles
parametrizing the Nevanlinna-Pick families for a multiply connected domain.

Example 3.8 In the case of the algebras A = C1 + BH∞ considered in [23], with

B = ∏r
j=1

(

z−λj
1−zλj

)kj
a finite Blaschke product, the algebra A = A ∩ C[z] is the

algebra A = C1 + fC[z], where f = ∏r
j=1

(

z− λj
)kj is the (monic) polynomial

with the zeroes prescribed by B including the order. Then c = (f ) and A/c ∼= C,
whereas C[z]/c ∼= C[z]/(z− λ1)

k1 × · · · × C[z]/(z− λr)
kr . The ring A/c embeds

into C[z]/c diagonally. The units of C[z]/c are precisely the elements with non-zero
value at every λj . Hence as a space (C[z]/c)× ∼= C

× × · · · × C
×

︸ ︷︷ ︸

r-times

×Ck1−1 × · · · ×

Ckr−1. We conclude that the Picard group parametrizing the Nevanlinna-Pick family
has dimension

∑r
j=1 kj − 1.

In particular, for the algebra H∞
1 considered in [11] we have that A =

C[z2, z3] = C1+z2C[z] and Pic(A) ∼= C. The disparity with the compact parameter
space obtained in [11] follows from the fact that the authors of [11] consider
all cyclic non-trivial A/(z2)-submodules of C[z]/(z2). This results in a one point
compactification of Pic(A) yielding the complex projective space or a sphere as
stated in [11]. If one allows in the above setting all non-trivial cyclic modules, in
other words if we replace (C[z]/c)× with C[z]/c \ {0}, then one will obtain the
projective space P

∑r
j=1 kj (C) that is compact.

Example 3.9 Consider the map ϕ : D → D2 given by ϕ(z) = (z2, z5). In this case
A = C[z2, z5] and c = (z4). Note that A is not of the form C1 + BH∞. However,
the method introduced above allows us to handle this case. We have that A/(z4)

is spanned by {1, z2}. Again the ring C[z]/(z4) is a local Artinian ring and so is
A/(z4). The invertible elements in C[z]/(z4) are those of the form α + βz+ γ z2 +
δz3, where α �= 0. The units of A/(z4) act on these points via

(a, 0, b, 0) · (α, β, γ, δ) = (aα, aβ, aγ + bα, aδ + bβ).

Since both α and a are non-zero, the orbit of each point (α, β, γ, δ) is the
intersection of the plane spanned by (α, β, γ, δ) and (0, 0, α, β) and the open affine
subset of C4 defined by α �= 0. Note also that the stabilizer of each point is
trivial. The coordinate ring of this affine subset is B = C[α, β, γ, δ, 1/α]. The
quotient by the action of our group corresponds to the subring of fixed elements.

It is straightforward to check that B
(

A/(z4)
)× = C[β/α, (δα − γβ)/α2]. The

map C
4 \ {α = 0} → C

2, given by (α, β, γ, δ) �→ (β/α, (δα − γβ)/α2) is
surjective and thus C2 is the quotient. For each point (x, y) ∈ C

2, we can associate
an invertible element fx,y = 1 + xz + yz3 in C[z]/(z4). The A/(z4)-module
generated by fx,y is spanned by fx,y and z2fx,y = z2 + xz3. So we have that
H 2
fx,y

= Span{fx,y, z2fx,y} ⊕ z4H 2. Let gx,y and hx,y be an orthonormal basis for
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the space spanned by fx,y and z2fx,y . Then the reproducing kernel of this space is

kx,y(z,w) = gx,y(z)gx,y(w)+ hx,y(z)hx,y(w)+ z4w̄4

1− zw̄
.

If one would like a compact parameter space, one can compactifyC2 by considering
P2(C) instead, where one identifiesC2 as an open affine subset in P2(C) via the map
(x, y) �→ (1 : x : y). Then our rational map can be extend by (α, β, γ, δ) �→ (α2 :
αβ : δα−γβ) to the complement of the plane {α = β = 0}. This subset corresponds
to all elements f ∈ C[z]/(z4), such that the A/(z4)-submodule A/(z4)f is a two
dimensional vector space.

Example 3.10 Consider the algebra A = C[w, zw, z2, z3] ⊂ P2 = C[z,w]. The
map ϕ(z,w) = (

z3, z2, zw,w
)

is injective from C2 to C4. It is also easy to check
that the only singularity of this map is at the origin. Recall that the Veronese map of
degree 3 from P2(C) to P9(C) is defined by

(z : w : u) �→ (z3 : z2w : z2u : zw2 : zwu : zu2 : w3 : w2u : wu2 : u3).

Restricting to the open affine subset u �= 0, we get the map

(z,w) �→ (z3, z2w, z2, zw2, zw, z,w3, w2, w, 1).

Now it is easy to see that ϕ is the map obtained by composition with the projection
onto the first, third, fifth and ninth coordinates. Hence the spectrum of A is a
projection of the above affine open subset of the degree 3 Veronese variety.

A monomial znwm ∈ A if m �= 0 and if m = 0, then we must have n > 1 or
n = 0. Thus the only monomial not in A is z. Consequently the conductor ideal
is generated by w and z2. The quotient C[z,w]/c ∼= C[z]/(z2) and A/c ∼= C.
Therefore, the parameter space in this example is isomorphic to the parameter space
of H∞

1 . For each point α + βz, with |α|2 + |β|2 = 1, we get the following kernel

kα,β(z,w, u, v) = (α + βz)(α + βu)+ wv̄ + z2ū2 + zwūv̄

1− zū−wv̄
.

The numerator in the fraction is obtained by observing that

MwM
∗
w +Mz2M∗

z2 +MzwM
∗
zw = MwM

∗
w +MzM

∗
z − Pz = I − P1 − Pz.

Here P1 and Pz stand for the orthogonal projections onto the spaces spanned by 1

and z, respectively. Hence this is the orthogonal projection onto wH 2
2 + z2H 2

2 .
Recall from [5, Definition 2.6] that for a Hilbert submodule K ⊂ H 2

d , a sequence
f1, f2, . . . ∈Md is called an inner sequence if

∑∞
j=1 MfjM

∗
fj
= PK and for almost

every ζ ∈ ∂Bd , we have
∑∞

j=1 |fj (ζ )|2 = 1. Consider our sequence f1(z,w) = w,
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f2(z,w) = z2 and f3(z,w) = zw (complemented by zeroes). We have already
seen that the first condition of Arveson’s definition is satisfied. To see the second
note that for every ζ = (z,w), such that |z|2 + |w|2 = 1, we have

|w|2 + |z|4 + |z|2|w|2 = |w|2 + |z|2(|z|2 + |w|2) = |w|2 + |z|2 = 1.

Hence this is an inner sequence for the submodule wH 2
2 + z2H 2

2 .

4 Nevanlinna-Pick Families: The Matrix Case

First, we need an analog of [10, Theorem 3.1] in the setting of the Drury-Arveson
space. In [10, Lemma 7.4] the first author and Hamilton prove this result for d = 1.
The proof of the following proposition, just like the proof of [10, Theorem 3.1], is
based on [14].

Proposition 4.1 Let k ∈ N, then Mk(Md) acting on Mk(H
2
d ) by transposed right

multiplication, i.e., the map Mk(Md ) → Mk2(Md) is given by F �→ F ⊗ Ik ,
has A1(1). More precisely, for every weak-∗ continuous functional ϕ on Mk(Md)

with ‖ϕ‖ < 1, there exist X,Y in
(

H 2
d

)⊕ks
such that s ≤ k, ‖X‖, ‖Y‖ < 1 and

ϕ(F ) = 〈(F ⊗ Is)X, Y 〉. Moreover, X can be chosen to beMk(Md)-cyclic.

Proof Let F2
d = ⊕∞n=0

(

Cd
)⊗n

be the full Fock space. The symmetrization map is
a projection P : F2

d → H 2
d . The cutdown by P induces a complete contractive

and weak-∗ continuous map q : Ld → Md , where Ld stands for the weak-∗
closed algebra generated by the left creation operators on F2

d . Let qk : Mk(Ld ) →
Mk(Md) denote q ⊗ IMk . Any weak-∗ continuous functional ϕ on Mk(Md) can
be pulled-back to Mk(Ld ) without increasing the norm (ϕ ◦ qk). By Davidson
and Pitts [14] the algebra Mk(Ld ) has A1(1). Hence we can find two vectors

ξ, η ∈ (

F2
d

)⊕k
, such that ϕ ◦ qk(T ) = 〈T ξ, η〉, for every T ∈ Mk(Ld ). Let

ξ = (ξ1, . . . , ξk)
T and let K =∑k

j=1 Ldξj be the Ld -invariant subspace generated
by the coordinates of ξ . By Davidson and Pitts [14, Theorem 2.1], there exists a row
isometryR : (F2

d

)⊕s → F2
d with coordinates in Rd = L′d , such thatK = R

(

F2
d

)⊕s

and s ≤ k. Set ξj = Ruj , for 1 ≤ j ≤ k and u1, . . . , uk ∈
(

F2
d

)⊕s
. Additionally,

let η = (η1, . . . , ηk)
T and set vj = R∗ηj , for 1 ≤ j ≤ k. Note that u1, . . . , uk

generate
(

F2
d

)⊕s
as a Ld -module. Hence if we let U be the column vector obtained

by stacking the uj and similarly V is the column vector of the vj , then

ϕ ◦ qk(F ) = 〈Fξ, η〉 = 〈F(Ik ⊗ R)U, η〉 = 〈F ⊗ Is)U, V 〉.

Now set X = PU and Y = PV . Since u1, . . . , uk generate the Ld -module
(

F2
d

)⊕s
,

then U is Mk(Md)⊗ Is -cyclic and hence so is X. ��
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Corollary 4.2 In the proof above one may consider U as a matrix with columns uj
and similarly V is a matrix with columns vj . Let X = PU and Y = PV . Then for
every F ∈ Mk(Md) we have ϕ(F ) = tr

(

XFT Y ∗
)

.

Lemma 4.3 The rank of the matrix X(z), for z ∈ Bd is constant and is equal to s,
where s is the number obtained in Proposition 4.1.

Proof We need to show that for z ∈ Bd , the matrix X(z) is surjective. Then there
exists w ∈ C

s non-zero, such that 〈xj (z),w〉 = 0 for all 1 ≤ j ≤ k, where xj are

the columns of X. That, however, contradicts the fact that the xj generate
(

H 2
d

)⊕s

as an Ms(Md )-module. ��
Lemma 4.4 Let X ∈ Mk,s(H

2
d ) be a Mk(Md) ⊗ Is -cyclic vector and H 2

d,X =
(Mk(A)⊗ Is)X. If ˜X = PC⊥X, then

H 2
d,X = (Mk(A/c)⊗ Is) ˜X ⊕Mk,s(C).

Furthermore, the map ˜X : (Pd/c)
⊕k → (Pd/c)

⊕s is surjective.

Proof To see the first part of the lemma one simply notes that

(

Mk(c
w∗)⊗ Is

)

X = (Mk(c
w∗)⊗ Is

)

(Mk(Md)⊗ Is) X =Mk,s(C).

The second follows from Lemma 4.3 and the Nakayama lemma [18, Corollary 4.8].
��

Now given X1,X2 ∈ Mk,s(H
2
d ) that are Mk(Md) ⊗ Is -cyclic, we ask when is

H 2
d,X1

= H 2
d,X2

? This is if and only if there exists F,G ∈ Mk(A/c), such that ˜X1 =
˜X2F

T and ˜X2 = ˜X1G
T . In particular, this is true if we can find F ∈ GLk(A/c),

such that ˜X1 = ˜X2F
T . However, if s < k, then it need not be the case.

Set Qs = {Z ∈ Hom((Pd/c)
⊕k , (Pd/c)

⊕s | rank(Z) = s}. Then from [10,
Theorem 7.2] we have that

Theorem 4.5 Let A ⊂ Md be a weak-∗ closure of a subring A ⊂ Pd that
arises from a parametrization of a singular rational variety with isolated singular
points. Then for every k ∈ N, the algebra Mk(A) admits a Nevanlinna-Pick family
parametrized by the space �s<kQs/ (GLk(A/c)⊗ Is).

Remark 4.6 Let us fix k ∈ N and s ≤ k. LetZ ∈ Qs . Consider the columns ofZT as
elements of (Pd/c)

⊕k and let MZ be the A/c-module generated by these elements.
By the assumption Z is surjective and hence P/c⊗A/cMZ is a free Pd/c-module of
rank s. Hence this data corresponds to a rank s vector bundle on the spectrum of A
as in [9]. However, we might get isomorphic vector bundles by considering different
submodules of (Pd/c)

⊕s . Therefore, in a sense, the Nevanlinna-Pick family is
parametrized by all vector bundles on the spectrum of A of rank less than or equal
to k.
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5 Property A1(1) for Matrices

In this section we study weak-∗ closed operator algebras A ⊂ B(H), such that
Mk(A) has the property A1(1) acting on H⊕k . First we provide a generalization of
[8, Corollary 3.5] with bounds on the condition number of the similarity.

Theorem 5.1 Let A ⊂ B(H) be a weak-∗ closed unital operator algebra. Assume
that Mk(A) has A1(1) acting on H⊕k . Let ϕ : A → Mk be a weak-∗ continuous
completely contractive unital homomorphism. Then for ε > 0, there exists a k-
dimensional subspace Kε ⊂ H that is semi-invariant for A, and an invertible
linear map Sε : Ck → Kε , such that ϕ(a) = S−1

ε PKε
a|Kε

Sε for every a ∈ A,
and limε→0+ ‖Sε‖‖S−1

ε ‖ = 1.

Proof Let e1, . . . , ek be an orthonormal basis for Ck and let ϕij (a) = 〈ϕ(a)ej , ei〉
be the matrix coefficients of ϕ. Since ϕ is completely contractive and unital it
extends to a unital completely positive (ucp) map on A+A∗. We can now construct
a state on Mk(A) from ϕ. Let T =∑k

i,j=1 Eij ⊗ aij ∈ Mk(A), then

s(T ) = 1

k

k
∑

i,j=1

ϕij (aij )

= 1

k

k
∑

i,j=1

tr
(

ϕ(aij )E
∗
ij

)

= 〈(idMk ⊗ϕ
)

(T )Ik, Ik〉.
In the latter equality, we view Mk as a Hilbert space with the normalized Hilbert-
Schmidt product.

Fix ε > 0. Since s is a state and Mk(A) has A1(1), there exist ξ, η ∈ H⊕k ,
such that s(T ) = 〈T ξ, η〉 for every T ∈ Mk(A) and ‖ξ‖, ‖η‖ <

√
1+ ε. Write

ξ = (ξ1, . . . , ξk)
T and η = (η1, . . . , ηk)

T . Note that for every 1 ≤ i, j ≤ k,

1

k
ϕij (a) = s(Eij ⊗ a) = 〈(Eij ⊗ a

)

ξ, η〉 = 〈aξj , ηi〉.

Following [8] we define the following subspaces of H

Nε =
∑

k

j=1Aξj , N∗,ε =
∑

k

j=1A
∗ηj ,

Gε = Nε ∩N∗,ε, Kε = Nε � Gε .

Clearly Kε is a semi-invariant subspace of A. Now write ξj = ξj1 + ξj2, with
ξj1 ∈ Kε and ξj2 ∈ Gε . Fix j , then for every a ∈ A and every 1 ≤ i ≤ k we have

1

k
ϕij (a) = 〈aξj , ηi〉 = 〈ξj , a∗ηi〉 = 〈aξj1, ηi〉.
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Hence we can assume that ξ1, . . . , ξk ∈ Kε . Since ξ1j is a projection of ξj , we
will not increase the norm by replacing ξj with ξ1j . From the fact that ϕ is a
homomorphism we have that for every a, b ∈ A and every 1 ≤ i, j ≤ k

〈aξj , b∗ηi〉 = 〈baξj , ηi〉 = 1

k
ϕij (ba) = 1

k

k
∑

r=1

ϕir(b)ϕrj (a)

= k

k
∑

r=1

〈ξr , b∗ηi〉〈aξj , ηr 〉 = 〈k
k
∑

r=1

〈aξj , ηr 〉ξr , b∗ηi〉

This immediately implies that

PKε
aξj = k

k
∑

r=1

〈aξj , ηr 〉ξr .

Additionally, since the elements of the form
∑k

r=1 PKε
arξr are dense in Kε , we

obtain that Kε is spanned by ξ1, . . . , ξk . Since ϕ is unital we have that 〈ξj , ηi〉 =
1
k
δij . Conclude that ξ1, . . . , ξk is a basis for yyε .

The last consideration can be slightly refined, namely

1 = s(I) = 〈ξ, η〉 =
k
∑

r=1

〈ξr , ηr 〉 ≤ ‖ξ‖‖η‖ ≤ 1+ ε. (5.1)

Now consider the map Sε : Ck → K given by

Sεei = ξi for 1 ≤ i ≤ n.

It is immediate that Sε is bijective. Furthermore, Sε intertwines ϕ(a) and PKε
a|Kε

.
To see this we simply observe that

Sεϕ(a)ei =
k
∑

r=1

ϕri(a)Sεer

= k

k
∑

r=1

〈aξi, ηr 〉ξr = PKε
aξi

= PKε
aSεei .

Hence every homomorphism is similar to the compression of A to a semi-invariant
subspace. It remains to estimate the condition number. Note that as ε tends to 0 in
(5.1) we have that η tends to ξ . In particular, the norm of each ξj tends to 1√

k
and
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the inner products 〈ξi , ξj 〉 for i �= j tend to 0. Therefore
√
kSε is close to a unitary,

and thus the condition number is close to 1. ��
Corollary 5.2 Let A ⊂ B(H) be a unital weak-∗ closed operator algebra. Assume
that Mk(A) has A(1) acting on H⊕k . Let ϕ : A → Mk be a weak-∗ continuous
unital homomorphism. Then for every ε > 0, there exists a semi-invariant subspace
Kε ⊂ H and an invertible linear map Tε : Ck → Kε , such that for every a ∈ A,
ϕ(a) = T −1

ε PKε
a|Kε

and limε→0+ ‖Tε‖‖T −1
ε ‖ = ‖ϕ‖cb .

Proof By Smith’s lemma every bounded homomorphism ϕ : A → Mk is com-
pletely bounded and by a theorem of Paulsen it is similar to a completely contractive
homomorphism. Furthermore, there is a similarity S, such that ψ = S−1ϕS

is completely contractive and ‖ϕ‖cb = ‖S‖‖S−1‖. Given ε > 0, we apply
Theorem 5.1 to ψ to find a semi-invariant subspace Kε ⊂ H and an invertible
linear map Sε : Ck → Kε , such that for every a ∈ A, ψ(a) = S−1

ε PKε
a|Kε

Sε . Set
Tε = SεS

−1. It is clear now that Tε is the similarity that we are after. To prove the
last statement we note that

‖ϕ‖cb ≤ ‖Tε‖‖T −1
ε ‖ ≤ ‖S‖‖S−1‖‖Sε‖‖S−1

ε ‖ = ‖ϕ‖cb‖Sε‖‖S−1
ε ‖.

Now it remains to apply the fact that limε→0+ ‖Sε‖‖S−1
ε ‖ = 1. ��

The following lemma and corollary demonstrate that the methods employed in
the previous section to obtain the property A1(1) for Mk(Md) are necessary.

Lemma 5.3 Suppose that f ∈ H 2
2 satisfies

‖f ‖ = 1 and ‖z1f ‖2 > 1− ε and ‖z2f ‖2 > 1− ε

Then |〈f, 1〉|2 ≥ 1− 4ε and dist(f,C1) ≤ 2
√
ε.

Proof Write f = ∑

amnz
m
1 z

n
2 . Note that the monomials are orthogonal and

‖zm1 zn2‖2 = m! n!
(n+m)! . So we have

1 = ‖f ‖2 =
∑

|amn|2 m! n!
(n+m)! .

Thus

‖z1f ‖2 + ‖z2f ‖2 =
∑

|amn|2 m! n!
(n+m)!

( m+ 1

m+ n+ 1
+ n+ 1

m+ n+ 1

)

= 1+
∑

|amn|2 m! n!
(n+m)!

1

m+ n+ 1

≤ 3

2
+ 1

2
|a00|2.
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Hence we have that

1− 4ε ≤ |a00|2 = |〈f, 1〉|2 ≤ 1.

It follows that

dist(f,C1)2 = ‖f ‖2 − |〈f, 1〉|2 ≤ 4ε.

��
Corollary 5.4 The algebraM6(Md) does not have A1(1).

Proof By Theorem 5.1 we need to produce a weak-∗ continuous completely
contractive homomorphism ϕ : Md → M6 which cannot be approximated by
compressions to semi-invariant subspaces. We will prove this for M2, and for every
other d > 2, it follows by embedding M2 into Md .

Let us consider first the compression of M2 to Span{1, z1, z2}. This is a semi-
invariant subspace and hence this is a representation that we will denote by π . It is
clear that π unital, completely contractive, and weak-∗ continuous. Let ϕ = π ⊕ π .
In order to approximate ϕ by compressions to semi-invariant subspaces, we need to
be able to find for every ε > 0, two unit vectors f, g ∈ H2

2, such that |〈f, g〉| < ε

and the compression of M2 onto Span{f, z1f, z2f } and onto Span{g, z1g, z2g} is
ε-similar to π . In particular, this implies that both f and g satisfy the assumptions
of Lemma 5.3. Multiplying f and g by unimodular scalars will not change the
properties of these vectors. Hence we may assume that f (0), g(0) > 0. However,
this implies that

√
1− 4ε ≤ 〈f, 1〉, 〈g, 1〉 ≤ 1.

Therefore

|〈f, g〉| ≥ 〈f, 1〉〈g, 1〉 − ‖P⊥
C1f ‖ ‖P⊥C1g‖

≥ (1− 4ε)− (2
√
ε)2 = 1− 8ε.

This contradicts the fact that 〈f, g〉 < ε when ε < 0.1. ��
We suspect that M2(Md) does not have A1(1). We state this as an explicit

problem:

Question 5.5 Does M2(Md) have A1(1) for d ≥ 2?
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Notations

H, E , E∗ Hilbert spaces

B(E, E∗) The space of all bounded linear operators from E to E∗
B(E) The space of all bounded linear operators on E
D
n Open unit polydisc in C

n

H 2(Dn) Hardy space on Dn

H 2
E (D

n) E-valued Hardy space on D
n

H∞
B(E,E∗)(D

n) Set of all B(E, E∗)-valued bounded analytic functions on D
n.

(Mz1 , . . . ,Mzn) n-tuple of multiplication operator by the coordinate

functions on H 2(Dn)

(1) All Hilbert spaces are assumed to be over the complex numbers.
(2) For a closed subspace S of a Hilbert space H, we denote by PS the orthogonal
projection of H onto S .
(3) For nested closed subspaces M1 ⊆ M2 ⊆ H, the orthogonal projection of
M2 onto M1 is denoted by P

M2
M1

.

1 Introduction

Tuples of commuting isometries on Hilbert spaces are cental objects of study in
(multivariable) operator theory. This paper is concerned with the study of analytic
representations, joint invariant subspaces and C∗-algebras of a certain class of tuples
of commuting isometries.

To be precise, let H be a Hilbert space, and let (V1, . . . , Vn) be an n-tuple of
commuting isometries on H. In what follows, we always assume that n ≥ 2. Set

V = n

�
i=1

Vi.

We say that (V1, . . . , Vn) is a pure n-isometry if V is a unilateral shift. A closed
subspace S ⊆ H 2(Dn) is said to be an invariant subspace of H 2(Dn) if MziS ⊆ S
for all i = 1, . . . , n where Mzi is the multiplication operator by the coordinate
function zi on H 2(Dn). Simpler (but complex enough) examples of pure n-isometry
can be obtained by taking restrictions of the n-tuple of multiplication operators by
coordinate functions (Mz1 , . . . ,Mzn) on H 2(Dn) to invariant subspaces of H 2(Dn)

as follows. Given an invariant subspace S of H 2(Dn), we let

Rzi = Mzi |S ∈ B(S) (i = 1, . . . , n).
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Then it is easy to see that (Rz1, . . . , Rzn) is a pure n-isometry. We denote by T (S)
the C∗-algebra generated by the commuting isometries {Rz1 , . . . , Rzn}. We simply
say that T (S) is the C∗-algebra corresponding to the invariant subspace S.

In this paper we aim to address three basic issues of pure n-isometries: (i) analytic
and canonical models for pure n-isometries, (ii) an abstract classification of joint
invariant subspaces for pure n-isometries, and (iii) the nature of C∗-algebra T (S)
where S is a finite codimensional invariant subspace in H 2(Dn). To that aim, for (i)
and (ii), we consider the initial approach by Berger et al. [6] from a more modern
point of view (due to Bercovici et al. [5]) along with the technique of [20]. For (iii),
we will examine Seto’s approach [26] more closely from “subspace” approximation
point of view.

We now briefly outline the setting and the main contributions of this paper. Let
E be a Hilbert space, and let ϕ ∈ H∞

B(E)(D). We say that ϕ is an inner function if

ϕ(eit )∗ϕ(eit ) = IE for almost every t (cf. page 196, [21]). Recall that two n-tuples
of commuting operators (A1, . . . , An) on H and (B1, . . . , Bn) on K are said to be
unitarily equivalent if there exists a unitary operator U : H→ K such that UAi =
BiU for all i = 1, . . . , n. In [5], motivated by Berger et al. [6], Bercovici, Douglas
and Foias proved the following result: A pure n-isometry is unitarily equivalent to
a model pure n-isometry. The model pure n-isometries are defined as follows [5]:
Consider a Hilbert space E , unitary operators {U1, . . . , Un} on E and orthogonal
projections {P1, . . . , Pn} on E . Let {�1, . . . ,�n} ⊆ H∞

B(E)(D) be bounded B(E)-
valued holomorphic functions (polynomials) on D, where

�i(z) = Ui(P
⊥
i + zPi) (z ∈ D),

and i = 1, . . . , n. Then the n-tuple of multiplication operators (M�1, . . . ,M�n) on
H 2
E(D) is called a model pure n-isometry if the following conditions are satisfied:

(a) UiUj = UjUi for all i, j = 1, . . . n;
(b) U1 · · ·Un = IE ;
(c) Pi + U∗i PjUi = Pj + U∗j PiUj ≤ IE for all i �= j ; and
(d) P1+U∗1P2U1+U∗1U∗2P3U2U1+· · ·+U∗1U∗2 · · ·U∗n−1PnUn−1 · · ·U2U1 = IE .

It is easy to see that a model pure n-isometry is also a pure n-isometry (see page
643 in [5]).

We refer to Bercovici et al. [3–5] and also [8–10, 12, 14, 15, 17, 19, 22, 26] and
[27, 28] for more on pure n-isometries, n ≥ 2, and related topics.

Our first main result, Theorem 2.1, states that a pure n-isometry is unitarily
equivalent to an explicit (and canonical) model pure n-isometry. In other words,
given a pure n-isometry (V1, . . . , Vn) on H, we explicitly solve the above condi-
tions (a)–(d) for some Hilbert space E , unitary operators {U1, . . . , Un} on E and
orthogonal projections {P1, . . . , Pn} on E so that the corresponding model pure n-
isometry (M�1, . . . ,M�n) is unitarily equivalent to (V1, . . . , Vn). This also gives a
new proof of Bercovici, Douglas and Foias theorem. On the one hand, our model
pure n-isometry is explicit and canonical. On the other hand, our proof is perhaps
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more computational than the one in [5]. Another advantage of our approach is the
proof of a list of useful equalities related to commuting isometries, which can be
useful in other contexts.

Our second main result concerns a characterization of joint invariant subspaces
of model pure n-isometries. To be precise, let W be a Hilbert space, and let
(M�1, . . . ,M�n) be a model pure n-isometry on H 2

W(D). Let S be a closed sub-
space of H 2

W(D). In Theorem 3.1, we prove that S is invariant for (M�1, . . . ,M�n)

on H 2
W (D) if and only if there exist a Hilbert space W∗, an inner function � ∈

H∞
B(W∗,W)

(D) and a model pure n-isometry (M�1, . . . ,M�n) on H 2
W∗(D) such that

S = �H 2
W∗(D),

and

�i� = ��i,

for all i = 1, . . . , n. Moreover, the above representation is unique in an appropriate
sense (see the remark following Theorem 3.1).

The third and final result concerns C∗-algebras corresponding to finite codimen-
sional invariant subspaces in H 2(Dn). To be more specific, recall that if n = 1
and S and S ′ are invariant subspaces of H 2(D), then UT (S)U∗ = T (S ′) for
some unitary U : S → S ′. Indeed, since S = θH 2(D) for some inner function
θ ∈ H∞(D), it follows, by Beurling theorem, that U := Mθ : H 2(D) → S is a
unitary and hence U∗T (S)U = T (H 2(D)). Clearly, the general case follows from
this special case. For invariant subspaces S and S ′ of H 2(Dn), we say that T (S) and
T (S ′) are isomorphic as C∗-algebras if UT (S)U∗ = T (S ′) holds for some unitary
U : S → S ′. It is then natural to ask: If n > 1 and S and S ′ are invariant subspaces
of H 2(Dn), are T (S) and T (S ′) isomorphic as C∗-algebras?

In the same paper [6], Berger, Coburn and Lebow asked whether T (S) is
isomorphic to T (H 2(D2)) for every finite codimensional invariant subspaces S in
H 2(D2). This question was recently answered positively by Seto in [26]. Here we
extend Seto’s answer from H 2(D2) to the general case H 2(Dn), n ≥ 2.

The rest of this paper is organized as follows. In Sect. 2 we study and review
the analytic construction of pure n-isometries. We also examine a (canonical)
model pure n-isometry. A characterization of invariant subspaces is given in Sect. 3.
Finally, in Sect. 4, we prove that T (S) is isomorphic to T (H 2(Dn)) where S is a
finite codimensional invariant subspaces in H 2(Dn).

2 Pure n-Isometries and Model Pure n-Isometries

In this section, we first derive an explicit analytic representation of a pure n-
isometry. Then we propose a canonical model for pure n-isometries.
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For motivation, let us recall that if X on H is a bounded linear operator, then
X is a unilateral shift operator if and only if X and Mz on H 2

W(X)
(D) are unitarily

equivalent. Here

W(X) = kerX∗ = H �XH,

is the wandering subspace for X (see Halmos [16]) and Mz denotes the multipli-
cation operator by the coordinate function z on H 2

W(X)
(D), that is, (Mzf )(w) =

wf (w) for all f ∈ H 2
W(X)

(D) and w ∈ D. Explicitly, if X is a unilateral shift on H,
then

H = ∞⊕
m=0

XmW(X).

Hence the natural map �X : H→ H 2
W(X)

(D) defined by

�X(X
mη) = zmη,

for all m ≥ 0 and η ∈W(X), is a unitary operator and

�XX = Mz�X.

We call �X the Wold-von Neumann decomposition of the shift X.
Now let H be a Hilbert space, and let (V1, . . . , Vn) be a pure n-isometry on H.

Throughout this paper, we shall use the following notation:

Ṽi = �
j �=i

Vj ,

for all i = 1, . . . , n. For simplicity, we also use the notation

W =W(V ),

and

Wi =W(Vi) and W̃i =W(Ṽi),

for all i = 1, . . . , n. Since V = �n
i=1Vi and Ṽi = V ∗i V for all i = 1, . . . , n, it is

easy to see that

Wi , W̃i ⊆W,

for all i = 1, . . . , n. We denote by PWi
and PW̃i

the orthogonal projections of W
onto the subspaces Wi and W̃i , respectively.
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Theorem 2.1 Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H, V =
�n

i=1Vi , and let W = W(V ). Let �V : H → H 2
W(D) be the Wold-von Neumann

decomposition of V . If Ṽi = V ∗i V and W̃i =W(Ṽi) , then

�V Vi = M�i�V ,

where

�i(z) = Ui(PW̃i
+ zP⊥W̃i

),

for all z ∈ D, and

Ui = (PWVi + Ṽi
∗
)|W ,

is a unitary operator onW and i = 1, . . . , n. In particular, (V1, . . . , Vn) onH and
(M�1, . . . ,M�n) on H

2
W(D) are unitarily equivalent.

Proof Let �V : H → H 2
W(D) be the Wold-von Neumann decomposition of V .

Then

�VVi�
∗
V ∈ {Mz}′,

and hence there exists �i ∈ H∞
B(W)

(D) [16, 21] such that �VVi�
∗
V = M�i or,

equivalently,

�V Vi = M�i�V ,

for all i = 1, . . . , n. Note that M�i on H 2
W (D) is defined by

(M�if )(z) = �i(z)f (z), (2.1)

for all f ∈ H 2
W(D), z ∈ D and i = 1, . . . , n. We now proceed to compute the

bounded analytic functions {�i}ni=1. Our method follows the construction in [20].
In fact, a close variant of Theorem 2.1 below follows from Theorems 3.4 and 3.5 of
[20]. We will only sketch the construction, highlighting the essential ingredients for
our present purpose. Let i ∈ {1, . . . , n}, z ∈ D and η ∈W . By an abuse of notation,
we will also denote the constant function η in H 2

W (D) corresponding to the vector
η ∈W by η itself. Then from (2.1), we have that

�i(z)η = (M�iη)(z) = (�V Vi�
∗
V η)(z).
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Now it follows from the definition of �V that �∗V η = η, and hence �i(z)η =
(�V Viη)(z). But IW = PW̃i

+ Ṽi Ṽ
∗
i |W yields that Viη = ViPW̃i

η + V Ṽ ∗i η and
thus

�VViη = �V (ViPW̃i
η + V Ṽ ∗i η)

= �V (ViPW̃i
η)+�V (V Ṽ ∗i η)

= �V (ViPW̃i
η)+Mz�V (Ṽ

∗
i η),

as �VV = Mz�V . Now, since V ∗(Vi(I − Ṽi Ṽ
∗
i )V

∗
i ) = 0 and V ∗(Ṽ ∗i η) = 0, it

follows that ViPW̃i
η ∈W and Ṽ ∗i η ∈W . This implies that

�VViη = ViPW̃i
η +MzṼ

∗
i η,

and so �i(z)η = ViPW̃i
η + zṼ ∗i η. It follows that �i(z) = Vi |W̃i

+ zṼ ∗i |ṼiWi
as

W = ṼiWi ⊕ W̃i . Finally, W =Wi ⊕ ViW̃i implies that

Ui =
[

Ṽ ∗i |ṼiWi
0

0 Vi |W̃i

]

:
ṼiWi

⊕
W̃i

→
Wi

⊕
ViW̃i

,

is a unitary operator on W . Therefore

�i(z) = Ui(PW̃i
+ zP⊥W̃i

),

for all z ∈ D. By definition of Ui , it follows that Ui = (ViPW̃i
+ Ṽi

∗
)|W . This and

ViPW̃i
= PWVi, (2.2)

yields Ui = (PWVi + Ṽi
∗
)|W . �

We now study the coefficients of the one-variable polynomials in Theorem 2.1
more closely and prove that the corresponding pure n-isometry (M�1, . . . ,M�n)

on H 2
W(D) is a model pure n-isometry (see Sect. 1 for the definition of model pure

n-isometries).
Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H. Consider the ana-

lytic representation (M�1, . . . ,M�n) on H 2
W(D) of (V1, . . . , Vn) as in Theorem 2.1.

First we prove that {Uj }nj=1 is a commutative family. Let p, q ∈ {1, . . . , n} and
p �= q . As W = kerV ∗, it follows that

Ṽ ∗p Ṽ ∗q |W = 0.
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Then using (2.2) we obtain

UpUq = (PWVp + Ṽ ∗p )(PWVq + Ṽ ∗q )|W
= (PWVpPWVq + Ṽ ∗pPWVq + PWVpṼ

∗
q )|W

= (PWVpVq + �
i �=p,q

V ∗i PW̃q
+ VpPW̃p

Ṽ ∗q )|W

= (PWVpVq + ( �
i �=p,q

V ∗i )(PW̃q
+ ṼqPW̃p

Ṽ ∗q ))|W

= (PWVpVq + ( �
i �=p,q

V ∗i ))|W ,

as (PW̃q
+ ṼqPW̃p

Ṽ ∗q )|W = IW , and hence

UpUq = UqUp,

follows by symmetry. Now if I ⊆ {1, . . . , n}, then the same line of arguments as
above yields

�
i∈I

Ui = (PW (�
i∈I

Vi)+ ( �
i∈I c

V ∗i ))|W . (2.3)

In particular, since PWV |W = 0, we have that

n

�
i=1

Ui = IW .

The following lemma will be crucial in what follow.

Lemma 2.2 Fix 1 ≤ j ≤ n. Let I ⊆ {1, . . . , n}, and let j /∈ I . Then

(�
i∈I

U∗i )P⊥W̃j
(�
i∈I

Ui) = ( �
i∈I c\{j}

Vi)( �
i∈I c\{j}

V ∗i )|W − ( �
i∈I c

Vi)( �
i∈I c

V ∗i )|W .

Proof Since PW̃j
= IW−PW Ṽj Ṽ

∗
j |W , we have P⊥W̃j

= PW Ṽj Ṽ
∗
j |W = Ṽj Ṽ

∗
j |W .

By once again using the fact that V ∗|W = PWV |W = 0, and by (2.3), one sees that

(�
i∈I

U∗i )P⊥W̃j
(�
i∈I

Ui) = [(�
i∈I

V ∗i )+ PW ( �
i∈I c

Vi)]Ṽj Ṽ ∗j [PW (�
i∈I

Vi)+ ( �
i∈I c

V ∗i )]|W

= ( �
i∈I c\{j }

Vi)Ṽ
∗
j PW (�

i∈I
Vi)|W

= ( �
i∈I c\{j }

Vi)Ṽ
∗
j (I − V V ∗)(�

i∈I
Vi)|W

= ( �
i∈I c\{j }

Vi)( �
i∈I c\{j }

V ∗i )|W − ( �
i∈I c

Vi)( �
i∈I c

V ∗i )|W

This completes the proof of the lemma. �
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Theorem 2.3 If (V1, . . . , Vn) be an n-isometry on a Hilbert space H, and let
U1, . . . , Un be unitary operators as in Theorem 2.1. Then

(a) UpUq = UqUp for p, q = 1, . . . n,
(b)

∏n
p=1 Up = IW ,

(c) (P⊥W̃i

+ U∗i P⊥W̃j

Ui) = (P⊥W̃j

+ U∗j P⊥W̃i

Uj ) ≤ IW (1 ≤ i < j ≤ n),

(d) P⊥W̃1
+U∗1 P⊥W̃2

U1+U∗1 U∗2P⊥W̃2
U2U1+· · ·+(�

n−1
i=1 U∗i )P⊥W̃n

(�
n−1
i=1 Ui) = IW .

Proof By Lemma 2.2 applied to I = {p} and j = q , where p, q ∈ {1, . . . , n} and
p �= q , we have

U∗pP⊥W̃q
Up = ( �

i �=p,q
Vi)( �

i �=p,q
V ∗i )|W − ṼpṼp

∗|W ,

hence

(P⊥W̃p
+ U∗pP⊥W̃q

Up) = PW ṼpṼp
∗|W + ( �

i �=p,q
Vi)( �

i �=p,q
V ∗i )|W − PW ṼpṼp

∗|W

= ( �
i �=p,q

Vi)( �
i �=p,q

V ∗i )|W

≤ IW .

Therefore by symmetry, we have

(P⊥W̃p
+ U∗pP⊥W̃q

Up) = (P⊥W̃q
+ U∗q P⊥W̃p

Uq) ≤ IW .

Finally, we let Ij = {1, . . . , j − 1} for all 1 < j ≤ n and In+1 = {1, . . . , n}. Then
Lemma 2.2 implies that for 1 < j ≤ n,

( �
i∈Ij

Ui)P
⊥
W̃j

( �
i∈Ij

U∗i ) = [( �
i∈I cj+1

Vi)( �
i∈I cj+1

V ∗i )− ( �
i∈I cj

Vi)( �
i∈I cj

V ∗i )]|W .

This and P⊥W̃1
= Ṽ1Ṽ

∗
1 |W imply that

P⊥W̃1
+ U∗1P⊥W̃2

U1 + U∗1U∗2P⊥W̃3
U2U1 + · · · + (

n−1
�
i=1

U∗i )P⊥W̃n
(
n−1
�
i=1

Ui) = IW .

This completes the proof of the theorem. �
As a corollary, we have:

Corollary 2.4 Let H be a Hilbert space and (V1, . . . , Vn) be a pure n-isometry
on H. Let (M�1 , . . . ,M�n) be the pure n-isometry as constructed in Theorem 2.1,
and let (M�1, . . . ,M�n) on H

2
W̃ (D), for some Hilbert space W̃ , unitary operators
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{Ũi}ni=1 and orthogonal projections {Pi}ni=1 on W̃ , be a model pure n-isometry.
Then:

(a) (M�1 , . . . ,M�n) is a model pure n-isometry.
(b) (V1, . . . , Vn) and (M�1, . . . ,M�n) are unitarily equivalent.
(c) (V1, . . . , Vn) and (M�1 , . . . ,M�n) are unitarily equivalent if and only if there

exists a unitary operator W : W → W̃ such that WUi = ŨiW and WPi =
P̃iW for all i = 1, . . . , n.

Proof Parts (a) and (b) follows directly from the previous theorem. The third part
is easy and readily follows from Theorem 4.1 in [20] or Theorem 2.9 in [5]. �

Combining Corollary 2.4 with Theorem 2.3, we have the following characteriza-
tion of commutative isometric factors of shift operators.

Corollary 2.5 Let E be a Hilbert space, and let {�i}ni=1 ⊆ H∞
B(E)(D) be a

commutative family of isometric multipliers. Then

Mz =
n

�
i=1

M�j ,

or, equivalently

n

�
i=1

�j (z) = zIE , (z ∈ D)

if and only if, up to unitary equivalence, (M�1, . . . ,M�n) is a model pure n-
isometry.

In other words, zIE factors as n commuting isometric multipliers {�i}ni=1 in
H∞
B(E)(D) if and only if there exist unitary operators {Ui}ni=1 on E and orthogonal

projections {Pi}ni=1 on E satisfying the properties (a)–(d) in Theorem 2.3 such that
�i(z) = Ui(P

⊥
i + zPi) for all i = 1, . . . , n.

3 Joint Invariant Subspaces

Let W be a Hilbert space. Let (M�1, . . . ,M�n) be a model pure n-isometry on
H 2
W(D), and let S be a closed invariant subspace for (M�1, . . . ,M�n) on H 2

W(D),
that is

M�iS ⊆ S,

for all i = 1, . . . , n. Then (M�1 |S , . . . ,M�n |S) is an n-tuple of commuting
isometries on S. Clearly

n

�
i=1

(M�i |S ) = (
n

�
i=1

M�i )|S ,
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and since

n

�
j=1

M�j = Mz,

it follows that

(
n

�
i=1

M�i )|S = Mz|S , (3.1)

that is, S is a invariant subspace for Mz on H 2
W(D). Moreover, since Mz|S is a

unilateral shift on S, the tuple (M�1 |S , . . . ,M�n |S) is a pure n-isometry on S. Then
by Corollary 2.4 there is a model pure n-isometry (M�1 , . . . ,M�n) on H 2

W̃(D), for

some Hilbert space W̃ , such that (M�1 |S , . . . ,M�n |S) and (M�1 , . . . ,M�n) are
unitarily equivalent. The main purpose of this section is to describe the invariant
subspaces S in terms of the model pure n-isometry (M�1 , . . . ,M�n).

As a motivational example, consider the classical n = 1 case. Here the model
pure 1-isometry is the multiplication operatorMz on H 2

W (D) for some Hilbert space
W . Let S be a closed subspace of H 2

W(D). Then by the Beurling [7], Lax [18] and
Halmos [16] theorem (or see page 239, Theorem 2.1 in [13]), S is invariant for Mz if
and only if there exist a Hilbert space W∗ and an inner function � ∈ H∞

B(W∗,W)
(D)

such that

S = �H 2
W∗(D).

Moreover, in this case, if we set

V =Mz|S ,

then W∗ = S � zS and V on S and Mz on H 2
W∗(D) are unitarily equivalent. This

follows directly from the above representation of S. Indeed, it follows that X =
M� : H 2

W∗(D)→ ranM� = S is a unitary operator and

XMz = VX.

Now, we proceed with the general case.

Theorem 3.1 Let n > 1. Let W be a Hilbert space, (M�1, . . . ,M�n) be a model
pure n-isometry on H 2

W(D), and let S be a closed subspace of H 2
W (D). Then S

is invariant for (M�1, . . . ,M�n) on H 2
W(D) if and only if there exist a Hilbert

space W∗, an inner function � ∈ H∞
B(W∗,W)

(D) and a model pure n-isometry

(M�1 , . . . ,M�n) on H
2
W∗(D) such that

S = �H 2
W∗(D),
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and

�j� = ��j,

for all j = 1, . . . , n.

Proof Let (M�1 , . . . ,M�n) be a model pure n-isometry on H 2
W(D), and let S be a

closed invariant subspace for (M�1 , . . . ,M�n) on H 2
W (D). Let

W∗ = S � zS.

Since S is an invariant subspace for Mz on H 2
W(D) (see Eq. (3.1)), by Beurling, Lax

and Halmos theorem, there exists an inner function � ∈ H∞
B(W∗,W)

(D) such that S
can be represented as

S = �H 2
W∗(D),

If 1 ≤ j ≤ n, then

�jS ⊆ S,

implies that ran (M�jM�) ⊆ ran M�, and so by Douglas’s range and inclusion
theorem [11]

M�jM� = M�M�j ,

for some �j ∈ H∞
B(W∗)(D). Note that M�jM� is an isometry and ‖��jf ‖ =

‖�jf ‖ for each f ∈ H 2
W∗(D). But then ‖M�j f ‖ = ‖f ‖ implies that M�j is an

isometry, that is, �j is an inner function, and hence

M�j = M∗
�M�jM�,

for all j = 1, . . . , n. So

n

�
i=1

M�i = (M∗
�M�1M�) · · · (M∗

�M�nM�).

Now Pran M� = M�M
∗
� and �j�H 2

W∗(D) ⊆ �H 2
W∗(D) implies that

M�M
∗
�M�jM� = M�jM�,

for all j = 1, . . . , n. Consequently

n

�
j=1

M�j = M∗
�(

n

�
j=1

M�j )M
∗
� = M∗

�MzM� = M∗
�M�Mz = Mz,
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that is, (M�1, . . . ,M�n) is a pure n-isometry on H 2
W∗(D). In view of Corollary 2.5,

this also implies that the tuple (M�1 , . . . ,M�n) is a model pure n-isometry. This
completes the proof of the theorem. �

The representation of S is unique in the following sense: if there exist a Hilbert
space Ŵ , an inner multiplier �̂ ∈ H∞

B(Ŵ,W)
(D) and a model pure n-isometry

(M
�̂1
, . . . ,M

�̂n
) on H 2

Ŵ(D) such that S = �̂H 2
Ŵ(D) and �i�̂ = �̂�̂i for all

i = 1, . . . , n, then there exists a unitary τ :W∗ → Ŵ such that

� = �̂τ,

and

�̂j τ = τ�j (j = 1, . . . , n).

In other words, the model pure n-isometries (M
�̂1
, . . . ,M

�̂n
) on H 2

Ŵ (D) and

(M�1 , . . . ,M�n) on H 2
W∗(D) are unitary equivalent (under the same unitary τ ).

Indeed, the existence of the unitary τ along with the first equality follows from the
uniqueness of the Beurling, Lax and Halmos theorem (cf. page 239, Theorem 2.1 in
[13]). For the second equality, observe that (see the uniqueness part in [19])

�̂τ�i = ��i = �i� = �i�̂τ,

that is �̂τ�i = �̂�̂iτ , and so

τ�i = �̂iτ,

for all i = 1, . . . , n.
It is curious to note that the content of Theorem 3.1 is related to the question [1]

and its answer [24] on the classifications of invariant subspaces of 	-isometries. A
similar result also holds for invariant subspaces for the multiplication operator tuple
on the Hardy space over the unit polydisc in Cn (see [19]).

Our approach to pure n-isometries has other applications to n-tuples, n ≥ 2, of
commuting contractions (cf. see [9]) that we will explore in a future paper.

4 C∗-Algebras Generated by Commuting Isometries

In this section, we extend Seto’s result [26] on isomorphic C∗-algebras of invariant
subspaces of finite codimension in H 2(D2) to that in H 2(Dn), n ≥ 2. Given a
Hilbert space H, the set of all compact operators from H to itself is denoted by
K(H). Recall that, for a closed subspace S ⊆ H 2(Dn), we say that S is an invariant
subspace of H 2(Dn) if MziS ⊆ S for all i = 1, . . . , n. Also recall that in the case
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of an invariant subspace S of H 2(Dn), (Rz1 , . . . , Rzn) is an n-isometry on S where

Rzi = Mzi |S ∈ B(S) (i = 1, . . . , n).

Lemma 4.1 If S is an invariant subspace of finite codimension in H 2(Dn), then
K(S) ⊆ T (S).

Proof Since T (S) is an irreducible C∗-algebra (cf. [26, Proposition 2.2]), it is
enough to prove that T (S) contains a non-zero compact operator. As

n

�
i=1

(IH 2(Dn) −MziM
∗
zi
) = PC ∈ T (H 2(Dn)),

we are done when S = H 2(Dn). Let us now suppose that S is a proper subspace of
H 2(Dn). For arbitrary 1 ≤ i < j ≤ n, we have

[R∗zi , Rzj ] = PSM∗
zi
Mzj |S − PSMzj PSM∗

zi
|S = PSMzj PS⊥M∗

zi
|S ∈ K(S),

as S⊥ is finite dimensional. It remains for us to prove that [R∗zi , Rzj ] �= 0 for
some 1 ≤ i < j ≤ n. If not, then S is a proper doubly commuting invariant
subspace with finite codimension. As a result, we would have S = ϕH 2(Dn) for
some inner function ϕ ∈ H∞(Dn) ([25]) and hence S has infinite codimension (see
the corollary in page 969, [2]), a contradiction. �

In what follows, a finite rank operator on a Hilbert space will be denoted by F

(without referring to the ambient Hilbert space). Also, if M is an invariant subspaces
of H 2(Dn), then we set

RM
zi
= Mzi |M ∈ B(M),

and simply write Rzi , i = 1, . . . , n, when M is clear from the context.

Lemma 4.2 SupposeM1 andM2 are invariant subspaces ofH 2(Dn),M1 ⊆M2
and dim(M2�M1) <∞. Then T (M1) = {PM1T |M1 : T ∈ T (M2)}. Moreover,

if L is a closed subspace ofM1 and PM2
L ∈ T (M2), then P

M1
L ∈ T (M1).

Proof Note that RM2
zi |M1 = R

M1
zi and so, by taking adjoint, we have

PM1(R
M2
zi

)∗|M1 = (RM1
zi

)∗,

for all i = 1, . . . , n. Then R
M1
zi (R

M1
zj )∗ = PM1R

M2
zi P

M2
M1

(R
M2
zj )∗|M1 , i =

1, . . . , n. This yields

RM1
zi

(RM1
zj

)∗ = PM1R
M2
zi

IM2(R
M2
zj

)∗|M1 − PM1R
M2
zi

P
M2
M2�M1

(RM2
zi

)∗|M1

= PM1R
M2
zi

(RM2
zj

)∗|M1 + F,
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for all i, j = 1, . . . , n, as dim(M2 � M1) < ∞. Similarly (R
M1
zj )∗RM1

zi =
PM1(R

M2
zj )∗RM2

zi |M1 + F for all i, j = 1, . . . , n. Now let T1 ∈ T (M1) be a
finite word formed from the symbols

{RM1
zi

, (RM1
zi

)∗ : i = 1, . . . , n},

and let T2 ∈ T (M2) be the same word but formed from the corresponding symbols
in

{RM2
zi

, (RM2
zi

)∗ : i = 1, . . . , n}.

Then T1 = PM1T2|M1+F . Since both T (M1) and {PM1T |M1 : T ∈ T (M2)} are
closed subspaces of B(M1) and both contain all the compact operators in B(M1),
it follows that T (M1) = {PM1T |M1 : T ∈ T (M2)}. The second assertion now
clearly follows from the first one. �

A thorough understanding of co-doubly commuting invariant subspaces of finite
codimension is important to analyze C∗-algebras of invariant subspaces of finite
codimension in H 2(Dn). If S is a closed invariant subspace of H 2(D), then we know
that S = θH 2(D) for some inner function θ ∈ H∞(D). To simplify notations, for a
given inner function θ ∈ H∞(D), we denote

Sθ = θH 2(D), and Qθ = H 2(D)� θH 2(D).

Also, given an inner function θi ∈ H∞(D), 1 ≤ i ≤ n, denote by Mθi the
multiplication operator

(Mθif )(z1, . . . , zn) = θi(zi)f (z1, . . . , zn)

for all f ∈ H 2(Dn) and (z1, . . . , zn) ∈ Dn. Recall now that an invariant subspace S
of H 2(Dn) is said to be co-doubly commuting [23] if S = S� where

S� = (Qϕ1 ⊗ · · · ⊗Qϕn)
⊥, (4.1)

and ϕi , i = 1, . . . , n, is either inner or the zero function. We warn the reader that
the suffix � in S� refers to the finite Blaschke products {ϕi}ni=1. Here, in view of
(4.1) (or see [23]), we have

(MϕpM
∗
ϕp
)(MϕqM

∗
ϕq
) = (MϕqM

∗
ϕq
)(MϕpM

∗
ϕp
),

for all p, q = 1, . . . , n, and

PS�
= IH 2(Dn) −

n

�
i=1

(IH 2(Dn) −MϕiM
∗
ϕi
). (4.2)
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It also follows that

S� = Mϕ1H
2(Dn)+ · · · +MϕnH

2(Dn).

Therefore, S� has finite codimension if and only if ϕi is a finite Blashcke product
for all i = 1, . . . , n. Moreover, it can be proved following the same line of argument
as Lemma 3.1 in [26] that if S is an invariant subspace of H 2(Dn) then S is of finite
codimension if and only if there exist finite Blaschke products ϕ1, . . . , ϕn such that

S� ⊆ S.

Given S� as in (4.1) and 1 ≤ i < j ≤ n, we define Q�[i, j ] by

Q�[i, j ] = Qϕi ⊗Qϕi+1 ⊗ · · · ⊗Qϕj ⊆ H 2(Dj−i+1).

Lemma 4.3 Let {ϕi}ni=1 be finite Blaschke products. If

L1 = Q�[1, n− 1]⊥ ⊗H 2(D), L2 = Q�[1, n− 1] ⊗ Sϕn ,

L3 = Q�[1, n− 1] ⊗H 2(D),L′2 = Q�[1, n− 1] ⊗ ϕnSϕn

and

L′′2 = Q�[1, n− 1] ⊗ ϕnQϕn ,

then PL1, PL2, PL′2 and PL′′2 are in T (H 2(Dn)) and PS�

L1
, P

S�

L2
, P

S�

L′2 and PS�

L′′2 are

in T (S�).

Proof Clearly S� = L1⊕L2, H 2(Dn) = L1⊕L3 and L2 = L′2⊕L′′2. By virtue of
Lemma 4.2, we only prove the lemma for H 2(Dn). Since L′′2 is finite-dimensional,
it follows, by Lemma 4.1, that PL′′2 ∈ T (H 2(Dn)). Since ϕi ∈ H∞(D) is a finite
Blaschke product, it follows that ϕi is holomorphic in an open set containing the
closure of the disc, and hence Mϕi = ϕi(Mzi ) ∈ T (H 2(Dn)) for all i = 1, . . . , n.
Then, by (4.2), PS�

∈ T (H 2(Dn)). In view of S� = L1 ⊕ L2, it is then enough to
prove only that PL2 ∈ T (H 2(Dn)). This readily follows from the equality

PL2 =
( n−1
�
i=1

(IH 2(Dn) −MϕiM
∗
ϕi
)
)

MϕnM
∗
ϕn
.

This completes the proof of the lemma. �
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In particular, T (S�) contains a wealth of orthogonal projections. This leads to
some further observations concerning the C∗-algebra T (S�). First, given S� as in
(4.1), we consider the unitary operator U : H 2(Dn)→ S� defined by

U =
[

IL1 0
0 Mϕn

]

:
L1

⊕
L3

→
L1

⊕
L2

.

Then U = PL1+MϕnPL3 and U∗ = P
S�

L1
+M∗

ϕn
P
S�

L2
. We have the following result:

Theorem 4.4 If {ϕi}ni=1 are finite Blaschke products, then

U∗T (S�)U = T (H 2(Dn)).

In particular, T (S�) and T (H 2(Dn)) are unitarily equivalent.

Proof A simple computation first confirms that

U∗RznU = Mzn ∈ T (H 2(Dn)),

that is

Mzn ∈ U∗T (S�)U and Rzn ∈ UT (H 2(Dn))U∗.

Next, let i = 1, . . . , n− 1. Then

RziU = MziPL1 + RziMϕnPL3 = MziPL1 +MziMϕnPL3,

as MϕnL3 = L2 ⊆ S�, and so

U∗RziU = (P
S�

L1
+M∗

ϕn
P
S�

L2
)(MziPL1 +MziMϕnPL3)

= MziPL1 + PL1MziMϕnPL3 +M∗
ϕn
PL2MziMϕnPL3 ,

as MziL1 ⊆ L1 and MziMϕnL3 = MziL2 ⊆ S�. Then U∗RziU ∈ T (H 2(Dn)) for
al i = 1, . . . , n, by Lemma 4.3. In particular

U∗T (S�)U ⊆ T (H 2(Dn)).

On the other hand, since L2 = L′2 ⊕ L′′2 and L′′2 is finite dimensional, it follows
that PL2 = PL′2 + F , and thus U∗ = U∗|L1 + U∗|L′2 + F . Now UMziU

∗|L1 =
UMzi |L1 = Mzi |L1 as ziL1 ⊆ L1 and hence

UMziU
∗|L1 = Rzi |L1,
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and on the other hand

UMziU
∗|L′2 = U(MziM

∗
ϕn
|L′2) = U(MziPS�

M∗
ϕn
)|L′2 = U(RziR

∗
ϕn
)|L′2,

where Rϕn = Mϕn |S�
. Moreover, since L3 = L2⊕S⊥� and S⊥� is finite dimensional,

it follows that PL3 = PL2 + F , and thus

UMziU
∗|L′2 = PL1RziR

∗
ϕn
|L′2 +MϕnPL3RziR

∗
ϕn
|L′2

= PL1RziR
∗
ϕn
|L′2 +MϕnPL2RziR

∗
ϕn
|L′2 + F

= P
S�

L1
RziR

∗
ϕn
|L′2 + RϕnP

S�

L2
RziR

∗
ϕn
|L′2 + F,

and hence

UMziU
∗ = RziP

S�

L1
+ P

S�

L1
RziR

∗
ϕn
P
S�

L′2 + RϕnP
S�

L2
RziR

∗
ϕn
P
S�

L′2 + F.

By Lemma 4.3, it follows then that UMziU
∗ ∈ T (S�) and so

UT (H 2(Dn))U∗ ⊆ T (S�).

Therefore, the conclusion follows from the fact that U∗RznU = Mzn ∈ T (H 2(Dn)).
�

Now let S be an invariant subspace of finite codimension, and let S� ⊆ S, as in
(4.1), for some finite Blashcke products {ϕi}ni=1. We proceed to prove that T (S) is
unitarily equivalent to T (S�). Let

m := dim(S � S�).

Observe that

PS�
=Mϕ1M

∗
ϕ1
+ (IH 2(Dn) −Mϕ1M

∗
ϕ1
)
(

IH 2(Dn) −
n

�
i=2

(IH 2(Dn) −MϕiM
∗
ϕi
)
)

,

and so

S� =
(

Sϕ1 ⊗H 2(Dn−1)
)

⊕
(

Qϕ1 ⊗Q�[2, n]⊥
)

.

Lemma 4.5 PS
Sϕ1⊗H 2(Dn−1)

, PS
Qϕ1⊗Q�[2,n]⊥ ∈ T (S) and

P
S�

Sϕ1⊗H 2(Dn−1)
, P

S�

Qϕ1⊗Q�[2,n]⊥ ∈ T (S�).
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Proof First one observes that, by virtue of Lemma 4.2, it is enough to prove the
result for S. Note that Mϕ1S ⊆ S. Define Rϕ1 ∈ B(S) by Rϕ1 = Mϕ1 |S . Then
Rϕ1 = ϕ1(Mz1)|S ∈ T (S) and

PMϕ1S = Rϕ1R
∗
ϕ1
∈ T (S).

Now on the one hand

Sϕ1 ⊗H 2(Dn−1) = Mϕ1H
2(Dn) = Mϕ1S ⊕

(

Mϕ1H
2(Dn)�Mϕ1S

)

,

also, Mϕ1H
2(Dn) �Mϕ1S = Mϕ1(H

2(Dn) � S) is finite dimensional, and hence
we conclude PSϕ1⊗H 2(Dn−1) ∈ T (S). This along with dim (S � S�) < ∞ and the
decomposition

S = (Sϕ1 ⊗H 2(Dn−1))⊕ (Qϕ1 ⊗Q�[2, n]⊥)⊕ (S � S�),

implies that PQϕ1⊗Q�[2,n]⊥ ∈ T (S). This completes the proof of the lemma. �

For simplicity, let us introduce some more notation. Given q ∈ N, let us denote

C
⊗q = C⊗ · · · ⊗ C ⊆ H 2(Dq).

Note that C⊗q is the one-dimensional subspace consisting of the constant functions
in H 2(Dq). Recalling dim(S � S�) = m(< ∞), we consider the orthogonal
decomposition of Sϕ1 ⊗H 2(Dn−1) as:

Sϕ1 ⊗H 2(Dn−1) = S1 ⊕ S2 ⊕ S3,

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

S1 = (ϕ1Qzm)⊗ C⊗(n−2) ⊗H 2(D)

S2 = Szmϕ1 ⊗C⊗(n−2) ⊗H 2(D)

S3 = Sϕ1 ⊗ (C⊗(n−2))⊥ ⊗H 2(D).

Finally, we define

L = S2 ⊕ S3 ⊕
(

Qϕ1 ⊗Q�[2, n]⊥
)

.

With this notation we have

S� = S1 ⊕ L,
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and

S = (S � S�)⊕ S1 ⊕ L.

Lemma 4.6 PS
Si
∈ T (S) and PS�

Si
∈ T (S�) for all i = 1, 2, 3.

Proof In view of Lemma 4.2, it is enough to prove that PS
Si
∈ T (S), i = 1, 2, 3.

Note that PSϕ1⊗C⊗(n−2)⊗H 2(D) ∈ T (S) as

PSϕ1⊗C⊗(n−2)⊗H 2(D) = PSϕ1⊗H 2(Dn−1)(IS − X)PSϕ1⊗H 2(Dn−1),

where

X =
∑

2≤i1<···<ik≤n−1

(−1)k+1Rzi1
· · ·Rzik

R∗zi1 · · ·R
∗
zik
.

Therefore

PS3 = PSϕ1⊗H 2(Dn−1) − PSϕ1⊗C⊗(n−2)⊗H 2(D) ∈ T (S).

Finally, since PS2 = Rm
z1
PSϕ1⊗C⊗(n−2)⊗H 2(D)R

∗m
z1

and S1 ⊕ S2 = Sϕ1 ⊗ C⊗(n−2) ⊗
H 2(D), it follows that PS1 and PS2 are in T (S). �

Before we proceed to the unitary equivalence of the C∗-algebras T (S) and
T (S�) we note that

ϕ1Qzm = span {ϕ1, ϕ1z, . . . , ϕ1z
m−1}.

Theorem 4.7 If S is a finite co-dimensional invariant subspace of H 2(Dn) and
S� ⊆ S for some finite Blaschke products {ϕi}ni=1, then T (S) and T (S�) are
unitarily equivalent.

Proof By noting that H 2(D) = C⊕Sz, we decompose S1 as S1 = F1⊕M1 where

F1 = (ϕ1Qzm)⊗ C
⊗(n−1), and M1 = (ϕ1Qzm)⊗ C

⊗(n−2) ⊗ Sz.

Taking into consideration dimF1 = dim (S � S�), we have a unitary V : F1 →
S � S�, and then, using the decompositions

S� = F1 ⊕M1 ⊕ L.

and

S = (S � S�)⊕ S1 ⊕ L,
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we see that

U =
⎡

⎣

V 0 0
0 M∗

zn
0

0 0 IL

⎤

⎦ : F1 ⊕M1 ⊕ L→ (S � S�)⊕ S1 ⊕ L,

defines a unitary from S� to S. We claim that U∗T (S)U = T (S�). First we
prove that U∗T (S)U ⊆ T (S�). Since dimF1 < ∞, it suffices to prove that
U∗RS

zi
U |M1⊕L ∈ T (S�) for all i = 1, · · · , n. Observe first that UM1 =

M∗
zn
M1 = S1 ⊆ S�, MznS1 ⊆ S1 and MznL ⊆ L. Since

U∗RS
zn
U |M1⊕L = U∗MznM

∗
zn
|M1 +Mzn |L,

and U∗MznM
∗
zn
|M1 = M2

zn
M∗

zn
|M1 =M2

zn
PS�

M∗
zn
|M1 , it follows that

U∗RS
zn
U |M1⊕L = (RS�

zn
)2(RS�

zn
)∗PS�

M1
+ RS�

zn
P
S�

L ∈ T (S�).

Now for 1 < i < n, we have

U∗RS
zi
U |M1⊕L = U∗MziM

∗
zn
|M1 + U∗Mzi |L,

where U∗MziM
∗
zn
|M1 = MziM

∗
zn
|M1 as ziS1 ⊆ S3 ⊆ L. On the other hand, since

ziS2 ⊆ S3 we have ziL ⊆ L and hence U∗Mzi |L = Mzi |L, whence

U∗RS
zi
U |M1⊕L = RS�

zi
(RS�

zn
)∗PS�

M1
+ RS�

zi
P
S�

L ∈ T (S�).

Now we decompose M1 as M1 = K1 ⊕ K̃1 where

K1 = (ϕ1Qzm−1)⊗ C
⊗(n−2) ⊗ Sz and K̃1 = (ϕ1z

m−1
C)⊗C

⊗(n−2) ⊗ Sz.

Then

U∗RS
z1
U |M1 = U∗Mz1M

∗
zn
|K1 +U∗Mz1M

∗
zn
|K̃1

=MznMz1M
∗
zn
|K1 +Mz1M

∗
zn
|K̃1

,

as Mz1M
∗
zn
K1 ⊆ S1 and Mz1M

∗
zn
K̃1 ⊆ S2. On the other hand, U∗RS

z1
U |S2⊕S3 =

Mz1 |S2⊕S3 as Mz1(S2 ⊕ S3) ⊆ S2 ⊕ S3 ⊆ L, and finally, by denoting N = Qϕ1 ⊗
Q�[2, n]⊥, we have

U∗RS
z1
U |N = U∗Mz1 |N = U∗(IS − PS

S1
)Mz1 |N + U∗PS

S1
Mz1 |N .

Then S � S1 = (S � S�)⊕ L and Mz1N ⊆ S� implies that

U∗RS
z1
U |N = P

S�

L Mz1 |N +MznP
S�

S1
Mz1 |N ,
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and so

U∗RS
z1
U |M1⊕L = RS�

zn
RS�
z1

(RS�
zn

)∗PS�

K1
+ RS�

z1
(RS�

zn
)∗PS�

K̃1
+ RS�

z1
P
S�

S2⊕S3

+ P
S�

L RS�
z1

P
S�

N + RS�
zn

P
S�

S1
RS�
z1

P
S�

N + F.

This implies that U∗RS
z1
U ∈ T (S�), and therefore U∗T (S)U ⊆ T (S�). We now

proceed to prove the reverse inclusion UT (S�)U∗ ∈ T (S). Since dim(S � S�) <
∞, it is enough to prove that UR

S�
zi U∗|S1⊕L ∈ T (S) for all i = 1, . . . , n. Once

again, note that U∗S1 = M1 ⊆ S�, znM1 ⊆ M1, znS1 ⊆ S1 and znL ⊆ L.
Hence

URS�
zn

U∗|S1⊕L = UM2
zn
|S1 + UMzn |L = Mzn |S1 +Mzn |L,

that is

URS�
zn

U∗|S1⊕L = RS
zn
PS
S1⊕L ∈ T (S).

Now, for fixed 1 < i < n, we have ziM1 ⊆ S3 and ziL ⊆ L. Then

URS�
zi

U∗|S1⊕L = UMziMzn |S1 + UMzi |L
=MziMzn |S1 +Mzi |L
= RS

zi
RS
zn
PS
S1
+ RS

zi
PL ∈ T (S).

Finally, we consider the decomposition S1 = S ′1 ⊕ S ′′1 where

S ′1 = (ϕ1Qzm−1)⊗ C
⊗(n−2) ⊗H 2(D) and S ′′1 = (ϕ1z

m−1
C)⊗ C

⊗(n−2) ⊗H 2(D).

Then

URS�
z1

U∗|S1 = UMz1Mzn |S ′1 + UMz1Mzn |S ′′1
= M∗

zn
Mz1Mzn |S ′1 +Mz1Mzn |S ′′1

= Mz1 |S ′1 +Mz1Mzn |S ′′1 ,

as z1znS ′1 ⊆M1 and z1znS ′′1 ⊆ S2. Moreover

URS�
z1

U∗|S2⊕S3 = UMz1 |S2⊕S3 = Mz1 |S2⊕S3,

as z1(S2 ⊕ S3) ⊆ S2 ⊕ S3. From the definition of N , it follows that

URS�
z1

U∗|N = UP
S�

M1
Mz1 |N + U(IS�

− P
S�

M1
)Mz1 |N ,
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this in turn implies that

URS�
z1

U∗|N = M∗
zn
PS
M1

Mz1 |N + PS
LMz1 |N + F,

as S� �M1 = F1 ⊕ L and F1 is finite dimensional. Therefore

URS�
z1

U∗|S1⊕L = RS
z1
PS
S ′1 + RS

z1
RS
zn
PS
S ′′1 + RS

z1
PS
S2⊕S3

+ (RS
zn
)∗PS

M1
Mz1P

S
N + PS

LRS
z1
PS
N + F ∈ T (S).

This completes the proof of the theorem. �
On combining Theorems 4.4 and 4.7, we have the following:

Theorem 4.8 If S is a finite co-dimensional invariant subspace of H 2(Dn), then
T (S) and T (H 2(Dn)) are unitarily equivalent.

In the case n = 2, the proof of the above result is considerably simpler and direct
than the one by Seto [26] (for instance, if n = 2, then 1 < i < n case does not
appear in the proof of Theorem 4.7).
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Abstract This survey focuses on two main types of finite-rank perturbations:
self-adjoint and unitary. We describe both classical and more recent spectral
results, paying special attention to singular self-adjoint perturbations and model
representations of unitary perturbations.
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1 Introduction

Let A be a self-adjoint (possibly unbounded) operator on a separable Hilbert space
H. Fix a d-dimensional subspace K ≤ H. Consider all self-adjoint perturbations
A + K with RanK ⊂ K. All self-adjoint perturbations A + K are formally given
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by the family of self-adjoint finite-rank perturbations:

A
	
= A+ B	B∗ (1.1)

for some Hermitian d × d matrix 	, where B : Cd → K is an invertible coordinate
operator that takes the standard basis {ek}dk=1 of Cd into a basis Bek of K. Reducing
our attention to the essence of the problem, we always assume without loss of
generality that K is cyclic for A on H, that is, H = clos span{(A − zI)−1K :
z ∈ C \R}. See Sect. 5 for a more general definition of A

	
which applies when the

functions Bek do not belong to the Hilbert space H, but are instead taken from a
larger space.

The family of self-adjoint rank-one perturbations represents a special case of the
family of finite-rank perturbations given in Eq. (1.1), and can be formally given by

Aγ = A+ γ ( · , ϕ)ϕ, ϕ ∈ K (1.2)

with parameter γ ∈ R. See Sect. 3.1 for the precise definition, as well as Sect. 1.1
regarding notation on A versus A.

Interest in this type of perturbation problem originally arose from the theory
of self-adjoint extensions [83]. Natural applications to the variation of boundary
conditions of differential operators, in particular Sturm–Liouville operators, were
investigated by Aronszajn and Donoghue in the 1950s. Other famous perturbation
theoretic results, such as those by von Neumann and Kato–Rosenblum, apply
because rank-one perturbations are trace class. The great achievements in this field
furnish a rather concrete description of the spectral properties of the perturbed
operators Aγ . See Sect. 3 for a sampling of these results.

The spectral theory for quantum mechanical systems (see e.g. [6]), large random
matrices (see e.g. [16]) and free probability (see e.g. [15]), and the decoupling
of CMV matrices (see e.g. [77, Section 4.5]) present other standard applications.
Additional applications to quantum graph theory arise from transforming the graph
to a tree by adding partition vertices to existing edges and imposing boundary
conditions on the partition vertices [19, Ch. 3]. The number of partition vertices
that needs to be added in order to transform a graph into a tree is equal to the first
Betti or cyclomatic number of the original graph, which equals the number of edges
minus the number of vertices plus the number of connected components.

In the late 1980s and early 1990s, a surge of interest took place in perturbation
theory following the discovery of the celebrated Simon–Wolff criterion, which
was used in a proof of Anderson localization for the discrete random Schrödinger
operator in dimension one. A brief discussion of the Simon–Wolff criterion is
included in Sect. 8.2.

Given two arbitrary operators on the same Hilbert space, it is generally not easy
to find out whether they are related via a rank-one or a finite-rank perturbation. The
situation is different if we consider two (so-called) Anderson-type Hamiltonians.
We refer the reader to Sect. 8.2 for a definition. For now it suffices to know that
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they are perturbation problems with a random perturbation that is almost surely
non-compact. Under mild assumptions, the essential part of two realizations of an
Anderson-type Hamiltonian are related by a rank-one perturbation (almost surely
with respect to the product of the probability measures), see [53].

Unitary perturbation theory is the other main topic of this survey. Let U be a
unitary operator on a Hilbert space H. Fix a d-dimensional subspace R ≤ H. Then
the set of operators K with RanK ⊂ R that make U+K a unitary operator can be
parametrized by unitary d × d matrices. Specifically, there is a bijective coordinate
operator J : Cd → R so that K = J(α − I)J∗U for a unitary d × d matrix α. The
created family of unitary finite-rank perturbations of U is given by

Uα = U+ J(α − I)J∗U, (1.3)

with α taken from the unitary d×d matrices. Without loss of generality, we focus on
the domain altered by assuming that R is a ∗-cyclic subspace for U, i.e. we assume
that H = clos span{UkR : k ∈ Z}.

The special case when d = 1 is closely related to Aleksandrov–Clark theory,
and is described in Sect. 4.1. In this setting, the family of perturbations in Eq. (1.3)
reduce to the well-known family of unitary rank-one perturbations

Uα = U + (α − 1)( · , U∗ϕ)Hϕ, (1.4)

with α ∈ T and R = span{ϕ}. We say that ϕ is a ∗-cyclic vector for U, i.e. H =
clos span{Ukϕ : k ∈ Z}. Again, see Sect. 1.1 for notation.

While self-adjoint and unitary operators are intimately connected via the Cayley
transform, it is well-known (see e.g. [21, Theorem 4.3.1]) that this correspondence is
not a bijection between the two operator classes. In fact, even when the mappings are
well-defined, the Cayley transform does not explicitly take (1.1) to its analog (1.3).
This can be seen for the rank-one setting in Liaw–Treil [58, pp. 124–128]. Also
notice that we encounter some inconveniences arising from unbounded operators
in the self-adjoint setting. Of course, the unbounded case is exactly what occurs
when dealing with boundary conditions of differential operators and several other
applications. The unitary setting, on the other hand, is always restricted to bounded
operators (see Remark 3.2).

It is therefore somewhat surprising that, in spite of these differences, many results
on self-adjoint finite-rank perturbations have analogs in the unitary setting. It is also
common to find that the problems raise similar questions, e.g. about the boundary
behavior of analytic functions.

Families of rank-one and finite-rank perturbations seem rather elementary,
yet their study has revealed a quite subtle nature. Their complexity is verified
by connections to several deep fields of analysis: Nehari interpolation problem,
holomorphic composition operators, rigid functions, existence of the limit of the
Julia–Carathéodory quotient, Carleson embedding, and functional models. Some of
these connections are the topic of existing books and surveys, including [23, 58, 71,
73].



174 D. Frymark and C. Liaw

While writing this survey, it became evident that a complete account of the
subject of finite-rank perturbations is worthy of a whole book due to the connections
to many other fields of mathematics. We decided to focus on a few aspects, while
only briefly mentioning others. For example, some deserving topics such as related
function theoretic nuances are not surveyed in detail. We also often refer to existing
surveys and books on the topic such as, e.g. [6, 23, 58, 71, 73, 78], in order to not
overlap excessively.

It should be noted that some central objects of perturbation theory, such as
Aleksandrov Spectral Averaging and Poltoratski’s Theorem, appear in the Appendix
for convenience.

Section 2 contains highlights of classical perturbation theory that provide
additional context for the more specific results to come. In particular, we focus on
aspects of the spectrum that are invariant under different types of perturbations.

Sections 3 and 4 present well-known features of rank-one perturbation theory in
the self-adjoint and unitary settings respectively. Section 3 includes a discussion
of singular perturbations, some spectral results (including Aronszajn–Donoghue
theory) and Nevanlinna–Herglotz functions, which form the backbone of the theory.
The unitary setting of Sect. 4 is built upon Aleksandrov–Clark theory and features
the Sz.-Nagy–Foiaş and de Branges–Rovnyak approach, as well as the overarching
Nikolski–Vasyunin transcription free model theory. The latter reduces to the ones
by Sz.-Nagy–Foiaş and de Branges–Rovnyak by choosing a specific weight. These
model representations form rather concrete applications of model theory.

Sections 5 through 8 focus on finite-rank perturbations. Where possible, the
presentation runs in analogy to Sects. 3 and 4.

For finite-rank self-adjoint perturbations the setup (Sect. 5) is a bit more involved,
and we include information on extension theory, as well as a summary of some
mathematical physics applications. In Sect. 6 we present known results regarding
the spectral analysis of finite-rank perturbations and compare them to Aronszajn–
Donoghue theory.

Section 7 contains information about model spaces culminating in the Nikolski–
Vasyunin model theoretic representation of unitary finite-rank perturbations. A
short exposition on related Krein spaces and reproducing kernel Hilbert spaces is
provided. In Sect. 8 relationships between the family of spectra of the perturbation
problem and the characteristic function are presented.

In the Appendix we take a moment to convey just the ideas behind several other
well-deserving topics in the field. We refer to other literature for more information.

1.1 Notation

We use different notation to help the reader distinguish between the unitary the self-
adjoint setting.
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In the self-adjoint setting, a rank-one perturbation of an operator A will be
denoted as Aγ , where γ ∈ R. We will use “boldface” A

	
for a finite-rank

perturbation that is given by a self-adjoint matrix (d×d)-matrix	. The real spectral
measures for these cases will be referred to as μγ and μ

	
respectively. An additional

superscript will be added when the trace of the matrix-valued spectral measures is
required: μtr

	
. Also, the subscript will be entirely dropped when referring to objects

corresponding to the unperturbed operator A, e.g. μ = μ
0
, F = F0, F = F0, etc.

In the unitary setting, a rank-one perturbation of an operator U will be denoted
as Uα , where α ∈ T. A finite-rank perturbation will be given by Uα with unitary
(d × d)-matrix α. Notation similar to the self-adjoint setting will be used for the
spectral measures, e.g. μα and μα . Here, the subscript α indicates that we work with
unitary perturbations. Characteristic functions and model spaces will be denoted in
the rank-one case by θ and Kθ , and in the finite-rank case by θ and Kθ . Dropping
the subscript again refers to objects that correspond to the unperturbed operator U,
except this operator arises from using α = I , e.g. μ = μI , etc. We will simply write
I for the identity matrix, with the dimension inferred from context.

Spaces will be written in “mathcal” notation, e.g. H and Hs (A). In particular, D
and D∗ refer to the deficiency spaces on the unitary side.

2 Perturbation-Theoretic Background

We begin by presenting some central ideas from classical perturbation theory of
self-adjoint operators, in order to better frame later discussions.

A linear operator A from a Banach space X to a Banach space Y is said to be
compact if the image A(X1) of any bounded subset X1 ⊂ X is relatively compact
in Y . Consider linear operators acting on a Hilbert space H. The class of compact
operators S is then obtained by taking the closure of the set of finite-rank operators
with respect to the operator norm topology. A characterization of the spectrum of
self-adjoint operators that differ by a compact perturbation is available. Recall that
the spectrum of an operatorA, denoted by σ(A), is the closure of the set of all λ ∈ C

for which operator A− λI is not invertible. The essential spectrum is the spectrum
minus the isolated eigenvalues of finite (algebraic) multiplicity.

Theorem 2.1 (von Neumann, See E.g. [21, Theorems 3 and 6 of Ch. 9]) Let
A and B be bounded self-adjoint operators. Then B is compact if and only if the
essential spectra of A and A+ B are the same.

In the self-adjoint setting, we can view compact operators as compact pertur-
bations of the zero operator to see that compact operators are characterized as
those whose only (possible) accumulation point of eigenvalues is the origin. A
more refined standard definition restricts the speed at which the eigenvalues tend
to 0. Namely, the von Neumann–Schatten classes, Sp, consist of compact operators
whose sequence of singular values {sk} belongs to �p. Here, the singular values of an
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operator T are defined as the eigenvalues of |T | = (T ∗T )1/2. Self-adjoint operators
thus have the property that sk = |λk|, where λ is the sequence of eigenvalues.

Theorem 2.2 (Kato [46, Theorem 1] and Rosenblum [72, Theorem 1.6]) Let
A and B be self-adjoint operators and assume B ∈ S1. Then the absolutely
continuous parts of A and A+ B are unitarily equivalent.

Carey and Pincus [22] characterized trace class, S1, perturbations A + B of
A. Apart from leaving the absolutely continuous spectrum invariant, it must be
possible to split the isolated eigenvalues of A and A + B as follows into three
categories. The first and second categories are comprised of the eigenvalues ofA and
of A+ B, respectively, that have summable distance from the essential spectrum of
A. The third category contains all remaining eigenvalues of A and A+B. And there
must exist a bijection ϕ mapping those eigenvalues of A in this category to those
remaining eigenvalues of A+ B so that the sum of |λ − ϕ(λ)| over all eigenvalues
λ of A in this category is finite. In other words the remaining eigenvalues of A have
trace class distance to the remaining ones of A+ B.

To emphasize a dichotomy, we mention that absolutely continuous spectrum can
be destroyed by a Hilbert–Schmidt operator of arbitrarily small Hilbert–Schmidt
norm:

Theorem 2.3 (Weyl–von Neumann, See E.g. [45, p. 525]) Let A be a self-adjoint
operator. For every η > 0, there exists a self-adjoint operator B with Hilbert-
Schmidt norm less than η so that A+ B has pure point spectrum.

Since the Hilbert–Schmidt norm dominates the standard operator norm, this
means that the absolutely continuous spectrum may be unstable under arbitrarily
small perturbations.

Theorem 2.3 was first proved by Weyl [83] for compact perturbations and
then for the smaller class of Hilbert–Schmidt perturbations by von Neumann [82].
Extensions to normal operators and perturbations were proved by Berg [17] for
compact operators and by Voiculescu [80, 81] for Hilbert–Schmidt perturbations.
These results form the basis of K-homology theory, which studies the homology of
the category consisting of locally compact Hausdorff spaces.

On the side, we mention Baranov [12] where a model representation and a
spectral synthesis for rank-one perturbations of normal operators is achieved.

In order to avoid possible confusion, we spell out that we are not (at least not
explicitly) reaching for a spectral synthesis, or other questions usually related to K-
homology. Instead, we are primarily interested in spectral invariants and describing
the spectral measure under perturbations.
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3 Aspects of Self-Adjoint Rank-One Perturbations

3.1 Scales of Hilbert Spaces

When considering perturbations like Eq. (1.2), it is sometimes convenient to loosen
our restrictions on the perturbation vector ϕ to expand our possible applications,
e.g. to changing boundary conditions of differential operators. We say that the
perturbation is bounded when the vector ϕ is from the Hilbert space H. The previous
sections have dealt exclusively with bounded perturbations. If ϕ /∈ H, we say the
perturbation is singular. These perturbations are significantly more complicated; it
is imperative to ensure that the perturbation is well-defined in order to extend the
tools that are presented in Sect. 3.2. The description here roughly follows that of [6].

Let A be a self-adjoint (possibly unbounded) operator on a separable Hilbert
space H. Consider the non-negative operator |A| = (A∗A)1/2, whose domain
coincides with the domain of A. Alternatively, if A is bounded from below, the
shifted operator A + kI , k ∈ R sufficiently large, will provide a non-negative
operator. We introduce a scale of Hilbert spaces.

Definition 3.1 ([6, Section 1.2.2]) For s ≥ 0, define the space Hs (A) to consist of
ϕ from H for which the s-norm

‖ϕ‖s := ‖(|A| + I)s/2ϕ‖H, (3.1)

is bounded. The space Hs (A) equipped with the norm ‖·‖s is complete. The adjoint
spaces, formed by taking the linear bounded functionals on Hs(A), are used to
define these spaces for negative indices, i.e. H−s (A) := H∗s (A). The corresponding
norm in the space H−s (A) is thus defined by (3.1) as well. The collection of these
Hs(A) spaces will be called the scale of Hilbert spaces associated with the self-
adjoint operator A.

It is not difficult to see that the spaces satisfy the nesting properties

. . . ⊂ H2(A) ⊂ H1(A) ⊂ H = H0(A) ⊂ H−1(A) ⊂ H−2(A) ⊂ . . . ,

and that for every two s, t with s < t , the space Ht (A) is dense in Hs (A) in the
norm ‖ · ‖s . Indeed, the operator (A + 1)t/2 defines an isometry from Hs(A) to
Hs−t (A). In the rest of the subsection, we will use the brackets 〈 · , · 〉 to denote
both the inner product in the Hilbert space H and the action of the functionals. For
instance, if ϕ ∈ H−s (A), ψ ∈ Hs (A), then

〈ϕ,ψ〉 := 〈(|A| + I)−s/2ϕ, (|A| + I)s/2ψ
〉

,

where the brackets on the right hand side denote the inner product.
Throughout the literature of other fields similar constructions occur under

different names. For instance, the pairing of H1(A), H, and H−1(A) is sometimes
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referred to as a Gelfand triple or rigged Hilbert space. Also, when A is the derivative
operator, these scales are simply Sobolev spaces (with p = 2). More details about
Hilbert scales can be found in [49].

It is worth noting that these Hilbert scales are related to those generated by so-
called left-definite theory [60]. This theory employs powers of a semi-bounded self-
adjoint differential operator to create a continuum of operators whereupon spectral
properties can be studied. The theory can be applied to self-adjoint extensions of
self-adjoint operators, which can be viewed as finite-rank perturbations, see e.g. [29,
30] and the references therein.

Rank-one perturbations of a given operator A arise most commonly when the
vectors ϕ are bounded linear functionals on the domain of the operator A, so many
applications are focused on H−2(A). Here, we only discuss the case ϕ ∈ H−1(A)

for the sake of simplicity. However, references usually contain information on
extensions to ϕ ∈ H−2(A), and information on the case when ϕ /∈ H−2(A) can
be found in [25, 50].

Remark 3.2 The case H−1(A) for the self-adjoint setting most closely aligns with
unitary perturbations, see [58, pp. 124–128]. It is not immediately clear how the
more singular perturbations, H−n(A) for n > 1, translate to the unitary side.

3.2 Spectral Theory of Rank-One Perturbations

A nice overview of what is now known as Aronszajn–Donoghue theory was given
in [78]. Extensions of Aronszajn–Donoghue theory to the case when the spectral
measure is associated with a perturbation vector ϕ ∈ H−2(A) can found in [5]
and [47], but here we take ϕ ∈ H−1(A) unless otherwise mentioned. The results
compare the spectral measures μ and μγ of the unperturbed and the perturbed
operators and are expressed through the scalar-valued Borel transform

Fγ (z) :=
∫

R

dμγ (t)

t − z
for z ∈ C\R, (3.2)

which is abbreviated F for γ = 0.
One of the standard identities at the heart of the theory is often referred to as the

Aronszajn–Krein formula Fγ (z) = F(z)/(1 + γF(z)). The distinction of whether

or not a point has mass is encrypted in the functions F and G(x) :=
∫

dμ(t)

(x − t)2 .
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Theorem 3.3 (Aronszajn–Donoghue Theory, E.g. [78, Theorem 12.2]) When
γ �= 0, the sets

Sγ =
{

x ∈ R

∣

∣

∣ lim
y→0

F(x + iy) = −1/γ ;G(x) = ∞
}

,

Pγ =
{

x ∈ R

∣

∣

∣ lim
y→0

F(x + iy) = −1/γ ;G(x) <∞
}

, and

C =
{

x ∈ R

∣

∣

∣ lim
y→0

ImF(x + iy) �= 0
}

,

contain spectral information of the perturbed operator Aγ as follows:

(i) For fixed γ �= 0, the sets Sγ , Pγ and C are mutually disjoint.
(ii) Set Pγ is the set of eigenvalues, and set C (Sγ ) is a carrier for the absolutely

(singular) continuous measure, respectively.
(iii) For γ �= β the singular parts of Aγ and Aβ are mutually singular.

Remark 3.4 Set X being a carrier for a measure τ means that τ (R\X) = 0. Any
(measurable) set that contains the support of a measure is also a carrier. Since we do
not require a carrier to be closed, there may be carrier sets that are strictly contained
in the support of a measure.

The density function of the absolutely continuous measure and the pure point
masses of Aγ are completely described by the following result.

Proposition 3.5 Assume that γ �= 0.

(i) For λ ∈ Pγ we have μγ ({λ}) = 1
γ 2G(λ)

.
(ii) The density function of the absolutely continuous part of Aγ is given by

dμγ (x)

dx
= 1

π
lim

y→0+
ImF(x + iy)

|1+ γF(x + iy)|2 ,

with respect to Lebesgue a.e. x ∈ R.

We mention that the limit in part (ii) of the proposition exists with respect to
Lebesgue a.e. x. Indeed, by the Aronszajn–Krein formula ImF

|1+γF |2 = ImFγ , and Fγ

is analytic on the upper half-plane.
A characterization of the singular continuous part of Aγ has been sought after but

is still outstanding. Only partial results have been established. Instead of elaborating
on the details here, we refer the reader to [23, 57, 78] and the references therein. We
also point the reader to [58] for a discussion of, and references for, the question:
“How unstable can the singular spectrum become?”

The measures μ and μγ , which are the spectral measures associated with rank-
one perturbations of self-adjoint operators, are associated with scalar Nevanlinna–
Herglotz functions. These functions are analytic self-maps of the upper half plane
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C+ and possess the Nevanlinna–Riesz–Herglotz representation

˜F(z) = c + dz+
∫

R

(

1

t − z
− t

1+ t2

)

dμ(t),

and μ is a measures which satisfies the decay condition
∫

R
(1 + t2)−1dμ(t) < ∞.

The examples that use ˜F are more singular H−2(A) perturbations. In order to give
the reader additional intuition about these measures, we include some examples
from [35, App. A].

[35, App. A] Borel transform Spectral Measure dμ(t)

Eq. (5) F(z) = −1/z δ{0} (t)dt
Eq. (6) ˜F(z) = ln(z) χ

(−∞,0) (t)dt

Eq. (7) ˜F(z) = ln(−1/z) χ
(0,∞)

(t)dt

Eq. (8) ˜F(z) = zr − cos( rπ2 ) |t |rπ−1 sin(rπ)χ
(−∞,0) dt , r ∈ (0, 1)

Eq. (10) ˜F(z) = tan(z)
∑

n∈Z δ{nπ} (t)dt
Eq. (17) F(z) = ln

(

z−t1
z−t2

)

χ[t1,t2] (t)dt with t1 < t2

Examples of Nevanlinna–Herglotz functions and corresponding spectral measures. The examples
Eq. (6)–(8) use the principal value of the logarithm. The integration variable is λ. The first column
contains references to equations in [35, App. A]. Other examples and their sources can also be
found there

4 Aspects of Unitary Rank-One Perturbations and Model
Theory

Consider the unitary rank-one perturbation problem given by Eq. (1.4). Let μα

be the spectral measure of Uα with respect to the ∗-cyclic vector ϕ, which is
simultaneously also ∗-cyclic for Uα for all α ∈ T. Then, the Spectral Theorem says
Uα can be represented by the operator that acts via multiplication by the independent
variable on the space L2(μα).

The operator U0 is well-known to be a completely non-unitary (i.e. it is not
unitary on any of its non-trivial invariant subspaces) contraction. Therefore, it
(and hence the family of measures {μα}) corresponds to the compression of the
shift operator in a model representation associated with a characteristic function θ .
Studying the intricacies of these model representations emerges as one of the main
strategies in this field.

Model spaces are subspaces of a weighted L2-space, of which we discuss
several: the one by Clark, which resembles a simplified Sz.-Nagy–Foiaş model;
the one by de Branges–Rovnyak which was e.g. studied by the Sarason school;
and an overarching description of model theory developed by Nikolski–Vasyunin.
This final formulation essentially incorporates the former ones by choosing an
appropriate weight function.
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4.1 Aleksandrov–Clark Theory and Sz.-Nagy–Foiaş Model
for Perturbations with Purely Singular Spectrum

A seminal paper by Clark [24] laid the foundation that connects rank-one perturba-
tions with reproducing kernel Hilbert spaces. The field has since grown into what
is now known as Aleksandrov–Clark theory, honoring the deep insights gained by
Aleksandrov about Clark measures—especially in the presence of an absolutely
continuous component. A nice exposition of Aleksandrov–Clark theory can be
found in [23], which we mostly follow along with in this section. We refer readers
interested in a more general exposition of the Sz.-Nagy–Foiaş model spaces to [79].
For roughly the second half of this subsection, we work with characteristic functions
that are inner, or equivalently, within the Clark setting of purely singular spectral
measures.

For an analytic function θ : D→ D and a point α ∈ T, the function

uα(z) := 2
(

α + θ(z)

α − θ(z)

)

= 1− |θ(z)|2
|α − θ(z)|2 , (4.1)

is positive and harmonic on D. For each α, a theorem by Herglotz [36] says this
function corresponds uniquely to a positive measure μα with uα = Pμα . Here,

Pμα =
∫

T

1−|z|2
|ζ−z|2 dμα(ζ ) is the Poisson integral of μα.

We let Aθ := {μα : α ∈ T} denote the family of measures associated with the
function θ . We will call Aθ the family of Clark measures of θ when θ is an inner
function, i.e. a bounded analytic function with unit modulus a.e. on T. Note that
when θ is a general analytic self-map of the disk, the family Aθ is usually referred
to as the Aleksandrov–Clark family/operators of θ .

With the Herglotz transformation (Hμ)(z) = ∫

T

ζ+z
ζ−z dμ(ζ ) of a measure μ =

μ1, it can easily be verified that the function

θ(z) := (Hμ)(z)− 1

(Hμ)(z)+ 1
, (4.2)

is an analytic self map of the disk. The condition θ(0) = 0 is equivalent to each
μα ∈ Aθ being a probability measure [23, Proposition 9.1.8].

These Clark measures can be used to describe the unitary perturbations of an
important operator. To do so, we define the shift operator S : H 2 → H 2 by
(Sf )(z) = zf (z), where H 2 = H 2(D) denotes the Hardy space. Likewise, for
later, we define the backward shift operator to be (S∗f )(z) = f (z)−f (0)

z
. Beurling’s

Theorem [20] then says that the S-invariant subspaces of H 2 are exactly those that
can be written as θH 2 for some inner function θ .

In order to take advantage of this relationship, we now assume θ is an inner
function with θ(0) = 0. Assuming that θ(0) = 0 is not essential, but rather a
convenience. Sometimes we will refer to such functions as characteristic functions.
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Given such a θ , the Sz.-Nagy-Foiaş model space [79] can then be defined as

Kθ := H 2 � θH 2. (4.3)

Beurling’s Theorem further implies that S∗-invariant subspaces of H 2 are simply
model spaces Kθ corresponding to some inner θ .

On the side, we mention two major advances in complex analysis:

(i) Douglas–Shapiro–Shields [27] have shown that for f ∈ H 2, f ∈ Kθ if and
only if the meromorphic function f/θ on D has a pseudo-continuation to a
function ˜fθ ∈ H 2(C \ D) with ˜fθ (∞) = 0 (also see [23, Theorem 8.2.5]). The
analogous result was also shown there to hold for conjugate pairs of Hp spaces.

(ii) A milestone has been achieved with the Ahern–Clark Theorems [2, 3] with
respect to understanding when the Julia–Carathéodory angular derivative exists.
Results for higher derivatives were also included. This result was generalized
by Fricain–Mashreghi [31], and they proved that if a member of a deBranges–
Rovnyak space is continuous on an open arc of the boundary, then it is analytic
there. Also see the survey by Garcia–Ross [34, Theorem 6.11] for a summary.

Moving on with our program, let Pθ be the orthogonal projection of H 2 onto Kθ .
The compression of the shift operator is thus defined as

Sθ = PθS|Kθ
.

This allows us to write the family of rank-one perturbations on Kθ :

Vαf = Sθf + α

〈

f,
θ

z

〉

1, with α ∈ T. (4.4)

In particular, the following theorem of Clark says that these are the only unitary
rank-one perturbations of Sθ .

Theorem 4.1 (Clark [24, Remark 2.3]) Any operator X that is both unitary and
a rank-one perturbation of Sθ can be written as X = Vα for some α ∈ T.

Let μα be the Clark measure associated with the inner function θ and the point
α ∈ T. Since Vα is a cyclic unitary operator, the spectral theorem says that Vα can
be represented as multiplication by the independent variable on some L2(ν) space.
It turns out that the space L2(ν) can be canonically identified with L2(μα). Let M
be the operator on the space L2(μα) acting via multiplication by the independent
variable. Then, the unitary operator that intertwines, CαM = VαCα , and maps the
constant function 1 ∈ L2(μα) to some vector in the defect space Ran (I − S∗θ Sθ )1/2

is called the adjoint Clark operator. It is given by the normalized Cauchy transform

Cα : L2(μα)→ Hol(D) with (Cαg)(z) := K(gdμα)

Kμα

,
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where K is the Cauchy transform (Kν)(z) = ∫
T

dν(ζ )

1−zζ̄ . The Clark operator is often

denoted by � in literature, so that Cα = �∗.
These representations gives us access to spectral information regarding the Clark

family {μα}, α ∈ T.

Theorem 4.2 (See E.g. [23, Proposition 9.1.14] and [34, Proposition 8.3]) In the
above setting we have:

1. (dμα)ac = uαdm (with uα(z) = (1− |θ(z)|2)|α − θ(z)|−2 as in (4.1)).
2. μα ⊥ μβ for all α �= β, β ∈ T.
3. μα has a point mass at ζ ∈ T if and only if θ(ζ ) = α and |θ ′(ζ )| < ∞. In that

case this point mass is given by μα({ζ }) = |θ ′(ζ )|−1.
4. The set {ζ ∈ T : limr→1− θ(rζ ) = α} is a carrier for μα . (Recall that μα is

purely singular in the Clark setting.)

This result is in direct correspondence with the Aronszajn–Donoghue Theo-
rem 3.3 above. Also, observe that a point mass equals the reciprocal magnitude
of the derivative of the Borel transform in the self-adjoint setting, and of the Cauchy
transform in the unitary setting. In fact, [23, Item (1) of Corollary 9.1.24] offers a
finer carrier of the singular spectrum in terms of the lower Dini derivative of μα.

The Sz.-Nagy–Foiaş representation simplifies to the setting described in this
subsection precisely when operator V1 has no absolutely continuous part (or,
equivalently, when the characteristic function θ is inner). This poses a significant
restriction. The de Branges–Rovnyak model is an alternative representation of the
situation under weaker conditions. In the most general Aleksandrov–Clark situation,
one is required to deal with the full two-storied Sz.-Nagy–Foiaş model space

Kθ =
(

H 2

clos�L2

)

�
(

θ

�

)

H 2,

instead of just the first component as in (4.3). The defect function � is �(z) =
(1− θ(z)∗θ(z))1/2 for z ∈ T. For further reference, see [65, Section 1.3.5].

4.2 de Branges–Rovnyak Model and Perturbations
in the Extreme Case

In this subsection, we assume that the characteristic function θ is an extreme point,
i.e. that

∫

T
ln(1− |θ(z)|)dm(z) = −∞. It is well-known that θ extreme if and only

L2(μ) = H 2(μ) for the corresponding Aleksandrov–Clark measure μ = μ1. This
situation is ideal for the de Branges–Rovnyak model space, as it now reduces from
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two components

Kθ =
{(

g+
g−

)

: g+ ∈ H 2, g− ∈ H 2−, g− − θ∗g+ ∈ �L2
}

to a one component space. Here we used the notation H 2− := L2 �H 2.

We describe the reduced one-component de Branges–Rovnyak model space:
So, assume θ : H 2 → H 2 is extreme. Then the de Branges–Rovnyak model
space H(θ) ⊂ H 2 consists of functions in the range space of the defect operator,
i.e. H(θ) = (I − |θ |2)1/2H 2. The canonical norm on this space is the range norm
which arises by taking the minimal norm of the pre-image of an element from
H(θ). Much of the success of this approach is based upon the fact that H(θ) is a

reproducing kernel Hilbert space with reproducing kernel kθw(z) = 1−θ(w)θ(z)
1−w̄z . The

deep structure of this space is the focus of [74]. We also point the reader to the books
by Fricain–Mashreghi [32, 33] for a modern treatment of the de Branges–Rovnyak
spaces, which is both comprehensive and accessible. Here we only mention a few
items relevant to perturbation theory. We will omit other interesting topics such as
multipliers of H(θ), the theory regarding the Julia–Carathéodory angular derivatives
and Denjoy–Wolff points—all of which are detailed in [74].

The connection with the corresponding Aleksandrov–Clark measure μ is made
through Eq. (4.2), see e.g. [74, Chapter III]. Much of the development in this area is
attributed to the dissertation of Ball [11]. For instance, it was shown there that the
measure μ has an atom at a point z0 ∈ T if and only if the function θ(z)−1

z−z0
belongs

to H(θ), see e.g. [74, Section (III-12)].

4.3 General Perturbations and Nikolski–Vasyunin Model
Theory

Not all rank-one perturbations satisfy any of the conditions under which we can
use the representations detailed in Sects. 4.1 and 4.2. Model theory for unitary
perturbations in the general setting is much more complicated. Instead of a one-
story model space, the general setting requires a two-story model space. While this
description is superior in abstraction and admits more general settings, the models
discussed in Sects. 4.1 and 4.2 have provided many deep insights over the years.

An overarching treatise of the Sz.-Nagy–Foiaş, the de Branges–Rovnyak model
space and other model spaces (e.g. the one studied by Pavlov) was achieved by
Nikolski–Vasyunin [65–68]. There, a general so-called transcription free model
space was introduced as a subspace of a (possibly) two-storied weighted space
L2(D∗ ⊕ D,W) on the unit circle. Here, the defect spaces of contraction V0 are
given by D = clos Ran (I − S∗θ Sθ )1/2 and D∗ = clos Ran (I − SθS

∗
θ )

1/2. We also
note that the defect spaces D and D∗ were identified with T in Sects. 4.1 and 4.2.
This L2 space then reduces to the Sz.-Nagy–Foiaş, the de Branges–Rovnyak, the
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Pavlov model spaces, and other transcriptions by making specific choices of the
weight W . The connection to rank-one perturbations comes from the dependence of
this W on the characteristic function θ .

General rank-one perturbations were studied in Liaw–Treil [55]. This subject is
included in the lecture notes by Liaw–Treil [58] on the relationship between rank-
one perturbations and singular integral operators. Instead of repeating large chunks
of information here, we refer the reader to those lecture notes.

5 Self-Adjoint Finite-Rank Perturbations

We adapt the self-adjoint finite-rank setup given in (1.1) to account for singular
perturbation vectors, which are useful in many applications. We mostly follow along
with [6, Ch. 3]. We begin by defining the coordinate operator B : Cd → H−2(A)

that takes the standard basis {ek}dk=1 ⊂ C
d to {ϕk}dk=1 ⊂ H−2(A). Note that we are

changing notation slightly from Sect. 1, as we used to think of B as an operator B :
C
d → Ran B that was invertible. As before, we assume without loss of generality

the invertibility of B on its range.
Consider finite-rank perturbations of a self-adjoint operator A on the separable

Hilbert space H given by

A
	
= A+ B	B∗, (5.1)

where 	 is a Hermitian d × d matrix and the operator B	B∗ is an operator of
rank d from the Hilbert space H2(A) to the Hilbert space H−2(A). Note that we
can assume without loss of generality that the matrix 	 is invertible. If 	 is not
invertible, then the orthogonal complement to the kernel of the operator 	 yields
a finite-rank operator of rank strictly less than d determined by a non-degenerate
Hermitian matrix.

The vectors ϕk can be thought of as modifying the domain of A by d dimensions
that are in H−2(A). However, to ensure that each of these vectors are non-degenerate
and adding new dimensions, we will call the set of vectors ϕk ∈ H−2(A)\H, k =
1, . . . , d , H-independent if and only if the equality

d
∑

k=1

ckϕk ∈ H, ck ∈ C,

implies c1 = c2 = · · · = cd = 0. If a desired set is not H-independent, then the
matrix B	B∗ will not be invertible and define a degenerate perturbation of rank
strictly less than d . For this reason, we consider only H-independent perturbations.
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5.1 Singular Finite-Rank Perturbations

The operator A
	

on the domain Dom(A) is symmetric as an operator acting
from H2(A) = Dom(A) to H−2(A). The self-adjoint operator given by Eq. (5.1)
coincides with one of the self-adjoint extensions of the operator A0 equal to the
operator A restricted to the domain

Dom(A0) = Dom(A) ∩ Ker(B	B∗).

On the side we mention that Ker(B	B∗) = Ker(B∗), because we are assuming 	 to
be invertible and H-independence of ϕk.

Lemma 5.1 ([6, Lemma 3.1.1]) Suppose that the vectors ϕk ∈ H−2(A)\H, k =
1, . . . , d , are H-independent and form an orthonormal system in H−2(A). Then
the restriction A0 of the operator A to the domain Dom(A0) is a densely defined
symmetric operator with the deficiency indices (d, d).

Note that the vectors ϕk having unit norm in H−2(A) is not a restriction, as every
H-independent system {ϕk} can be orthonormalized. We assume unit norm in the
following discussions and results.

If we let the vectors ϕk, k = 1, . . . , d be H-independent, all vectors ψ ∈
Dom(A0∗) can be represented as:

ψ = ̂ψ +
d
∑

k=1

(

a+k(ψ)(A− iI )−1ϕk + a−k(ψ)(A + iI )−1ϕk

)

, (5.2)

where ̂ψ ∈ Dom(A0), a±(ψ) ∈ C.
The theory of self-adjoint extensions of symmetric differential operators, com-

monly referred to as Glazman–Krein–Naimark theory [4, 64], should be compared
to this setup. The Dom(A0) should be thought of as a “minimal” domain for the
operator A, as the domain is unaffected by the perturbation B	B∗ and will be
contained in the domains of all extensions. Likewise, the “maximal” domain is
represented by Dom(A0∗) and Eq. (5.2) is a modified version of the classical von
Neumann’s formula (the maximal domain is the direct sum of the minimal domain
and the defect spaces). The key space Dom(A0∗) should thus be considered as a
finite dimensional extension of the space H2(A) in the sense that Dom(A0∗) is
isomorphic to the direct sum of H2(A) and Cd .

We also emphasize that the spaces A0, defined via Lemma 5.1, and A0∗, are
dependent on the choice of the vectors {ϕk}dk=1. We can thus formulate a second
scale of Hilbert spaces

Dom(A) = H2(A) ⊂ Dom(A0∗) ⊂ H ⊂ Dom(A0∗)∗ ⊂ H−2(A) = Dom(A)∗,
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which is constructed using both the operators A and B	B∗. The norms in H−2(A)

andH2(A) are the standard norms from Definition 3.1. We avoid most of the specific
properties of these spaces and operators, but point out that the norm in the space
Dom(A0∗)∗ is listed in [6, Equation (3.11)], near other pertinent facts.

5.2 Self-Adjoint Extensions

The self-adjoint finite-rank perturbation given by (5.1) can be adapted as an
application to self-adjoint extension theory. Namely, self-adjoint extensions of the
operator A0 are parametrized by d × d unitary matrices by the classical Glazman–
Krein–Naimark theory [4, 64]. Let V be such a matrix and the vector notation
,a± ≡ {a±}dk=1 denote the coefficients from Eq. (5.2). The corresponding self-adjoint
operator A(V ) coincides with the restriction of the operator A0∗ to the domain

Dom(A(V )) = {ψ ∈ Dom(A0∗) : − V ,a−(ψ) = ,a+(ψ)}. (5.3)

We present an explicit connection between V and 	 in Lemma 5.3 below.
The extension given by the matrix V = I coincides with the original operator

A. This case is handled by classical self-adjoint extension theory. However, when
the perturbing vectors {ϕk}dk=1 belong to H−1(A), descriptions of the corresponding
domains become more difficult.

Theorem 5.2 ([6, Theorem 3.1.1]) Let ϕk ∈ H−1(A)\H be an H-independent
basis such that 〈(A − iI )−1ϕj , (A + iI )−1ϕk〉 = δjk, and let 	 be a Hermitian
invertible matrix. Then the self-adjoint operator A

	
= A+B	B∗ is the self-adjoint

restriction of the operator A0∗ to the following domain

Dom(A
	
)

={ψ ∈ Dom(A0∗) : ,a+(ψ) = −(	−1 + F(i))−1(	−1 − F∗(i)),a−(ψ)},

where F(i) = B(A
	
− iI )−1B∗.

The notation F(i) comes from the Borel transform, which we focus on in Sect. 6.
We have A0 = A when 	 = 0. Further note that the matrix V = (	−1 +

F(i))−1(	−1 − F∗(i)) is unitary. Hence, the theorem says that if the vectors ϕj
ϕj and the desired perturbation 	 are known, then the domain of the self-adjoint
extension can be written via the explicit unitary matrix V , as in the classical theory.

However, this leads to the natural question: Given the domain of a self-adjoint
extension in terms of V , can we recover the perturbation 	 responsible for this
domain? The answer is given by the following result.
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Lemma 5.3 ([6, Lemma 3.1.2]) Let ϕk ∈ H−1(A)\H, k = 1, . . . , d , be an H-
independent orthogonal system. If

det
(

V + [iI + Re(F(i))]−1[iI − Re(F(i))]
)

�= 0

then the operator A0∗ restricted to the domain of functions

{ψ ∈ Dom(A0∗) : − V ,a−(ψ) = ,a+(ψ)}

is a finite dimensional additive perturbation of the operator A. In particular, the
Hermitian invertible matrix 	 is given by

	 =
(

−Re(F(i))+ i(I − V )−1(I + V )
)−1

.

The last formula necessitates the analysis of whether I − V is invertible. This
distinction is handled in the proof, where it is determined that if I − V is not
invertible, then there is a degeneracy in the choice of the vectors ϕk. This means
that the set of vectors {ϕk}dk=1 contains extra elements because we can find a new
set of elements {ϕ∗k }d

∗
k=1, d∗ < d , such that the corresponding matrix V ∗ has a trivial

eigensubspace.
The description of domains of self-adjoint extensions resulting from finite-rank

perturbations with vectors from H−2(A) are much more involved (see e.g. [7]), and
while very interesting in their own right, fall outside the scope of our discussion.

5.3 Some Applications of Singular Finite Rank Perturbations

The singular finite-rank perturbation setup employed in this section has a wide array
of applications. Perhaps, their most common uses include point interactions for
differential operators via connections to distribution theory and singular potentials
of Schrödinger operators. This is immediately evident from the rank-one case when
considering changing boundary conditions of regular Sturm–Liouville operators,
see [76, Section 11.6].

Several contributions to the finite-rank case can be found in [6]. These include the
analysis of operators with generalized delta interactions to achieve both spectral and
scattering results. It is also possible to consider infinite-rank perturbations, under
some simplifying assumptions, to help approach problems given by two-body, three-
body and few-body models.

Finally, we should mention that singular perturbations can be transcribed into
the theory of rigged Hilbert spaces, i.e. [48]. This theory places a larger emphasis
on properties of singular quadratic forms, which can also describe self-adjoint
extensions. Specific extensions, such as the Friedrichs or von Neumann–Krein
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cases, are sometimes easier to formulate in this context. Various aspects of spectral
theory for singular finite-rank perturbations of self-adjoint operators are detailed in
[48, Section 9].

6 Spectral Theory of Self-Adjoint Finite-Rank Perturbations

Consider the family of finite-rank perturbations A
	
= A + B	B∗, see (1.1), with

cyclic subspace Ran B. It is well-known that Ran B is then also cyclic for A
	

for all
symmetric 	. For simplicity let us focus on bounded perturbations in this section.
By the Spectral Theorem, this perturbation family corresponds to a family of matrix-
valued spectral measures μ

	
through

B∗(A
	
− zI)−1B =

∫

R

dμ
	
(t)

t − z
for z ∈ C \ R.

The right hand side is the matrix-valued Borel transform, F
	
(z) := ∫

R
(t −

z)−1dμ
	
(t). We obtain the scalar spectral measures μ

	
by taking the trace of

μ
	

. This trace is a scalar-valued measure which recovers the spectrum of A
	

via
σ(A

	
) = suppμ

	
. However, to access more subtle information, we formulate some

of the results of the field we define the family of matrix-valued functions W
	

by
dμ

	
(t) = W

	
(t)dμ

	
(t). Finally, we arrive at (W

	
)ac := dμ

	
/dx by taking a

component-wise Randon–Nikodym derivative.

6.1 Absolutely Continuous Spectrum and Scattering Theory

The unitary equivalence of the absolutely continuous spectrum of operators that
differ by a finite-rank perturbations is available through simply applying the Kato–
Rosenblum Theorem 2.2. In the more general setting of compact perturbations, the
standard proof relies on the existence of the wave operators. Namely, let Pac denote
the orthogonal projection from the Hilbert space onto the absolutely continuous part
of A. For self-adjoint A and compact self-adjoint K it was shown that the strong
operator topology limit of eit (A+K)e−itAPac exists (see [72, Theorem 1.6] and [46,
Theorem 1]), which in turn yields the Kato–Rosenblum theorem.

For finite-rank perturbations, a quicker proof of unitary equivalence of the
absolutely continuous spectrum is available. This proof uses the Aronszajn–Krein
relation

F
	
= (I + F	)−1F = F(I + F	)−1, (6.1)
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of the matrix-valued Borel transforms and was first discovered by Kuroda [51]. Via
efficient notation, and in a slightly different language, Liaw and Treil [56, Appendix
A.1] present this proof in a format appropriate for a graduate course.

Of course, scattering theory is able to give us more information by relating how
wave operators, e.g. s − limt→∞ eit (A+K)e−itAPac, and their packets are affected
by the perturbation. For an interesting exposition of scattering theory for finite-rank
perturbations confer, e.g. [50, Ch. 4]. Applications in Mathematical Physics can
also be found in [50, Ch. 5–7]. Alternatively, the scattering theory of finite-rank
perturbations can be analyzed using boundary triples, see e.g. [14].

Validating the observation that the behavior of the absolutely continuous spec-
trum is one of the easier objects to capture, we conclude this subsection with its full
perturbation theoretic characterization. The density of the matrix-valued spectral
measure of the perturbed operator (W

	
)ac is determined (see [56, Lemma A.3]) in

terms of that of the unperturbed operator Wac by

(

W
	

)

ac (x) = lim
y→0+

(I + F(x + iy)∗	)−1Wac(x) lim
y→0+

(I + 	F(x + iy))−1,

with respect to Lebesgue a.e. x ∈ R.
In Eq. (8.1) below, we also include a full description of the perturbed operator’s

matrix-density in terms of the matrix characteristic function of a corresponding
model representation.

6.2 Vector Mutually Singular Parts

As evidenced by much research in the field, working with the singular spectrum will
require a more subtle analysis than is necessary for the absolutely continuous part.
From a naive perspective, the task at hand is to attempt to obtain some information
about non-tangential boundary values z→ λ of matrix-valued analytic functions on
D for (μ

	
)s-a.e. λ ∈ T. As we discuss in Sect. 8.2, Poltoratski’s Theorem does not

hold in the matrix-valued setting. Yet some positive results prevail.
Recall the Aronszajn–Donoghue Theorem, which states the mutual singularity

of the singular parts under rank-one perturbations, see item (iii) of Theorem 3.3.
For finite-rank perturbations it is easy to construct examples for which two different
perturbed operators have the same eigenvalue by taking direct sums of rank-one
perturbations. The eigenvalues of the different components are completely inde-
pendent from one another. Hence, a literal extension of this Aronszajn–Donoghue
result cannot be true for the scalar-valued spectral measure. Through defining a
vector-valued analog of the mutual singularity of matrix measures, Liaw–Treil [56,
Theorem 6.2] achieved such a generalization of the Aronszajn–Donoghue Theorem.
The scalar-valued spectral measures are also restricted:

Theorem 6.1 ([56, Theorem 6.3]) Fix a singular scalar Radon measure ν, and
d × d-matrices 	 > 0 and self-adjoint 	0. Then the scalar spectral measures of



Spectral Analysis, Model Theory and Applications of Finite-Rank Perturbations 191

A
	0+t	 are mutually singular with respect to ν for all except maybe countably many

t ∈ R.

6.3 Equivalence Classes and Spectral Multiplicity

In [35], Gesztesy–Tsekanovskii obtained structural results for Nevanlinna–Herglotz
functions that are applicable to finite-rank perturbations. Under the assumption that
ker(I + 	F(z)) = {0} for all z ∈ C+, some of these results resemble the Kato–
Rosenblum Theorem 2.2 and Aronszajn–Donoghue Theorem 3.3.

We begin by introducing the following sets, where 1 ≤ r ≤ d:

Sr (μ)ac =
{

x ∈ R

∣

∣

∣ lim
y→0+

F(x + iy) exists finitely, and

lim
y→0+

rank(Im(F(x + i0))) = r

}

,

S (μ)ac =
d
⋃

r=1

Sr (μ)ac .

Here, the existence of matrix limits are understood entrywise. Consider the equiva-
lence classes of Sr(μ	

)ac and S(μ
	
)ac associated with F

	
(z); and denote them by

Er(μ	
)ac and E(μ

	
)	)ac, respectively.

In this setting, Gesztesy–Tsekanovskii [35, Theorem 6.6]1 have shown that:

1. For 1 ≤ r ≤ d , the classes Er(μ	
)ac, and E(μ

	
)ac are independent of 	.

2. Suppose μ
	1

is a discrete point measure for some 	1. Then μ
	

is a discrete point
measure for all 	.

3. The set of those x ∈ R for which, simultaneously, there is no 	 such that
limy→0+ Im

(

F
	
(x + iy)

)

exists and limy→0+ det
(

Im
(

F
	
(x + iy)

)) = 0, is a
subset of Ed(μ	

)ac.

7 Model Theory of Finite-Rank Unitary Perturbations

Taking a different route than Clark theory, we follow [55] to set up the problem.
This perspective is more natural here, since we are interested in perturbation theory.
It allows us to bypass some minor technical road blocks that arise for finite-rank

1Gesztesy–Tsekanovskii present these results for a slightly more general setting, when F and F
	

are related by a certain linear fractional transformation. Their presentation reduces to ours upon
making the choices 	1,1 = 	2,2 = I and 	2,1 = 0 and 	1,2 = 	.
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perturbations (when connecting the family measures with the family of operators).
Some of the model theory of rank-one perturbations carries over to model theory of
finite-rank setting with the added complication that one has to keep track of the order
of matrix products. For example, the description of the absolutely continuous part in
terms of the characteristic function has an analog for finite-rank perturbations. Other
results such as identifying when the extreme situation occurs (when the de Branges–
Rovnyak transcription simplifies) need to be slightly adjusted. For this particular
question, taking the trace will be appropriate.

In Sect. 7.2 we briefly mention some other representations using Krein spaces
and reproducing kernel Hilbert spaces.

7.1 Setup and Model Spaces

Recall the setting for unitary finite-rank perturbations Uα = U+ J(α− I)J∗U with
unitary α, as detailed in and around (1.3). It is well-known that Ran J also forms a
∗-cyclic subspace for the perturbed operators Uα . Let μα be the family of matrix-
valued spectral measures on T given by the Spectral Theorem through

J∗(I − zU∗α)−1J =
∫

T

dμα(ζ )

1− zζ̄
for z ∈ C \ T. (7.1)

It is not hard to see that the operator Uα is a completely non-unitary contraction
for matrices α with ‖α‖ < 1. This provides us access to the associated model theory.
Referring the reader to [55, Sections 3 and 4], we omit the details of showing that
operator U0 corresponds to the matrix-valued characteristic function

θ(z) = (Kμ(z)− I)(Kμ(z))−1. (7.2)

Here, the identity I maps D→ D and K is the Cauchy transform of a matrix-valued
measure (Kν)(z) = ∫

T

dν(ζ )

1−zζ̄ .
It is not hard to see that the relation in (7.2) is equivalent to the Herglotz formula

(Hμ)(z) = (I + θ(z))(I − θ(z))−1, (7.3)

with the Herglotz transformation of a matrix-valued measure (Hν)(z) =
∫

T

ζ+z
ζ−z dν(ζ ). Now, one can reason that replacing μ by μα in (7.3) will result

in replacing θ by θα∗. And we arrive at the starting point of Aleksandrov–Clark
Theory, see e.g. [62, Eq. (2.5)] when θ(0) = 0.

It is worth mentioning that in starting with (1.3) we do not really make a hidden
assumption. We would recover the general starting point of [62] by taking Uα with
strict contraction α instead of U0 with α = 0. As when dealing with rank-one
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perturbations, operator U0 is unitarily equivalent to the compressed shift operator
on a transcription free model space.

Similar to the rank-one setting, here, the Sz.-Nagy–Foiaş model space reduces
to H 2(Cd) � θH 2(Cd), if and only if θ is inner (i.e. has non-tangential boundary
values that are unitary with respect to Lebesgue measure a.e. on T), if and only if
U has purely singular spectrum. See e.g. [55, Corollary 5.8] for a reference of the
second equivalence. Also see [26].

The de Branges–Rovnyak model space reduces to one-story if and only if θ is an
extreme point, and if and only if

∫

T
tr(ln(I−|θ (z)|)dm(z) = −∞ (see [62, Theorem

4.3.1]). There seems to be no immediate description of the extreme property in terms
of the operator U or the perturbation family Uα .

In any case, the de Branges–Rovnyak model space reduces at times when Sz.-
Nagy–Foiaş model does not. When dealing with the general case of finite-rank
unitary perturbations, no such reduction can be assumed a priori. This general case
is the subject of Liaw–Treil [55] and some of Martin [62] holds in this generality.

In [55] Liaw–Treil study the general Nikolski–Vasyunin model of finite-rank
Aleksandrov–Clark perturbations. Determining the unitary operator realizing this
representation yields a generalization of the Clark-type operator and its adjoint.
For the adjoint, the transcription choice leading to the full Sz.-Nagy–Foiaş model
features a generalization of the normalized Cauchy transform.

7.2 Krein Spaces and Reproducing Kernel Hilbert Spaces in
Applications

Krein spaces are indefinite inner product spaces; spaces which possess a Hermitian
sesquilinear form that allows elements to have positive or negative values for their
“norm.” A Hilbert inner product can be canonically defined on Krein spaces, so they
can be viewed as a direct sum of Hilbert spaces [18]. In particular, Krein spaces are
naturally defined as extension spaces for symmetric operators with equal deficiency
indices and have their own tools to determine spectral properties. Applications to the
spectral analysis of direct sums of indefinite Sturm–Liouville operators is possible
because so-called definitizable operators in Krein spaces are stable under finite-rank
perturbations [13]. Furthermore, compact perturbations of self-adjoint operators in
Krein spaces also preserve certain spectral points [10], and the spectral subspaces
corresponding to sufficiently small surrounding neighborhoods of these points are
actually Pontryagin spaces (simpler versions of Krein spaces).

Representations of symmetric operators with equal deficiency indices are also
possible in reproducing kernel Hilbert spaces; Hilbert spaces of functions where
point evaluation is a continuous linear functional. Among other results, Aleman–
Martin–Ross [9] carried out representations for Sturm–Liouville and Schrödinger
(differential) operators, Toeplitz operators and infinite Jacobi matrices. The idea
becomes that for each such example, the structure of the model space hosts the full
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information (including spectral properties) of the symmetric operator. In [9, Section
5], the characteristic functions corresponding to these examples are computed
explicitly; so that the de Branges–Rovnyak model space (which is a reproducing
kernel Hilbert spaces) is completely determined.

Representations in the Herglotz space constitute another interesting topic in [9].

8 Spectral Theory of Finite-Rank Unitary Perturbations

Consider the setting of Sect. 7.1. Recall that Uα for unitary α is a unitary rank d

perturbation of a unitary operator U, and recall that (7.1) defines the family of
associated matrix-valued spectral measures μα . In analogy to the self-adoint setting,
we define the family of matrix-valued functions Wα by dμα(t) = Wα(t)dμα(t).
Taking a component-wise Randon–Nikodym derivative, we arrive at (Wα)ac :=
dμα/dx. Further, recall that θ is the matrix-valued characteristic function of the
completely non-unitary contraction U0, and that �(z) = (I − θ∗(z)θ(z))1/2.

A complete explicit description of the matrix-valued spectral measures of Uα in
terms of the characteristic function is currently not available. In fact, the theory for
finite-rank perturbations is lagging behind what is known for rank-one perturbations,
see Theorem 4.2. This problem has been in recent years and continues to be a field
of active study. Here we explain some results in this direction.

8.1 Spectral Properties in Terms of the Characteristic Function

The location of the spectrum of the perturbed operator is captured by:

Theorem 8.1 (See Mitkovski [63, Corollary 4.4]) The spectrum of Uα consists of
those points λ ∈ T at which either θ cannot be analytically continued across λ, or
θ(λ) is analytically continuable with θ(λ)− α not invertible.

In combination with von Neumann’s theorem, Theorem 2.1, a characterization
by Lifshitz [59, Theorem 4] of the essential spectrum of U0 says that it consists of
those points λ ∈ T for which (at least) one of the following conditions fails:

• θ is analytic on some open neighborhood of λ,
• there is a neighborhood Nλ of λ so that θ is unitary for all λ ∈ Nλ ∩ T.

For the absolutely continuous part of the perturbed operator’s spectral measure,
a full matrix-version becomes available upon combination of Liaw–Treil [55,
Theorem 5.6] with the Herglotz formula (7.3) for Uα , which is obtained from that
for U by simultaneously replacing μ by μα and θ by θα∗. Namely, we have

(In − αb(λ)∗)Wα(λ)(In − b(λ)α∗) = (�(λ))2 for Lebesgue a.e. λ ∈ T,

(8.1)
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in the sense of non-tangential boundary limits. In particular, for the absolutely
continuous part, the multiplicity function is given by a non-tangential limit
rank (Wα(λ))ac = rank limz→λ . Slightly weaker results are contained in Douglas–
Liaw [26].

8.2 Singular Part in Terms of the Characteristic Function

As for rank-one perturbations, capturing the singular part is a more difficult venture.
The main problem here is that Poltoratski’s Theorem requires a major adjustment
(see Sect. 8.2 for a discussion). As a result, a description of the singular part in terms
of the characteristic function is still outstanding.

For regular points (i.e. those that lie in the complement of the essential spectrum),
both eigenvalues and eigenvectors of Uα are described in Martin [62, Proposition
5.2.2]. Namely, a regular point λ ∈ T is an eigenvalue of Uα if and only if
limz→λ(αθ∗(z)− U∗) exists and is not invertible. Eigenvectors are those functions
χ{λ}x with x ∈ C

d ∩ ker(αθ∗(λ) − U∗) and where χ denotes the characteristic
function. In that same proposition, a necessary and sufficient condition is provided
for a point to not be an eigenvalue of Uα for any unitary α.

There are many open questions remaining in this area. Some of them were subject
of investigation in [54].
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Appendix: Brief Summaries of Other Closely Related Topics

We discuss Aleksandrov Spectral Averaging and Poltoratski’s Theorem. These
are both central tools in the field. Thereafter, we briefly illuminate the Simon–
Wolff Theorem to which we attribute some of the popularity of the topic among
mathematical physicists. We wrap up with a promising direction connecting the
field to modern function theoretic operator theory.
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Aleksandrov Spectral Averaging

Undoubtedly one of the most celebrated results of the field is the following
averaging formula. On the side we mention that we can retrieve restrictions on the
Aleksandrov–Clark family of spectral measures, e.g., by choosing the function g

to be the characteristic function of a set of Lebesgue measure zero. We being by
considering the rank-one setting and will then turn to finite-rank. For part of this
subsection we follow [23].

Theorem A.1 (Aleksandrov Disintegration Theorem, See [8] and [23, Theorem
9.4.11]) For g ∈ L1(T) we have

∫ (∫

g(ζ )dμα(ζ )

)

dm(α) =
∫

g(ζ )dm(ζ ). (A.1)

For a bounded Borel function f on T, let

(Gf )(α) :=
∫

f (ζ )dμα(ζ ). (A.2)

It is one of the main aspects of Theorem A.1 that for f ∈ L1(T), the function Gf

makes sense for Lebesgue a.e. α ∈ T and that it is integrable.
It turns out that G satisfies even more subtle mapping properties. We briefly

summarize those before we explain what is known for finite-rank perturbations.
Due to the assumption that θ(0) = 0, we see from Sect. 4.1 that ‖μα‖ = 1 and

so

‖Gf ‖∞ ≤ ‖f ‖∞.

Note also that the function Gf is continuous whenever f is continuous. The
Monotone Class Theorem (see i.e. [23, Theorem 9.4.3]) can be used to show that if
f is a bounded Borel function, then Gf is also a bounded Borel function. Hence,
the integral

∫

T

(Gf )(α)dm(α),

makes sense. In fact, the transformation G in (A.2) can be extended to many classes
of functions. Not only do we have GC ⊂ C, CL∞ ⊂ L∞, and GL1 ⊂ L1, but
also GLp ⊂ Lp (1 ≤ p ≤ ∞), G(BMO) ⊂ BMO , G(VMO) ⊂ VMO , and
GBs

pq ⊂ Bs
pq , where Bs

pq are the Besov classes, see [8].
Now, let us turn to what is known about Aleksandrov Spectral Averaging for

finite-rank perturbations.



Spectral Analysis, Model Theory and Applications of Finite-Rank Perturbations 197

In the unitary setting, a generalization of the Aleksandrov Spectral Averaging
formula for continuous functions was obtained in Elliot [28] under extra conditions
and in Martin [62, Theorem 3.2.3].

For self-adjoint operators a Aleksandrov-type Spectral Averaging formula was
proved, Liaw–Treil [56, Theorems 4.1, 4.6]. These formulas imply restrictions on
the singular parts of families of Aleksandrov–Clark measures.

Aleksandrov Spectral Averaging for the Drury–Arveson space in the setting for
inner characteristic functions was achieved by Jury [39, Theorem 2.9]. For more
on Aleksandrov–Clark theory for the Drury–Arveson space see Sect. 8.2 and the
references therein.

Poltoratski’s Theorem

Deep at the heart of many results in Aleksandrov–Clark theory lies the celebrated
result (proved by Poltoratski in [69], also see [23, Section 10.3]) stating that for a
Radon measure τ on T and f ∈ L2(τ ) the normalized Cauchy transform Cf τ(z)

Cτ (z)
possesses non-tangential boundary values z → λ for τs-a.e. λ ∈ T. This result is
so important, because it empowers us to study the behavior of the spectral measure
on sets that are of Lebesgue measure zero. In particular, one can sometimes use
Poltoratski’s Theorem to retrieve information about the singular parts of the spectral
measures.

Direct sum examples of scalar characteristic functions immediately show that
a literal extension of the statement of Poltoratski’s Theorem is not possible to the
finite-rank setting. Nonetheless, Kapustin–Poltoratski [44, Theorem 3] have proved
a finite-rank analog which features a matrix-valued numerator alongside a scalar-
valued denominator as well as an multiplication by a left inverse of the coordinate
map J in (1.3). This left inverse ‘automatically’ annihilates directions in which the
limit of the ratio does not exist.

Simon–Wolff Criterion

In [75, Theorem 3 of Section 2] Simon and Wolff provided a characterization—
formulated in terms of the spectral measure μ—of when rank-one perturbation
problems Aγ are pure point for Lebesgue a.e. parameters γ ∈ R. They applied their
result to showing that the one-dimensional discrete random Schrödinger operator
exhibits so-called Anderson localization, see [37, 78]. The idea of the Simon–Wolff
localization proof was to sweep through the parameter domain for the perturbed
operators’ random coupling constants.

In Poltoratski [70] the Simon–Wolff Theorem was extended from the rank-one
to the finite-rank setting.
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Simon–Wolff’s celebrated work initiated further applications of rank-one pertur-
bations to a generalization of random Schrödinger operators called Anderson-type
Hamiltonians, see e.g. [37]. Anderson-type Hamiltonians are obtained from per-
turbing a self-adjoint operator by countably infinitely many rank-one perturbations,
each coupled by a random variable. More concretely, they are of the form Aω =
A + ∑

ωi〈 · , ϕi〉ϕi, where {ϕi} forms an orthonormal basis of H, and ωi are
independent random variables that are chosen in accordance with an identical
probability distribution. In view of Sect. 2, the fact that the discrete random
Schrödinger operator features an almost surely non-compact perturbation operator
underlines the level of difficulty in dealing with such objects.

In Jaksiç–Last [37, 38], these methods are utilized to prove the almost sure
cyclicity of the singular spectrum of the Anderson-type Hamiltonian. And in
Abakumov–Liaw–Poltoratski [1], it is shown that under some condition any non-
trivial vector is cyclic. In Liaw [52] these results are applied to numerically support
a delocalization conjecture for the two-dimensional discrete random Schrödinger
operator.

Functions of Several Variables

Recall that the Drury–Arveson space H 2(Bn) is the reproducing kernel Hilbert
space of functions on the open unit ball Bn of C

n, n ∈ N, that arises from the
reproducing kernel k(z,w) = (1− 〈z,w〉

C
n )
−1 with z,w ∈ B

n.

Jury [39] extended much of the de Branges–Rovnyak construction of Clark
theory to H 2(Bn). As before, the de Branges–Rovnyak model spaces H(θ) are
contractively contained in H 2(Bn). The family of Clark measure is replaced by a
family of states on some noncommutative operator system. The backward shift is
replaced by a canonical solution to the Gleason problem in H(θ). An extension
of some of Jury’s work to non-inner but so-called quasi-extreme characteristic
functions was carried out in Jury–Martin [40]. There, the Aleksandrov–Clark
measures are necessarily generalized to certain positive linear functionals. For
related work on function analytic noncommutative operator theory, we refer the
reader to a series of papers by Jury and Martin [41–43].

On the side we mention that it is not immediately clear whether a perturbation
problem corresponds to this Aleksandrov–Clark theory for functions of several
variables.

The state of affairs for self-adjoint finite-rank perturbation problems is similar.
The conditions and explicit formulas necessary to pose a well-defined problem in
this area have not been investigated, to the best knowledge of the authors. However,
there exists a generalization of Nevanlinna–Herglotz functions to several variables
(see e.g. [61]) whose integral representation should form a framework for the analog
of the Borel transform in (3.2).
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Invariance of the Essential Spectra
of Operator Pencils

H. Gernandt, N. Moalla, F. Philipp, W. Selmi, and C. Trunk

Abstract The essential spectrum of operator pencils with bounded coefficients in
a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients
of two pencils are derived which guarantee the same essential spectrum. This is
done by exploiting a strong relation between an operator pencil and a specific linear
subspace (linear relation).

Keywords Operator pencil · Essential spectrum · Linear relations · Singular
sequence · Fredholm operator · Pseudo-inverse
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1 Introduction

Its is a well-known fact that the essential spectrum of a linear operator is invariant
under compact perturbations. Here we understand the essential spectrum as the
complement of the (semi-) Fredholm domain. More precisely, we investigate four
kinds of essential spectra: the Fredholm essential spectrum, the upper and the lower
semi Fredholm essential spectrum and the semi Fredholm essential spectrum. For
simplicity, we refer to those four kinds just as the “essential spectra”.
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In many applications, e.g. in mathematical physics or in transport theory, one is
interested in the (essential) spectrum of operator pencils, see, e.g., [8, 9]. A linear
operator pencil is a first order polynomial with bounded operators as coefficients,
that is, it is of the form

A1(λ) = λS1 − T1,

where λ ∈ C and S1 and T1 are bounded operators acting between two normed
spaces. By definition (see, e.g., [13, 14]) a complex number λ is in the spectrum of
the pencil A1 if zero is in the spectrum of the operator λS1 − T1. In the same way
the essential spectrum of A1 is defined as the set of all λ ∈ C such that the operator
λS1 − T1 is no (semi-) Fredholm operator.

We investigate the question which perturbations of the coefficients do not change
the essential spectrum. For this, consider a second operator pencil

A2(λ) = λS2 − T2,

where S2 and T2 are bounded operators acting between the same spaces as S1 and T1.
If S1−S2 and T1−T2 are two compact operators, then obviously also the difference

A1(λ)−A2(λ) = λ(S1 − S2)− (T1 − T2)

is compact and, hence, the essential spectra of A1 and A2 coincide. But the
essential spectrum of two operator pencils may coincide even if the difference of
the coefficients is substantial. For example, let M be a bounded and boundedly
invertible operator. Then obviously

A1(λ) = λI − T and A2(λ) = λM − TM = A1(λ)M

have the same essential spectrum.
Here we make use of the following simple observation: Let S, T : X → Y be

bounded linear operators between two Hilbert spaces X and Y such that the upper
semi Fredholm essential spectrum of the pencil A(λ) := λS − T is not C. Then the
essential spectra of A and T S−1 coincide (see Corollary 3.5 below). Note, that in
general S is not invertible and here S−1 and T S−1 are understood in the sense of
linear relations (or, what is the same, multivalued mappings, see [1, 5, 15]). That is,
S−1 and T S−1 are subspaces of Y ×X and Y × Y , respectively, given by

S−1 := {{Sx, x} : x ∈ X}, and

T S−1 :=
{

{x, z} : {x, y} ∈ S−1, {y, z} ∈ T , for some y ∈ X
}

= ran

[

S

T

]

.
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Addition and multiplication of two subspaces are defined in analogy to the addition
and multiplication of two linear mappings. In particular, we have for λ ∈ C

T S−1 − λ = {{Sx, T x − λSx} : x ∈ X}

and the notion of (essential) spectrum and resolvent set for linear relations are
defined similarly as for linear operators, for details we refer to Sect. 2 below.

Therefore, the relationship of the essential spectra of two linear operator pencils
A1 and A2 is the same as the relationship of the essential spectra of the linear
relations T1S

−1
1 and T2S

−1
2 . Now one can utilize known results for linear relations

(see, e.g., [2]): If the difference of the two orthogonal projections onto the subspaces
T1S

−1
1 and T2S

−1
2 is compact, then the essential spectra of the two pencils coincide.

This difference can be expressed with the (pseudo-) inverse Zj of the operator
S∗j Sj + T ∗j Tj , j = 1, 2, and it has the form

[

S1Z1S
∗
1 − S2Z2S

∗
2 S1Z1T

∗
1 − S2Z2T

∗
2

T1Z1S
∗
1 − T2Z2S

∗
2 T1Z1T

∗
1 − T2Z2T

∗
2

]

. (1.1)

The first main result (cf. Sect. 5 below) shows that if (1.1) is compact then the
essential spectra of A1 and A2 coincide.

The second main result of this paper (cf. Sect. 5 below) makes use of the so-
called singular sequences (cf. Sect. 2 below). If S1 and S2 are Fredholm, then the
pseudo-inverses S†

1 and S
†
2 exist. If, in addition,

(T2 − T1)S
†
2S1, (T2 − T1)S

†
1S2, T1S

†
2 (S1 − S2) and T2S

†
1 (S1 − S2)

are compact, then the upper semi Fredholm essential spectra of A1 and A2 coincide.
We prove similar results also for the lower semi Fredholm essential spectrum.

2 Preliminaries on Linear Relations

Let X, Y and Z be Banach spaces. The set of all bounded linear operators from X to
Y is denoted by L(X, Y ). As usual, we set L(X) := L(X,X). A linear relation L
from X into Y is a subspace of X×Y and the set of all linear relations from X into Y
is denoted by LR(X, Y ). Moreover,CR(X, Y ) is the set of all closed linear relations
from X into Y . Also here, we set LR(X) := LR(X,X) and CR(X) := CR(X,X).
Each T ∈ L(X, Y ) is identified with an element in CR(X, Y ) via its graph.



206 H. Gernandt et al.

Given a linear relation L ∈ LR(X, Y ), we introduce the following sets:

domL = {x ∈ X : {x, y} ∈ L for some y ∈ Y },
kerL = {x ∈ X : {x, 0} ∈ L},
ranL = {y ∈ Y : {x, y} ∈ L for some x ∈ X},

mulL = {y ∈ Y : {0, y} ∈ L},

which are called the domain, the kernel, the range and the multivalued part of L,
respectively. The inverse of the linear relation L is given by

L−1 := {{y, x} ∈ Y ×X : {x, y} ∈ L}. (2.1)

The linear relation αL with α ∈ C is defined by

αL := {{x, αy} ∈ X × Y : {x, y} ∈ L}. (2.2)

The (operator-like) sum of two linear relations L,M ∈ LR(X, Y ) is defined as

L+M := {{x, y + y ′} ∈ X × Y : {x, y} ∈ L, {x, y ′} ∈ M}. (2.3)

If we assume that X = Y then in view of (2.2) and (2.3) we have

L− λ = L− λI = {{x, y − λx} : {x, y} ∈ L}. (2.4)

The product of two linear relations L ∈ LR(Y,Z) and M ∈ LR(X, Y ) is defined
by

LM := {{x, z} ∈ X × Z : {x, y} ∈ M, {y, z} ∈ L for some y ∈ Y }.

We recall some basic notions from Fredholm theory for linear relations, see [5].

Definition 2.1 Let L ∈ LR(X, Y ). The nullity and the deficiency of L are defined
as follows

nulL := dim kerL, and

defL := codim ranL := dimY/ranL.

If either nulL <∞ or defL <∞, we define the index of a linear relation as follows

indL := nulL− defL,

where the value of the difference is taken to be indL := ∞ if nulL is infinite and
indL := −∞ if defL is infinite.
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Furthermore we define the set of upper (lower) semi Fredholm relations, see e.g.
[5],

�+(X, Y ) := {L ∈ CR(X, Y ) : nulL <∞ and ranL is closed in Y },
�−(X, Y ) := {L ∈ CR(X, Y ) : defL <∞ and ranL is closed in Y },

and the set of Fredholm relations as

�(X, Y ) := �+(X, Y ) ∩�−(X, Y ).

If X = Y , we write briefly �+(X), �−(X), and �(X), respectively. The following
characterization of �+(X, Y ) is based on [5, Theorem V.1.11].

Proposition 2.2 Let L ∈ CR(X, Y ) where X and Y are Hilbert spaces, then the
following are equivalent:

(i) L /∈ �+(X, Y ).
(ii) There exists a sequence ({xn, yn}) in L such that ‖xn‖ = 1 for all n ∈ N,

xn ⇀ 0 and yn → 0.
(iii) There exists a sequence ({xn, yn}) in L such that ‖xn‖ = 1 for all n ∈ N,

xn ⇀ 0 and dist(yn,mulL)→ 0.

Proof For the proof of (i)⇒(ii), assume first that dim kerL = ∞ and choose an
infinite orthonormal system (xn) in kerL. Then {xn, 0} ∈ L is a sequence as required
in (ii). Second, assume that ranL is not closed. Then there exist a sequence (zn) in
ranL and some z ∈ Y\ranL such that zn → z. Choose un ∈ (kerL)⊥ such that
{un, zn} ∈ L for each n ∈ N. If (un) is bounded, then (un) has a subsequence (unk )
such that unk ⇀ u for some u ∈ X. Then the closedness of L and {unk , znk } ⇀
{u, z} imply that {u, z} ∈ L and thus z ∈ ranL, which is a contradiction. Hence,
(un) is unbounded. It is no restriction to assume that ‖un‖ → ∞ as n→∞. We set
xn := un/‖un‖ ∈ (kerL)⊥ and yn := zn/‖un‖. Then {xn, yn} ∈ L, ‖xn‖ = 1 for
all n ∈ N and yn → 0 as n → ∞. Then a subsequence of (xn) converges weakly,
hence we may assume that xn ⇀ x for some x ∈ (kerL)⊥. As {xn, yn} ⇀ {x, 0}
and L is closed, it follows that x = 0.

The implication (ii)⇒(iii) is trivial. Thus, let us prove (iii)⇒(i). For this, let
({xn, yn}) ⊂ L be a sequence as in (iii). Suppose that dim kerL <∞ and that ranL
is closed. Consider the linear relation

M := L ∩
[

(kerL)⊥ × (mulL)⊥
]

.

Then M is obviously closed and (the graph of) an operator. Moreover, kerM = {0}
and ranM = ranL ∩ (mulL)⊥ is closed. Hence M , considered as an operator from
domM , equipped with the graph norm, is a bounded upper semi Fredholm operator.
Let xn = un+vn and yn = wn+zn, where un ∈ kerL, vn ∈ (kerL)⊥, wn ∈ mulL,
and zn ∈ (mulL)⊥, n ∈ N. Then xn ⇀ 0 and dim kerL < ∞ imply un → 0



208 H. Gernandt et al.

and ‖vn‖ → 1. Also, ‖zn‖ = dist(yn,mulL) → 0. We have {vn, zn} ∈ M , that is,
vn ∈ domM and Mvn = zn → 0, which is a contradiction to the fact that M is an
upper semi Fredholm operator (cf. [4, XI Theorem 2.5]). ��

In what follows, we introduce the adjoint of a linear relation. For this we assume
in addition that the spaces X and Y are Hilbert spaces equipped with inner products
(·, ·)X and (·, ·)Y , respectively. If no confusion arises, we use for simplicity just the
notion (·, ·). The adjoint L∗ of L ∈ LR(X, Y ) is a linear relation from Y to X,
defined by

L∗ = {{y, x} ∈ Y ×X : (y, v)Y = (x, u)X for all {u, v} ∈ L}.

Note that always L∗ ∈ CR(Y,X). The following identities for L ∈ LR(X, Y ) are
straightforward (see also [15, Section 14.1], [3, Proposition 2.4], and [12])

(L∗)−1 = (L−1)∗,

(λL)∗ = λL∗, λ �= 0,

kerL∗ = (ranL)⊥, (2.5)

(ranL∗)⊥ = kerL, (2.6)

L∗ = −(L⊥)−1. (2.7)

The range of L is closed if and only if the range of L∗ is closed, see, e.g.
[3, Proposition 2.5]. This together with (2.5) and (2.6) implies that for all L ∈
CR(X, Y )

L ∈ �±(X, Y ) if and only if L∗ ∈ �∓(Y,X). (2.8)

Next, we define the spectrum of a linear relation and introduce different types of
essential spectra as in [16], see also [6] for the operator case.

Definition 2.3 LetL ∈ LR(X). The spectrum and the resolvent set of L are defined
by

σ(L) := {λ ∈ C : (L− λ)−1 ∈ L(X)} and ρ(L) := C \ σ(L),

respectively. The essential spectra of L are defined as

σe1(L) := {λ ∈ C : L− λ /∈ �+(X) ∪�−(X)},
σ±e2(L) := {λ ∈ C : L− λ /∈ �±(X)},
σe3(L) := {λ ∈ C : L− λ /∈ �(X)}.
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Note that L−λ ∈ �±(X) requiresL−λ (and thus L) to be closed. Hence, if L is
not closed, we have σ(L) = σe1(L) = σ±e2(L) = σe3(L) = C. Also, we obviously
have

σe1(L) = σ+e2(L) ∩ σ−e2(L) and σe3(L) = σ+e2(L) ∪ σ−e2(L).

In particular,

σe1(L) ⊂ σ±e2(L) ⊂ σe3(L).

3 Essential Spectra of the Operator Pencil λS − T and the
Linear Relation T S−1

Throughout this section let X and Y be Banach spaces. Given S, T ∈ L(X, Y ), we
will establish a relationship between the (essential) spectra of the operator pencil
A(λ) = λS − T and the associated linear relation

T S−1 ∈ LR(Y ).

Note that S−1 is the inverse of the graph of S viewed as a linear relation. Then it
follows from (2.1) and (2.4) that

T S−1 =
{

{y, z} : {y, x} ∈ S−1, {x, z} ∈ T for some x ∈ X
}

= {{Sx, T x} : x ∈ X} (3.1)

= ran

[

S

T

]

. (3.2)

From this it is immediate that

dom (T S−1) = ran S, ker(T S−1) = S kerT ,

ran (T S−1) = ran T , mul (T S−1) = T ker S.

The spectrum and the essential spectra for a linear operator pencil are defined
similarly as for linear relations.

Definition 3.1 For an operator pencil A(λ) = λS − T with S, T ∈ L(X, Y ) the
spectrum σ(A) and the resolvent set ρ(A) are defined as

σ(A) := {λ ∈ C : λS − T is not boundedly invertible},
ρ(A) := C \ σ(A).
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The essential spectra of A are given by

σe1(A) := {λ ∈ C : λS − T /∈ �+(X, Y ) ∪�−(X, Y )},
σ±e2(A) := {λ ∈ C : λS − T /∈ �±(X, Y )},
σe3(A) := {λ ∈ C : λS − T /∈ �(X, Y )}.

The next proposition shows how the spectra of A and T S−1 are related to each
other.

Proposition 3.2 Let A(λ) = λS − T be an operator pencil with S, T ∈ L(X, Y )
and λ ∈ C then the following holds.

(a) ker(T S−1 − λ) = S kerA(λ).
(b) ran (T S−1 − λ) = ranA(λ).
(c) We have

dim ker(T S−1 − λ) = dim
kerA(λ)

ker S ∩ kerT
.

(d) If σ+e2(A) �= C, then T S−1 is closed, i.e., T S−1 ∈ CR(Y ). This is in particular
the case if ρ(A) �= ∅.

(e) We have σ(T S−1) ⊂ σ(A).
(f) If ker S ∩ kerT = {0}, then

σ(T S−1) = σ(A).

Proof From (2.3) and (3.1) it is easy to see

T S−1 − λ = {{Sx, T x − λSx} : x ∈ X}

which implies (a) and (b). Observe that the map [x] �→ Sx from ker(λS−T )
ker S∩kerT to

S ker(λS − T ) is bijective which proves (c).
In order to prove (d) set N0 := kerS ∩ kerT and let λ ∈ C such that

A(λ) ∈ �+(X, Y ). Then kerA(λ) is finite dimensional and, hence, closed. It has a
complementary subspace and we have

kerA(λ) = N0 �N1 and X = kerA(λ)�M

with closed subspaces N1 ⊂ kerA(λ) and M ⊂ X. Let ({yn, zn}) be a sequence in
T S−1 which converges to {y, z} ∈ Y × Y . Then, by (3.1), we find a sequence (xn)
in X with

yn = Sxn and zn = T xn.
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We have to prove that there exists some x ∈ X such that Sxn → Sx and T xn → T x.
To this end, we write xn = un + vn + wn with un ∈ N0, vn ∈ N1 and wn ∈ M .
Since A(λ) maps M bijectively onto its (closed) range and A(λ)wn = A(λ)xn =
λSxn − T xn → λy − z, it follows that (wn) converges to some w ∈ M . Hence,
(Swn) and (T wn) converge and therefore (Svn) converges. Since ker(S|N1) = {0},
(vn) converges to some v ∈ N1 and we obtain Sxn = S(vn +wn)→ S(v +w) and
T xn = T (vn + wn)→ T (v +w).

For the proof of (e) let λ ∈ ρ(A). Then T S−1 is closed by (d) and ker(T S−1 −
λ) = {0}, ran (T S−1 − λ) = Y by (a) and (b). Hence,

mul (T S−1 − λ)−1 = ker(T S−1 − λ) = {0}

and (T S−1 − λ)−1 is a closed operator in Y with domain Y . By the closed graph
theorem, it is an element of L(Y ). This proves (e). For (f), assume that λ ∈ ρ(T S−1)

and, in addition, that kerS∩ker T = {0}. Then ranA(λ) = Y by (b) and kerA(λ) =
kerS ∩ kerT = {0} by (c). ��
Remark 3.3 Note that the condition kerS∩ker T = {0} in (f) is necessary for ρ(A)

to be non-empty. In fact, if x ∈ kerS ∩ kerT , x �= 0, then x ∈ kerA(λ) for all
λ ∈ C and thus ρ(A) = ∅.

The following proposition shows that also the essential spectra of the pencil λS−
T and the linear relation T S−1 are intimately connected to each other.

Proposition 3.4 Let A(λ) = λS − T be an operator pencil with S, T ∈ L(X, Y )
and λ ∈ C. Then we have

σ+e2(T S
−1) ⊂ σ+e2(A) and σ−e2(T S

−1) ⊃ σ−e2(A). (3.3)

If T S−1 is closed, then

σ−e2(T S
−1) = σ−e2(A). (3.4)

If dim(ker S ∩ kerT ) <∞, then

σ+e2(T S
−1) = σ+e2(A). (3.5)

Hence, if T S−1 is closed and dim(kerS ∩ kerT ) <∞, then

σe1(T S
−1) = σe1(A) and σe3(T S

−1) = σe3(A).

Proof From Proposition 3.2 (b) it follows that ran (T S−1 − λ) is closed if and only
if ranA(λ) is closed and def (T S−1 − λ) = defA(λ). This proves the second
relation in (3.3). If A(λ) ∈ �+(X, Y ) for some λ ∈ C, then T S−1 is closed by
Proposition 3.2 (d) and from Proposition 3.2 (a) we conclude nul (T S−1 − λ) ≤
nul (A(λ)). Hence, T S−1 − λ ∈ �+(Y ) and (3.3) is proved.
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If T S−1 is closed, then obviouslyA(λ) ∈ �−(X, Y ) implies T S−1−λ ∈ �−(Y ),
which shows (3.4). If dim(kerS ∩ kerT ) < ∞, then T S−1 − λ ∈ �+(Y ) implies
dim kerA(λ) <∞ (see Proposition 3.2 (c)) and therefore A(λ) ∈ �+(X, Y ). ��

The following corollary follows from Proposition 3.2 (d) A(λ) ∈ �+(X, Y )
implies dim(ker S ∩ kerT ) <∞.

Corollary 3.5 If σ+e2(A) �= C (in particular, if ρ(A) �= ∅), then

σ+e2(T S
−1) = σ+e2(A) and σ−e2(T S

−1) = σ−e2(A),

and therefore also

σe1(T S
−1) = σe1(A) and σe3(T S

−1) = σe3(A).

4 Essential Spectrum of Linear Relations Under
Perturbations

In this section we let X and Y be Hilbert spaces. We say that L,M ∈ CR(X, Y )

are compact perturbations of each other if PL − PM is compact. Here, PL denotes
the orthogonal projection onto the closed subspace L. If ρ(L) ∩ ρ(M) �= ∅, this is
equivalent to (L − μ)−1 − (M − μ)−1 being compact for some (and hence for all)
μ ∈ ρ(L) ∩ ρ(M) (see [2]).

Lemma 4.1 Two linear relations L,M ∈ CR(X, Y ) in the Hilbert spaces X,Y
are compact perturbations of each other if and only if L∗ and M∗ are compact
perturbations of each other.

Proof Relation (2.7) and the unitary mapping U : X × Y → Y ×X which is given
by

U(x, y) := (y,−x)

yield L∗ = UL⊥. Therefore

PL∗ − PM∗ = PUL⊥ − PUM⊥ = U(PL⊥ − PM⊥)U∗ = U(PL − PM)U∗.

Hence, PL∗ − PM∗ is compact if and only if PL − PM is compact. ��
Proposition 4.2 Let X,Y be Hilbert spaces and let L,M ∈ CR(X, Y ) be compact
perturbations of each other. Then L ∈ �±(X, Y ) if and only if M ∈ �±(X, Y ). In
particular,

σ+e2(L) = σ+e2(M) and σ−e2(L) = σ−e2(M),
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and therefore also

σe1(L) = σe1(M) and σe3(L) = σe3(M).

Proof Let L /∈ �+(X, Y ). Due to Proposition 2.2 there exists a sequence ({xn, yn})
in L with ‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and yn → 0. Set {x ′n, y ′n} :=
PM {xn, yn} ∈ M , n ∈ N. Since {xn, yn}⇀ 0, we conclude from

{x ′n, y ′n} = (PM − PL){xn, yn} + {xn, yn}

and the compactness of PM − PL that ‖x ′n‖ → 1, y ′n → 0 as n→∞, and x ′n ⇀ 0.
Setting x ′′n := x ′n/‖x ′n‖ and y ′′n := y ′n/‖x ′n‖, we obtain {x ′′n, y ′′n} ∈ L with ‖x ′′n‖ = 1
for all n ∈ N, x ′′n ⇀ 0, and y ′′n → 0. Hence, Proposition 2.2 implies that M /∈
�+(X, Y ). This shows that L ∈ �+(X, Y ) if and only if M ∈ �+(X, Y ). Using
this, Lemma 4.1, and (2.8), we obtain the same statement with �+(X, Y ) replaced
by �−(X, Y ).

The remaining statements on the essential spectra follow from Proposition 4.3 in
[2] which implies that L and M are compact perturbations of each other if and only
if L− λ and M − λ are compact perturbations of each other. ��

5 Essential Spectrum of Operator Pencils Under
Perturbations

In this section we give sufficient conditions for the equality of the essential spectra
of two operator pencils A1 and A2

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2

in terms of their coefficients S1, S2, T1, T2 ∈ L(X, Y ). In the proofs of our main
theorems we use the above-established concept of the relationship between operator
pencils and linear relations.

The first statement is obvious and follows from the well-known fact that
L(X, Y ) ∩�±(X, Y ) is invariant under compact perturbations.

Proposition 5.1 Assume that T2 − T1 and S2 − S1 are compact. Then

σe1(A1) = σe1(A2), σ±e2(A1) = σ±e2(A2), and σe3(A1) = σe3(A2).

Let A ∈ L(X, Y ). It follows from kerA = kerA∗A and the closed range theorem
that A has closed range if and only if the same is true for A∗A. In this case,
X = kerA ⊕ ranA∗, Y = kerA∗ ⊕ ranA and the restriction A0 = A|ranA∗ :
ranA∗ → ranA is boundedly invertible. Recall that the pseudo-inverse A† of A is
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then defined by

A† := A−1
0 PranA.

For an overview of equivalent definitions of the pseudo-inverse of linear operators
we refer to [7, Chapter II]. It is immediate that

PranA = AA† (5.1)

and one can show, see e.g. [11, Theorem 4], that

(A†)∗ = (A∗)†. (5.2)

Moreover we have from [7, Theorem 2.1.5] that

A† = (A∗A)†A∗ = A∗(AA∗)†. (5.3)

Our first main theorem is the following.

Theorem 5.2 Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X, Y ) with
corresponding pencils

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2.

Assume that for both j = 1, 2 the operator S∗j Sj + T ∗j Tj ∈ L(X) has closed range
and that the operator

[

S1Z1S
∗
1 − S2Z2S

∗
2 S1Z1T

∗
1 − S2Z2T

∗
2

T1Z1S
∗
1 − T2Z2S

∗
2 T1Z1T

∗
1 − T2Z2T

∗
2

]

∈ L(Y × Y ) (5.4)

is compact, where

Zj := (S∗j Sj + T ∗j Tj )†, j = 1, 2.

Then

σ−e2(A1) = σ−e2(A2).

If, in addition, S∗j Sj + T ∗j Tj ∈ �+(X) for j = 1, 2, then

σ+e2(A1) = σ+e2(A2).

Proof Let j = 1, 2 and set Aj :=
[ Sj
Tj

]

. Then A∗jAj = S∗j Sj + T ∗j Tj implies that

Aj has closed range which means that the relation TjS
−1
j is closed. As discussed
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before, we find with (5.3) that

AjA
†
j = Aj(A

∗
jAj )

†A∗j = AjZjA
∗
j =

[

Sj

Tj

]

Zj

[

S∗j T ∗j
] =

[

SjZjS
∗
j SjZjT

∗
j

TjZjS
∗
j TjZjT

∗
j

]

is the orthogonal projection onto ranAj = TjS
−1
j . Hence, the operator in (5.4) is

the difference of the orthogonal projections onto the closed subspaces T1S
−1
1 and

T2S
−1
2 of Y × Y . Also note that ker Sj ∩ kerTj = kerAj = kerA∗jAj . Now, the

statements of Theorem 5.2 follow from Propositions 4.2 and 3.4. ��
Example

(a) Let us consider the example from the introduction, where X = Y and
A1(λ) = λI − T and A2(λ) = (λI − T )M with T ,M ∈ L(X) and M

boundedly invertible. Clearly, all the essential spectra of A1 and A2 coincide,
respectively. We have S1 = I , T1 = T , S2 = M and T2 = TM . Then both
S∗1S1 + T ∗1 T1 = I + T ∗T and S∗2S2 + T ∗2 T2 = M∗(I + T ∗T )M are boundedly
invertible and the operator matrix in (5.4) is the zero matrix. Indeed, we have

T2S
−1
2 = ran

[

M

TM

]

= ran

[

I

T

]

= T1S
−1
1 .

(b) Let X,Y be Hilbert spaces and let M1,M2 ∈ L(X, Y ) be boundedly invertible.
Let KS,KT ∈ L(Y ) be compact such that −1 /∈ σ(KS) ∩ σ(KT ). Then the
operatorR := (I+KS)

∗(I+KS)+(I+KT )
∗(I+KT ) is boundedly invertible.

Indeed, R is a compact perturbation of 2I and therefore Fredholm with index
zero and the condition −1 /∈ σ(KS) ∩ σ(KT ) guarantees that kerR = {0}.
Consider

S1 = T1 = M1, and S2 = (I +KS)M2, T2 = (I +KT )M2.

Using the invertibility of M1,M2, we note

T1S
−1
1 = ran

[

S1

T1

]

= ran

[

M1

M1

]

= ran

[

I

I

]

and

T2S
−1
2 = ran

[

S2

T2

]

= ran

[

(I +KS)M2

(I +KT )M2

]

= ran

[

I +KS

I +KT

]

.
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Set Z2 := ((I +KS)
∗(I +KS)+ (I +KT )

∗(I +KT ))
−1. In this case, the opera-

tor in (5.4) reads as

[

1
2 I − (I +KS)Z2(I +KS)

∗ 1
2 I − (I +KS)Z2(I +KT )

∗
1
2I − (I +KT )Z2(I +KS)

∗ 1
2 I − (I +KT )Z2(I +KT )

∗

]

.

Obviously, this operator is compact as

1
2 I − Z2

is compact. Hence, the conditions in Theorem 5.2 are satisfied and all essential
spectra of the two pencils

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2

coincide.

Lemma 5.3 Let X,Y be Hilbert spaces, S, T ∈ L(X, Y ), S ∈ �+(X, Y ), and
λ ∈ C. Assume furthermore that T S−1 is closed. Then we have λ ∈ σ+e2(T S

−1) if
and only if there exists a sequence (yn) in (kerS)⊥ such that ‖Syn‖ → 1, yn ⇀ 0,
and (λS − T )yn → 0 as n→∞.

Proof Assume that T S−1 − λ /∈ �+(X, Y ). By Proposition 2.2 there exists a
sequence {xn, zn} ∈ T S−1 − λ with ‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and zn → 0
as n → ∞. As T S−1 − λ = {{Sx, T x − λSx} : x ∈ X} (see (2.3) and (3.1)),
there exists a sequence (vn) in X such that ‖Svn‖ = 1 for all n ∈ N, Svn ⇀ 0, and
T vn − λSvn → 0 as n → ∞. For n ∈ N let vn = un + yn with un ∈ ker S and
yn ∈ (ker S)⊥. Then ‖Syn‖ = 1 and Syn ⇀ 0. Since S maps (ker S)⊥ bijectively
onto the closed subspace ran S, it follows that yn ⇀ 0. Hence, Tyn − λSyn ⇀ 0
so that T vn − λSvn → 0 implies that T un ⇀ 0. But (T un) is contained in the
finite-dimensional subspace T kerS and thus T un → 0 as n → ∞, which implies
(λS − T )yn → 0.

Conversely, let (yn) in (kerS)⊥ be a sequence as in the lemma. Set y ′n :=
‖Syn‖−1yn and xn := Sy ′n as well as zn := λSy ′n−Ty ′n. Then {xn, zn} ∈ T S−1−λ,
‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and zn → 0 as n → ∞. Hence, T S−1 − λ /∈
�+(X, Y ) by Proposition 2.2. ��

The following proposition is the second main result of this paper.

Proposition 5.4 Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X, Y ). Assume
that the following assumptions are satisfied.

1. S1 ∈ �+(X, Y ).
2. S2 ∈ �(X, Y ).
3. (T2 − T1)S

†
2S1 is a compact operator.

4. T1S
†
2 (S1 − S2) is a compact operator.
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Then T1S
−1
1 and T2S

−1
2 both are closed and

σ+e2(T1S
−1
1 ) ⊂ σ+e2(T2S

−1
2 ).

Proof Let j ∈ {1, 2}. For λ ∈ C \ {0} we have Aj (λ) = λSj − Tj = λ(Sj − Tj
λ
).

Since Sj ∈ �+(X, Y ), for |λ| sufficiently large we have that Aj (λ) ∈ �+(X, Y )
(see [10, Theorem IV-5.31]). Therefore, TjS

−1
j is closed by Proposition 3.2 (d).

Assume that λ ∈ σ+e2(T1S
−1
1 ). Then by Lemma 5.3 there exists yn ∈ (ker S1)

⊥
such that ‖S1yn‖ → 1, yn ⇀ 0, and (λS1 − T1)yn → 0 as n → ∞. We set y ′n :=
S

†
2S1yn ∈ ranS∗2 = (kerS2)

⊥, n ∈ N. Obviously, y ′n ⇀ 0. Since dim kerS∗2 < ∞
and yn ⇀ 0, it follows from (5.1)

‖S2y
′
n‖ = ‖Pran S2S1yn‖ = ‖S1yn − Pker S∗2S1yn‖ → 1

as n→∞. Also, setting K := T2 − T1,

T2y
′
n − λS2y

′
n = T2S

†
2S1yn − λ(S1yn − Pker S∗2S1yn)

= KS
†
2S1yn + T1S

†
2S1yn − λS1yn + λPker S∗2S1yn

= KS
†
2S1yn + T1(S

†
2S1 − I)yn + λPker S∗2S1yn − (λS1 − T1)yn.

Now, the claim follows from Lemma 5.3, the compactness of KS
†
2S1 and Pker S∗2 and

the fact that S†
2S1 − I = S

†
2 (S1 − S2)− Pker S2S

∗
2 . ��

Theorem 5.5 Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X, Y ) and let
S1, S2 ∈ �(X, Y ).

(a) If (T2−T1)S
†
2S1, (T2−T1)S

†
1S2, T1S

†
2 (S1−S2), and T2S

†
1 (S1−S2) are compact,

then

σ+e2(A1) = σ+e2(A2). (5.5)

(b) If S1S
†
2 (T2−T1), S2S

†
1 (T2−T1), (S1−S2)S

†
2T1 and (S1−S2)S

†
1T2 are compact,

then

σ−e2(A1) = σ−e2(A2). (5.6)

Proof From Proposition 5.4 we obtain σ+e2(T1S
−1
1 ) = σ+e2(T2S

−1
2 ) and (5.5) is a

consequence of Proposition 3.4.
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By assumption (cf. (2.8)) we have S∗1 , S∗2 ∈ �(Y,X). The assumptions in (ii)
and (5.2) imply the compactness of T ∗1 (S∗2 )†(S∗1 − S∗2 ) and of T ∗2 (S∗1 )†(S∗1 − S∗2 ).
Proposition 5.4 yields

σ+e2(T
∗

1 (S
∗
1 )
−1) = σ+e2(T

∗
2 (S

∗
2 )
−1).

Hence we have together with Corollary 3.5 that

σ+e2(A
∗
1) = σ+e2(T

∗
1 (S

∗
1 )
−1) = σ+e2(T

∗
2 (S

∗
2 )
−1) = σ+e2(A

∗
2)

with A∗i (λ) := λS∗i − T ∗i for i = 1, 2. Therefore, λ ∈ σ+e2(A∗1) if and only if
λ ∈ σ+e2(A∗2). Now, (5.6) follows from (2.8) applied to the operators A∗1(λ) and
A∗2(λ). ��
Remark 5.6 Let S ∈ L(X, Y ) and let T be a densely defined closed linear operator
in X. Set A(λ) := λS − T . Assume that μ ∈ ρ(A). Then we have by definition

(T S−1−μ)−1 = {{T x−μSx, Sx} : x ∈ domT } = {{y, S(T −μS)−1y} : y ∈ X}.

Using compactness of the perturbation of the corresponding linear relations we
obtain the following result: For i = 1, 2 let Ai (λ) = λSi − Ti with Si ∈ L(X, Y )
bounded and Ti closed and densely defined from X to Y and let μ ∈ ρ(A1)∩ρ(A2)

with

S1(T1 − μS1)
−1 − S2(T2 − μS2)

−1 compact

then σ±e2(A1) = σ±e2(A2) (cf. Propositions 3.4 and 4.2). Note that the compactness
of the resolvent difference does not depend on the choice of μ. Furthermore, we
have no inclusion assumption on the multivalued parts as in [16].
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Abstract Given a pair of positive real numbers α, β and a sesqui-analytic function
K on a bounded domain ! ⊂ Cm, in this paper, we investigate the properties of the
sesqui-analytic function

K
(α,β) := Kα+β(∂i ∂̄j logK

)m

i,j=1

taking values in m × m matrices. One of the key findings is that K(α,β) is non-
negative definite whenever Kα and Kβ are non-negative definite. In this case, a
realization of the Hilbert module determined by the kernel K(α,β) is obtained. Let
Mi , i = 1, 2, be two Hilbert modules over the polynomial ringC[z1, . . . , zm]. Then
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1 Introduction

1.1 Hilbert Module

We will find it useful to state many of our results in the language of Hilbert modules.
The notion of a Hilbert module was introduced by R.G. Douglas (cf. [11]), which we
recall below. We point out that in the original definition, the module multiplication
was assumed to be continuous in both the variables. However, for our purposes, it
would be convenient to assume that it is continuous only in the second variable.

Definition 1.1 (Hilbert Module) A Hilbert module M over a unital, complex
algebra A consists of a complex Hilbert space M and a map (a, h) �→ a · h,
a ∈ A, h ∈M, such that

(i) 1 · h = h

(ii) (ab) · h = a · (b · h)
(iii) (a + b) · h = a · h+ b · h
(iv) for each a in A, the map ma :M→M, defined by ma(h) = a · h, h ∈M,

is a bounded linear operator on M.

A closed subspace S of M is said to be a submodule of M if mah ∈ S for
all h ∈ S and a ∈ A. The quotient module Q := H /S is the Hilbert space S⊥,
where the module multiplication is defined to be the compression of the module
multiplication on H to the subspace S⊥, that is, the module action on Q is given
by ma(h) = PS⊥(mah), h ∈ S⊥. Two Hilbert modules M1 and M2 over A are
said to be isomorphic if there exists a unitary operator U : M1 → M2 such that
U(a · h) = a · Uh, a ∈ A, h ∈M1.

Let K : ! × ! → Mk(C) be a sesqui-analytic (that is holomorphic in first
m-variables and anti-holomorphic in the second set of m-variables) non-negative
definite kernel on a bounded domain ! ⊂ Cm. It uniquely determines a Hilbert
space (H,K) consisting of holomorphic functions on ! taking values in Ck

possessing the following properties. For w ∈ !,

(i) the vector valued function K(·, w)ζ , ζ ∈ Ck , belongs to the Hilbert space H;
(ii) 〈f,K(·, w)ζ 〉H = 〈f (w), ζ 〉Ck , f ∈ (H,K).

Assume that the operator of multiplication Mzi by the ith coordinate function zi
is bounded on the Hilbert space (H,K) for i = 1, . . . ,m. Then (H,K) may
be realized as a Hilbert module over the polynomial ring C[z1, . . . , zm] with the
module action given by the point-wise multiplication:

mp(h) = ph, h ∈ (H,K), p ∈ C[z1, . . . , zm].
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Let K1 and K2 be two scalar valued non-negative definite kernels defined on
!×!. It turns out that (H,K1)⊗ (H,K2) is the reproducing kernel Hilbert space
with the reproducing kernel K1 ⊗ K2 : (! × !) × (! × !) → C given by the
formula

(K1 ⊗K2)(z, ζ ;w, ρ) = K1(z,w)K2(ζ, ρ), z, ζ,w, ρ ∈ !.

Assume that the multiplication operators Mzi , i = 1, . . . ,m, are bounded on
(H,K1) as well as on (H,K2). Then (H,K1) ⊗ (H,K2) may be realized as a
Hilbert module over C[z1, . . . , z2m] with the module action defined by

mp(h) = ph, h ∈ (H,K1)⊗ (H,K2), p ∈ C[z1, . . . , z2m].

The module (H,K1) ⊗ (H,K2) admits a natural direct sum decomposition as
follows.

For a non-negative integer k, let Ak be the subspace of (H,K1)⊗(H,K2) defined
by

Ak :=
{

f ∈ (H,K1)⊗ (H,K2) :
((

∂
∂ζ

)i
f (z, ζ )

)

|� = 0, |i| ≤ k
}

, (1.1)

where i ∈ Z
m+, |i| = i1 + · · · + im,

(

∂
∂ζ

)i = ∂ |i|
∂ζ

i1
1 ···∂ζ imm

, and
((

∂
∂ζ

)i
f (z, ζ )

)

|� is

the restriction of
(

∂
∂ζ

)i
f (z, ζ ) to the diagonal set � := {(z, z) : z ∈ !}. It is easily

verified that each of the subspacesAk is closed and invariant under multiplication by
any polynomial in C[z1, . . . , z2m] and therefore they are sub-modules of (H,K1)⊗
(H,K2). Setting S0 = A⊥0 , Sk := Ak−1�Ak , k = 1, 2, . . ., we obtain a direct sum
decomposition of the Hilbert space

(H,K1)⊗ (H,K2) =
∞
⊕

k=0

Sk.

In this decomposition, the subspaces Sk ⊆ (H,K1) ⊗ (H,K2) are not necessarily
sub-modules. Indeed, one may say they are semi-invariant modules following the
terminology commonly used in Sz.-Nagy–Foias model theory for contractions. We
study the compression of the module action to these subspaces analogous to the ones
studied in operator theory. Also, such a decomposition is similar to the Clebsch-
Gordan formula, which describes the decomposition of the tensor product of two
irreducible representations, say $1 and $2 of a group G when restricted to the
diagonal subgroup in G×G:

$1(g)⊗ $2(g) =
⊕

k

dkπk(g),
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where πk, k ∈ Z+, are irreducible representation of the groupG and dk, k ∈ Z+, are
natural numbers. However, the decomposition of the tensor product of two Hilbert
modules cannot be expressed as the direct sum of submodules. Noting that S0 is a
quotient module, describing all the semi-invariant modules Sk , k ≥ 1, would appear
to be a natural question. To describe the equivalence classes of S0, S1, . . . etc., it
would be useful to recall the notion of the push-forward of a module.

Let ι : ! → ! × ! be the map ι(z) = (z, z), z ∈ !. Any Hilbert module M
over the polynomial ring C[z1, . . . , zm] may be thought of as a module ι%M over
the ring C[z1, . . . , z2m] by re-defining the multiplication: mp(h) = (p◦ ι)h, h ∈M
and p ∈ C[z1, . . . , z2m]. The module ι%M over C[z1, . . . , z2m] is defined to be the
push-forward of the module M over C[z1, . . . , zm] under the inclusion map ι.

In [1], Aronszajn proved that the Hilbert space (H,K1K2) corresponding to
the point-wise product K1K2 of two non-negative definite kernels K1 and K2 is
obtained by the restriction of the functions in the tensor product (H,K1)⊗ (H,K2)

to the diagonal set �. Building on his work, it was shown in [10] that the restriction
map is isometric on the subspace S0 onto (H,K1K2) intertwining the module
actions on ι%(H,K1K2) and S0. However, using the jet construction given below, it
is possible to describe the quotient modules A⊥k , k ≥ 0. We reiterate that one of the
main questions we address is that of describing the semi-invariant modules, namely,
S1,S2, . . .. We have succeed in describing only S1 only after assuming that the pair
of kernels is of the form Kα , Kβ , α, β > 0, where the real power of a non-negative
definite kernel is defined below.

Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be a non-zero
sesqui-analytic function. Let t be a real number. The function Kt is defined in the
usual manner, namely Kt(z,w) = exp(t logK(z,w)), z,w ∈ !, assuming that a
continuous branch of the logarithm of K exists on !×!. Clearly, Kt is also sesqui-
analytic. However, if K is non-negative definite, then Kt need not be non-negative
definite unless t is a natural number. A direct computation, assuming the existence
of a continuous branch of logarithm of K on !×!, shows that for 1 ≤ i, j ≤ m,

∂i ∂̄j logK(z,w) = K(z,w)∂i ∂̄jK(z,w)− ∂iK(z,w)∂̄jK(z,w)

K(z,w)2 , z,w ∈ !,

where ∂i and ∂̄j denote ∂
∂zi

and ∂
∂w̄j

, respectively.

For a sesqui-analytic function K : ! × ! → C satisfying K(z, z) > 0, an
alternative interpretation of K(z,w)t (resp. logK(z,w)) is possible using the notion
of polarization. The real analytic function K(z, z)t (resp. logK(z, z)) defined on
! extends to a unique sesqui-analytic function in some neighbourhood U of the
diagonal set {(z, z) : z ∈ !} in ! × !. If the principal branch of logarithm of K
exists on !×!, then it is easy to verify that these two definitions of K(z,w)t (resp.
logK(z,w)) agree on the open set U . In the particular case, whenK1 = (1− zw̄)−α
and K2 = (1− zw̄)−β , α, β > 0, the description of the semi-invariant modules Sk ,
k ≥ 0, is obtained from somewhat more general results of Ferguson and Rochberg.
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Theorem 1.2 (Ferguson-Rochberg, [13]) Suppose that K1(z,w) = 1
(1−zw̄)α and

K2(z,w) = 1
(1−zw̄)β on D×D for some α, β > 0. Then the Hilbert modules Sn and

ι%(H, (1− zw̄)−(α+β+2n)) are isomorphic.

In this paper, first we show that if Kα and Kβ , α, β > 0, are two non-negative
definite kernels on !, then function K

(α,β) : !×!→Mm(C) defined by

K
(α,β)(z,w) = Kα+β(z,w)

(

(

∂i ∂̄j logK
)

(z,w)
)m

i,j=1
, z,w ∈ !,

is also a non-negative definite kernel. In this case, a description of the Hilbert
module S1 is obtained. Indeed, it is shown that the Hilbert modules S1 and
ι%
(

H,K(α,β)
)

are isomorphic.

1.2 The Jet Construction

For a bounded domain ! ⊂ Cm, let K1 and K2 be two scalar valued non-negative
definite kernels defined on ! × !. Assume that the multiplication operators Mzi ,

i = 1, . . . ,m, are bounded on (H,K1) as well as on (H,K2). For a non-negative
integer k, let Ak be the subspace defined in (1.1).

Let d be the cardinality of the set {i ∈ Z
m+, |i| ≤ k}, which is

(

m+k
m

)

. Define the
linear map Jk : (H,K1)⊗ (H,K2)→ Hol(!×!,Cd) by

(Jkf )(z, ζ ) =
∑

|i|≤k

(

∂
∂ζ

)i
f (z, ζ )⊗ ei, f ∈ (H,K1)⊗ (H,K2), (1.2)

where
{

ei
}

i∈Zm+,|i|≤k is the standard orthonormal basis of Cd . Define the map R :
ranJk → Hol(!,Cd) to be the restriction map, that is, R(h) = h|�, h ∈ ranJk .
Clearly, kerRJk = Ak . Hence the map RJk : A⊥k → Hol(!,Cd) is one to one.
Therefore we can give a natural inner product on ranRJk , namely,

〈RJk(f ), RJk(g)〉 = 〈PA⊥k f, PA⊥k g〉, f, g ∈ (H,K1)⊗ (H,K2).

In what follows, we think of ranRJk as a Hilbert space equipped with this inner
product. The theorem stated below is a straightforward generalization of one of the
main results from [10].

Theorem 1.3 ([10, Proposition 2.3]) Let K1,K2 : ! × ! → C be two non-
negative definite kernels. Then ranRJk is a reproducing kernel Hilbert space and
its reproducing kernel Jk(K1,K2)|res� is given by the formula

Jk(K1,K2)|res�(z,w) :=
(

K1(z,w)∂
i ∂̄jK2(z,w)

)k

|i|,|j |=0, z,w ∈ !.
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Now for any polynomial p in z, ζ , define the operator Tp on ranRJk as

(T p)(RJkf ) =
∑

|l|≤k

(
∑

q≤l

(

l
q

)

(

(

∂
∂ζ

)q
p(z, ζ )

)

|�

(

(

∂
∂ζ

)l−q
f (z, ζ )

)

|�

)

⊗ el,

where f ∈ (H,K1) ⊗ (H,K2), l = (l1, . . . , lm) and q = (q1, . . . , qm) ∈ Z
m+.

Here, q ≤ l means qi ≤ li , i = 1, . . . ,m and
(

l
q

) = ( l1
q1

) · · · ( lm
qm

)

. The proof of the
proposition below follows from a straightforward computation using the Leibniz
rule, the details are on page 378–379 of [10].

Proposition 1.4 For any polynomial p in C[z1, . . . , z2m], PA⊥k Mp |A⊥k is unitarily

equivalent to Tp on (ranRJk).

In Sect. 4, we prove a generalization of the theorem of Salinas for all kernels
of the form Jk(K1,K2)|res�. In particular, we show that if K1,K2 : ! × ! → C

are two sharp kernels (resp. generalized Bergman kernels), then so is the kernel
Jk(K1,K2)|res�.

In Sect. 5, we introduce the notion of a generalized Wallach set for an arbitrary
non-negative definite kernel K defined on a bounded domain ! ⊂ Cm. Recall that
the ordinary Wallach set associated with the Bergman kernel B! of a bounded
symmetric domain ! is the set {t > 0 : Bt

! is non-negative definite}. Replacing
the Bergman kernel in the definition of the Wallach set by an arbitrary non-negative
definite kernel K , we define the ordinary Wallach set W(K). More importantly, we
introduce the generalized Wallach set GW(K) associated to the kernel K to be the
set {t ∈ R : Kt

(

∂i ∂̄j logK
)m

i,j=1 is non-negative definite}, where we have assumed

that Kt is well defined for all t ∈ R. In the particular case of the Euclidean unit ball
Bm in Cm and the Bergman kernel, the generalized Wallach set GW(BBm), m > 1,
is shown to be the set {t ∈ R : t ≥ 0}. If m = 1, then it is the set {t ∈ R : t ≥ −1}.

In Sect. 6, we study quasi-invariant kernels. Let J : Aut(!)×!→ GLk(C) be
a function such that J (ϕ, ·) is holomorphic for each ϕ in Aut(!), where Aut(!) is
the group of all biholomorphic automorphisms of !. A non-negative definite kernel
K : !× !→Mk(C) is said to be quasi-invariant with respect to J if K satisfies
the following transformation rule:

J (ϕ, z)K(ϕ(z), ϕ(w))J (ϕ,w)∗ = K(z,w), z,w ∈ !, ϕ ∈ Aut(!).

It is shown that if K : ! × ! → C is a quasi-invariant kernel with respect to J :
Aut(!)×!→ C \ {0}, then the kernel Kt

(

∂i ∂̄j logK
)m

i,j=1 is also quasi-invariant

with respect to J whenever t ∈ GW(K), where J(ϕ, z) = J (ϕ, z)tDϕ(z)tr, ϕ ∈
Aut(!), z ∈ !. In particular, taking ! ⊂ C

m to be a bounded symmetric domain
and setting K to be the Bergman kernel B!, in the language of [20] (see also [2, 3,
5]), we conclude that the multiplication tuple Mz on (H,B

(t)
! ), where B

(t)
! (z,w) :=

(Bt
!∂i ∂̄j logB!)

m
i,j=1, is homogeneous with respect to the group Aut(!) for t in

GW(B!).
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2 A New Non-negative Definite Kernel

The scalar version of the following lemma is well-known. However, the easy
modifications necessary to prove it in the case of k × k matrices are omitted.

Lemma 2.1 (Kolmogorov) Let ! ⊂ Cm be a bounded domain, and let H be a
Hilbert space. If φ1, φ2, . . . , φk are anti-holomorphic functions from! intoH, then
K : !×!→Mk(C) defined byK(z,w) = ( 〈φj (w), φi(z)

〉

H
)k

i,j=1, z,w ∈ !, is
a sesqui-analytic non-negative definite kernel.

For any reproducing kernel Hilbert space (H,K), the following proposition,
which is Lemma 4.1 of [8] is a basic tool in what follows.

Proposition 2.2 Let K : !× !→ Mk(C) be a non-negative definite kernel. For
every i ∈ Z

m+, η ∈ Ck and w ∈ !, we have

(i) ∂̄ iK(·, w)η is in (H,K),

(ii)
〈

f, ∂̄ iK(·, w)η〉
(H,K)

= 〈(∂ if )(w), η
〉

Ck , f ∈ (H,K).

Here and throughout this paper, for any non-negative definite kernel K :
! × ! → Mk(C) and η ∈ Ck , let ∂̄ iK(·, w)η denote the function
(

∂
∂w1

)i1 · · · ( ∂
∂wm

)imK(·, w)η and (∂ if )(z) be the function

(

∂
∂z1

)i1 · · · ( ∂
∂zm

)im
f (z), i = (i1, . . . , im) ∈ Z

m+.

Proposition 2.3 Let ! be a bounded domain in Cm and K : ! × ! → C be a
sesqui-analytic function. Suppose that Kα and Kβ , defined on ! × !, are non-
negative definite for some α, β > 0. Then the function

Kα+β(z,w)
(

(

∂i ∂̄j logK
)

(z,w)
)m

i,j=1
, z,w ∈ !,

is a non-negative definite kernel on !×! taking values inMm(C).

Proof First, set φi(z) = β∂̄iK
α(·, z) ⊗ Kβ(·, z) − αKα(·, z) ⊗ ∂̄iK

β(·, z), i =
1, . . . ,m. From Proposition 2.2, it follows that each φi is a function from ! into the
Hilbert space (H,Kα)⊗ (H,Kβ). Then we have

〈

φj (w), φi(z)
〉 = β2∂i ∂̄jK

α(z,w)Kβ(z,w)+ α2Kα(z,w)∂i ∂̄jK
β(z,w)

− αβ
(

∂iK
α(z,w)∂̄jK

β(z,w)+ ∂̄jK
α(z,w)∂iK

β(z,w)
)

= β2(α(α − 1)Kα+β−2(z,w)∂iK(z,w)∂̄jK(z,w)

+ αKα+β−1(z,w)∂i ∂̄jK(z,w)
)

+ α2(β(β − 1)Kα+β−2(z,w)∂iK(z,w)∂̄jK(z,w)



228 S. Ghara and G. Misra

+ βKα+β−1(z,w)∂i ∂̄jK(z,w)
)

− 2α2β2Kα+β−2(z,w)∂iK(z,w)∂̄jK(z,w)

= (α2β + αβ2)Kα+β−2(z,w)
(

K(z,w)∂i ∂̄jK(z,w)

− ∂iK(z,w)∂̄jK(z,w)
)

= αβ(α + β)Kα+β(z,w)∂i ∂̄j logK(z,w).

An application of Lemma 2.1 now completes the proof. ��
The particular case, when α = 1 = β occurs repeatedly in the following. We

therefore record it separately as a corollary.

Corollary 2.4 Let ! be a bounded domain in Cm. If K : ! × ! → C is a non-
negative definite kernel, then

K2(z,w)
( (

∂i ∂̄j logK
)

(z,w)
)m

i,j=1

is also a non-negative definite kernel, defined on !×!, taking values inMm(C).

A more substantial corollary is the following, which is taken from [4]. Here we
provide a slightly different proof. Recall that a non-negative definite kernel K :
!×!→ C is said to be infinitely divisible if for all t > 0, Kt is also non-negative
definite.

Corollary 2.5 Let ! be a bounded domain in Cm. Suppose that K : !× ! → C

is an infinitely divisible kernel. Then the function
( (

∂i ∂̄j logK
)

(z,w)
)m

i,j=1 is a
non-negative definite kernel taking values in Mm(C).

Proof For t > 0, Kt (z,w) is non-negative definite by hypothesis. Then it follows,
from Corollary 2.4, that

(

K2t ∂i ∂̄j logKt(z,w)
)m

i,j=1 is non-negative definite.

Hence
(

K2t ∂i ∂̄j logK(z,w)
)m

i,j=1 is non-negative definite for all t > 0. Taking the

limit as t → 0, we conclude that
(

∂i ∂̄j logK(z,w)
)m

i,j=1 is non-negative definite.
��

Remark 2.6 It is known that even if K is a positive definite kernel,

( (

∂i ∂̄j logK
)

(z,w)
)m

i,j=1

need not be a non-negative definite kernel. In fact,
( (

∂i ∂̄j logK
)

(z,w)
)m

i,j=1 is non-
negative definite if and only if K is infinitely divisible (see [4, Theorem 3.3]).
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Let K : D × D → C be the positive definite kernel given by K(z,w) = 1 +
∑∞

i=1 aiz
i w̄i, z,w ∈ D, ai > 0. For any t > 0, a direct computation gives

(

Kt∂∂̄ logK
)

(z,w)

= (1+
∞
∑

i=1

aiz
iw̄i
)t
∂∂̄
(

∞
∑

i=1

aiz
iw̄i − (

∑∞
i=1 aiz

i w̄i )2

2 + · · · )

= (1+ ta1zw̄ + · · · )(a1 + 2(2a2 − a2
1)zw̄ + · · · )

= a1 + (4a2 + (t − 2)a2
1)zw̄ + · · · .

Thus, if t < 2, one may choose a1, a2 > 0 such that 4a2 + (t − 2)a2
1 < 0. Hence

(

Kt∂∂̄ logK
)

(z,w) cannot be a non-negative definite kernel. Therefore, in general,
for

( (

Kt∂i ∂̄j logK
)

(z,w)
)m

i,j=1 to be non-negative definite, it is necessary that
t ≥ 2.

2.1 Boundedness of the Multiplication Operator on
(H,K

)

For α, β > 0, let K(α,β) denote the kernel
(

Kα+β(∂i ∂̄j logK
)

(z,w)
)m

i,j=1. If α =
1 = β, then we write K instead of K(1,1). For a holomorphic function f : !→ C,

the operator Mf of multiplication by f on the linear space Hol(!,Ck) is defined
by the rule Mfh = f h, h ∈ Hol(!,Ck), where (f h)(z) = f (z)h(z), z ∈ !. The
boundedness criterion for the multiplication operator Mf restricted to the Hilbert
space (H,K) is well-known for the case of positive definite kernels. In what follows,
often we have to work with a kernel which is merely non-negative definite. A precise
statement is given below. The first part is from [22] and the second part follows from
the observation that the boundedness of the operator

∑m
i=1 MiM

∗
i is equivalent to

the non-negative definiteness of the kernel (c2 − 〈z,w〉)K(z,w) for some positive
constant c.

Lemma 2.7 Let ! ⊂ Cm be a bounded domain and K : ! × ! → Mk(C) be a
non-negative definite kernel.

(i) For any holomorphic function f : ! → C, the operator Mf of multiplication
by f is bounded on (H,K) if and only if there exists a constant c > 0 such
that

(

c2−f (z)f (w)
)

K(z,w) is non-negative definite on!×!. In caseMf is
bounded, ‖Mf ‖ is the infimum of all c > 0 such that

(

c2 − f (z)f (w)
)

K(z,w)

is non-negative definite.
(ii) The operatorMzi of multiplication by the ith coordinate function zi is bounded

on (H,K) for i = 1, . . . ,m, if and only if there exists a constant c > 0 such
that

(

c2 − 〈z,w〉)K(z,w) is non-negative definite.
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As we have pointed out, the distinction between the non-negative definite kernels
and the positive definite ones is very significant. Indeed, as shown in [8, Lemma 3.6],
it is interesting that if the operator Mz := (Mz1, . . . ,Mzm) is bounded on (H,K)

for some non-negative definite kernel K such that K(z, z), z ∈ !, is invertible, then
K is positive definite. A direct proof of this statement, different from the inductive
proof of Curto and Salinas is in the PhD thesis of the first named author [14].

It is natural to ask if the operator Mf is bounded on (H,K), then if it remains
bounded on the Hilbert space (H,K). From the Theorem stated below, in particular,
it follows that the operator Mf is bounded on (H,K) whenever it is bounded on
(H,K).

Theorem 2.8 Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be a
non-negative definite kernel. Let f : !→ C be an arbitrary holomorphic function.
Suppose that there exists a constant c > 0 such that

(

c2 − f (z)f (w)
)

K(z,w) is

non-negative definite on ! × !. Then the function
(

c2 − f (z)f (w)
)2
K(z,w) is

non-negative definite on !×!.

Proof Without loss of generality, we assume that f is non-constant and K is non-
zero. The function G(z,w) := (

c2 − f (z)f (w)
)

K(z,w) is non-negative definite
on ! × ! by hypothesis. We claim that |f (z)| < c for all z in !. If not, then by
the open mapping theorem, there exists an open set !0 ⊂ ! such that |f (z)| > c,
z ∈ !0. Since

(

c2−|f (z)|2)K(z, z) ≥ 0, it follows that K(z, z) = 0 for all z ∈ !0.
Now, let h be an arbitrary vector in (H,K). Clearly, |h(z)| = | 〈h,K(·, z)〉 | ≤
‖h‖‖K(·, z)‖ = ‖h‖K(z, z)

1
2 = 0 for all z ∈ !0. Consequently, h(z) = 0 on !0.

Since ! is connected and h is holomorphic, it follows that h = 0. This contradicts
the assumption that K is non-zero verifying the validity of our claim.

From the claim, we have that the function c2 − f (z)f (w) is non-vanishing on
!×!. Therefore, the kernel K can be written as the product

K(z,w) = 1
(

c2 − f (z)f (w)
)G(z,w), z,w ∈ !.

Since |f (z)| < c on !, the function 1
(

c2−f (z)f (w)
) has a convergent power series

expansion, namely,

1
(

c2 − f (z)f (w)
) =

∞
∑

n=0

1

c2(n+1)
f (z)nf (w)n, z,w ∈ !.

Therefore it defines a non-negative definite kernel on !×!. Note that

(

K(z,w)2∂i ∂̄j logK(z,w)
)m

i,j=1

=(K(z,w)2∂i ∂̄j log
1

(

c2 − f (z)f (w)
)

)m

i,j=1 +
(

K(z,w)2∂i ∂̄j logG(z,w)
)m

i,j=1
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= 1
(

c2 − f (z)f (w)
)2

(

K(z,w)2(∂if (z)∂jf (w)
)m

i,j=1

+G(z,w)2( ∂i ∂̄j logG(z,w)
)m

i,j=1

)

,

where for the second equality, we have used that

∂i ∂̄j log
1

(

c2 − f (z)f (w)
) = ∂if (z)∂jf (w)

(

c2 − f (z)f (w)
)2
, z,w ∈ !, 1 ≤ i, j ≤ m.

Thus

(

c2 − f (z)f (w)
)2
K(z,w)

= K(z,w)2
(

∂if (z)∂jf (w)
)m

i,j=1
+
(

G(z,w)2∂i ∂̄j logG(z,w)
)m

i,j=1
.

By Lemma 2.1, the function
(

∂if (z)∂jf (w)
)m

i,j=1 is non-negative definite on !×
!. Thus the productK(z,w)2

(

∂if (z)∂jf (w)
)m

i,j=1 is also non-negative definite on
! × !. Since G is non-negative definite on ! × !, by Corollary 2.4, the function
(

G(z,w)2∂i ∂̄j logG(z,w)
)m

i,j=1 is also non-negative definite on !×!. The proof
is now complete since the sum of two non-negative definite kernels remains non-
negative definite. ��

A sufficient condition for the boundedness of the multiplication operator on the
Hilbert space

(

H,K
)

is an immediate Corollary.

Corollary 2.9 Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be a
non-negative definite kernel. Let f : ! → C be a holomorphic function. Suppose
that the multiplication operatorMf on (H,K) is bounded. Then the multiplication
operatorMf is also bounded on (H,K).

Proof Since the operator Mf is bounded on (H,K), by Lemma 2.7, we find a
constant c > 0 such that

(

c2 − f (z)f (w)
)

K(z,w) is non-negative definite on

! × !. Then, by Theorem 2.8, it follows that
(

c2 − f (z)f (w)
)2
K(z,w) is non-

negative definite on ! × !. Also, from the proof of Theorem 2.8, we have that
(

c2 − f (z)f (w)
)−1 is non-negative definite on ! × ! (assuming that f is non-

constant). Hence
(

c − f (z)f (w)
)

K(z,w), being the product of two non-negative
definite kernels, is non-negative definite on !×!. An application of Lemma 2.7, a
second time, completes the proof. ��

A second Corollary provides a sufficient condition for the positive definiteness
of the kernel K.

Corollary 2.10 Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be
a non-negative definite kernel satisfying K(w,w) > 0, w ∈ !. Suppose that the



232 S. Ghara and G. Misra

multiplication operatorMzi on (H,K) is bounded for i = 1, . . . ,m. Then the kernel
K is positive definite on !×!.

Proof By Corollary 2.4, we already have thatK is non-negative definite. Moreover,
sinceMzi on (H,K) is bounded for i = 1, . . . ,m, it follows from Theorem 2.9 that
Mzi is bounded on (H,K) also. Therefore, using [8, Lemma 3.6], we see that K is
positive definite if K(w,w) is invertible for all w ∈ !. To verify this, set

φi(w) = ∂̄iK(·, w)⊗K(·, w)−K(·, w)⊗ ∂̄iK(·, w), 1 ≤ i ≤ m.

We have K(w,w) = 1
2

( 〈

φj (w), φi(w)
〉 )m

i,j=1 from the proof of Proposition 2.3.
Therefore K(w,w) is invertible if the vectors φ1(w), . . . , φm(w) are linearly
independent. Note that for w = (w1, . . . , wm) in ! and j = 1, . . . ,m, we have
(Mzj −wj)

∗K(·, w) = 0. Differentiating this equation with respect to w̄i , we obtain

(Mzj − wj)
∗∂̄iK(·, w) = δijK(·, w), 1 ≤ i, j ≤ m.

Thus

(

(Mzj −wj)
∗ ⊗ I

)(

φi(w)
) = δijK(·, w)⊗K(·, w), 1 ≤ i, j ≤ m. (2.1)

Now assume that
∑m

i=1 ciφi(w) = 0 for some scalars c1, . . . , cm. Then, for 1 ≤
j ≤ m, we have that

∑m
i=1

(

(Mzj − wj )
∗ ⊗ I

)(

φi(w)
) = 0. Thus, using (2.1), we

see that cjK(·, w) ⊗ K(·, w) = 0. Since K(w,w) > 0, we conclude that cj = 0.
Hence the vectors φ1(w), . . . , φm(w) are linearly independent. This completes the
proof. ��
Remark 2.11 Recall that an operator T is said to be a 2-hyper contraction if I −
T ∗T ≥ 0 and I −2T ∗T +T ∗2T 2 ≥ 0. If K : D×D→ C is a non-negative definite
kernel, then it is not hard to verify that the adjoint M∗

z of the multiplication by the
coordinate function z is a 2-hyper contraction on (H,K) if and only if (1− zw̄)2K

is non-negative definite. It follows from Theorem 2.8 that if M∗
z on (H,K) is a

contraction, then M∗
z on (H,K) is a 2-hyper contraction.

3 Realization of
(H,K(α,β)

)

Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be a sesqui-analytic
function. Suppose that the functions Kα and Kβ are non-negative definite for some
α, β > 0. In this section, we give a description of the Hilbert space

(

H, K(α,β)
)

. As
before, we set

φi(w) = β∂̄iK
α(·, w)⊗Kβ(·, w)−αKα(·, w)⊗ ∂̄iK

β(·, w), 1 ≤ i ≤ m, w ∈ !.
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Let N be the subspace of (H,Kα)⊗ (H,Kβ) which is the closed linear span of the
vectors

{

φi(w) : w ∈ !, 1 ≤ i ≤ m
}

.

From the definition of N , it is not easy to determine which vectors are in it. A useful
alternative description of the space N is given below.

Recall that Kα ⊗Kβ is the reproducing kernel for the Hilbert space (H,Kα)⊗
(H,Kβ), where the kernel Kα ⊗Kβ on (!×!)× (!×!) is given by

Kα ⊗Kβ(z, ζ ; z′, ζ ′) = Kα(z, z′)Kβ(ζ, ζ ′),

z = (z1, . . . , zm), ζ = (ζ1, . . . , ζm), z′ = (zm+1, . . . , z2m), ζ ′ = (ζm+1, . . . , ζ2m)

are in !. We realize the Hilbert space (H,Kα)⊗ (H,Kβ) as a space consisting of
holomorphic functions on !×!. Let A0 and A1 be the subspaces defined by

A0 =
{

f ∈ (H,Kα)⊗ (H,Kβ) : f|� = 0
}

and

A1 =
{

f ∈ (H,Kα)⊗ (H,Kβ) : f|� = (∂m+1f )|� = · · · = (∂2mf )|� = 0
}

,

where � is the diagonal set {(z, z) ∈ ! × ! : z ∈ !}, ∂if is the derivative of f
with respect to the ith variable, and f|�, (∂if )|� denote the restrictions to the set �
of the functions f , ∂if , respectively. It is easy to see that both A0 and A1 are closed
subspaces of the Hilbert space (H,Kα)⊗ (H,Kβ) and A1 is a closed subspace of
A0. Now observe that, for 1 ≤ i ≤ m, we have

∂̄i (K
α ⊗Kβ)(·, (z′, ζ ′)) = ∂̄iK

α(·, z′)⊗Kβ(·, ζ ′), z′, ζ ′ ∈ !

∂̄m+i (Kα ⊗Kβ)(·, (z′, ζ ′)) = Kα(·, z′)⊗ ∂̄iK
β(·, ζ ′), z′, ζ ′ ∈ !. (3.1)

Hence, taking z′ = ζ ′ = w, we see that

φi(w) = β∂̄i(K
α ⊗Kβ)(·, (w,w)) − α∂̄m+i (Kα ⊗Kβ)(·, (w,w)). (3.2)

We now state a useful lemma on the Taylor coefficients of an analytic functions. The
straightforward proof follows from the chain rule [23, page 8], which is omitted.

Lemma 3.1 Suppose that f : ! × ! → C is a holomorphic function satisfying
f|� = 0. Then

(∂if )|� + (∂m+if )|� = 0, 1 ≤ i ≤ m.
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An alternative description of the subspace N of (H,Kα)⊗ (H,Kβ) is provided
below.

Proposition 3.2 N = A0 �A1.

Proof For all z ∈ !, we see that

φi(w)(z, z) = αβKα+β−1(z,w)∂̄iK(z,w)− αβKα+β−1(z,w)∂̄iK(z,w) = 0.

Hence each φi(w), w ∈ !, 1 ≤ i ≤ m, belongs to A0 and consequently, N ⊂
A0. Therefore, to complete the proof of the proposition, it is enough to show that
A0 �N = A1.

To verify this, note that f ∈ N⊥ if and only if 〈f, φi(w)〉 = 0, 1 ≤ i ≤ m,
w ∈ !. Now, in view of (3.2) and Proposition 2.2, we have that

〈f, φi(w)〉 =
〈

f, β∂̄i(K
α ⊗Kβ)(·, (w,w)) − α∂̄m+i (Kα ⊗Kβ)(·, (w,w))〉

=β(∂if )(w,w) − α(∂m+if )(w,w), 1 ≤ i ≤ m, w ∈ !.

Thus f is in N⊥ if and only if the function β (∂if )|� − α (∂m+if )|� = 0, 1 ≤ i ≤
m. Combining this with Lemma 3.1, we see that any f ∈ A0 �N , satisfies

β(∂if )|� − α(∂m+if )|� = 0,

(∂if )|� + (∂m+if )|� = 0,

for 1 ≤ i ≤ m. Therefore, we have (∂if )|� = (∂m+if )|� = 0, 1 ≤ i ≤ m. Hence
f belongs to A1.

Conversely, let f ∈ A1. In particular, f ∈ A0. Hence invoking Lemma 3.1 once
again, we see that

(∂if )|� + (∂m+if )|� = 0, 1 ≤ i ≤ m.

Since f is in A1, (∂m+if )|� = 0, 1 ≤ i ≤ m, by definition. Therefore, (∂if )|� =
(∂m+if )|� = 0, 1 ≤ i ≤ m, which implies

β(∂if )|� − α(∂m+if )|� = 0, 1 ≤ i ≤ m.

Hence f ∈ A0 �N , completing the proof. ��
We now give a description of the Hilbert space

(

H, K(α,β)
)

. Define a linear map
R1 : (H,Kα)⊗ (H,Kβ)→ Hol(!,Cm) by setting

R1(f ) = 1√
αβ(α + β)

⎛

⎜

⎝

(β∂1f − α∂m+1f )|�
...

(β∂mf − α∂2mf )|�

⎞

⎟

⎠
(3.3)
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for f ∈ (H,Kα)⊗ (H,Kβ) and note that

R1(f )(w) = 1√
αβ(α + β)

⎛

⎜

⎝

〈f, φ1(w)〉
...

〈f, φm(w)〉

⎞

⎟

⎠
, w ∈ !. (3.4)

From Eq. (3.4), it is easy to see that kerR1 = N⊥. We have N = A0 �A1, see
Proposition 3.2. Therefore, kerR⊥1 = A0�A1 and the map R1|A0�A1 → ranR1 is
bijective. Require this map to be a unitary by defining an appropriate inner product
on ranR1, that is, Set

〈R1(f ),R1(g)〉 :=
〈

PA0�A1f, PA0�A1g
〉

, f, g ∈ (H,Kα)⊗ (H,Kβ), (3.5)

wherePA0�A1 is the orthogonal projection of (H,Kα)⊗(H,Kβ) onto the subspace
A0 � A1. This choice of the inner product on the range of R1 makes the map R1
unitary.

Theorem 3.3 Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be a
sesqui-analytic function. Suppose that the functions Kα and Kβ are non-negative
definite for some α, β > 0. Let R1 be the map defined by (3.3). Then the Hilbert
space determined by the non-negative definite kernelK(α,β) coincides with the space
ran R1 and the inner product given by (3.5) on ran R1 agrees with the one induced
by the kernel K(α,β).

Proof Let {e1, . . . , em} be the standard orthonormal basis of Cm. From the proof of
Proposition 2.3, for 1 ≤ i, j ≤ m, we have

〈

φj (w), φi(z)
〉 = αβ(α + β)Kα+β(z,w)∂i ∂̄j logK(z,w)

= αβ(α + β)
〈

K
(α,β)(z,w)ej , ei

〉

Cm
, z,w ∈ !.

Therefore, from (3.4), it follows that for all w ∈ ! and 1 ≤ j ≤ m,

R1(φj (w)) =
√

αβ(α + β)K(α,β)(·, w)ej .

Hence, for all w ∈ ! and η ∈ Cm, K(α,β)(·, w)η belongs to ranR1. Let R1(f ) be
an arbitrary element in ranR1 where f ∈ A0 �A1. Then

〈

R1(f ),K
(α,β)(·, w)ej

〉

= 1√
αβ(α + β)

〈

R1(f ),R1(φj (w))
〉

= 1√
αβ(α + β)

〈

f, φj (w)
〉
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= 1√
αβ(α + β)

(β∂jf (w,w)− α∂m+j f (w,w))

= 〈R1(f )(w), ej
〉

Cm ,

where the second equality follows since both f and φj (w) belong to A0�A1. This
completes the proof. ��

We obtain the density of polynomials in
(

H,K(α,β)
)

as a consequence of this
theorem. Let z = (z1, . . . , zm) and let C[z] := C[z1, . . . , zm] denote the ring of
polynomials in m-variables. The following proposition gives a sufficient condition
for density of C[z] ⊗ Cm in the Hilbert space

(

H,K(α,β)
)

.

Proposition 3.4 Let ! ⊂ C
m be a bounded domain and K : ! × ! → C be

a sesqui-analytic function such that the functions Kα and Kβ are non-negative
definite on !×! for some α, β > 0. Suppose that both the Hilbert spaces (H,Kα)

and (H,Kβ) contain the polynomial ring C[z] as a dense subset. Then the Hilbert
space

(

H,K(α,β)
)

contains the ring C[z] ⊗C
m as a dense subset.

Proof Since C[z] is dense in both the Hilbert spaces (H,Kα) and (H,Kβ), it
follows that C[z]⊗C[z], which is C[z1, . . . , z2m], is contained in the Hilbert space
(H,Kα) ⊗ (H,Kβ) and is dense in it. Since R1 maps (H,Kα) ⊗ (H,Kβ) onto
(

H,K(α,β)
)

, to complete the proof, it suffices to show that R1(C[z1, . . . , z2m]) =
C[z] ⊗ C

m. It is easy to see that R1(C[z1, . . . , z2m]) ⊆ C[z] ⊗ C
m. Conversely,

if
∑m

i=1 pi(z1, . . . , zm) ⊗ ei is an arbitrary element of C[z] ⊗ C
m, then it is easily

verified that the function p(z1, . . . , z2m) :=
√

αβ
α+β

∑m
i=1(zi− zm+i )pi(z1, . . . , zm)

belongs to C[z1, . . . , z2m] and R1(p) = ∑m
i=1 pi(z1, . . . , zm) ⊗ ei . Therefore

R1(C[z1, . . . , z2m]) = C[z] ⊗ Cm completing the proof. ��

3.1 Description of the Hilbert Module S1

In this subsection, we give a description of the Hilbert module S1 in the particular
case when K1 = Kα and K2 = Kβ for some sesqui-analytic function K defined on
!×! and a pair of positive real numbers α, β.

Theorem 3.5 Let K : ! × ! → C be a sesqui-analytic function such that the
functionsKα andKβ , defined on!×!, are non-negative definite for some α, β >

0. Suppose that the multiplication operators Mzi , i = 1, 2, . . . ,m, are bounded
on both (H,Kα) and (H,Kβ). Then the Hilbert module S1 is isomorphic to the
push-forward module ι%

(

H,K(α,β)
)

via the module mapR1 |S1 .

Proof From Theorem 3.3, it follows that the map R1 defined in (3.3) is a unitary
map from S1 onto (H,K(α,β)). Now we will show that R1PS1(ph) = (p ◦
ι)R1h, h ∈ S1, p ∈ C[z1, . . . , z2m]. Let h be an arbitrary element of S1. Since
kerR1 = S⊥1 (see the discussion before Theorem 3.3), it follows that R1PS1(ph) =
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R1(ph), p ∈ C[z1, . . . , z2m]. Hence

R1PS1(ph) = R1(ph)

= 1√
αβ(α + β)

m
∑

j=1

(β∂j (ph)− α∂m+j (ph))|� ⊗ ej

= 1√
αβ(α + β)

(
m
∑

j=1

p|�(β∂jh− α∂m+j h)|� ⊗ ej

+
m
∑

j=1

h|�(β∂jp − α∂m+j p)|� ⊗ ej

)

= 1√
αβ(α + β)

m
∑

j=1

p|�(β∂jh− α∂m+j h)|� ⊗ ej (since h ∈ S1)

= (p ◦ ι)R1h,

completing the proof. ��
Notation 3.6 For 1 ≤ i ≤ m, let M

(1)
i and M

(2)
i denote the operators of

multiplication by the coordinate function zi on the Hilbert spaces (H,K1) and
(H,K2), respectively. If m = 1, we let M(1) and M(2) denote the operators M(1)

1

andM(2)
1 , respectively.

In case K1 = Kα and K2 = Kβ , let M(α)
i , M

(β)
i and M

(α+β)
i denote the

operators of multiplication by the coordinate function zi on the Hilbert spaces
(H,Kα), (H,Kβ) and (H,Kα+β), respectively. If m = 1, we write M(α), M(β)

andM(α+β) instead ofM(α)
1 , M

(β)
1 andM(α+β)

1 , respectively.

Finally, let M
(α,β)
i denote the operator of multiplication by the coordinate

function zi on (H,K(α,β)). Also let M(α,β) denote the operator M(α,β)

1 whenever
m = 1.

Remark 3.7 It is verified that (M(α)
i ⊗ I)∗(φj (w)) = w̄iφj (w) + βδijK

α(·, w) ⊗
Kβ(·, w) and (I ⊗ M

(β)
i )∗(φj (w)) = w̄iφj (w) − αδijK

α(·, w) ⊗ Kβ(·, w),
1 ≤ i, j ≤ m,w ∈ !. Therefore,

PS1(M
(α)
i ⊗ I)|S1 = PS1(I ⊗M

(β)
i )|S1, i = 1, 2, . . . ,m.

Corollary 3.8 The m-tuple
(

PS1(M
(α)
1 ⊗ I)|S1

, . . . , PS1(M
(α)
m ⊗ I)|S1

)

is unitar-

ily equivalent to the m-tuple (M
(α,β)
1 , . . . ,M

(α,β)
m ) on

(

H,K(α,β)
)

. In partic-

ular, if either the m-tuple of operators (M
(α)
1 , . . . ,M

(α)
m ) on (H,Kα) or the
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m-tuple of operators (M(β)

(1) , . . . ,M
(β)
m ) on (H,Kβ) is bounded, then the m-tuple

(M
(α,β)
1 , . . . ,M

(α,β)
m ) is also bounded on

(

H,K(α,β)
)

.

Proof The proof of the first statement follows from Theorem 3.5 and the proof of
the second statement follows from the first together with Remark 3.7. ��

3.2 Description of the Quotient Module A⊥
1

In this subsection, we give a description of the quotient module A⊥1 . Let
(H,Kα+β)̂⊕(H,K(α,β)) be the Hilbert module, which is the Hilbert space
(H,Kα+β)⊕(H,K(α,β)) equipped with the multiplication over the polynomial ring
C[z1, . . . , z2m] induced by the 2m-tuple (T1, . . . , Tm, Tm+1, . . . , T2m) described
below. First, for any polynomial p ∈ C[z1, . . . , z2m], let p∗(z) := (p ◦ ι)(z) =
p(z, z), z ∈ ! and let Sp : (H,Kα+β)→ (H,K(α,β)) be the operator given by

Sp(f0) = 1√
αβ(α + β)

m
∑

j=1

(β(∂jp)
∗ − α(∂m+j p)∗)f0 ⊗ ej , f0 ∈ (H,Kα+β).

On the Hilbert space (H,Kα+β) ⊕ (H,K(α,β)), let Ti =
(

Mzi
0

Szi Mzi

)

, and Tm+i =
(

Mzi
0

Szm+i Mzi

)

, 1 ≤ i ≤ m. Now, a straightforward verification shows that the module

multiplication induced by these 2m-tuple of operators is given by the formula:

mp(f0⊕f1) =
(

Mp∗f0 0
Spf0 Mp∗f1

)

, f0⊕f1 ∈ (H,Kα+β)⊕ (H,K(α,β)). (3.6)

Clearly, this module multiplication is distinct from the one induced by the Mp⊕Mp ,
p ∈ C[z1, . . . , zm] on the direct sum (H,Kα+β)⊕(H,K(α,β)).

Theorem 3.9 Let K : ! × ! → C be a sesqui-analytic function such that the
functionsKα andKβ , defined on!×!, are non-negative definite for some α, β >

0. Suppose that the multiplication operatorsMzi , i = 1, 2, . . . ,m, are bounded on
both (H,Kα) and (H,Kβ). Then the quotient module A⊥1 and the Hilbert module
(H,Kα+β)̂⊕(H,K(α,β)) are isomorphic.

Proof The proof is accomplished by showing that, for an arbitrary polynomial p in
C[z1, . . . , z2m], the compression operator PA⊥1 Mp |A⊥1 is unitarily equivalent to the

operator
(

Mp∗ 0
Sp Mp∗

)

on (H,Kα+β)
⊕

(H,K(α,β)).

We recall that the map R0 : (H,Kα) ⊗ (H,Kβ) → (H,Kα+β) given
by R0(f ) = f|�, f in (H,Kα) ⊗ (H,Kβ), defines a unitary map from S0
onto (H,Kα+β), and it intertwines the operators PS0Mp |S0

on S0 and Mp∗ on
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(H,Kα+β), that is, Mp∗R0|S0 = R0|S0PS0Mp |S0
. Combining this with Theo-

rem 3.3, we conclude that the map R =
(R0|S0

0
0 R1|S1

)

is unitary from S0
⊕

S1

(which is A⊥1 ) to (H,Kα+β)
⊕

(H,K(α,β)). Since S0 is invariant under M∗
p, it

follows that PS1M
∗
p |S0

= 0. Hence

RPA⊥1 M
∗
p |A⊥1

R∗ =
(

R0PS0M
∗
p |S0

R∗0 R0PS0M
∗
p |S1

R∗1
0 R1PS1M

∗
p |S1

R∗1

)

on S0
⊕

S1. We have R0PS0M
∗
p |S0

R∗0 = (Mp∗)∗, already, on (H,Kα+β). From

Theorem 3.5, we see that R1PS1M
∗
p |S1

R∗1 = (Mp∗)∗ on (H,K(α,β)). To prove

this, note that R0PS0M
∗
p |S1

R∗1 = S∗p. Recall that R∗1(K(α,β)(·, w)ej ) = φj (w).
Consequently, an easy computation gives

R0PS0M
∗
p |S1

R∗1(K(α,β)(·, w)ej )

= 1√
αβ(α + β)

(β(∂jp)(w,w) − α(∂m+j p)(w,w))Kα+β(·, w).

Set S�p = R1PS1Mp |S0
R∗0. Then for 1 ≤ j ≤ m, and w ∈ !, we get

(S�p)
∗(K(α,β)(·, w)ej )

= 1√
αβ(α + β)

(β(∂jp)(w,w) − α(∂m+j p)(w,w))Kα+β(·, w).

For f in (H,Kα+β), we have

〈S�pf (z), ej 〉 = 〈S�pf,K(α,β)(·, z)ej 〉
= 〈f, (S�p)∗(K(α,β)(·, z)ej )〉

= 1√
αβ(α + β)

(β(∂jp)(z, z)− α(∂m+j p)(z, z))〈f,Kα+β(·, z) 〉

= 1√
αβ(α + β)

(

β(∂jp)(z, z)− α(∂m+j p)(z, z)
)

f (z).

Hence S�p = Sp completing the proof of the theorem. ��
Corollary 3.10 Let ! ⊂ C be a bounded domain. The compression operator

PA⊥1 (M
(α) ⊗ I)|A⊥1 is unitarily equivalent to the operator

(

M(α+β) 0
δ inc M

(α,β))

)

on
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(H,Kα+β)
⊕

(H,K(α,β)), where δ = β√
αβ(α+β) and inc is the inclusion operator

from (H,Kα+β) into (H,K(α,β)).

4 Generalized Bergman Kernels

We now discuss an important class of operators introduced by Cowen and Douglas
in the very influential paper [6]. The case of 2 variables was discussed in [7], while
a detailed study in the general case appeared later in [8]. The definition below is
taken from [8]. Let T := (T1, . . . , Tm) be a m-tuple of commuting bounded linear
operators on a separable Hilbert space H. Let DT : H → H ⊕ · · · ⊕ H be the
operator defined by DT (x) = (T1x, . . . , Tmx), x ∈ H.

Definition 4.1 (Cowen-Douglas Class Operator) Let ! ⊂ Cm be a bounded
domain. The operator T is said to be in the Cowen-Douglas class Bn(!) if T

satisfies the following requirements:

(i) dim kerDT−w = n, w ∈ !

(ii) ranDT−w is closed for all w ∈ !

(iii)
∨{

kerDT−w : w ∈ !
} = H.

If T ∈ Bn(!), then for each w ∈ !, there exist functions γ1, . . . , γn
holomorphic in a neighbourhood !0 ⊆ ! containing w such that kerDT−w′ =
∨{γ1(w

′), . . . , γn(w′)} for all w′ ∈ !0 (cf. [7]). Consequently, every T in Bn(!)

corresponds to a rank n holomorphic Hermitian vector bundle ET defined by

ET = {(w, x) ∈ !×H : x ∈ kerDT−w}

and π(w, x) = w, (w, x) ∈ ET .
For a bounded domain ! in Cm, let !∗ = {z : z̄ ∈ !}. It is known that if T is an

operator in Bn(!
∗), then for each w ∈ !, T is unitarily equivalent to the adjoint of

the multiplication tuple (Mz1, . . . ,Mzm) on some reproducing kernel Hilbert space
(H,K) ⊆ Hol(!0,C

n) for some open subset !0 ⊆ ! containingw. Here the kernel
K can be described explicitly as follows. Let 	 = {γ1, . . . , γn} be a holomorphic
frame of the vector bundle ET on a neighbourhood !∗0 ⊆ !∗ containing w̄. Define
K	 : !0 × !0 → Mn(C) by K	(z,w) =

( 〈

γj (w̄), γi(z̄)
〉 )n

i,j=1, z,w ∈ !0.
Setting K = K	 , one may verify that the operator T is unitarily equivalent to the
adjoint of the m-tuple of multiplication operators (Mz1, . . . ,Mzm) on the Hilbert
space (H,K).

If T ∈ B1(!
∗), the curvature matrix KT (w̄) at a fixed but arbitrary point w̄ ∈ !∗

is defined by

KT (w̄) =
(

∂i ∂̄j log ‖γ (w̄)‖2)m
i,j=1,
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where γ is a holomorphic frame of ET defined on some open subset !∗0 ⊆ !∗ con-
taining w̄. If T is realized as the adjoint of the multiplication tuple (Mz1, . . . ,Mzm)

on some reproducing kernel Hilbert space (H,K) ⊆ Hol(!0), where w ∈ !0, the
curvature KT (w̄) is then equal to

(

∂i ∂̄j logK(w,w)
)m

i,j=1.

The study of operators in the Cowen-Douglass class using the properties of the
kernel functions was initiated by Curto and Salinas in [8]. The following definition
is taken from [24].

Definition 4.2 (Sharp Kernel and Generalized Bergman Kernel) A positive
definite kernel K : !×!→Mk(C) is said to be sharp if

(i) the multiplication operator Mzi is bounded on (H,K) for i = 1, . . . ,m,

(ii) kerD(Mz−w)∗ = ranK(·, w), w ∈ !,

where Mz denotes the m-tuple (Mz1,Mz2 , . . . ,Mzm) on (H,K). Moreover, if
ranD(Mz−w)∗ is closed for all w ∈ !, then K is said to be a generalized Bergman
kernel.

We start with the following lemma (cf. [9, page 285]) which provides a sufficient
condition for the sharpness of a non-negative definite kernel K .

Lemma 4.3 Let ! ⊂ C
m be a bounded domain and K : ! × ! → Mk(C) be a

non-negative definite kernel. Assume that the multiplication operatorMzi on (H,K)

is bounded for 1 ≤ i ≤ m. If the vector valued polynomial ring C[z1, . . . , zm] ⊗C
k

is contained in (H,K) as a dense subset, then K is a sharp kernel.

Corollary 4.4 Let ! ⊂ Cm be a bounded domain and K : ! × ! → C be
a sesqui-analytic function such that the functions Kα and Kβ are non-negative
definite on !× ! for some α, β > 0. Suppose that either the m-tuple of operators
(M

(α)
1 , . . . ,M

(α)
m ) on (H,Kα) or the m-tuple of operators (M(β)

1 , . . . ,M
(β)
m ) on

(H,Kβ) is bounded. If both the Hilbert spaces (H,Kα) and (H,Kβ) contain the
polynomial ring C[z1, . . . , zm] as a dense subset, then the kernel K(α,β) is sharp.

Proof By Corollary 3.8, the m-tuple of operators (M(α,β)
1 , . . . ,M

(α,β)
m ) is bounded

on
(

H,K(α,β)
)

. If both the Hilbert spaces (H,Kα) and (H,Kβ) contain the
polynomial ring C[z1, . . . , zm] as a dense subset, then by Proposition 3.4, we see
that the ring C[z1, . . . , zm] ⊗ Cm is contained in (H,K(α,β)) and is dense in it. An
application of Lemma 4.3 now completes the proof. ��

Some of the results in this paper generalize, among other things, one of the main
results of [24], which is reproduced below.

Theorem 4.5 (Salinas, [24, Theorem 2.6]) Let ! ⊂ Cm be a bounded domain. If
K1,K2 : ! × !→ C are two sharp kernels (resp. generalized Bergman kernels),
thenK1⊗K2 andK1K2 are also sharp kernels (resp. generalized Bergman kernels).
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For two scalar valued non-negative definite kernels K1 and K2, defined on !×!,
the jet construction (Theorem 1.3) gives rise to a family of non-negative kernels
Jk(K1,K2)|res�, k ≥ 0, where

Jk(K1,K2)|res�(z,w) :=
(

K1(z,w)∂
i ∂̄jK2(z,w)

)k

|i|,|j |=0, z,w ∈ !.

In the particular case when k = 0, it coincides with the point-wise productK1K2. In
this section, we generalize Theorem 4.5 for all kernels of the form Jk(K1,K2)|res�.
First, we discuss two important corollaries of the jet construction which will be used
later in this paper.

For 1 ≤ i ≤ m, let JkMi denote the operator of multiplication by the ith
coordinate function zi on the Hilbert space

(

H, Jk(K1,K2)|res�
)

. In case m = 1,
we write JkM instead of JkM1.

Taking p(z, ζ ) to be the ith coordinate function zi in Proposition 1.4, we obtain
the following corollary.

Corollary 4.6 Let K1,K2 : ! × ! → C be two non-negative definite ker-
nels. Then the m-tuple of operators

(

PA⊥k (M
(1)
1 ⊗ I)|A⊥k , . . . , PA⊥k (M

(1)
m ⊗ I)|A⊥k

)

is unitarily equivalent to the m-tuple (JkM1, . . . , JkMm) on the Hilbert space
(

H, Jk(K1,K2)|res�
)

.

Combining this with Corollary 3.10 we obtain the following result.

Corollary 4.7 Let ! ⊂ C be a bounded domain andK : !×!→ C be a sesqui-
analytic function such that the functions Kα and Kβ are non-negative definite on
!×! for some α, β > 0. The following operators are unitarily equivalent:

(i) the operator PA⊥1 (M
(α) ⊗ I)|A⊥1

(ii) the multiplication operator J1M on
(

H, J1(K
α,Kβ)|res�

)

(iii) the operator

(

M(α+β) 0
δ inc M(α,β)

)

on (H,Kα+β)
⊕

(H,K(α,β)) where δ =
β√

αβ(α+β) and inc : (H,Kα+β)→ (H,K(α,β)) is the inclusion operator.

We need the following lemmas for the generalization of Theorem 4.5.

Lemma 4.8 Let H1 and H2 be two Hilbert spaces and T be a bounded linear
operator onH1. Then

ker(T ⊗ IH2) = kerT ⊗H2.

Proof It is easily seen that kerT ⊗H2 ⊂ ker(T ⊗ IH2). To establish the opposite
inclusion, let x be an arbitrary element in ker(T ⊗ IH2). Fix an orthonormal basis
{fi} of H2. Note that x is of the form

∑

vi ⊗ fi for some vi ’s in H1. Since x ∈
ker(T ⊗ IH2), we have

∑

T vi ⊗ fi = 0. Moreover, since {fi} is an orthonormal
basis of H2, it follows that T vi = 0 for all i. Hence x belongs to ker(T ) ⊗ H2,
completing the proof of the lemma. ��
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Lemma 4.9 Let H1 and H2 be two Hilbert spaces. If B1, . . . , Bm are closed
subspaces of H1, then

m
⋂

l=1

(Bl ⊗H2) =
(

m
⋂

l=1

Bl

)

⊗H2.

Proof We only prove the non-trivial inclusion, namely, ∩ml=1 (Bl ⊗H2) ⊆
(∩ml=1Bl

) ⊗ H2. Let {fj }j be an orthonormal basis of H2 and x be an arbitrary
element in H1 ⊗H2. Recall that x can be written uniquely as

∑

xj ⊗ fj , xj ∈ H1.

Claim If x belongs to Bl ⊗H2, then xj belongs to Bl for all j.

To prove the claim, assume that {ei}i is an orthonormal basis of Bl. Since {ei ⊗
fj }i,j is an orthonormal basis of Bl ⊗H2 and x can be written as

∑

xij ei ⊗ fj =
∑

j (
∑

i xij ei ) ⊗ fj . Then, the uniqueness of the representation x = ∑

xj ⊗ fj ,

ensures that xj =∑i xij ei . In particular, xj belongs to Bl for all j. Thus the claim
is verified.

Now let y be any element in ∩ml=1 (Bl ⊗H2) . Let
∑

yj ⊗ fj be the unique
representation of y in H1 ⊗H2. Then from the claim, it follows that yj ∈ ∩ml=1Bl.

Consequently, y ∈ (∩ml=1Bl)⊗H2. This completes the proof. ��
The proof of the following lemma is straightforward and therefore it is omitted.

Lemma 4.10 Let H1 and H2 be two Hilbert spaces. Let A : H1 → H1 be a
bounded linear operator and B : H1 → H2 be a unitary operator. Then

kerBAB∗ = B(kerA).

The lemma given below is a generalization of [6, Lemma 1.22 (i)] to commuting
tuples. Recall that for a commuting m-tuple T = (T1, . . . , Tm), the operator T i is
defined by T

i1
1 · · · T im

m , where i = (i1, . . . , im) ∈ Z
m+.

Lemma 4.11 If K : !×!→ C is a positive definite kernel such that the m-tuple
of multiplication operators Mz = (Mz1, . . . ,Mzm) on (H,K) is bounded, then for
w ∈ ! and i = (i1, . . . , im), j = (j1, . . . , jm) in Zm+,

(i) (M∗
z − w̄)i ∂̄jK(·, w) = 0 if |i| > |j |,

(ii) (M∗
z − w̄)i ∂̄jK(·, w) = j !δijK(·, w) if |i| = |j |.

Proof First, we claim that if il > jl for some 1 ≤ l ≤ m, then

(M∗
zl
− w̄l)

il ∂̄
jl
l K(·, w) = 0.

The claim is verified by induction on jl . The case jl = 0 holds trivially since (M∗
zl
−

w̄l)K(·, w) = 0. Now assume that the claim is valid for jl = p. We have to show
that it is true for jl = p + 1 also. Suppose il > p + 1. Then il − 1 > p. Hence, by
the induction hypothesis, (M∗

zl
− w̄l)

il−1∂̄
p
l K(·, w) = 0. Differentiating this with
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respect to w̄l , we see that

(il − 1)(M∗
zl
− w̄l)

il−2(−1)∂̄pl K(·, w)+ (M∗
zl
− w̄l)

il−1∂̄
p+1
l K(·, w) = 0.

Applying (M∗
zl
− w̄l) to both sides of the equation above, we obtain

(il − 1)(M∗
zl
− w̄l)

il−1(−1)∂̄pl K(·, w) + (M∗
zl
− w̄l)

il ∂̄
p+1
l K(·, w) = 0.

Therefore, using the induction hypothesis once again, we conclude that (M∗
zl
−

w̄l)
il ∂̄

p+1
l K(·, w) = 0. Hence the claim is verified.

Now, to prove the first part of the lemma, assume that |i| > |j |. Then there exists
a l such that il > jl. Hence from the claim, we have (M∗

zl
− w̄l)

il ∂̄
jl
l K(·, w) =

0. Differentiating with respect to all other variables except w̄l , we get (M∗
zl
−

w̄l)
il ∂̄jK(·, w) = 0. Applying the operator (M∗

z − w̄)i−il el , where el is the lth
standard unit vector of Cm, we see that (M∗

z − w̄)i ∂̄jK(·, w) = 0, completing the
proof of the first part.

For the second part, assume that |i| = |j | and i �= j . Then there is at least one
l such that il > jl. Hence by the argument used in the last paragraph, we conclude
that (M∗

z − w̄)i ∂̄jK(·, w) = 0. Finally, if i = j , we use induction on i to proof the
lemma. There is nothing to prove if i = 0. For the proof by induction, now, assume
that (M∗

z − w̄)i ∂̄ iK(·, w) = i!K(·, w) for some i ∈ Z
m+. To complete the induction

step, we have to prove that (M∗
z − w̄)i+el ∂̄ i+elK(·, w) = (i + el)!K(·, w). By the

first part of the lemma, we have (M∗
z − w̄)i+el ∂̄ iK(·, w) = 0. Differentiating with

respect to w̄l, we get that

(M∗
z − w̄)i+el ∂̄ i+elK(·, w)− (il + 1)(M∗

z − w̄)i ∂̄ iK(·, w) = 0.

Hence, by the induction hypothesis, we conclude that

(M∗
z − w̄)i+el ∂̄ i+elK(·, w) = (i + el)!K(·, w).

This completes the proof. ��
Corollary 4.12 Let K : !×!→ C be a positive definite kernel. Suppose that the
m-tuple of multiplication operators Mz on (H,K) is bounded. Then, for allw ∈ !,
the set

{

∂̄ iK(·, w) : i ∈ Z
m+
}

is linearly independent. Consequently, the matrix
(

∂ i ∂̄jK(w,w)
)

i,j∈� is positive definite for any finite subset � of Zm+.

Proof Let w be an arbitrary point in !. It is enough to show that the set
{

∂̄ iK(·, w) : i ∈ Z
m+, |i| ≤ k

}

is linearly independent for each non-negative
integer k. Since K is positive definite, there is nothing to prove if k = 0. To
complete the proof by induction on k, assume that the set

{

∂̄ iK(·, w) : i ∈
Z
m+, |i| ≤ k

}

is linearly independent for some non-negative integer k. Suppose
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that
∑

|i|≤k+1 ai ∂̄
iK(·, w) = 0 for some ai’s in C. Then

(M∗
z − w̄)q(

∑

|i|≤k+1

ai ∂̄
iK(·, w)) = 0,

for all q ∈ Z
m+ with |q| ≤ k + 1. If |q| = k + 1, by Lemma 4.11, we have that

aq q!K(·, w) = 0. Consequently, aq = 0 for all q ∈ Z
m+ with |q| = k + 1. Hence,

by the induction hypothesis, we conclude that ai = 0 for all i ∈ Z
m+, |i| ≤ k + 1

and the set
{

∂̄ iK(·, w) : i ∈ Z
m+, |i| ≤ k + 1

}

is linearly independent, completing
the proof of the first part of the corollary.

If � is a finite subset of Z
m+, then it follows from the linear independence of

the vectors
{

∂̄ iK(·, w) : i ∈ �
}

that
( 〈

∂̄jK(·, w), ∂̄ iK(·, w)〉 )
i,j∈� is a positive

definite matrix. Now the proof is complete since

〈

∂̄jK(·, w), ∂̄ iK(·, w)
〉

= ∂ i ∂̄jK(w,w),

see Proposition 2.2. ��
The following proposition is also a generalization to the multi-variate setting of

[6, Lemma 1.22 (ii)]( see also [7]).

Proposition 4.13 If K : !×!→ C is a sharp kernel, then for every w ∈ !

⋂

|j |=k+1

ker (M∗
z − w̄)j =

∨
{

∂̄jK(·, w) : |j | ≤ k
}

.

Proof The inclusion
∨{∂̄jK(·, w) : |j | ≤ k} ⊆ ⋂|j |=k+1 ker (M∗

z − w̄)j follows
from part (i) of Lemma 4.11. We use induction on k for the opposite inclusion. From
the definition of sharp kernel, this inclusion is evident if k = 0. Assume that

⋂

|j |=k+1

ker (M∗
z − w̄)j ⊆

∨
{

∂̄jK(·, w) : |j | ≤ k
}

for some non-negative integer k. To complete the proof by induction, we show that
the inclusion remains valid for k + 1 as well. Let f be an arbitrary element of
⋂

|i|=k+2 ker(M∗
z − w̄)i . Fix a j ∈ Z

m+ with |j | = k + 1. Then it follows that

(M∗
z − w̄)jf belongs to ∩ml=1 ker(M∗

zl
− w̄l). Since K is sharp, we see that (M∗

z −
w̄)jf = cjK(·, w) for some constant cj depending on w. Therefore

(M∗
z − w̄)j

(

f −
∑

|q|=k+1

cq

q! ∂̄
qK(·, w)

)

= cjK(·, w)−
∑

|q|=k+1

cq

q! (M
∗
z − w̄)j ∂̄qK(·, w)
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= cjK(·, w)−
∑

|q|=k+1

cqδjq
j !
q!K(·, w)

= 0,

where the last equality follows from Lemma 4.11. Or, in other words, the vector f −
∑

|q|=k+1
cq
q! ∂̄

qK(·, w) belongs to
⋂

|j |=k+1 ker(M∗
z − w̄)j . Thus by the induction

hypothesis, f −∑|q|=k+1
cq
q! ∂̄

qK(·, w) = ∑

|j |≤k dj ∂̄
jK(·, w). Hence f belongs

to
∨{∂̄jK(·, w) : |j | ≤ k + 1}. This completes the proof. ��
For a m-tuple of bounded operators T = (T1, . . . , Tm) on a Hilbert space H, we

define an operator DT : H⊕ · · ·⊕H→ H by

DT (x1, . . . , xm) =
m
∑

i=1

Tixi, x1, . . . , xm ∈ H.

A routine verification shows that (DT )
∗ = DT ∗ . The following lemma is undoubt-

edly well known, however, we provide a proof for the sake of completeness.

Lemma 4.14 LetK : !×!→ C be a positive definite kernel such that them-tuple
of multiplication operators Mz on (H,K) is bounded. Let w = (w1, . . . , wm) be a
fixed but arbitrary point in ! and let Vw be the subspace given by {f ∈ (H,K) :
f (w) = 0}. ThenK is a generalized Bergman kernel if and only if for everyw ∈ !,

Vw =
{

∑m
i=1(zi −wi)gi : gi ∈ (H,K)

}

. (4.1)

Proof First, observe that the right-hand side of (4.1) is equal to ranDMz−w. Hence
it suffices to show that K is a generalized Bergman kernel if and only if Vw =
ranDMz−w. In any case, we have the following inclusions

ranDMz−w = ran(D(Mz−w)∗)∗ ⊆ ran(D(Mz−w)∗)∗

= kerD(Mz−w)∗⊥ ⊆ {cK(·, w) : c ∈ C}⊥
= Vw.

Hence it follows that Vw = ranDMz−w if and only if equality is forced
everywhere in these inclusions, that is, ran(D(Mz−w)∗)∗ = ran(D(Mz−w)∗)∗ and
kerD(Mz−w)∗⊥ = {cK(·, w) : c ∈ C}⊥. Now note that ran(D(Mz−w)∗)∗ =
ran(D(Mz−w)∗)∗ if and only if ran(D(Mz−w)∗)∗ is closed. Recall that, if H1,H2 are
two Hilbert spaces, and an operator T : H1 → H2 has closed range, then T ∗ also
has closed range. Therefore, ran(D(Mz−w)∗)∗ is closed if and only if ranD(Mz−w)∗
is closed. Finally, note that kerD(Mz−w)∗⊥ = {cK(·, w) : c ∈ C}⊥ holds if and
only if kerD(Mz−w)∗ = {cK(·, w) : c ∈ C}. This completes the proof. ��
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Recall that M
(1)
i ,M

(2)
i , JkMi , 1 ≤ i ≤ m, are the operators of multi-

plication by the coordinate function zi on the Hilbert spaces (H,K1), (H,K2)

and (H, Jk(K1,K2)|res�), respectively. Set M (1) = (M
(1)
1 , . . . ,M

(1)
m ), M (2) =

(M
(2)
1 , . . . ,M

(2)
m ) and J kM = (JkM1, . . . , JkMm). For the sake of brevity, let H1

and H2 be the Hilbert spaces (H,K1) and (H,K2), respectively for the rest of this
section.

The following is the main tool to prove that the kernel Jk(K1,K2)|res� is sharp
whenever K1 and K2 are sharp.

Lemma 4.15 If K1,K2 : ! × ! → C are two sharp kernels, then for all w =
(w1, . . . , wm) ∈ !,

m
⋂

p=1

ker
(

(

(M(1)
p −wp)

∗ ⊗ I
)

|A⊥k
)

=
⋂

|i|=1

ker
(

M(1) −w
)∗i ⊗

⋂

|i|=k+1

ker
(

M(2) −w
)∗i

=
∨
{

K1(·, w)⊗ ∂̄ iK2(·, w) : |i| ≤ k
}

.

Proof Since K1 and K2 are sharp kernels, by Proposition 4.13, it follows that

⋂

|i|=1

ker (M(1) −w)∗i ⊗
⋂

|i|=k+1

ker (M(2) −w)∗i

=
∨

{K1(·, w)⊗ ∂̄jK2(·, w) : |j | ≤ k}. (4.2)

Therefore, we will be done if we can show that

m
⋂

p=1

ker
(

(

(M(1)
p −wp)

∗ ⊗ I
)

|Ak
⊥
)

=
⋂

|i|=1

ker (M(1) −w)∗i ⊗
⋂

|i|=k+1

ker (M(2) − w)∗i . (4.3)

To prove this, first note that

m
⋂

p=1

ker
(

(

(M(1)
p −wp)

∗ ⊗ I
)

|A⊥k
)

=
(

m
⋂

p=1

ker
(

(M(1)
p −wp)

∗ ⊗ I
)

)
⋂

A⊥k

=
(

m
⋂

p=1

(

ker(M(1)
p −wp)

∗ ⊗H2
)

)
⋂

A⊥k
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=
((

m
⋂

p=1

ker(M(1)
p −wp)

∗)⊗H2

)
⋂

A⊥k

=
(

kerD(M(1)−w)∗ ⊗H2

)
⋂

A⊥k .

Here the second equality follows from Lemma 4.8 and the third equality follows
from Lemma 4.9. In view of the above computation, to verify (4.3), it is enough to
show that

(

kerD(M(1)−w)∗ ⊗H2

)
⋂

A⊥k

=
⋂

|i|=1

ker (M(1) −w)∗i ⊗
⋂

|i|=k+1

ker (M(2) −w)∗i . (4.4)

Since K1 is a sharp kernel, kerD(M(1)−w)∗ is spanned by the vector K1(·, w). It is

also easy to see that the vector K1(·, w)⊗ ∂̄jK2(·, w) belongs to A⊥k and hence, it is

in
(

kerD(M(1)−w)∗ ⊗H2

)

⋂

A⊥k for all j in Z
m+ with |j | ≤ k. Therefore, by (4.2),

we have the inclusion
⋂

|i|=1

ker (M(1) −w)∗i ⊗
⋂

|i|=k+1

ker (M(2) −w)∗i

⊆
(

kerD(M(1)−w)∗ ⊗H2

)
⋂

A⊥k . (4.5)

Now to prove the opposite inclusion, first note that an arbitrary vector of
(

kerD(M(1)−w)∗ ⊗H2
)⋂

A⊥k can be taken to be of the form K1(·, w) ⊗ g, where

g ∈ H2 is such that K1(·, w) ⊗ g ∈ A⊥k . We claim that such a vector g must be in
⋂

|i|=k+1 ker (M(2) − w)∗i .
As before, we realize the vectors of H1 ⊗ H2 as holomorphic functions in z =

(z1, . . . , zm), ζ = (ζ1, . . . , ζm) in !. Fix any i ∈ Z
m+ with |i| = k + 1. Then

(ζ−z)i = (ζq1−zq1)(ζq2−zq2) · · · (ζqk+1−zqk+1) for some 1 ≤ q1, q2, . . . , qk+1 ≤
m. Since M(1)

i and M
(2)
i are bounded for 1 ≤ i ≤ m, for any h ∈ H1 ⊗H2, we see

that the function (ζ − z)ih belongs to H1 ⊗H2. Then

〈

K1(·, w)⊗ g, (ζq1 − zq1)(ζq2 − zq2) · · · (ζqk+1 − zqk+1)h
〉

=
〈

M∗
(ζq1−zq1 )

(K1(·, w)⊗ g), (ζq2 − zq2) · · · (ζqk+1 − zqk+1)h
〉

=
〈

(I ⊗M(2)
q1

∗ −M(1)
q1

∗ ⊗ I)K1(·, w)⊗ g, (ζq2 − zq2) · · · (ζqk+1 − zqk+1)h
〉

=
〈

K1(·, w)⊗M(2)
q1

∗
g − w̄q1K1(·, w)⊗ g, (ζq2 − zq2) · · · (ζqk+1 − zqk+1)h

〉

=
〈

K1(·, w)⊗ (M(2)
q1
−wq1)

∗g, (ζq2 − zq2) · · · (ζqk+1 − zqk+1)h
〉

.
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Repeating this process, we get

〈

K1(·, w)⊗ g, (ζ − z)ih
〉

=
〈

K1(·, w)⊗ (M(2) − w)∗ig, h
〉

.

Since |i| = k+ 1, it follows that the element (ζ − z)ih belongs to Ak . Furthermore,
since K1(·, w)⊗ g ∈ A⊥k , from the above equality, we have

〈

K1(·, w)⊗ (M(2) −w)∗ig, h
〉

= 0

for any h ∈ H1 ⊗ H2. Taking h = K1(·, w) ⊗ K2(·, u), u ∈ !, we get

K1(w,w)
(

(M (2) −w)∗ig
)

(u) = 0 for all u ∈ !. Since K1(w,w) > 0, it follows

that (M (2) −w)∗ig = 0. Since this is true for all i ∈ Z
m+ with |i| = k+1, it follows

that g ∈⋂|i|=k+1 ker (M(2) −w)∗i . Hence K1(·, w)⊗ g belongs to

⋂

|i|=1

ker (M (1) −w)∗i ⊗
⋂

|i|=k+1

ker (M(2) −w)∗i,

proving the opposite inclusion of (4.5). This completes the proof of equality in (4.3).
��

Theorem 4.16 Let ! ⊂ Cm be a bounded domain. If K1,K2 : ! × ! → C are
two sharp kernels, then so is the kernel Jk(K1,K2)|res�, k ≥ 0.

Proof Since the tuple M (1) is bounded, by Corollary 4.6, it follows that the tuple
J kM is also bounded. Now we will show that the kernel Jk(K1,K2)|res� is positive
definite on !×!. Since K2 is positive definite, by Corollary 4.12, we obtain that the
matrix

(

∂ i ∂̄jK2(w,w)
)k

|i|,|j |=0 is positive definite for w ∈ !. Moreover, since K1

is also positive definite, we conclude that Jk(K1,K2)|res�(w,w) is positive definite
for w ∈ !. Hence, by [8, Lemma 3.6], we conclude that the kernel Jk(K1,K2)|res�
is positive definite.

To complete the proof, we need to show that

kerD(J kM−w)∗ = ranJk(K1,K2)|res�(·, w), w ∈ !.

Note that, by the definition of R and Jk (see the discussion before Theorem 1.3), we
have

RJk(K1(·, w)⊗ ∂̄ iK2(·, w)) = Jk(K1,K2)|res�(·, w)ei , i ∈ Z
m+, |i| ≤ k.

In the computation below, the third equality follows from Lemma 4.10, the
injectivity of the map RJk |A⊥k implies the fourth equality, the fifth equality follows
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from Lemma 4.15 and finally the last equality follows from (4):

kerD(J kM−w)∗ =
m
⋂

p=1

ker(JkMp −wp)
∗

=
m
⋂

p=1

ker
(

(RJk)PA⊥k
(

(M(1)
p −wp)

∗ ⊗ I
)

|A⊥k
(RJk)

∗)

=
m
⋂

p=1

(RJk)
(

ker
(

PA⊥k
(

(M(1)
p −wp)

∗ ⊗ I
)

|A⊥k
)

)

=(RJk)
(

m
⋂

p=1

ker
(

PA⊥k
(

(M(1)
p −wp)

∗ ⊗ I
)

|A⊥k
)

)

=(RJk)
(
∨
{

K1(·, w)⊗ ∂̄ iK2(·, w) : |j | ≤ k
}

)

=ranJk(K1,K2)|res�(·, w).

This completes the proof. ��
The lemma given below is the main tool to prove Theorem 4.18.

Lemma 4.17 Let K1,K2 : !×!→ C be two generalized Bergman kernels, and
let w = (w1, . . . , wm) be an arbitrary point in !. Suppose that f is a function in
H1 ⊗H2 satisfying

((

∂
∂ζ

)i
f (z, ζ )

)

|z=ζ=w = 0 for all i ∈ Z
m+, |i| ≤ k. Then

f (z, ζ ) =
m
∑

j=1

(zj −wj)fj (z, ζ )+
∑

|q|=k+1

(z− ζ )qf �
q (z, ζ )

for some functions fj , f
�
q inH1 ⊗H2, j = 1, . . . ,m, q ∈ Z

m+, |q| = k + 1.

Proof Since K1 and K2 are generalized Bergman kernels, by Theorem 4.5, we have
that K1 ⊗ K2 is also a generalized Bergman kernel. Therefore, if f is a function in
H1⊗H2 vanishing at (w,w), then using Lemma 4.14, we find functions f1, . . . , fm,

and g1, . . . , gm in H1 ⊗H2 such that

f (z, ζ ) =
m
∑

j=1

(zj −wj )fj +
m
∑

j=1

(ζj −wj)gj .

Equivalently, we have

f (z, ζ ) =
m
∑

j=1

(zj − wj)(fj + gj )+
m
∑

j=1

(zj − ζj )(−gj ).
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Thus the statement of the lemma is verified for k = 0. To complete the proof by
induction on k, assume that the statement is valid for some non-negative integer k.
Let f be a function in H1 ⊗H2 such that

(( ∂

∂ζ

)i
f (z, ζ )

)

|z=ζ=w = 0

for all i ∈ Z
m+, |i| ≤ k + 1. By induction hypothesis, we can write

f (z, ζ ) =
m
∑

j=1

(zj −wj)fj (z, ζ )+
∑

|q|=k+1

(z− ζ )qf �
q (z, ζ ) (4.6)

for some fj , f
�
q ∈ H1 ⊗H2, j = 1, . . . ,m, q ∈ Z

m+, |q| = k + 1. Fix a i ∈ Z
m+

with |i| = k + 1. Applying
(

∂
∂ζ

)i to both sides of (4.6), we see that

(

∂
∂ζ

)i
f (z, ζ )

=
m
∑

j=1

(zj −wj)
(

∂
∂ζ

)i
fj (z, ζ )+

∑

|q|=k+1

(

∂
∂ζ

)i(
(z− ζ )qf �

q (z, ζ )
)

=
m
∑

j=1

(zj −wj)
(

∂
∂ζ

)i
fj (z, ζ )+

∑

|q|=k+1

∑

p≤i

(

i
p

)(

∂
∂ζ

)p
(z− ζ )q

(

∂
∂ζ

)i−p
f �

q (z, ζ ).

Putting z = ζ = w, we obtain

((

∂
∂ζ

)i
f (z, ζ )

)

|z=ζ=w = (−1)|i|i! f �
i (w,w),

where we have used the identity:
(

(

∂
∂ζ

)p
(z− ζ )q

)

|z=ζ=w = δpq(−1)|p|p!.
Since

((

∂
∂ζ

)i
f (z, ζ )

)

|z=ζ=w = 0, we conclude that f �
i (w,w) = 0. Since the

statement of the lemma has been shown to be valid for k = 0, it follows that

f
�

i (z, ζ ) =
m
∑

j=1

(zj −wj )
(

f
�

i

)

j
(z, ζ )+

m
∑

j=1

(zj − ζj )
(

f
�

i

)�

j
(z, ζ ) (4.7)

for some
(

f
�
i

)

j
,
(

f
�
i

)�

j
∈ H1 ⊗ H2, j = 1, . . . ,m. Since (4.7) is valid

for any i ∈ Z
m+, |i| = k + 1, replacing the f

�
q ’s in (4.6) by

∑m
j=1(zj −

wj)
(

f
�
q

)

j
(z, ζ )+∑m

j=1(zj −ζj )
(

f
�
q

)�

j
(z, ζ ), we obtain the desired conclusion after

some straightforward algebraic manipulation. ��
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Theorem 4.18 Let ! ⊂ Cm be a bounded domain. If K1,K2 : ! × ! → C are
generalized Bergman kernels, then so is the kernel Jk(K1,K2)|res�, k ≥ 0.

Proof By Theorem 4.16, we will be done if we can show that ranD(J kM−w)∗
is closed for every w ∈ !. Fix a point w = (w1, . . . , wm) in !. Let
X := (

PA⊥k (M
(1)
1 ⊗ I)|A⊥k , . . . , PA⊥k (M

(1)
m ⊗ I)|A⊥k

)

. By Corollary 4.6, we see

that ranD(J kM−w)∗ is closed if and only if ranD(X−w)∗ is closed. Moreover, since
(D(X−w)∗)∗ = D(X−w), we conclude that ranD(X−w)∗ is closed if and only if
ranD(X−w) is closed. Note that X satisfies the following equality:

kerD(X−w)∗⊥ = ran(D(X−w)∗)∗ = ranD(X−w).

Therefore, to prove ranD(X−w) is closed, it is enough to show that kerD(X−w)∗⊥ ⊆
ranDX−w. To prove this, note that

D(X−w)(g1 ⊕ · · · ⊕ gm) = PA⊥k
(

m
∑

i=1

(zi −wi)gi
)

, gi ∈ A⊥k , i = 1, . . . ,m.

Thus

ranD(X−w) =
{

PA⊥k
(

m
∑

i=1

(zi −wi)gi : g1, . . . , gm ∈ A⊥k
}

. (4.8)

Now, let f be an arbitrary element of kerD(X−w)∗⊥. Then, by Lemma 4.15 and

Proposition 2.2, we have
((

∂
∂ζ

)i
f (z, ζ )

)

|z=ζ=w = 0 for all i ∈ Z
m+, |i| ≤ k. By

Lemma 4.17,

f (z, ζ ) =
m
∑

j=1

(zj −wj)fj (z, ζ )+
∑

|q|=k+1

(z− ζ )qf �
q (z, ζ )

for some functions fj , f
�
q in H1 ⊗ H2, j = 1, . . . ,m; q in Z

m+, |q| = k + 1.

Note that the element
∑

|q|=k+1(z − ζ )qf
�
q belongs to Ak. Hence f = PA⊥k (f ) =

PA⊥k
(∑m

j=1(zj − wj)fj
)

. Furthermore, since the subspace Ak is invariant under

(M
(1)
j −wj), j = 1, . . . ,m, we see that

f = PA⊥k
(∑m

j=1(zj −wj)fj
) = PA⊥k

(

∑m
j=1(zj −wj)

(

PA⊥k fj + PAk
fj
)

)

= PA⊥k
(∑m

j=1(zj −wj )(PA⊥k fj )
)

.

Therefore, from (4.8), we conclude that f ∈ ranD(X−w). This completes the proof.
��
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4.1 The Class FB2(�)

In this subsection, first we will use Theorem 4.18 to prove that, if ! ⊂ C, and Kα ,
Kβ , defined on !×!, are generalized Bergman kernels, then so is the kernelK(α,β).
The following proposition, which is interesting on its own right, is an essential tool
in proving this theorem. The notation below is chosen to be close to that of [16].

Proposition 4.19 Let ! ⊂ C be a bounded domain. Let T be a bounded linear

operator of the form

(

T0 S

0 T1

)

on H0
⊕

H1. Suppose that T belongs to B2(!) and

T0 belongs to B1(!). Then T1 belongs to B1(!).

Proof First, note that, for w ∈ !,

(T −w)(x ⊕ y) = ((T0 −w)x + Sy)⊕ (T1 − w)y. (4.9)

Since T ∈ B2(D), T − w is onto. Hence, from the above equality, it follows that
(T1 −w) is onto.

Now we claim that dim ker(T1 −w) = 1 for all w ∈ !. From (4.9), we see that
(x⊕y) belongs to ker(T−w) if and only if (T0−w)x+Sy = 0 and y ∈ ker(T1−w).
Therefore, if dim ker(T1 − w) is 0, it must follow that ker(T − w) = ker(T0 − w),
which is a contradiction. Hence the dimension of ker(T1 − w) is at least 1. Now
assume that dim ker(T1−w) > 1. Let v1(w) and v2(w) be two linearly independent
vectors in ker(T1 − w). Since (T0 − w) is onto, there exist u1(w), u2(w) ∈ H0
such that (T0 − w)ui(w) + Svi(w) = 0, i = 1, 2. Hence the vectors (u1(w) ⊕
v1(w)), (u2(w) ⊕ v2(w)) belong to ker(T − w). Also, since dim ker(T0 − w) =
1, there exists γ (w) ∈ H0, such that (γ (w) ⊕ 0) belongs to ker(T − w). It is
easy to verify that the vectors {(u1(w)⊕ v1(w)), (u2(w)⊕ v2(w)), (γ (w)⊕ 0)} are
linearly independent. This is a contradiction since dim ker(T − w) = 2. Therefore
dim ker(T1 −w) ≤ 1. In consequence, dim ker(T1 −w) = 1.

Finally, to show that
∨

w∈! ker(T1−w) = H1, let y be an arbitrary vector in H1

which is orthogonal to
∨

w∈! ker(T1−w). Then it follows that (0⊕y) is orthogonal
to ker(T − w),w ∈ !. Consequently, y = 0. This completes the proof. ��
Theorem 4.20 Let! ⊂ C be a bounded domain andK : !×!→ C be a sesqui-
analytic function such that the functionsKα andKβ are positive definite on !×!

for some α, β > 0. Suppose that the operators M(α)∗ on (H,Kα) and M(β)∗ on
(H,Kβ) belong to B1(!

∗). Then the operator M(α,β)∗ on (H,K(α,β)) belongs to
B1(!

∗). Equivalently, if Kα and Kβ are generalized Bergman kernels, then so is
the kernel K(α,β).

Proof Since the operators M(α)∗ and M(β)∗ belong to B1(!
∗), it follows from

Theorem 4.18 that the kernel J1(K
α,Kβ)|res� is a generalized Bergman kernel.

Therefore, from Corollary 4.7, we see that the operator
(

M(α+β)∗ η inc∗
0 M

(α,β)∗
)

belongs to

B2(!
∗), where η = β√

αβ(α+β) and inc is the inclusion operator from (H,Kα+β) into
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(H,K(α,β)). Also, by Theorem 4.5, the operator M(α+β)∗ on (H,Kα+β) belongs to
B1(!

∗). Proposition 4.19, therefore shows that the operator M(α,β)∗ on (H,K(α,β))

belongs to B1(!
∗). ��

A smaller class of operators FBn(!) from Bn(!), n ≥ 2, was introduced in
[16]. A set of tractable complete unitary invariants and concrete models were given
for operators in this class. We give below examples of a large class of operators in
FB2(!). In case ! is the unit disc D, these examples include the homogeneous
operators of rank 2 in B2(D) which are known to be in FB2(D).

Definition 4.21 An operator T on H0
⊕

H1 is said to be in FB2(!) if it is of

the form

(

T0 S

0 T1

)

, where T0, T1 ∈ B1(!) and S is a non-zero operator satisfying

T0S = ST1.

Theorem 4.22 Let! ⊂ C be a bounded domain andK : !×!→ C be a sesqui-
analytic function such that the functionsKα andKβ are positive definite on !×!

for some α, β > 0. Suppose that the operators M(α)∗ on (H,Kα) and M(β)∗ on
(H,Kβ) belong to B1(!

∗). Then the operator (J1M)∗ on (H, J1(K
α,Kβ)|res�)

belongs to FB2(!
∗).

Proof By Theorem 4.18, the operator (J1M)∗ on (H, J1(K
α,Kβ)|res�) belongs

to B2(!
∗), and by Corollary 4.7, it is unitarily equivalent to the operator

(

M(α+β)∗ η inc∗
0 M

(α,β)∗
)

on (H,Kα+β)
⊕

(H,K(α,β)). By Theorem 4.5, the operator

M(α+β)∗ on (H,Kα+β) belongs to B1(!
∗) and by Theorem 4.20, the operator

M(α,β)∗ on (H,K(α,β)) belongs to B1(!
∗). The adjoint of the inclusion operator

inc clearly intertwines M(α+β)∗ and M(α,β)∗. Therefore the operator (J1M)∗ on
(H, J1(K

α,Kβ)|res�) belongs to FB2(!
∗). ��

Let ! ⊂ C be a bounded domain and K : ! × ! → C be a sesqui-analytic
function such that the functionsKα1,Kα2,Kβ1 and Kβ2 are positive definite on !×
! for some αi, βi > 0, i = 1, 2. Suppose that the operatorsM(αi)

∗
on (H,Kαi ) and

M(βi)
∗

on (H,Kβi ), i = 1, 2, belong to B1(!
∗). Let A1(αi , βi) be the subspace A1

of the Hilbert space (H,Kαi )⊗ (H,Kβi ) for i = 1, 2. Then we have the following
corollary.

Corollary 4.23 The operator
(

M(α1) ⊗ I
)∗
|A1(α1,β1)⊥ is unitarily equivalent to the

operator
(

M(α2) ⊗ I
)∗
|A1(α2,β2)

⊥ if and only if α1 = α2 and β1 = β2.

Proof If α1 = α2 and β1 = β2, then there is nothing to prove. For the converse,
assume that the operators

(

M(α1) ⊗ I
)∗
|A1(α1,β1)⊥ and

(

M(α2) ⊗ I
)∗
|A1(α2,β2)⊥

are unitarily equivalent. Then, by Corollary 3.10, we see that the operator
(

M(α1+β1)
∗

η1 (inc)∗1
0 M

(α1,β1)
∗
)

on (H,Kα1+β1)
⊕

(H,K(α1,β1)) is unitarily equivalent to
(

M(α2+β2)
∗

η2 (inc)∗2
0 M

(α2,β2)
∗
)

on (H,Kα2+β2)
⊕

(H,K(α2,β2)), where ηi = βi√
αiβi(αi+βi)

and (inc)i is the inclusion operator from (H,Kαi+βi ) into (H,K(αi ,βi)), i = 1, 2.
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Since M(αi)
∗

on (H,Kαi ) and M(βi)
∗

on (H,Kβi ), i = 1, 2, belong to B1(!
∗),

by Theorem 4.22, we conclude that the operator
(

M(αi+βi )∗ ηi (inc)∗i
0 M

(αi ,βi )
∗
)

belongs to

FB2(!
∗) for i = 1, 2. Therefore, by [16, Theorem 2.10], we obtain that

K
M(α1+β1)

∗ = K
M(α2+β2)

∗ and
η1 ‖(inc)∗1(t1)‖2

‖t1‖2 = η2 ‖(inc)∗2(t2)‖2

‖t2‖2 ,

where K
M(αi+βi )∗ , i = 1, 2, is the curvature of the operator M(αi+βi )∗, and t1 and

t2 are two non-vanishing holomorphic sections of the vector bundles E
M

(α1,β1)
∗

and E
M

(α2,β2)
∗ , respectively. Note that, for i = 1, 2, ti(w) = K(αi,βi)(·, w) is

a holomorphic non-vanishing section of the vector bundle E
M

(αi ,βi )
∗ , and also

(inc)∗i (K(αi,βi)(·, w)) = Kαi+βi (·, w), w ∈ !. Therefore the second equality
in (4.1) implies that

η1K
α1+β1(w,w)

Kα1+β1(w,w)∂∂̄ logK(w,w)
= η2K

α2+β2(w,w)

Kα2+β2(w,w)∂∂̄ logK(w,w)
, w ∈ !,

or equivalently η1 = η2. Furthermore, it is easy to see that K
M(α1+β1)

∗ = K
M(α2+β2)

∗
if and only if α1 + β1 = α2 + β2. Hence, from (4.1), we see that

α1 + β1 = α2 + β2 and η1 = η2. (4.10)

Then a simple calculation shows that (4.10) is equivalent to α1 = α2 and β1 = β2,
completing the proof. ��

5 The Generalized Wallach Set

Let ! be a bounded domain in Cm. Recall that the Bergman space A2(!) is the
Hilbert space of all square integrable analytic functions defined on !. The inner
product of A2(!) is given by the formula

〈f, g〉 :=
∫

!

f (z)g(z) dV(z), f, g ∈ A2(!),

where dV(z) is the normalized area measure on Cm. The evaluation linear functional
f �→ f (w) is bounded on A2(!) for all w ∈ !. Consequently, the Bergman space
is a reproducing kernel Hilbert space. The reproducing kernel of the Bergman space
A2(!) is called the Bergman kernel of ! and is denoted by B!.

If ! ⊂ Cm is a bounded symmetric domain, then the ordinary Wallach set W!

is defined as {t > 0 : Bt
! is non-negative definite}. Here Bt

!, t > 0, makes sense
since every bounded symmetric domain ! is simply connected and the Bergman



256 S. Ghara and G. Misra

kernel on it is non-vanishing. If ! is the Euclidean unit ball Bm, then the Bergman
kernel is given by

BBm(z,w) = (1− 〈z,w〉)−(m+1), z,w ∈ Bm, (5.1)

and the Wallach set WBm = {t ∈ R : t > 0}. But, in general, there are examples
of bounded symmetric domains, like the open unit ball in the space of all m × n

matrices, m,n > 1, with respect to the operator norm, where the Wallach set is a
proper subset of {t ∈ R : t > 0}. An explicit description of the Wallach set W! for
a bounded symmetric domain ! is given in [12].

Replacing the Bergman kernel in the definition of the Wallach set by an arbitrary
scalar valued non-negative definite kernel K , we define the ordinary Wallach set
W(K) to be the set

{t > 0 : Kt is non-negative definite}.

Here we have assumed that there exists a continuous branch of logarithm of K on
!×! and therefore Kt , t > 0, makes sense. Clearly, every natural number belongs
to the Wallach set W(K). In [4], it is shown that Kt is non-negative definite for all
t > 0 if and only if

(

∂i ∂̄j logK(z,w)
)m

i,j=1 is non-negative definite. Therefore it
follows from the discussion in the previous paragraph that there are non-negative
definite kernels K on ! × ! for which

(

∂i ∂̄j logK(z,w)
)m

i,j=1 need not define a
non-negative definite kernel on !×!. However, it follows from Proposition 2.3 that
Kt1+t2(∂i ∂̄j logK(z,w)

)m

i,j=1 is a non-negative kernel on !× ! as soon as t1 and
t2 are in the Wallach set W(K). Therefore it is natural to introduce the generalized
Wallach set for any scalar valued kernel K defined on !×! as follows:

GW(K) := {t ∈ R : Kt−2
K is non-negative definite

}

, (5.2)

where, as before, we have assumed that Kt is well defined for all t ∈ R. Clearly, we
have the following inclusion

{

t1 + t2 : t1, t2 ∈W(K)
} ⊆ GW(K).

5.1 Generalized Wallach Set for the Bergman Kernel
of the Euclidean Unit Ball in C

m

In this section, we compute the generalized Wallach set for the Bergman kernel of
the Euclidean unit ball in C

m. In the case of the unit disc D, the Bergman kernel
BD(z,w) = (1− zw̄)−2 and ∂∂̄ logBD(z,w) = 2(1− zw̄)−2, z,w ∈ D. Therefore
t is in GW(BD) if and only if (1 − zw̄)−(2t+2) is non-negative definite on D × D.
Consequently, GW(BD) = {t ∈ R : t ≥ −1}. For the case of the Bergman kernel
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BBm of the Euclidean unit ball Bm, m ≥ 2, we have shown that GW(BBm) = {t ∈
R : t ≥ 0}. The proof is obtained by putting together a number of lemmas which
are of independent interest.

Before computing the generalized Wallach set GW(BBm) for Bergman kernel
of the Euclidean ball Bm, we point out that the result is already included in [21,
Theorem 3.7], see also [15, 19]. The justification for our detailed proofs in this
particular case is that it is direct and elementary in nature.

As before, we write K 4 0 to denote that K is a non-negative definite kernel. For
two non-negative definite kernels K1,K2 : !×!→Mk(C), we write K1 5 K2 if
K2−K1 is a non-negative definite kernel on !×!. Analogously, we write K1 4 K2
if K1 −K2 is non-negative definite.

Lemma 5.1 Let ! be a bounded domain in Cm, and λ0 > 0 be an arbitrary
constant. Let {Kλ}λ≥λ0

be a family of non-negative definite kernels, defined on
!×!, taking values inMk(C) such that

(i) if λ ≥ λ′ ≥ λ0, then Kλ′ 5 Kλ,
(ii) for z,w ∈ !, Kλ(z,w) converges to Kλ0(z,w) entrywise as λ→ λ0.

Any f : !→ Ck which is holomorphic and is in (H,Kλ) for all λ > λ0 belongs to
(H,Kλ0) if and only if supλ>λ0

‖f ‖(H,Kλ) <∞.

Proof Recall that if K and K ′ are two non-negative definite kernels satisfying K 5
K ′, then (H,K) ⊆ (H,K ′) and ‖h‖(H,K ′) ≤ ‖h‖(H,K) for h ∈ (H,K) (see [22,
Theorem 6.25]). Therefore, by the hypothesis, we have that

(H,Kλ′) ⊆ (H,Kλ) and ‖h‖(H,Kλ) ≤ ‖h‖(H,Kλ′ ), (5.3)

whenever λ ≥ λ′ ≥ λ0 and h ∈ (H,Kλ′).
Now assume that f ∈ (H,Kλ0). Then, clearly ‖f ‖(H,Kλ) ≤ ‖f ‖(H,Kλ0 )

for
all λ > λ0. Consequently, supλ>λ0

‖f ‖(H,Kλ) ≤ ‖f ‖(H,Kλ0 )
< ∞. For the

converse, assume that supλ>λ0
‖f ‖(H,Kλ) < ∞. Then, from (5.3), it follows that

limλ→λ0 ‖f ‖(H,Kλ) exists and is equal to supλ>λ0
‖f ‖(H,Kλ). Since f is in (H,Kλ)

for all λ > λ0, by [22, Theorem 6.23], we have that

f (z)f (w)∗ 5 ‖f ‖2
(H,Kλ)

Kλ(z,w).

Taking limit as λ→ λ0 and using part (ii) of the hypothesis, we obtain

f (z)f (w)∗ 5 sup
λ>λ0

‖f ‖2
(H,Kλ)

Kλ0(z,w).

Hence, using [22, Theorem 6.23] once again, we conclude that f ∈ (H,Kλ0)

completing the proof. ��
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If m ≥ 2, then from (5.1), we have

(

(

Bt
Bm

∂i ∂̄j logBBm

)

(z,w)
)m

i,j=1

= m+ 1

(1− 〈z,w〉)t (m+1)+2

⎛

⎜

⎜

⎝

1−∑j �=1 zj w̄j z2w̄1 ··· zmw̄1

z1w̄2 1−∑j �=2 zj w̄j ··· zmw̄2

...
...

...
...

z1w̄m z2w̄m ··· 1−∑j �=m zj w̄j

⎞

⎟

⎟

⎠

. (5.4)

For m ≥ 2, λ ∈ R and z,w ∈ Bm, set

Kλ(z,w) := 1

(1− 〈z,w〉)λ

⎛

⎜

⎜

⎝

1−∑j �=1 zj w̄j z2w̄1 ··· zmw̄1

z1w̄2 1−∑j �=2 zj w̄j ··· zmw̄2

...
...

...
...

z1w̄m z2w̄m ··· 1−∑j �=m zj w̄j

⎞

⎟

⎟

⎠

. (5.5)

In view (5.4) and (5.5), for λ > 2, we have

Kλ = 2

t (m+ 1)

(

(B
t
2
Bm

)2∂i ∂̄j logB
t
2
Bm

)m

i,j=1
,

where t = λ−2
m+1 > 0. Since Bt/2

Bm
is positive definite on Bm×Bm for t > 0, it follows

from Corollary 2.4 that Kλ is non-negative definite on Bm × Bm for λ > 2. Since
Kλ(z,w) → K2(z,w), z,w ∈ Bm, entrywise as λ → 2, we conclude that K2 is
also non-negative definite on Bm × Bm.

Let {e1, . . . , em} be the standard basis of Cm. The lemma given below finds the
norm of the vector z2 ⊗ e1 in (H,Kλ) when λ > 2.

Lemma 5.2 For each λ > 2, the vector z2 ⊗ e1 belongs to (H,Kλ) and

‖z2 ⊗ e1‖(H,Kλ) =
√

λ− 1

λ(λ− 2)
.

Proof By a straight forward computation, we obtain

∂̄1Kλ(·, 0)e2 = z2 ⊗ e1 + (λ− 1)z1 ⊗ e2

and

∂̄2Kλ(·, 0)e1 = (λ− 1)z2 ⊗ e1 + z1 ⊗ e2.

Thus we have

(λ− 1)∂̄2Kλ(·, 0)e1 − ∂̄1Kλ(·, 0)e2 = (λ2 − 2λ)z2 ⊗ e1. (5.6)
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By Proposition 2.2, the vectors ∂̄2Kλ(·, 0)e1 and ∂̄1Kλ(·, 0)e2 belong to (H,Kλ).
Since λ > 2, from (5.6), it follows that the vector z2⊗ e1 belongs to (H,Kλ). Now,
taking norm in both sides of (5.6) and using Proposition 2.2 a second time, we obtain

(λ2 − 2λ)2‖z2 ⊗ e1‖2

= (λ− 1)2〈∂2∂̄2Kλ(0, 0)e1, e1〉 − (λ− 1)〈∂1∂̄2Kλ(0, 0)e1, e2〉
− (λ− 1)〈∂̄1∂2Kλ(0, 0)e2, e1〉 + 〈∂1∂̄1Kλ(0, 0)e2, e2〉 (5.7)

By a routine computation, we obtain

∂i ∂̄jKλ(0, 0) = (λ− 1)δij Im + Eji,

where δij is the Kronecker delta function, Im is the identity matrix of order m,
and Eji is the matrix whose (j, i)th entry is 1 and all other entries are 0. Hence,
from (5.7), we see that

(λ2 − 2λ)2||z2 ⊗ e1||2

= (λ− 1)2(λ− 1)− 2(λ− 1)+ (λ− 1)

= (λ− 1)(λ2 − 2λ).

Hence ||z2 ⊗ e1|| =
√

λ−1
λ(λ−2) , completing the proof of the lemma. ��

Lemma 5.3 The multiplication operator by the coordinate function z2 on (H,K2)

is not bounded.

Proof Since K2(·, 0)e1 = e1, we have that the constant function e1 is in (H,K2).

Hence, to prove that Mz2 is not bounded on (H,K2), it suffices to show that the
vector z2 ⊗ e1 does not belong to (H,K2).

Consider the family of non-negative definite kernels {Kλ}λ≥2. Observe that for
λ ≥ λ′ ≥ 2,

Kλ(z,w)−Kλ′(z,w) =
(

(1− 〈z,w〉)−(λ−λ′) − 1
)

Kλ′(z,w). (5.8)

It is easy to see that if λ ≥ λ′, then (1−〈z,w〉)−(λ−λ′)− 1 4 0. Thus the right hand
side of (5.8), being a product of a scalar valued non-negative definite kernel with a
matrix valued non-negative definite kernel, is non-negative definite. Consequently,
Kλ′ 5 Kλ. Also since Kλ(z,w)→ K2(z,w) entry-wise as λ→ 2, by Lemma 5.1,
it follows that z2 ⊗ e1 ∈ (H,K2) if and only if supλ>2 ‖z2 ⊗ e1‖(H,Kλ) < ∞. By

Lemma 5.2, we have ‖z2 ⊗ e1‖(H,Kλ) =
√

λ−1
λ(λ−2) . Thus supλ>2 ||z2⊗ e1||(H,Kλ) =

∞. Hence the vector z2 ⊗ e1 does not belong to (H,K2) and the operator Mz2 on
(H,Kλ) is not bounded. ��
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The following theorem describes the generalized Wallach set for the Bergman
kernel of the Euclidean unit ball in Cm, m ≥ 2.

Theorem 5.4 If m ≥ 2, thenGW(BBm) = {t ∈ R : t ≥ 0}.
Proof In view of (5.4) and (5.5), we see that t ∈ GW(BBm) if and only if Kt (m+1)+2
is non-negative definite on Bm×Bm. Hence we will be done if we can show that Kλ

is non-negative if and only if λ ≥ 2.
From the discussion preceding Lemma 5.2, we have that Kλ is non-negative

definite on Bm × Bm for λ ≥ 2.
To prove the converse, assume that Kλ is non-negative definite for some λ < 2.

Note that K2 can be written as the product

K2(z,w) = (1− 〈z,w〉)−(2−λ)Kλ(z,w), z,w ∈ Bm. (5.9)

Also, the multiplication operator Mz2 on (H, (1 − 〈z,w〉)−(2−λ)) is bounded.
Hence, by Lemma 2.7, there exists a constant c > 0 such that (c2 − z2w̄2)(1 −
〈z,w〉)−(2−λ) is non-negative definite. Consequently, we see that the product (c2 −
z2w̄2)(1−〈z,w〉)−(2−λ)Kλ, which is (c2− z2w̄2)K2, is non-negative. Hence, again
by Lemma 2.7, it follows that the operator Mz2 is bounded on (H,K2). This is a
contradiction to the Lemma 5.3. Hence our assumption that Kλ is non-negative for
some λ < 2, is not valid. This completes the proof. ��

6 Quasi-Invariant Kernels

In this section, we show that if K a is quasi-invariant kernel with respect to some J ,
then Kt−2K is also a quasi-invariant kernel with respect to

J := J (ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(!), z ∈ !,

whenever t is in the generalized Wallach set GW(K). The lemma given below,
which will be used in the proof of the Proposition 6.2, follows from applying the
chain rule [23, page 8] twice.

Lemma 6.1 Let φ = (φ1, . . . , φm) : ! → C
m be a holomorphic map and g :

ranφ → C be a real analytic function. If h = g ◦ φ, then
(

(

∂i ∂̄j h
)

(z)
)m

i,j=1
= (Dφ(z))tr

(

(

∂i ∂̄j g
)

(ϕ(z))
)m

i,j=1
(Dφ(z)),

where (Dφ)(z)tr is the transpose of the derivative of φ at z.

Proposition 6.2 Let ! ⊂ Cm be a bounded domain. Let K : ! × ! → C be a
non-negative definite kernel and J : Aut(!) × ! → C \ {0} be a function such
that J (ϕ, ·) is holomorphic for each ϕ in Aut(!). Suppose thatK is quasi-invariant
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with respect to J . Then the kernel Kt−2
K is also quasi-invariant with respect to J

whenever t ∈ GW!(K), where J(ϕ, z) = J (ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(!), z ∈ !.

Proof Since K is quasi-invariant with respect to J , we have

logK(z, z) = log |J (ϕ, z)|2 + logK(ϕ(z), ϕ(z)), ϕ ∈ Aut(!), z ∈ !.

Also, J (ϕ, ·) is a non-vanishing holomorphic function on !, therefore, for 1 ≤
i, j ≤ m, ∂i ∂̄j log |J (ϕ, z)|2 = 0. Hence

∂i ∂̄j logK(z, z) = ∂i ∂̄j logK(ϕ(z), ϕ(z)), ϕ ∈ Aut(!), z ∈ !. (6.1)

Any biholomorphic automorphism ϕ of ! is of the form (ϕ1, . . . , ϕm), where ϕi :
! → C is holomorphic, i = 1, . . . ,m. By setting g(z) = logK(z, z), z ∈ !, and
using Lemma 6.1, we obtain

(

∂i ∂̄j logK(ϕ(z), ϕ(z))
)m

i,j=1

= Dϕ(z)tr((∂l ∂̄p logK
)

(ϕ(z), ϕ(z))
)m

l,p=1Dϕ(z).

Combining this with (6.1), we obtain

(

∂i ∂̄j logK(z, z)
)m

i,j=1 = Dϕ(z)tr((∂l ∂̄p logK
)

(ϕ(z), ϕ(z))
)m

l,p=1Dϕ(z). (6.2)

Multiplying K(z, z)t both sides and using the quasi-invariance of K , a second time,
we obtain

(

K(z, z)t∂i ∂̄j logK(z, z)
)m

i,j=1

= J (ϕ, z)tDϕ(z)trK(ϕ(z), ϕ(z))t (
(

∂l ∂̄p logK
)

(ϕ(z), ϕ(z))ml,p=1J (ϕ, z)
tDϕ(z).

Equivalently, we have

Kt−2(z, z)K(z, z) = J(ϕ, z)Kt−2(ϕ(z), ϕ(z))K(ϕ(z), ϕ(z))J(ϕ, z)∗, (6.3)

where J(ϕ, z) = J (ϕ, z)tDϕ(z)tr, ϕ ∈ Aut(!), z ∈ !. Therefore, polarizing both
sides of the above equation, we have the desired conclusion. ��
Remark 6.3 The function J in the definition of quasi-invariant kernel is said to be
a projective cocycle if it is a Borel map satisfying

J (ϕψ, z) = m(ϕ,ψ)J (ψ, z)J (ϕ,ψz), ϕ,ψ ∈ Aut(!), z ∈ !, (6.4)
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where m : Aut(!) × Aut(!) → T is a multiplier, that is, m is Borel and satisfies
the following properties:

(i) m(e, ϕ) = m(ϕ, e) = 1, where ϕ ∈ Aut(!) and e is the identity in Aut(!)

(ii) m(ϕ1, ϕ2)m(ϕ1ϕ2, ϕ3) = m(ϕ1, ϕ2ϕ3)m(ϕ2, ϕ3), ϕ1, ϕ2, ϕ3 ∈ Aut(!).

J is said to be a cocycle if it is a projective cocycle with m(ϕ,ψ) = 1 for all ϕ,ψ
in Aut(!).

If J : Aut(!) × ! → C \ {0} in Proposition 6.2 is a cocycle, then it is verified
that the function J is a projective co-cycle. Moreover, if t is a positive integer, then
J is also a cocycle.

For the preceding to be useful, one must exhibit non-negative definite kernels
which are quasi-invariant. It is known that the Bergman kernel B! of any bounded
domain ! is quasi-invariant with respect to J , where J (ϕ, z) = detDϕ(z), ϕ ∈
Aut(!), z ∈ ! .

Lemma 6.4 ([18, Proposition 1.4.12]) Let ! ⊂ Cm be a bounded domain and
ϕ : !→ ! be a biholomorphic map. Then

B!(z,w) = detDϕ(z)B!(ϕ(z), ϕ(w))detDϕ(w), z,w ∈ !.

The following proposition follows from combining Proposition 6.2 and
Lemma 6.4, and therefore the proof is omitted.

Proposition 6.5 Let ! be a bounded domain Cm. If t is in GW(B!), then the
kernel

B
(t)
! (z,w) := ( Bt

!(z,w)∂i ∂̄j logB!(z,w)
)m

i,j=1

is quasi-invariant with respect to (detDϕ(z))tDϕ(z)tr, ϕ ∈ Aut(!), z ∈ !.

For a fixed but arbitrary ϕ ∈ Aut(!), let Uϕ be the linear map on Hol(!,Ck)

defined by

Uϕ(f ) = J
(

ϕ−1, ·)f ◦ ϕ−1, f ∈ Hol(!,Ck). (6.5)

The following proposition is a basic tool in defining unitary representations of the
automorphism group Aut(!). The straightforward proof for the case of unit disc D

appears in [17]. The proof for the general domain ! follows in exactly the same
way.

Proposition 6.6 The linear map Uϕ is unitary on (H,K) for all ϕ in Aut(!) if and
only if the kernel K is quasi-invariant with respect to J .

Let Q : ! → Mk(C) be a real analytic function such that Q(w) is positive
definite for w ∈ !. Let H be the Hilbert space of Ck valued holomorphic functions
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on ! which are square integrable with respect to Q(w)dV (w), that is,

H = {f ∈ Hol(!,Ck) : ‖f‖2 :=
∫

!

〈Q(w)f(w), f(w)〉CkdV(w) <∞},

where dV is the normalized volume measure on Cm. Assume that the constant
functions are in H. The operator Uϕ , defined in (6.5) is unitary if and only if

‖Uϕf ‖2 =
∫

!

〈Q(w)(Uϕf )(w), (Uϕf )(w)〉dV (w)

=
∫

!

〈J (ϕ−1, w)
tr
Q(w)J (ϕ−1, w)f (ϕ−1(w)), f (ϕ−1(w))〉dV (w)

=
∫

!

〈Q(w)f (w), f (w)〉dV (w),

that is, if and only if Q transforms according to the rule

J (ϕ−1, w)
tr
Q(w)J (ϕ−1, w) = Q(ϕ−1(w))|det(Dϕ−1)(w)|2. (6.6)

Set

J (ϕ−1, w) = det(Dϕ−1(w))tDϕ−1(w)tr,Q(t)(w) := B!(w,w)
1−tK(w,w)−1,

where K(z,w) := (∂i ∂̄j logB!(z,w)
)m

i,j=1, t > 0. Then Q(t) transforms according
to the rule (6.6) since K transforms according to (6.2) and B! transforms as in
Lemma 6.4. If for some t > 0, the Hilbert space L2

hol(!,Q(t) dV ) determined by
the measure is nontrivial, then the corresponding reproducing kernel is of the form
Bt
!(z,w)K(z,w).

Let ! be a bounded symmetric domain in Cm. Note that if K : ! × ! →
Mk(C) is a quasi-invariant kernel with respect to some J and the commuting
tuple Mz = (Mz1, . . . ,Mzm) on (H,K) is bounded, then the commuting tuple
Mϕ := (Mϕ1 , . . . ,Mϕm) is unitarily equivalent to Mz via the unitary map Uϕ ,
where ϕ = (ϕ1, . . . , ϕm) is in Aut(!). If t is in GW(B!) and the operator of
multiplication Mzi by the coordinate function zi is bounded on the Hilbert space

(H, B
t/2
! ), then it follows from Corollary 2.9 that the operator Mzi on the Hilbert

space
(

H,B
(t)
! ) is bounded as well. Therefore, in the language of [20], we conclude

that the multiplication tuple Mz on (H,B
(t)
! ) is homogeneous with respect to the

group Aut(!). In particular, if ! is the Euclidean unit ball in Cm, and t is any
positive real number, then the multiplication tuple Mz on (H, B

t/2
Bm

) is bounded.

Also, from Theorem 5.4, it follows that B
(t)
Bm

is non-negative definite. Consequently,
the commuting m-tuple of operators Mz must be homogeneous with respect to the
group Aut(Bm).
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1 Introduction

Recently some sweeping progresses have been made in the Elliott program [11],
the program of classifying separable amenable C∗-algebras by using the Elliott
invariant (a K-theoretical set of invariant) (see [33, 64] and [20]). These are the
results of decades of work by many mathematicians (see also [33, 64] and [20] for
the historical discussion there). These progresses could be summarized briefly as
the following: Two unital, finite, separable, simple C∗-algebras A and B with finite
nuclear dimension which satisfy the UCT are isomorphic if and only if their Elliott
invariants, Ell(A) and Ell(B), are isomorphic. Moreover, every weakly unperforated
Elliott invariant can be achieved by some finite separable simple C∗-algebra in the
UCT class with finite nuclear dimension. (In fact the algebra can be constructed as
the so-called ASH-algebra, see [33]). Combining with the previous classification
results by Kirchberg and Phillips [41, 59] of purely infinite, simple C∗-algebras,
now all unital, separable, simple C∗-algebras in the UCT class with finite nuclear
dimension are classified by the Elliott invariant.

After the above mentioned successful classification results of simple C∗-
algebras, it is natural to consider how to extend various classification theorems
of simple C∗-algebras to certain classes of non simple C∗-algebras. Let us recall
that at the beginning of Elliott classification program, there are two parallel and
related classes to be considered: one is the class of C∗-algebras of real rank zero
(and stable rank one) and the other is the class of simple C∗-algebras. G. Elliott
even made the classification conjecture for the class of C∗-algebras of real rank
zero and stable rank one before his famous conjecture for simple C∗-algebras. In
fact, AH algebras, with certain restriction on dimension growth (which is related
to the regularity conditions such as Z-stability in the case of simple C∗-algebras)
have been classified much earlier. Namely on one hand is the classification of the
real rank zero AH algebras (of no dimension growth, this condition can be slightly
relaxed) (see [4–6, 10, 15, 16, 21, 22, 24, 26, 27, 42, 43], the last paper contains the
general classification result). On the other hand is the classification obtained in [28]
and [18] for the simple, unital AH algebras (of no dimension growth, this condition
can be slightly relaxed) (also see [13, 14, 17, 44–47]).

In Elliott program for non simple C∗-algebras, we think now there are several
directions to explore. On one hand, we can continue to dig out theories for real
rank zero C∗-algebras (see the most recent work in [1, 2]). On the other hand, It
would be important to unify and generalize the current known classification results
for the above mentioned two classes: unital, simple C∗-algebras and real rank zero
C∗-algebras. A natural way is to consider C∗-algebras with the ideal property. In
this paper, we will try to give a rough picture of this direction.

Definition 1.1 A C∗-algebra is said to have the ideal property if each of its closed
two-sided ideals is generated (as a closed two-sided ideal) by projections inside the
ideal.
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Definition 1.2 A C∗-algebra A is said to have real rank zero (or to be of real rank
zero) if the self-adjoint elements of A with finite spectrum are dense in the self-
adjoint elements of A.

It is obvious that both simple, unital C∗-algebras and real rank zero C∗-algebras
have the ideal property. There are many other examples of C∗-algebras arising from
dynamical systems which have the ideal property but are neither of real rank zero nor
simple (see [31, 52, 61]). Pasnicu had intensively studied the class of C∗-algebras
with the ideal properties (see also [49, 51, 53–58] etc.).

This paper is organized as the following. In Sect. 2, we will review some
background of classification of simple C∗-algebras and real rank zero C∗-algebras.
Related invariants will be introduced. In Sect. 3, we will recall three characterization
theorems in terms of the spectrum distribution property for simple AH algebra, real
rank zero AH algebra and AH algebra with the ideal property. From those theorems,
we can find that the ideal property is a natural generalization of simple and real rank
zero properties. In Sect. 4, we will bring reduction theorems into our readers’ sight.
The reduction theorems play very important roles in classification theorems. Based
on those theorems, it is enough to classify AH algebras of lower dimensional local
spectra. In Sect. 5, we will introduce the extended Elliott invariant and Stevens-
Jiang invariant and review the relation between them. Both of the invariants have
played important role in the classification theory. The Stevens-Jiang invariant is
more convenient to use while the extended Elliott invariant broadens the range
of traditional Elliott invariant. In Sect. 6, we will see from a counter example
that none of the invariants mentioned previously is enough for classifying all AH
algebras with the ideal property. We will define the invariant inv(·) and present
some classification results of AH algebras with the ideal property.

2 Background

We will discuss various invariants for classification of C∗-algebras including the
Elliott invariant in this section. The Elliott classification program began with the
classification of all AT algebras of real rank zero in 1989 by Elliott using the
scaled ordered K-theory (K∗(A),K∗(A)+,

∑

A). In 1993, Elliott also classified all
simple AI algebras by using now so called Elliott invariant. About the classification
program, there are many significant classification results worth to be reviewed,
we only choose the most related ones. First, we introduce some notations and the
original Elliott invariant.

Definition 2.1 Let A be a C∗-algebra. Let P(A) be the set of all projections in A.
Let K0(A) be the K0-group of A and K1(A) be the K1-group of A. Denote K0(A)

+
the semigroup of K0(A) generated by [p] ∈ K0(A), where p ∈ P∞(A). Define

�A = {[p] ∈ K0(A)
+ : p is a projection in A}.
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Then (K0(A),K0(A)
+,�A) is a scaled ordered group. Denote

K∗(A) := K0(A)⊕K1(A) ∼= K0(A⊗ C(S1))

and

K∗(A)+ = K0(A⊗ C(S1))+.

(The above version of positive cone K∗(A)+ was introduced by Dadarlat and
Nemethi in [9]. Elliott used a different but equivalent description.)

Definition 2.2 Let A be a C∗-algebra. A weight on A is a function φ : A+ →
[0,+∞] such that

(i) φ(αx) = αφ(x), if x ∈ A+ and α ∈ R+;
(ii) φ(x + y) = φ(x)+ φ(y), if x and y belong to A+.

Moreover, φ is lower semi-continuous if for each α ∈ R+ the set

{x ∈ A+| φ(x) ≤ α}

is closed.

Notation 2.3 Let A be a C∗-algebra and A∼ is the unitization of A. Following
notations will be used in this paper.

T(A) = {τ : A→ C | τ is a positive linear trace satisfying τ (1) = 1}
TF (A) = {All finite traces on A}
TE(A) = {φ : A+ → [0,+∞] | φ is a lower semi-continuous weight satisfying

φ(u∗xu) = φ(x) for all x ∈ A+ and unitary u ∈ A∼}.
AffT(A) = {f : T (A)→ C | f is a continuous affine map}
Any affine map ξ : X→ Y induces a linear map ξ∗ : Aff(Y )→ Aff(X) by

ξ∗(f )(τ ) = f (ξ(τ )),

for all f ∈ Aff(Y ) and τ ∈ X. We still denote ξ∗ by ξ if there is no confusion.
Define ρA : K0(A)→ AffT(A) by

(

ρA([p] − [q])
)

(τ ) =
n
∑

i=1

τ (pii)− τ (qii)

for [p] − [q] ∈ K0(A) represented by the difference of two equivalence classes of
n× n projection matrices p = (pij )n×n and q = (qij )n×n.
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We can also define the map (still denoted by ρA) ρA : K0(A)
+ → AffTE(A) by

(

ρA([p])
)

(τ ) =
n
∑

i=1

τ (pii)

for [p] ∈ K0(A)
+ represented by an n× n projection matrix p = (pij )n×n.

Definition 2.4 Let A,B be two C∗-algebras. Let α : K0(A) → K0(B) be a
homomorphism, and ξ : T(B) → T(A) (or ξ : TE(B) → TE(A)) be an affine
map. We say that α and ξ are compatible if

τ (α(x)) = (ξ(τ ))(x)

for all x ∈ K0(A) (or x ∈ K0(A)
+) and τ ∈ T(B) (or τ ∈ TE(B)). That is the

following diagram is commutative:

K0(A)

α

ρA
AffT(A)

ξ

K0(B)
ρA

AffT(B), (2.1)

or

K0(A)+

α

ρA

AffTE(A)

ξ

K0(B)+
ρA

AffTE(B). (2.2)

2.5 (Elliott Invariant) is defined to be

Ell(A) = (K0(A),K0(A)
+,�A,K1(A),AffT(A), ρA).

Definition 2.6 A C∗-algebra A is called an AH (approximate homogeneous)
algebra if it is an inductive limit of

A1 → A2 → A3 → · · ·

where An =
kn
⊕

i=1
PniM[n,i](C(Xni ))Pni , Xni are compact metrizable spaces, Pni are

projections of M[n,i](C(Xni )).
It is called an AF algebra if Xni = {pt}; it is called an AI algebra if Xni = [0, 1];

it is called an AT algebra if Xni = S1.
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We say that the AH inductive limit C∗-algebra A defined above is of no
dimension growth if

sup
n,i

{dim(Xni )} <∞.

2.7 (Elliott Conjecture)

1. (K∗(·),K∗(·)+,�(·)) is a complete invariant for separable nuclear C∗-algebras
of real rank zero and stable rank one.

2. Ell(·) is a complete invariant for simple separable nuclear C∗-algebras.
For simple case of the conjecture, Elliott, Gong and Li have completely classified

all simple AH algebras with no dimension growth in 2007 (see Theorem 2.8 below),
which is based on the reduction theorem of Gong. The simple, real rank zero case
was done by Elliott and Gong earlier in [15] with the reduction theorem of Dadarlat
and Gong (see [4] and [26]).

Theorem 2.8 ([18]) If A and B are both simple AH algebras with no dimension
growth, then

A ∼= B ⇐⇒ Ell(A) ∼= Ell(B).

(With the reduction theorem of Gong, see [28].)

Recently, the Elliott program has culminated in the simple, unital, UCT case,
with a definitive classification which merely assumes the abstract regularity hypoth-
esis of finite nuclear dimension (this result combines theorems of Gong-Lin-Niu
[33], Elliott-Gong-Lin-Niu [20], and White-Winter-Tikuisis [64], while also incor-
porating the earlier Kirchberg-Phillips classification on the purely infinite side
[41, 59]). Their results have exhausted all possible simple, unital, separable C∗-
algebras that could be classified by the Elliott invariant. Thus, it is desirable to work
on the non-simple C∗-algebras for the future classification projects.

Real rank zero C∗-algebras may be non-simple. Elliott conjecture for real rank
zero C∗-algebras has a different story because Gong’s counter example to the Elliott
conjecture (see Theorem 2.9 below) tells us that the proposed invariant is not enough
for classifying all real rank zero AH algebras (even with no dimension growth).
Subsequently a new invariant of a C∗-algebra A—called the invariant of total K-
theory ofA, was introduced (see [6, 7, 10] and [5]) and all real rank zero AH algebras
with no dimension growth were classified by Dadarlat and Gong (see Theorem 2.12
below).

Theorem 2.9 ([27]) There are two AH algebras A and B with dimension of local
spectra of at most two such that

(K∗(A),K∗(A)+,�(A)) ∼= (K∗(B),K∗(B)+,�(B))

but A is not isomorphic to B.



A Survey on Classification of C∗-Algebras with the Ideal Property 273

Definition 2.10 For a C∗-algebra A, let

K(A) = K∗(A)
⊕

+∞
⊕

k=2

K∗(A,Z/kZ)

be as in [5] (see [6, 10], and [7] also), where K∗(A, ·) = K0(A, ·) ⊕ K1(A, ·). Let
∧ be the Bockstein operation on K(A) (see [5, 4.1]). It is well known that

K∗(A,Z ⊕ Z/kZ) = K0(A⊗ C(Wk × S1)),

where Wk = TII,k is a connected finite simplicial complex with

H 1(TII,k) = 0 and H 2(TII,k) = Z/kZ.

As in [5], let

K∗(A,Z ⊕ Z/kZ)+ = K0(A⊗ C(Wk × S1))+

and let K(A)+ be the semigroup generated by {K∗(A,Z⊕Z/kZ)+, k = 2, 3, · · · }.
We denote the invariant of total K-theory of A by

(K(A),K(A)+,�A)∧.

Definition 2.11 For C∗-algebras A and B, let Hom∧(K(A),K(B)) be the set of
homomorphisms between K(A) and K(B) compatible with Bockstein operation ∧.
There is a surjective map (see [7])

	 : KK(A,B)→ Hom∧(K(A),K(B)).

Following Rørdam (see [60]), we denote by KL(A,B) := KK(A,B)/ker 	. For
two C∗-algebras A and B, by a “homomorphism”

α : (K(A),K(A)+,�A)∧ → (K(B),K(B)+,�B)∧,

we mean a system of maps:

αik : Ki(A,Z/kZ) −→ Ki(B,Z/kZ), i = 0, 1, k = 0, 2, 3, · · ·

which are compatible with Bockstein operations and α =⊕k,i α
i
k satisfying

α(K(A)+) ⊂ K(B)+ and α0
0(�A) ⊂ �B.
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Theorem 2.12 ([5, Theorem 9.1]) If A and B are AH algebras of real rank zero
with no dimension growth, then

A ∼= B ⇐⇒ (K(A),K(A)+,�A)∧ ∼= (K(B),K(B)+,�B)∧.

3 Characterization of Simple, Real Rank Zero and Ideal
Properties

We know that both simple AH algebras and real rank zero AH algebras have the
ideal property. In this section, we will compare the spectrum distribution properties
for simple AH algebra, real rank zero AH algebra and AH algebra with the ideal
property. From those characterization theorems (see Theorems 3.4, 3.5 and 3.6
below), we can see clearly that the ideal property generalizes simple and real rank
zero properties naturally. These results are also used frequently in the proof of
classification theorems. First, let’s review definitions of spectrum.

Definition 3.1 Let X and Y be compact metrizable spaces. Let P ∈ Mk1(C(Y )) be
a projection with rank(P ) = k ≤ k1 and let ψ : C(X)→ PMk1 (C(Y ))P be a unital
homomorphism. For any given point y ∈ Y , there are x1(y), x2(y), · · · , xk(y) ∈ X

(may be repeat) and a unitary Uy such that

ψ(f )(y) = P(y)Uy

⎛

⎜

⎜

⎜

⎝

f (x1(y))

. . .

f (xk(y))

0n−r

⎞

⎟

⎟

⎟

⎠

U∗y P (y).

In other words, there are k mutually orthogonal rank 1 projections p1, p2, · · · , pk
with

∑k
i=1 pi = P(y) and x1(y), x2(y), · · · , xk(y) ∈ X such that

ψ(f )(y) =
k
∑

i=1

f (xi(y))pi, for ∀f ∈ C(X).

We write Spψy := {x1(y), x2(y), · · · , xk(y)}, where we also count multiplicity. We
shall call Spψy the spectrum of ψ at the point y.

3.2 ([15, 1.4.3]) Let us consider a unital homomorphism ψ : Ml(C(X)) →
PMk1(C(Y ))P with rank(P ) = k ≤ k1. (It is necessary that k is a multiple of
l.) We know that ψ is completely determined by

ψ1 = ψ|e11Ml(C(X))e11 : C(X)→ ψ(e11)Mk1(C(Y ))ψ(e11)

up to unitary equivalence. Let us define Spψy := Spψ1y.
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Definition 3.3 If ψ : QMl1(C(X))Q → PMk1(C(Y ))P is a unital homo-
morphism with rank(P ) = k a multiple of rank(Q) = l, then for each y,

ψ(f )(y) only depends on the value of f ∈ QMl1(C(X))Q at finitely many
points x1, x2, · · · , xk/ l , where xi ∈ X may repeat. Namely, if we identify
Q(xi)Ml1(C)Q(xi) with Ml(C), and still denote the image of f (xi) in Ml(C) by
f (xi), then there is a unitary Uy ∈ Mk1(C(Y )) such that

ψ(f )(y) = P(y)Uy

⎛

⎜

⎜

⎜

⎝

f (x1)l×l
. . .

f (xk)l×l
0n−r

⎞

⎟

⎟

⎟

⎠

U∗y P (y).

Certainly, Uy depends on the identification of Q(xi)Ml1(C)Q(xi) and Ml(C), too.
Let us define Spψy := {x1, x2, · · · , xk/ l}, where we also count multiplicity.

Theorem 3.4 ([8, Proposition 2.1]) Let A = lim→ (An, φn,m) be an inductive limit

system with no dimension growth, where An =
kn
⊕

i=1

Pn,iM[n,i]C(Xn,i )Pn,i , Xn,i are

finite CW complexes and φn,m are injective. Then the following conditions are
equivalent:

(i) A is simple.
(ii) For any An and any η > 0, there is m0 > 0 such that for all m ≥ m0

Sp(φn,m)y is η-dense in Sp(An)

for any y ∈ Sp(Am).

Theorem 3.5 Let A = lim→ (An, φn,m) be an inductive limit system with no

dimension growth, where An =
kn
⊕

i=1

Pn,iM[n,i]C(Xn,i )Pn,i , Xn,i are connected,

finite CW complexes. Then the following conditions are equivalent:

(i) A is of real rank zero.
(ii) For any An and any η > 0, there is m > 0 such that

Sp(φi,j
n,m)y1 and Sp(φi,j

n,m)y2 can be paired within η

for any partial map of φn,m and y1, y2 ∈ SpAj
m = Xm,j .

In the above theorem, (i) implies (ii) is due to Su (see [63, Theorem 2.5]) and
(ii) implies (i) is due to Elliott and Gong (see 1.4.5, 1.4.6 and 2.25 in [15]). The
following characterization theorem of AH algebras with the ideal property is proved
by C. Pasnicu.
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Theorem 3.6 ([50, Theorem 3.1]) Let A = lim→ (An, φn,m) be an AH algebra, with

An = ⊕kn
i=1 A

i
n, A

i
n = Pn,iM[n,i]C(Xn,i )Pn,i where Xn,i are connected, finite

CW complexes and Pn,i ∈ C(Xn,i ,M[n,i]) are projections. Then the following are
equivalent:

(i) Any ideal of A is generated by its projections.

(ii) For any fixed n and any fixed F = F̄ ⊆ U = ◦
U ⊆ Sp(An) = �kni=1Xn,i there is

m0 > n such that for any m ≥ m0 any partial map φj
n,m : An → A

j
m satisfies

either:

Sp(φj
n,m)y1 ⊆ Bη(Sp(φj

n,m)y2)

for any y1, y2 ∈ Sp(Aj
m) = Xm,j , where Bη(Sp(φj

n,m)y2) is the η-ball of

Sp(φj
n,m)y2 .

4 Reduction Theorem

This section is dedicated to reduction theorems. By applying a reduction theorem,
we can rewrite an inductive limit C∗-algebra as an inductive limit of certain special
type of algebras. We only present the reduction theorem for AH algebra with the
ideal property (Theorems 4.1 and 4.8 below), which generalize previous reduction
theorems for simple AH algebras and also for real rank zero AH algebras.

Many reduction theorems tell us it is enough to classify inductive limit C∗-
algebras which is a limit of direct sum of matrix algebras over three or less
dimensional spaces. This is because the cancellation of projections holds for those
spaces. We will remind you the cancellation property and give a full proof here (see
Theorem 4.5 below, originally it was stated in the remark 3.26 of [15] without a
detailed proof).

Theorem 4.1 ([32, Theorem 4.2]) Suppose that lim(An =⊕tn
i=1 M[n,i](C(Xn,i )),

φn,m) is an AH inductive limit with dim(Xn,i ) ≤ M for a fixed positive integer M
such that the limit algebra has the ideal property. Then there is another inductive

limit system (lim(Bn =
sn
⊕

i=1

M[n,i](C(Yn,i )), ψn,m)) with the same limit algebra as

the above system, where all the Yn,i are spaces of the form {pt}, [0, 1], S1, S2, TII,k ,
TIII,k .

Here TII,k (TIII,k, respectively) is a connected finite simplicial complex with

H 1(TII,k) = 0 and H 2(TII,k) = Z/kZ

(H 1(TIII,k) = 0 = H 2(TIII,k) and H 3(TIII,k) = Z/kZ, respectively).
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Theorem 4.5 in the following is originally stated in [15, Remark 3.26]. It is a
well-known result for topologists but not for operator algebraists. Since there is no
precise reference in [15] and we can not find a precise reference, we give a complete
proof here. We need the following theorems.

Theorem 4.2 ([34, Chapter 9, Theorem 1.5]) Let ξ1 and ξ2 be two k-dimensional
complex vector bundles on a n-dimensional CW complex. Let m be the smallest
integer with n

2 ≤ m. Supposem ≤ k and

ξ1 ⊕ θ l ∼= ξ2 ⊕ θ l

for some l-dimensional trivial bundle, then

ξ1 ∼= ξ2.

Lemma 4.3 Let X be a 3-dimensional finite simplicial complex with 2-skeleton
X(2) andE be a 1-dimensional complex bundle overX. Then E is trivial if and only
if E|X(2) is trivial.

Proof Let E \ {0} ⊂ E be the collection of all non zero vectors of all fibres. The
vector bundle E → X is trivial if and only if there exists a cross section s : X →
E \ {0} which means s is a nowhere vanish cross section of the bundle E → X.

Suppose E|X(2) is trivial and s : X(2) → E \ {0}|X(2) is a nowhere vanish cross
section. We will show that s can be extended to a nowhere vanish cross section
s̃ : X → E \ {0}. This can be done simplex by simplex. We only need to prove for
each three dimensional simplex 6 with ∂6 ⊆ X(2),

s|∂6 : ∂6→ E \ {0}|∂6
can be extended to a nowhere vanish section

s̃|6 : 6 → E \ {0}|6.

Let

T ′ : E|6 → 6× C

be a trivialization and let

T : E \ {0}|6 → 6× (C \ {0})

be the restriction of T ′. Let

p : 6 × (C \ {0})→ C \ {0}
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be the projection. Then the map s′ := p ◦ T ◦ s : ∂6→ C \ {0} satisfies

T (x) = (x, s′(x)) ∈ 6× (C \ {0})

for all x ∈ ∂ 6 .

Notice that ∂6 is homeomorphic to S2 and π2(C\{0}) = 0, there is an extension
˜s′ : 6 → C \ {0} with ˜s′|∂6 = s′. Define s̃|6 : 6 → E \ {0}|6 by

s̃(x) = T −1(x,˜s′(x)), for all x ∈ 6.

Evidently, s̃|6 is a desired extension of s|∂6. ��
Remark 4.4 For any vector spaces V1, V2, we use Hom(V1, V2) to denote the set of
all linear maps from V1 to V2, which is a vector space of dimension dimV1×dimV2.

Let E → X, F → X be two complex vector bundles and let Hom(E, F )→ X

be the vector bundle with fibre Hom(Ex, Fx) for each x ∈ X. If both E and F are
1-dimensional vector bundles, then Hom(E, F ) is a 1-dimensional vector bundle.

Evidently, for 1-dimensional vector bundles E and F , E is isomorphic to F if
and only if Hom(E, F ) has a non zero cross section, and if and only if Hom(E, F )

is trivial.

Theorem 4.5 The collection of complex vector bundles V (X) over a connected 3-
dimensional CW complex X has the property of cancellation, i.e.,

E1 ⊕ F ∼= E2 ⊕ F implies E1 ∼= E2,

where E1, E2, F ∈ V (X).

Proof By Swan theorem and the assumption, we know

E1 ⊕ θ l ∼= E2 ⊕ θ l

for some l-dimensional trivial bundle.
Let k be the dimension of the bundle E1. If k ≥ 2, applying Theorem 4.2 for

n = 3, (then m = 2 which is smaller or equal to k), we have E1 ∼= E2 immediately.
Therefore, it is enough to prove the theorem for the case k = 1.

Now suppose k = 1. Since

(E1 ⊕ θ l)|X(2) ∼= (E2 ⊕ θ l)|X(2) ,

where X(2) is a 2-skeleton of X, applying Theorem 4.2 for n = 2, m = 1, we have

E1|X(2) ∼= E2|X(2) .
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By Remark 4.4, this is equivalent to the 1-dimensional bundle Hom(E1, E2)

is trivial on X(2). By Lemma 4.3, Hom(E1, E2) is trivial on X. Therefore, by
Remark 4.4 again, we have E1 ∼= E2. ��
Remark 4.6 This result appears as Remark 3.26 of [15]. After that paper was
published, several operator algebraists asked Gong for detailed proof, since the
standard result in topology (Theorem 4.2 above) only gives the cancellation property
for vector bundle over 2-dimensional space. This is the reason we present the
complete proof here. This result is an improvement of Theorem 4.2 for the case
of dimension n = 3. But let us point out that, for dimension n larger than 3, the
number m in Theorem 4.2 is a sharp bound and can not be improved.

Definition 4.7 A dimension drop algebra Ik is of the following form

Ik = {f ∈ C([0, 1],Mk(C)), f (0) = λ1k, f (1) = μ1k, λ, μ ∈ C}.

The following reduction theorem tells us for an AH algebra A with the ideal
property we can rewrite it as an inductive limit C∗-algebra of certain special
subhomogeneous algebras.

Theorem 4.8 ([37, Theorem 3.1]) Suppose lim−→(An =
tn
⊕

i=1

M[n,i](C(Xn,i )), φn,m)

is an AH inductive limit with Xn,i being among the spaces {pt}, [0, 1], S1, S2,
{TII,k}∞k=2, {TIII,k}∞k=2, such that the limit algebra A has ideal property. Then there
is another inductive system (Bn = ⊕Bi

n,ψn,m) with same limit algebra, where Bi
n

are either M[n,i]′ (C(Yn,i )) with Yn,i being one of {pt}, [0, 1], S1, {TII,k}∞k=2, (but
without {TIII,k}∞k=2 and S2) or dimension drop algebraM[n,i]′(Ik(n,i)).

5 Extended Elliott Invariant and Stevens-Jiang Invariant

In this section, we will introduce and compare the extended Elliott invariant and
Stevens-Jiang invariant. We know that for simple C∗-algebras, traces are assumed to
be bounded in the unital cases, and lower semicontinuous and densely defined in the
non-unital case. But neither of them will suffice for the classification of non-simple
C∗-algebras. Thus, the extended valued traces need to be included in the traditional
Elliott invariant, which we call extended Elliott invariant (see [65]). The extended
Elliott invariant essentially contains more information than Stevens-Jiang invariant
in general (see Remark 5.7 below), while the Stevens-Jiang invariant is usually
more convenient to use when proving classification theorems (see Theorem 5.9 and
Remark 5.10 below).
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Definition 5.1 For a C∗-algebra A, the extended Elliott invariant of A, denoted
by eEll(A), is defined to be

eEll(A) = ((K(A),K(A)+,�A)∧,TE(A), ρA).

Definition 5.2 For a C∗-algebra A, the Stevens-Jiang invariant of A, denoted by
inv0(A), is defined to be

inv0(A) = {(K(A),K(A)+,�A)∧, {AffT(pAp)}p∈�(A)}.

The invariant is introduced by Jiang in [35] (also see [36]) based on some earlier
results of Stevens in [62].

Definition 5.3 Let A,B be two C∗-algebras. We say that A and B have isomorphic
Stevens-Jiang invariants if: (1) There is a scaled ordered isomorphism α : K0(A)→
K0(B); (2) For each pair ([p], [p]) ∈ �A × �B with α([p]) = [p], there is an
associate unital positive linear map

ξp,p : AffT(pAp) −→ AffT(pBp)

satisfying the condition if p < q , then the following diagram commutes:

AffT(pAp)
ξp,p

AffT(pBp)

ι ι

AffT(qAq)
ξq,q

AffT(qBq), (5.1)

where ι stands for the inclusion map.

Remark 5.4 (See [35, 1.11]) If A and B have isomorphic Stevens-Jiang invariant,
then α and ξe,f are compatible for all e ∈ P(A), f ∈ P(B) with α([e]) = [f ].
Theorem 5.5 ([65, Theorem 1]) Let A be a stably finite C∗-algebra with the ideal
property. Then the Stevens-Jiang invariant of A is equivalent to the extended Elliott
invariant of A.

Theorem 5.6 ([65, Theorem 2]) Let A, B be two stably finite C∗-algebras with
the ideal property. If A and B have isomorphic extended Elliott invariant, then A

and B have isomorphic Stevens-Jiang invariant—and vise versa.

Remark 5.7 In [65], the author actually shows that for any stably finite C∗-algebra,
its Stevens-Jiang invariant can always be derived from its extended Elliott invariant
in a functor manner. But the converse is not true in general. In fact, there are C∗-
algebras without the ideal property whose Elliott invariant cannot be derived from
its Stevens-Jiang invariant (see Example 5.3 in [65]).
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Theorem 5.9 and Remark 5.10 below talk about applications of Stevens-Jiang
invariant in classification theory for C∗-algebras.

Definition 5.8 A splitting interval algebra is any C∗-algebra of the form

S(n0; n1) = {f ∈ Mn(C[0, 1]) : f (x) ∈
rx
⊕

i=1

Mnxi
(C), x = 0, 1}

where each nx = (nx1, · · · , nxrx ), is a partition of n.

Theorem 5.9 ([39]) Let A,B be two ASI algebras (inductive limits of splitting
interval algebras) with the ideal property. Then

A ∼= B ⇐⇒ inv0(A) ∼= inv0(B)⇐⇒

{K0(A),K0(A)
+,�A, {AffT(pAp)}} ∼= {K0(B),K0(B)

+,�B, {AffT(p̄Bp̄)}}

Remark 5.10 The special case of above theorem for AI algebras was done by
Ji-Jiang (see [35])—the paper removed restrictions of unital condition and approx-
imate divisible condition in Stevens’ classification theorem [62] and built up a
framework for the further classification proofs (see [35]).

6 Classification of AH Algebras with the Ideal Property

Now we are ready to talk about classification of AH algebras with the ideal property.
There are examples to show that none of the invariants list above is sufficient for
classifying all AH algebras with the ideal property (see Example 6.4 below). Thus,
we need to introduce extra ingredients for the invariant. Moreover, we will talk about
the relation between those invariants and propose some open questions.

Definition 6.1 For C∗-algebras A, B, let DU(A) be the commutator subgroup of
U(A) and DU(A) be its closure. That is,

DU(A) = closure of the subgroup generated by uvu∗v∗ where u, v ∈ U(A).

One can introduce the following metric DA on U(A)/DU(A) (see [48, §3]). For
u, v ∈ U(A)/DU(A)

DA(u, v) = inf{‖uv∗ − c‖; c ∈ DU(A)},

where, on the right hand side of the equation, we use u, v to denote any elements in
U(A), which represent the elements u, v ∈ U(A)/DU(A).
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Definition 6.2 Let A be a unital C∗-algebra. Let AffTA be defined as in Nota-
tion 2.3, and

ρ : K0(A) −→ AffTA

the canonical map. The metric dA on AffTA/ρK0(A) is defined as follows (see [48,
§3]). Let d ′ denote the quotient metric on AffTA/ρK0(A), i.e,

d ′(f, g) = inf{‖f − g − h‖ : h ∈ ρK0(A)}

for f, g ∈ AffTA/ρK0(A). Define dA by

dA(f, g) =
{

2, if d ′(f, g) ≥ 1
2

|e2πid ′(f,g) − 1|, if d ′(f, g) < 1
2 .

Obviously, dA(f, g) ≤ 2πd ′(f, g).

Definition 6.3 Denote
(

(K(A),K(A)+,�A), {AffT(pAp)}p∈A, {U(pAp)/DU(pAp)}p∈�A

)

by Inv(A). By a map from Inv(A) to Inv(B), we mean there is a “homomorphism”

α : (K(A),K(A)+,�A) −→ (K(B),K(B)+,�B)

as in Definition 2.11, and for each pair ([p], [p]) ∈ �A × �B with α([p]) = [p],
there is an associate unital positive linear map

ξp,p : AffT(pAp) −→ AffT(pBp)

and an associate contractive group homomorphism

χp,p : U(pAp)/DU(pAp) −→ U(pBp)/DU(pBp)

satisfying if p < q , then the following diagrams

AffT(pAp)
ξp,p

AffT(pBp)

ι ι

AffT(qAq)
ξq,q

AffT(qBq). (6.1)
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U(pAp)/DU(pAp)

ı∗

χp,p̄

U(p̄Bp̄)/DU(p̄Bp̄)

ı∗

U(qAq)/DU(qAq)
χq,q̄

U(q̄Bq̄)/DU(q̄Bq̄) (6.2)

AffT(pAp)/ρK0(pAp) U(pAp)/DU(pAp)

ξp,p χp,p

AffT(pBp)/ρK0(pBp) U(pBp)/DU(pBp) (6.3)

and

U(pAp)/DU(pAp) K1(pAp)/tor K1(pAp)

χp,p α1

U(pBp)/DU(pBp) K1(pBp)/tor K1(pBp) (6.4)

commute, where α1 is induced by α and ı∗ is induced by u �→ u ⊕ (q − p) ∈
U(qAq).

Example 6.4 ([29]) There are AT algebras A and B with ideal property such that
Inv0(A) and Inv0(B) are isomorphic. But Inv(A) �∼= Inv(B), and consequently
A �∼= B.

Theorem 6.5 ([30]) Let A, B be two AH algebras with the ideal property with no
dimension growth. Then

A ∼= B ⇐⇒ Inv(A) ∼= Inv(B).

In [30], the above invariant is called Inv′(A) and the invariant Inv(A) used in [30]
is a reduced version of the above invariant (also see [3] and [38] for more details).

Remark 6.6 Note that the above result does not cover Theorem 5.9. It is desirable
to have a theorem to combine and generalize these two classification results.

By results in [30] and [65], we know more examples could be classified by the
extended Elliott invariant:

Theorem 6.7 Let A, B be two AH algebras with the ideal property. Suppose that
K1(A) = torK1(A), then

A ∼= B ⇐⇒ Inv0(A) ∼= Inv0(B)⇐⇒ eEll(A) ∼= eEll(B).
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Remark 6.8 In [66], the third named author showed that if A, B are two AH
algebras with the ideal property and one of them has finitely many ideals, then

A ∼= B ⇐⇒ Inv0(A) ∼= Inv0(B)⇐⇒ eEll(A) ∼= eEll(B).

(Note that the two C∗ algebras A and B in [29] have countably infinitely many
ideals.)

6.9 (Open Questions)

• As in [65], we can include the extended valued traces in the Elliott invariant to
get extended Elliott invariant, which is equivalent to the Stevens-Jiang invariant
inv0(·). Can we modify the extended Elliott invariant to recover the invariant
inv(·)?

• What is the range of classifiable C∗-algebra by using the invariant inv(·)?
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Abstract The Arveson-Douglas Conjecture is a conjecture about essential nor-
mality of submodules, and quotient modules of some analytic Hilbert modules on
polynomial rings. It originated from multi-variable operator theory but turns out
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Definition 1.1

(1) Let C[z1, · · · , zn] be the ring of analytic polynomials of n variables. By a
(C[z1, · · · , zn]-)Hilbert module we mean a Hilbert space H equipped with a
ring homomorphism

σ : C[z1, · · · , zn] → B(H),

where B(H) denotes the algebra of bounded linear operators on H.
(2) For 1 < p <∞, the Hilbert module H is said to be p-essentially normal if

[σ(zi), σ ∗(zj )] = σ(zi)σ
∗(zj )− σ ∗(zj )σ (zi) ∈ Cp, i, j = 1, · · · , n.

Here Cp denotes the ideal of Schatten p class operators.
(3) The Hilbert module H is said to be essentially normal if

[σ(zi), σ ∗(zj )] ∈ K, i, j = 1, · · · , n.

Here K denotes the ideal of compact operators on H.
(4) Let H be a Hilbert module. By a (Hilbert) submodule of H we mean a Hilbert

subspace P ⊂ H that is invariant under the module actions, i.e.,

σ(q)P ⊂ P, ∀q ∈ C[z1, · · · , zn],

or equivalently,

σ(zi)P ⊂ P, i = 1, · · · , n.

Naturally, the submodule P inherits a Hilbert module structure by

σP (q) = σ(q)|P , ∀q ∈ C[z1, · · · , zn].

(5) Given a submodule P of H. The corresponding (Hilbert) quotient module is the
orthogonal complement Q := P⊥ (which, can be identified with the quotient
H/P), equipped with the compressed module action

σQ(q) = Qσ(q)|Q, ∀q ∈ C[z1, · · · , zn].

Here Q denotes the projection operator onto Q.

The Arveson-Douglas Conjecture concerns essential normality, and p-essential
normality, of submodules, and quotient modules, of the following Hilbert modules:
the Drury-Arveson module, the Hardy module, the Bergman module and the
weighted Bergman modules. Let us give the definitions. Let Bn denote the open
unit ball of Cn.
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Definition 1.2

(1) The Drury-Arveson space H 2
n is the reproducing kernel Hilbert space on Bn

with reproducing kernels

Kz(w) = 1

1− 〈w, z〉 , w ∈ Bn, z ∈ Bn.

See [58] for a detailed exposure of the Drury-Arveson space.
(2) The Hardy space H 2(Bn) is the Hilbert space consisting of holomorphic

functions f on Bn such that

‖f ‖2
H 2 = sup

0<r<1

∫

S

|f (rζ )|2dσ(ζ ) <∞.

Here S = ∂Bn is the unit sphere and σ is the normalized surface measure on S.
(3) For s > −1, the weighted Bergman space L2

a,s(Bn) consists of holomorphic
functions f on Bn such that

‖f ‖2
L2
a,s
=
∫

Bn

|f (z)|2(1− |z|2)sdv(z) <∞.

Here v denotes the normalized Lebesgue measure on Bn. We write L2
a(Bn) for

L2
a,0(Bn), which we call the Bergman space.

(4) When q ∈ C[z1, · · · , zn], we define multiplication operator

Mqf = qf

on each above mentioned function space. Therefore,each such function space
has a C[z1, · · · , zn]-Hilbert module structure.

More generally, for a positive integer r , the operators

Mq ⊗ ICr , q ∈ C[z1, · · · , zn]

define Hilbert module structures on the vector-valued function spaces H 2
n ⊗Cr ,

H 2(Bn)⊗Cr and L2
a,s(Bn)⊗ Cr .

(5) Let H be one of the spaces in (4). A graded submodule P is a submodule of
H generated by a set of vector polynomials in C[z1, · · · , zn] ⊗ Cr that are
homogeneous. Equivalently, P is the closure in H, of some graded submodule
in C[z1, · · · , zn] ⊗ Cr .

It is well-known that all three types of modules in (4) are p-essentially normal
for all p > n. In [7, 8], Arveson proposed the following conjecture.
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Conjecture 1 (The Arveson’s Conjecture) Suppose P is a graded submodule of the
vector-valued Drury-Arveson module H 2

n ⊗Cr . Then P is p-essentially normal for
all p > n.

Arveson raised this conjecture in the course of his studies of geometric invariants
for commuting operator tuples [4–9]. In fact, by a method of linearization, Shalit
[57] reduced the conjecture to the scalar case (up to a small modification of
the range of p), and hence one only needs to consider the scalar version of the
conjecture. Then in [22], Douglas showed that the conjecture was well-motivated
for a different reason—it leads to a new kind of index theorem. Based on this
motivation, Douglas described what he believes is a natural setting for analogues
of Arveson’s Conjecture.

Conjecture 2 (The Arveson-Douglas Conjecture) Let I be a homogeneous ideal
in C[z1, · · · , zn] and [I ] denote its closure in L2

a(Bn). Then the graded quotient
module QI := [I ]⊥ is p-essentially normal for all p > dimC Z(I), where

Z(I) = {z ∈ C
n : p(z) = 0,∀p ∈ I }.

Conjecture 2 is the best-known form of the Arveson-Douglas Conjecture. Results
on Conjecture 2 include [8, 15, 29, 34–36, 39–41, 52, 57] and many others. For
p > n, a simple matrix calculation [8, 21] shows that the p-essential normality of
the submodule is equivalent to the p-essential normality of the quotient module. We
remark that, in general, the submodule P is not p-essentially normal for any p ≤ n.
The improvement of the lower bound when considering the quotient module, instead
of the submodule, indicates that the quotient modules are more closely related to the
zero varieties Z(I). We will discuss this in detail in the following section.

In the case when r = 1 and I is a homogeneous radical ideal, using the Hilbert’s
Nullstellensatz, one can show that

PI = {f ∈ L2
a(Bn) : f |ZI

= 0},

where

ZI = Z(I) ∩ Bn.

Therefore

QI = span{Kz : z ∈ ZI }.

Here

Kz(w) = 1

(1− 〈w, z〉)n+1
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is the reproducing kernel of L2
a(Bn) at the point z. The following geometric version

of the Arveson-Douglas Conjecture was studied by various researchers [28, 31, 33,
38, 51, 63, 64].

Conjecture 3 (Geometric Arveson-Douglas Conjecture) Let M ⊂ Bn be a homo-
geneous variety. Define the quotient module

QM = span{Kz : z ∈ M} ⊂ L2
a(Bn).

Then QM is p-essentially normal for all p > dimCM .

We remark that although we have stated Conjecture 1 on the Drury-Arveson
module and Conjectures 2 and 3 on the Bergman module, one can, of course,
consider their analogues on all other modules in Definition 1.2. However, it makes
no difference as long as we consider graded submodules and p > n.

Lemma 1.3 Suppose I ⊂ C[z1, · · · , zn] is a homogeneous ideal and let P1, P2,
P3s denote their closures in the Drury-Arveson module H 2

n , the Hardy module
H 2(Bn) and the weighted Bergman module L2

a,s(Bn) for a non-negative integer
s. Then

(1) P1 is essentially normal if and only if P2 is essentially normal, if and only if
P3s is essentially normal.

(2) For p > n, P1 is p-essentially normal if and only if P2 is p-essentially normal,
if and only if P3s is p-essentially normal.

This equivalence is well-known and the proof is simple. We will give the proof
here for future reference.

Proof Take the pair of modules H 2
n and L2

a(Bn) for example. Let I be a homoge-
neous ideal. It is well-known that

‖zα‖2
H 2
n
= α!
|α|!

and

‖zα‖2
L2
a(Bn)

= n!α!
(n+ |α|)! .

Define the unitary operator

A : H 2
n → L2

a(Bn), z
α �→

(

(n+ |α|)!
n!|α|!

)1/2

zα.

It is easy to check that A(I) = I . Let M
H 2
n

zi be the coordinate multiplication

operators on H 2
n and M

L2
a

zi be the coordinate multiplication operators on L2
a(Bn).
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Let P
H 2
n

[I ] and P
L2
a

[I ] denote the projection operators to the closure of I in each space.
By Proposition 4.1 in [8], for p > n, the p-essential normality of the closure of

I in H 2
n is equivalent to the membership [MH 2

n
zi , P

H 2
n

[I ] ] ∈ C2p for all i, which is,

obviously, equivalent to [AMH 2
n

zi A−1, P
L2
a

[I ] ] ∈ C2p for all i. One can verify that

AM
H 2
n

zi A−1 −M
L2
a

zi ∈ C2p for all p > n. Thus the above membership is equivalent

to [ML2
a

zi , P
L2
a[I ] ] ∈ C2p for all i. Applying Proposition 4.1 in [8] again, we get the

desired result. ��
Non-graded submodules are also studied substantively [23, 28, 29, 31, 35, 36,

46, 62–65]. In general, it is not true that any submodule is essentially normal (cf.
[37]). However, various conditions have been shown to imply essential normality.
The study of essential normality of general submodules and quotient modules are
sometimes also referred to as the Arveson-Douglas Conjecture.

Let ! ⊂ Cn be a bounded strongly pseudo-convex domain with smooth
boundary. One can also define the Bergman space L2

a(!), the weighted Bergman
spaces L2

a,s(!) and the Hardy space H 2(!) on ! (cf. [59]). The pointwise
multiplication operators also define C[z1, · · · , zn]-Hilbert module structures on the
spaces. The following conjecture is a natural generalization of Conjecture 2.

Conjecture 4 Suppose I is an ideal of C[z1, · · · , zn]. Let P!,I be the closure of I
in L2

a(!). Let Q!,I be its quotient module. Then Q!,I is p-essentially normal for
all p > dimC Z!,I . Here

Z!,I = Z(I) ∩!.

The conjectures above concern submodules generated by polynomials. One can
also consider submodules with other types of generators.

Conjecture 5 Suppose I is an ideal of Hol(!), the ring of holomorphic functions in
neighborhoods of !. Let P!,I be the closure of I in L2

a(!). Let Q!,I be its quotient
module. Then Q!,I is p-essentially normal for all p > dimC Z!,I . Here

Z!,I = Z(I) ∩!.

A geometric version of Conjecture 5 is the following.

Conjecture 6 Suppose M̃ is a complex analytic subset of an open neighborhood of
! and M = M̃ ∩!. Define

P!,M = {f ∈ L2
a(!) : f |M = 0}

and

Q!,M = P⊥!,M.

Then Q!,M is p-essentially normal for all p > dimCM .
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The study of essentially normal Hilbert modules can be traced back to Douglas
and Paulsen’s book “Hilbert modules over function algebras” [26]. In Chapter 6 of
[26], there is a detailed explanation of the K-homology group of module spectrum.
In the 1980s, Douglas paid more attention on essential normality of quotient
modules of Hardy module over the polydisc. Compared to the existing results on
Arveson’s conjecture over the unit ball, the situations over the polydisc are totally
different. Roughly speaking, over the unit ball, most submodules generated by
polynomials and their associated quotient modules are believed to be essentially
normal. However, over the polydisc, no non-trivial submodule and few quotient
modules are essentially normal. In fact, when n ≥ 2, any nonzero submodule of
Hardy modulesH 2(Dn) is not essentially normal. This is essentially because all Mzi

are isometries of infinite multiplicity. Therefore one can only consider the essential
normality of quotient modules. By direct calculations, Douglas and Misra found
that [(z − w)2]⊥ and [zk − wl]⊥ in H 2(D2) are essentially normal, while [z2]⊥ is
not [25]. By techniques of restricting H 2(Dn) functions on the diagonal, Clark [19]
proved that the quotient module [B1(z1) − B2(z2), · · · , Bn−1(zn−1)− Bn(zn)]⊥ is
essentially normal for all Bi being finite Blaschke products. Furthermore, P. Wang
[61] showed that if ηi are nonconstant inner functions, then the quotient module
[η1(z1)− η2(z2), · · · , ηn−1(zn−1)− ηn(zn)]⊥ is essentially normal only if each ηi
is a finite Blaschke product. Let I be an ideal in C[z1, · · · , zn]. Intuitively, in the
case of polydisc, essential normality of a quotient module [I ]⊥ strongly relies on the
distribution of Z(I) on the distinguished boundary Tn of Dn. This is closely related
to the theory of distinguished varieties introduced by Agler and McCarthy [1].
Therefore, it is a challenging problem to completely characterize essential normality
of [I ]⊥ over the polydisc.

2 Backgrounds and Applications

2.1 Geometric Invariants for Row Contractions

Conjecture 1 was raised by Arveson in his course of studies of row contractions. Let
us give the definition.

Definition 2.1 A n-contraction (row contraction) is a n-tuple T = (T1, · · · , Tn) of
mutually commuting operators acting on a common Hilbert space H satisfying the
inequality

‖T1ξ1 + · · · + Tnξn‖2 ≤ ‖ξ1‖2 + · · · + ‖ξn‖2, ξ1, · · · , ξn ∈ H.

In other words, the “row operator” (T1, · · · , Tn), viewed as an operator from⊕n
i=1H

to H, is a contraction.
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The n-contractions are one of the natural generalizations of contractions in multi-
variable operator theory and have been widely studied. A n-contraction T defines a
complete positive map

�T : B(H)→ B(H), �T (A) =
n
∑

i=1

TiAT
∗
i .

The n-contraction T is said to be pure if �k
T (I)→ 0 in the strong operator topology,

as k tends to infinity.
Given a n-tuple (T1, · · · , Tn) of mutually commuting operators acting on a

common Hilbert space H, one can naturally define a C[z1, · · · , zn]-Hilbert module
structure on H: a polynomial q acts on H by the operator q(T1, · · · , Tn).

For example, let H be one of the function spaces in Definition 1.2. Then the
n-tuple M := (Mz1 , · · · ,Mzn) is a row contraction. The Hilbert module structure
constructed as above by M coincides with the one in Definition 1.2.

In the landmarking paper [4], Arveson showed that the “n-shift”, that is, the n-
contraction (Mz1, · · · ,Mzn) acting on H 2

n , has the following “universal property”
among pure row contractions.

Theorem 2.2 ([58]) Let T = (T1, · · · , Tn) be a pure row contraction on a Hilbert
space H. Then there exists a subspace K ⊂ H 2

n ⊗ DT that is invariant for M∗ =
(M∗

z1
, · · · ,M∗

zn
), such that T is unitarily equivalent to the compression of M to K .

In other words, there is an isometryW : H→ H 2
n ⊗DT such thatW(H) = K and

T ∗i = W∗M∗
i W, i = 1, · · · , n.

Here DT is the defect space of T (cf. [58]).
For a commutingn-tuple T , Arveson [5, 6] introduced a curvature invariantK(T )

developed through integrating the trace of certain operators associated with T , and
an Euler characteristic χ(T ), defined as the alternating sum of ranks of free modules
determined by T . Under the condition that T has finite rank, that is, the positive
operator� = I−∑n

i=1 TiT
∗
i has finite rank, and is pure and graded, Arveson proved

that the two invariants coincide. This can be viewed as an operator-theoretic version
of the Gauss-Bonnet-Chern formula from Riemannian geometry. Along his track
of investigation, Arveson [7] defined a Dirac operator associated with a n-tuple T

and showed that, under some additional assumptions, the curvature invariant K(T )

and the Fredholm index of the Dirac operator are equal. The essential normality of
the n-tuple T (that is, the essential normality of the Hilbert module determined by
T ) naturally implies the Fredholmness of the Dirac operator T . Thus an affirmative
answer to Conjecture 1 will lead to significant progress on generalizing the Gauss-
Bonnet-Chern formula in operator theory [7, 8].
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2.2 A New Kind of Index Theorem

The two invariants above defined by Arveson introduced a geometric point of view
into the study of multi-variable operator theory. Douglas observed that one can
also think in the opposite direction. In [22], he pointed out that essential normal
quotient modules define a new kind of index theory for complex varieties. Moreover,
such applications work not only for analytic function spaces on Bn, but also for
analytic function spaces on a more general type of domains—the bounded strongly
pseudo-convex domains with smooth boundary. Since the Drury-Arveson space is
not naturally defined on such domains, one usually formulates the conjecture on the
Bergman space, as stated in Conjectures 4–6.

The index theory given in [22] is a consequence of the BDF theory introduced
by Brown, Douglas and Fillmore (cf. [17]). In general, let H be an essentially
normal Hilbert module and T (H) be the C∗-algebra generated by {σ(q) : q ∈
C[z1, · · · , zn]}, where σ is the associated module action. Let K(H) be the ideal of
compact operators on H. Since H is essentially normal, we have the short exact
sequence

0 → K(H)→ T (H)+ K(H)→ C(XH)→ 0,

where XH is a compact Hausdorff space. By the BDF theory, the exact sequence
defines an odd K-homology element, denoted [H], in K1(XH). Under the assump-
tion of Conjecture 4–6, if QM (or QI ) is essentially normal, then we have

M ∩ ∂! ⊂ XQM
⊂ M̃ ∩ ∂! (or Z(I) ∩! ∩ ∂! ⊂ XQM

⊂ Z(I) ∩ ∂!).

See [29] for a proof on Bn. The following question will be of interest.

Question 7 Under the assumptions of Conjectures 4–6, if QM (QI ) is essentially
normal, then what is XQM

(XQI
)?

In the case when M̃ (or Z(I)) intersects ∂! transversely, the two sides of the
inclusion above coincide. A good characterization of the element [QM] (or [QI ])
will be certainly of interest. It is known that [L2

a(Bn)] is the fundamental class.
Evidences show that the element [QM ] ([QI ]) is non-trivial [21, 24, 28, 40, 41, 46].
An exception may be that it induces the trivial index element [32] for Beurling-type
quotient modules of the Hardy module over the n-dimensional unit ball. The best
result concerning the index element, is perhaps [28], in which they gave an analytic
Grothendieck-Riemann-Roch Theorem.
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2.3 Connection with Holomorphic Extension Theorems

Recent developments have shown that Conjecture 6 has strong connections with a
classic problem in several complex variables—the L2-extension problem [11, 20,
55, 71].

The L2-extension problem asks whether there exist bounded extensions from a
space of holomorphic functions on a subvariety to a space of holomorphic functions
on a domain of higher dimension. We mention the paper [55] by Oshawa and
Takegoshi entitled “On the extension of L2 holomorphic functions” in 1987. In this
paper, they proved the following result.

Theorem 2.3 Let ! be a bounded pseudoconvex domain in Cn, ψ : ! →
R ∪ {−∞} a plurisubharmonic function and H ⊂ Cn a complex hyperplane. Then
there exist a constant C depending only on the diameter of ! such that: for any
holomorphic function f on ! ∩H satisfying

∫

!∩H
e−ψ |f |2dVn−1 <∞,

there exists a holomorphic function F on ! satisfying F |!∩H = f and

∫

!

e−ψ |F |2dVn ≤ C

∫

!∩H
e−ψ |f |2dVn−1.

The theorem was then generalized in various directions, known as theorems of
Ohsawa-Takegoshi type. In particular, general subvarieties were considered and the
requirements on the weight functions were improved. Perhaps the result that is
closest to our point of view is in a paper by Beatrous [11]. This result was extended
and used in [28] to obtain results on the Geometric Arveson-Douglas Conjecture.
The following theorem is a version of strongly pseudoconvex domain associated
with L2-extensions (cf. [11, 13]).

Theorem 2.4 Let ! ⊂ Cn be a bounded strongly pseudoconvex domain with
smooth boundary and let M̃ be a d-dimensional complex submanifold of a neigh-
borhood of ! which intersects ∂! transversely. Let M = M̃ ∩ ! and let R be the
restriction mapping from holomorphic functions on ! to holomorphic functions on
M . Let s = n − d and L2

a,s(M) be the weighted Bergman space on M defined by
the weight function |r(z)|s , here r(z) is a defining function for !. Then

(1) The restriction map R : L2
a(!)→ L2

a,s(M) is bounded.
(2) There is a linear operator E : L2

a,s(M)→ L2
a(!) such that RE is the identity

operator on L2
a,s(M).

The L2-extension problem is of fundamental importance in several complex
variables. Applications of the problem include, but are not restricted to, Suita’s
Conjecture, properties of Bergman kernels on weakly pseudoconvex domains, the
strong openness conjecture, etc. (cf. [71]).



A Survey on the Arveson-Douglas Conjecture 299

In [31], Douglas and the second author proved the following theorem, which
makes connections between the Geometric Arveson-Douglas Conjecture and the
L2-extension problem.

Theorem 2.5 (Douglas, Y. Wang) Let M be a complex analytic subset of Bn and
let QM be the quotient module defined as in Conjecture 3. Suppose there exists a
positive Borel measure μ on M such that the L2(μ) norm and the quotient norm
on QM are equivalent, i.e., there exists constants C > c > 0 such that for any
f ∈ QM ,

c‖f ‖2 ≤
∫

M

|f (z)|2dμ(z) ≤ C‖f ‖2,

then the quotient module QM is essentially normal. In this case we call μ an
“equivalent measure” forM .

Remark 2.6 Standard argument shows that, under the assumption that the restric-
tion map

R : L2
a(Bn)→ L2(μ), f �→ f |M

is bounded, the condition above is equivalent to the existence of a bounded linear
operator E : Range(R) → L2

a(Bn) such that RE = Id . Under the additional
assumption that ker(R) = PM , the condition is equivalent to that Range(R) is
closed. Given that in the case M intersects ∂Bn transversely, the weighted measure
μM = |r(z)|svM is almost the only reasonable candidate of an equivalent measure,
one is essentially asking:

Question 8 Is Range(R) closed in L2
a,s(M)?

From this point of view, the Geometric Arveson-Douglas Conjecture is con-
nected to Question 8, which can be considered as a weak version of theL2-extension
problem. On the other hand, it is already known that there exist complex analytic
varieties such that equivalent measures do not exist. For example, the union of two
homogeneous complex varieties that are tangent at a boundary point. Under these
circumstances, the next reasonable thing to ask is

Question 9 Find an equivalent norm of the quotient norm on QM that is intrinsic.
That is, find a norm that only uses data on M , for example, values on M of the
function itself or its partial derivatives.

Question 9 can be viewed as a generalization of the L2-Extension Problem.
Essentially, a positive answer to Question 9 will also lead to a positive answer to the
Geometric Arveson-Douglas Conjecture. Therefore the two problems are combined
in this approach.

In [8], Arveson supported his conjecture by showing that a submodule of H 2
n

generated by a set of monomials is p-essentially normal for all p > n. Over
the years, many exciting results have been obtained. In the following sections, we
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introduce the known results on the Arveson-Douglas Conjecture. We divide them
into three categories, contained in Sects. 3–5.

3 The Case of Low Dimensions or Co-dimensions

Early results on the Arveson-Douglas Conjecture involve submodules with zero
varieties of low dimensions or co-dimensions.

3.1 Principal Submodules

In the case when the submodule P is generated by a single function, the zero
locus of P is an analytic subset of co-dimension 1. Various results have been
obtained about essential normality of principal submodules. The general setting
is the following. Let ! be a bounded strongly pseudo-convex domain in Cn with
smooth boundary. Let H be one of the Hardy space H 2(!), the Bergman space
L2
a(!) or the weighted Bergman spaces L2

a,s(!). For h ∈ H, denote Ph,! the
principal submodule generated by h, that is, the smallest submodule of H that
contains h.

Question 10 When is Ph,! essentially normal, or p-essentially normal?

Early results on the Arveson-Douglas Conjecture were mainly about submodules
of the Drury-Arveson module H 2

n . In the case when h is a monomial, Arveson [8]
showed that the principal submodule generated by h in H 2

n is p-essentially normal
for all p > n. The second result in this category is by the first author. In [39], he
showed that any graded submodule ofH 2

2 is p-essentially normal for all p > 2. Note
that almost all graded submodules in H 2

2 are principal by Beurling’s representation
of ideals in two variables [18]. Then in [40], the first author and K. Wang completely
solved the case of principal homogeneous submodules. They showed that if h is a
homogeneous polynomial, then the principal submodule of H 2

n generated by h is p-
essentially normal for all p > n. The proof in [40] involves detailed trace estimates
and some operator inequalities. The results in [40] were applied to the principal
submodule [zn1+zn2−zn3] of the 3-shift Hilbert module to obtain a geometric invariant
for noncommutative Fermat curve Xn + Yn = Zn considered by Arveson [7, 9].

The following surprising result was proved by Douglas and K. Wang in [29].
Their proof used ideas from harmonic analysis and ∂̄-estimates.

Theorem 3.1 (Douglas, K. Wang) Suppose h is a polynomial, not necessarily
homogeneous. Then the principal submodule Ph of L2

a(Bn) generated by h is p-
essentially normal for all p > n.

Douglas and K. Wang’s result has motivated some further examinations on
principal submodules. In [35] and [36], Fang and Xia extended Douglas and K.
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Wang’s result to polynomial-generated principal submodules of a large class of
weighted analytic function spaces, including the Hardy space H 2(Bn), and, under
additional assumptions, the Drury-Arveson space H 2

n . Then Douglas and the authors
[23] showed the following.

Theorem 3.2 (Douglas, Guo, Y. Wang) Suppose ! ⊆ Cn is a bounded strongly
pseudoconvex domain with smooth boundary, h is a holomorphic function defined
in an open neighborhood of !. Then the principal submodule Ph,! of the Bergman
module L2

a(!), generated by h, is p-essentially normal for all p > n.

The proof of Theorem 3.2 is based on an inequality of a new type, proved in [23].
In the case when ! = Bn, the inequality is the following.

Theorem 3.3 Suppose h is a holomorphic function defined in a neighborhood of
Bn. Then there exist a constant C > 0 and a positive integer N , such that for any
z,w ∈ Bn and any f ∈ Hol(Bn), we have

|h(z)f (w)| ≤ C
|1− 〈z,w〉|N

(1− |w|2)n+1+N

∫

D(w,1)
|h(λ)f (λ)|dv(λ). (3.1)

where the setD(w, 1) is the ball centered atw, under the Bergman metric, of radius
1.

In [65], Xia and the second author extended this result to the Hardy module. The
following question will be of interest.

Question 11 Under the assumption of Theorem 3.2, characterize the element [P⊥h,!]
in the odd K-homology group.

3.2 Case of Low Dimension

In addition to the results on principal submodules, the first author and K. Wang
also showed in [40] that Conjecture 2 holds if n ≤ 3 or dimC Z(I) ≤ 1. Before
continuing, we introduce the notion of quasi-homogeneous polynomials. For a given
integer n ≥ 2, let

K = (K1,K2, · · · ,Kn) ∈ N
n,

be an n-tuple, which will be called the weight. For this given weight, we assign
the K-degree 〈α,K〉 = ∑n

j=1 αjKj to each monomial zα ∈ C[z1, · · · , zn], where
α ∈ Z

n+ \ {0}. We say that a polynomial p is K-quasi-homogeneous of K-degree
m > 0 if it is a linear combination of monomials of K-degree m. Zero varieties of
quasi-homogeneous polynomials are connected to the study of topological spheres.
Milnor [54] and Brieskorn [16] showed that, when the dimension n �= 3, a zero
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variety of the form

�α = {z ∈ C
n : zα1

1 + · · · + zαnn = 0} ∩ ∂Bn,

is homeomorphic to the sphere S2n−3 where all integers αi ≥ 2 if and only if it
has the same homology as a sphere. In case n = 3, it remains to be a problem of
interest in low dimensional topology. There exists a natural link between the theory
of topological spheres and geometric analysis of Hilbert modules [41].

In the quasi-homogeneous case, the first author and Zhao showed in [46] that for
a broad class of analytic Hilbert modules on the unit ball Bn, including the Hardy
module, the Bergman module and the Drury-Arveson module, quasi-homogeneous
principal submodules are p-essentially normal for all n, (p > n). They also showed
that a quasi-homogeneous submodule is p-essentially normal if either n ≤ 3 or the
complex dimension of zero variety ≤ 1.

4 The Geometric Arveson-Douglas Conjecture

Another direction of research for the Arveson-Douglas Conjecture that has been
fruitful is the study of submodules with smooth varieties, or varieties with nice
singular points.

In [33], Engliš and Eschmeier solved Conjecture 3 under the additional assump-
tion that M is smooth away from the origin. In fact, they proved the result for
submodules of a large class of weighted modules. In the case of the Drury-Arveson
module, their result is the following.

Theorem 4.1 (Engliš, Eschmeier ) LetM be one of the following.

(1) a homogeneous variety in Cn such thatM\{0} is a complex submanifold of Cn

of dimension d;
(2) a smooth variety in Cn of dimension d that intersects ∂Bn transversely.

LetPM be the submodule ofH 2
n consisting of all the functions that vanish onM∩Bn.

LetQM be the corresponding quotient module. ThenQM is p-essentially normal for
all p > d .

The proof of Engliš and Eschmeier mainly relies on two ingredients: the theory
of generalized Toeplitz operators of Boutet de Monvel and Guillemin [13, 14], and
the results of Beatrous about restrictions of Bergman-type functions to subvarieties
[12].

Almost the same time, Douglas, Tang and Yu proved the following theorem,
by extending Beatrous’s extension theorem (Theorem 2.4) and Baum, Douglas and
Taylor’s results in [10].
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Theorem 4.2 (Douglas, Tang, Yu) Suppose I is an ideal of C[z1, · · · , zn] gener-
ated by k polynomials: p1, · · · , pk , k ≤ n− 2. Assume the following.

(1) The Jacobian matrix (∂pi/∂zj )i,j is of maximal rank on Z(I) ∩ ∂Bn.
(2) Z(I) intersects ∂Bn transversely.

Then the submodule PI of the Bergman module L2
a(Bn) is essentially normal.

Moreover, the quotient module QI and the weighted Bergman module L2
a,k(!I )

correspond to the same class in K1(∂!I ), where !I = Z(I) ∩ Bn.

In fact, more is proved in [28]. They showed that the element [L2
a,k(!I )] in

K1(∂!I ) is the fundamental class of ∂!I defined by the CR-structure on ∂!I .
They also showed that [L2

a,k(!I )] is the image under the boundary map ∂ :
K0(!I , ∂!I ) → K1(∂!I ), of the element [DN ], where [DN ] was introduced
by Baum, Douglas and Taylor in [10] from the ∂̄-operator on the Dolbeault
complex of !I with the Neumann boundary condition. This can be viewed as an
analytic version of the Grothendieck-Riemann-Roch theorem. In a recent paper [24],
Douglas, Jabbari, Tang and Yu proved an index theorem for the quotient module
of a monomial ideal by resolving the monomial ideal by means of a sequence of
essentially normal Hilbert modules, each of which is a direct sum of (weighted)
Bergman spaces on balls.

Then in [31], Douglas and the second author proved the following theorem.

Theorem 4.3 (Douglas, Y. Wang) Suppose M̃ is a complex analytic subset of an
open neighborhood of Bn satisfying the following conditions:

(1) M̃ intersects ∂Bn transversely.
(2) M̃ has no singular points on ∂Bn.

Let M = M̃ ∩ Bn. Then the quotient module QM of L2
a(Bn) associated with M , is

p-essentially normal for all p > 2 dimCM .

The proof is based on a combination of harmonic analysis and operator theory.

5 Decomposition of Modules and Varieties

Another approach to the Arveson-Douglas Conjecture is by decomposing submod-
ules or quotient modules, into sums of nice parts. By nice parts we mean submodules
or quotient modules discussed about in the previous two sections. The paper [57]
by Shalit was perhaps the first paper in this direction. One of the advantages of
considering decomposition is that one can incorporate techniques from the previous
two types of approaches to obtain nontrivial examples. Another advantage is that, in
many cases, a good decomposition leads to a decomposition of the corresponding
index elements. See, for example, [24, 30], etc.
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5.1 Decomposition of Submodules

To decompose a submodule P into nice parts, one essentially needs to write P as
a sum of nice submodules (cf. [49]). In [57], Shalit considered the following stable
division property for submodules of the Drury-Arveson module H 2

n .

Definition 5.1 Let P be a submodule of H 2
n . We say that P has the stable division

property if there are a set {f1, · · · , fk} ⊂ P that generates P as a module, and a
constant C such that, for every h ∈ P , there are functions g1, · · · , gk ∈ H 2

n , such
that

(1) h =∑k
i=1 figi , and

(2)
∑k

i=1 ‖figi‖2 ≤ C‖h‖2.

Shalit showed that a graded submodule PI in the Drury-Arveson module with the
stable division property is p-essentially normal for all p > dimC Z(I). The result
was then extended by Biswas and Shalit to quasi-homogeneous cases in [15]. In the
same paper, they also defined a approximate stable division property and showed
that it implies essential normality. In a recent preprint [62] by the second author,
the following asymptotic stable division property was defined and shown to imply
essential normality, under an additional assumption.

Definition 5.2 Suppose P is a submodule of the Bergman module L2
a(Bn). P is

said to have the asymptotic stable division property if there exist an invertible
operator T on P , a subset {hi}i∈� ⊂ P , finite or countably infinite, and constants
C1, C2, such that for any f ∈ P , there exists {gi}i∈� ⊂ Hol(Bn) with the following
properties.

(1) Tf =∑i∈� higi , where the convergence is pointwise if � is countably infinite.
(2)

∫

Bn

(

∑

i∈�
|hi(z)gi(z)|

)2

dv(z) ≤ C1‖f ‖2
L2
a(Bn)

.

(3)

∫

Bn

(

∑

i∈�
|hi(z)gi(z)|

)2

(1− |z|2)dv(z) ≤ C2‖f ‖2
L2
a,1(Bn)

.

The following theorem was shown by Y. Wang in [62].

Theorem 5.3 Suppose P is a submodule of L2
a(Bn) with the asymptotic stable

division property. If the generating functions hi are all defined in a neighborhood of
Bn and the controlling constants Ci , Ni , determined by hi (as in Theorem 3.3), are
uniformly bounded for all i ∈ �, then the submodule P is p-essentially normal for
all p > n. In particular, if the generating functions hi are polynomials of uniformly
bounded degrees, then P is p-essentially normal for all p > n.
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Theorem 5.3 provides a unified proof of most known results of the Arveson-
Douglas Conjecture (the p > n case), including those in [23, 28, 29, 31, 33, 57].
Moreover, the following new result was obtained in [62].

Theorem 5.4 Suppose I is an ideal in C[z1, · · · , zn] with primary decomposition
I = ∩kj=1I

mj

j , where Ij are prime ideals. Assume the following.

(1) For each j = 1, · · · , k, Z(Ij ) has no singular points on ∂Bn and intersects
∂Bn transversely.

(2) Any pair of the varieties {Z(Ij )} does not intersect on ∂Bn.

Then the submodulePI has the asymptotic stable division property with generators
of uniformly bounded degrees. As a consequence, PI is p-essentially normal for all
p > n.

Let M be a submodule of the Drury-Arveson module H 2
n . Arveson [6] showed

that there exist a sequence of multipliers {ϕk : k = 1, 2, · · · } ⊂ M such that

PM = (SOT )
∑

k

MϕkM
∗
ϕk
. (5.1)

Then the Arveson’s conjecture is equivalent to

[

(SOT )
∑

k

MϕkM
∗
ϕk
,Mzi

]

∈ C2p (5.2)

for p > n and i = 1, 2, · · · , n. Applying the construction in Section 4.1 of [37],
there is a counterexample that, (5.2) fails to be true for some nonhomogeneous sub-
module. From the representation of the projection PM , we see that the submodule
M is the closed linear span of those principal submodules [φk] for k = 1, · · · , that
is M = ∨

k[φk]. In particular, when M is homogeneous, each φk can be chosen
as homogeneous. For a homogeneous submodule M of H 2

n , although we do not
know whether or not (5.2) holds, but on the Hardy space and Bergman space on the
unit ball, Zhao and Yu [70] proved that (5.2) holds for those operators of the form
A = (SOT )

∑

k MϕkM
∗
ϕk

by trace estimation.

Theorem 5.5 Let A = (SOT )
∑

k MϕkM
∗
ϕk

be a bounded linear operator on the
Bergman space or Hardy space on the unit ball Bn, where ϕk ∈ H∞(Bn) k =
1, 2, · · · . Then the commutator [A,Mzi ] belongs to Schatten class C2p for p > n

and i = 1, · · · , n, and there is a constant C depending only on p and n such that

‖[A, Tzi ]‖2p ≤ C‖A‖.

By applying this theorem, Zhao [69] proved that for approximately representable
homogeneous submodules M of the Bergman module on the unit ball, M is p-
essentially normal. By definition a submodule M of the Bergman module is called
approximately representable if there exist ϕk ∈ H∞(Bn) k = 1, 2, · · · , and positive
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constants C1, C2 such that

C1PM ≤ (SOT )
∑

k

MϕkM
∗
ϕk
≤ C2PM.

5.2 Decomposition of Quotient Modules

Besides submodules, there are also studies on decompositions of quotient modules.
From the view of Conjecture 6, decomposition of quotient modules essentially
corresponds to decomposition of varieties. In [51], Kennedy and Shalit proved the
following result.

Theorem 5.6 (Kennedy, Shalit) Suppose V1, · · · , Vk are homogeneous varieties
in Cn and PVi ,QVi are the corresponding submodules and quotient modules in H

2
n .

SupposeQVi is p-essentially normal, i = 1, · · · , k.
(1) If p > max{dimC V1, · · · , dimC Vk} and the algebraic sum PV1 + · · · + PVk is

closed, thenQV1∩···∩Vk is also p-essentially normal.
(2) If p > dimV1∪· · · ∪Vk and the algebraic sumQV1+· · ·+QVk is closed, then

QV1∪···∪Vk is also p-essentially normal.

The theorem was then applied to prove that the Arveson-Douglas Conjecture holds
for submodules corresponding to varieties that decompose into linear subspaces,
and varieties that decompose into components with mutually disjoint linear spans.

From Theorem 5.6 (2), one can see that in order to obtain a nice decomposition,
one needs to ensure that the algebraic sum of the quotient spaces to be closed.
In [63], Douglas and the second author proved the following theorem, using the
techniques developed in [31].

Theorem 5.7 (Douglas, Y. Wang) Suppose M̃1 and M̃2 are two analytic subsets
of an open neighborhood of Bn. Let M̃3 = M̃1 ∩ M̃2. Assume that

(i) M̃1 and M̃2 intersect transversely with ∂Bn and have no singular points on
∂Bn.

(ii) M̃3 also intersects transversely with ∂Bn and has no singular points on ∂Bn.
(iii) M̃1 and M̃2 intersect cleanly on ∂Bn.

Let Mi = M̃i ∩ Bn and Qi = span{Kλ : λ ∈ Mi}, i = 1, 2, 3. Then Q1 ∩Q2/Q3
is finite dimensional and Q1 + Q2 is closed. As a consequence, Q1 + Q2 is p-
essentially normal for p > 2d , where d = max{dimM1, dimM2}.
The lower bound 2d was then refined to d in [64].
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6 Quotient Modules over the Polydisc, Distinguished
Varieties and Boundary Representations

A non-empty set V in C2 is a distinguished variety if there is a polynomial p in
C[z,w] such that V = Z(p) and V ∩ ∂D2 = V ∩ T2, that is, the variety exits
the bidisc through the distinguished boundary T2. Such a polynomial p is said to
be distinguished. This notion introduced by Agler and McCarthy is of fundamental
importance in the study of Ando’s inequality and extremal Pick problems on the
bidisk [1]. In the two variable case, let I be a homogenous ideal of C[z,w], then
there is a homogenous polynomial q such that [q] � [I ] is of finite dimension.
Therefore, the essential normality of [I ]⊥ is equivalent to that of [q]⊥. Since q

is homogenous, the distinguished part of q can be factored out, that is, q can be
decomposed as

q = q1 · q2,

where Z(q1) ∩ ∂D2 ⊂ T
2 and Z(q2) ∩ T

2 = ∅. The following theorem was given
by the first author and P. Wang [43].

Theorem 6.1 Let q be a two variable homogenous polynomial with the above
mentioned decomposition. Then the quotient module [q]⊥ is essentially normal if
and only if q2 has the one of the following forms.

1. q2 is a nonzero constant;
2. q2 = αz− βw, with |α| �= |β|;
3. q2 = c(z− αw)(w − βz) with |α| < 1 and |β| < 1.

When a homogenous ideal I of C[z1, · · · , zn] satisfies that Z(I) ∩ ∂Dn ⊆ Tn,
P. Wang and Zhao proved that the quotient module [I ]⊥ in H 2(Dn) is essentially
normal [66]. For a general homogenous ideal I , P. Wang and Zhao proved that if
the quotient module [I ]⊥ in H 2(Dn) is essentially normal, then the dimension of
the zero variety dimC Z(I) ≤ 1. Furthermore, by a careful geometric analysis of the
distribution of the zero variety Z(I) on the boundary ∂Dn, they gave a complete
characterization for essential normality of [I ]⊥ [67]. Along this direction, they
also completely characterized essential normality of quasi-homogeneous quotient
modules on the polydisc [68].

An interesting problem is to characterize essential normality for principal
quotient modules in H 2(D2). That is, for which g ∈ H 2(D2), is the quotient module
[g]⊥ of the submodule [g] generated by g essentially normal? Even in the case of
distinguished polynomials, it remains unknown whether or not [q]⊥ is essentially
normal for a distinguished polynomial q .

In the case of 2 variables, the essential normality of Beurling-type quotient
modules was studied by the first author and K. Wang [42]. They proved that [θ ]⊥ is
essentially normal if and only if the inner function θ is a rational inner function of
degree at most (1, 1). Precisely, θ has one of the following forms:

θ(z,w) = βφa(z); βφa(w), or βφa(z)φb(w);
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where φa(z) = z−a
1−āz and |β| = 1, |a|, |b| < 1 or

θ(z,w) = β
zw + az+ bw + c

1+ āw + b̄z+ c̄zw

for |β| = 1 and c �= ab. An interesting consequence of this result is able to give a
complete characterization of the boundary representations for Toeplitz C∗-algebras
on Beurling type quotient modules [θ ]⊥. The notion of the boundary representations
was introduced by Arveson [2, 3] to study the noncommutative Choquet boundary in
the representation theory of C∗-algebras. The results on the boundary representation
in [42] extended Arveson’s results to Toeplitz algebras on Beurling type quotient
modules over the bidisc (cf. [2, 3]). For boundary representations of Toeplitz
algebras on Bergman quotient modules on the unit disc, W. He gave a complete
characterization [47] by using Zhu’s theorem. Zhu’s theorem [72] says that a
submodule M of L2

a(D) is essentially normal if and only if dimM � zM <∞.

Also in [45], the first author, K. Wang and Zhang studied p-essentially normal
properties of quotient modules on the bidisk. They established some trace formulas
for self-commutators of Toeplitz-type operators on quotient modules. In [44, 68],
some results on essential normality of quasi-homogeneous quotient modules over
the polydisc are proved. It is worth pointing out that Izuchi and Yang [48] also
obtained some results about essential normality of quotient modules over the bidisc.
For the study of essential normality and Dixmier trace over bounded symmetric
domains, see Upmeier and Wang’s paper [60]. An earlier and selective survey on
essential normality of Hilbert modules is presented in [38].
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Abstract The Pieri rule gives an explicit formula for the decomposition of the
tensor product of irreducible representation of the complex general linear group
GLn(C) with a symmetric power of the standard representation on Cn. It is an
important and long understood special case of the Littlewood-Richardson rule for
decomposing general tensor products of representations of GLn(C).

In our recent work Gurevich and Howe (Rank and Duality in Representation
Theory. Takagi lectures Vol. 19, Japanese Journal of Mathematics (2017)) and
Gurevich and Howe (Harmonic Analysis on GLn over Finite Fields. Accepted
(2019)) on the organization of representations of the general linear group over a
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In this note, we demonstrate how to derive the Pieri rule for GLn(Fq). This is
done in two steps; the first, reduces the task to the case of the symmetric group
Sn, using the natural relation between the representations of Sn and the spherical
principal series representations of GLn(Fq); while in the second step, inspired by a
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Along the way, we advertise an approach to the representation theory of the
symmetric group which emphasizes the central role played by the dominance order
on Young diagrams. The ideas leading to this approach seem to appear first, without
proofs, in Howe and Moy (Harish-Chandra homomorphisms for p-adic groups.
CBMS Regional Conference Series in Mathematics 59 (1986)).

1 Introduction

Two basic tasks in the representation theory of a finite group G are: the parameter-
ization of its set ̂G (of isomorphism classes) of irreducible representations (irreps);
and the decomposition into direct sum of irreps of certain of its naturally arising
representations.

The Pieri rule that we formulate and prove in this note addresses a particular
instance of the second task mentioned above, for the case of the general linear group
GLn = GLn(Fq) over a finite field Fq . It can be used to give a recursive solution to
the general problem of decomposing the permutation actions of GLn on functions
on flag manifolds.

The Pieri rule can be useful in other ways. Indeed, in [Gurevich-Howe17,
Gurevich-Howe19] we developed a precise notion of “size” for irreps of GLn,

called “tensor rank”. This is an integer 0 ≤ k ≤ n that is naturally attached
to an irreducible representation (irrep) and helps to compute important analytic
properties such as its dimension and character values on certain elements of interest.
In particular, in loc. cit. the Pieri rule forGLn enabled us to give an effective formula
for the irreps of GLn of a given tensor rank k.

We proceed to consider the subgroups involved in the construction of represen-
tations that appear in the formulation of the Pieri rule.

1.1 Young Diagrams and Parabolic Subgroups

The representations we are interested in are naturally realized on spaces constructed
using standard parabolic subgroups [Borel69] of general linear groups, that we will
now describe.

Fix an integer 0 ≤ k ≤ n, and denote by Yk the collection of Young diagrams
of size k [Fulton97]. In more detail, by a Young diagram (or partition) D ∈ Yk , we
mean an ordered list of non-negative integers

D = (d1 ≥ . . . ≥ dr), with d1 + . . .+ dr = k. (1.1)

It is common to visualize—see Fig. 1 for illustration—the diagram D with the
help of a drawing of r rows of square boxes, each row one on top of the other,
starting at the left upper corner, in such a way that the i-th row contains di boxes.
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Fig. 1 The Young diagram
D = (3, 1) ∈ Y4

Fig. 2 The parabolic
PD ⊂ GL4, D = (3, 1), has
A3 ∈ GL3, A1 ∈ GL1,
U3,1 ∈ M3,1

To the diagram D (1.1) we can attach the following increasing sequence FD of
subspaces of the k-dimensional vector space Fkq :

FD : 0 ⊂ F
d1
q ⊂ F

d1+d2
q ⊂ . . . ⊂ F

k
q, (1.2)

and call it the standard flag attached to D. In particular, having D we can form—see
Fig. 2 for illustration1 —the stabilizer subgroup

PD = StabGLk(FD) ⊂ GLk, (1.3)

that we will call the standard parabolic subgroup attached to D.
Probably the most important example from this class of parabolic subgroups is

the Borel subgroup B of upper triangular matrices in GLk , which is just PD with

D = ...
...

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

k times.

Next, we describe the specific type of representations that the Pieri rule attempts
to decompose.

1We denote Mk,n = Mk,n(F) the space of k × n matrices over a field F.
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1.2 The Pieri Problem

Take D ∈ Yk, denote by 1 the trivial representation of PD , and consider the induced
representation

ID = Ind
GLk

PD
(1),

which is given by the space of complex valued functions on GLk/PD, equipped
with the standard left action of GLk on it.

In the case when PD = B is the Borel subgroup, the set GLk/B is the flag
variety, and we will call the collection of irreps that appear inside Ind

GLk

B (1) the
spherical principal series (SPS).

There is a natural recipe (that we will recall in detail below) to parametrize the
SPS by Young diagrams. Note that for each Young diagram D ∈ Yk, we have ID <

Ind
GLk

B (1), where < denotes subrepresentation. Interestingly, each ID contains
(with multiplicity one) a well defined “largest” irreducible subrepresentation ρD .
We will leave the details of that story for the body of the note, but the collection
{ρD; D ∈ Yk} realizes the totality of SPS representations of GLk .

We proceed to formulate the Pieri problem.
Fix 0 ≤ k ≤ n, and denote by Pk,n−k ⊂ GLn the standard parabolic fixing

the first k coordinate subspace of Fnq . There is a natural surjective map Pk,n−k �
GLk × GLn−k . Take an SPS representation ρD of GLk , and denote by 1n−k the
trivial representation of GLn−k . Pull back the representation ρD⊗1n−k from GLk×
GLn−k to Pk,n−k and form the induced representation

IρD = Ind
GLn

Pk,n−k (ρD ⊗ 1n−k). (1.4)

Now we can write down the natural,

Problem 1.2.1 (Pieri Problem) Decompose the representation IρD into irre-
ducibles.

It is easy to see that the components of IρD (1.4) are SPS representations of GLn,
so we are looking for a solution to Problem 1.2.1 in terms of Young diagrams, i.e.,
members of Yn.

In this note we present a solution to the Pieri problem for GLn in two steps. First
we explain why it is enough to solve the analogous problem for the representations
of the symmetric group Sn. Then, in the second step, we demonstrate that the Pieri
rule holds for Sn, invoking the Schur (a.k.a. Schur-Weyl) duality for Sl -GLn(C),
and a use of the classical Pieri rule for GLn(C) [Howe92, Pieri1893, Weyman89].
We note that in [Ceccherini-Silberstein-Scarabotti-Tolli10], Section 3.5, there is a
proof of the Pieri rule for Sn based on a quite different approach.
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2 Representations of Sn

The standard parametrization of the irreps of Sn is done using Young diagrams
[Sagan91]. We will discuss various aspects of the construction leading to this
parametrization, emphasizing the role played by the dominance relation on the set
Yn of Young diagrams. We will follow closely ideas formulated (without proofs) in
Appendix 2 of [Howe-Moy86].

2.1 The Young Modules

Recall that partitioning the set {1, .., n} into r disjoint subsets of size di each, and
assigning these numbers, respectively, to the rows of the Young diagram D = (d1 ≥
... ≥ dr) ∈ Yn, gives rise to a Young tabloid [Fulton97]. Let us denote by TD the
collection of all Young tabloids that one can make using D. The natural action of
the group Sn on TD is transitive. Moreover, we can identify

TD = Sn/SD,

where SD ⊂ Sn is the stabilizer subgroup

SD = StabSn(TD), (2.1)

of the tabloid TD that obtained by assigning to the first row of D the numbers
1, .., d1, to the second d1+1, ..., d1+d2, etc. The group SD is naturally isomorphic
to the product Sd1 × ...× Sdr embedded in Sn in the usual way.

Now, we consider the induced representation, called the Young module associ-
ated to D,

YD = Ind
Sn
SD
(1), (2.2)

where 1 stands for the trivial representation of SD . It is naturally realized as the
permutation representation of Sn on the space of functions on TD .

2.2 Properties of the Young Modules

We derive basic properties of the family of Young modules (2.2). They give, in
particular, as a corollary the standard classification of the irreps of Sn, and, as we
mentioned earlier, they can be effectively understood using the important dominance
relation 5 on the set Yn of Young diagrams, which we recall now.
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Fig. 3 The set Y4 is totally ordered by 5 (this is not true for Yn, n ≥ 6)

Suppose—see Fig. 3 for illustration—we have a Young diagram D which is
obtained from another diagram by moving one of the boxes of D′ to a (perhaps
new) lower row, then we write

D 5 D′, (2.3)

and 5 on Yn is the order generated from all the inequalities of the form (2.3).
Now, using the terminology afforded by the dominance relation, we can formu-

late the main technical results concerning the Young modules.
For two representations π and τ of a finite group G, let us denote by 〈π, τ 〉 their

intertwining number [Serre77]

〈π, τ 〉 = dimHom(π, τ). (2.4)

In addition, we denote the sign representation of Sn by sgn, and introduce the
twisted Young module YE(sgn) = Ind

Sn
SE
(sgn) attached to E ∈ Yn. Finally, let

us denote by Dt the diagram in Yn which is transpose to D. That is, Dt is gotten
from D by reflecting across the downward diagonal from the top left box; in other
words, the columns of D become the rows of Dt . Then,

Theorem 2.2.1 For any two Young diagramsD,E ∈ Yn, we have,

(1) Intertwinity: 〈YE(sgn), YD 〉 =
{

0, iff E � Dt ;
1, if E = Dt ,

and,
(2) Monotonicity: D � E if and only if YE � YD .

For a proof of Theorem 2.2.1, see Appendix A.1.

2.3 The Irreducible Representations of Sn

Part (1) of Theorem 2.2.1 produces the standard classification, by Young diagrams,
of the unitary dual (i.e., the set of irreps) ̂Sn of Sn, due to Frobenius and others
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[Frobenius68]. Indeed, for each D ∈ Yn, let us denote by σD the unique joint
component of YDt (sgn) and YD . Then,

Corollary 2.3.1 (Classification) The irreps

σD, D ∈ Yn, (2.5)

are pairwise non-isomorphic and exhaust̂Sn.

For a proof of Corollary 2.3.1 see Appendix A.1.

2.4 The Grothendieck Group of Sn

In Sect. 3 we will draw certain conclusions for the representation theory of the
general linear group GLn = GLn(Fq), using the properties obtained in this section
for the representations of Sn. An effective way to formulate this passage from Sn to
GLn, is to use the formalism of the Grothendieck group of representations, and in
particular to describe consequences of Theorem 2.2.1 to the structure of this group
in the case of Sn.

Given a finite group G, we can consider the Abelian group K(G) generated
from the set ̂G of isomorphism classes of irreps of G using the direct sum
operation ⊕. Note that K(G) has a natural partial order < given by the sub-
representation relation, and it comes equipped with a bilinear form 〈 , 〉 , giving any
two representations π, τ , their intertwining number 〈π, τ 〉 (2.4).

In particular, K(Sn) is a free Z-module with basis ̂Sn = {σD, D ∈ Yn}, where
σD are the irreps (2.5). However, K(Sn) has another natural Z-basis, i.e.,

Proposition 2.4.1 The collection of Young modules YD, D ∈ Yn, forms a Z-basis
for K(Sn).

Proposition 2.4.1 follows from the following two consequences of Theo-
rem 2.2.1:

Scholium 2.4.2 The following hold,

(1) Spectrum: The irrep σE (2.5), appears in the Young module YD if and only if
D 5 E.

(2) Characterization: The irrep σD (2.5) is the only irrep that appears in YD but
not in YE for every D � E.

In particular, from Part (2) of Scholium 2.4.2 we deduce that the collection of
Young modules is a minimal generating set of K(Sn), confirming Proposition 2.4.1.

We proceed to describe a class of irreps of GLn, that in a formal sense behave as
if they also form K(Sn).
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3 Spherical Principal Series Representations of GLn

In this section we want first to construct/classify the spherical principal series
representations, and second, to recast certain properties of this collection. Both
tasks involve, as in the case of Sn, the dominance relation on the set Yn, of Young
diagrams with n boxes.

3.1 The Spherical Principal Series

Inside GLn = GLn(Fq), consider the Borel subgroup B [Borel69] of upper
triangular matrices

B =
⎛

⎜

⎝

∗ . . . ∗
. . .

...

∗

⎞

⎟

⎠
.

Recall, see Sect. 1.2, that by definition an irreducible representation ρ of GLn

belongs to the spherical principal series (SPS) if it appears inside the induced
representation Ind

GLn

B (1), where 1 denotes the trivial representation of B.
The construction of the SPS representations, and the verification of some

of their properties can be done intrinsically (e.g., see in Section 10.5. of
[Gurevich-Howe17]), without the relation to the representation theory of Sn.
However, for purposes of this note, we prefer to get all the information from
what was obtained already for Sn in Sect. 2. This, in particular, will enable us to
derive the Pieri rule for GLn from that of Sn.

3.2 The Grothendieck Group of the Spherical Principal Series

Let us denote by KB(GLn) the Abelian group generated, using the operation of
direct sum⊕, from the SPS representations. The notion of subrepresentation induces
a partial order < on KB(GLn) and the intertwining number pairing 〈 , 〉 (2.4) gives
on it an inner product structure.

We proceed to give an effective description of KB(GLn).
Recall, see Sect. 1.2, that the group KB(GLn) has a distinguished collection

of members in the form of induced representations that are associated to Young
diagrams. Indeed, to a Young diagram D ∈ Yn one attaches in a natural a way
a flag FD in Fnq, see Eq. (1.2), and a corresponding parabolic subgroup PD =
StabGLn(PD) ⊂ GLn. Then, we can consider the trivial representation 1 of PD,
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and induce to obtain

ID = Ind
GLn

PD
(1). (3.1)

Of course each ID sits inside Ind
GLn

B (1), but we can say much more on the
relation between the various ID’s. Indeed, for a given Young diagram D = (d1 ≥
... ≥ dr) ∈ Yn, we have defined in (2.1) the subgroup SD - Sd1× ...×Sdr ⊂ Sn and
the corresponding Young module YD = Ind

Sn
SD
(1). Then, the Bruhat decomposition

[Borel69, Bruhat56] gives a bijection between the double cosets

PD�GLn�PE and SD�Sn�SE, (3.2)

for every D,E ∈ Yn.
But, the cardinalities of the double cosets in (3.2) are exactly the dimensions of,

respectively, the intertwining spaces HomGLn(ID, IE) and HomSn(YD, YE), so we
conclude that,

Proposition 3.2.1 (Bruhat Decomposition) For any two Young diagrams D,E ∈
Yn, we have,

〈ID, IE〉 = 〈YD, YE〉 . (3.3)

One way to interpret identity (3.3) is as follows:

Corollary 3.2.2 The correspondence

YD �−→ ID, D ∈ Yn, (3.4)

induces an order preserving isometry

ι : K(Sn)→̃KB(GLn). (3.5)

On how to deduce Corollary 3.2.2 from Proposition 3.2.1, see the next section.

3.3 The Grothendieck Groups of Sn and of the Spherical
Principal Series

We confirm Corollary 3.2.2, and along the way construct the SPS representations,
and deduce various other facts on this collection.

Consider the map ι (3.5), extended by (integral) linearity from the correspon-
dence (3.4). Denote by

ρD = ι(σD), D ∈ Yn, (3.6)
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the element of KB(GLn) corresponding to the irrep (2.5) of Sn. Note that,

• ρD < ID; and,
• 〈ρD, ID〉 = 1,

so, in particular, ρD is irreducible. In fact, the corresponding properties for Sn imply
that

•
〈

ρD, Ind
GLn

B (1)
〉

= dim(σD); and,

• we have,

{ρD} = ̂ID �

⋃

D�E

̂IE, (3.7)

i.e., ρD is the unique irrep that sits in ID (we denote by ̂ID the set of irreps inside
ID) but not in IE , for any Young diagram E ∈ Yn that strictly dominates D.

Remark 3.3.1 In fact, Property (3.7) characterizes the representation ρD , and is
useful, e.g., you can compute out of it explicitly the dimension of ρD and find that
(we use bold-face letters to denote the corresponding algebraic groups [Borel69])
it is equal to dim(ρD) = qdim(GLn/PD) + o(...), as q → ∞, a fact that in turn
characterizes (again, asymptotically) ρD uniquely among all irreps in ID .

How do we know we get all the SPS?

A possible answer is that, as we already said, each ID has a unique irrep that
does not occur in the induced module IE corresponding to any strictly dominating
diagram E 	 D, namely, ρD = ι(σD). On the Sn side, the irreps σD , D ∈ Yn,
completely decompose each of the induced representations. By Bruhat, this transfers
to GLn, so we get complete decompositions over there also. In particular, we get
a complete decomposition of IndGLn

B (1) = I(1,...,1), the constituents of which are
exactly the SPS representations.

Finally, the above discussion also validates Corollary 3.2.2.
Having at our disposal the understanding that the SPS representations and the

representations of Sn are in some formal sense the same thing, we can proceed to
discuss the Pieri rule.

4 The Pieri Rule

Fix 0 ≤ k ≤ n, and denote by Pk,n−k ⊂ GLn the parabolic subgroup fixing
the first k coordinate subspace of Fnq . There is a natural surjective map Pk,n−k �
GLk × GLn−k . Take a Young diagram D ∈ Yk , and consider the irreducible SPS
representation ρD of GLk defined by (3.6). Denote by 1n−k the trivial representation
of GLn−k . Pull back the representation ρD ⊗ 1n−k from GLk ×GLn−k to Pk,n−k
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and form the induced representation

IρD = Ind
GLn

Pk,n−k (ρD ⊗ 1n−k). (4.1)

Recall (see Problem 1.2.1 in Sect. 1.2) that, the narrative of the story we are
telling in this note is that, we are seeking to compute the decomposition of IρD
(4.1) into irreps. Moreover, it is easy to see that all constituents of the representation
IρD are SPS, so we are seeking an answer to the decomposition problem in term of
Young diagrams.

To arrive at our goal, after introducing some needed terminology, we will

(a) State the Pieri rule for the long established case of the complex general linear
group GLn(C).

(b) Recall Schur duality.
(c) State and prove the Pieri rule for representations of Sn.

Our proof was suggested by a remark of Nolan Wallach, and uses the Schur
(a.k.a. Schur-Weyl) duality, to deduce the result from the Pieri rule for GLn(C).

We note that, recently, in [Ceccherini-Silberstein-Scarabotti-Tolli10], the
authors gave a different proof of the Pieri rule for Sn. Their treatment uses
the Okounkov-Vershik approach [Okounkov-Vershik05] through the branching
rule from Sn to Sn−1 and Gelfand-Tsetlin basis.

We would also like to remark that, nowadays the Pieri rule for Sn can be
understood as a particular case of the celebrated Littlewood-Richardson rule
[Littlewood-Richardson34, Macdonald79], but was known [Pieri1893] a long
time before this general result.

(d) Derive the Pieri rule for the Group GLn = GLn(Fq), using the equivalence,
discussed in Sect. 3.2, between the representation theory of the spherical
principal series, and that of Sn.

4.1 Skew-Diagrams and Horizontal Strips

The various formulations we present of the Pieri rule use the notions of skew
diagram and horizontal strip, that we recall here.

Suppose we have Young diagrams E ∈ Yn and D ∈ Yk such that E contains D,
denotedE ⊃ D, i.e., each row of E is at least as long as the corresponding row of D.
Then, by removing from E all the boxes belonging to D, we obtain a configuration,
denoted E − D, called skew-diagram [Macdonald79]. If, in addition—see Fig. 4
for illustration, each column of E is at most one box longer than the corresponding
column of D, then we call E−D a horizontal strip (or horizontalm-strip if E−D

has m boxes).

Remark 4.1.1 In [Ceccherini-Silberstein-Scarabotti-Tolli10] the term that is being
used for “horizontal strip” is “totally disconnected skew diagram”.
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Fig. 4 In Y4: (2, 1, 1), (3, 1), contain (1, 1) ∈ Y2, with difference a horizontal 2-strip

4.2 The Pieri Rule for GLn(C)

The Pieri rule for GLn(C) is a (very) special case of the general Littlewood-
Richardson rule [Howe-Lee12, Littlewood-Richardson34, Macdonald79] for
decomposing the tensor product of any pair of irreducible finite dimensional
representations of GLn(C). The Pieri rule has been known since the nineteenth
century [Pieri1893], and is relatively easy to establish [Fulton-Harris91, Howe92,
Weyman89].

There is a standard way to label the irreducible representations of GLn(C). It is
by their highest weights (see, for example [Fulton-Harris91, Howe92, Weyl46]). A
highest weight for GLn(C) is specified by a decreasing sequence

d1 ≥ ... ≥ dn,

of integers.
When all the dj are non-negative, the above sequence can be thought of as

specifying a Young diagram D, with j -th row having length dj . The number of
boxes in D can be arbitrarily large, but the number of rows is bounded by n. Irreps of
GLn(C) corresponding to sequences with all dj non-negative are called polynomial
representations. These are exactly all the irreps of GLn(C) that appear in the tensor
powers (Cn)⊗l

of Cn for some l ≥ 0. (Any irrep of GLn(C) is isomorphic to a twist
by a power of determinant of a polynomial representation.). We will denote by

πD
n , D = (d1 ≥ ... ≥ dn ≥ 0), (4.2)

the polynomial representation of GLn(C) whose highest weight corresponds to
the diagram D. The one-rowed diagrams, given by (d1, 0, ..., 0) correspond to the
symmetric powers Sd1(Cn).

The Pieri rule for GLn(C) describes the decomposition of a tensor product πD
n ⊗

Sd(Cn) of a general polynomial irrep with a symmetric power Sd(Cn).

Proposition 4.2.1 (Pieri Rule for GLn(C)) The representation πD
n ⊗ Sd(Cn) is

multiplicity free. Moreover, we have,

πD
n ⊗ Sd(Cn) -

∑

E

πE
n , (4.3)
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where E runs through all diagrams such that

(1) D ⊂ E; and,
(2) E −D is an horizontal d-strip.

4.3 Schur-Weyl Duality

The groupGLn(C) is defined in terms of its action on Cn. By taking tensor products,
this action gives rise naturally to an action on the l-fold tensor product (Cn)⊗l

of Cn with itself (a.k.a., the l-th tensor power of Cn). Clearly, the permutation
group Sl also acts on (Cn)⊗l

by permuting the factors of the product. This
action of Sl clearly commutes with the action of GLn(C). Schur-Weyl duality
[Howe92, Schur27, Weyl46] says that

Proposition 4.3.1 (Schur-Weyl Duality—Non-explicit Form) The actions of Sl
andGLn(C) on (Cn)⊗l

generate mutual commutants of each other.

From this, Burnside’s double commutant theorem [Burnside1905, Weyl46] lets
us conclude that, as an Sl× GLn(C)-module, we have a decomposition

(Cn)⊗l -
∑

D

σD
l ⊗ τDn , (4.4)

where D ∈ Yl runs through diagrams with l boxes, σD
l are the associated irreps

(2.5) of Sl, and the τDn are appropriate irreps of GLn(C). Some computation then
shows that, remarkably, τDn is equal to the representation πD

n (provided of course
that D does not have more than n rows; otherwise τDn = 0) given by Eq. (4.2). Thus,
we can rewrite (4.4), and obtain

Proposition 4.3.2 (Schur-Weyl Duality—Explicit Form) As an Sl× GLn(C)-
module, we have the decomposition

(Cn)⊗l -
∑

D

σD
l ⊗ πD

n , (4.5)

where D runs over all diagrams in Yl with at most n rows.

4.4 The Pieri Rule for Sn

With the usual notation, consider k < n, and Sk ⊂ Sn, in the standard way, as the
group that fixes the last n − k letters on which Sn acts. Then the symmetric group
on these letters is Sn−k , and we have the product Sk × Sn−k ⊂ Sn.
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Take a partition/Young diagram D of size k, and let σD be the associated
irreducible representation (2.5) of Sk . Let 1n−k be the trivial representation of Sn.
Form the induced representation

IσD = Ind
Sn
Sk×Sn−k (σD ⊗ 1n−k), (4.6)

of Sn.
The Pieri Rule for Sn describes the decomposition of this induced representation

into irreducible subrepresentations.

Theorem 4.4.1 (Pieri Rule for Sn) The representation IσD (4.6) is multiplicity-
free. It consists of one copy of each representation σE of Sn, for diagrams E ∈ Yn,

such that

(1) D ⊂ E; and,
(2) E −D is an horizontal (n− k)-strip.

In Appendix A.2 we give our proof of Theorem 4.4.1, demonstrating how it
follows from the Pieri rule for GLn(C), invoking the Schur-Weyl duality.

Remark 4.4.2 (Description of the Young Module) Theorem 4.4.1 can be used to
give a recursive description of the Young module YD (2.2).

Given a Young diagram D ∈ Yn with n boxes, let Ds be the diagram consisting
of the first s rows of D, and let ks be the number of boxes in Ds . Suppose that in D

there are r rows in all, so that kr = n. Suppose we know how to decompose YDs .
Then, if we apply the Pieri rule to each component of YDs and ks+1 is the number
of boxes in Ds+1, we learn how to decompose YDs+1 . Starting with s = 1, we can
successively decompose the YDs for all s up to r , at which point we will have found
the decomposition of YD .

For example, the above methods provides us with the following combinatorial
description of the multiplicity of the irrep σE, E ∈ Yn, in YD : it is the number of
ways to fill E with a nested family of sub-diagrams Es , such that

• Es ⊂ Es+1; and,
• Es+1 − Es is a horizontal strip with ks+1 − ks boxes.

From this, we can see, again, that the multiplicity of σD in YD is 1.

4.5 The Pieri Rule for GLn(Fq)

Now we can finish our story, and deliver the answer to the introduction’s motivating
problem of decomposing IρD (4.1).

Note that the isomorphism ι (3.5), between the representation groups K(Sn) and
KB(GLn), sends IσD to IρD . So the Pieri rule for Sn, implies the Pieri rule for
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GLn(Fq), i.e., the same description as in Theorem 4.4.1, just replace there, Sn by
GLn(Fq), and σD, σE, by ρD, ρE, respectively.

Remark 4.5.1 (Decomposing Permutation Representation on Flag Variety) Replac-
ing the Young module YD , in Remark 4.4.2, by the induced representation ID =
Ind

GLn

PD
(1), which is the space of functions on the flag variety GLn/PD. We

get a recursive formula for the decomposition into irreps of the permutation
representation of GLn on functions on a fairly general flag variety.
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Appendix A Proofs

A.1 Proofs for Sect. 2

Proof of Theorem 2.2.1

For a set X let us denote by L(X) the space of complex valued functions on X. We
also use this notation to denote the standard permutation representation of a group
G, in case it acts on X.

Now we can proceed to give the proof.

Proof

Part (1) Let us analyze the space of intertwiners Hom(YE(sgn), YD). This has a
“geometric” description from which the information we are after can be read.

• First, recall that we can realize YD as the permutation representation L(TD)
associated with the action of Sn on the set TD of all tabloids that one can make
out of D (see Sect. 2.1). In the same way, YE(sgn) can be realized on the space
L(TE) with the permutation action of Sn on it twisted by sgn.

• Second, using the bases of delta functions of L(TE) and L(TD), we can associate
to every intertwiner Hom(YE(sgn), YD) a kernel function (i.e., a matrix) K on
TD × TE that satisfies

K(s(TD), s(TE)) = sgn(s)K(TD, TE), (A.1)

for every s ∈ Sn, TD ∈ TD and TE ∈ TE .
Let us denote by L(TD × TE)1⊗sgn the collection of all K satisfying Identity

(A.1).
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In summary, we obtained,

Hom(YE(sgn), YD) = L(TD × TE)1⊗sgn. (A.2)

This is a geometric description of the space of intertwiners.
Now suppose we have K from (A.2), and suppose there are TD ∈ TD and TE ∈

TE with rows, one of TD and one of TE , that share two numbers i, j ∈ {1, ..., n}.
Then, the permutation that transposes i and j must preserve K(TD, TE), and also
must change its sign. Therefore, K(TD, TE) = −K(TD, TE), so K(TD, TE) = 0.
In other words K(TD, TE) �= 0 only if

• each number from the first row of E, should sit in a different row of D, so,
E1 ≤ Dt

1,

i.e., the length E1 of the first row of E is not more than that of the first row of
Dt .

and
• each number from the second row of E should sit in a different row of D, so we

also have,
E1 + E2 ≤ Dt

1 +Dt
2.

• etc. . .

Namely, for the space (A.2) to be non-trivial, it is necessary to have
(∗) E 5 Dt .
Next, assuming E = Dt , we want to show that the intertwining space (A.2) is

one dimensional.
Let us first give one orbit in TD × TDt that supports a non-trivial intertwiner:

• Take the Young diagram D and fill each box of it with numbers from {1, .., n}.
The object we obtained in this way is called Young tableau [Fulton97]. From
it we can make in a natural way a Young tabloid TD by grouping together the
numbers in each line of the tableau.

• We could also first “transpose” the filled D to obtain a tableau associated with
Dt , and then, in the same way as above, form the corresponding tabloid TDt .

It is clear that, any two rows, one of TD and one of TDt , share no more than one
number in common. Hence, the group Sn acts freely on the orbit

OTD,TDt ⊂ TD × TDt (A.3)

of (TD, TDt ), and, in particular, there exists an intertwiner K from (A.2) which is
supported on it.

Now, let us show that (A.3) is the only orbit that supports such K . Indeed, take
s ∈ Sn, such that s(TDt ) �= TDt . But then, there are rows, one of s(TDt ), and one of
TD, that share two numbers in common, then, as was explained earlier, the orbit of
(TD, s(TDt )) does not support an intertwiner.
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Finally, let us show that if E 5 Dt , then the space (A.2) is non-zero, i.e., the
condition (∗) is also sufficient. It is enough to examine the case when E = (Dt )◦
obtained from Dt , by moving one box down to form a new lower row. Now, look at
the tabloids TD and TDt , that we used in the paragraph just above, and the natural
tabloid T(Dt )◦ one obtains from the filling of Dt by numbers as we did above in
order to create TDt . Then, as we argued above, the orbit of (TD, T(Dt )◦) supports a
non-trivial intertwiner.

Part (2) If D is not dominated by E, then from Part (1) we see that
〈YEt (sgn), YD〉 = 0, and in particular, again by Part (1), YE cannot be a
subrepresentation of YD .

On the other hand, let us assume that D is strictly dominated by E, and show that
YE 
 YD .

First, we realize the space of intertwiners between YE and YD geometrically,

Hom(YE, YD) = L(TD × TE)Sn,

where on the right hand side of the equality we have, the space of Sn-invariant
kernels K on TD × TE , or equivalently the space of functions on the set of orbits
Sn�(TD × TE).

Second, we can parametrize the above set of orbits as follows. Take TD ∈ TD,
and TE ∈ TE, and denote by Ri(TD) and Rj(TE), the i-th row of TD , and j -th row
of TE, respectively. Then, we can define the intersection matrix

RTD,TE = (rij ), rij = #
(

Ri(TD) ∩ Rj(TE)
)

, (A.4)

i.e., rij is the number of elements common to both rows. It is clear that RTD,TE

is an invariant of the orbit. Moreover, it gives a complete invariant. Indeed, it is
not difficult to see that if RTD,TE = RT ′D,T ′E , then there exists s ∈ Sn such that
s(TD) = T ′D, and s(TE) = T ′E .

A direct computation, using the parametrization (A.4), reveals that,

Claim A.1.1 Consider the Young diagrams Dn−k,k = (n − k, k) and Dn−k′,k′ =
(n− k′, k′), where 0 ≤ k, k′ ≤ n

2 . Then,

〈

YDn−k,k , YDn−k′ ,k′
〉

= min{k + 1, k′ + 1}.

So YDn,0 contains 1 representation—the trivial representation. Then YDn−1,1

contains two representations, one of which is the trivial representation. Since YDn−2,2

has intertwining number 1 with YDn,0 and 2 with YDn−1,1 , it must contain the
two representations of YDn−1,1 with multiplicity 1 each. Since its self intertwining
number is 3, it contains 3 representations, each with multiplicity 1. Then we can
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continue like that: YDn−3,3 contains each of the representations of YDn−2,2 with
multiplicity 1, and then one new representation, and so on. So in particular:

(∗∗) YDn−k−1,k+1 contains YDn−k,k when k + 1 ≤ n
2 .

Now take any diagram D, containing two rows R and R′, with R′ (which might
be of length equal to 0) at least two boxes shorter than R. Then we can form YD by
first forming the representation YDR,R′ of SR+R′ , and then extending to be trivial on
the stabilizers of the other rows, and then inducing up to Sn. So if we replace R and
R′ with R− 1 and R′ + 1, we will get a larger representation, using Fact (∗∗). This
completes the verification of Part (2), and of Theorem 2.2.1. ��

Proof of Corollary 2.3.1

Proof Note that the dominance order on Yn is a partial order, and in particular, is
anti-symmetric, i.e., for every E,D ∈ Yn, if E 5 D and E 4 D, then E = D. But,
if σE - σD , then, by the “iff” of Part (1) of Theorem 2.2.1, E 5 D and E 4 D, so
the Corollary follows. ��

A.2 Proofs for Sect. 4

Proof of Theorem 4.4.1

Proof Schur duality for Sk × GLn(C) on the k-fold tensor product (Cn)⊗k
says

(Proposition 4.3.2, Eq. (4.5)) that we have

(Cn)⊗k -
∑

D∈Yk

σD
k ⊗ πD

n ,

where πD
n is the irrep of GLn(C) with highest weight corresponding to the diagram

D.
We can also apply Schur duality to the action of Sn−k × GLn(C) on (Cn)⊗n−k

.
Then the space of fixed vectors for Sn−k is the Sn−k × GLn(C)-module 1n−k ⊗
π
(n−k)
n , corresponding to the diagram with one row of length n− k. This is just the

(n− k)-th symmetric power of the standard action on Cn.
Now consider,

(Cn)⊗n - (Cn)⊗k ⊗ (Cn)⊗n−k
,

as an Sn-module, again with Sn acting by permutation of the factors. If we take the
isotypic component of σD inside (Cn)⊗k

, and the space of fixed vectors for Sn−k
inside (Cn)⊗n−k

, their tensor product will be the isotypic component inside (Cn)⊗n

of the representation σD ⊗ 1n−k of Sk × Sn−k .
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On the other hand, the action of GLn(C) on the indicated tensor product is
described by (a multiple of) the tensor product πD

n ⊗ π
(n−k)
n . By the Pieri rule

for GLn(C) (see Proposition 4.2.1) this decomposes into a multiplicity free sum
of irreps for GLn(C) whose highest weights are given by diagrams E having the
form indicated in the statement of the proposition: E has n boxes, contains D, and
E−D consists of a horizontal (n−k)-strip. Thus, the Sk×Sn−k isotypic component
for σD ⊗ 1n−k of (Cn)⊗n

has the structure

∑

E

σD ⊗ 1n−k ⊗ πE
n , (A.5)

as Sk × Sn−k × GLn(C)-module, where E runs over the diagrams specified in the
statement of the proposition.

Now consider the representation of Sn generated by this space. By Schur duality
for Sn, it will be

∑

E

σE ⊗ πE
n ,

as Sn × GLn(C)-module. Comparing this with Formula (A.5), we conclude that
each representation σE of Sn contains one copy of the representation σD ⊗ 1n−k
when restricted to Sk × Sn−k , and that these are the only representations of Sn that
do contain σD ⊗ 1n−k . By Frobenius reciprocity, this is equivalent to the statement
of Theorem 4.4.1. The proof is complete. ��
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1 Introduction

Over the last decade a theory of free noncommutative (nc) functions that are
evaluated in tuples of matrices of arbitrary size was developed. The theory becomes
particularly rich when the functions have a domain that is assumed to be right (or
left) admissible, in which case the functions admit a Taylor expansion and, under
mild boundedness assumptions, are analytic. We refer to [15] for the first book that
presents a comprehensive account of the theory, as well the seminal papers [27, 28]
by J.L. Taylor that foreshadowed much of the work on this topic of the last decade.
Precise definitions will be given a little further in this introduction.

More recently, in connection with Löwner’s theorem [18–20], the notion of
real nc functions appeared. These functions have domains that consist of tuples
on Hermitian matrices, precluding the right (or left) admissibility property, and
satisfy slightly different conditions. Another instance where real nc function come
up in a natural way is as the real and imaginary part of an nc function. In the
present paper we derive the noncommutative Cauchy-Riemann equations for the
real and imaginary part of an nc function and consider the question when two real
nc functions satisfying the noncommutative Cauchy-Riemann equations appear as
the real and imaginary part of an nc function.

We will now provide more precise definitions and state our main result. Through-
out H and K are complex Hilbert spaces. Denote by B(H,K) the space of bounded
linear operators fromH toK, abbreviated to B(H) in caseH = K. Let V ⊂ B(H) be
an operator system, i.e., a norm closed (complex) linear subspace of B(H) for some
Hilbert space H, which is closed under taking adjoints and contains the identity
operator IH of B(H). We denote the real subspace of self-adjoint operators in V by
Vsa.

Note that for every operator system V ⊂ B(H) there exists a sequence of norms
‖ · ‖n on Vn×n, n = 1, 2, . . . , such that

‖X ⊕ Y‖n+m = max{‖X‖n, ‖Y‖m} for all X ∈ Vn×n, Y ∈ Vm×m, (1.1)

and

‖SXT ‖n � ‖S‖‖X‖n‖T ‖ for all X ∈ Vn×n and S, T ∈ C
n×n, (1.2)

where Cn×n denotes the vector space of n × n complex matrices and ‖ · ‖ denotes
the operator norm of Cn×n with respect to the standard Euclidean norm of Cn. Here,
for X ∈ Vm×n and S ∈ Cr×m, T ∈ Cn×s the product SXT is to be interpreted as
(IH ⊗ S)X(IH ⊗ T ) ∈ Vr×s . For more details see [6, p. 21].

We consider functions with domains in

Vnc :=
∞
∐

n=1

Vn×n or Vsa
nc :=

∞
∐

n=1

(Vn×n)sa.
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A subset D of Vnc or Vsa
nc is said to be an nc set in case it respects direct sums:

X,Y ∈ D  ⇒ X ⊕ Y =
[

X 0
0 Y

]

∈ D.

In some papers the converse implication as well as additional features are also
assumed, cf., [19, 20]. See Lemma 2.7 below as well as the paragraph preceding
this lemma. For an nc set D and a positive integer n we define Dn := D∩Vn×n. An
nc set D ⊂ Vnc is called right admissible in case

X ∈ Dn, Y ∈Dm,Z ∈Vn×m  ⇒
[

XrZ

0 Y

]

∈ Dn+m for some 0 �= r ∈ C. (1.3)

In case the nc set D is right admissible and closed under similarity, then the “for
some” part in the right-hand side of (1.3) can be replaced by “for all.” There is a
dual notion of left admissibility, see page 18 and onwards in [15], but we will not
need this notion in the present paper.

Let V ⊂ B(H) and W ⊂ B(K) be operator systems. A function w : D →
Wnc whose domain D is an nc set in Vnc is called an nc function in case it has the
following properties:

(NC-i) w is graded, i.e., w(Dn) ⊂Wn×n for n = 1, 2, . . .;
(NC-ii) w respects direct sums, i.e., for all X,Y ∈ D we have

w(X ⊕ Y ) = w(X) ⊕ w(Y );

(NC-iii) w respects similarities, i.e., for all X ∈ Dn, S ∈ Cn×n invertible so that
SXS−1 ∈ Dn, we have

w(SXS−1) = Sw(X)S−1.

For more on operator systems, and more generally operator spaces, as well
as matrices over operator systems and operator spaces see [6, 22]. As a specific
example let V be the operator system of diagonal matrices in Cd×d , which can
be identified with Cd . In that case Vn×n can be identified with d-tuples of n × n

matrices, and hence Vnc corresponds to the set of square complex matrices of
arbitrary size. Furthermore, in that case Vsa

nc corresponds to
∐∞

n=1(Hn)
d , with Hn

denoting the real space of n× n Hermitian matrices.
Much of the theory of nc functions developed in [15] is for nc functions whose

domains are right (or left) admissible, in which case for each X, Y , Z and r �= 0
as in (1.3) one can define the right difference-differential operator �w(X, Y ) at the



336 S. ter Horst and E. M. Klem

point Z via

w

([

X rZ

0 Y

])

=
[

w(X) r�w(X, Y )(Z)

0 w(Y )

]

, (1.4)

with the zero and two block diagonal entries following from (NCi)–(NCiii). This
right difference-differential operator is linear in Z and provides a difference formula
for w leading to the so-called Taylor-Taylor expansion of w, and, under certain
boundedness assumptions on w, provides the Gâteaux-derivative of w; see [15] for
an elaborate treatment. Recall that the Gâteaux- or G-derivative of a function g :
Dg → Y with domain Dg ⊂ X , with X and Y Banach spaces over the field K = C

or K = R, at a point X ∈ Dg in the direction Z ∈ X is given by

Dg(X)(Z) := lim
K7t→0

g(X + tZ)− g(X)

t
, (1.5)

provided the limit exist. Then g is said to be Gâteaux- or G-differentiable in case
Dg is open and Dg(X)(Z) exists for all X ∈ Dg and all Z ∈ X . In the case of an nc
function w on D, G-differentiability means that for each positive integer n, on the
restriction of w to Dn should be G-differentiable; see Sect. 3 for further details and
references on G-differentiability as well as Fréchet- or F-differentiability.

A function w : Dw → Wsa
nc is called a real nc function in case its domain D is

an nc set contained in Vsa
nc which is graded and respects direct sums, i.e., (NC-i) and

(NC-ii) above hold, and

(RNC-iii) w respects unitary equivalence, i.e., for all X ∈ Dn, U ∈ Cn×n unitary
so that UXU∗ ∈ Dn, we have

w(UXU∗) = Uw(X)U∗.

Despite the seeming limitation of unitary equivalence over similarity, one of the
contributions of the present paper is the observation that real nc functions are also
nc functions, see Theorem 2.1 below. Hence (NC-i), (NC-ii) and (RNC-iii) imply
(NC-iii). This result relies heavily on the fact that the domains of real nc functions
consist of self-adjoint operators only. The latter also implies that the domains of real
nc functions are ‘nowhere right admissible,’ and hence much of the theory developed
in [15] does not apply to real nc functions.

The combination of the conditions (NC-i), (NC-ii) and (RNC-iii) without the
restriction to self-adjoint operators has appeared in the literature before, for instance
in work on extensions of the continuous functional calculus to the noncommutative
setting [9, 10] building on results on noncommutative Gelfand-Naimark theory [3, 7,
26]. More recently, the combination of these three conditions appeared in the work
of Davidson and Kennedy on noncommutative Choquet theory [4] and in work of
Klep and S̆penko on free function theory [16].
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Now, given an nc function f on a right admissible domain Df ⊂ Vnc, we write

f (A+ iB) = u(A,B)+ iv(A,B), A+ iB ∈ Df , (1.6)

for A,B ∈ Vsa
nc of the same size and with

u(A,B) := Re f (A+ iB) and v(A,B) := Im f (A+ iB).

This defines real nc functions u and v on domain

D = {(A,B) ∈ (Vsa
nc)

2 : A+ iB ∈ Df }.

Here (Vsa
nc)

2 is to be interpreted as 2 × 2 block diagonals with Vsa
nc entries, that

is, (Vsa
nc)

2 = (V2)sa
nc. Note that D is open in (Vsa

nc)
2 precisely when Df is open in

Vnc; in both cases open means that the restriction of the domain to n × n operator
matrices is open in ((Vsa)n×n)2 and Vn×n, respectively. Furthermore, in case f is
G-differentiable, then so are u and v and their G-derivatives satisfy the following
noncommutative Cauchy-Riemann equations

Du(A,B)(Z1, Z2) = Dv(A,B)(−Z2, Z1),

for (A,B) ∈ Dn, Z1, Z2 ∈ (Vn×n)sa, n ∈ N.
(1.7)

See Theorem 4.1 for these claims as well as additional results.
Conversely, one may wonder whether G-differentiable real nc functions u and

v with open domains Du and Dv , respectively, in (Vsa
nc)

2 that satisfy (1.7) on
D = Du ∩Dv define an nc function f via (1.6). For this purpose, G-differentiability
does not seem to be the appropriate notion of differentiability, and we will rather
assume the stronger notion of F-differentiability, in which case the derivative is still
obtained via (1.5); see Sect. 3 for further details. Even in classical complex analysis
this phenomenon occurs, see [5, 8] as well as Remark 5.6 below. Our main result is
the following theorem.

Theorem 1.1 Let u and v be real nc functions with open domains Du and Dv ,
respectively, in (Vsa

nc)
2 that are F-differentiable and satisfy the nc Cauchy-Riemann

equations (1.7) on D = Du ∩Dv . Define f on Df = {A+ iB ∈ Vnc : (A,B) ∈ D}
via (1.6). Then f is a F-differentiable nc function.

Apart from the present introduction, this paper consists of four sections. In
Sect. 2 we prove that real nc functions are nc functions, consider some examples
and look at domain extensions. Next, in Sect. 3 we review the notions of Gâteaux-
and Fréchet differentiability for nc functions. The domains of real nc functions are
not right-admissible so that the G-derivative cannot be determined algebraically
through the difference-differential operator. In the following section we derive
properties of the real and imaginary parts of an nc function, including the nc Cauchy-
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Riemann equations. Finally, in Sect. 5 we consider the converse direction and prove
Theorem 1.1.

2 Real nc Functions Are nc Functions

In this section we focus on real nc functions only, without assuming any form of
differentiability. Our main result is the following theorem.

Theorem 2.1 Real nc functions are nc functions.

In order to prove this result we first show that real nc functions also respect
intertwining. Throughout let V ⊂ B(H) and W ⊂ B(K) be operator systems.

Proposition 2.2 A graded function w : D → Wsa
nc on an nc set D ⊂ Vsa

nc respects
direct sums and unitary equivalence if and only if it respects intertwining: if X ∈
Dn, Y ∈ Dm, and T ∈ Cn×m so that XT = T Y , then w(X)T = T w(Y ).

Proof The necessity follows from Proposition 2.1 in [15]. Assume w respects direct
sums and unitary equivalence, i.e.,w is a real nc function. Let X ∈ Dn, Y ∈ Dm, and
T0 ∈ Cn×m so that XT0 = T0Y . If T0 = 0, then it is trivial that w(X)T0 = T0w(Y ),
so assume T0 �= 0. Set T = ‖T0‖−1T0 so that ‖T ‖ = 1. Let DT := (I − T ∗T )1/2

and DT ∗ := (I − T T ∗)1/2 be the defect operators of the contractions T and T ∗,
respectively. Since X and Y are self-adjoint we have

T ∗X = YT ∗.

Therefore

XD2
T ∗ = X(I − T T ∗) = X − T YT ∗ = X − T T ∗X = (I − T T ∗)X = D2

T ∗X,

and similarly YD2
T = D2

T Y . By the spectral theorem we have XDT ∗ = DT ∗X and
YDT = DT Y . Let UT be the unitary rotation matrix associated with T :

UT =
[

T DT ∗
DT −T ∗

]

.

Then

[

X 0
0 Y

]

UT =
[

XT XDT ∗
YDT −YT ∗

]

=
[

T Y DT ∗X
DT Y −T ∗X

]

= UT

[

Y 0
0 X

]

.

Hence

U∗T
[

X 0
0 Y

]

UT =
[

Y 0
0 X

]

∈ Dn+m.
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Since w respects direct sums and unitary equivalence, we have that

[

w(Y ) 0
0 w(X)

]

= w

([

Y 0
0 X

])

= w

(

U∗T
[

X 0
0 Y

]

UT

)

= U∗T w
([

X 0
0 Y

])

UT = U∗T
[

w(X) 0
0 w(Y )

]

UT .

This shows that

[

w(X)T w(X)DT ∗
w(Y )DT −w(Y )T ∗

]

=
[

w(X) 0
0 w(Y )

]

UT = UT

[

w(Y ) 0
0 w(X)

]

=

=
[

Tw(Y ) DT ∗w(X)

DT w(Y ) −T ∗w(X)

]

.

Comparing the left-upper corners in the above identity yields w(X)T = T w(Y ),
and thus

w(X)T0 = ‖T0‖w(X)T = ‖T0‖T w(Y ) = T0w(Y )

as desired. ��
Proof of Theorem 2.1 This is now straightforward. By assumption the function w

is graded and respects direct sums. Let X ∈ Dn and T ∈ Cn×n invertible so that
Y := T −1XT ∈ Dn. Then XT = T Y , and thus w(X)T = T w(Y ) holds by
Proposition 2.2. Therefore, we have

w(T −1XT ) = T −1T w(Y ) = T −1w(X)T . ��

Remark 2.3 Theorem 2.1 shows that assumptions (NC-i), (NC-ii) and (RNC-iii)
imply (NC-iii), that is: For X ∈ Dn, S ∈ Cn×n invertible so that SXS−1 ∈ Dn, we
have

w(SXS−1) = Sw(X)S−1.

An important feature here is that Y := SXS−1 ∈ Dn implies, in particular, that
Y is self-adjoint. In this case, X and Y are not only similar, but also unitarily
equivalent. In the finite dimensional case this follows from [13, Problem 4.1.P3];
for completeness we included the result in the current setting as Lemma 2.4 below.
Consequently, we have w(SXS−1) = w(UXU∗) = Uw(X)U∗. However, to
arrive at w(SXS−1) = Sw(X)S−1 it still seems necessary to have a result like
Proposition 2.2, at least for the case of positive definite similarities.

Lemma 2.4 Let Y,X ∈ Vsa
n and S ∈ Cn×n invertible so that Y = SXS−1 . Then

Y = UXU∗, where U ∈ Cn×n is the unitary part of the polar decomposition of S.
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Proof Let S = U� be the polar decomposition of S with U unitary and � positive
definite. Since X and Y are self-adjoint, we have

U�X�−1U∗ = SXS−1 = Y = Y ∗ = (S∗)−1XS∗ = U�−1X�U∗.

Thus

�X�−1 = �−1X�, so that �2X = X�2.

This implies that �X = X�, which yields

Y = SXS−1 = U�X�−1U∗ = UXU∗,

as claimed. ��
Example 2.5 It also follows from Theorem 2.1 that real nc functions are only
distinguishable from other nc functions by the fact that their domains are contained
in Vsa

nc. Simple examples show that the assumption D ⊂ Vsa
nc cannot be removed

without Theorem 2.1 losing its validity. Any one of the functions

w1(X) = X∗, w2(X) = (X∗X)
1
2

can be defined on Vnc, where they satisfy (NC-i), (NC-ii) and (RNC-iii) but not
(NC-iii), hence they are not nc functions on Vnc, but their restrictions to Vsa

nc are, by
Theorem 2.1.

Example 2.6 For V = W = C, so that Vnc and Vsa
nc are complex and Hermitian

matrices of all sizes, respectively, more intricate examples can easily be constructed.
Via the continuous functional calculus, any continuous function w with domain in
R can be extended to a real nc function on the nc set of Hermitian matrices whose
spectrum is contained in the domain of w, even when it is not differentiable. Clearly
the resulting real nc function is also not differentiable in case w is not.

It is not directly clear how a continuous function of several real variables can
be extended to a real nc function, except when the domain is restricted to tuples
of commuting matrices. In passing, we note that a (unintentional) non-example
is given in [14], where an extension of a function in several real variables to a
noncommutative domain is considered, which, after some minor modifications, can
be restricted to an nc domain in

∐∞
n=1(Hn)

d , leading to a non-graded function (it
maps (Hn)

d to Hnd ) which does satisfy conditions (NC-ii) and (RNC-iii).

Domain Extensions Since a real nc function w with domain D is an nc function,
it follows from Proposition A.3 in [15] that w can be uniquely extended to an nc
function, also denoted by w, on the similarity invariant envelop of D:

D(si) := {SXS−1 : X ∈ Dn, S ∈ C
n×n invertible}
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via

w(Y ) = w(SXS−1) := Sw(X)S−1 (Y = SXS−1 ∈ D(si)).

However, in general, D(si) will not be contained in Vsa
nc, although all operators in

D(si) have real spectrum and the only nilpotent operator in D(si) is the zero operator
0, assuming 0 ∈ D. In the context of real nc functions it may be more natural to
consider the extension of w to the unitary equivalence invariant envelop

D(ue) := {UXU∗ : X ∈ Dn, U ∈ C
n×n unitary} = D(si) ∩ Vsa

nc,

with w extended as before. The fact that D(ue) = D(si) ∩ Vsa
nc follows from

Lemma 2.4. As this is just the restriction to D(ue) of the extension of w to D(si),
clearly we end up with a real nc function extension of w to D(ue) which is uniquely
determined by w.

In [19, 20] real free sets (in a slightly different setting) are nc sets D that are
closed under unitary equivalence and have the following property:

(a) For X,Y ∈ Vsa
nc we have X,Y ∈ D if and only of X ⊕ Y ∈ D.

One implication is true by the assumption that D is an nc set, but the other direction
need not be true for the unitary equivalence envelop of an nc set contained in Vsa

nc.

Lemma 2.7 Let D ⊂ Vsa
nc be an nc set. Then the unitary equivalence envelop D(ue)

of D is a real free set if and only if it is closed under left injective intertwining: If
X ∈ D(ue)

n , Y ∈ Vsa
nc and S ∈ Cn×m injective so that XS = SY , then Y ∈ D(ue).

In [2, Definition 2.4] an nc set which is closed under left injective intertwining is
called a full nc set, and such sets play an important role in the study of interpolation
theory in the noncommutative Schur-Agler class [2].

Proof of Lemma 2.6 Assume D(ue) is closed under injective intertwining. Since D
is an nc set, so is D(ue), by [15, Proposition A.1]. Hence it remains to show that for
X,Y ∈ Vsa

nc with X ⊕ Y ∈ D also X,Y ∈ D. This follows by taking S = S1 =
[

I
0

]

and S = S2 =
[

0
I

]

, respectively, with sizes compatible with the decomposition of
X ⊕ Y . Indeed, clearly S1 and S2 are injective and we have (X ⊕ Y )S1 = S1X and
(X ⊕ Y )S2 = S2Y . Thus D(ue) is an nc set in Vsa

nc which is closed under unitary
equivalence and satisfies (a), hence it is a real free set.

For the converse direction, assume D(ue) is a real free set. Take X ∈ D(ue)
n ,

Y ∈ Vsa
nc and S ∈ Cn×m injective so that XS = SY . Since D(ue) is closed

under unitary equivalence and S is injective, without loss of generality S = [

S1
0

]

with S1 invertible. Then XS = SY implies Ran(S) is invariant for X. However,
X is self-adjoint, so that Ran(S) is in fact a reducing subspace for X. Hence
X = X1 ⊕ X2 with respect to the same decomposition as for S. Then property
(a) implies X1 ∈ (Vm×m)sa is in D(ue), and XS = SY yields X1S1 = S1Y , i.e.,
X1 = S1YS

−1
1 . Hence X1 and Y are similar. Since X1 and Y are self-adjoint, X1

and Y are also unitarily equivalent, by Lemma 2.4. Hence Y is in D(ue). ��
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Remark 2.8 In Chapter 9 of [15], for an nc set D in Vnc (as well as in more general
settings) the direct summand extension of D is defined as

Dd.s.e. = {X ∈ Vnc : X ⊕ Y ∈ D for some Y ∈ Vnc}.

Clearly, Dd.s.e. satisfies property (a) above. It is shown, in [15, Proposition 9.1], that
in case D respects similarities, Dd.s.e. is right admissible and finitely open, whenever
D is right admissible and finitely open, respectively. Furthermore, by Proposition
9.2 in [15] an nc function on the similarity respecting nc set D extends uniquely
to an nc function on Dd.s.e.. However, in the context of the present paper, we are
mainly interested in nc set consisting of self-adjoint operators which may or may
not respect unitary equivalence, but will not likely respect similarities.

3 Differentiability of nc Functions

For differentiation of vector-valued functions several notions exist, and these may
differ for real and complex vector spaces. We refer to Section III.3 in [12], Section
5.3 in [1] and Sections 2.3 and 2.4 in [21] for elaborate treatments. In this paper we
will only encounter Gâteaux (G-)differentiability and Fréchet (F-)differentiability.
In the context of nc functions over complex Banach spaces these notions are
discussed in Chapter 7 of [15], with a few remarks dedicated to the case of real
Banach spaces.

For the remainder of this section, let V ⊂ B(H) and W ⊂ B(K) be operator
systems. We start with the definitions of G-differentiability and F-differentiability,
not distinguishing whether the field K we work over is K = R or K = C, where in
the case of K = R we consider nc functions with domains contained in Vsa

nc and for
K = C the nc functions are assumed to have a domain in Vnc. Now let w be an nc
function defined on an open domain D in Vsa

nc (for K = R) or in Vnc (for K = C)
and taking values in Wnc (contained in Wsa

nc if K = R). Then for each X ∈ Dn

and Z ∈ Vn×n (in (Vn×n)sa for K = R) we define the G-derivative of w at X in
direction Z as the limit

Dw(X)(Z) := lim
K7t→0

w(X + tZ)−w(X)

t
= d

dt
w(X + tZ)

∣

∣

∣

∣

t=0
, (3.1)

provided the limit exists, in which case we say that w is G-differentiable at X in
direction Z. Furthermore, if w is G-differentiable at X ∈ D in all directions Z, then
we call w G-differentiable at X, and in case w is G-differentiable at all X ∈ D we
say that w is G-differentiable. We shall usually refer to Z as the directional variable.

Following [12], we say that the nc function w is F-differentiable in X ∈ Dn

in case w is G-differentiable in X, the G-derivative Dw(X) at X is linear and
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continuous in the directional variable and satisfies

lim‖Z‖→0

‖w(X + Z)−w(X) −Dw(X)(Z)‖n
‖Z‖n = 0. (3.2)

Note that if for X ∈ D there exists a continuous, linear map Z �→ Dw(X)(Z) that
satisfies (3.2), then it must satisfy (3.1), so that w is G-differentiable at X. Hence,
existence of a continuous, linear map Z �→ Dw(X)(Z) satisfying (3.2) can be used
as another definition of F-differentiability. Even in case w is F-differentiable, we
will refer to (3.1) as the G-derivative of w.

The Case D ⊂ Vnc (K = C) This case is discussed in detail in Chapter 7 of [15].
We just mention a few specific results relevant to the present paper and to illustrate
the contrast with the case of real nc functions. Firstly, as observed in [11, 29], in
case the G-derivative of w exists at X, then Dw(X)(Z) is automatically linear in Z

(homogeneity is always satisfied, but additivity may fail if K = R). In fact, if, in
addition, Dw(X)(Z) is continuous in Z, by Theorem 2.4 in [30], G-differentiability
and F-differentiability of w coincide.

Also, since the domain D of w is assumed to be open in Vnc it must be right-
admissible and hence the difference-differential operator �w(X, Y )(Z) defined via
(1.4) exists for all X ∈ Dn, Y ∈ Dm and Z ∈ Vn×m. By Theorem 7.2 in [15],
w is G-differentiable in case w is locally bounded on slices, that is, if for any n,
X ∈ Dn and any Z ∈ Vn×n there exists a ε > 0 so that t �→ w(X + tZ) is bounded
for |t| < ε. Moreover, in that case we have Dw(X)(Z) = �w(X,X)(Z), and
hence the G-derivative can be determined algebraically by evaluating w in

[

X rZ
0 X

]

for small r . Furthermore, by Theorem 7.4 in [15], w is F-differentiable in case w

is locally bounded, that is, if for any n, X ∈ Dn there exists a δ > 0 so that w is
bounded on the set of Y ∈ Dn with ‖X − Y‖n < δ.

The Case D ⊂ Vsa
nc (K = R) The domains of real nc functions are ‘nowhere right

admissible’, hence one cannot in general define the difference-differential operator
�w of a real nc function w in the way it is done for nc functions defined on a right
admissible nc set. Nonetheless, Proposition 2.5 in [20] provides a difference formula
for real nc functions, provided they are F-differentiable.

As pointed out in Example 2.6, any continuous function with domain in R

can be extended to a real nc function. Clearly G- or F-differentiability will not
follow under local boundedness properties; consider, for instance, the function w2
in Example 2.5. The theory of G- and F-differentiability for functions between real
Banach spaces is treated in Section 5.3 in [1] and Sections 2.3 and 2.4 in [21]. It is
not the case here that G- and F-differentiability coincide. Also, the G-derivative need
not be linear in the directional variable. By Proposition 5.3.4 in [1] or Proposition
2.51 in [21], a sufficient condition under which G-differentiability at a pointX ∈ Dn

implies F-differentiability at X is that the map Y �→ Dw(Y ) from Dn into the
space of linear operators from (Vn×n)sa to (Wn×n)sa is continuous at X. Even if
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w is F-differentiable, there does not appear to be a general way to determine Dw

algebraically, since there is no difference-differential operator.
The formula presented in the next proposition can be seen as complementary to

the difference formula in [20, Proposition 2.5].

Proposition 3.1 Let w : D → Wsa
nc be a G-differentiable real nc function on an

open domain D ⊂ Vsa
nc. For X ∈ Dn and Z ∈ Vsa

n , with n arbitrary, we have

Dw

([

X 0
0 X

])([

0 Z

Z 0

])

=
[

0 Dw(X)(Z)

Dw(X)(Z) 0

]

.

Proof Note that

V ∗
[

X + tZ 0
0 X − tZ

]

V =
[

X tZ

tZ X

]

, where t ∈ R, V = 1√
2

[

I I

I −I
]

.

Since D is open and X ∈ D, for small t both 2 × 2 block operator matrices are in
D. Hence, because V is unitary, we have

w

([

X tZ

tZ X

])

= w

(

V ∗
[

X + tZ 0
0 X − tZ

]

V

)

= V ∗
[

w(X + tZ) 0
0 w(X − tZ)

]

V

= 1

2

[

w(X + tZ)+w(X − tZ) w(X + tZ)−w(X − tZ)

w(X + tZ)−w(X − tZ) w(X + tZ)+w(X − tZ)

]

.

Using this formula we obtain

Dw

([

X 0
0 X

])([

0 Z

Z 0

])

= lim
t→0

w

([

X tZ

tZ X

])

−w

([

X 0
0 X

])

t

= 1

2
lim
t→0

[

w(X+tZ)+w(X−tZ)−2w(X)
t

w(X+tZ)−w(X−tZ)
t

w(X+tZ)−w(X−tZ)
t

w(X+tZ)+w(X−tZ)−2w(X)
t

]

= 1

2
lim
t→0

[

w(X+tZ)−w(X)
t −w(X−tZ)−w(X)

−t
w(X+tZ)−w(X)

t +w(X−tZ)−w(X)
−t

w(X+tZ)−w(X)
t

+w(X−tZ)−w(X)
−t

w(X+tZ)−w(X)
t

−w(X−tZ)−w(X)
−t

]

= 1

2

[

Dw(X)(Z) −Dw(X)(Z) Dw(X)(Z) +Dw(X)(Z)

Dw(X)(Z) +Dw(X)(Z) Dw(X)(Z) −Dw(X)(Z)

]
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=
[

0 Dw(X)(Z)

Dw(X)(Z) 0

]

. ��

4 Real and Imaginary Part of an nc Function

Throughout this section, let V ⊂ B(H) and W ⊂ B(K) be operator systems and let
f be an nc function with domain Df ⊂ Vnc. As in the introduction, we define the
real and imaginary parts of f as

u : Du →Wsa
nc, v : Dv →Wsa

nc, with (4.1)

Du = Dv = D :=
∞
∐

n=1

{(A,B) : A,B ∈ (Vn×n)sa, A+ iB ∈ Df } ⊂ (Vsa
nc)

2,

with u and v defined for (A,B) ∈ D by

u(A,B) := Re f (A+ iB) = 1

2
(f (A+ iB)+ f (A+ iB)∗),

v(A,B) := Im f (A+ iB) = 1

2i
(f (A+ iB)− f (A+ iB)∗).

(4.2)

In particular, u, v and f satisfy (1.6). The following theorem is the main result of
this section.

Theorem 4.1 Let f be a G-differentiable nc function defined on an open nc set
Df ⊂ Vnc and define u and v as in (4.1) and (4.2). Then u and v are G-differentiable
real nc functions, whose G-derivatives at (A,B) ∈ Dn in direction Z = (Z1, Z2) ∈
((Vn×n)sa)2, for any n, are given by

Du(A,B)(Z1, Z2) = ReDf (A+ iB)(Z1 + iZ2),

Dv(A,B)(Z1, Z2) = ImDf (A+ iB)(Z1 + iZ2),
(4.3)

and Du, Dv are R-linear in the directional variable and satisfy the nc Cauchy-
Riemann equations: For all n ∈ N, (A,B) ∈ Dn and Z1, Z2 ∈ (Vn×n)sa

Du(A,B)(Z1, Z2) = Dv(A,B)(−Z2, Z1). (4.4)

Finally, if f is F-differentiable, then u and v are F-differentiable as well.

In order to prove this result we first prove a lemma that will also be useful in
the sequel. The result may be well-known, but we could not find it in the literature,
hence we add a proof for completeness.
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Lemma 4.2 For Z = Z1 + iZ2 ∈ Vnc with Z1, Z2 ∈ Vsa
nc we have

‖(Z1, Z2)‖sa,n ≤ ‖Z1 + iZ2‖n ≤ 2‖(Z1, Z2)‖sa,n. (4.5)

Proof Set

δ = ‖Z1 + iZ2‖n = ‖Z‖n, ρ = ‖(Z1, Z2)‖sa,n = max{‖Z1‖sa,n, ‖Z2‖sa,n}.

Then

δ2In ≥ Z∗Z = Z2
1 +Z2

2 + [iZ1, Z2] and δ2In ≥ ZZ∗ = Z2
1 +Z2

2 − [iZ1, Z2].

Here [T1, T2] is the commutator of the operators T1, T2, i.e., [T1, T2] = T1T2−T2T1.

Taking the average of the above two inequalities gives

δ2In ≥ Z2
1 + Z2

2 .

Hence Z2
j ≤ δ2In, or equivalently, ‖Zj‖sa,n ≤ δ for both j = 1, 2. Therefore,

we have ‖(Z1, Z2)‖sa,n ≤ δ = ‖Z1 + iZ2‖n. For the second inequality, note that
Z2
j ≤ ρ2In for j = 1, 2. Also, we have

‖[iZ1, Z2]‖sa,n = ‖Z1Z2 − Z2Z1‖sa,n ≤ 2‖Z1‖sa,n‖Z2‖sa,n ≤ 2ρ2.

This implies −2ρ2In ≤ [iZ1, Z2] ≤ 2ρ2In, since [iZ1, Z2] ∈ (Vn×n)sa. We then
obtain

0 ≤ Z∗Z = Z2
1 + Z2

2 + [iZ1, Z2] ≤ 4ρ2In,

so that ‖Z‖n ≤ 2ρ = 2‖(Z1, Z2)‖sa,n. ��
Since the inequalities in (4.6) provide a comparison between the norms in Vnc

and Vsa
nc, the following corollary is immediate.

Corollary 4.3 The nc set Df is open if and only if D is open.

By applying the inequalities of Lemma 4.2 to both the denominator and
numerator, we obtain the following corollary.

Corollary 4.4 Let Z1, Z2 ∈ (Vn×n)sa and T1, T2 ∈ (Wm×m)sa. Then

1

2

‖(T1, T2)‖sa,m

‖(Z1, Z2)‖sa,n
≤ ‖T1 + iT2‖m
‖Z1 + iZ2‖n ≤ 2

‖(T1, T2)‖sa,m

‖(Z1, Z2)‖sa,n
. (4.6)
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Proof of Theorem 4.1 The proof is divided into four parts.

Part 1: u and v Are Real nc Functions It is straightforward to check that u and
v are graded and respect direct sums, since f has these properties. Clearly D is
contained in (Vsa

nc)
2. It remains to verify that u and v respect unitary equivalence.

Let (A,B) ∈ Dn and U ∈ Cn×n unitary so that (UAU∗, UBU∗) ∈ Dn. Set X =
A + iB ∈ Df . By definition of D we have UXU∗ ∈ Df , and since f respects
similarities, and hence unitary equivalence, we have

f (UXU∗) = Uf (X)U∗.

The left hand side specifies to

f (UXU∗) = f (UAU∗ + iUBU∗) = u(UAU∗, UBU∗)+ iv(UAU∗, UBU∗),

while on the right hand side we get

Uf (X)U∗ = Uf (A+ iB)U∗ = Uu(A,B)U∗ + iUv(A,B)U∗.

Since the values of u and v are self-adjoint and (Vn×n)sa is closed under unitary
equivalence, it follows that

u(UAU∗, UBU∗) = Uu(A,B)U∗ and v(UAU∗, UBU∗) = Uv(A,B)U∗.

Hence, u and v respect unitary equivalence.

Part 2: Proof of (4.3) Let X = A + iB ∈ Df,n, Z = Z1 + iZ2 ∈ Vn×n with
A,B,Z1, Z2 ∈ Vsa

nc. Assume f is G-differentiable at X in direction Z. In this part
we show that u and v are G-differentiable at (A,B) in the direction (Z1, Z2) and
that their G-derivatives satisfy

Df (A+ iB)(Z1+ iZ2) = Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2). (4.7)

This proves (4.3) and shows that u and v are G-differentiable in case f is G-
differentiable.

To see that our claim holds, note that for 0 �= t ∈ R we have

f (X + tZ)− f (X)

t
= f (A+ iB + t (Z1 + iZ2))− f (A+ iB)

t

= u(A+ tZ1, B + tZ2)+ iv(A+ tZ1, B + tZ2)− u(A,B)− iv(A,B)

t

= u(A+ tZ1, B + tZ2)− u(A,B)

t
+ i

v(A+ tZ1, B + tZ2)− v(A,B)

t
.
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The result follows by letting t go to 0, and noting that in the right most side of the
above identities the limits of the real and imaginary parts are independent. From
(4.3) and the fact that Df is C-linear in the directional variable, it is straightforward
to see that Du and Dv are R-linear in their directional variable.

Part 3: Cauchy-Riemann Equations The proof follows along the same lines as
the classical complex analysis proof. For X = A + iB, Z = Z1 + iZ2 and h ∈ R

we have

f (X + ihZ)− f (X) = f (A+ iB + ih(Z1 + iZ2)− f (A+ iB)

= f (A− hZ2 + i(B + hZ1))− f (A+ iB)

= u(A− hZ2, B + hZ1)+ iv(A− hZ2, B + hZ1)− u(A,B)− iv(A,B)

= u(A− hZ2, B + hZ1)− u(A,B)+ i(v(A− hZ2, B + hZ1)− v(A,B)).

Dividing by ih and taking h→ 0 we obtain

Df (X)(Z) = lim
h→0

f (X + ihZ)− f (X)

ih

= lim
h→0

v(A− hZ2, B + hZ1)− v(A,B)

h
+

− i lim
h→0

u(A− hZ2, B + hZ1)− u(A,B)

h

= Dv(A,B)(−Z2, Z1)− iDu(A,B)(−Z2, Z1).

Comparing with (4.7) provides the desired equations.

Part 4: F-differentiability Assume f is F-differentiable. This implies that f is
G-differentiable and hence u and v are G-differentiable, by Part 2. Since Df is C-
linear in the directional variable, it is clear from (4.3) thatDu andDv are R-linear in
the directional variable. Now let X = A+ iB with (A,B) ∈ Dn and Z = Z1+ iZ2
with Z1, Z2 ∈ (Vn×n)sa. Then

f (X + Z)− f (X)−Df (X)(Z) =
= u(A+ Z1, B + Z2)− u(A,B)−Du(A,B)(Z1, Z2)+

+ i(v(A+ Z1, B + Z2)− v(A,B) −Dv(A,B)(Z1, Z2)).

Now apply Corollary 4.4 with Z1 and Z2 as above and

T1 = u(A+ tZ1, B + Z2)− u(A,B)−Du(A,B)(Z1, Z2),

T2 = v(A+ tZ1, B + Z2)− v(A,B)−Dv(A,B)(Z1, Z2),
(4.8)
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and note that Z → 0 if and only if (Z1, Z2) → 0, by Lemma 4.2. It then follows
that

lim‖Z‖n→0

‖f (X + Z)− F(X)−Df (X)(Z)‖n
‖Z‖n = 0 (4.9)

holds if and only if

lim‖(Z1,Z2)‖sa,n→0

‖u(A+ tZ1, B + tZ2)− u(A,B)−Du(A,B)(Z1, Z2)‖sa,n

‖(Z1, Z2)‖sa,n
= 0

and

lim
‖(Z1,Z2)‖sa,n→0

‖v(A+ tZ1, B + tZ2)− v(A,B)−Dv(A,B)(Z1, Z2)‖sa,n

‖(Z1, Z2)‖sa,n
= 0.

In particular, since (4.9) holds, and (A,B) ∈ Dn and Z1, Z2 ∈ (Vn×n)sa were
chosen arbitrarily, it follows that u and v are F-differentiable. ��

The fact that the G-derivative of a G-differentiable nc function on a complex-
open domain (and hence right-admissible) can be computed algebraically, via block
upper triangular matrices, provides additional structure for its real and imaginary
parts, which enables us to compute their G-derivatives algebraically as well.

Proposition 4.5 Let f be an nc function defined on an open nc set Df ⊂ Vnc and
define u and v as in (4.1)–(4.2). Let X = A+ iB ∈ Df,n and Y = C + iD ∈ Df,m

and Z ∈ Vn×m such that
[

X Z
0 Y

] ∈ Df,n+m. Then

([

A 1
2Z

1
2Z

∗ C

]

,

[

B − i
2Z

i
2Z

∗ D

])

∈ D (4.10)

and there exist operators TX,Y,1 and TX,Y,2 from Vn×m toWn×m so that

u

([

A 1
2Z

1
2Z

∗ C

]

,

[

B − i
2Z

i
2Z

∗ D

])

=
[

u(A,B) TX,Y,1

T ∗X,Y,1 u(C,D)

]

,

v

([

A 1
2Z

1
2Z

∗ C

]

,

[

B − i
2Z

i
2Z

∗ D

])

=
[

v(A,B) TX,Y,2

T ∗X,Y,2 v(C,D)

]

.

(4.11)

Moreover, if X = Y , Z = Z1 + iZ2 with Z1, Z2 ∈ (Vn×n)sa and f is locally
bounded on slices, then

Du(A,B)(Z1, Z2) = TX,Y,1 + T ∗X,Y,1, Dv(A,B)(Z1, Z2) = TX,Y,2 + T ∗X,Y,2.
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Proof The decomposition

[

X Z

0 Y

]

=
[

A+ iB Z1 + iZ2

0 C + iD

]

=
[

A 1
2Z

1
2Z

∗ C

]

+ i

[

B − i
2Z

i
2Z

∗ D

]

, (4.12)

together with
[

X Z
0 Y

] ∈ Df,n+m yields (4.10). Since f is an nc function, we have

f

([

X Z

0 Y

])

=
[

f (X) �f (X, Y )(Z)

0 f (Y )

]

,

with �f (X, Y )(Z) the right nc difference-differential operator applied to f , at the
point (X, Y ) and direction Z. Note that

[

f (X) �f (X, Y )(Z)

0 f (Y )

]

=
[ 1

2 (f (X)+ f (X)∗) 1
2�f (X, Y )(Z)

1
2�f (X, Y )(Z)

∗ 1
2 (f (Y )+ f (Y )∗)

]

+

+ i

[− i
2 (f (X)− f (X)∗) − i

2�f (X, Y )(Z)
i
2�f (X, Y )(Z)

∗ − i
2 (f (Y )− f (Y )∗)

]

=
[

u(A,B) 1
2�f (X, Y )(Z)

1
2�f (X, Y )(Z)

∗ u(C,D)

]

+

+ i

[

v(A,B) − i
2�f (X, Y )(Z)

i
2�f (X, Y )(Z)

∗ v(C,D)

]

.

This formula for f (
[

X Z
0 Y

]

) together with (4.12) proves (4.11), where we take
TX,Y,1 = 1

2�f (X, Y )(Z) and TX,Y,2 = − 1
2�f (X, Y )(Z).

Now assume X = Y and f is locally bounded on slices. Then f is G-
differentiable and �f (X, Y )(Z) = Df (X)(Z). It now follows by Theorem 4.1
that

TX,Y,1 + T ∗X,Y,1 = ReDf (X)(Z) = Du(A,B)(Z1, Z2),

and, similarly, Dv(A,B)(Z1, Z2) = TX,Y,2 + T ∗X,Y,2. ��
Not all real nc functions “respect diagonals” as in (4.11). Also, one may wonder

whether (4.11) in some form extends beyond points of the form (4.10) in case u

and v are the real and imaginary parts of an nc function. This is also not the case in
general. We illustrate this in the following example.

Example 4.6 Consider the following three real nc functions

u(A,B) = A2 − B2, v(A,B) = AB + BA, w(A,B) = A2 ((A,B) ∈ (Vsa
nc)

2).
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Then u and v are the real and imaginary part of the nc function f (X) = X2. For an
arbitrary 2 × 2 block point

(E, F ) :=
([

A Z1

Z∗1 C

]

,

[

B Z2

Z∗2 D

])

∈ (Vsa
nc)

2

we obtain:

u(E,F ) =
[

A2 − B2 + Z1Z
∗
1 − Z2Z

∗
2 AZ1 − BZ2 + Z1C − Z2D

Z∗1A− Z∗2B + CZ∗1 −DZ∗2 C2 −D2 + Z∗1Z1 − Z∗2Z2

]

,

v(E, F ) =
[

AB + BA+ Z1Z
∗
2 + Z2Z

∗
1 BZ1 + AZ2 + Z2C + Z1D

Z∗1B + Z∗2A+ CZ∗2 +DZ∗1 CD +DC + Z∗1Z2 + Z∗2Z1

]

,

w(E,F ) =
[

A2 + Z1Z
∗
1 AZ1 + Z1C

Z∗1A+ CZ∗1 C2 + Z1Z
∗
1

]

.

It follows that u(E,F ) =
[

u(A,B) ∗
∗ u(C,D)

]

holds if and only if

Z1Z
∗
1 = Z2Z

∗
2 and Z∗1Z1 = Z∗2Z2, (4.13)

while v(E, F ) =
[

v(A,B) ∗
∗ v(C,D)

]

holds if and only if

Z1Z
∗
2 = −Z2Z

∗
1 and Z∗1Z2 = −Z∗2Z1. (4.14)

Both conditions are true in case Z2 = ±iZ1. Conversely, these conditions on Z1
and Z2 together imply Z2 = ±iZ1, but, in general, neither implies Z2 = ±iZ1 by
itself. Indeed, the identities in (4.13) imply that the kernels and co-kernels of Z1
and Z2 coincide, so that we can reduce to the case where Z1 and Z2 are invertible.
In that case, by Douglas’ Lemma, (4.13) is equivalent to the existence of unitary
operators U and V so that Z1 = UZ2 = Z2V . Assume U and V are like this, and
Z1, Z2 invertible. Then (4.14) implies

Z2Z
∗
2UZ2Z

∗
2 = Z2Z

∗
2Z1Z

∗
2 = −Z2Z

∗
1Z2Z

∗
2 = −Z2Z

∗
2U

∗Z2Z
∗
2 .

However, Z2 is invertible, hence Z2Z
∗
2 is invertible. Thus we find that U = −U∗,

which implies U = ±iI . Hence Z1 = ±iZ2.

On the other hand, we have w(E,F) =
[

w(A,B) ∗
∗ w(C,D)

]

precisely when Z1 = 0.

Hence (4.11) holds with u or v replaced by w if and only if Z = 0, which is true for
any real nc function.



352 S. ter Horst and E. M. Klem

5 Cauchy-Riemann Equations: Sufficiency

In this section we prove Theorem 1.1. Throughout, let

u : Du → Vsa
nc and v : Dv → Vsa

nc (5.1)

be real nc functions. For notational convenience we introduce the nc set

D := Du ∩Dv.

Now we define f on Df := {A+ iB : (A,B) ∈ D} by

f (A+ iB) = u(A,B)+ iv(A,B) (A+ iB ∈ Df ). (5.2)

It is easy to see that f is graded, respects direct sums as well as unitary equivalence,
since u and v have these properties. However, it is not necessarily the case that f
respects similarities, despite the fact that u and v do. The following proposition
sums up the properties that f has without further assumptions on u and v (except
G-differentiability in the last part). The claims follow directly from (5.2), hence we
omit the proof.

Proposition 5.1 Let u and v be real nc functions as in (5.1) and define f as in (5.2).
Then f is graded, respects direct sums and respects unitary equivalence. Moreover,
in case X = A+ iB with (A,B) ∈ Dn, Z = Z1 + iZ2 with Z1, Z2 ∈ (Vn×n)sa, for
any n ∈ N, and u and v are G-differentiable at (A,B) in direction (Z1, Z2), then

lim
R7t→0

f (X + tZ)− f (X)

t
= Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2). (5.3)

Remark 5.2 Without additional assumptions on u and v it is possible to prove
something slightly stronger than the fact that f respects unitary equivalence. If X =
A+iB ∈ Df,n and S ∈ Cn×n is invertible, such that C := SAS−1 and D := SBS−1

are in (Vn×n)sa, then it still follows easily that f (SXS−1) = Sf (X)S−1, using the
fact that u and v respect similarity. Note that in this case (A,B) and (C,D) are not
only similar via S, but also unitarily equivalent via the unitary matrix in the polar
decomposition of S, cf., Remark 2.3. In general, of course, it will not be the case
that C and D are self-adjoint.

To prove, under the conditions of Theorem 1.1, that f respects similarity, and
hence is an nc function, we will use Lemma 2.3 of [20]. To apply this lemma, we
need to prove that f has the following two properties:

(i) f is F-differentiable;
(ii) the following identity holds

Df (X)([T ,X]) = [T , f (X)], X ∈ Df,n, T ∈ C
n×n, n = 1, 2, . . . . (5.4)
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As before, [S,Q] denotes the commutator of the operators S and Q. Note that if S
and Q are self-adjoint, then [S,Q] is skew-adjoint, and hence [iS,Q] = i[S,Q] is
self-adjoint.

That nc functions satisfy (5.4) is a consequence of the first order difference
formula obtained in [15, Theorem 2.11], which in fact goes back to the work of
J.L. Taylor in [28].

To achieve more than in Proposition 5.1 we require the nc Cauchy-Riemann
equations (1.7) which, for convenience, we recall here: For n = 1, 2, . . .

Du(A,B)(Z1, Z2) = Dv(A,B)(−Z2, Z1), (A,B) ∈ Dn, Z1, Z2 ∈ (Vn×n)sa.

(5.5)

From Proposition 5.1 it is clear what the G-derivative of f should be in case f is
F-differentiable. For X = A+ iB ∈ Df,n and Z1 + iZ2 ∈ Vn×n we define

˜Df (A+ iB)(Z1 + iZ2) := Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2), (5.6)

provided the G-derivatives of u and v exist in (A,B). As a first step we show that
˜Df (X)(Z) is C-linear in Z.

Lemma 5.3 Let u and v be G-differentiable, real nc functions that satisfy the nc
Cauchy-Riemann equations (5.5) and assume that Du, Dv are R-linear in the
directional variable. Then the map ˜Df (X)(Z) defined in (5.6) is C-linear in the
directional variable Z.

Proof Since the maps Du and Dv are R-linear in the directional variable, we have
that ˜Df is additive and R-homogeneous in the directional variable. Write z ∈ C as
z = reiθ with r ≥ 0 and θ ∈ [0, 2π]. Note that

eiθZ = (cos θ + i sin θ)(Z1 + iZ2)

= (Z1 cos θ − Z2 sin θ)+ i(Z1 sin θ + Z2 cos θ).

Set Z1,θ := Z1 cos θ − Z2 sin θ and Z2,θ := Z1 sin θ + Z2 cos θ . It follows that

˜Df (X)(zZ) = Du(A,B)(rZ1,θ , rZ2,θ )+ iDv(A,B)(rZ1,θ , rZ2,θ )

= r(Du(A,B)(Z1,θ , Z2,θ )+ iDv(A,B)(Z1,θ , Z2,θ )). (5.7)

Using that G-derivatives Du and Dv are R-linear in the directional variables
together with the Cauchy-Riemann equations (5.5) yields

Du(A,B)(Z1,θ , Z2,θ ) = cos θDu(A,B)(Z1, Z2)+ sin θDu(A,B)(−Z2, Z1)

= cos θDu(A,B)(Z1, Z2)− sin θDv(A,B)(Z1, Z2).
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Similarly, we have

Dv(A,B)(Z1,θ , Z2,θ ) = cos θDv(A,B)(Z1, Z2)+ sin θDv(A,B)(−Z2, Z1)

= cos θDv(A,B)(Z1, Z2)+ sin θDu(A,B)(Z1, Z2).

Combining these formulas shows

Du(A,B)(Z1,θ , Z2,θ )+ iDv(A,B)(Z1,θ , Z2,θ ) =
= (cos θ + i sin θ)Du(A,B)(Z1, Z2)+ ((cos θ + i sin θ))iDv(A,B)(Z1, Z2)

= eiθ (Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2)). (5.8)

Together with (5.7) this yields

˜Df (X)(zZ) = z(Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2)),

so that ˜D is C-homogeneous in the directional variable, and hence C-linear. ��
With linearity out of the way, it is straightforward to prove f is F-differentiable

in case u and v are F-differentiable.

Lemma 5.4 Let u and v be F-differentiable real nc functions that satisfy the nc
Cauchy-Riemann equations (5.5). Then f given by (5.2) is F-differentiable with G-
derivative given byDf (X)(Z) = ˜Df (X)(Z) as in (5.6).

Proof The proof is similar to the last part of the proof of Theorem 4.1. Since u

and v are F-differentiable, they are G-differentiable, and thus ˜Df is C-linear in the
directional variable. To see that f is F-differentiable, note that for X = A + iB ∈
Df,n and Z = Z1 + iZ2, Z1, Z2 ∈ (Vn×n)sa, we have

f (X + Z)− f (X)− ˜Df (X)(Z) =
= (u(A+ Z1, B + Z2)− u(A,B)−Du(A,B)(Z1, Z2))+

+ i(v(A+ Z1, B + Z2)− v(A,B) −Dv(A,B)(Z1, Z2)).

Using T1 and T2 as in (4.8) the same argument applies, in the opposite direction, to
conclude that F-differentiability of u and v implies F-differentiability of f . ��
Lemma 5.5 Let u and v be F-differentiable, real nc functions that satisfy the nc
Cauchy-Riemann equations (5.5). Define f as in (5.2). Then (5.4) holds.

Proof Let X = A+ iB and T = T1 + iT2. Then

[T ,X] = ([iT1, B] + [iT2, A])+ i([iT1,−A] + [iT2, B]).
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Set Z1 = [iT1, B] + [iT2, A] and Z2 = [iT1,−A] + [iT2, B]. By Lemma 5.4 we
obtain

Df (X)([T ,X]) = Du(A,B)(Z1, Z2)+ iDv(A,B)(Z1, Z2).

Note that

Du(A,B)(Z1, Z2) = Du(A,B)([iT1, B] + [iT2, A], [iT1,−A] + [iT2, B])
= Du(A,B)([iT2, A], [iT2, B])+Du(A,B)([iT1, B], [iT1,−A])
= Du(A,B)([iT2, (A,B)])+Du(A,B)([iT1, (B,−A)]).

Applying the Cauchy-Riemann equations (5.5) to the second summand gives

Du(A,B)(Z1, Z2) = Du(A,B)([iT2, (A,B)])+Dv(A,B)([iT1, (A,B)]).

Now use that Part (a) Lemma 2.3 of [20] applies to u and v. This yields

Du(A,B)(Z1, Z2) = [iT2, u(A,B)] + [iT1, v(A,B)].

Similarly, for Dv(A,B)(Z1, Z2) we get

Dv(A,B)(Z1, Z2) = Dv(A,B)([iT2, (A,B)])+Dv(A,B)([iT1, (B,−A)])
= Dv(A,B)([iT2, (A,B)])+Dv(A,B)([iT1, (−A,−B)])
= Dv(A,B)([iT2, (A,B)])−Du(A,B)([iT1, (A,B)])
= [iT2, v(A,B)] − [iT1, u(A,B)].

Therefore, we have

Df (X)([T ,X]) =
= [iT2, u(A,B)] + [iT1, v(A,B)] + i([iT2, v(A,B)] − [iT1, u(A,B)])
= [iT2, u(A,B)] − i[iT1, u(A,B)] + [iT1, v(A,B)] + i[iT2, v(A,B)]
= [T1 + iT2, u(A,B)] + [T1 + iT2, iv(A,B)]
= [T , u(A,B)+ iv(A,B)] = [T , f (X)],

as claimed. ��
Proof of Theorem 1.1 The proof of this theorem is now straightforward. The fact
that f is graded and respects direct sums follows from Proposition 5.1. Lemma 5.4
yields the F-differentiability of f. Finally, from Lemma 5.5 we have that (5.4) holds
and combining this with the fact that f is F-differentiable we can apply Lemma 2.3
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of [20] to conclude that f respects similarities. Therefore, f is a F-differentiable nc
function. ��
Remark 5.6 As pointed out in [5], in classical complex analysis, G-differen-
tiability of u and v together with the Cauchy-Riemann equations is not strong
enough to prove analyticity of f . Continuity of the partial derivatives provides F-
differentiability, which is strong enough; this corresponds to the approach taken
in the present paper. The Looman-Menchoff theorem, cf., [24, p. 199], states that
continuity of f , and hence of u and v, is also sufficient. This in turn implies
that u and v were F-differentiable from the start. As the proof of the Looman-
Menchoff theorem requires the Baire category theorem and Lebesgue integration,
it is not clear whether a similar relaxation of Theorem 1.1 can be achieved in the
context considered here. In particular, the theory of integration of nc functions does
not appear to be well developed so far. We are just aware of the paper [23] on
the nc Hardy space over the unitary matrices and the recent PhD thesis [25] on
antiderivatives of higher order nc functions.
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Uniform Roe Algebras and Geometric
RD Property

Ronghui Ji and Guoliang Yu

Dedicated to the memory of Ronald G. Douglas

Abstract We survey an early work of the authors on the notion of geometric RD
property for a uniformly locally finite metric space. We show that metric spaces of
polynomial growth satisfy this property. Associated to a metric space X with the
geometric RD property we define a Fréchet space BS2(X) which in fact is a smooth
and dense subalgebra of the uniform Roe algebra of the space X. This resulted an
alternate proof of a result of the first named author on the nonexistence of positive
scalar curvature on certain manifolds.

1 Introduction

This is an early note of the authors on smooth dense subalgebras of Roe algebras. We
introduce a notion of geometrically rapid decaying metric spaces and its associated
smooth subalgebra of the Roe algebra for the space. We verify that metric spaces of
polynomial growth are geometrically rapidly decaying. Using this property we can
reprove some results of the second named author on the nonexistence of positive
scalar curvature on manifolds, which are uniformly contractible, of polynomial
volume growth, and of bounded geometry with polynomial growing contractibility
radius [13]. Initially we felt that hyperbolic metric spaces should satisfy this
geometric RD property but V. Lafforgue informed us that free groups are not of
this geometric RD property and in a later published paper [4], Chen and Wei give

R. Ji (�)
Department of Mathematical Science, IUPUI, Indianapolis, IN, USA
e-mail: ronji@iupui.edu

G. Yu
Department of Mathematics, Texas A&M University, College Station, TX, USA
e-mail: guoliangyu@math.tamu.edu

© Springer Nature Switzerland AG 2020
R. E. Curto et al. (eds.), Operator Theory, Operator Algebras and Their
Interactions with Geometry and Topology, Operator Theory: Advances
and Applications 278, https://doi.org/10.1007/978-3-030-43380-2_16

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43380-2_16&domain=pdf
mailto:ronji@iupui.edu
mailto:guoliangyu@math.tamu.edu
https://doi.org/10.1007/978-3-030-43380-2_16


360 R. Ji and G. Yu

a complete characterization of this class of spaces and proved that this class is
precisely the set of metric spaces of polynomial growth. Since their results relied
on some of our results, we decide to publish this note as a survey of the program
initiated by the second named author, and for the purpose of the completeness of
the subject. It also serves as a memory of Ron G. Douglas, who guided us through
our careers. Since the program is still at its infancy we would like to invite readers
to investigate positive scalar curvature problem by using smooth dense subalgebras
and cyclic cohomology theory of Connes [5].

2 Geometric Rapid Decay Spaces and Spectral Invariance

In this section we define geometric rapid decay property for discrete metric spaces
using dense subalgebras in uniform Roe algebras. We will prove that if the geometric
RD conditions are satisfied, the dense subalgebra of the uniform Roe algebra is
stable under holomorphic functional calculus.

Definition 2.1 Let (X, d) be a discrete metric space. Let �2(X) be the natural �2-
space of X.

(a) Let BS2(X) be the Fréchet space of functions on X ×X.

{k : X ×X −→ C|supx∈X
∑

y∈X
|k(x, y)|2(1+ d(x, y))2k <∞, k = 1, 2, . . .}.

The seminorms ‖ · ‖s are defined by

‖k‖s =
(

supx∈X
∑

y∈X
|k(x, y)|2(1+ d(x, y))2s)1/2

,

where k ∈ BS2(X) and s > 0.
(b) Given a function k : X × X −→ C. k is said f initely propagated if there

is a constant ck > 0, such that, k(x, y) = 0 whenever d(x, y) > ck . k is said
bounded if it defines a bounded operator on �2(X) by convolution. That is,
k : �2(X) −→ �2(X) defined by

k % ξ(x) =
∑

y∈X
k(x, y)ξ(y)

is a bounded operator. The precompleted uniform Roe algebra of X is defined
to be

Cu(X) = {k : X ×X −→ C| k is bounded and finitely propagated}.
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LetC∗u(X) be the norm closure of Cu(X) in B(�2(X)), and is called the uniform
Roe algebra.

(c) X is said geometrically rapidly decaying if BS2(X) ⊂ C∗u(X).

We remark that Cu(X) ⊂ BS2(X).

Lemma 2.2 Each element in C∗u(X) is represented by a kernel function k : X ×
X −→ C such that k ∈ �∞(X, �2(X)) = �∞,2(X ×X).

Proof Let T ∈ C∗u(X). Then there exists a sequence ϕn ∈ Cu(X) such that ϕn
converges to T in norm. Therefore, for each y ∈ X, ϕn%δy converges to T %δy in the
L2-norm, where δy is the characteristic function on X at y. Now define ϕT (x, y) =
T % δy(x). Clearly, ϕT % ξ = T % ξ . ��

We remark again, by virtue of this lemma and the closed graph theorem, that
(X, d) is rapidly decaying if and only if there exist a C > 0 and an s > 0, such that
‖ϕ‖C∗u(X) ≤ C‖ϕ‖s for all ϕ ∈ BS2(X).

Unlike the case of rapidly decaying groups, it is not clear how to show directly
that BS2(X) is a convolution algebra if (X, d) is rapidly decaying. But this follows
from the following theorem as a byproduct.

Theorem 2.3 Suppose that (X, d) is rapidly decaying, then BS2(X) is a smooth
and dense subalgebra (under convolution) of C∗u(X). In other words, BS2(X) ⊗
Mn(C) is stable under holomorphic functional calculus in C∗u(X) ⊗Mn(C) for all
n > 0. Moreover, the inclusion induces an isomorphism between their K-theories.

Proof We will use Connes-Moscovici’s argument for hyperbolic groups [6] in our
context. Let x0 ∈ X be a fixed point. Define an (in general) unbounded and self
adjoint operator Dx0 on �2(X) by

Dx0ξ(y) = d(y, x0)ξ(y), for y ∈ X.

Let δx0 : B(�2(X)) −→ B(�2(X)) be the unbounded derivation defined by δx0A =
i[Dx0, A]. Set

Domain(δn) = {ϕ ∈ C∗u(X)|supx0
‖(δx0)n(ϕ)‖ <∞}.

It is clear that ∩Domain(δn) is an algebra by the virtue of the derivation property of
δx0 and by the fact that

supx‖a(x)b(x)‖ ≤ supx‖a(x)‖ · supx‖b(x)‖

for any families of operators a(x), b(x) depending on the parameter x. We also
denote

BS(X) =
∞
⋂

n=0

Domain(δn) ∩ C∗u(X),
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and claim that BS(X) = BS2(X). The smoothness of BS(X) in C∗u(X) can be
established by the same proof of Theorem (1.2) in [8]. Thus, the claim will end the
proof of the theorem.

In fact, the claim is straightforward once we notice the following formula:

(δx0)n(ϕ)(ξ)(x) = in
∑

y∈X
ϕ(x, y)ξ(y)(d(x, x0)− d(y, x0))

n.

If ϕ ∈ BS2(X) ⊂ C∗u(X), then

∑

x∈X
|(δx0)n(ϕ)ξ(x)|2 ≤

∑

x∈X

(
∑

y∈X
|ϕ(x, y)||ξ(y)|d(x, y)n)2 ≤ ‖ϕn‖2

C∗u(X)‖ξ‖2,

Where ϕn(x, y) = |ϕ(x, y)|d(x, y)n. Since ϕ ∈ BS2(X) ⊂ C∗u(X), ϕn ∈
BS2(X) ⊂ C∗u(X). Therefore, ϕ ∈ Domain(δn), for all n, consequentlyϕ ∈ BS(X).

If ϕ ∈ BS(X), then there exists Cn > 0, which is independent of x0, such that
for all ξ ∈ �2(X),

Cn‖ξ‖2 ≥
∑

x∈X
|(δx0)n(ϕ)ξ(x)|2.

In particular, take ξ(x) = δ0(x) = {1 x=x0
0 otherwise, then

∞ > Cn ≥
∑

x∈X
|ϕ(x, x0)d(x, x0)

n|2

for all n. By induction, supx0∈X
∑

x∈X |ϕ(x, x0)|2(1 + d(x, x0))
2n < ∞ for all n.

Thus, ϕ ∈ BS2(X). ��

3 Examples of Geometrically Rapid Decay Spaces

In this section we will show that polynomial growth spaces are of geometric RD
property.

For a metric space (X, d), we will denote by V the range of the distance function
d(·, ·) in X. That is,

V = {d(x, y)|x, y ∈ X}.

If the space is countable, V is clearly countable.
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Definition 3.1 A discrete metric space (X, d) is said to be of polynomial growth if
there exists a real polynomial P(x) such that for any r > 0,

supx0
|{x ∈ X|d(x, x0) < r}| ≤ P(r).

For a space of polynomial growth, it is clear that the space is countable and that
the polynomial P(x) in the definition can be chosen to be C(1 + x)n for some
constant C > 0 and an integer n > 1. Moreover, we will require that the space
(X, d) has the following property that

supy∈X
∑

x∈X
(1+ d(x, y))−2N <∞ (%)

for some integer N > 1.

Proposition 3.2 A metric space (X, d) of polynomial growth with the property (%)
is geometrically rapidly decaying.

Proof Let ϕ ∈ BS2(X). We have to show that ‖ϕ‖C∗u(X) < ∞. In fact, for ξ ∈
�2(X), we have

‖ϕ % ξ‖2
2 =

∑

x∈X
|
∑

y∈X
ϕ(x, y)ξ(y)|2

≤
∑

x∈X

(

∑

y∈X
|ϕ(x, y)|(1+ d(x, y))N(1+ d(x, y))−N |ξ(y)|

)2

≤
∑

x∈X

(

∑

y∈X
|ϕ(x, y)|2(1+ d(x, y))2N

)(

∑

y∈X
(1+ d(x, y))−2N |ξ(y)|2

)

≤
(

supx∈X
∑

y∈X
|ϕ(x, y)|2(1+ d(x, y))2N

)

∑

x∈X

∑

y∈X
(1+ d(x, y))−2N |ξ(y)|2

≤
(

supx∈X
∑

y∈X
|ϕ(x, y)|2(1+ d(x, y))2N

)(

supy∈X
∑

x∈X
(1+ d(x, y))−2N

)

‖ξ‖2
2

= C

(

supx∈X
∑

y∈X
|ϕ(x, y)|2(1+ d(x, y))2N

)

‖ξ‖2
2,

where C = supy∈X
∑

x∈X(1+ d(x, y))−2N <∞.

This proves the proposition. ��
Corollary 3.3 If 	 is a group of polynomial growth, then 	 is also a geometrically
rapidly decaying space as a metric space with respect to any length function on 	.
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4 Quasi-Isometry and Geometrically Rapid Decay Spaces

In this section we show that geometric RD property for metric spaces is a quasi-
isometric invariant.

Theorem 4.1 Suppose that (X, d) and (Y, d ′) are quasi-isometric metric spaces,
which are uniformly locally finite. Then X is rapidly decaying if and only if Y is.

Proof We note first that a quasi-isometric bijection between two metric spaces
preserves the rapid-decaying property. Without loss of generality, we may assume
that (X, d) is rapidly decaying.

First of all, if X is rapidly decaying so are its subspaces. This is because that if
X0 ⊂ X, then C∗u(X0) is contained in C∗u(X) naturally. Using the restricted distance
function d0 on X0, we see that BS2(X0) ⊂ BS2(X). If BS2(X) ⊂ C∗u(X), then
BS2(X0) ⊂ BS2(X) ⊂ C∗u(X). But the support of ϕ ∈ BS2(X0) is contained in
X0 ×X0, thus, BS2(X0) ⊂ C∗u(X0).

Next, let f be a quasi-isometry from X to Y . For any x0 ∈ X the subset Sx0 =
{x ∈ X|f (x) = f (x0)} is finite, and sup{|Sx ||x ∈ X} = M <∞ by the uniformly
local finiteness. Let X0 be a subset of X such that X = 8x∈X0Sx . Thus, X0 ↪→ X

is an injective quasi-isometry. This implies that f : X0 −→ Y is also an injective
quasi-isometry.

Let d0 > 0 be such that d ′(f (X0), y) < d0 for any y ∈ Y , and k > 0 be a positive
integer which is an upper bound of |B(y, d0)| for all y ∈ Y , where B(y, d0) = {z ∈
Y |d ′(z, y) < d0}. The reason that k is finite is because that Y is uniformly locally
finite. Let Y0 = f (X0). We set F = {0, 1, 2, . . . , k − 1} with the standard metric,
and Z = X0 × F with the metric defined by d ′′((x, i), (x ′, j)) = d(x, x ′)+ |i − j |
for all (x, i) and (x ′, j) in Z.

Let us define an embedding ρ : Y ↪→ Z as follows. First, ρ(y) = (f−1(y), 0)
for all y ∈ Y0. Let Y0 = {y1, . . . , yn, . . .}. Let y11, . . . , y1i1 ∈ Y such that 0 <

d ′(y1j , y1) < k, where 1 ≤ j ≤ i1 ≤ k. For y2, let y21, . . . , y2i2 ∈ Y so that
0 < d ′(y2j , y2) < k, and y2j �= y1i for any i, j . Proceeds inductively that for each
yn, let yn1, . . . , ynin ∈ Y so that 0 < d ′(ynj , yn) < k, and ynj �= ymi for any
1 ≤ m < n and any i, j . Now we define ρ(yij ) = (f−1(yi), j). This is a well-
defined map from Y into Z. Since f is a quasi-isometry, it is not difficult to check
that ρ is a quasi-isometric embedding.

Now since (X, d) is rapidly decaying, so is (X0, d). Since F is finite, BS2(X0 ×
F) ∼= BS2(X0)⊗Mk(C) and C∗u(Z) ∼= C∗u(X0)⊗Mk(C) canonically. This implies
that (Z, d ′′) is also rapidly decaying. Therefore, (Y, d ′) is too. ��
Remark Theorem 4.1 will remain valid if we assume weak quasi-isometry instead
of quasi-isometry provided that the positive valued functions ρ1, ρ2 in the definition
of weak quasi-isometry are of polynomial growth. A positive function ρ on R+
is said to be of polynomial growth if ρ(t) ≤ p(t) for some fixed polynomial
p(t), where t ≥ 0. On the other hand, if one assumes that all metric spaces under
consideration are quasi-geodesic, then by Gromov [7] that weak quasi-isometry is
equivalent to quasi-isometry.
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5 The Product Space of Geometric RD Spaces

In this section all metric spaces will be assumed countable. We wish to establish
that the product of two such rapidly decaying spaces is again rapidly decaying. This
property is a reminiscence of the same property for rapid-decaying groups [10]. To
this end we need to extend the construction of a uniform Roe algebra to a more
general context.

Definition 5.1 ([9]) Let A be any normed algebra, and let (X, d) be a metric
space.

(a) The uniform Roe algebra on X with coefficients in A is defined to be the
convolution algebra of the following set of kernel functions with values in A:

Cu(X;A) = {k : X ×X −→ A| k is bounded and finitely propagated}.

(b) Suppose that A is a Fréchet algebra with increasing seminorms {‖ · ‖m|m =
1, 2, . . .}. The Fréchet space of rapidly decaying functions on X with values in
A is defined to be:

BS2(X,A) = {k : X ×X −→ A|
supx∈X

∑

y∈X
‖k(x, y)‖2

m(1+ d(x, y))2k <∞, k,m = 1, 2, . . . , }.

(c) The seminorms ‖ · ‖s,m are defined by

‖k‖s,m =
(

supx∈X
∑

y∈X
‖k(x, y)‖2

m(1+ d(x, y))2k)1/2
,

where k ∈ BS2(X) and s = 0, 1, 2, . . ..

Remark Suppose that A is a C∗-algebra. Let �2(X,A) be the Hilbert module with
the A-valued inner product

〈ξ, ψ〉A =
∑

x∈X
ξ%(x)ψ(x).

Then Cu(X;A) acts on �2(X,A) as a bounded convolution algebra. Its completion
in B(�2(X,A)) will be denoted by C∗u(X;A).
Lemma 5.2 If (X, d) is rapidly decaying, then BS2(X,A) is naturally contained
in C∗u(X;A) for any C∗-algebra A.
Proof We note that BS2(X) ⊗alg A ⊂ C∗u(X) ⊗alg A ⊂ C∗u(X;A), and each
containment is norm dense. ��
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Lemma 5.3 Let (X, d) and (Y, d ′) be metric spaces which are rapidly decaying.
Then there are natural isomorphisms:

(a) BS2(X × Y ) ∼= BS2(X,BS2(Y ));
(b) C∗u(X × Y ) ∼= C∗u(X;C∗u(Y )).
Proof We observe that BS2(X) ⊗ BS2(Y ) ⊂ BS2(X × Y ) as a dense subset as
topological vector spaces and similarly for part (b). ��
Theorem 5.4 If (X, d) and (Y, d ′) are rapid-decaying metric spaces, so is (X ×
Y, d + d ′).

Proof This follows immediately from Lemmas 5.2 and 5.3. ��

6 The Fundamental Cyclic Cocycle

This section is devoted to a survey of the program initiated by the second named
author on positive scalar curvature problem. Let M be a noncompact complete
Riemannian manifold. Recall from [13] that the uniform Roe algebra C∗u(M)

consists of smoothing operators acting on L2(M) with kernel k such that k(x, y)
vanishes when the distance between x and y is greater than some constant depending
on the operator k and 6nk is uniformly bounded for all positive integers n, where
6nk is the Laplace operator on M × M . Similarly, one defines the uniform Roe
algebra C∗u(S) of the Clifford bundle S on the manifold M . As was shown in [13]
that if the Clifford bundle S has bounded geometry [11] then the index Ind D of
the Dirac operator D on S lies in C∗u(S) [13, Lemma 3.1]. Therefore, it defines
an element in K0(C

∗
u(S)). With the same condition we have a natural embedding

i : C∗u(S) ↪→ C∗u(M)⊗Mn(C) for some n [13, Lemma 3.2]. This implies that the
index Ind D defines a K-theory element in K0(C

∗
u(M)). The K-theoretic indices

of Dirac operators have important applications to the spectral theory of Laplacian,
homotopy invariance of higher signature for certain group cohomology classes and
the scalar curvature problem [11–14]. The Chern character of IndD lives in the
cyclic homology of C∗u(M). But for analytical reason it is more useful to consider
the pairing of cyclic cocycle with IndD. In [13] the second author computed the
cyclic cohomoloy of C∗u(M). Let us recall the result of calculation.

Recall that 	 is called a net in M if 	 is a discrete subspace of M and ∃ε > 0
such that supγ∈	m(x, 	) ≤ ε for all x ∈ M. This concept is introduced by Connes,
Gromov and Moscovici.

Definition 6.1 For any d ≥ 0, the Rips’ polyhedron Pd(	) associated to 	 is the
simplicial polyhedron whose set of vertices (i.e. the 0-skeleton) equals to 	 and
where a finite subset {γ0, · · · , γn} ⊂ 	 spans a n-simplex [γ0, · · · , γn] if and only
if every two points in {γ0, · · · , γn} have distance less than or equal to d .
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The Rips’ polyhedron was first introduced in the studying of hyperbolic groups.
Set P(	) = ∪d≥0Pd(	). Define H ∗

inf (P (	)) to be the simplicial cohomology (with
infinite support and uniformly bounded coefficients) of P(	).

Theorem 6.2 ([13]) The cyclic cohomology HCn(C∗u(M)) of C∗u(M) is naturally
isomorphic to ⊕k≤0H

n+2k,u
inf (P (	)).

The second author also obtained a formula for the pairing between cyclic
cocycles and IndD. We remark that Roe has previously constructed many interesting
cyclic cocycles and has computed their pairing with Ind D [12].

For the purpose of applications we need to know when theK-theoretic indices are
nonzero in the K-theory of C∗u(M), the C∗ closure of Cu(M). This can be achieved
by extending the cyclic cocycles to some dense holomorphically closed subalgebras
of C∗u(M).

The most interesting cyclic cocycle in this connection is the fundamental cyclic
cocycle for a uniformly contractible manifold constructed in [13]. The extendability
of the fundamental cyclic cocycle would imply the zero-in-the-spectrum conjecture
in the even dimensional case, which claims that the spectrum of the Laplacian
operator acting on the L2 forms contains 0 for a uniformly contractible manifold;
and the conjecture that there is no metric with strictly positive scalar curvature in
the quasi-isometry class of the given metric on M .

Recall that a metric space M is called uniformly contractible if for any r > 0,
∃r ′ > r such that B(x, r) can be contracted to a point in B(x, r ′) for any x ∈
M , where B(x, r) is the ball of radius r in M . The universal cover of a compact
Riemmannian K(	, 1) manifold is such an example.

The fundamental cyclic cocycle on a uniformly contractible manifold is con-
structed as follows.

Let M be a uniformly contractible manifold and let 	 be a net in M . We shall
define a continuous map φ from Pd(	) to M such that φ(γ ) = γ for all γ ∈ 	 and
for any k > 0, ∃dk > d, φ([γ0, · · · , γk]) is contained in B({γ0, · · · , γk}, dk) for any
k-simplex [γ0, · · · , γk] in Pd(	). We shall define φ from Pn

d (	) to M by induction
on n. First define φ from P 0

d (	) to M by the obvious embedding. Assume that by
induction hypothesis we have defined φ for n < k. By the uniform contractibility
there exists d ′ such that d ′ > dk−1 > d and φ([x0, · · · , xk−1]) can be contracted
to a point in B({x0, · · · , xk−1}, d ′) for any (k − 1)-simplex [x0, · · · , xk−1] in
Pd(	). For any given k-simplex [γ0, · · · , γk] in Pd(	), by using the above fact
we can extend φ continuously from ∪i [γ0, · · · , γ̂i , · · · , γk] to [γ0, · · · , γk] such
that φ([γ0, · · · , γk]) ⊆ B({γ0, · · · , γk}, d ′). Thus we have completed our induction
process. If we give Pd(	) the obvious piece-wise smooth structure as usual, then
clearly φ can be made piece-wise smooth. In particular, φ restricts to a smooth
mapping on each simplex [γ0, · · · , γk].

Let m = dimM and let θ be a compactly supported closed differential form
on M representing the generator in Hm

c (M), such that
∫

M
θ = 1. We define the



368 R. Ji and G. Yu

fundamental cyclic cocycle τM for a uniformly contractible complete Riemannian
manifold M as follows:

τM(a0, · · · , am) =
∑

[γ0,··· ,γm]

∑

σ∈Sm
(−1)σ

∫

x0,··· ,xm
a0(x0, x1)a1(x1, x2) · · · am(xm, x0)

× φγσ(0)(x0) · · ·φγσ(m)
(xm)dx0 · · · dxm

∫

φ([γσ(0),··· ,γσ(m)])
θ

for a0, · · · , am ∈ BM , where {φγ }γ∈	 is a partition of unity subordinate to the open
cover {B(γ, r)}γ∈	 for some large r > 0.

The following result indicates the significance of the fundamental cyclic cocycle
whose proof is based on a local index theorem of Connes and Moscovici [6].

Theorem 6.3 ([13]) Let M be a uniformly contractible complete Riemannian
manifold and τM be the fundamental cyclic cocycle. Assume that D is the Dirac
operator onM (or signature operator ifM is even dimensional). Then

τM(IndD) �= 0.

In order to utilize this result for geometric applications, one must show that the
fundamental cyclic cocycle τM extends to a subalgebra of C∗u(M) which contains
Cu(M) and is closed under holomorphic functional calculus in C∗u(M). In this way,
one would establish that the K-theoretic index IndD be nonzero in K0(C

∗
u(M))

[12].

Definition 6.4 Let M be a second countable and locally compact metric space. We
say that M is a rapidly decaying space if there is a δ-separated net X in M such that
X as a metric space is rapidly decaying, where the metric on X is induced from that
on M .

Remark It is clear that the definition is independent of the choice of the δ-separated
net in M by Theorem 4.1.

Lemma 6.5 Let M be a uniformly contractible complete Riemannian manifold
with bounded geometry, and let X be a δ-separated net in M . Suppose that M is
rapidly decaying. Then C∗u(M) ∼= C∗u(X) ⊗ K , where K is the C∗-algebra of all
compact operators on some infinite dimensional Hilbert space H . Moreover, under
this isomorphism, there is natural inclusion BS2(X)⊗C1(H) ↪→ C∗u(M), such that
the inclusion is closed under holomorphic functional calculus where C1(H) is the
set of trace class operators on H .

Proof The first statement of this lemma is given in the proof of Theorem 4.4 of
[13], and the second is a consequence of the first and Theorem 2.4. ��
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To extend the fundamental cyclic cocycle, one has to estimate the growth of the
cyclic cocycle. To do that we need the following concept introduced by Gromov.

Definition 6.6 The contractibility radiusR(r) for a uniformly contractible Rieman-
nian manifold M is the infimal radius R ≥ r such that for any x0 ∈ M , B(x0, r) can
be contracted to a point in B(x0, R).

Theorem 6.7 ([13]) The fundamental cyclic cocycle is dominated by the con-
tractibility radius in the sense that

|τM(a0, · · · , am)| ≤

c

∫

dist (xi,y0)≤R(∑i r(ai))+c′
|a0(x0, x1) · · · am(xm, x0)|dx0 · · · dxm

for some constants c, c′, where y0 is a fixed reference point in X, and r(ai) is
the infimal r such that any (x, y) in the support of the kernel of ai satisfies
dist (x, y) ≤ r .

Theorem 6.8 Suppose that the manifoldM is rapidly decaying. If M has bounded
geometry and is uniformly contractible, then the fundamental cyclic cocycle can be
extended to a holomorphically closed dense subalgebra of C∗u(M). Therefore, the
K-theoretical index Ind D of the Dirac operator D on the uniformly contractible
Riemannian manifoldM is nonzero in K0(C

∗
u(M)).

Proof This follows the same as the proof in Theorem 4.4 in [13]. For the reader’s
convenience we will include a modified proof in the context of geometrically rapidly
decay conditions. Let 	 be a δ-separated net in M for some δ > 0. There exists a
uniformly bounded Borel cover {Cγ }γ∈	 of M such that and Cγ ∩ Cγ ′ = ∅ if
γ �= γ ′. We can decompose L2(M) =⊕γ∈	 L2(Cγ ). We identify L2(Cγ ) with an

abstract Hilbert space H so that L2(M) = �2(	)⊗ H. Let BS2(	) be the space of
functions k on 	 × 	 such that

‖k‖s =
(

supx∈X
∑

y∈X
|k(x, y)|2(1+ d(x, y))2s)1/2

<∞,

for all s > 0. Let C∗u(γ ) be the closure of the algebra of all kernel operators acting
on �2(	) with bounded propagation. Since 	 is geometrically rapidly decaying,
BS2(	) ⊂ C∗u(	). This shows that BS2(	)⊗̂C1(	) ⊂ C∗u(	) and is closed under
holomorphic functional calculus. Now we consider the fundamental cyclic cocycle
τM , when evaluated on BS2(	)⊗̂C1(	) we have

τM(b0 ⊗ c0, b1 ⊗ c1, . . . , bm ⊗ cm) =
∑

[γ0,··· ,γm]
b0(γ0, γ1)b1(γ1, γ2) · · · bm(γm, γ0)

× tr(φγ0(c0) · · ·φγm(cm))
∫

φ([γ0,··· ,γm])
θ
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for b0, · · · , bm ∈ BS2(	), ci ∈ C1(H), and where {φγ }γ∈	 is a partition of unity
subordinate to some open cover {B(γ, r)}γ∈	 for some large r > 0. Finally, the
theorem follows from Theorem 6.3 since Ind(D) ∈ K0(C

∗
u(M)) = K0(BS

2(	)).
��

7 The Recent Developments

Since our early investigation of dense subalgebras of the uniform Roe algebra of
a metric space described in this survey, there are several new ideas emerged. in
[4] the authors showed that geometrically rapid-decay metric spaces must be of
polynomial growth. This in turn reconfirms Lafforgue’s observation that free group
of two generators are not geometrically rapid-decaying. In [3] the authors used the
method of “band truncation” of Fourier series of elements in the group C∗-algebra
of groups with polynomial H-growth [1] to construct a family of spectral invariant
Banach subalgebras in the uniform Roe algebra of the group as a metric space.
They also proved that when the group is of subexponential growth the Wiener
algebra of the group is inside the uniform Roe algebra and is spectral invariant.
In the more recent paper [2] the authors constructed a spectral invariant subalgebra
(consisting of elements with kernels) of the uniform Roe algebra on a discrete group
that has property RD. In particular, there is a spectral invariant dense subalgebra
(consisting of elements with kernels) of the uniform Roe algebra of a hyperbolic
group, considered as a metric space! This is to date the most promising construction
of dense subalgebras of uniform Roe algebra on general metric spaces.

Acknowledgments The second author “Guoliang Yu” is partially supported by NSF 1700021 and
NSF 1564398.
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Integral Curvature and Similarity
of Cowen-Douglas Operators

Chunlan Jiang and Kui Ji
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Abstract In 1978, M. J. Cowen and R. G. Douglas introduced a class of geometric
operators. In their influential paper (M. J. Cowen and R. G. Douglas, Acta Math.
141:187–261, 1978), they give complete unitary invariants involving curvature and
its covariant derivatives for this kind of operators. In this paper, we introduce a
new concept named by integral curvature. By using this new invariant, we give a
similarity classification for Cowen-Douglas operators with index one. Two operators
T and S are called U + K similarity equivalent if there exists a unitary operator U
and a compact operator K such that X := U + K is an invertible operator which
satisfies XT = SX. By considering the difference of the corresponding curvatures,
we also study the U + K similarity problems for Cowen-Douglas operators with
index one.

Keywords Curvature · Similarity · U +K similarity · Subharmonic function
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47B48, 47L40

1 Introduction

Let H be a complex separable Hilbert space, and let B(H) denote the set of bounded
linear operators on H. The Grassmann manifold denoted by Gr(n,H) is the set of
all n-dimensional subspaces of the Hilbert space H. For an open bounded connected
subset ! of the complex plane C, and n ∈ N, a map t : ! → Gr(n,H) is called
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a holomorphic curve, if there exist n holomorphic functions γ1, γ2, · · · , γn on !

taking values in H such that t (w) = ∨{γ1(w), · · · , γn(w)}, w ∈ !. Given a
holomorphic curve t : ! → Gr(n,H), one can find an n-dimensional Hermitian
holomorphic vector bundle Et over !, namely,

Et = {(x,w) ∈ H ×! | x ∈ t (w)} and π : Et → !, where π(x,w) = w.

M. J. Cowen and R. G. Douglas introduced the class Bn(!) of Cowen-Douglas
operators in their very influential paper [2]. An operator T acting on H is said to be
a Cowen-Douglas operator of index n associated with the open bounded subset !
(denoted T ∈ Bn(!)), if T −w is surjective, dim ker(T −w) = n and

∨

w∈!
ker(T −

w) = H, for any w ∈ !.

The class of Cowen-Douglas operators is very rich. In fact, the norm closure of
Cowen-Douglas operators contains the collection of all quasi-triangular operators
with connected spectrum by using the famous similarity orbit theorem given by C.
Apostol, L. A. Fialkow, D.A. Herrero and D. Voiculescu [1].

The following examples of Cowen-Douglas operators are well known:

Example 1.1 Let D denote the open unit disk and let S∗1 be the backward shift
operator, S∗1en = en−1, n = 1, 2, · · · , where {en}∞n=0 is the ONB of a Hilbert space
H. Then S∗ ∈ B1(D).

Example 1.2 Let Aα be a weighted Bergman space and Sz denote the multiplication
operator on Aα , that is, Sz(f )(z) = zf (z), f ∈ Aα . Then S∗z ∈ B1(D) and σ(S∗z ) =
D̄. Furthermore, if f is an analytic function on D̄ such that

f (z) =
∞
∑

i=0

ani z
ni .

Then T ∗f is a Cowen-Douglas operator with index k, for some k ∈ N. If f (z) =
zmg(z), where m = g.c.di≥0ni , then T ∗g is a Cowen-Douglas operator with index
k −m.

It is well known that each operator T in Bn(!) also give rise to an n-dimensional
Hermitian holomorphic vector bundle ET over ! (see in [2]),

ET = {ker(T −w) : w ∈ !,π( ker(T −w) ) = w}.

Two holomorphic curves t, t̃ : ! → Gr(n,H) are said to be congruent if there
exists a local isometric holomorphic bundle map V (w) such that V (w)t (w) =
t̃ (w),w ∈ !. Furthermore, t and t̃ are unitarily equivalent (denoted by t ∼u t̃),
if there exists a unitary operator U ∈ B(H) such that U(w)t (w) = t̃ (w), where
U(w) := U |Et (w) is the restriction of the unitary operator U to the fiber Et(w). It
is an easily fact, by using the Rigidity Theorem in [2], t and t̃ are congruent if and
only if t and t̃ are unitarily equivalent.
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Two holomorphic curves t and t̃ are said to be similarity equivalent (denoted by
t ∼s t̃), if there exists an invertible operatorX ∈ B(H) such thatX(w)t (w) = t̃ (w),
where X(w) := X|Et (w) is the restriction of X to the fiber Et(w). Then X(w) is an
isomorphism but it is no longer an isometry. In this case we say that the vector
bundles Et and Et̃ are similarity equivalent.

For an open bounded connected subset ! of C, a Cowen-Douglas operator T
with index n determines an non-constant holomorphic curve t : ! → Gr(n,H),
namely, t (w) = ker(T − w),w ∈ !. Then the unitary and similarity invariants for
the operator T are obtained from those of vector bundle ET .

To describe these invariants, M. J. Cowen and R. G. Douglas introduced the
curvature along with its covariant derivatives for the Cowen-Douglas operator T .
Let us recall some of these notions as given in [2].

The Hermitian structure of the holomorphic bundle ET , with respect to a
holomorphic frame γ is given by the matrix of inner products

hγ (w) =
((〈γj (w), γi(w)〉

))n

i,j=1, w ∈ !,

where γ (w) =∨{γ1(w), · · · , γn(w)}, w ∈ !.

If we let ∂̄ denote the complex structure of the vector bundle ET , then the
connection compatible with both the complex structure ∂̄ and the metric hγ is
canonically determined and is given by the formula h−1

γ ∂hγ dw. The curvature of
the holomorphic Hermitian vector bundle ET is then the (1, 1) form

KT (w) = −∂̄
(

h−1
γ ∂hγ

)

dw ∧ dw̄.

We let KT (w) denote the coefficient of this (1, 1) form, that is,

KT (w) := − ∂

∂w

(

h−1
γ (w)

∂

∂w
hγ (w)

)

.

Note that it is an endomorphism of the fiber ET (w).

Since the curvature KT may be thought of as a bundle map, following the
definition of the partial derivatives of bundle map, we can define its partial
derivatives KT,wiwj , i, j ∈ N ∪ {0} as follows:

(1) KT,wiwj+1 = ∂
∂w

(KT,wiwj );
(2) KT,wi+1wj = ∂

∂w
(KT,wiwj )+ [h−1

γ
∂
∂w

hγ ,KT,wiwj ].
The curvature and its derivatives are complete unitary invariants of Cowen-

Douglas operators. M. J .Cowen and R. G. Douglas showed the following result
on unitarily equivalence.

Theorem 1.3 ([2]) Let T and T̃ be two Cowen-Douglas operators with index n.
Then T and T̃ are unitarily equivalent if and only if there exists an isometric
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holomorphic bundle map V : ET → ET̃ such that

V
(

KT,wiwj

) = (KT̃ ,wiwj

)

V, i, j = 0, 1, · · · , n− 1.

In particular, if T and T̃ are Cowen-Douglas operators with index one, then T ∼u

T̃ if and only if KT = KT̃ .
However, in the case of similarity equivalence, the global invariants are not easily

detected by the local invariants such as the curvature and its covariant derivatives.
This is due to the holomorphic bundle map determined by invertible operators is not
rigid. That is, we do not know when a bundle map that is locally isomorphic can be
extended to an invertible operator in B(H). In the absence of a characterization of
equivalent classes under an invertible linear transformation, M. J. Cowen and R. G.
Douglas gave the following conjecture in [2].

Conjecture Let T , T̃ ∈ B1(D) with the spectrums of T and T̃ are just closure of D
(denoted by D̄). Then T ∼s T̃ if and only if

lim
w→∂D

KT (w)

KT̃ (w)
= 1.

Unfortunately, this conjecture turned out to be false by D. N. Clark and G. Misra
(cf. [4, 5]).

Thus, it is very natural to ask how to characterize similarity invariants of Cowen-
Douglas operators by using some geometric terms including curvature. For this
purpose, we mention some recent results on similarity.

By using curvature to describe similarity invariants of Cowen-Douglas operator
are due to some very recent results of R. G. Douglas, H. Kwon, S. Treil [7, 15]
and Y. Hou, H. Kwon and K.Ji [9]. Combining their results, we have the following
theorem:

Theorem 1.4 ([7, 9]) Let T ∈ Bn(D) be an n-hypercontraction and let Sz be the

multiplication on the weighted Bergman space. Then T is similar to
m
⊕

i=1
S∗z if and

only if there exists a bounded subharmonic function ψ defined on D such that

traceKT − traceKS∗z ≤ �ψ.

We need to point out that even if T is a Cowen-Douglas operator with index one,
its spectral picture is very complicated. The following theorem due to D. A. Herreor
shows its complexity.

Theorem 1.5 ([10]) Let T ∈ B(H) be a quasi-triangular operator with connected
spectral picture. If there exists a point w in the Fredholm domain of T such that
ind(T − w) = 1. Then for any ε > 0, there exists a compact operator K with
‖K‖ < ε such that T +K is a Cowen-Douglas operator with index one.
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The structure of Cowen-Douglas operators and the fact that the property of
invertible bundle map is not rigid make situation complicated. Therefore, for any
two Cowen-Douglas operators T and T̃ with index one, we have to further explore
the equivalent relation between KT and KT̃ .

In this paper, we introduce a concept related to curvature named by integral
curvature. By using integral curvature, we give a similarity classification theorem
for the operator in B1(!). Moreover, we also describe the U + K similarity of
Cowen-Douglas operators with index one by using the difference of curvatures.

2 Integral Curvature and Similarity of Operators in B1(�)

It is an open problem proposed by M. J. Cowen and R. G. Douglas how to describe
the similarity for operators in B1(!) by considering the curvature. M. J. Cowen and
R. G. Douglas once had the following conjecture: If T and S are similar, then

lim
w→w0∈T

KT (w)

KS(w)
= 1.

However, in [4], a counter example was given by D. N. Clark and G. Misra. Instead
of the quotient of the curvatures, they used aw, the quotient of metrics of ET and ES

for weighted shift operators. It was proved in [6] that T is similar to some weighted
shift operators if and only if aw is bounded and bounded below by 0. In some sense,
this result can be regarded as a geometric version of the classical result for the
weighted shifts given by A. L. Shields (See [16]).

In [18], a spanning holomorphic cross-section for the Hermitian holomorphic
vector bundle corresponding to a Cowen-Douglas operator was introduced by K.
Zhu. For T ∈ Bn(!), a holomorphic section of vector bundle ET is a holomorphic
function γ : ! → H such that for each w ∈ !, the vector γ (w) belongs to
the fibre of ET over w. We say γ is a spanning holomorphic section for ET if
∨ {γ (w) : w ∈ !} = H. In [18], it is proved that for any Cowen-Douglas operator
T ∈ Bn(!), ET possesses a spanning holomorphic cross-section. In this case, the
unitary equivalence problem of ET could be attributed to the case of some line
bundle. Suppose T and ˜T belong to Bn(!), then T and ˜T are unitarily equivalent (or
similarity equivalent) if and only if there exist spanning holomorphic cross-sections
γT and γ

˜T for ET and E
˜T , respectively, such that γT ∼u γ˜T (or γT ∼ γ

˜T ).
Let T ∈ B(H) and let {T }′ denote the commutant of T . The operator T is said

to be strongly irreducible if {T }′ contains no nontrivial idempotents. A strongly
irreducible operator can be regarded as a natural generalization of a Jordan block
matrix on the infinite dimensional case. In [12], the first author proved that for
any Cowen-Douglas operator T , {T }′/rad({T }′) is commutative, where rad({T }′)
denotes the Jacobson radical of {T }′. Based on this, a similarity classification
theorem of strongly irreducible Cowen-Douglas operators was given using the K0-
group of their commutant algebra as an invariant (See more details in [12]).
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In this section, we define a concept related to curvature called integral curvature.
By using integral curvature, we give a similarity classification theorem for operators
in B1(D).

Lemma 2.1 ([2]) Let !1 and !2 be two open bounded connected subsets of C. If
!1 ⊂ !2, then Bn(!1) contains Bn(!2).

Integral Curvature Let T be a Cowen-Douglas operator with index one associated
with a bounded open connected subset !, and a holomorphic frame e(w) ∈ ker(T −
w),w ∈ !. Let w0 ∈ !. Set Oδ = {w : |w − w0| < δ} ⊂ !, we then have the
following Poisson equation

{

∂∂u(w) = KT (w),w ∈ Oδ,

u(w) = φ(w) = ln(‖e(w)‖2),w ∈ ∂Oδ,

Now we assume that G is a Green function on Oδ. Then

u(w) =
∫

∂Oδ

φ(y)
∂G(w, y)

dVy
do(y)+

∫

Oδ

KT (y)G(w, y)dy,

where dVy is the directional derivative along with “y".

Furthermore,
∫

∂Oδ

φ(y)
∂G(w,y)
dVy

do(y) is harmonic and
∫

Oδ

KT (y)G(w, y)dy =
ln(‖e(w)‖2). In this case,

∫

Oδ

KT (y)G(w, y)dy is called the integral curvature

(denoted by ̂KT ) corresponding to KT .
Let T ∈ Bn(!). Choose any w0 ∈ !, then there exists δ > 0 such that Oδ :=

{w : |w −w0| < δ} ⊂ !. By Lemma 2.1, we have that Bn(!) ⊂ Bn(Oδ). Without
loss of generality, we can also assume that the domain ! is the form of Oδ .

In this paper, we are concerned with the case of unit disk. The other cases are
similar.

Definition 2.2 Let T , S ∈ B1(D). We say that ̂KT and ̂KS are equivalent (denoted
by ̂KT

∼= ̂KS) if there exist 0 < m < M <∞ such that

m
∑

i,j

αiαj ∂
i∂

j
exp(̂KT )(0) ≤

∑

i,j

αiαj ∂
i∂

j
exp(̂KS)(0)

≤ M
∑

i,j

αiαj ∂
i∂

j
exp(̂KT )(0)

for any αi ∈ C, i, j = 1, 2 · · · .
Now we will give a geometric characterization of similarity equivalence about

Cowen-Douglas operators with index one by using the equivalence of integral
curvature.
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Lemma 2.3 Let T ∈ B1(D) and let e(w) ∈ ker(T −w),w ∈ D. Then we have that

Span{e(n)(0) : n = 0, 1, · · · } = H.

Proof Since 0 ∈ σ(T ), T is surjective. Then T has a right inverse operator denoted
by B, i.e. T B = I . Choose any e0 ∈ kerT , by a directly computation, we have that

T (
∞
∑

n=0
Bn(e0)w

n) = w(
∞
∑

n=0
Bn(e0)w

n). That means
∞
∑

n=0
Bn(e0)w

n ∈ ker(T − w).

Then there exists a holomorphic function φ on D such that

e(w) = φ(w)(

∞
∑

n=0

Bn(e0)w
n) =

∞
∑

n=0

(
∑

i+j=n

φ(i)(0)

i! Bj(e0))w
n.

Notice that Bn(e0)
n! = dn

dwn (
∞
∑

n=0
Bn(e0)w

n)|w=0. By using Lemma 1.22 and formula

1.7.1 in [2], we have that Span{Bn(e0) : n = 0, 1, · · · } = H. Since e(n)(0) =
∑

i+j=n
φ(i)(0)

i! Bj(e0), this finishes the proof the lemma. ��

Theorem 2.4 Let T , S ∈ B1(D). Then T ∼s S if and only if ̂KT and ̂KS are
equivalent.

Proof By Lemma 2.1, there exist e(w) ∈ ker(T − w) and ē(w) ∈ ker(S − w)

such that ln(‖e(w)‖2) = ̂KT (w) and ln(‖ē(w)‖2) = ̂KS(w). Since e(w) is a
holomorphic section of ES , we have

∂i∂
j 〈e(w), e(w)〉 = 〈e(i)(w), e(j)(w)〉.

Thus, it follows that

∑

i,j

αiαj ∂
i∂

j
exp(̂KT )(0) =

∑

i,j

αiαj 〈e(i)(0), e(j)(0)〉,

∑

i,j

αiαj ∂
i∂

j
exp(̂KS)(0) =

∑

i,j

αiαj 〈ē(i)(0), ē(j)(0)〉.

Thus, we have that {e(n)(0)}∞n=0 and {ē(n)(0)}∞n=0 are equivalent, that is, there exist
0 < m < M such that

m ≤
∑

i,j

αiαj 〈e(i)(0), e(j)(0)〉 ≤
∑

i,j

αiαj 〈ē(i)(0), ē(j)(0)〉

≤M
∑

i,j

αiαj 〈e(i)(0), e(j)(0)〉
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Now define an operator X as follows:

X(e(i)(0)) = ē(i)(0), i = 0, 1, · · · .

Then we have that X is invertible. Notice that since

e(w) =
∞
∑

i=0

e(i)(0)

i! wi, ē(w) =
∞
∑

i=0

ē(i)(0)

i! wi,w ∈ D,

X(e(w)) = ē(w),w ∈ Oδ . It follows that XT = SX. This finishes the proof of
sufficiency. On the other hand, if T is similar to S, i.e. XT = SX so that exp(̂KT ) =
‖e(w)‖2, then we can choose ē(w) = X(e(w)), and exp(̂KS)(w) = ‖X(e(w))‖2.

Then we have that X(e(i)(0)) = ē(i)(0), i = 0, 1, · · · . Since X is invertible, there
exist 0 < m ≤ M < 0 such that

m‖
∞
∑

i=0

αie
(i)(0)‖2 ≤ ‖

∞
∑

i=0

αiē
(i)(0)‖ = ‖X(

∞
∑

i=0

αie
(i)(0))‖2 ≤ M‖

∞
∑

i=0

αie
(i)(0)‖2.

Repeating the calculation above, we have that

m
∑

i,j

αiαj ∂
i∂

j
exp(̂KT (0)) ≤

∑

i,j

αiαj ∂
i∂

j
exp(̂KS(0))

≤ M
∑

i,j

αiαj ∂
i∂

j
exp(̂KT (0)),

and this proves the necessity. ��
By using the following lemmas, we will show in Example 2.8 that the equiva-

lence of integral curvature directly implies the similarity equivalence of any chosen
operator T in B1(D) and S∗1 . This example should be compared with the one given
by H. Kwon and S. Treil’s in the case of contraction (See in [15]).

Lemma 2.5 ([14]) Let T ∈ B1(D). For any a0 ∈ D, there exists {ei}∞i=0, an ONB
ofH and r > 0 such that T admits the upper-triangular matrix representation

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1,2 a1,3 · · · a1,n · · ·
a0 a2,3 · · · a2,n · · ·

. . .
. . .

... · · ·
a0 an−1,n · · ·

a0
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.1)

with respect to {ei}∞i=0 and |ai,i+1| > r > 0, i ≥ 1.
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Lemma 2.6 ([16]) Let T1 and T2 be unilateral shifts with weight sequences
{ωj }∞j=0 and {ω̃j }∞j=0, respectively. Then T1 and T2 are similar if and only if there
exist positive constants C1 and C2 such that

0 < C1 ≤
∣

∣

∣

ωk · · ·ωj

ω̃k · · · ω̃j

∣

∣

∣ ≤ C2,

for all k ≤ j .

Lemma 2.7 Let T ∈ B1(D) and set a0 = 0 in expression (2.1) of Lemma 2.5.
Suppose that T0 denotes the weighted backward shift operator with weight sequence
{wn}∞n=0, where wn = an+1,n+2, n = 0, 1, · · · . If T is similar to a weighted shift
operator S with weight sequence {bn}∞n=0, bn �= 0, then we have that T0 ∼s S.

Proof Let {en}∞n=0 be the ONB of H. Suppose there exists an invertible operator X
satisfies that XT = SX. Let X = ((xi,j )) relative to {en}∞n=0. Then we have that

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1 x1,2 ··· x1,n ···
x2,1 x2,2 ··· x2,n ···
. ..

. ..
. ..

... ···
. ..

. .. xn−1,n−1 xn−1,n ···
. ..

. ..
. .. xn,n

. . .

. ..
. ..

. ..
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 a1,2 a1,3 ··· a1,n ···
0 a2,3 ··· a2,n ···

.. .
. . .

... ···
0 an−1,n ···

0
. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 b0 0 ··· 0 ···
0 b1 ··· 0 ···
. ..

. . .
... ···

0 bn−1 ···

0
.. .
.. .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1 x1,2 ··· x1,n ···
x2,1 x2,2 ··· x2,n ···
. . .

.. .
.. .

... ···
. . .

.. . xn−1,n−1 xn−1,n ···
. . .

.. .
.. . xn,n

. ..

. . .
.. .

.. .
. ..

. ..

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Comparing the entries of the products of these matrices, we have that b0x2,1 = 0. It
follows that x2,1 = 0. Then we have that b1x3,1 = b1x3,2 = 0 which implies x3,1 =
x3,2 = 0. If we go on with this computation, then we have that xi,j = 0, i > j . This
means that X also has an upper-triangular matrix representation. Thus, we have the
following equation

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1 x1,2 ··· x1,n ···
x2,2 ··· x2,n ···

. ..
... ···

xn−1,n−1 xn−1,n ···

xn,n
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 a1,2 a1,3 ··· a1,n ···
0 a2,3 ··· a2,n ···

.. .
. . .

... ···
0 an−1,n ···

0
. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 b0 0 ··· 0 ···
0 b1 ··· 0 ···
. ..

. . .
... ···

0 bn−1 ···

0
.. .
.. .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1 x1,2 ··· x1,n ···
x2,2 ··· x2,n ···

.. .
... ···

xn−1,n−1 xn−1,n ···

xn,n
. ..

. ..

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Then we have the following equalities

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1,1a1,2 = b0x2,2
x2,2a2,3 = b1x3,3

...
xi,iai,i+1 = bi−1xi+1,i+1

...

.

It follows that xi,i �= 0, i = 1, 2 · · · , and

n
∏

i=1
ai,i+1

n−1
∏

i=0
bi

= xn+1,n+1

x1,1
. (2.2)

Now set Y = X−1 = ((yi,j )). Since xi,i �= 0, we have that yi,j = 0, i > j. Thus,
we have that

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 a1,2 a1,3 ··· a1,n ···
0 a2,3 ··· a2,n ···

. . .
. . .

... ···
0 an−1,n ···

0
. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1,1 y1,2 ··· y1,n ···
y2,2 ··· y2,n ···

. . .
... ···

yn−1,n−1 yn−1,n ···

yn,n
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1,1 y1,2 ··· y1,n ···
y2,2 ··· y2,n ···

. ..
... ···

yn−1,n−1 yn−1,n ···

yn,n
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 b0 0 ··· 0 ···
0 b1 ··· 0 ···
. . .

. . .
... ···

0 bn−1 ···

0
. ..
. ..

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By a similar calculation, we have that

n
∏

i=1
ai,i+1

n−1
∏

i=0
bi

= y1,1

yn+1,n+1
. (2.3)
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Notice that since X and Y are both bounded, there exists some M > 1 such that

max{ xn+1,n+1
x1,1

,
yn+1,n+1

y1,1
} < M, for each n ∈ N. That means 0 < 1

M
<

n
∏

i=1
ai,i+1

n−1
∏

i=0
bi

<

M, n ∈ N. By Lemma 2.6, we have that T0 ∼s S. This finishes the proof of the
lemma. ��
Example 2.8 Recall that S∗1 denote the backward Hardy shift. Suppose that T ∈
B1(D) and T is similar to a weighted shift operator S with weight sequence {bn}∞n=0.
By Lemma 2.7, it suffices to consider the case when the weighted backward shift
operator T0 induced by T is similar to S∗1 . Now we assume that T is a weighted
backward shift operator with weight sequences {ωk}∞k=0 and ‖T ‖ ≤ 1. Set αn =

1
n
∏

k=0
ωk

, n = 0, 1, · · · , and {en}∞n=0 be ONB of H. Then we have

∞
∑

n=0

αnw
nen ∈ ker(T −w) and

∞
∑

n=0

wnen ∈ ker(S∗1 −w).

Thus we have that

̂KT = ln(‖
∞
∑

n=0

αnw
nen‖2) = ln(

∞
∑

n=0

|αn|2(|w|2)n)

and

̂KS∗1 = ln(‖
∞
∑

n=0

wnen‖2) = ln(

∞
∑

n=0

(|w|2)n) = ln((1− |w|2)−1).

That means exp(̂KT )(w) =
∞
∑

n=0
|αn|2(|w|2)n, and exp(̂KS∗1 )(w) = (1− |w|2)−1. If

̂KT and ̂KS∗1 are equivalent, then there exist 0 < m < M such that

m∂i∂
j
exp(̂KS∗1 )(0) < ∂i∂

j
exp(̂KT )(0) < M∂i∂

j
exp(̂KS∗1 )(0).

Thus we have

m ≤ exp(̂KT )(w)

exp(̂KS∗1 )(w)
=

∞
∑

n=0
|αn|2(|w|2)n

(1− |w|2)−1 ≤M,w ∈ D.
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For any w0 ∈ D, it follows that
∞
∑

n=0
|αn|2(|w0|2)n is convergent. By direct

calculation, we have that

(1− |w0|2)(
∞
∑

n=0

|αn|2(|w0|2)n) = |α0|2 +
∞
∑

n=1

(|αn|2 − |αn−1|2)(|w0|2)n.

Since ‖T ‖ ≤ 1, we have that |ωk| ≤ 1 and |αn|2 ≥ |αn−1|2 for any n > 0. If we
choose any fixed integer N and δ0 < M , then for w0 ∈ D, we can find Nδ0,w0 ≥ N

such that

|α0|2+
N
∑

n=1

(|αn|2−|αn−1|2)(|w0|2)n ≤ |α0|2+
Nδ0 ,w0
∑

n=1

(|αn|2−|αn−1|2)(|w0|2)n ≤ M−δ0.

Then for the fixed N , the inequality

|α0|2 +
N
∑

n=1

(|αn|2 − |αn−1|2)(|w0|2)n ≤ M − δ0

holds for any w0 ∈ D. When |w0| → 1, we will have that

|αN |2 = |α0|2 +
N
∑

n=1

(|αn|2 − |αn−1|2) ≤ M − δ0.

Also notice that |αN |2 ≥ 1. By Lemma 2.6, we have that T is similar to S∗1 .

3 U + K Similarity of Operators in B1(�)

Instead of considering the quotient of the curvatures of operators in B1(!), it is
shown that the study on the difference of curvature is a natural choice for the
similarity problem of Cowen-Douglas operators in B1(!). In [17], S. Treil and B. D.
Wick gave a sufficient condition for the existence of a bounded analytic projection
onto a holomorphic family of generally infinite dimensional subspaces induced by
some holomorphic bundle. As a corollary, they also obtained some new results about
the Operator Corona Problem.

Let E be a Hilbert space, P : D → B(E) be a C2 projection-valued function
and P∂P = 0. In [17], as their main theorem, it was proved that if there exists a
bounded non-negative subharmonic function φ such that

�φ(w) ≥ ‖∂P (w)‖2,∀w ∈ D,
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then there exists some analytic idempotent valued function � ∈ H∞
E→E such that

ran�(w) = ranP(w).
By using this result and a model theorem for contractions, H. Kwon and S. Treil

gave a very impressive theorem to decide when a contraction operator T be similar
to the n copies of M∗

z on the Hardy space. For any contraction operator T ∈ Bn(D),

let P(w) denote the projection onto ker(T −w). It was proved that T ∼s

n
⊕

M∗
z if

and only if

‖∂P (w)
∂w

‖2
HS −

n

(1− |w|2)2 ≤ �φ(w),∀w ∈ D,

where ‖∂P (w)‖2
HS is pointed out to be the curvature for the Hardy shift (cf. [15])

and φ is a bounded subharmonic function. Subsequently, the result was generalized
from the Hardy shift case to some weighted Bergman shift cases (Sn, n ≥ 1) by R.
G. Douglas, H. Kwon and S. Treil (see in [7]). In [9, 11], ‖∂P (w)‖2

HS is shown to
be the trace of the curvature KT for any operator T ∈ Bn(!). Thus, when T is an
n-hypercontraction, the difference of the curvaturesKT −KS (or difference of trace
of curvatures traceKT − traceKS) could be regarded as the similarity invariant
of Cowen-Douglas operators of rank one (or rank n). We then have the following
important question that rise naturally:

Question Let T , S ∈ B1(!) be two arbitrary Cowen-Douglas operators. Under
what kind of assumptions on the function φ, do we have that T is similar to S if and
only if KT −KS = �φ?

Let T and S be two operators in B(H). We call T and S are U + K similarity
equivalent if there exists a unitary operator U and a compact operator K such that
X := U + K is an invertible operator which satisfies XT = SX. In the following
lemma, we will give a description of the U + K similarity of Cowen-Douglas
operators with index one by using the difference of curvatures. Note the difference
between this result and the result given by R.G. Douglas, H. Kwon and S. Treil, in
that we do not need the operator model theorem given by J. Alger. Thus, we do not
need to assume that T or S is an n-hypercontraction operator.

It is well known that any operator T ∈ B1(!) can be realized as the adjoint of
the multiplication operator on a reproducing kernel Hilbert space of holomorphic
functions on !∗ (see in [3]). Thus, in the following theorem, we will assume
that the operator S ∼u (M∗

z ,H,KS), where H is a functional Hilbert space with
reproducing kernel KS .

Theorem 3.1 Let T , S ∈ B1(!), and S ∼u (M∗
z ,H,KS). Let {en(z)}∞n=0 denote

the canonical ONB of the functional Hilbert space H. Then there exist unitary
operator U and a compact operator K (‖K‖ < 1) such that T ∼U+K S if and
only if KS −KT = �lnφ, where φ is a bounded function defined as

φ(w) = 1+

m
∑

i=0
2Reφi(w)ψi(w)+

m
∑

i=0
|φi(w)|2

KS(w,w)
,w ∈ !,
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for some positive integer m, and {φi}mi=0, {ψi}mi=0 are both orthogonal with 1 >

‖φi‖ → 0 as i → ∞, and ‖ψi‖ = 1. The integer m is in fact the rank of K .
Furthermore, if KS ≥ KT , then lnφ is a bounded subharmonic function.

Proof Set φi(z) =
∞
∑

n=0
αinen(z̄), ψi(z) =

∞
∑

n=0
βi
nen(z̄), where {αin}∞n=0, {βi

n}∞n=0 ∈ l2

such that

1 >

∞
∑

n=0

|αin|2 → 0, i →∞,

and

∞
∑

n=0

|βi
n|2 = 1, i ≥ 0.

Then

‖φi‖2 =
∞
∑

n=0

|αin|2 → 0, i →∞, ‖ψi‖2 =
∞
∑

n=0

|βi
n|2 = 1.

Now set ei =
∞
∑

n=0
αinen(z) and fi =

∞
∑

n=0
βi
nen(z). Define an operator K̃ as follows:

K̃(f ) =
m
∑

i=0

(ei ⊗ fi)(f ), for any f ∈ H.

Since ‖fi‖2 =
∞
∑

n=0
|βi

n|2 = 1, and 1 > ‖ei‖2 =
∞
∑

n=0
|αin|2 → 0, as i →∞, we can

see that K̃ is a compact operator with ‖K̃‖ < 1 and m is the rank of K̃.

Set X = I + K̃ and e(w) := KS(z, w̄) =
∞
∑

n=0
en(z)en(w̄) ∈ ker(M∗

z −w). Then

X is invertible and we have

‖X(e(w))‖2 = 〈e(w)+ K̃(e(w)), e(w)+ K̃(e(w))〉
= KS(w,w) + 〈e(w), K̃(e(w))〉 + 〈K̃(e(w)), e(w)〉 + ‖K̃(e(w))‖2

= KS(w,w) + 2Re〈
m
∑

i=0

〈e(w), ei〉fi , e(w)〉 +
m
∑

i=0

|〈e(w), ei〉|2.
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Notice that since

〈e(w), ei〉 = 〈
∞
∑

n=0

en(w̄)en(z),

∞
∑

n=0

ainen(z)〉

=
∞
∑

n=0

ainen(w̄)

= φi(w),

and 〈e(w), fi 〉 = ψi(w), we then have

‖X(e(w))‖2 = KS(w,w)+ 2Re
m
∑

i=0

φi(w)ψi(w)+
m
∑

i=0

|φi(w)|2.

Since X(e(w)) ∈ ker(XSX−1 −w), then KXSX−1 = −�ln‖X(e(w))‖2. Thus, for
any w ∈ !, we have that

KS −KXSX−1 = �ln‖X(e(w))‖2 −�ln‖e(w)‖2

= �ln(1+

m
∑

i=0
2Reφi(w)ψi(w)+

m
∑

i=0
|φi(w)|2

KS(w,w)
).

By the assumptions of the lemma, we can see that KS −KT = KS −KXSX−1 . That
means KT = KXSX−1 . Thus, there exists a unitary operator U such that

T = UXSX−1U∗.

If we set K = UK̃ , then UX = U(1 + K̃) = U + K , and therefore T = (U +
K)S(U +K)−1. This finishes the proof of the sufficient part.

On the other hand, suppose there exist a unitary operator U and a compact
operator K such that U + K is invertible and (U + K)S(U + K)−1 = T . If we
let e(w) ∈ ker(S −w),w ∈ !, then (U +K)(e(w)) ∈ ker(T −w), and

KT (w) = −�ln‖(U +K)(e(w))‖2.

Furthermore,

‖(U +K)(e(w))‖2 = 〈(U +K)(e(w)), (U +K)(e(w))〉
= 〈U∗(U +K)(e(w)),U∗(U +K)(e(w))〉
= 〈(I + U∗K)(e(w)), (I + U∗K)(e(w))〉.
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Notice that U∗K is a compact operator, there exist orthogonal sets {ei}mi=0, {fi}mi=0,

with ‖ei‖ → 0, ‖fi‖ = 1 such that U∗K =
m
∑

i=0
ei ⊗ fi .

Similar to the proof of the sufficient part, suppose that

ei =
∞
∑

n=0

αinen(z), fi =
∞
∑

n=0

βi
nen(z).

Then

U∗K(e(w)) =
∞
∑

i=0

(ei ⊗ fi)(e(w)) =
m
∑

i=0

〈e(w), ei〉fi

=
m
∑

i=0

(〈
∞
∑

n=0

en(w̄)en(z),

∞
∑

n=0

αinen(z)〉fi)

=
m
∑

i=0

(

∞
∑

n=0

αinen(w̄))fi .

Thus,

‖(I + U∗K)(e(w))‖2

= ‖e(w)‖2 + 〈U∗K(e(w)), e(w)〉 + 〈e(w),U∗K(e(w))〉 + ‖U∗K(e(w))‖2

= KS(w,w) + 2Re〈
m
∑

i=0

(

∞
∑

n=0

αinen(w̄))fi ,

∞
∑

n=0

en(w̄)en(z)〉 +
m
∑

i=0

∞
∑

n=0

|αinen(w̄)|2

= KS(w,w) + 2Re〈
m
∑

i=0

(

∞
∑

i=0

αinen(w̄))(

∞
∑

n=0

βi
nen(z)),

∞
∑

n=0

en(w̄)en(z)〉

+
m
∑

i=0

∞
∑

n=0

|αinen(w̄)|2

= KS(w,w) + 2Re
m
∑

i=0

(

∞
∑

n=0

(

∞
∑

n=0

αinen(w̄))β
i
nen(w̄))+

m
∑

i=0

∞
∑

n=0

|αinen(w̄)|2

= KS(w,w) + 2Re
m
∑

i=0

(

∞
∑

n=0

αinen(w̄))(

∞
∑

n=0

βi
nen(w̄))+

m
∑

i=0

∞
∑

n=0

|αinen(w̄)|2.
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Now set φi(w) =
∞
∑

n=0
αinen(w̄), and ψi(w) =

∞
∑

n=0
βi
nen(w̄). Then we have φi,

and ψi ∈ H, for any i ≥ 0. And ‖φi‖ = ‖ei‖, ‖ψi‖ = ‖fi‖. By the definition
of ei, fi , we have ‖φi‖ → 0, ‖ψi‖ = 1, and {ψi}∞i=0, {φi}∞i=0 are orthogonal sets.
Furthermore, for any w ∈ !,

KS(w)−KT (w) = �ln(
‖(U +K)(e(w))‖2

‖e(w)‖2 )

= �ln(1+

m
∑

i=0
2Reφi(w)ψi(w)+

m
∑

i=0
|φi(w)|2

KS(w,w)
)

= �lnφ(w).

Since U+K is bounded, then we have that φ is a bounded function. This finishes the
proof of the necessary part. Furthermore, if KS ≥ KT , then we have that �lnφ ≥ 0,
that means lnφ is a bounded subharmonic function. ��
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Abstract We show that certain amenable subgroups inside ˜A2-groups are singular
in the sense of Boutonnet and Carderi. This gives a new family of examples of
singular group von Neumann subalgebras. We also give a geometric proof that
if G is an acylindrically hyperbolic group, H is an infinite amenable subgroup
containing a loxodromic element, then H < G is singular. Finally, we present
(counter)examples to show both situations happen concerning maximal amenability
of LH inside LG if H does not contain loxodromic elements.
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1 Introduction

Let M be a finite von Neumann algebra, N be a von Neumann subalgebra of M
and denote by EN the trace-preserving conditional expectation from M onto N . A
classical topic in von Neumann algebras is to study the relative position of N inside
M . There are two closely related notions to describe the relative position of N inside
M . One is singularity and the other one is maximal amenability.

Recall that N is called singular in M [34] if the normalizer of N , i.e. N(N) :=
{u ∈ U(M) : uNu∗ = N}, is contained in N . In general, it is not easy to decide
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whether given subalgebras, e.g. maximal abelian subalgebras (masas), are singular
and this prompted Sinclair and Smith to introduce, a priori, stronger notion of
singularity, which was called strongly singularity in [26]. Recall that N is said to
be strongly singular if, for every unitary u ∈ M

sup
||x||≤1

||(EN − EuNu∗)x||2 ≥ ||(Id − EN)u||2,

where || · ||2 denotes the L2-norm associated with a prescribed faithful normal trace
on M . Although the definition is more involved, it is easier to check, especially
for group von Neumann subalgebras. For example, certain subgroups of hyperbolic
groups are shown to give rise to strongly singular von Neumann subalgebras in [26].
Moreover, it was shown in [27] that a singular masas is in fact also strongly singular
for a separable II1 factor M .

Besides singularity, one also studies maximal amenability. Recall that N is
maximal amenable in M if N is amenable and there are no amenable subalgebras in
M that strictly contain N .

Clearly, a maximal amenable von Neumann subalgebra is automatically singular.
Although every nonamenable von Neumann algebra M contains maximal amenable
von Neumann subalgebras by Zorn’s lemma, it is rather difficult to construct
concrete examples of maximal amenable von Neumann subalgebras.

The first such a concrete example is due to Popa. In [20] Popa proved that the
abelian von Neumann subalgebra generated by one of the generators of the non-
abelian free groupFn, i.e. the generator masas, is maximal injective in the free group
factor L(Fn). One ingredient in his proof is the so-called “asymptotic orthogonality
property” for the generator masas inside L(Fn). This method was later applied
elsewhere, see e.g. [2, 11].

More recently, new techniques introduced in [1] allowed to obtain more explicit
examples of maximal amenable group von Neumann subalgebras that come from
infinite maximal amenable subgroups. This strategy is best suited for groups acting,
in an appropriately regular way, on geometric objects and includes hyperbolic
groups, many semisimple Lie groups of higher rank such as SL3(Z).

In [23, 24] for groups acting on geometric objects, e.g. affine buildings, certain
subgroups are shown to give rise to strongly singular von Neumann subalgebras. If
we regard the homogeneous tree as a one dimensional affine building of type ˜A1,
then the degenerate case of the results in [23, 24] states that the generator masas in
L(Fn) are strongly singular. Hence, it is natural to ask whether results in [23, 24]
can be strengthened to show the von Neumann subalgebras are actually maximal
amenable. The main result of our paper is an affirmative answer to this question, see
Theorem 2.5, Corollary 2.6. The proof is based on the geometric approach in [1]
and previous work in [23].

We organize this paper as follows. In Sect. 2, we recall necessary background
on affine buildings that are used in our main theorem. In Sect. 3, we apply the
geometric approach to acylindrically hyperbolic groups, which inspired questions
studied in Sect. 4.
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2 Preliminaries and Main Theorem

2.1 Affine Buildings

Let us briefly recall several standard facts on affine buildings, we refer the readers
to [4, 25] for more details.

Let � be an affine building. By �0 we denote its set of vertices. Similarly, let
A be an apartment, then A0 denotes its vertices. Recall that a sector is a simplicial
cone based at a special vertex in some apartment; two sectors are equivalent (or
parallel) if their intersection contains a sector. The boundary! is defined to be the
set of equivalent classes of sectors in �. Fix a special vertex x ∈ �, for any ω ∈ !,
there is a unique sector [x, ω) in the class ω having base vertex x [25, Theorem 9.6,
Lemma 9.7]. ! also has the structure of a spherical building [25, Theorem 9.6] and
topologically, ! is a totally disconnected compact Hausdorff space and a basis for
the topology is given by the set of the form !x(v) = {ω ∈ ! : [x, ω) contains v}.

Two boundary points ω, ω̄ in ! are said to be opposite if the distance between
them is the diameter of the spherical building !. This is equivalent to the property
that they are represented by opposite sectors S, S̄ with the same base vertex in some
apartment of � by [12, Lemma 3.5].

For an ω in !, we can define O(ω) to be the set of all ω′ ∈ ! such that ω′
is opposite to ω. Note that O(ω) is an open set. Moreover, if ω ∈ ! and A is an
apartment in �, then there exists a boundary point ω̄ of A such that ω̄ is opposite
ω [12, Lemma 3.2]. As a corollary, if ω1, . . . , ωn are the boundary points of an
apartment, then ! = O(ω1) ∪ · · · ∪ O(ωn) [12, Corollary 3.3].

Motivated by [23, Section 5] we fix a group G of automorphisms of an affine
building � with boundary ! satisfying the following properties.

(B1) G acts freely on the vertex set �0 with finitely many vertex orbits (i.e.
cocompactly).

(B2’) There is an apartment A in � and an amenable subgroup H of G such that
H preserves A and H \ A is compact, i.e. A is a periodic apartment. In
particular, H \A0 is finite, where A0 is the vertex set of A.

(B3) The natural mapping H \A0 → G \�0 is injective.

Remark 2.1

(1) In [23, Section 5], an almost identical set of conditions is introduced. The only
difference is condition (B2) therein, which was stated as follows (using our
notations): There is an apartment A in � and an abelian subgroup H of G such
that H \ A0 is finite, where A0 is the vertex set of A. It was made clear in [23,
Remark 5.1(b)] that the sole reason for assuming that H is abelian in condition
(B2) is to obtain an abelian von Neumann algebra LH . Everything else works
equally well without this assumption. Here, we use notation (B2’) to distinguish
it from condition (B2). Note that both (B2) and (B2’) are checked and applied
for the same type of examples.
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(2) As observed in [23, Lemma 5.2], since G acts freely on �0, condition (B3)
guarantees that for any g ∈ G, gA0 ∩A0 �= ∅ implies g ∈ H .

(3) The above notion of periodic apartments was called “doubly periodic apart-
ments” in [21, 24]; while in [12, 23], it was simply called periodic apartments.

Let A be the periodic apartment appeared in condition (B2’), and fix a special
vertex z in A. As explained in [12, P. 207], we choose a pair of opposite sectors
W+,W− in A based at z and denote by ω± the boundary points represented by
W±, respectively. By periodicity of A, there is a periodic direction represented by
a line L in the sector direction of W+. This means that there exists some element
u ∈ G which leaves L invariant and translates the apartment A in the direction of
L. Then unω+ = ω+, unω− = ω− for all n ∈ Z.

One ingredient for our proof is [12, Proposition 3.7], which shows that ω− is an
attracting fixed point for u−1. We state it below (using our notations) for readers’
convenience.

Proposition 2.2 (Proposition 3.7 in [12]) LetG acts properly and cocompactly on
an affine building� with boundary!. Let A be a periodic apartment and choose a
pair of opposite boundary points ω±. Let u ∈ G be an element which translates the
apartment A in the direction of ω+. Then u−1 attracts O(ω+) towards ω−; that is,
for each compact subset K of O(ω+) we have limn→∞ u−n(K) = {ω−}.

We note that during the proof of this proposition, the authors introduced an
increasing family of compact open sets K0 ⊂ K1 ⊂ K2 ⊂ · · · such that
∪∞N=0KN = O(ω+) and they actually proved that limn→∞ u−n(KN) = {ω−} for
each N ≥ 0.

2.2 Ã2-Groups

An ˜A2-group acts simply transitively on the vertices of an affine building of type
˜A2. Such groups were studied in [5, 6] through a combinatorial description, i.e. the
so-called triangle presentation. We would not recall the definition here, but refer
the readers to [24, Introduction] for a clean presentation and the above papers for
details.
˜A2-groups have Kazhdan’s property (T) by [7, Theorem 4.6] and operator

algebras associated with ˜A2-groups were studied extensively, see e.g. [12, 21–24].

2.3 Singular Subgroups

Let us recall the notion of singular subgroups as introduced in [1].
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Definition 2.3 Consider an amenable subgroup H of a discrete countable group G.
Suppose that G acts by homeomorphisms on the compact space X. We say that H
is singular in G (with respect to X) if for any H -invariant probability measure μ on
X and g ∈ G \H we have g · μ ⊥ μ.

For convenience we will denote by ProbH (X) the space of H -invariant probabil-
ity measures on X.

It turns out that with the presence of singularity, an amenable subgroup is
automatically maximal amenable [1, Lemma 2.2]. More importantly, this fact is also
witnessed at the level of von Neumann algebras as shown in the following theorem.

Theorem 2.4 (Theorem 2.4 in [1]) Suppose G is a discrete countable group
admitting an amenable, singular subgroupH . Then for any trace preserving action
G � (Q, τ) on a finite amenable von Neumann algebra, Q � H is maximal
amenable insideQ�G.

2.4 Main Theorem and Its Proof

Now, we are ready to state our main theorem, which is a strengthening of [23,
Theorem 5.8].

Theorem 2.5 Let G be a group of automorphisms of a locally finite affine building
� with boundary!. Assume that (B1), (B2’), (B3) hold andH ⊆ G is as described
in condition (B2’). Then H is a singular subgroup in G.

Proof According to Definition 2.3, we need to show that for anyμ ∈ ProbH(!) and
every g ∈ G \H , we have g ·μ ⊥ μ. Consider such a μ ∈ ProbH(!) and denote by
{w1, . . . , wk} the boundary points of the apartment A appeared in condition (B2’).
Note that ! is a spherical building and k equals the cardinality of the spherical Weyl
group, which is finite.

We claim that supp(μ) ⊆ {w1, . . . , wk}. Indeed, assume the contrary and take
any w ∈ supp(μ) \ {w1, . . . , wk}. Since w ∈ supp(μ), we may take a small closed
neighborhood of w, say Nw, such that Nw ∩ {w1, . . . , wk} = ∅ and μ(Nw) > 0.
Since the boundary points of the apartmentA are exactly w1, . . . , wk , we may apply
[12, Corollary 3.3] to deduce ! = O(w1) ∪ . . . ∪ O(wk), where O(w) is the set of
all w′ ∈ ! such that w′ is opposite to w.

Without loss of generality, we may assume μ(Nw ∩ O(w1)) > 0 and that wk is
the opposite boundary point of w1. Nw ∩ O(w1) may not be a compact subset of
O(w1), but one may replace it with the intersection with some Kn defined in the
proof of [12, Proposition 3.7]. See the paragraph after Proposition 2.2 for a quick
explanation.

Hence we obtain a compact subset with μ(Nw∩O(w1)∩Kn) > 0. Note that [12,
Proposition 3.7] applies since condition (B1) guarantees that the action of G on the
vertex set �0 is proper and cocompact and A is periodic by condition (B2’).
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Without loss of generality, we assume Nw∩O(w1) is a compact subset of O(w1).
Then by [23, Proposition 3.7], we know that limn→∞ u−n(Nw ∩ O(w1)) = {wk},
where u ∈ G is an element which translates the apartment A in the direction of w1.

Note that u satisfies the extra property uω1 = ω1, this implies that u ∈ H .
Indeed, since we have sector representatives for uω1 and ω1 in the apartment uA
and A respectively, uA0 ∩ A0 contains a subsector; in particular, uA0 ∩ A0 �= ∅.
Then by [12, Lemma 5.2], condition (B3) implies u ∈ H .

Since all wi are fixed points under H , we deduce for any n ≥ 1, wk �∈ u−n(Nw),
which implies wk �∈ u−n(Nw ∩ O(w1)), since Nw is closed in !. Therefore, we may
find an increasing sequence ni → ∞ such that u−ni (Nw ∩ O(w1)) ∩ u−nj (Nw ∩
O(w1)) = ∅ for all i �= j . Hence, we deduce that 1 = μ(!) ≥ μ(�∞i=1u

−ni (Nw ∩
O(w1))) = ∑∞

i=1 μ(u
−ni (Nw ∩ O(w1))) = ∑∞

i=1 μ(Nw ∩ O(w1)) = ∞, a
contradiction.

We now claim that g · supp(μ) ∩ supp(μ) = ∅ for any g ∈ G \ H . To see this,
assume the contrary. Then gwi = wj for some i, j ∈ {1, . . . , k} by the above claim.
Since we have sector representatives for gwi and wj in the apartment gA and A

respectively, gA0 ∩A0 contains a subsector; in particular, gA0 ∩A0 �= ∅. Then by
[23, Lemma 5.2], condition (B3) implies g ∈ H , a contradiction.

Then, combining the above two claims, we deduce that g · μ ⊥ μ for all g �∈ H .
��

Applying Theorem 2.5 to ˜A2-buildings, we have the following corollary.

Corollary 2.6 Let G be an ˜A2 group acting on an ˜A2-building � and H < G be
an abelian subgroup which acts simply transitively on the vertex set of an apartment
A in �. Then H is singular in G.

The above result is a strengthening of [24, Theorem 2.8].
Indeed, in the above example, H ∼= Z2 by [24, P. 6] and the apartment A is

(doubly) periodic [24, p. 6–7]. By [23, Example 5.9], we know all conditions (B1),
(B2’), (B3) are satisfied.

As explained in [23, Example 5.9] or [24, Remark 1.5], we can apply the above
corollary to G being the groups (4.1), (5.1), (6.1), (9.2), (13.1) and (28.1) in the
table of the end of [6].

Note that ˜A2 groups have Kazhdan’s property (T) by [7, Theorem 4.6] and they
give rise to II1 factors by [24, Lemma 0.2] or [23, Lemma 5.6]. So we have more
examples of higher rank abelian, maximal amenable subalgebras in II1 factors with
property (T). See [1, 2] for more examples.

3 Acylindrically Hyperbolic Groups

In [2, p. 1201], it was mentioned that if H < G is an infinite amenable subgroup
which is hyperbolically embedded then LH is maximal amenable inside LG.
Since the proof was based on Popa’s asymptotic orthogonality approach and was
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omitted, we take this opportunity to include a proof of a somewhat different version
(see Remark 3.6) of this result using the geometric approach in [1]. The proof is
similar to the proof of [1, Lemma 3.2], but uses more recent work on acylindrically
hyperbolic groups.

Let us first briefly recall the standard terminology related to acylindrically
hyperbolic groups, we refer the readers to [8, 17] for details.

An action of a group G on a metric space S is called acylindrical if for every
ε > 0 there exist R,N > 0 such that for every two points x, y with d(x, y) > R,
there are at mostN elements g ∈ G satisfying d(x, gx) ≤ ε and d(y, gy) ≤ ε. From
now on, we assume the space S is hyperbolic and G acts on S isometrically, this
action extends to an action on its Gromov boundary X := ∂S by homeomorphisms.
We say an element g ∈ G is loxodromic if the map Z → S defined by n �→ gns

is a quasi-isometry for some (equivalently, any) s ∈ S. Every loxodromic element
g ∈ G has exactly two limit points g±∞ on ∂S. Loxodromic elements g, h ∈ G are
called independent if the sets {g±∞} and {h±∞} are disjoint.

We say the action G � S is elementary if the limit set of G on ∂S contains at
most two points. Here, the limit set of G is just the set of accumulation points of a
G-orbits on ∂S. In fact, this definition does not depend on the choice of G-orbits.

G is called an acylindrically hyperbolic group if it admits a non-elementary
acylindrical action on a hyperbolic space S. Typical examples of acylindrically
hyperbolic groups include non-elementary hyperbolic groups, certain non-virtually-
cyclic relatively hyperbolic groups, mapping class groups and Out(Fn) for n ≥ 2
etc.

A useful tool used later is the following theorem of Osin on classification of
groups acting acylindrically on hyperbolic spaces. Note that for an acylindrically
hyperbolic group G (w.r.t. G � S), condition (3) below holds.

Theorem 3.1 (Theorem 1.1 in [17]) Let G be a group acting acylindrically on a
hyperbolic space S (isometrically). Then G satisfies exactly one of the following
three conditions.

1. G has bounded orbits.
2. G is virtually cyclic and contains a loxodromic element.
3. G contains infinitely many independent loxodromic elements.

We are now in the position to state the following result.

Theorem 3.2 Let G be an acylindrically hyperbolic group (say w.r.t the action
G � S) and H be any maximal amenable subgroup containing a loxodromic
element h (w.r.t. G � S). Then LH < LG is maximal injective.

This is a direct corollary of the following proposition which proves that H is
singular in G.

Proposition 3.3 Let H < G be an infinite maximal amenable subgroup containing
a loxodromic element h. Let X = ∂S. Then the following statements hold.
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1. There exist two points a, b ∈ X such thatH is the stabilizer of the set {a, b}, that
is H = StabG({a, b}) := {g ∈ G : g · {a, b} = {a, b}}.

2. AnyH -invariant probability measure onX is of the form tδa+(1− t)δb for some
t ∈ [0, 1].

3. Any element g ∈ G \H is such that g · {a, b} ∩ {a, b} = ∅.
For the proof, we record the following lemma.

Lemma 3.4 Let a, b be the two fixed points of the loxodromic element h inX = ∂S.
Then StabG(a) = StabG(b).

Proof Assume not, then StabG(a)� StabG(b) �= ∅. If g ∈ StabG(a) \ StabG(b).
Then ghg−1 is also loxodromic by definition. And note that Fix(h) = {a, b},
but b �∈ Fix(ghg−1) 7 a. Hence, for each t ∈ 〈ghg−1, h〉, a ∈ Fix(t). Then
by [17, Theorem 1.1], 〈ghg−1, h〉 is virtually cyclic and contains a loxodromic
element t . Then e �= ghng−1 = hn

′ ∈ 〈t〉 for some nonzero integers n, n′. Then
Fix(ghg−1) = Fix(ghng−1) = Fix(hn

′
) = Fix(h), a contradiction. The other

case is proved similarly. ��
Proof of Proposition 3.3 By [10, Proposition 3.4], h acts on X with a north-south
dynamics. Denote by a, b the two fixed points of h in X = ∂S, and let us assume a
is the attracting point.

(i) Let s ∈ H . Then shs−1 is a loxodromic element with fixed points s · a
and s · b. If {a, b} ∩ {s · a, s · b} = ∅, then by the ping-pong lemma,
H ⊇ 〈h, shs−1〉 contains a free group, which is impossible since H is
amenable. Then by Lemma 3.4, {s · a, s · b} = {a, b} since shs−1 and h

fix a common point and hence the other point. Hence H ⊆ StabG({a, b}).
To show that equality holds we note that StabG({a, b}) is amenable since
[StabG({a, b}) : StabG(a)∩StabG(b)] ≤ 2 and StabG(a) is virtually cyclic by
[17, Theorem 1.1].

(ii) We only need to show the support of any H -invariant probability measure is
contained in {a, b}. This is a consequence of the north-south dynamics action
of h. We sketch the proof for completeness. Assume there exists p ∈ supp(μ)\
{a, b}, then since X is complete Hausdorff (i.e. for any two distinct points
u, v ∈ X, there are open sets U,V containing u, v respectively, such that Ū ∩
V̄ = ∅, see [28]), we may find a closed neighborhood Op of p such that
Op ∩ {a, b} = ∅ and μ(Op) > 0. Then there exists an increasing sequence
ni such that hniOp → a and the family of sets {hniOp}i is pairwise disjoint,
hence we get a contradiction since μ(hniOp) = μ(Op).

(iii) By Lemma 3.4 and (1), we know that StabG(a) = StabG(b) ⊆ H . Then the
proof goes similarly as in [1]. We include it for completeness. Take g ∈ G such
that g · a = b. If there exists some s ∈ H which exchanges a and b. Then sg

fixes a and so g ∈ H . Otherwise, all elements in H fix a and b, then gsg−1

fixes b and g−1sg fixes a, for all s ∈ H . Hence g normalizes H so g ∈ H by
maximal amenability. ��
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Remark 3.5 H always exists since every group element g ∈ G is contained in a
maximal amenable subgroup by Zorn’s lemma. And such an H is virtually cyclic
by [17, Theorem 1.1].

Remark 3.6 Note that in Theorem 3.2, the subgroup H is hyperbolically embedded
by [8, Theorem 6.8]. It is not clear to us whether one can find a loxodromic element
inside any infinite hyperbolically embedded amenable subgroup H . It is known that
if H does not contain any loxodromic elements, then H is elliptic by [17, Theorem
1.1]. On the one hand, there do exist elliptic subgroups that are not hyperbolically
embedded, see [15, Corollary 7.8]; on the other hand, if a hyperbolic embedded
subgroup H is virtually cyclic, then it contains a loxodromic element by the proof
of (L4)⇒ (L1) in the proof of [17, Theorem 1.4].

4 The Case of No Loxodromic Elements in H

Motivated by Theorem 3.2, it is natural to ask whether we can drop the assumption
that H contains loxodromic elements or more generally H is hyperbolically
embedded. Moreover, by [16], we know that many non-amenable groups with
positive first �2-Betti number are acylindrically hyperbolic, then it is natural to ask
whether LH is maximal amenable in LG if H < G is infinite maximal amenable
and β

(2)
1 (G) > 0. Modifying the example in [1, p. 1697], we show that both

questions have negative answers.

Proposition 4.1 Let K = BS(m, n) = 〈a, t|tamt−1 = an〉, H = 〈a〉 < K and
G = K ∗ F2, where F2 denotes the non-abelian free group on two generators. Then
the following statements hold.

1. β(2)
1 (G) > 0, and if |m|, |n| ≥ 3, then H is maximal amenable in G but LH is

not maximal amenable in LG.
2. K is not acylindrically hyperbolic if |m|, |n| ≥ 3, while G is acylindrically

hyperbolic and H < G is not hyperbolically embedded.
3. If c : G → H is any cocycle with c(a) = 0, then c(t) = 0, i.e. ker(c) �= H ,

where G � H is a mixing unitary representation.

Proof

(1) By [19, Proposition 3.1], β(2)
1 (G) ≥ β

(2)
1 (K)+ β

(2)
1 (F2) ≥ 1. As explained in

[1, p. 1697], H is maximal amenable in K if |m|, |n| ≥ 3 (see Proposition 4.3
below for a different proof) but LH is not maximal amenable LK since
x :=∑n−1

k=0 a
ktat−1a−k ∈ CK commutes with LH , hence LH is not maximal

amenable in LG either. Then we can apply Proposition 4.2 below to see H is
still maximal amenable in G since K is torsion free if mn �= 0 by [13].

(2) If |m|, |n| ≥ 3, then K is not acylindrically hyperbolic by [17, Example 7.4].
While G is acylindrically hyperbolic by [15] or [16, Corollary 1.3 or Theorem
1.1], and observe that H < G is not almost malnormal since tH t−1 ∩ H is
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infinite, hence it is not hyperbolically embedded by [17, Lemma 7.1] or [8,
Proposition 2.8].

(3) From c(tant−1) = c(am) = 0, we deduce that c(t) = tant−1c(t). Then since
tant−1 has infinite order, we get ||c(t)||2 = 〈c(t), (tant−1)kc(t)〉 → 0 as
k→ ∞. ��

Proposition 4.2 Let H,K and L be countable discrete groups. If H is maximal
amenable in K , and both K and L are torsion free. Then H is also maximal
amenable in K ∗ L.
Proof First, we observe that it suffices to show K is free from g for every g ∈
K ∗ L \K , i.e. 〈K, g〉 = K ∗ 〈g〉.

To see this, one just check that for all g ∈ K ∗ L \H , 〈H, g〉 is not amenable. If
g ∈ K ∗ L \ K , then 〈H, g〉 = H ∗ 〈g〉 ≥ F2 by assumption. If g ∈ K \ H , then
〈H, g〉 ⊆ K is not amenable since H < K is maximal amenable.

We are left to show for all g ∈ K ∗ L \K , K is free from g.

Claim 1 for every e �= k ∈ K and every g ∈ K ∗ L \ K , K is free from g if and
only if K is free from kg.

Proof of Claim 1 By symmetry, it suffices to show⇒ holds.
Suppose k1(kg)

m1 · · · ki(kg)mi = e for some k2, . . . ki ∈ K \ {e}, k1 ∈ K ,
m1 · · ·mi−1 �= 0 and mi ∈ Z. Then, since K is free from g, we deduce
|m1|, . . . , |mi−1| = 1; otherwise, by looking at the middle word pieces between
any two successive g±, we deduce k = e, a contradiction.

Then, we divide the argument into four cases.

Case 1: mj = 1 for all j ∈ {1, . . . , i − 1}. By freeness, we deduce kjk = e for all
j ∈ {1, . . . , i − 1} and hence gi−1ki(kg)

mi = e. If mi = 0 or mi = −1,
then ki = e, a contradiction. If mi = 1, then kik = e and gi = e, this
is a contradiction since K ∗ L is torsion free. If |mi | ≥ 2, then k = e, a
contradiction.

Case 2: mj = −1 for all j ∈ {1, . . . , i − 1}. The proof is similar to the proof of
case 1.

Case 3: m1 = 1 and there exists the smallest j ∈ {1, . . . , i−1} such that mj = −1.
Then by freeness, we must have kj = e, a contradiction.

Case 4: m1 = −1 and there exists the smallest j ∈ {1, . . . , i − 1} such that
mj = 1. Then by freeness, we must have k−1kj k = e, i.e. kj = e a
contradiction. ��

By Claim 1 and taking inverses it is also clear that for any e �= k ∈ K , K is free
from g if and only if K is free from gk. Hence, to prove g is free from K , we may
assume when written in reduced form, either g = x or g = xty, where x, y ∈ L\{e}
and e �= t is a reduced word in G with head and tail come from K . Then clearly, g
is free from K . ��
Proposition 4.3 LetG = BS(m, n) = 〈a, t | tamt−1 = an〉 and H = 〈a〉. Then H
is maximal amenable in G if |m|, |n| ≥ 3.
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Proof It suffices to prove K := 〈g, a〉 contains free group F2 for every g ∈ G \H .
By the normal form theorem for HNN extension [14, Page 182], for every e �=

g ∈ G, we may write g in reduced normal form, i.e.

g = ai0 tε1ai1 tε2 · · · tεk aik ,

where εi ∈ {±1} and no substrings of the form tam∗t−1 or t−1an∗t appear, where
m∗ (respectively, n∗) denotes any integer divisible by m (respectively, n). Moreover,
if εj = 1 for some 1 ≤ j ≤ k, then 0 ≤ ij < m; similarly, if εj = −1 for some
1 ≤ j ≤ k, then 0 ≤ ij < n.

Notice that K = 〈a−i0ga−ik , a〉 and a−i0ga−ik ∈ G \ H , so without loss of
generality, we may assume that g = tε1ai1 tε2 · · · tεk in reduced normal form.

Then, using Britton’s lemma (see [3] or [14, Page 181]), one can check that
gag−1a is free from agag−1 and both have infinite order if |m|, |n| ≥ 3; in other
words, F2 ∼= 〈gag−1a, agag−1〉 ⊆ K . ��

Despite the existence of the above examples, we also have examples showing
that some maximal amenable but not hyperbolically embedded subgroups may give
rise to maximal amenable group von Neumann algebras. Indeed, let G = (Z×F2)∗
F2 = (〈a〉 × 〈b, c〉) ∗ F2, K = Z × F2 = 〈a〉 × 〈b, c〉 and H = Z2 = 〈a, b〉.
Since 〈a〉 ⊆ cHc−1 ∩ H is infinite, H is not almost malnormal; therefore it is not
hyperbolically embedded in the acylindrically hyperbolic group G. While LH is
maximal amenable in LK by [1, Theorem 2.4], hence LH is still maximal amenable
in LG = LK ∗ LF2 since any amenable subalgebra (in LG) containing LH is
contained in LK by [11] or [18].
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1 Introduction

Let G be a semisimple real Lie group and 	 a cocompact lattice in G. A compactly
supported smooth function on G (a.k.a. a test function) acts on the Hilbert space
L2(G/	) via convolution and it is well-known the bounded operator obtained from
this action is of trace class. By computing this trace in two different ways, by
“summing the eigenvalues” and by “summing the diagonal entries”, we arrive at
Selberg’s trace formula which has the following rough shape (see Sect. 2 for the
precise formula):

∑

π

m	(π) trπ(f ) =
∑

(γ )

Oγ (f ).

The sum on the left hand side (the spectral side) runs over the irreducible unitary
representations of G and we sum, counting multiplicities, the trace of our operator
on “eigenspaces”. The sum on the right hand side (the geometric side) runs over the
conjugacy classes of 	 and we sum over the orbital integrals which arise from the
“diagonal entries” of the kernel function associated to our operator.

The trace formula has fundamental applications in number theory. For example,
the multiplicities m	(π) give dimensions of various spaces of automorphic forms. If
π is integrable, by plugging a carefully chosen test function (a pseudo-coefficient)
into the trace formula, one can isolate m	(π) on the spectral side and thus get an
explicit formula for it via the geometric side. Another important application is to
the functoriality principle in the Langlands programme. For this application, one
compares trace formulas on different groups.

In this paper, we present a cohomological carnation of the trace formula. We
do this by considering the K-theory groups of the group C∗-algebras associated to
G and 	, and interpreting the terms that appear in the trace formula in K-theoretic
terms. Our beginning point is a simple commutative diagramme that is a K-theoretic
manifestation of the fact that the quasi-regular representation R	 of G on L2(G/	)

is the induction to G of the trivial representation 1 of 	:

K0(C
∗(G))

R∗

res

Z

K0(C
∗

1∗
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The homomorphism R	∗ (resp. 1∗) arises via functoriality from R	 (resp. 1) and the
vertical arrow is the restriction homomorphism given by the Mackey–Rieffel theory
of imprimitivity bimodules. We then use the spectral decomposition of R	 into
irreducible unitary representations π to decompose R	∗ into homomorphisms π∗,
thus obtaining the spectral side of our K-theoretic trace formula. For the geometric
side, we decompose 1∗ over the conjugacy classes of 	. The decomposition starts at
the level of the convolution algebraL1(	) of integrable functions on 	. At this level,
the partitioning of 	 into its conjugacy classes (γ ) gives rise to a decomposition of
the *-homomorphism 1 : L1(	) → C into maps τγ satisfying the trace property
(i.e. degree 0 cyclic cohains). Just for this introduction, let us assume that 	 has
“controlled growth” (e.g. Gromov hyperbolic). Then it is possible to continuously
extend the maps τγ to a holomorphically closed dense subalgebra of C∗r (Γ ) and
thus obtain a decomposition of 1∗ into τγ,∗ at the level of K0(C

∗(	)).
We arrive at the following K-theoretic trace formula:

∑

π∈̂G
m	(π)π∗(x) =

∑

(γ )∈〈	〉
τγ,∗(res(x)). (1)

for every x ∈ K0(C
∗(G)). The general result, which does not make any assumptions

on 	 unlike we did above, is given in Theorem 4.13.
An important feature of group C∗-algebras is that they are the recipients of the

so-called higher indices. Let K denote a maximal compact subgroup of G. Let
D denote the Dirac operator on the symmetric space G/K , possibly twisted by
a finite dimensional representation of K and denote by IndGD the higher index
of D over C∗(G). We show that if one takes x = [IndGD] in Eq. (1), then we
obtain, crucially using results of [29], the index theoretic version of the Selberg
trace formula developed by Barbasch and Moscovici [5]:

∑

π∈̂G
m	(π)Trsπ(kt) =

∑

(γ )∈〈	〉

∫

	γ \G
Trskt (x−1γ x)dx. (2)

Here t > 0 and kt is the kernel associated to the heat operator e−tD2
viewed as a

matrix valued smooth function on G with Trs denoting the supertrace.
From a larger perspective, our result allows for the use of techniques from the

representation theory of the semisimple Lie group G in the study of the K-theory
of the lattice 	. It is part of a program that explores the use of operator algebras and
K-theory in the theory of automorphic forms. See [19, 20] for other such results.

2 Statement of Selberg Trace Formula

We will now review the trace formula of Selberg in the setting of cocompact lattices
in Lie groups (see, for example, [1] for a detailed general account). Let G be a
semisimple Lie group, K a maximal compact subgroup and 	 a uniform lattice in
G. Let f ∈ C∞c (G) and denote by R	 : G → U(L2(	\G)) the right regular
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representation which extends to R	 : C∞c (G)→ L(L2(	\G)) via

R	(f ) =
∫

G

f (y)R	(y)dy f ∈ C∞c (G).

The operator R	(f ) is trace class (see below) and the Selberg trace formula is an
equality arising from computing the trace of R	(f ) in two different ways.

On the “geometric side”, regarding φ ∈ L2(	\G) as a 	-invariant function on
G, and from

[R	(f )φ](x) =
∫

G

f (y)[R	(y)φ](x)dy =
∫

G

f (y)φ(xy)dy

=
∫

G

f (x−1y)φ(y)dy =
∫

	\G

∑

γ∈	
f (x−1γy)φ(y)dy,

we obtain the Schwartz kernel

K(x, y) =
∑

γ∈	
f (x−1γy),

associated to f . The fact that f is compactly supported and smooth ensures that the
sum is locally finite and thus K is a smooth kernel. Coupled with the fact that 	\G
is compact, we deduce that R	(f ) is trace class. We have

TrR	(f ) =
∫

	\G
K(x, x)dx =

∫

	\G

∑

γ∈	
f (x−1γ x)dx

=
∫

	\G

∑

(γ )∈〈	〉

∑

δ∈	γ \	
f (x−1δ−1γ δx)dx

=
∑

(γ )∈〈	〉
vol(	γ \Gγ )

∫

Gγ \G
f (x−1γ x)dx.

As usual, in the above 〈	〉 denotes the conjugacy classes of 	 and 	γ (resp. Gγ ) is
the centralizer of γ in 	 (resp. G).

On the “spectral side”, the Hilbert space L2(	\G) splits as a direct sum

L2(	\G) -
⊕

π∈̂G
H⊕m	(π)
π (3)

of irreducible unitary representations (π,Hπ) ∈ ̂G of G with each appearing with
finite multiplicity m	(π). By restricting R	(f ) to the irreducible subspaces of
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L2(	\G), we obtain the following from (3),

TrR	(f ) =
∑

π∈̂G
m	(π)Tr(π(f )).

where π(f ) = ∫
G
f (y)π(y)dy (which can be regarded as the Fourier transform of

f at π). The Selberg trace formula is the equality

∑

π∈̂G
m	(π)Tr(π(f )) =

∑

(γ )∈〈	〉
vol(	γ \Gγ )

∫

Gγ \G
f (x−1γ x)dx. (4)

Remark 2.1 If 	\G has finite volume but is noncompact, the spectral decom-
position of L2(	\G) also involves a continuous component and R	(f ) is not
necessarily a trace class operator. A truncated version of traces need to be introduced
in the Selberg trace formula in this setting (see [1]).

3 Index Theoretic Trace Formula

In this section we formulate an analogue of the Selberg trace formula in the context
of index theory, which will be proved using the framework of K-theory in Sect. 4.

We assume in addition that the rank of G equals that of K . Note that as a
consequence, the symmetric space G/K is of even dimension. Assume that G/K

admits a G-equivariant spinc structure and let S = S+ ⊕ S− denote the associated
spinor bundle on G/K . Let V be a finite dimensional representation of K and
E = G ×K V be the associated G-equivariant vector bundle on G/K . Let D be
the G-invariant Dirac operator on the bundle G ×K (V ⊗ S) → G/K with Z2-

grading, i.e., D has the form

[

0 D−
D+ 0

]

. Consider the heat operator e−tD2
, which

admits a smooth kernel Kt(x, y). The kernel Kt(x, y) satisfies

Kt(gx, gy) = Kt(x, y) x, y ∈ G/K, g ∈ G,

which is equivalent to the G-invariance of D. RegardingKt(x, y) as a matrix-valued
function on G×G, invariant under the K ×K-action

Kt(x, y) = aKt(xa, yb)b
−1 ∈ End(V ⊗ S) a, b ∈ K.

We define

kt (x
−1y) := Kt(x, y) x, y ∈ G.
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Then kt is a matrix-valued function on G that is invariant under the action of K×K:

kt ∈ [C∞(G)⊗ End(V ⊗ S)]K×K, kt (x) = akt(a
−1xb)b−1, a, b ∈ K.

Moreover, kt is smooth and of Schwartz type. To be more precise,

kt ∈ [S(G)⊗ End(V ⊗ S)]K×K.

where S(G) is Harish-Chandra’s Schwartz algebra of G. See [7, Section 1] and [5,
Section 2] for more details.

We now replace the test function f ∈ C∞c (G) acting on L2(	\G) in the previous
section by the heat kernel kt acting on the Z2-graded space (L2(	\G) ⊗ V ⊗ S)K

and formally state the Selberg trace formula associated to the heat operator. We
write π(kt ) for the operator obtained from the action of kt on (Hπ ⊗ (V ⊗ S))K .

Choose an invariant Haar measure on G so that it is compactible with G-invariant
measure on G/K . This in particular means that the volume of the maximal compact
subgroup K of G is assumed to be 1.

Proposition 3.1 Let Trs be the supertrace of Z2-graded vector spaces. Then

∑

π∈̂G
m	(π)Trsπ(kt ) =

∑

(γ )∈〈	〉
vol(	γ \Gγ )

∫

Gγ \G
Trs [kt (x−1γ x)γ ]dx. (5)

The heat kernel kt is not compactly supported, however it is ofLp-Schwartz class
for all p > 0 (see [5, Prop. 2.4.]). Using this, one can prove that each summand on
the right hand side of equality (5) converges, see [29, Thm. 6.2]. In any case, the
equality (5) will follow from our main result Theorem 4.16 below.

In the rest of this section, we reformulate the equality (5) in terms of an equality
of indices of Dirac operators.

3.1 Geometric Side

In this subsection we will see that every term on the geometric side can be identified
as the L2-Lefschetz number associated to a conjugacy class of 	 using results
from [29], and that the sum of all L2-Lefschetz numbers over all conjugacy classes
〈	〉 can be identified with the Kawasaki index theorem [14] for the orbifold	\G/K.

Because 	 acts properly and cocompactly on G/K , there exists a cutoff function
c on G/K with respect to the action of 	, i.e., c : G/K → [0, 1] such that

∑

γ∈	
c(γ x) = 1 ∀x ∈ G/K.
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Define the L2-Lefschetz number associated to the conjugacy class (γ ) of γ ∈ 	 by

indγD := tr(γ )s e−tD2 = tr(γ )e−tD−D+ − tr(γ )e−tD+D−

where

tr(γ )S :=
∑

h∈(γ )

∫

G/K

c(x)Tr[h−1KS(hx, x)]dx,

for any (γ )-trace class operator S with smooth Schwartz kernel KS , see (3.22)
of [29]. By Theorems 3.23 and 6.1 of [29], indγD admits a fixed point formula: for
h ∈ (γ ) the kernel h−1Kt(hx, h) localizes to the submanifold (G/K)γ consisting of
points in G/K fixed by γ . By [29, Theorem 6.2], the L2-Lefschetz number for G/K

admits the following expression analogous to the orbital integral on the geometric
side of (4):

indγD = vol(	γ \Gγ )

∫

Gγ \G
Trs [kt(x−1γ x)γ ]dx. (6)

Example 3.2 If 	 acts freely on G/K , then (G/K)γ is empty and all orbital
integrals vanish except for the term where γ is the group identity. The geometric side
of (5) in this special case is equal to vol(	\G) · indeD. Here indeD is a topological
index called L2-index (denoted indL2 D) for the symmetric space G/K introduced
in [7].

Denote by D	 the operator on 	\G/K descending from the one on G/K. It
is a Dirac operator on the compact orbifold 	\G/K . Recall that by the Kawasaki
orbifold index formula, the Fredholm index indD	 can be decomposed as a sum
over conjugacy classes of 	 and the summands are exactly the L2-Lefschetz
numbers:

indD	 =
∑

(γ )∈〈	〉
indγD. (7)

See [14] and Section 2.2 and Theorem 6.2 of [29]. See also [9] for the relationship
between heat kernels on X and the orbifold 	\X.
Remark 3.3 In the special case of a free action, indD	 is the Fredholm index of
D	 on the closed manifold 	\G/K . By Atiyah’s L2-index theorem [2], we obtain

vol(	\G/K) indL2 D = indD	,

which is a special case of (7). Noting that K is assumed to have volume 1, this
formula is compatible with Example 3.2.
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3.2 Spectral Side

Recall the Plancherel decomposition of L2(G):

L2(G) =
∫ ⊕

̂G

(H ∗
π ⊗Hπ)dμ(π),

Accordingly, the Dirac operator D on [L2(G)⊗V ⊗S]K has a decomposition into a
family of Dirac type operators Dπ on [Hπ ⊗V ⊗S]K , parameterized by irreducible
unitary representations (π,Hπ) ∈ ̂G.

We recall the definition and properties of Dπ introduced in [21] and Section 7
of [7]. See also [13] for a comprehensive treatment. Let H∞

π be the space of C∞-
vectors for the G-representation π . The G-invariant operator D can be written as
a finite sum D = ∑

i R
	(Xi) ⊗ Ai where Xi belongs to the universal enveloping

algebra of gC and A±i ∈ Hom(V ⊗ S±, V ⊗ S∓). Here R	 stands for the right
regular representation. Then Dπ is given by

Dπ : [H∞
π ⊗ V ⊗ S]K → [H∞

π ⊗ V ⊗ S]K, Dπ =
∑

i

π(Xi)⊗ Ai.

It is proved in [7, 21] that Dπ is essentially self-adjoint on the dense domain [H∞
π ⊗

V ⊗ S]K . Its closure (also denoted Dπ ) is a Fredholm operator whose Fredholm
index

indDπ = dim(kerD+π )− dim(kerD−π )

is equal to Trsπ(kt) on the spectral side of (5). Indeed, by Proposition 2.1 of [5],
one has

Tr(π(k±t )) = Tr(e−tD∓π D±π ).

Then by the McKean–Singer formula, we obtain

indDπ = Tr(e−tD−π D+π )− Tr(e−tD+π D−π )

= Tr(π(k+t ))− Tr(π(k−t )) = Trs (π(kt)). (8)

Remark 3.4 For an irreducible representation V of K , the dimensions of [Hπ⊗V ⊗
S+]K and [Hπ ⊗V ⊗S−]K are finite (see [3, 5, 7]). The index of the Dirac operator
Dπ corresponding to π can be calculated as the difference

indDπ = Trsπ(kt) = dim[Hπ ⊗ V ⊗ S+]K − dim[Hπ ⊗ V ⊗ S−]K.
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In view of (6) and (8), we conclude the following equivalent statement of the
index theoretic Selberg trace formula.

Proposition 3.5 The equality (5) is equivalent to the equality of indices:

∑

π∈̂G
m	(π) indDπ =

∑

(γ )∈〈	〉
indγD.

The left hand side is finite sum (see Corollary 4.3 below) and the convergence of the
right hand side is determined by (7).

Remark 3.6 Let (η,Hη) be a discrete series representation, and μ ∈ t∗C the Harish-
Chandra parameter of η. There is a standard way, due to Atiyah and Schmid [3],
to realize Hη as the L2-kernel of a Dirac type operator on G/K . For an irreducible
representation Vν ∈ R(K) of K with highest weight ν ∈ t∗C, let Dν denote the
associated Dirac operator defined on the homogeneous vector bundle

G×K (Vν ⊗ S)→ G/K.

Denoting by ρc the half sum of compact positive roots, then Hη can be identified
with the L2-kernel of Dμ+ρc . It is also proved in [3, Section 4] that

dim(H ∗
η ⊗ Vν ⊗ S±)K = 0,

unless μ = ν + ρc. From this, one can derive Proposition 3.5 when D = Dη. See
also [4] for some concrete examples.

Example 3.7 Let (η,Hη) ∈ ̂G be a discrete series with Harish-Chandra parameter
μ. Let π be an arbitrary discrete series. It follows from [3] that

ind(Dμ+ρc )π = dim[H ∗
π⊗Vμ+ρc⊗S+]K−dim[H ∗

π⊗Vμ+ρc⊗S−]K =
{

1 η = π

0 η �= π.

Assume further that 	 is a torsion-free. Then the index theoretic Selberg trace
formula (5) reduces to

m	(η) = vol(	\G/K)indL2 D
μ+ρc ,

recovering a main result of Pierrot [22], which is a special case of [18].
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4 K-Theoretic Selberg Trace Formula

4.1 Decomposition of Right Regular Representation of G

Let us consider again the right regular representation R	 of G on L2(	\G). As
mentioned earlier, C∞c (G) acts on L2(	\G) by compact operators. We use the
standard notation K(X) for the algebra of compact operators on a Hilbert C∗-
module X. As C∞c (G) is a dense subalgebra of the maximal group C∗-algebra
C∗(G) of G, we obtain a ∗-homomorphism

R	 : C∗(G)→ K(L2(	\G)).

This induces a homomorphism on K-theory:

R	∗ : K0(C
∗(G))→ K0(K(L2(	\G)) - Z.

As G is liminal, the above observation applies to any irreducible unitary represen-
tation as well. Indeed, for any (π,Hπ) ∈ ̂G, we have homomorphisms

π : C∗(G)→ K(Hπ), π∗ : K0(C
∗(G))→ Z.

The morphism π∗ determines an element in KK(C∗(G),C) which we will denote
by [π]. Observe that we have

π∗(x) = x ⊗C∗(G) [π],

for every x ∈ K0(C
∗(G)), where⊗C∗(G) denotes the Kasparov product. We remark

that the maps π∗ feature1 heavily in Chapter 2 of [16].

Proposition 4.1 For every x ∈ K0(C
∗(G)) there exists a finite subset Sx ⊂ ̂G such

that

1. π∗(x) = 0 for all π ∈ ̂G \ Sx ,
2. R	∗ (x) =

∑

π∈Sx
π∗(x).

Proof Let x ∈ K0(C
∗(G)) be given by the even (C, C∗(G)) Kasparov module

(X, F ). Since 1 ∈ C acts on X by a projection, say p, after replacing X by pX and
F by pFp, we may without loss of generality assume that C acts unitally on X and
F 2 − 1 ∈ K(X). Since C∗(G) acts on L2(	 \ G) by compact operators, we have
that K(X)⊗ 1 ⊂ K(X⊗R	 L2(	 \G)) (see [17, Proposition 4.7]). The operator

F ⊗ 1 : X ⊗R	 L2(	 \G)→ X ⊗R	 L2(	 \G),

1Lafforgue uses the notation 〈H, x〉 for our π∗(x), where H is the representation space of π .
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satisfies (F⊗1)2−1 = (F 2−1)⊗1 ∈ K(X)⊗1 ⊂ K(X⊗L2(	\G)). ThusF⊗1 is
a self-adjoint unitary modulo compact operators, and therefore it is Fredholm. The
integer R	∗ (x) ∈ Z is thus given by the index of F ⊗ 1. Since there is a direct sum
splitting

X ⊗R	 L2(	 \G) -
⊕

π∈̂G
(X ⊗π Hπ)

⊕m	(π) ,

it follows that F ⊗ 1 =⊕π∈̂G Fπ where the operators are defined to be

Fπ := F ⊗π 1 : (X ⊗π Hπ)
⊕m	(π) → (X ⊗π Hπ)

⊕m	(π) .

Since F ⊗ 1 is Fredholm, its kernel and cokernel are finite dimensional and thus it
follows that Fπ is unitary for all but finitely many π ∈ ̂G. Therefore the set

Sx := {π ∈ ̂G : π∗(x) = ind (Fπ ) �= 0},

is finite and the restriction

F
̂G\Sx := F ⊗ 1 :

⊕

π∈̂G\Sx
(X ⊗π Hπ)

⊕m	(π) →
⊕

π∈̂G\Sx
(X ⊗π Hπ)

⊕m	(π) ,

is Fredholm of index 0. Moreover

FSx :
⊕

π∈Sx
(X ⊗π Hπ)

⊕m	(π) →
⊕

π∈Sx
(X ⊗π Hπ)

⊕m	(π) ,

obviously satisfies Ind (FSx ) =
∑

π∈Sx
π∗(x). Since

R	∗ (x) = ind (F ⊗ 1) = ind (FSx ) =
∑

π∈Sx
π∗(x),

the result follows. ��
For the quasi-regular representation, the above proposition gives a decomposition

of R	∗ .

Corollary 4.2 For x ∈ K0(C
∗(G)), we have

R	∗ (x) =
∑

π∈̂G
m	(π) π∗(x),

understood as a sum with only finitely many nonzero terms.
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As is well-known, K0(C
∗(G)) is the recipient of the so-called higher indices which

we recall now. A Dirac type operator D on G/K has a G-index

IndG(D) := [p] ⊗C0(G/K)�G jG([D]) ∈ K0(C
∗(G))

defined by the descent map jG : K∗G(C0(X)) → KK(C0(G/K) � G,C∗(G))

followed by a compression on the left by the projection p ∈ C0(G/K) � G given
by

p(x, g) := c(gx)c(x), x ∈ G/K, g ∈ G

where c : G/K → [0,∞) is a continuous compactly supported function satisfying
∫

G
c(s−1x)2ds = 1 for all x ∈ G/K . See, for example, [10, Section 4.2] for details.

Corollary 4.3 Let D be a G-invariant Dirac type operator on G/K with index
IndGD ∈ K0(C

∗(G)). Then

(i) Given π ∈ ̂G, we have π∗(IndGD) = indDπ,

(ii) indDπ �= 0 for at most finitely many π ∈ ̂G.

Remark 4.4 In Fox and Haskell [12], the example of G = Spin(4, 1), its unitary
dual and K-theory is explicitly studied. The paper showed that for a generator [f ] ∈
K0(C

∗(G)), discrete series, reducible principle series, trivial representations and
endpoint representations could appear in the support of f . Moreover, if π ∈ Ĝ

appears in the support of f , then π∗([f ]) = ±1 which is nonvanishing.

Remark 4.5 If G has property (T), then the trivial representation 1 gives rise to a
generator [1] = [(C, 0)] ∈ K0(C

∗(G)). Then we have R	∗ ([1]) = 1∗([1]) = 1 since

dim(C⊗C∗(G) L
2(	\G)) = dim(L2(G)G) = 1.

It is possible to obtain refined information about the localized indices using
representation theory. We have already remarked in Example 3.7 that the index of
Dπ can be nonzero when π is in the discrete series. The next proposition is Prop. 3
of [15] (see also [7, Prop. 7.3] and [8, Lem. 1.1] for related results).

Proposition 4.6 Let π ∈ ̂G be tempered. If π is not in the discrete series nor a limit
of discrete series, then the index ofDπ is zero.

Remark 4.7 Recall that there is a surjective morphism λ : C∗(G) → C∗r (G) and
the Connes–Kasparov isomorphism R(K) - K0(C

∗
r (G)) assuming existence of G-

equivariant spinc-structure of G/K . The Connes–Kasparov isomorphism is defined
through Dirac induction

R(K) - K0(C
∗
r (G)), [Vμ] �→ IndG,r(D

Vμ).

HereVμ is an irreducible unitary representation ofK with highest weightμ andDVμ

is the Dirac operator on G/K twisted by the associated bundle G×K Vμ → G/K.
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The twisted Dirac operator DVμ has an equivariant index IndG(DVμ) ∈ K0(C
∗(G))

so that λ∗(IndG(DVμ)) = IndG,r(D
Vμ). That is, there is a commutative diagram

R(K)
IndG

IndG,r

K0(C
∗(G))

λ∗

K0(C
∗
r (G)).

If G is not K-amenable, i.e., λ∗ is not an isomorphism, then not all x ∈ K0(C
∗(G))

are represented by the equivariant index of some elliptic operator. For example,
if G has property (T), the Kazhdan projection defines a nontrivial element [p] ∈
K0(C

∗(G)) but λ∗[p] = 0 ∈ K0(C
∗
r (G)).

We will discuss a special case of Corollary 4.2 where

x = IndG(DVμ) ∈ K∗(C∗(G)).

Recall that

R∗(IndG(DVμ)) = 1∗(Ind	(DVμ)) = indD
Vμ
	

where D
Vμ
	 is the operator DVμ descended to 	\G/K . Then by [21, Section 3] and

[5, (1.2.4)]

indD
Vμ
	 =

∑

π∈̂G
m	(π)ind(DVμ)π .

Furthermore, the summand on the right hand side is nonvanishing only when the
infinitesimal character χπ of π ∈ ̂G coincides with that of μ+ρc, hence it is a finite
sum. See [3] and [5, (1.3.7)–(1.3.8)]. In summary, we obtain

R∗(x) = R∗(IndG(DVμ)) =
∑

π∈̂G,χπ=χμ+ρc
m	(π)ind(DVμ)π .

A typical example of such x is represented by the integrable discrete series. The
integrable discrete series representations of G appear as isolated points in ̂G (see
[28]). As a result, they give rise to generators [pπ ] for K0(C

∗(G)). Recall that every
discrete series representation of G gives rise to a generator of K0(C

∗
r (G)) (see [25,

Thm. 4.6]). So λ∗[pπ ] = [pπ ] ∈ K0(C
∗
r (G)). If π is an integrable representation,

it follows from Example 3.7 and Corollary 4.2 that

R	∗ ([pπ ]) = m	(π).
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Let x ∈ K0(C
∗(G)) now be arbitrary. Then there exists finitely many λμ ∈ ̂K

with multiplicity mλμ such that

λ∗(x) =
∑

λμ∈̂K
mλμIndG,rD

Vμ.

Let x0 =∑λμ∈̂K mλμIndGDVμ. By definition

λ∗(x − x0) = 0, and R∗(x) = R∗(x0)+ R∗(x − x0),

where R∗(x − x0) does not come from index theory and R∗(x0) can be calculated
by

R∗(x0) =
∑

λμ∈̂K
R∗(IndGD

Vμ) =
∑

π∈̂G
m	(π)

∑

λμ∈̂K,
χπ=χμ+ρc

mλμ ind(DVμ)π .

Thus if we were to consider x0 in K0(C
∗
r (G)), then x0 can be decomposed into a

finite sum involving elliptic operators on G/K . Note however that we cannot work
with C∗r (G) in this paper, as one knows that non-tempered representations of G may
enter R	 [27, p. 177].

4.2 Decomposition of the Trivial Representation of 	

Consider a uniform lattice 	 in G and denote by 1 the trivial representation of 	.
The corresponding representation of C∗(	) is a ∗-homomorphism and hence a trace

1 : C∗(	)→ C
∑

γ∈	
aγ γ �→

∑

γ∈	
aγ .

Thus there is a morphism of K-theory:

1∗ : K0(C
∗(	))→ Z.

Let γ ∈ 	 with conjugacy class (γ ). Then we have a well-defined localized trace
on the Banach subalgebra L1(	) ⊂ C∗(	),

τγ : L1(	)→ C,
∑

g∈	
agg �→

∑

g∈(γ )
ag.
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For a, b ∈ L1(	) we have the tracial property τγ (a ∗ b) = τγ (b ∗ a) with respect to
the convolution product ∗. This implies the existence of the morphism

τγ,∗ : K0(L
1(	))→ C.

Let ι : L1(	)→ C∗(	) be the inclusion map. It is straightforward to observe that

∑

(γ )∈〈	〉
τγ,∗ = 1∗ι∗ : K0(L

1(	))→ Z. (9)

Given a Dirac type operator D on G/K , we can form its 	-index Ind	(D) which
lands in K0(C

∗(	)) following the recipe we outlined right before Corollary 4.3.
If we choose a properly supported parametrix, the index class can be presented
in a smaller algebra C	 ⊗ R where R is the algebra of operators with smooth
kernels and compact support. In particular, the 	-index homomorphism Ind	 factors

through the L1-index homomorphismK	
0 (G/K)

Ind
	,L1−−−−→ K∗(L1(	)). That is, there

is Ind	,L1(D) ∈ K0(L
1(	)) such that

ι∗(Ind	,L1(D)) = Ind	(D).

The following lemma is proved in Definition 5.7 and Proposition 5.9 in [29].

Lemma 4.8

τγ,∗(Ind	,L1(D)) = indγ (D).

Then together with (9) we have

1∗(Ind	(D)) =
∑

(γ )∈〈	〉
indγ (D).

Let D	 be the operator on the quotient orbifold 	\G/K induced by D. Note that
1∗(Ind	(D)) is equal to the Fredholm index of D	 (see [6]). Therefore, we have an
equality of indices obtained from an identity on K-theory:

ind(D	) =
∑

(γ )∈〈	〉
indγ (D).

The reader should compare this to (7).
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4.3 The Restriction Map

Let 	 ⊂ G be a discrete subgroup and consider the restriction map

ρ : Cc(G)→ Cc(	) ⊂ C∗(	),

defined by ρ(f )(γ ) := f (γ ). The map ρ defines a positive definite C∗(	) valued
inner product on Cc(G) by

〈f, h〉(γ ) := ρ(f ∗ ∗ h)(γ ) =
∫

G

f ∗(ξ)g(ξ−1γ )dμG(ξ).

Upon completion, we obtain a (C∗(G),C∗(	))-C∗-bimodule, denoted Res, where
the action of C∗(G) is induced by convolution on Cc(G). Denote by [g] the class of
g in G/	. The commutative C∗-algebra C0(G/	) acts on Cc(G) from the left via

(f · φ)(g) := f ([g])φ(g),

and this extends to an action by adjointable endomorphisms of Res. Elements of
C0(G/	) do not act compactly unless G is discrete.

By Rieffel’s imprimitivity theorem (see [24]) the algebra of compact endomor-
phisms of Res is

K(Res) = C∗(GG/	).

The dense subalgebra Cc(G  G/	) acts on the dense submodule Cc(G) ⊂ Res
via

(K · φ)(g) :=
∫

G

K(ξ, [ξ−1g])φ(ξ−1g)dμGξ.

Lemma 4.9 Let f ∈ Cc(G) and h ∈ C0(G/	). Then (f · h)(g, x) := f (g)h(x) is
an element of Cc(GG/	) whose action on Cc(G) is given by

(f · h)φ(g) =
∫

G

f (ξ)h([ξ−1g])φ(ξ−1g)dμGξ =
∫

G

f (ξ)(h · φ)(ξ−1g)dμGξ.

(10)

Consequently we have that C∗(G) · C0(G/	) ⊂ K(Res).

Proof The function f ·h satisfies supp (f ·h) ⊂ supp f × supp h and therefore has
compact support, that is it is an element of Cc(G  G/	). The remaining claims
now follow by direct calculation. ��
Proposition 4.10 Let 	 ⊂ G be a discrete cocompact group and Res the
associated (C∗(G),C∗(	))-bimodule defined above. Then C∗(G) acts on Res
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by compact module endomorphisms. Hence the bimodule Res defines an element
[Res] ∈ KK0(C

∗(G),C∗(	)).

Proof As G/	 is compact we have that C0(G/	) = C(G/	) and the constant
function 1 ∈ C0(G/	). By Lemma 4.9 it follows that f · 1 ∈ K(Res). It follows
from Eq. (4.9) that the action of f on Cc(G) coincides with that of f · 1 on Cc(G)

and thus Cc(G) acts by compact endomorphisms. Hence by continuity all of C∗(G)

acts compactly. The remaining claims now follow directly. ��
Definition 4.11 The restriction map

res : K0(C
∗(G))→ K0(C

∗(	))

is given by the KK-product with Res ∈ KK0(C
∗(G),C∗(	)) in Proposition 4.10:

res([x]) := [x] ⊗C∗(G) [Res].

Denote by [1] ∈ KK0(C
∗(	),C) the K-homology class associated to the trivial

representation of Γ .

Proposition 4.11 The following diagram commutes.

K∗(C∗(G))
−⊗[R ]

res

Z

K∗(C∗

−⊗[1]
(11)

Here [R	] is the element in K0(C∗(G)) determined by the morphism R	∗ .

Proof Let (X, F ) be a (C, C∗(G)) Kasparov module with C acting unitally (as in
the proof of Proposition 4.1). Then by definition

[(X, F )] ⊗C∗(G) [R	] = R	∗ ([(X, F )]) ∈ Z,

is given by the index of the Fredholm operator

F ⊗ 1 : X ⊗R	 L2(	 \G)→ X ⊗R	 L2(	 \G).

On the other hand,

res([(X, F )])⊗C∗(	) [1] = [(X, F )] ⊗C∗(G) [Res] ⊗C∗(	) [1]
= [(X ⊗C∗(G) Res⊗C∗(	) C, F ⊗ 1⊗ 1)].
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By Proposition 4.10 we have C∗(G) → K(Res) and the trivial representation 1 is
finite dimensional. Thus a successive application of [17, Proposition 4.7] shows that

(F ⊗ 1⊗ 1)2− 1 = (F 2− 1)⊗ 1⊗ 1 ∈ K(X)⊗ 1 ⊂ K(X⊗C∗(G) Res⊗C∗(	) C),

proving that F ⊗ 1⊗ 1 is Fredholm. Therefore res([(X, F )])⊗C∗(	) [1] ∈ Z equals
the index of F ⊗ 1⊗ 1 and to show the diagram commutes, it is sufficient to show
that there is a unitary isomorphism

� : Res⊗C∗(	) C
∼−→ L2(	 \G), (12)

of Hilbert spaces intertwining the C∗(G)-representations. Define a map

� : Cc(G)⊗Cc(	) C → C(	 \G), �(f )(	g) =
∑

γ∈	
f (g−1γ ).

Note that the above map is well defined, i.e., the right hand sides coincide for 	g =
	g′. Then on one hand

〈�(f ),�(h)〉 =
∫

G/	

�(f )(	g)�(h)(	g)d(	g)

=
∫

G/	

∑

γ∈	
f (g−1γ )

∑

δ∈	
h(g−1δ)d(	g)

=
∑

δ∈	

∫

G

f (g−1)h(g−1δ)dg,

whereas on the other hand

〈f ⊗ 1, g ⊗ 1〉 =
∑

δ∈	
〈f, h〉C∗(	)(δ) =

∑

δ∈	

∫

G

f (g−1)h(g−1δ)dg = 〈�(f ),�(h)〉.

Hence the map � is an isometry and extends to an injection. Since the action of 	
on G is properly discontinuous, functions of small support on 	\G are in the image
of �, and a partition of unity argument shows that � is surjective, so it extends to a
unitary isomorphism. For ξ ∈ G we have

ξ(�(f ))(	g) = �(f )(	gξ) =
∑

γ∈	
f (ξ−1g−1γ ) =

∑

γ∈	
(ξf )(g−1γ ) = �(ξf )(	g),

hence � intertwines the G-representations and therefore the C∗(G)- representa-
tions. Thus we proved the isomorphism (12). ��
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4.4 Selberg Trace Formula in K-Theory

We are ready to formulate the K-theoretic Selberg trace formula. Let ι : L1(	) →
C∗(	) be the natural inclusion and ι∗ : K0(L

1(	))→ K0(C
∗(	)) be the associated

map. Putting the preceding discussions together, we obtain the following.

Theorem 4.13 Let x ∈ K0(C
∗(G)). Assume that there exists y ∈ K0(L

1(	)) such
that ι∗(y) = res(x) ∈ K0(C

∗(	)). Then

∑

π∈̂G
m	(π)π∗(x) =

∑

(γ )∈〈	〉
τγ,∗(y).

Remark 4.14 We can drop the hypothesis on x by putting conditions on 	. For
example, if 	 admits the polynomial growth condition on each of its conjugacy
classes (see [26]), or if 	 is a word hyperbolic group (see [23]), then the trace
τγ : L1(	) → C can be extended to a subalgebra of C∗r (Γ ) that is stable under
holomorphic functional calculus and thus gives rise to a well-defined morphism

τγ,∗ : K0(C
∗(	))→ C.

It then follows that
∑

π∈̂G
m	(π)π∗(x) =

∑

(γ )∈〈	〉
τγ,∗(res (x))

for all x ∈ K0(C
∗(	)).

With a little more work, we can derive a general index theoretic trace formula
from the above. For this, we need to bring the equivariant K-homology groups into
the picture.

Lemma 4.15 The following diagram commutes:

KG
0 (G/K)

IndG

K∗(C∗(G))

res

K0 (G/K)
Ind

K∗(C∗

where the left vertical arrow r is the restriction map in equivariantKK-theory.

Proof Every cycle representing an element of KG
0 (G/K) is given by ([L2(G) ⊗

V ]K,F ) where V is a Z2-graded finite dimensional representation of K , and F

is a bounded properly supported G-invariant operator on the Hilbert space H =
[L2(G)⊗ V ]K. Its images under IndG and under Ind	 ◦ r are represented by cycles
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of the form (EG,F ), (E	, F ). Here the Hilbert C∗(G)-module EG (resp. C∗(	)-
module E	) is given by completion of [Cc(G) ⊗ V ]K with respect to the Cc(G)-
valued (Cc(	)-valued) inner product determined by

〈f1, f2〉(t) =
∫

G

〈f1(s), tf2(t
−1s)〉Hds f1, f2 ∈ H

for t ∈ G (t ∈ 	). Recall that Res is the closure of Cc(G). To show that

[(EG,F )] ⊗C∗(G) [Res] = [(E	, F )],

we only need to observe that E	 = EG ⊗C∗(G) Res. This follows directly from the
isomorphism of Cc(	)-modules

[Cc(G)⊗ V ]K ⊗Cc(G) Cc(G)Cc(	) - [Cc(G)Cc(	) ⊗ V ]K,

which is compatible with the inner products. ��
By Theorem 4.13 and Lemmas 4.3, 4.8 and 4.15 we obtain the following

theorem, giving the Selberg trace formula in its index theory form.

Theorem 4.16 The following diagram commutes

KG
0 (G/K)

IndG

K∗(C∗(G))

R∗ =
π∈G

m (π)π∗

res

K0 (G/K)
Ind

Ind 1

K∗(C∗
1∗

Z

K0(L
1

ι∗

(γ )

τγ,∗

.

In particular, if D is a G-invariant Dirac type operator on G/K , the above
commutative diagram gives rise to the equality

∑

π∈̂G
m	(π)π∗(IndGD) =

∑

(γ )∈〈	〉
τγ,∗(Ind	,L1D),

which reduces to the index theoretic Selberg trace formula:
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∑

π∈̂G
m	(π)indDπ =

∑

(γ )∈〈	〉
indγD. (13)

Remark 4.17 Denote by D	 the Dirac type operator on 	\G/K whose lift to G/K

is D. Then

indD	 =
∑

(γ )∈〈	〉
indγD.

Also [IndGD] ⊗C∗(G) [R	] = R	∗ (IndGD) = ∑

π∈̂G m	(π)indDπ. Then (13) is
reduced to

[IndGD] ⊗C∗(G) [R	] = [D	] ∈ KK(C,C) = Z.

This recovers Theorem 2.3 in [12].
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1 Introduction

R. G. Douglas introduced the notion of Hilbert module M over a function algebra
A and reformulated several questions of multi-variable operator theory in the
language of Hilbert modules. Having done this, it is possible to use techniques from
commutative algebra and algebraic geometry to answer some of these questions.
One of the very interesting examples is the proof of the Rigidity Theorem for Hilbert
modules [19, Section 3], which we discuss below.

A Hilbert module is a complex separable Hilbert space M equipped with a
multiplication

m : A→ B(M), mp(f ) = p·f, f ∈M, p ∈ A,

which is a continuous algebra homomorphism. Here B(M) denotes the algebra of
all bounded linear operators on M. The continuity of the module multiplication
means

‖mpf ‖ ≤ C ‖p‖ ‖f ‖, f ∈M, p ∈ A

for some C > 0. Familiar examples are the Hardy and Bergman spaces defined
on bounded domains in Cd . Sometimes, it is convenient to consider the module
multiplication over the polynomial ring C[z] in d variables rather than a function
algebra. In this case, we require that

‖mpf ‖ ≤ Cp ‖f ‖, f ∈M, p ∈ C[z]

for someCp > 0.We make this “weak” continuity assumption throughout the paper.
In what follows, we will consider a natural class of Hilbert modules consisting of

holomorphic functions, taking values in Cn, defined on a bounded domain ! ⊆ Cd .
Thus (i) we assume M ⊆ Hol(!,Cn). A second assumption (ii) is to require that
the evaluation functional

evz :M→ Cn, evz(f ) := f (z),

is continuous and surjective, see [2, Definition 2.5]. Set

K(z,w) := evzev∗w : !×!→ Cn×n.

The function K, which is holomorphic in the first variable and anti-holomorphic in
the second variable is called the reproducing kernel of the Hilbert module M. A
further assumption (iii) is that C[z] ⊆ M is dense in M. A Hilbert module with
these properties is said to be an analytic Hilbert module. In this paper, we study a
class of Hilbert modules which are submodules of analytic Hilbert modules.
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From the closed graph theorem, it follows that mpf ∈ M for any f ∈ M
and p ∈ C[z]. Also, the density of the polynomials implies that the eigenspace
ker (mp − p(w))∗ is spanned by the vectors

Kw(·)ζ := K(·, w)ζ
for ζ ∈ Cn, i.e.,

ker (mp − p(w))∗ = Ran Kw,

see [15, Remark, p. 285]. Since the matrix K(w,w) is invertible by our assumption,
it follows that the dimension of the kernel {Kw(·)ζ : ζ ∈ Cn} is exactly n for
all w ∈ !. Clearly, the map w �→ Kw(·)ζ , ζ ∈ Cn is a holomorphic map on
!∗ := {w ∈ Cd : w ∈ !}. It serves as a holomorphic section of the trivial vector
bundle

E := {(w, v) : w ∈ !∗, v ∈ ker (mp − p(w))∗} ⊆ !∗ ×M

with fibre

Ew = ker (mp − p(w))∗ = Ran Kw, w ∈ !∗.

A refinement of the argument given in [2] (which, in turn, is an adaptation of
ideas from [12]), then shows that the isomorphism class of the module M and the
equivalence class of the holomorphic Hermitian bundle E determine each other.
The case d = 1, originally considered in [12], corresponds to Hilbert modules
over the polynomial ring in one variable. The proof in [12], in this particular case,
has a slightly different set of hypotheses. In the paper [12], among other things, a
complete set of invariants for the equivalence class of E is given. If n = 1, as is well
known, this is just the curvature of the holomorphic line bundle E .

There is a natural notion of module isomorphism, namely, the existence of a
unitary linear map U :M→ ˜M, which intertwines the module multiplications mp

and m̃p, that is,

Ump = m̃pU.

Clearly, a Hilbert module M over the polynomial ring C[z] is determined by the
commuting tuple of multiplication by the coordinate functions on M and vice-versa.
Thus the notion of module isomorphism corresponds to the usual notion of unitary
equivalence of two such d-tuples of multiplication operators by a fixed unitary. If
	 : M1 → M2 is a module map, then it maps the eigenspace of M1 at w into
that of M2 at w. Thus 	(K1(·, w)ζ ) ⊆ {K2(·, w)ξ : ξ ∈ Cn}, where Ki are the
reproducing kernels of the Hilbert modules Mi , i = 1, 2, respectively. Hence we
obtain a holomorphic map �	 : !→ Cn×n with the property

	K1(z,w) = �	(w)
∗K2(z,w)
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for any fixed but arbitrary w. Thus any module map between two analytic Hilbert
modules is induced by a holomorphic matrix-valued function �	 : !→ Cn×n, see
[14, Theorem 3.7]. Moreover, if the module map is invertible, then �	(z) must be
invertible. Finally, if the module map is assumed to be unitary, then

K1(z,w) = �	(z) K2(z,w) �∗	(w)

for all z,w ∈ !.

Let us describe, following [17], an instance of the Sz.-Nagy–Foias theory in the
language of Hilbert modules. Let T be a contraction on some Hilbert space M. The
module multiplication determined by this operator is the map mp(f ) = p(T )f ,
p ∈ C[z], f ∈ M. From the contractivity of T , it follows that ‖mp‖ ≤ ‖p‖ :=
sup{|p(z)| : z ∈ D} and in this case, the Hilbert module M is said to be contractive.
Now, assume that T ∗n → 0 as n→∞. Then Sz.-Nagy–Foias show that there exists
an isometry R and a co-isometry R′ such that, for the unit disk D, the sequence

0 H 2 (D)
R

H 2 (D)
R 0 ,

where E and E ′ are a pair of (not necessarily finite dimensional) Hilbert spaces, is
exact. The map R is essentially the characteristic function of the contraction T and
serves to identify the contractive module M as a quotient module of H 2

E ′(D) by the
image of H 2

E (D) under the isometric map R.
For any planar domain !, a model theory for completely contractive Hilbert

modules over the function algebra Rat(!), consisting of rational functions with
poles off the closure !, has been developed by Abrahamse and Douglas in the paper
[1]. However, the situation is much more complicated for Hilbert modules over the
polynomial ring in d variables, d > 1.

1.1 The Normalized Kernel

We begin by recalling some notions from complex geometry. Let L be a holomor-
phic Hermitian line bundle over a complex manifold !. The Hermitian metric of L
is given by some smooth choice of an inner product ‖·‖2

w on the fibre Lw . There is
a canonical (Chern) connection on L which is compatible with both the Hermitian
metric and the complex structure of L. The curvature κ of the line bundle L on
any fixed but arbitrary coordinate chart, with respect to the canonical connection, is
given by the formula

κ(w) := −∂∂ log ‖γ (w)‖2 = −
∑

i,j

∂i∂j log ‖γ (w)‖2dwi ∧ dwj ,
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where γ is any non-vanishing holomorphic section of L. Since any two such
sections differ by multiplication by a non-vanishing holomorphic function, it is clear
that the definition of the curvature is independent of the choice of the holomorphic
section γ . Indeed, it is well known that two such line bundles are locally equivalent
if and only if their curvatures are equal. For holomorphic Hermitian vector bundles
(rank> 1) the local equivalence involves not only the curvature but also its covariant
derivatives, see [12].

In general, Lemma 2.3 of [32] singles out a frame γ (0) such that the metric has
the form: ‖γ (0)(w)‖2 = I +O(|w|2) and it follows that

κ(0) = −
∑

i,j

(

∂i∂j‖γ (0)(w)‖2)

|w=0dwi ∧ dwj .

In a slightly different language, fixing w0 ∈ !, a normalized kernel K(0) at
w0 is defined in [14, Remark 4.7(b)] by requiring that K(0)(z,w0) ≡ I . Setting
γ (0)(w) = K(0)

w , we see that the normalized kernel K(0) has no linear terms. There
is a neighborhood, say !0, of w0 on which K(z,w0) doesn’t vanish (for n = 1) or
is an invertible n× n-matrix (for n > 1). Set

�
(0)
	 (z) = K(w0, w0)

1/2 K(z,w0)
−1, z ∈ !0.

Then

K(0)(z,w) := �
(0)
	 (z) K(z,w) �(0)

	 (w)∗

is a normalized kernel on !0. Thus starting with an analytic Hilbert module M
possessing a reproducing kernel K, there is a Hilbert module M(0) possessing a
normalized reproducing kernel K(0), isomorphic to M. Now, it is evident that two
Hilbert modules are isomorphic if and only if there is a unitary U such that

K(0)
1 (z,w) = U K(0)

2 (z,w) U∗.

In other words, the normalized kernel is uniquely determined up to a fixed unitary.
In particular, if n = 1, then the two Hilbert modules are isomorphic if and only if
the normalized kernels are equal. We gather all this information in the following
proposition.

Proposition 1.1 The following conditions on any pair of (scalar) analytic Hilbert
modules over the polynomial ring are equivalent.

1. Two analytic Hilbert modulesM1 andM2 are isomorphic.
2. The holomorphic line bundles L1 and L2 determined by the eigenspaces of the

analytic Hilbert modules M1 and M2, respectively, are locally equivalent as
Hermitian holomorphic bundles.



430 G. Misra and H. Upmeier

3. The curvature of the two line bundles Li , i = 1, 2, are equal.
4. The normalized kernels K(0)

i , i = 1, 2, at any fixed but arbitrary point w0 are
equal.

2 Invariants for Submodules

In the paper [13], Cowen and Douglas pointed out that all submodules of the Hardy
module H 2(D) are isomorphic. They used this observation to give a new proof
of Beurling’s theorem describing all invariant subspaces of H 2(D). Although all
submodules of the Hardy module H 2(D) are isomorphic, the quotient modules
are not. Surprisingly enough, this phenomenon distinguishes the multi-variable
situation from the one variable case. Consider for instance the submoduleH 2

(0,0)(D
2)

of all functions vanishing at (0, 0) in the Hardy space H 2(D2) over the bidisk D2.
Then the module tensor product of H 2

(0,0)(D
2) over the polynomial ring C[z] in two

variables with the one dimensional module Cw , (p,w) �→ p(w), is easily seen to
be

H 2
(0,0)(D

2)⊗C[z] Cw =
{

C⊕C if w = (0, 0)

C if w �= (0, 0)
(2.1)

while H 2(D2) ⊗C[z] Cw = C. It follows that the submodule H 2
(0,0)(D

2) is not

isomorphic to the module H 2(D2), in stark contrast to the case of one variable.
The existence of non-isomorphic submodules of the Hardy module H 2(D2)

indicates that inner functions alone may not suffice to characterize submodules
in this case. It is therefore important to determine when two submodules of the
Hardy module, and also more general analytic Hilbert modules, are isomorphic.
This question was considered in [10] for the closure of some ideals I ⊆ C[z] in
the Hardy module H 2(D2) with the common zero set {(0, 0)}. It was extended to a
much larger class of ideals in the paper [3]. A systematic study in a general setting
culminated in the paper [19] describing a rigidity phenomenon for submodules of
analytic Hilbert modules in more than one variable. A different proof of the Rigidity
Theorem using the sheaf model was given in [9]. A slightly different approach to
obtaining invariants by resolving the singularity at (0, 0) was initiated in [16], and
considerably expanded in [9]. We describe this approach briefly.

A systematic study of Hilbert submodules of analytic Hilbert modules was
initiated in the papers [8, 9]. If I is an ideal in C[z], consider the submodule
˜M = [I] in an analytic Hilbert module M ⊆ Hol(!,C) obtained by taking the
closure of I. Let

!I := {z ∈ ! : f (z) = 0 ∀ f ∈ I}
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denote the algebraic subvariety of ! determined by I. For the reproducing kernel
K(z,w) of M, the vectors Kw ∈ M will in general not belong to the submodule
˜M. However, one has a truncated kernel ˜K(z,w) = ˜Kw(z) such that ˜Kw ∈ ˜M
for all w ∈ !, which induces a holomorphic Hermitian line bundle L̃ defined on
! \!I, with fibre

L̃w = Ran ˜Kw, w ∈ ! \!I,

and positive definite metric ˜K(w,w). This line bundle L̃ does not necessarily extend
to all of !. In fact, on the singular set !I the eigenspace of the submodule ˜M will
in general be higher dimensional. However, in the paper [9], using the monoidal
transform, a line bundle L̂ was constructed on a certain blow-up space !̂, with a
holomorphic map π : !̂ → !. (Actually, this construction holds locally, near any
given point w0 ∈ !I .) The restriction of this line bundle to the exceptional set
π−1(!I) in the blow-up space was shown to be an invariant for the submodule ˜M.

For the submodule ˜M = H 2
(0,0)(D

2) ⊆ H 2(D2) of the Hardy module,

corresponding to the point singularity (0, 0) ∈ ! := D2, the above construction
can be made very explicit: The eigenspace of ˜M at w := (w1, w2) �= (0, 0) is the
one dimensional space spanned by the truncated kernel vector

˜Kw(z) := 1

(1−w1z1)(1−w2z2)
− 1 = w1z1 +w2z2 − w1z1w2z2

(1−w1z1)(1−w2z2)
. (2.2)

At (0, 0), this vector is the zero vector while the eigenspace of ˜M is two
dimensional, spanned by the vectors z1 and z2. We observe, however, that for

j = 1, 2 the limit
˜Kw(z)
wj

, along lines through the origin as w→ 0, exists and is non-

zero. Parametrizing the lines through (0, 0) in D2 by w2 = ϑ1w1 or w1 = ϑ2w2, we
obtain the coordinate charts for the projective space P1(C). On these, we have

lim
w2=ϑ1w1, w→0

˜Kw(z)

w1
= z1 + ϑ1z2.

Similarly, we have

lim
w1=ϑ2w2, w→0

˜Kw(z)

w2
= z2 + ϑ2z1.

Setting s(ϑ1) := z1 + ϑ1z2 and s(ϑ2) = z2 + ϑ2z1 taking values in H 2
(0,0)(D

2),

we obtain a holomorphic Hermitian line bundle L̂ over projective space P1(C). The
metric of this line bundle is given by the formula

‖s(ϑj )‖2
˜M = 1+ |ϑj |2



432 G. Misra and H. Upmeier

for j = 1, 2. It is shown in [16, Theorem 5.1], see also [9, Theorem 3.4], that
for many submodules of analytic Hilbert modules, the class of this holomorphic
Hermitian line bundle on the projective space is an invariant for the submodule.
Since the curvature is a complete invariant, it follows that in our case the curvature

κ(ϑj ) = (1− |ϑj |2)−2dϑj ∧ dϑj

for the coordinate ϑj (j = 1, 2) is an invariant for the submodule H 2
(0,0)(D

2).
Often it is possible to determine when two submodules of an analytic Hilbert

module are isomorphic without explicitly computing a set of invariants. A particular
case is the class of submodules in an analytic Hilbert module which are obtained by
taking the closure of an ideal in the polynomial ring. Here the surprising discovery
is that many of these submodules are isomorphic if and only if the ideals are equal.
Of course, one must impose some mild condition on the nature of the ideal. For
instance, principal ideals have to be excluded. Several different hypotheses that
make this “rigidity phenomenon” possible are discussed in Section 3 of [19]. One
of these is the theorem of [19, Theorem 3.6]. A slightly different formulation given
below is Theorem 3.1 of [9].

Let ! ⊂ Cd be a bounded domain. For k = 1, 2, let [Ik] be the closure in an
analytic Hilbert module M ⊆ Hol(!) of the ideal Ik ⊆ C[z].
Theorem 2.1 (Theorem 3.1, [9]) Assume that the dimension of [Ik]/[Ik]w is finite
and that the dimension of the zero set of these modules is at most d − 2. Also,
assume that every algebraic component of V (Ik) intersects !. Then [I1] and [I2]
are isomorphic if and only if I1 = I2.

In this paper we study submodules of (scalar valued) analytic Hilbert modules
(n = 1) which are related to higher-dimensional singularities. Starting with the
weighted Bergman spaces defined on a bounded symmetric domain, the submodules
are determined by a vanishing condition on a certain “Kepler variety”. The new
feature is that the singularity set is not a complete intersection (in the sense of
algebraic geometry) which means that the usual projectivization involving monoidal
transforms (blow-up process) is not sufficient for the resolution of singularities.
We will replace it by a higher-rank blow-up process, having as exceptional fibres
compact Hermitian symmetric spaces of higher rank instead of projective spaces.
The charts and analytic continuation we use are adapted to the geometry of the
Kepler variety. The simplest case of rank 1 reduces to the usual blow-up process.

In this setting we again obtain a rigidity theorem which is not a special case of
Theorem 2.1, since we do not consider different ideals (i.e. different subvarieties)
for the singular modules, but we consider a fixed subvariety and vary the underlying
“big” Hilbert module, by choosing an arbitrary coefficient sequence or, as a special
case, a K-invariant probability measure. This situation is most interesting in the
symmetric case, where one has a full scale of different Hilbert modules like
the weighted Bergman spaces. Then we show that the “truncated” kernel of the
submodule can be recovered from the reduction to the blow-up space. This is a kind
of rigidity in the parameter space instead of selecting different ideals.
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3 Jordan–Kepler Varieties

Hilbert modules and submodules defined by analytic varieties have been mostly
studied for domains ! which are strongly pseudoconvex with smooth boundary,
or a product of such domains. From an operator-theoretic point of view, this is
natural since for strongly pseudoconvex (bounded) domains, Toeplitz operators
with continuous symbols (in particular, with symbols given by the coordinate
functions) are essentially normal, so that the Toeplitz C∗-algebra generated by
such operators is essentially commutative and has a classical Fredholm and index
theory. There are, however, interesting classes of bounded domains which are only
weakly pseudoconvex (and are therefore domains of holomorphy, by the Cartan—
Thullen theorem) with a non-smooth boundary. A prominent class of such domains
are the bounded symmetric domains of arbitrary rank r, which generalize the
(strongly pseudoconvex) unit ball, having rank r = 1. The Hardy space and
the weighted Bergman spaces of holomorphic functions on bounded symmetric
domains have been extensively studied from various points of view (see, e.g.,
[6, 21, 30]). More recently, irreducible subvarieties of symmetric domains, given
by certain determinant type equations, have been studied in [20] under the name
of “Jordan–Kepler varieties”. This terminology is used since the rank r = 2 case
corresponds to the classical Kepler variety in the cotangent bundle of spheres [11].

In order to describe bounded symmetric domains and their determinantal subva-
rieties, we will use the Jordan theoretic approach to bounded symmetric domains
which is best suited for harmonic and holomorphic analysis on symmetric domains.
For background and details concerning the Jordan theoretic approach, we refer to
[22, 26, 30].

Let V be an irreducible Hermitian Jordan triple of rank r, with Jordan triple
product denoted by {u; v;w}. The so-called spectral unit ball ! ⊂ V is a bounded
symmetric domain. Conversely, every (irreducible) bounded symmetric domain can
be realized in this way. An example is the matrix space V = Cr×s with triple
product

{u; v;w} := uv∗w +wv∗u,

giving rise to the matrix ball

! = {z ∈ Cr×s : Ir − zz∗ > 0}.

In particular, for rank r = 1 we obtain the triple product

{u; v;w} := (u|v)w + (w|v)u

on V = Cd , with inner product (u|v), giving rise to the unit ball

! = {z ∈ Cd : (z|z) < 1}.
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Let G denote the identity component of the full holomorphic automorphism group
of !. Its maximal compact subgroup

K := {k ∈ G : k(0) = 0}

consists of linear transformations preserving the Jordan triple product. For z,w ∈ V

define the Bergman operator Bz,w acting on V by

Bz,wv = v − {z;w; v} + 1

4
{z{w; v;w}z}.

We can also write

Bz,w = I −D(z,w)+QzQw, (3.1)

where

D(z,w)v = {z;w; v},

and

Qzw := 1

2
{z;w; z}

denotes the so-called quadratic representation (conjugate linear in w). For matrices,
we have D(z,w)v = zw∗v + vw∗z, Qzw = zw∗z and hence

Bz,wv = (1r − zw∗)v(1s −w∗z). (3.2)

An element c ∈ V satisfying c = Qcc is called a tripotent. For matrices these are
the partial isometries. Any tripotent c induces a Peirce decomposition

V = V c
2 ⊕ V c

1 ⊕ V c
0 .

Now we introduce certain K-invariant varieties. Every Hermitian Jordan triple V
has a natural notion of rank defined via spectral theory. For fixed � ≤ r let

V̊� = {z ∈ V : rank(z) = �}

denote the Jordan–Kepler manifold studied in [20]. It is a KC-homogeneous
manifold whose closure is the Jordan–Kepler variety

V� = {z ∈ V : rank(z) ≤ �}.
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We have

d� := dim V̊� = dc2 + dc1 ,

where

dc2 = dimV c
2 = �(1+ a

2
(�− 1)),

dc1 = dimV c
1 = �(a(r − �)+ b).

Here a, b are the so-called characteristic multiplicities defined in terms of a joint
Peirce decomposition [26]. Moreover,

2dc2 + dc1

�
= 2(1+ a

2
(�− 1))+ a(r − �)+ b = 2+ a(r − 1)+ b = p

is the genus. As a fundamental property, there exists a Jordan triple determinant

� : V × V → C, (3.3)

which is a (non-homogeneous) sesqui-polynomial satisfying

detBz,w = �(z,w)p.

For (r × s)-matrices, we have p = r + s and

�(z,w) = det(1r − zw∗)

as a consequence of (3.2). In particular, �(z,w) = 1 − (z|w) in the rank 1 case
V = Cd . A Hermitian Jordan triple U is called unital if it contains a (non-unique)
tripotent u such that D(u, u) = 2·I. In this case U becomes a Jordan *-algebra with
unit element u under the multiplication

z ◦ w := 1

2
{z; u;w}

and involution

z∗ := Quz = 1

2
{u; z; u}.

This Jordan algebra has a homogeneous determinant polynomial N : U → C
defined in analogy to Cramer’s rule for square matrices. Every Peirce 2-space V c

2 is
a unital Jordan triple with unit c.
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One can show that the smooth part of V� (in the sense of algebraic geometry) is
precisely given by V̊�. Thus the singular points of V� form the closed subvariety
V�−1, which has codimension > 1, unless we have the case � = r for tube domains
(b = 0). This case will be excluded in the sequel. The center S� ⊂ V̊� consists of
all tripotents of rank �.

4 Hilbert Modules on Kepler Varieties

Combining the Kepler variety and the spectral unit ball, we define the Kepler ball

!� := ! ∩ V�

for any 0 ≤ � ≤ r. The Kepler ball !� has singularities exactly at !�−1, so that the
smooth part of !� is given by

!̊� := V̊� ∩!� = !� \!�−1.

Apart from the case � = r on tube type domains, which we exclude here, the
singular set !�−1 ⊂ !� has codimension > 1. Combining this with the fact that
V� is a normal variety (so that the second Riemann extension theorem holds) it
follows that every holomorphic function on !̊� has a unique holomorphic extension
to !�. Henceforth we will identify holomorphic functions on !̊� with their unique
holomorphic extension to !�. For any K-invariant measure ρ on V̊� we have a polar
integration formula

∫

V̊�

dρ(z) f (z) =
∫

�c
2

dρc(t)

∫

K

dk f (k
√
t)

where ρc is a measure on the symmetric cone �c
2 of V c

2 [22] called the radial part
of ρ. Here

√
t denotes the Jordan algebraic square root in �c

2. As a special case,
consider the Riemann measure λ�(dz) on V̊� which is induced by the normalized
inner product on V. Denoting by 	� the Koecher–Gindikin Gamma function of �c

2
[22], its polar decomposition is

∫

V̊�

λ�(dz)

πd�
f (z) = 	�(

a�
2 )

	�(
d
r
)	�(

ar
2 )

∫

�c
2

dt Nc(t)
dc1/�

∫

K

dk f (k
√
t). (4.1)

Here Nc is the Jordan algebra determinant on V c
2 normalized by Nc(c) = 1. For

� = r the Riemann measure on the open dense subset V̊r = V̊ ⊂ V agrees with the
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Lebesgue measure, and (4.1) gives the well-known formula
∫

V

dz

πd
f (z) = 1

	(d
r
)

∫

�e
2

dt Ne(t)
b

∫

K

dk f (k
√
t)

for any maximal tripotent e ∈ S = Sr . As a consequence of (4.1) we have for the
Kepler ball

∫

!̊�

λ�(dz)

πd�
�(z, z)ν−p f (z)

= 	�(
a�
2 )

	�(
d
r
)	�(

ar
2 )

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc1/� Nc(c − t)ν−p

∫

K

dk f (k
√
t) (4.2)

since �(k
√
t , k
√
t) = �(

√
t ,
√
t) = Nc(c − t) for all t ∈ �c

2 ∩ (c −�c
2).

As a fundamental fact [22, 30] of harmonic analysis on Jordan algebras and
Jordan triples, the Fischer–Fock reproducing kernel e(z|w), for the normalized K-
invariant inner product (z|w) on V, has a “Taylor expansion”

e(z|w) =
∑

m

Em(z,w)

over all integer partitions m = m1 ≥ m2 ≥ . . . ≥ mr ≥ 0, where
Em(z,w) = Em

w (z) are sesqui-polynomials which are K-invariant such that the
finite-dimensional vector space

Pm(V ) = {Em
w : w ∈ V }

is an irreducible K-module. These K-modules are pairwise inequivalent and span
the polynomial algebra P(V ). Let

(ν)m =
r
∏

j=1

(ν − a

2
(j − 1))mj

denote the multi-variable Pochhammer symbol. Let Nr+ denote the set of all
partitions of length≤ r. Restricted to the Kepler variety we only consider partitions
in N�+ of length ≤ �, completed by zeroes at the end.

Lemma 4.1 For any partition m ∈ N�+ of length ≤ � we have

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc1/� Nc(c − t)ν−p Nm(t) =

	�(
d�
�
) 	�(ν − d�

�
)

	�(ν)

(d�/�)m

(ν)m
.

(4.3)
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Proof Applying [22, Theorem VII.1.7] to �c
2 yields

∫

�c
2∩(c−�c

2)

dt Nc(t)
dc1/� Nc(c − t)ν−p Nm(t) =

	�(m+ dc1
�
+ dc2

�
) 	�(ν − p + dc2

�
)

	�(m+ ν − p + dc1+2dc2
�

)

= 	�(m+ d�
�
) 	�(ν − d�

�
)

	�(m+ ν)
= 	�(

d�
�
) 	�(ν − d�

�
)

	�(ν)

(d�/�)m

(ν)m
. ��

Let du be the K-invariant probability measure on S� and put

(f |g)S� =
∫

S�

du f (u) g(u) =
∫

K

dk f (kc) g(kc). (4.4)

Definition 4.2 Consider a coefficient sequence (ρm)m∈N�+ normalized by ρ0 = 1.
Define a Hilbert space M =Mρ of holomorphic functions on !� by imposing the
K-invariant inner product

(f |g)ρ :=
∑

m∈N�+

ρm(fm|gm)S� . (4.5)

where fm ∈ Pm(V ) denotes the m-th component of f.

The subnormal case arises when the inner product (4.5) has the form

(f |g)ρ =
∫

dρ(z) f (z)g(z),

where ρ is a K-invariant probability measure on the closure of !� or a suitable K-
invariant subset which is a set of uniqueness for holomorphic functions. For the case
� = r , this was studied in detail for the tube type domains in [7] and completed for
all bounded symmetric domains in [5]. By [20, Proposition 4.4] the Hilbert space

M =Mρ := {φ ∈ L2(dρ) : φ holomorphic on !�}

has the coefficient sequence

ρm =
∫

�c
2

dρc(t) Nm(t)

given by the moments of the radial part ρc, which is a probability measure
on �c

2 (not necessarily of full support). As a special case the Hardy type inner
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product (4.4), corresponding to the K-invariant probability measure du on S�, has
the point mass at c as its radial part, showing that all radial moments ρm = 1.

It is clear that the Hilbert spaces Mρ defined by K-invariant measures are
analytic Hilbert modules as defined above (however, consisting of holomorphic
functions on a manifold !̊� instead of a domain). For more general coefficient
sequences ρm, one could in principle determine whether multiplication operators
by polynomials are bounded (using certain growth conditions on the coefficient
sequence), and whether the other requirements for analytic Hilbert modules hold.
Important examples are listed below where the reproducing kernels are given by
hypergeometric series. For the classical case � = r, the well-understood analytic
continuation of the scalar holomorphic discrete series of weighted Bergman spaces
on ! = !r [21] shows that the Hilbert module property extends beyond the
subnormal case.

Proposition 4.3 For a given coefficient sequence ρm, M has the reproducing
kernel

K(z,w) =
∑

m∈N�+

(d/r)m

ρm

(ra/2)m
(�a/2)m

Em(z,w). (4.6)

Proof This follows from [20, Proposition 4.3] and the formula

dm

dcm
= (d/r)m

(dc2/�)m

(ra/2)m
(�a/2)m

obtained in [20, equation (5.5) in the proof of Theorem 5.1]. ��
We will now present some examples, where the reproducing kernel (4.6) can be

expressed in closed form as a multivariate hypergeometric series defined in general
by

(

α1, . . ., αp

β1, . . ., βq

)

p q

(z,w) =
∑

m

(α1)m · · · (αp)m
(β1)m · · · (βq)m Em(z,w).

Applying (4.3) to m = 0 it follows that

ρν(dz) = 	�(
d
r
)

	�(
d�
�
)

	�(
ra
2 )

	�(
�a
2 )

	�(ν)

	�(ν − d�
�
)

λ�(dz)

πd�
�(z, z)ν−p

is a probability measure on !̊�. Moreover, applying (4.3) to any m ∈ N�+ it follows
that the measure ρν has the coefficient sequence

ρνm =
(d�/�)m

(ν)m
.
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Thus the Hilbert space

Mν := {φ ∈ L2(dρν) : φ holomorphic on !�}

of holomorphic functions on !� has the reproducing kernel

K(z,w) =
∑

m∈N�+

(d/r)m

(d�/�)m

(ra/2)m
(�a/2)m

(ν)m Em(z,w) =
(

d
r
, ra

2 , ν
d�
�
, �a

2

)

3 2

(z,w).

In the classical case � = r we have the probability measure

dρν(z) = 	(ν)

	(ν − d
r
)

dz

πd
�(z, z)ν−p

on !, whose reproducing kernel is given by

K(z,w) =
∑

m∈Nr+

(ν)m Em(z,w) =
(

ν
)

1 0

(z,w) = �(z,w)−ν

according to the Faraut–Korányi formula [21].

5 The Singular Set and Its Resolution

The only strongly pseudoconvex symmetric domains are the unit balls of rank r =
1. Here the singularity !0 consists of a single point {0}. The classical procedure
to resolve this singularity is the monoidal transformation (blow-up process) where
a point is replaced by a projective space of appropriate dimension. As the main
geometric result in this paper, we obtain a generalization of the blow-up process
for higher dimensional Kepler varieties and domains of arbitrary rank. The Jordan
theoretic approach leads to quite explicit formulas which generalize the equations
of the classical blow-up process of a point.

The general procedure outlined in Sect. 2 using monoidal transformations works
in the case where the singularity is given by a regular sequence g1, . . ., gm of
polynomials generating the vanishing ideal I. In this case the variety is a smooth
complete intersection. Ifm = d equals the dimension, this variety reduces to a single
point. The usual blow-up process around a point 0 ∈ Cd is the proper holomorphic
map

π : Ĉd → Cd
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where

Ĉd := {(w,U) : w ∈ Cd, U ∈ Pd−1, w ∈ U}

is the tautological bundle over Pd−1, with “collapsing map” π(w,U) := w. The
map π is biholomorphic outside the exceptional fibre π−1(0) = Pd−1. For the
Kepler varieties studied here the singular set !�−1 has higher dimension and is
not a complete intersection (unless � = 1). Thus a regular generating sequence of
polynomials does not exist. Instead, we use the harmonic analysis of polynomials
provided by the Jordan theoretic approach to study the singular set. The main idea is
to replace the projective space (a compact Hermitian symmetric space of rank 1) by
a compact Hermitian symmetric space of higher rank, namely the Peirce manifold

M� = {V c
2 : c ∈ S�}

of all Peirce 2-spaces of rank � in V. This can also be realized as the conformal
compactification of the Peirce 1-space V c

1 , for any rank � tripotent c. For example,

in the full matrix triple V = Cr×s the Peirce 1-space of c =
(

1� 0
0 0

)

∈ S� is given

by

V c
1 =

(

0 C�×(s−�)
C(r−�)×� 0

)

.

Hence, in this case, the Peirce manifold M� is the direct product of two Grassmann
manifolds

M� = Grass�(Cr )× Grass�(Cs ).

In the simplest case r = 1 we have V = Cd and for the tripotent c = (1, 0d−1)

we have V c
1 = (0,Cd−1). Its conformal compactification is V̂ c

1 = Pd−1, which is
the exceptional fibre of the usual blow-up process for 0 ∈ Cd . More generally, for
any non-zero tripotent c we have V c

2 = C·c and hence V c
1 becomes the orthogonal

complement c⊥ = Cd−1, with conformal compactification V̂ c
1 = Pd−1.

The standard charts of projective space Pd−1 have the form

τi : Cd−1 → Pd−1, τi (t1, . . ., t̂i , . . ., td ) := [t1 : . . . : 1i : . . . : td ]

using homogeneous coordinates on Pd−1. Note that for 1 ≤ i ≤ d , the rank 1
tripotent ci := (0, . . ., 0, 1, 0, . . ., 0) ∈ Cd has the Peirce 1-space

V
ci
1 := {(t1, . . ., ti−1, 0, ti+1, . . ., td ) : (t1, . . ., t̂i , . . ., td ) ∈ Cd−1}.
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In the higher rank setting, the Bergman operators (3.1) serve to define canonical
charts for the Peirce manifolds. For each tripotent c ∈ S� and every t ∈ V c

1 the
transformation Bt,−c ∈ KC preserves the rank. It follows that Bt,−cc ∈ V̊� has a
Peirce 2-space denoted by [Bt,−cc]. As shown in [29] the map

τc : V c
1 → M�, τc(t) := [Bt,−cc] (5.1)

is a holomorphic chart of M�. The range of the chart τc is

Mc := {U ∈ M� : NU(c) �= 0}.

Here NU : U → C denotes a Jordan algebra determinant of the Jordan triple
U which, as a Peirce 2-space, is of tube type. The Jordan determinant is only
defined after choosing a maximal tripotent in U as a unit element, but any two
such determinant functions differ by a non-zero multiple. It is shown in [29] that the
local charts τc of M�, for different tripotents c, c′ ∈ S�, are compatible and hence
form a holomorphic atlas on M�.

One can make the passage z �→ [z] to the Peirce 2-space more explicit by
introducing the so-called (Moore-Penrose) pseudo-inverse. Every element z ∈ V̊�
has a pseudo-inverse z̃ ∈ V̊� determined by the properties

Qzz̃ = z, Qz̃z = z̃, Qz Qz̃ = Qz̃ Qz.

Using the pseudo-inverse, the orthogonal projection onto the Peirce 2-space of V z
2

can be explicitly written down.

Lemma 5.1 The pseudo-inverse of z := Bt,−cc is given by

z̃ = Bt,−cB−1
t,−t c.

Combining these remarks, the chart (5.1) can be written down explicitly. It
is also instructive to embed M� into the conformal compactification V̂ of the
underlying Jordan triple V (the compact Hermitian symmetric space that is dual
to the spectral unit ball !). According to [26] V̂ can elegantly be described using a
certain equivalence relation [z;w] for pairs z,w ∈ Z. As shown in [29], one may
identify the Peirce 2-space V z

2 with the equivalence class [z; z̃] ∈ V̂ . Thus the local
chart (5.1) associated to a tripotent c ∈ S� can also be expressed via the embedding

τc : V c
1 → M� ⊂ V̂

given by

τc(t) = [z; z̃],
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where z := Bt,−cc ∈ V̊� and z̃ is computed via Lemma 5.1. In the sequel this more
refined description of the local charts will not be needed.

Having found the exceptional fibre M� for the higher-rank blow-up process, we
now consider the tautological bundle

V̂� = {(w,U) ∈ V ×M� : w ∈ U} ⊂ V� ×M�

over M�, together with the collapsing map

π : V̂� → V�, π(w,U) := w

whose range is V�. In [20] this map is used to show that V� is a normal variety. This
property implies the so-called second Riemann extension theorem for holomorphic
functions, of crucial importance in the following. For each s ∈ V c

2 the rank � element

σc(s, t) := Bt,−cs (5.2)

has the same Peirce 2-space τc(t) as Bt,−cc. We define a local chart

ρc : V c
2 × V c

1 → V̂�

by

ρc(s, t) := (σc(s, t), τc(t)). (5.3)

By (5.2) the range of the chart ρc is

V̂ c
� := {(w,U) ∈ V̂� : U ∈ Ran τc} = {(w,U) ∈ V̂� : NU(c) �= 0}.

One shows that the charts ρc, for c ∈ S�, define a holomorphic atlas on V̂�, such that
the collapsing map π : V̂� → V� is holomorphic and is biholomorphic outside the
singular set. We call V̂�, together with the collapsing map the (higher rank) blow-up
of V�.

Proposition 5.2 For rank 1, let c := (1, 0). Then

ρc(s, t) := ((s, st), [1 : t]) = ((s, st),C(1, t)),

where s ∈ C and t ∈ Cd−1. Here [s : t] = [s : t1 : . . . : td−1] denotes the
homogeneous coordinates in Pd−1.
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Proof Clearly, V c
2 = C·c = (C, 0) = [1 : 0] and V c

1 = (0,Cd−1). Then

σc(s, t) = Bt,−cs =
(

1+ (0, t)

(

1
0

)

)

(s, 0)
(

(

1 0
0 1

)

+
(

1
0

)

(

0 t
)

)

= (s, 0)

(

1 t

0 1

)

= (s, st).

In particular, σc(1, t) = (1, t) has the Peirce 2-space τc(t) = C·(1, t) = [1 : t]. It
follows that

ρc(s, t) = (σc(s, t), τc(t)) = ((s, st),C·(1, t)) = ((s, st), [1 : t]).

��
More generally, taking for c = ei the i-th basis unit vector (1 ≤ i ≤ d) we obtain

local charts

ρi(ζ
i, ζ ′) = ((ζ i, ζ iζ ′),C(1i , ζ ′)) = ((ζ i, ζ iζ ′), [1i : ζ ′])

where ζ ′ = (ζ j )j �=i . The finitely many charts ρi (1 ≤ i ≤ d) form already a
covering. Using the grid approach to Jordan triples one can similarly choose finitely
many charts in the general case. However, for many arguments using K-invariance
it is more convenient to take the continuous family of charts (ρc)c∈S�.

Since the analytic Hilbert modules considered here are supported on the Kepler
ball !� = ! ∩ V� we restrict the tautological bundle to the open subset

!̂� := {(w,U) ∈ V̂� : w ∈ !�}
and obtain a collapsing map π : !̂� → !� by restriction. The main idea to study
singular submodules ˜M is now to construct a Hermitian holomorphic line bundle L̂
over !̂�, whose curvature will be the crucial invariant of ˜M.

Proposition 5.3 There exists a holomorphic line bundle L̂ on !̂� consisting of all
equivalence classes

[s, t, λ Nc(s)]c =
[

s′, t ′, λ Nc′ (s′)
]

c′
(5.4)

with λ ∈ C. Here c, c′ ∈ S� are tripotents such that

ρc(s, t) = ρc′ (s
′, t ′) (5.5)

for (s, t) ∈ V c
2 × V c

1 and (s′, t ′) ∈ V c′
2 × V c′

1 .

Proof The condition (5.5) implies σc(s, t) = σc′(s′, t ′) and [σc(1, t)] = τc(t) =
τc′(t ′) = [σc′(1, t ′)]. This implies that Nc(s) and Nc′(s′) do not vanish. Since the
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quotient maps Nc′ (s ′)
Nc(s)

satisfy a cocycle property, it follows that

[s, t, λ]c =
[

s′, t ′, λNc′ (s′)
Nc(s)

]

c′

defines an equivalence relation yielding a holomorphic line bundle. ��
At this point we do not fix a Hermitian metric on the line bundle L̂ over !̂�.

The metric depends on the choice of singular submodules ˜M which will be defined
below.

6 Singular Hilbert Submodules

Consider the partition

1 := (1, . . ., 1, 0, . . ., 0)

of length �, with 1 repeated � times. Given the Hilbert module M =Mρ as above,
consider the K-invariant Hilbert submodule

˜M = {ψ ∈M : ψ|V�−1 = 0}.

The formula (4.6) yields the truncated kernel in the form

˜K(z,w) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1
Em+1(z,w), (6.1)

corresponding to vanishing of order ≥ 1 on V�−1. Using the identity

(ν)m+1 = (ν + 1)m (ν)1

one can also express this using Pochhammer symbols for m instead of m+ 1.

Lemma 6.1 Let V be a unital Jordan triple, with Jordan algebra determinant N.

Then we have

Em+1(z,w) = (d/r)m

(d/r)m+1
N(z)N(w) Em(z,w).

Proof For tube type we have

Em(e, e) = dm

(d/r)m
.
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Writing

Em+1(z,w) = cm N(z)N(w) Em(z,w)

it follows that

dm+1

(d/r)m+1
= Em+1(e, e) = cm Em(e, e) = cm

dm

(d/r)m
.

Since dm+1 = dm in the unital case, it follows that

cm = (d/r)m

(d/r)m+1
.

��
Lemma 6.2 For m ∈ N�+ we have for s ∈ V c

2 and t ∈ V c
1

Em+1(z, Bt,−cs) = (dc2/�)m

(dc2/�)m+1
Nc(PcB

∗
t,−cz) Nc(s) E

m(z, Bt,−cs).

Proof Applying Lemma 6.1 to the tube type Peirce 2-space V c
2 of rank � implies

Em+1(z, Bt,−cs) = Em+1(B∗t,−cz, s) = Em+1
c (PcB

∗
t,−cz, s)

= (dc2/�)m

(dc2/�)m+1
Nc(PcB

∗
t,−cz) Nc(s) E

m
c (PcB

∗
t,−cz, s).

Since Em
c (PcB

∗
t,−cz, s) = Em(B∗t,−cz, s) = Em(z, Bt,−cs), the assertion follows.

��
Since the truncated kernel ˜K of ˜M vanishes on the singular set V�−1 it cannot be

used directly to define a Hermitian line bundle over V�−1. Instead, we first consider
the module tensor product of H 2

0 (!�) over the polynomial ring P(V ) with the
one dimensional module Cw , (p,w) �→ p(w). Similar as in (2.1) we have, as a
consequence of (6.1)

H 2
0 (!�)⊗P(V ) Cw =

{

C if w ∈ !̊�

P1(V ) if w ∈ !�−1
.

Here P1(V ) is the finite-dimensional K-module belonging to the partition 1. The
K-module P1(V ) has dimension > 1 (since we exclude the case � = r for tube
type, where P1(V ) is spanned by the Jordan algebra determinant N). The ideal I
associated to the variety V�−1 is generated by P1(V ). For each w ∈ !� there is a
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“cross-section” P1(V )→ H 2
0 (!�) given by

p(z) �→ p(z)·�w(z)

where

�(z,w) = K̂w(z) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc2/�)m

(dc2/�)m+1
Em(z,w). (6.2)

Then �w(z) ∈ M for each w ∈ !�. Let Ni, i ∈ I be an orthonormal basis of
P1(V ). Then there is a holomorphic vector subbundle E ⊂ !�×M over the Kepler
ball !�, whose fibre at w ∈ V� is the span

Ew := 〈Ni(z) �w(z) : i ∈ I 〉 = P1(V )·�w ⊂M.

The vector bundle E is independent of the choice of orthonormal basis Ni. Consider
the pull-back vector bundle

π∗

ˆ
π

over !̂�, under the collapsing map π. We note that the “canonical” choice of higher
rank vector bundle E over !�, with typical fibre P1(V ) associated with the quotient
module, is only possible for irreducible domains. In the reducible case (2.2) of the
bidisk there is no natural choice of a rank 2 vector bundle having the fibre< z1, z2 >

at the origin.

Proposition 6.3 For all (s, t) ∈ V c
2 ⊕ V c

1 we have

˜K(z, Bt,−cs) = Nc(PcB
∗
t,−cz) Nc(s) �(z, Bt,−cs).

Proof This follows from the computation

˜K(z, Bt,−cs) =
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1
Em+1(z, Bt,−cs)

=
∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc2/�)m

(dc2/�)m+1
Nc(PcB

∗
t,−cz) Nc(s) E

m(z, Bt,−cs)

= Nc(PcB
∗
t,−cz) Nc(s)

∑

m∈N�+

(d/r)m+1

ρm+1

(ra/2)m+1

(�a/2)m+1

(dc2/�)m

(dc2/�)m+1
Em(z, Bt,−cs).��
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Now consider the holomorphic line bundle L̂ over the blow-up space !̂� defined
in Proposition 5.3.

Theorem 6.4 There exists an anti-holomorphic embedding L̂ ⊂ π∗E, defined on
each fibre L̂w,U ⊂ (π∗E)w,U = Ew by

[s, t, 1]c �→ Nc(B
∗
t,−cz) �Bt,−cs(z). (6.3)

In short,

[s, t, 1]c �→ Nc ◦ B∗t,−c �Bt,−cs .

Proof First we show that the map (6.3) is well-defined via the local charts (5.3).
Suppose that c, c′ ∈ S� satisfy

ρc(s, t) = ρc′(s
′, t ′),

where (s, t) ∈ V c
2 × V c

1 and (s′, t ′) ∈ V c′
2 × V c′

1 . Then we have

Bt,−cs = σc(s, t) = σc′ (s
′, t ′) = Bt ′,−c′s′.

It follows that ˜KBt,−cs = ˜KBt ′,−c′ s ′ and Proposition 6.3 implies

Nc(s) [s, t, 1]c = ˜KBt,−cs = ˜KBt ′ ,−c′ s ′ = Nc′(s′) [s′, t ′, 1]c′ .

Since Nc(s) and Nc′ (s′) don’t vanish on the overlap of the charts, it follows that

[s, t, 1]c = Nc′(s′)
Nc(s)

[s′, t ′, 1]c′ =
[

s′, t ′, Nc′(s′)
Nc(s)

]

c′
.

Thus the map (6.3) respects the equivalence relation (5.4). Moreover, the map (6.3)
is anti-holomorphic in (s, t), with values inM. In order to see that the range belongs
to the span of Ni(z) �w(z), where w = Bt,−cs, choose holomorphic functions ci(t)
such that

Nc(B
∗
t,−cz) =

∑

i∈I
ci (t) Ni(z)

for all t ∈ V c
1 . It follows that

Nc(B
∗
t,−cz) �Bt,−cs(z) =

∑

i

Ni(z) ci(t) �(z, Bt,−cs) ∈ EBt,−cs . ��
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We are now able to define a Hermitian metric on the line bundle L̂ over !̂�. A
Jordan theoretic argument yields

Lemma 6.5 For t ∈ V c
1 we have

PcB
∗
t,−cBt,−cc = PcBt,−t c

and hence

Nc(B
∗
t,−cBt,−cc) = �(t, t).

Here � denotes the Jordan triple determinant (3.3).

Proposition 6.6 For all (s, t) ∈ V c
2 ⊕ V c

1 we have

˜K(Bt,−cs, Bt,−cs) = �(t, t) |Nc(s)|2 �(Bt,−cs, Bt,−cs).

Proof Since PcBt,−cB∗t,−cPc belongs to the structure group of V 2
c it follows from

Lemma 6.5 that

Nc(B
∗
t,−cBt,−cs) = Nc(B

∗
t,−cBt,−cc) Nc(s) = �(t, t) Nc(s).

Now apply Proposition 6.3. ��
Proposition 6.7 For each submodule ˜M ⊂ M, with truncated kernel (6.1),
there exists a Hermitian metric on the line bundle L̂ over !̂�, given by the local
representatives

([s, t, 1]c|[s, t, 1]c) := �(t, t) �(Bt,−cs, Bt,−cs).

For this metric, the embedding (6.3) is isometric.

Proof Since Proposition 6.6 implies

‖Nc(B
∗
t,−cz) �Bt,−cs(z)‖2 = ‖

˜KBt,−cs

Nc(s)
‖2 = 1

|Nc(s)|2
˜K(Bt,−cs, Bt,−cs)

= �(t, t) �(Bt,−cs, Bt,−cs)

it follows that the embedding (6.3) is isometric. ��
Definition 6.8 The Hilbert module over !̂� associated with the Hermitian holo-
morphic line bundle L̂ will be called the reduction of ˜M, and denoted by M̂. Note
that this is different from the pull-back π∗E which is a vector bundle containing L̂
as a subbundle.

The following rigidity theorem for singular submodules on Kepler varieties is
our main analytic result.
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Theorem 6.9 Consider two K-invariant Hilbert modules ˜Mρ and ˜Mρ′ on !�,

for given coefficient sequences ρm and ρ′m, respectively. Suppose that the reduced
Hilbert modules M̂ρ and M̂ρ′ on the blow-up space !̂� are equivalent. Then we
have equality ˜Mρ = ˜Mρ′ .

Proof The proof is an application of the ‘normalized kernel argument’ summarized
in Proposition 1.1. Consider the reproducing kernels K̂ρ and K̂ρ′ of the reduced
Hilbert modules. It suffices to consider a local chart V c

2 × V c
1 of !̂� for a given

tripotent c ∈ S� defined in (5.3). As a consequence of module equivalence for line
bundles, there exists a non-vanishing holomorphic function φ on the local chart
V c

2 × V c
1 of !̂� such that

K̂ρ′ (x, y) = φ(x) K̂ρ(x, y) φ(y). (6.4)

Putting y = 0 we obtain

1 = K̂ρ′(x, 0) = φ(x) K̂ρ(x, 0) φ(0) = φ(x) φ(0).

Therefore φ is constant. After normalization, we may assume φ = 1. Then (6.4)
implies

K̂ρ′ (x, y) = K̂ρ(x, y)

for all x, y. In view of (6.2), this implies ρm+1 = ρ′m+1 for all m ∈ N�+. By (6.1),
the singular submodules ˜M and ˜M′ have the same truncated kernel ˜K(z,w) =
˜K′(z,w). ��

7 Outlook and Concluding Remarks

For the Hardy module H 2(Dd) it is evident that not all submodules are of the
form [I], for some ideal I of the polynomial ring. (Here [I] is the closure of I
in H 2(Dd )). Ahern and Clark [4] show that all submodules (of the Hardy module)
of finite codimension are of this form. In general, if a submodule ˜M ⊆ M is not
of the form [I], then it is not covered by the known Rigidity theorems with only
one exception, namely [18, Theorem, pp. 70]. However, the geometric invariants
constructed in [9] and in the current paper, it is hoped, might be useful in studying a
much larger class of submodules. Recall that a submodule of an analytic Hilbert
module M based on the domain ! defines a coherent analytic sheaf [8, 9]. It
possesses a Hermitian structure away from the zero variety and on this smaller open
set, we have a holomorphic Hermitian vector bundle, which determines the class
of the submodule. What we have shown here is that it has an analytic Hermitian
continuation to the blow-up space. This interesting phenomenon naturally leads to
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the notion of, what one may call a Hermitian sheaf and eventually determine the
equivalence class of these in terms of the geometric data already implicit in the
definition, as in the examples we have discussed here.

We conclude this paper with several remarks concerning interesting directions
for future research.

Remark 7.1 In [28] we consider more general Hilbert modules related to Kepler
varieties, where the integration does not take place on the Kepler ball !� but on
certain boundary strata, including the Hardy type inner product (4.4). These Hilbert
modules, and their submodules defined by a vanishing condition on !�−1 provide a
wider class of natural examples to which the above treatment is applicable.

Remark 7.2 It is easy to generalize the singular Hilbert modules treated in this
paper, defined by a vanishing condition of order 1 on the singular set, to vanishing
conditions of higher order. In this case the truncated kernel, generalizing (6.1), has
the form

˜K(z,w) =
∑

m∈N�+

(d/r)m+k

ρm+k

(ra/2)m+k

(�a/2)m+k

Em+k(z,w),

corresponding to vanishing of order ≥ k on V�−1. Here k = (k, . . ., k, 0, . . ., 0)
with k repeated � times. In principle, one could also start with an arbitrary partition
μ > 0 of length � and consider truncations such as

˜K(z,w) =
∑

n∈N�+, n≥μ

(d/r)n

ρn

(ra/2)n
(�a/2)n

En(z,w).

In this case one expects to have the finite-dimensional K-module Pμ(V ) occurring
as a quotient module. On the other hand, treating singularities where the rank
decreases by more than 1, for example V�−2 ⊂ V�, or the origin V0 = {0} as a
singularity in ! = !r, seems to be more difficult.

Remark 7.3 In the maximal rank case � = r the ball !r = ! is invariant
under the full non-linear group G. For tube type domains, the singular set !r−1
has codimension 1, defined by vanishing of the Jordan algebra determinant. This
case formally resembles the one-dimensional situation and is not covered by our
approach (it was excluded to begin with). On the other hand, let V be a Hermitian
Jordan triple not of tube type. There are three cases

• The rectangular matrices V = Cr×s with s > r.

• The skew-symmetric matrices V = CN×N
asym of odd order N = 2r + 1

• The exceptional Jordan triple V = O1×2
C of rank r = 2 and dimension 16.

For these cases the singular set

Vr−1 = {z ∈ V : rank(z) < r}
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has codimension > 1. The intersection

!r−1 := Vr−1 ∩!

with the unit ball ! ⊂ V is an analytic subvariety of !. For any automorphism
g ∈ G = Aut(!) we obtain another subvariety g(!r−1) ⊂ !. Since G acts on
the weighted Bergman spaces Mν = H 2

ν (!) one can consider submodules of Mν

defined by vanishing on !r−1 and g(!r−1), respectively, where g ∈ G does not
belong to K.

A similar situation arises for the so-called Mok embeddings

ιc : B → !

of the unit ball B = Bn into a symmetric domain ! of higher rank, constructed in
[31]. Here c ∈ S1 is any rank 1 tripotent. These embeddings have the property that
the respective Bergman kernels satisfy

KB(x, y) = K!(ιc(x), ιc(y))

for all x, y ∈ B. Let Bc := ιc(B) ⊂ ! be the image variety (whose defining
equations are explicitly known [31]) and consider, for g ∈ G, the subvariety g(Bc)

with associated Hilbert submodule ˜Mν ⊆Mν defined by a vanishing condition on
g(Bc).

It would be of interest to study the reduced modules and rigidity problems for
singular submodules in such a G-equivariant setting.

Remark 7.4 Beyond the scalar case treated in this paper, analytic Hilbert modules
for higher rank vector bundles (n > 1) have recently attracted much attention [23–
25, 27] and should give rise to interesting singular submodules as well.

Acknowledgement We thank the referee for going through the first draft of this paper carefully
and making several very useful suggestions.

References

1. M.B. Abrahamse, R.G. Douglas, A class of subnormal operators related to multiply connected
domains, Adv. in Math., 19 (1976), 106–148.

2. O.P. Agrawal, N. Salinas, Sharp kernels and canonical subspaces (revised), Amer. J. Math.
110 (1988), 23–47.

3. O.P. Agrawal, D.N. Clark, R.G. Douglas, Invariant subspaces in the polydisk, Pac. J. Math.,
121 (1986), 1–11.

4. P. Ahern, D.N. Clark, Invariant subspaces and analytic continuation in several variables, J.
Math. Mech. 19 (1969/1970), 963–969.

5. J. Arazy, G. Zhang, Homogeneous multiplication operators on bounded symmetric domains, J.
Functional Anal. bf 202(2003), 44–66.



Singular Hilbert Modules 453

6. D. Bekollé, C.A. Berger, L.A. Coburn, K. Zhu, BMO in the Bergman metric on bounded
symmetric domains, J. Functional Anal. 93 (1990), 310–350.

7. B. Bagchi, G. Misra, Homogeneous operator tuples on twisted Bergman spaces, J. Funct. Anal.,
136 (1996), 171–213.

8. S. Biswas, G. Misra, M. Putinar, Unitary invariants for Hilbert modules of finite rank, J. Reine
Angew. Math. 662 (2012), 165–204.

9. S. Biswas, G. Misra, Resolution of singularities for a class of Hilbert modules, Indiana Univ.
Math. J. 61 (2012), 1019–1050.

10. C.A. Berger, L.A. Coburn, A. Lebow, Representation and index theory for C∗-algebras
generated by commuting isometries, J. Functional Analysis, 27 (1978), 51–99.

11. H. Bommier-Hato, M. Engliš, E.-H. Youssfi, Bergman kernels, TYZ expansions and Hankel
operators on the Kepler manifold, J. Funct. Anal. 271 (2016), 264–288.

12. M.J. Cowen, R.G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978),
187–261.

13. , On moduli for invariant subspaces, Operator Theory: Advances and Applications 6,
65–73, Birkhäuser, Basel, 1982.

14. R.E. Curto, N. Salinas, Generalized Bergman kernels and the Cowen–Douglas theory, Amer
J. Math. 106 (1984), 447–488.

15. R.G. Douglas, G. Misra, Equivalence of quotient Hilbert modules, Proc. Indian Acad. Sc.
(Math. Sc.) 113 (2003), 281–291.

16. R.G. Douglas, G. Misra, C. Varughese, Geometric invariants for quotient modules from
resolutions of Hilbert modules, Operator Theory: Advances and Application 129, 241–270,
Birkhäuser, Basel, 2001.

17. R.G. Douglas, V.I. Paulsen, Hilbert Modules over Function Algebras, Pitman research notes in
mathematics, no. 217, Longman Scientific and Technical, 1989.

18. R. G. Douglas, V.I. Paulsen, K. Yan, Operator theory and algebraic geometry, Bull. Amer.
Math. Soc. 20 (1990), 67–71.

19. R.G. Douglas, V.I. Paulsen, C.H. Sah, K. Yan, Algebraic reduction and rigidity for Hilbert
modules, Amer. J. Math. 117 (1995), 75–92.

20. M. Englis, H. Upmeier, Reproducing Kernels and Asymptotic Expansions on Jordan–Kepler
Varieties. Adv. in Math. 347 (2019), 780–826

21. J. Faraut, A. Korányi, Function spaces and reproducing kernels on bounded symmetric
domains, J. Funct. Analysis 88 (1990), 64–89

22. J. Faraut, A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
23. A. Korányi, G. Misra, Homogeneous bundles and operators in the Cowen–Douglas class, C.

R. Math. Acad. Sci. Paris, 354 (2016), 291–295.
24. A. Korányi, G. Misra, A classification of homogeneous operators in the Cowen–Douglas class,

Adv. Math., 226 (2011), 5338–5360.
25. A. Korányi and G. Misra, Homogeneous Hermitian holomorphic vector bundles and the

Cowen–Douglas class over bounded symmetric domains, Adv. Math., 351 (2019), 1105–
1138226.

26. O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine 1977
27. G. Misra, H. Upmeier, Homogeneous vector bundles and intertwining operators for symmetric

domains, Adv. Math. 303 (2016), 1077–1121
28. G. Misra, H. Upmeier, ToeplitzC∗-algebras on boundary orbits of symmetric domains, preprint

(2019)
29. B. Schwarz, Jordan theoretic G-orbits and flag varieties, PhD Thesis, University of Marburg,

(2010), https://archiv.ub.uni-marburg.de/diss/z2010/0625.
30. H. Upmeier, Multivariable Toeplitz Operators and Index Theory. Birkhäuser, Basel, 1996.
31. H. Upmeier, K. Wang, G. Zhang, Holomorphic isometries from the unit ball into symmetric

domains, Int. Math. Res. Notices 2019 (2019), 55–89.
32. R.O. Wells, Differential Analysis on Complex Manifolds, Graduate Texts in Math. 65 (1980),

Second Edition, Springer-Verlag, New York-Berlin.

https://archiv.ub.uni-marburg.de/diss/z2010/0625


A Survey of Ron Douglas’s Contributions
to the Index Theory of Toeplitz Operators

Efton Park

To the memory of Ron Douglas

Abstract In this survey article, we look back on some of the important contribu-
tions that Ron Douglas made to the study of index theory for various generalizations
of Toeplitz operators.
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1 Introduction

On February 27, 2018, the world lost a great mathematician and an even better
person, Ron Douglas. Ron made fundamental contributions in many areas of
operator theory, operator algebras, and index theory. Ron was most famously known
for Brown-Douglas-Fillmore (BDF) theory and its connections to K-homology, and
younger operator algebraists may know him best for his papers on the interface
between operator theory and algebraic geometry. However, in the 70s, 80s, and
90s, Ron published several important and interesting papers that looked at the index
theory of generalizations of Toeplitz operators. In this article, I will highlight some
of Ron’s work in these areas.

My intended audience is mathematicians and graduate students who are (or are
becoming) operator algebraists. I will assume the reader is familiar with Fredholm
operators, C∗-algebras, and von Neumann algebras. In the penultimate section, I
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will need to assume some familiarity with vector bundles, elliptic operator theory,
and characteristic classes, and in the final section I will have to assume some
knowledge about foliations. However, my aim in these last two sections is to present
this material in such a way that even a reader with only a vague notion of what these
objects are will still be able to appreciate the main results.

Let’s begin by reviewing the classical situation. If we endow the circle group T

with Haar measure, the monomials {zn : n ∈ Z} constitute an orthonormal basis
of L2(T). The algebra C(T) of complex-valued continuous functions on T acts on
L2(T) via pointwise multiplication: Mφ(f ) = φf . The Hardy space H 2(T) can
be taken to be the Hilbert subspace of L2(T) generated by the set {zn : n ≥ 0};
let P denote the orthogonal projection operator from L2(T) onto H 2(T). Then,
for each φ in C(T), we define the Toeplitz operator Tφ : H 2(T) → H 2(T) as
the composition PMφ . Let T be the C∗-subalgebra of B(H 2(T)) generated by the
set {Tφ : φ ∈ C(T)}. It is straightforward to show that commutators [Tφ, Tψ ] of
Toeplitz operators are compact. Furthermore, the fact that Tz, the unilateral shift,
has no nontrivial reducing subspaces (this is essentially Beurling’s theorem) implies
that T acts irreducibly on H 2(T), whence the commutator ideal of T is the entire
ideal K of compact operators on H 2(T). A bit more work allows one to establish a
short exact sequence

0
σ

C(T) 0

with a linear splitting ξ : C(T) → T given by the formula ξ(φ) = Tφ . From this
exact sequence, we can easily deduce that each element of T can be written uniquely
in the form Tφ +K for some compact operator K and some continuous function φ;
furthermore, the algebra homomorphism σ : T → C(T) has the explicit formula
σ(Tφ +K) = φ.

We can immediately infer from this exact sequence that T in T is Fredholm if and
only if its symbol σ(T ) is a nowhere-vanishing function on T. Furthermore, we have
the following classical result, due independently to many researchers, including F.
Noether, Kreı̆n, Widom, and Devinatz:

Theorem 1.1 Suppose that T ∈ T has the property that σ(T ) is invertible. Then
the index of T equals the negative of the winding number of σ(T ).

This theorem asserts the equality of two seemingly very different quantities: the
analytic index dim kerT − dim kerT ∗ of T and a topological index associated to T .

A theorem this elegant cries out to be generalized! The remaining sections of this
paper highlight generalizations due to Douglas and various coauthors.
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2 Toeplitz Operators Associated to a Semigroup

We begin by looking at an general approach considered by Coburn and Douglas
[5]. Note that as a C∗-subalgebra of B(L2(T)), the Toeplitz algebra T is generated
by the set {Tzn : n ∈ Z

+}. This suggests the following generalization. Let G
a locally compact abelian group. The (Pontryagin) dual ̂G of G is the group
of continuous homomorphisms from G into T endowed with the compact-open
topology. Fix a subsemigroup S of ̂G that is also a Borel subset. If we equip
G and ̂G with Haar measure, then the Fourier transform defines a Hilbert space
isomorphism from L2(G) to L2(̂G). Define H 2(S) to be the Hilbert subspace of
L2(G) consisting of functions whose Fourier transform is supported on S, and let
P be the orthogonal projection from L2(G) onto H 2(S). Pointwise multiplication
by a bounded measurable function φ on G defines a bounded linear operator
Mφ : L2(G) → L2(G), and we define Tφ on H 2(S) by the formula Tφ = PMφ .
Note that if γ is an element of S (and thus a bounded measurable function on G),
then Mγ maps H 2(S) to itself and the projection P is unnecessary. Define T (G, S)

to be the C∗-subalgebra of B(H 2(S)) generated by the set {Tγ : γ ∈ S}. Observe
that if we take G = T and S = Z

+, we recover the classic Toeplitz algebra T .
In order to avoid pathologies, we need to ensure that our subsemigroup S is not

too small. We shall henceforth assume that S has strictly positive Haar measure in
̂G, and also that the group generated by S is all of ̂G. If ̂G is connected, then our
first condition on S implies the second. On the other hand, if G is discrete, then the
two conditions on S force S = ̂G, which of course is not very interesting.

Let C(G, S) be the closed ∗-ideal of T (G, S) generated by commutators of
elements in T (G, S). To identify the quotient algebra T (G, S)/C(G, S), we need
a definition from harmonic analysis. The C∗-algebra AP(G) of almost periodic
functions on G is the closure in the supremum norm of the algebra of finite complex
linear combinations of elements of ̂G. It is not hard to show that if G is compact,
then AP(G) = C(G).

Theorem 2.1 ([5], Theorem 2) Every element of T (G, S) can be uniquely written
in the form Tφ + C for some φ ∈ AP(G) and C ∈ C(G, S), and there is a short
exact sequence of C∗-algebras

0 (G, S) (G, S)
σ

AP(G) 0

with σ(Tφ + C) = φ.

While you could attempt to produce some sort of index theory associated to this
short exact sequence, it is very unlikely that you could say much at this level of
generality. In the next two sections we consider special cases of this result.
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3 Toeplitz Operators on the Real Line

For the setup described in the previous section, take G = R. The dual group is
isomorphic and homeomorphic to R; take S = R

+.
Unlike the situation we saw with the circle, the ideal C(R,R+) is not the ideal

of compact operators; in fact, C(R,R+) contains no nonzero compact operator.
Thus, to have an interesting index problem here, we need a different notion of the
analytical index, due to M. Breuer [1, 2]. Let H be a Hilbert space, and suppose that
M is a von Neumann subalgebra of B(H) that is also a II∞ factor. (Breuer worked
in greater generality than we will discuss here, but this will suffice for our purposes.)
Let Proj(M) be the set of projections in M. For X in M, define the null projection
NX by the formula

NX = sup{E ∈ Proj(M) : XE = 0}.
We say that X is Fredholm (relative toM) if

1. NX is finite;
2. there is a finite projection E in M such that (1− E)(H) ⊆ X(H).

Condition 2 is an analogue, but not the same as, the classical requirement that X
have closed range and finite dimensional cokernel. If X satisfies both conditions 1
and 2, then NX∗ is finite, and we can define the analytic index of X relative to M
by the formula

indexMX = dimMNX − dimMNX∗ .

The Breuer index satisfies similar properties to the features that the ordinary
Fredholm index enjoys: for X and Y Fredholm relative to M, we have

• indexMX∗ = − indexMX;
• indexM(XY ) = indexMX + indexM Y ;
• indexM(X + F) = indexMX for all finite projections F in M;
• the Breuer index is locally constant on the subspace of operators that are

Fredholm relative to M.

Let Rd denote the set of real numbers equipped with the discrete topology. In
[7], Coburn, Douglas, Schaeffer, and Singer constructed a faithful representation ρ

of T (R,R+) onto a II∞ factor M in B(L2(R) ⊗ �2(Rd )) and showed that ρ(T )
in T (R,R+) is Fredholm relative to M if and only if σ(T ) is invertible in AP(R).
In this case, we can define indexM T to be the Breuer index of ρ(T ). The main
theorem is that indexM T can be computed as the average winding number of σ(T ).

Theorem 3.1 ([7], Theorem 2.2) Suppose that T in T (R,R+) has the property
that σ(T ) is invertible in AP(R). Then

indexM T = lim
x→∞

arg(σ (T )(x))− arg(σ (−T )(x)
x

.
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4 Quarter-Plane Toeplitz Operators

Suppose that G is T
2 and take S to be Z

2+ = {(m, n) : m,n ≥ 0} in ̂G = Z
2.

We call the C∗-algebra T (T2,Z2+) the quarter-plane Toeplitz algebra. In contrast
with what we saw in T (R,R+), the commutator ideal C(T2,Z2+) contains nonzero
compact operators—in fact, it contains all of them—but also contains noncompact
operators as well. To analyze the Fredholm index theory of T (T2,Z2+), Douglas and
Howe ([8]) observed that T (T2,Z2+) is naturally isomorphic to the tensor product
T ⊗ T of the Toeplitz algebra on the circle with itself. We can therefore write down
the following nine-term (or 21-term, depending on how you count) commutative
diagram with exact rows and columns:

0 0 0

0 ⊗ ⊗ ⊗ C(T) 0

0 ⊗ ⊗ ⊗ C(T) 0

0 C(T) ⊗ C(T) ⊗ C(T) ⊗ C(T) 0

0 0 0

Let S be the pullback of T ⊗ C(T) and C(T)⊗ T along C(T)⊗ C(T); i.e.,

S = {(X, Y ) ∈ (T ⊗ C(T))⊕ (C(T)⊗ T ) : (σ ⊗ id)(X) = (id⊗σ)(Y )}.

Then an easy diagram chase yields the following short exact sequence

0 ⊗ ⊗ σ

0,

where σ̃ has the property that σ̃ (T1 ⊗ T2) = (T1 ⊗ σ(T2), σ (T1) ⊗ T2). Thus an
operator T in T (T2,Z2+) ∼= T ⊗ T is Fredholm if and only if its symbol in the
noncommutative symbol space S is invertible.
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Using the standard isomorphism of C(T) ⊗ T with C(T,T ), we can alternately
describe S as

S = {(�1,�2) ∈ C(T,T )⊕ C(T,T ) :
σ(�1(z))(w) = σ(�2(w))(z) for all w, z ∈ T}.

Coburn, Douglas, and Singer proved the following.

Theorem 4.1 ([6], Section 3) Suppose that T is a Fredholm operator in T (T2,Z2+)
whose symbol in S is (�1,�2). Then there is a homotopy in the subspace of
invertible elements of S from (�1,�2) to (zmI, znI) for some integers m and n,
and index(T ) = −(m+ n).

While this theorem does indeed give a topological formula for the index of
Fredholm operators in the quarter-place Toeplitz algebra, one might not view this
result as being completely satisfactory, because the proof does not give a procedure
for finding the necessary homotopy. An alternate index theorem that applies to
a dense set of Fredholm operators in T (T2,Z2+) can be obtained using cyclic
cohomology. The reader who is unfamiliar with cyclic cohomology can consult
Connes’ book on the subject ([4], Section III.3), but fortunately one does not need
to know cyclic cohomology to understand the final result of this section.

Let L1 denote the ideal of trace class operators on H 2(T) and define

T ∞ = {Tφ + L : φ ∈ C∞(T), L ∈ L1}.

It is not too difficult to show that T ∞ is a dense ∗-subalgebra of T , and we have a
short exact sequence

0 1 ∞ σ∞
C∞(T) 0.

Define ξ : C∞(T) → T ∞ by ξ(φ) = Tφ . The map ξ is a linear splitting to
the symbol map σ∞. Next, using the projective tensor product, we can produce
a “smooth” version of our short exact sequence on the preceding page:

0 1 ⊗ 1 ∞ ⊗ ∞ σ∞
∞ 0.

This short exact sequence also has a linear splitting ρ : S∞ → T ∞ ⊗ T ∞ defined
by

ρ(�1,�2) = (id⊗ξ)(�1)+ (ξ ⊗ id)(�2)− (ξ ⊗ ξ)(σ∞ ⊗ id)(�1)

= (id⊗ξ)(�1)+ (ξ ⊗ id)(�2)− (ξ ⊗ ξ)(id⊗σ∞)(�2),
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and ρ defines a 1-cyclic cocycle [ρ] on S∞. Using the pairing of cyclic cohomology
with K-theory, we obtain the following index theorem.

Theorem 4.2 ([11], Theorem 4.4) Let T be a Fredholm operator in T ∞ ⊗ T ∞.
Then

indexT = Trace
(

ρ(̃σ∞(T ))ρ(̃σ∞(T )−1)− ρ(̃σ∞(T )−1)ρ(̃σ∞(T )
)

.

5 Toeplitz Operators Associated to Elliptic Operators

We now generalize Toeplitz operators on the circle in a very different direction from
the generalizations we have been considering so far. To motivate what we will do in
this section, consider the differential operator −i d

dθ
applied to smooth functions on

the circle. We can extend−i d
dθ

to an unbounded self-adjoint operator D on L2(T).
The collection {einθ : n ∈ Z} is a complete set of eigenvectors for D, and we can
view H 2(T) as the positive spectral subspace of D; that is, the closed linear span of
the eigenvectors of D that are associated to nonnegative eigenvalues. The spectral
theorem functional calculus allows us to write the projection P : L2(T)→ H 2(T)

as the positive spectral projection χ[0,∞)(D) of D. Furthermore, if we choose a
smooth real-valued function f with the property that f (k) = χ[0,∞)(k) for every
integer k, then P can also be expressed as f (D). The advantage of viewing P in
this fashion is that it shows that P is a zero-order pseudo-differential operator. We
can use the powerful theory of such operators to deduce that [P,Mφ ] is compact for
all φ ∈ C∞(T), and an approximation argument shows that such commutators are
compact for all φ ∈ C(T). The ordinary circle Toeplitz algebra extension follows
fairly easily.

Now let X be an oriented smooth compact manifold, let V be a smooth complex
vector bundle over X, and equip V with a Hermitian structure; this is a smoothly-
varying choice of complex inner product for each fiber of V . Let π denote the
projection of vectors in V down to X. A section of V is a map s : X → V

such that πs is the identity map on X; let L2(V ) be the Hilbert space of square-
summable measurable sections of V . Given a complex-valued function φ on X, it
acts on L2(V ) by pointwise scalar multiplication and therefore we have a bounded
linear operator Mφ on L2(V ).

Next, a differential operator on L2(V ) is a densely-defined linear map D that
locally can be written as a matrix of partial derivatives. We are interested in the
case when D is symmetric as an unbounded operator and can be extended to a true
self-adjoint operator. We also require that D be elliptic. Very roughly speaking, this
means that D differentiates in all directions. In any event, for what follows, it is not
necessary to know exactly what an elliptic operator is in order to understand the
setup or the results.

So suppose D is a self-adjoint elliptic differential operator on L2-sections of a
Hermitian vector bundle V . The ellipticity of D implies that the spectrum of D
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consists entirely of eigenvalues (necessarily real, because D is self-adjoint) with
finite multiplicity, and each eigenspace has a basis of smooth sections. Because D

is self-adjoint, we can apply the spectral theorem functional calculus to it. Choose
a smooth function f : R → R with the property that f (a) = χ[0,∞)(a) for each
eigenvalue a of D. Then f (D) equals the positive spectral projection of D. As was
true in the circle case, the commutators [P,Mφ] are compact operators. Let H 2(D)

denote the positive spectral subspace of D; note that H 2(D) is the range of P .
Consider Toeplitz operators Tφ = PMφ on H 2(D), and define T (D) to be the C∗-
subalgebra of H 2(D) generated by K and {Tφ : φ ∈ C(X)}. We have a short exact
sequence

0 (D)
σ

C(X) 0

with σ(Tφ +K) = φ for all φ in C(X) and K in K.
In [3], Baum and Douglas used the Atiyah-Singer index theorem to give a

topological index formula for Fredholm operators in T (D). We will use the rest
of section to look at the various elements that make up this formula.

Our generalized Toeplitz algebras typically only admit an interesting index
problem whenX is odd-dimensional, so we shall henceforth assume that. It will also
be convenient to assume that X is connected. We will restrict our attention to what
are called spinc manifolds. Such manifolds admit an elliptic first order differential
operator, called the Dirac operator, that implements a Poincaré duality isomorphism
from the K-theory of X to the K-homology of X, and this fact simplifies the
topological index formula. Many orientable manifolds are spinc; for example, every
orientable three-manifold has this property. Finally, to produce interesting examples
with nonzero index, we allow Toeplitz operators with matrix-valued symbols. For
each natural number n, we can tensor our short exact sequence by M(n,C), and,
identifying K⊗M(n,C) ∼= M(n,K) with K, we obtain the short exact sequence

0 M(n, (D))
σ

M(n,C(X)) 0.

Then we see that for any continuous map � : X → GL(n, C(X)), the Toeplitz
operator T� is Fredholm. We can approximate � by a smooth map from X into
GL(n, C∞(X)) without changing the index of our Toeplitz operator, so let’s assume
that � is smooth. Let d� denote the matrix of one-forms obtained by taking the
exterior derivative of each matrix entry of � and define

ω� =
∞
∑

k=0

k !
(2k + 1) ! Trace

(

(�−1d�)2k+1
)

.

Note that (�−1d�)2k+1 = 0 for 2k + 1 > dimX, so the sum on the right-hand
side of the equation is finite. The differential form ω� is closed and therefore
determines a class Ch(�) in the odd-degree cohomology of X; this class is called
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the Chern character of � ([12], Section 4.4). Let T ∗X be the cotangent bundle of
X and let Th : H ∗(X) → H ∗(T ∗X) be the Thom isomorphism in cohomology.
Finally, let Td(T ∗X) denote the Todd class of T ∗X; the Todd class is an even-degree
cohomology class on X that serves as a “correction factor” between the Thom
isomorphisms in cohomology and K-theory. The desired index formula comes from
the pairing between homology and cohomology.

Theorem 5.1 ([3], Theorem 4)

indexT� =
〈

Ch(�) ∪ Th−1(Td(T ∗X)), [X]
〉

.

If we use Chern-Weil theory to represent Th−1(Td(T ∗X)) as a closed differential
form, then the right-hand side can be computed by evaluating an integral over X.
When X = T and D = −i d

dx
, we recover the winding number formula for the index

of Toeplitz operators on the circle.

6 Toeplitz Operators Associated to a Foliation

Suppose X is a compact manifold that admits a foliation F . This is not the venue
for an extensive discussion of the theory of foliations, but we will note that if F is a
foliation of X, then for each point x in X there exists a neighborhood U of x that is
locally diffeomorphic to a product manifold L× T . The sets L×{t} are restrictions
of the leaves of F to U . A good example to keep in mind throughout this section is
the following: let X = [0, 1] × [0, 1] with opposite sides identified, and foliate X

by parallel lines with a fixed slope.
Given a foliated manifold (X,F), we can consider the leaf space X/F obtained

by identifying each leaf of F to a point and endowing the resulting set with the
quotient topology. This quotient space can be very badly behaved topologically;
consider our torus example when the foliating lines have an irrational slope. A
more productive approach to understanding the leaf space of a foliation comes from
one of the central tenets of noncommutative geometry and topology: it is easier
to understand noncommutative C∗-algebras than it is to understand non-Hausdorff
topological spaces. We take our foliation F and look at its holonomy groupoid G.
This topological groupoidG is related to F , but takes into account the fact that when
going around loops in a leaf, the nearby leaves may be twisted; roughly speaking,
the groupoid G “undoes” this twisting. The set of smooth functions on G becomes
a ∗-algebra under convolution, and by completing this ∗-algebra in an appropriate
norm we obtain the (reduced) foliation algebra C∗(X,F). More generally, given a
foliated vector bundle E over X, we can form a C∗-algebra C∗(X,F , E).

Next, let D be a self-adjoint differential operator on sections of E, and suppose
that D is elliptic along the leaves of F ; in analogy with our discussion of
(fully) elliptic operators in the previous section, this very roughly means that D
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differentiates in all the leaf directions. Let P = χ[0,∞)(D), and for each continuous
function φ on X, form the Toeplitz operator Tφ . Let T (D) be the C∗-subalgebra
of B(L2(G, E)) generated by the Tφ and C∗(X,F , E). Then we have a short exact
sequence

0 S(D) (D)
σ

C(X) 0,

where CS(D) is the semicommutator ideal of T (D) generated by elements of the
form Tφψ − TφTψ .

To use this short exact sequence to produce an index theorem, we need to know
more about the semicommutator ideal CS(D). Both this ideal and the foliation
algebra C∗(X,F , E) are contained in the von Neumann algebra W∗(X,F , E)

generated by C∗(X,F , E), but are not generally equal. The problem is that, unlike
the situation with the elliptic operators we considered in the previous section, self-
adjoint leafwise elliptic operators do not generally have a “gap” in their spectrum
near zero, and therefore the positive spectral projection P = χ[0,∞)(D) is typically
not a leafwise elliptic pseudodifferential operator.

Douglas, Hurder, and Kaminker [9] got around this problem in the following
way. For each ε > 0, define fε : R → R by the formula fε(x) = x(ε + x2)−1/2.
Using Roe’s leafwise functional calculus [13], we can define Pε = fε(D) and look
at “approximate” leafwise Toeplitz operators T ε

φ = PεMφPε for every continuous
function φ on X. This gives a family of short exact sequences

0 C∗(X, ) (D)
σ

C(X) 0.

The significance of these exact sequences is that if there exists a smooth measure
μ on X that is compatible with the foliation F (specifically, we require that μ be
invariant under the holonomy group of F ), then just as in Sect. 3, we can embed
C∗(X,F) into a II∞ factor and obtain a Breuer index for elements in T ε(D) that
are invertible modulo C∗(X,F). By taking a limit as ε goes to zero, we obtain an
analytic index for Toeplitz operators in T (D) that have invertible symbol. We can
extend this analytic index to Toeplitz operators with matrix-valued symbols, just as
we did in the previous section.

We now seek a topological formula for this analytic index. Unfortunately, but
necessarily, the formula is rather involved. Like the index formula in the previous
section, it involves pairing a cohomology class with a homology class.

Theorem 6.1 ([9], Proposition 4.5)

indexM T� =
〈

Ch(�) ∪ Th−1(symb(D)) ∪ Td(TF ⊗R C), [Cμ

]

〉.

In this formula, we have the inverse of the Thom isomorphism Th in cohomology
applied to the symbol symb(D) of our leafwise elliptic differential operator D. The
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homology class [Cμ] comes from the Ruelle-Sullivan current; as the notation Cμ

suggests, the Ruelle-Sullivan current is defined in terms of the measure μ. For the
case of a foliation of the torus by irrational lines, we essentially recover the index
problem and formula that we discussed in Sect. 2.

The Toeplitz index theorem provided here is interesting in its own right, but
represents a small part of a much more ambitious project. Douglas, Hurder, and
Kaminker used these ideas to study spectral flow and computations of secondary
index invariants, such as the eta invariant, for elliptic operators. The interested reader
should consult [9] and [10] for more information.

Acknowledgments Thanks to José Carrión and the referee for their suggestions and constructive
criticism.
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and Norm-Controlled Inversion
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Abstract In this introduction article, we consider the norm-controlled inversion
for differential ∗-subalgebras of a symmetric ∗-algebra with common identity and
involution.
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1 Introduction

In [49, Lemma IIe], it states that “If f (x) is a function with an absolutely
convergent Fourier series, which nowhere vanishes for real arguments, 1/f (x) has
an absolutely convergent Fourier series.” The above statement is now known as the
classical Wiener’s lemma.

We say that a Banach space A with norm ‖ · ‖A is a Banach algebra if it has
operation of multiplications possessing the usual algebraic properties, and

‖AB‖A ≤ K‖A‖A‖B‖A for all A,B ∈ A, (1.1)
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where K is a positive constant. Given two Banach algebras A and B such that A is a
Banach subalgebra of B, we say that A is inverse-closed in B if A ∈ A and A−1 ∈ B
implies A−1 ∈ A. Inverse-closedness is also known as spectral invariance, Wiener
pair, local subalgebra, etc. [13, 16, 30, 46]. Let C be the algebra of all periodic
continuous functions under multiplication, and W be its Banach subalgebra of all
periodic functions with absolutely convergent Fourier series,

W =
{

f (x) =
∑

n∈Z
f̂ (n)einx, ‖f ‖W :=

∑

n∈Z
|f̂ (n)| <∞

}

. (1.2)

Then the classical Wiener’s lemma can be reformulated as that W is an inverse-
closed subalgebra of C. Due to the above interpretation, we also call the inverse-
closed property for a Banach subalgebra A as Wiener’s lemma for that subalgebra.
Wiener’s lemma for Banach algebras of infinite matrices and integral operators with
certain off-diagonal decay can be informally interpreted as localization preservation
under inversion. Such a localization preservation is of great importance in applied
harmonic analysis, numerical analysis, optimization and many mathematical and
engineering fields [2, 10, 11, 23, 28, 44]. The readers may refer to the survey papers
[18, 27, 37], the recent papers [14, 34, 36] and references therein for historical
remarks and recent advances.

Given an element A in a Banach algebra A with the identity I , we define its
spectral set σA(A) and spectral radius ρA(A) by

σA(A) :=
{

λ ∈ C : λI − A is not invertible in A
}

and

ρA(A) := max
{|λ| : λ ∈ σA(A)

}

respectively. Let A and B be Banach algebras with common identity I and A be a
Banach subalgebra of B. Then an equivalent condition for the inverse-closedness of
A in B is that the spectral set of any A ∈ A in Banach algebras A and B are the
same, i.e.,

σA(A) = σB(A).

By the above equivalence, a necessary condition for the inverse-closedness of A in
B is that the spectral radius of any A ∈ A in the Banach algebras A and B are the
same, i.e.,

ρA(A) = ρB(A). (1.3)

The above necessary condition is shown by Hulanicki [24] to be sufficient if we
further assume that A and B are ∗-algebras with common identity and involution,
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and that B is symmetric. Here we say that a Banach algebra B is a ∗-algebra if there
is a continuous linear involution ∗ on B with the properties that

(AB)∗ = B∗A∗ and A∗∗ = A for all A,B ∈ B,

and that a ∗-algebra B is symmetric if

σA(A∗A) ⊂ [0,∞) for all A ∈ B.

The spectral radii approach (1.3), known as the Hulanicki’s spectral method, has
been used to establish the inverse-closedness of symmetric ∗-algebras [9, 20, 21,
41, 43, 45], however the above approach does not provide a norm estimate for the
inversion, which is crucial for many mathematical and engineering applications.

To consider norm estimate for the inversion, we recall the concept of norm-
controlled inversion of a Banach subalgebra A of a symmetric ∗-algebra B, which
was initiated by Nikolski [31] and coined by Gröchenig and Klotz [20]. Here we
say that a Banach subalgebra A of B admits norm-controlled inversion in B if there
exists a continuous function h from [0,∞)× [0,∞) to [0,∞) such that

‖A−1‖A ≤ h
(‖A‖A, ‖A−1‖B

)

(1.4)

for all A ∈ A being invertible in B [19, 20, 34, 36].
The norm-controlled inversion is a strong version of Wiener’s lemma. The

classical Banach algebra W in (1.2) is inverse-closed in the algebra C of all periodic
continuous functions [49], however it does not have norm-controlled inversion in
C [5, 31]. To establish Wiener’s lemma, there are several methods, including the
Wiener’s localization [49], the Gelfand’s technique [16], the Brandenburg’s trick
[9], the Hulanicki’s spectral method [24], the Jaffard’s boot-strap argument [25], the
derivation technique [21], and the Sjöstrand’s commutator estimates [36, 39]. In this
paper, we will use the Brandenburg’s trick to establish norm-controlled inversion of
a differential ∗-subalgebra A of a symmetric ∗-algebra B.

This introduction article is organized as follows. In Sect. 2, we recall the concept
of differential subalgebras and present some differential subalgebras of infinite
matrices with polynomial off-diagonal decay. In Sect. 3, we introduce the concept
of generalized differential subalgebras and present some generalized differential
subalgebras of integral operators with kernels being Hölder continuous and having
polynomial off-diagonal decay. In Sect. 4, we use the Brandenburg’s trick to
establish norm-controlled inversion of a differential ∗-subalgebra of a symmetric
∗-algebra, and we conclude the section with two remarks on the norm-controlled
inversion with the norm control function bounded by a polynomial and the norm-
controlled inversion of nonsymmetric Banach algebras.
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2 Differential Subalgebras

Let A and B be Banach algebras such that A is a Banach subalgebra of B. We say
that A is a differential subalgebra of order θ ∈ (0, 1] in B if there exists a positive
constant D0 := D0(A,B, θ) such that

‖AB‖A ≤ D0‖A‖A‖B‖A
(( ‖A‖B
‖A‖A

)θ +
( ‖B‖B
‖B‖A

)θ)

for all A,B ∈ A. (2.1)

The concept of differential subalgebras of order θ was introduced in [7, 26, 32]
for θ = 1 and [12, 20, 36] for θ ∈ (0, 1). We also refer the reader to [3, 15, 19–
21, 25, 33, 34, 41–43, 45] for various differential subalgebras of infinite matrices,
convolution operators, and integral operators with certain off-diagonal decay.

For θ = 1, the requirement (2.1) can be reformulated as

‖AB‖A ≤ D0‖A‖A‖B‖B +D0‖A‖B‖B‖A for all A,B ∈ A. (2.2)

So the norm ‖ · ‖A satisfying (2.1) is also referred as a Leibniz norm on A.
Let C[a, b] be the space of all continuous functions on the interval [a, b]with its

norm defined by

‖f ‖C[a,b] = sup
t∈[a,b]

|f (t)|, f ∈ C[a, b],

and Ck[a, b], k ≥ 1, be the space of all continuously differentiable functions on the
interval [a, b] up to order k with its norm defined by

‖h‖Ck [a,b] =
k
∑

j=0

‖h(j)‖C[a,b] for h ∈ Ck[a, b].

Clearly, C[a, b] and Ck[a, b] are Banach algebras under function multiplication.
Moreover

‖h1h2‖C1[a,b] = ‖(h1h2)
′‖C[a,b] + ‖h1h2‖C[a,b]

≤ ‖h′1‖C[a,b]‖h2‖C[a,b] + ‖h1‖C[a,b]‖h′2‖C[a,b]
+ ‖h1‖C[a,b]‖h2‖C[a,b]

≤ ‖h1‖C1[a,b]‖h2‖C[a,b]
+ ‖h1‖C[a,b]‖h2‖C1[a,b] for all h1, h2 ∈ C1[a, b], (2.3)

where the second inequality follows from the Leibniz rule. Therefore we have

Theorem 2.1 C1[a, b] is a differential subalgebra of order one in C[a, b].
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Due to the above illustrative example of differential subalgebras of order one, the
norm ‖ · ‖A satisfying (2.1) is also used to describe smoothness in abstract Banach
algebra [7].

Let W1 be the Banach algebra of all periodic functions such that both f and its
derivative f ′ belong to the Wiener algebra W , and define the norm on W1 by

‖f ‖W1 = ‖f ‖W + ‖f ′‖W =
∑

n∈Z
(|n| + 1)|f̂ (n)| (2.4)

for f (x) = ∑

n∈Z f̂ (n)einx ∈ W1. Following the argument used in the proof of
Theorem 2.1, we have

Theorem 2.2 W1 is a differential subalgebra of order one inW .

Recall from the classical Wiener’s lemma that W is an inverse-closed subalgebra
of C, the algebra of all periodic continuous functions under multiplication. This
leads to the following natural question:

Question 2.3 IsW1 a differential subalgebra of C?

Let �p, 1 ≤ p ≤ ∞, be the space of all p-summable sequences on Z with norm
denoted by ‖ ·‖p . To answer the above question, we consider Banach algebras C,W
and W1 in the “frequency domain”. Let B(�p) be the algebra of all bounded linear
operators on �p, 1 ≤ p ≤ ∞, and let

W̃ =
{

A := (a(i − j))i,j∈Z, ‖A‖W̃ =
∑

k∈Z
|a(k)| <∞

}

(2.5)

and

W̃1 =
{

A := (a(i − j))i,j∈Z, ‖A‖W̃ 1 =
∑

k∈Z
|k||a(k)| <∞

}

(2.6)

be Banach algebras of Laurent matrices with symbols in W and W1 respectively.
Then the classical Wiener’s lemma can be reformulated as that W̃ is an inverse-
closed subalgebra of B(�2), and an equivalent statement of Theorem 2.2 is that
W̃1 is a differential subalgebra of order one in W̃ . Due to the above equivalence,
Question 2.3 in the “frequency domain” becomes whether W1 is a differential
subalgebra of order θ ∈ (0, 1] in C. In [45], the first example of differential
subalgebra of infinite matrices with order θ ∈ (0, 1) was discovered.

Theorem 2.4 W1 is a differential subalgebra of C with order 2/3.

To consider differential subalgebras of infinite matrices in the noncommutative
setting, we introduce three noncommutative Banach algebras of infinite matrices
with certain off-diagonal decay. Given 1 ≤ p ≤ ∞ and α ≥ 0, we define the
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Gröchenig-Schur family of infinite matrices by

Ap,α =
{

A = (a(i, j))i,j∈Z, ‖A‖Ap,α
<∞

}

(2.7)

[22, 25, 29, 35, 43, 45], the Baskakov-Gohberg-Sjöstrand family of infinite matrices
by

Cp,α =
{

A = (a(i, j))i,j∈Z, ‖A‖Cp,α <∞
}

(2.8)

[4, 17, 22, 39, 43], and the Beurling family of infinite matrices

Bp,α =
{

A = (a(i, j))i,j∈Z, ‖B‖Ap,α
<∞

}

(2.9)

[6, 36, 41], where uα(i, j) = (1+ |i − j |)α, α ≥ 0, are polynomial weights on Z
2,

‖A‖Ap,α
= max

{

sup
i∈Z

∥

∥

(

a(i, j)uα(i, j)
)

j∈Z
∥

∥

p
, sup

j∈Z

∥

∥

(

a(i, j)uα(i, j)
)

i∈Z
∥

∥

p

}

,

(2.10)

‖A‖Cp,α =
∥

∥

∥

(

sup
i−j=k

|a(i, j)|uα(i, j)
)

k∈Z

∥

∥

∥

p
, (2.11)

and

‖A‖Bp,α
=
∥

∥

∥

(

sup
|i−j |≥|k|

|a(i, j)|uα(i, j)
)

k∈Z

∥

∥

∥

p
. (2.12)

Clearly, we have

Bp,α ⊂ Cp,α ⊂ Ap,α for all 1 ≤ p ≤ ∞ and α ≥ 0. (2.13)

The above inclusion is proper for 1 ≤ p < ∞, while the above three families of
infinite matrices coincide for p = ∞,

B∞,α = C∞,α = A∞,α for all α ≥ 0, (2.14)

which is also known as the Jaffard family of infinite matrices [25],

Jα =
{

A = (a(i, j))i,j∈Z, ‖A‖Jα
= sup

i,j∈Z
|a(i, j)|uα(i − j) <∞

}

. (2.15)

Observe that ‖A‖Ap,α
= ‖A‖Cp,α for a Laurent matrix A = (a(i − j))i,j∈Z.

Then Banach algebras W̃ and W̃1 in (2.5) and (2.6) are the commutative subalgebra
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of the Gröchenig-Schur algebra A1,α and the Baskakov-Gohberg-Sjöstrand algebra
C1,α for α = 0, 1 respectively,

W̃ = A1,0 ∩ L = C1,0 ∩ L (2.16)

and

W̃1 = A1,1 ∩ L = C1,1 ∩ L, (2.17)

where L is the set of all Laurent matrices A = (a(i − j))i,j∈Z. The sets
Ap,α, Cp,α,Bp,α with p = 1 and α = 0 are noncommutative Banach algebras
under matrix multiplication, the Baskakov-Gohberg-Sjöstrand algebra C1,0 and the
Beurling algebra B1,0 are inverse-closed subalgebras of B(�2) [4, 8, 17, 39, 41],
however the Schur algebra A1,0 is not inverse-closed in B(�2) [47]. We remark that
the inverse-closedness of the Baskakov-Gohberg-Sjöstrand algebra C1,0 in B(�2)

can be understood as a noncommutative extension of the classical Wiener’s lemma
for the commutative subalgebra W̃ of Laurent matrices in B(�2).

For 1 ≤ p ≤ ∞ and α > 1 − 1/p, one may verify that the Gröchenig-Schur
family Ap,α, the Baskakov-Gohberg-Sjöstrand family Cp,α and the Beurling family
Bp,α of infinite matrices form Banach algebras under matrix multiplication and they
are inverse-closed subalgebras of B(�2) [22, 25, 41, 43, 45]. In [41, 43, 45], their
differentiability in B(�2) is established.

Theorem 2.5 Let 1 ≤ p ≤ ∞ and α > 1 − 1/p. Then Ap,α, Cp,α and Bp,α are
differential subalgebras of order θ0 = (α + 1/p − 1)/(α + 1/p − 1/2) ∈ (0, 1) in
B(�2).

Proof The following argument about differential subalgebra property for the
Gröchenig-Schur algebra Ap,α, 1 < p <∞, is adapted from [45]. The reader may
refer to [41, 43, 45] for the detailed proof to the differential subalgebra property
for the Baskakov-Gohberg-Sjöstrand algebra Cp,α and the Beurling algebra Bp,α.
Take A = (a(i, j))i,j∈Z and B = (b(i, j))i,j∈Z ∈ Ap,α , and write C = AB =
(c(i, j))i,j∈Z. Then

‖C‖Ap,α
= max

{

sup
i∈Z

∥

∥

(

c(i, j)uα(i, j)
)

j∈Z
∥

∥

p
, sup

j∈Z
∥

∥

(

c(i, j)uα(i, j)
)

i∈Z
∥

∥

p

}

≤ 2α max
{

sup
i∈Z

∥

∥

∥

(
∑

k∈Z
|a(i, k)||b(k, j)|(uα(i, k)+ uα(k, j)

)

)

j∈Z

∥

∥

∥

p
,

sup
j∈Z

∥

∥

∥

(
∑

k∈Z
|a(i, k)||b(k, j)|(uα(i, k)+ uα(k, j)

)

)

i∈Z

∥

∥

∥

p

}

≤ 2α‖A‖Ap,α
‖B‖A1,0 + 2α‖A‖A1,0‖B‖Ap,α

, (2.18)
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where the first inequality follows from the inequality

uα(i, j) ≤ 2α
(

uα(i, k)+ uα(k, j)), i, j, k ∈ Z.

Let 1/p′ = 1− 1/p, and define

τ0 =
⎢

⎢

⎢

⎣

(

(

αp′ + 1

αp′ − 1

)1/p′ ‖A‖Ap,α

‖A‖B(�2)

)1/(α+1/2−1/p′)⎥
⎥

⎥

⎦ , (2.19)

where /t0 denotes the integer part of a real number t . Then for i ∈ Z, we have

∑

j∈Z
|a(i, j )| =

(
∑

|j−i|≤τ0

+
∑

|j−i|>τ0

)

|a(i, j )|

≤
(

∑

|j−i|≤τ0

|a(i, j )|2
)1/2( ∑

|j−i|≤τ0

1
)1/2

+
(

∑

|j−i|≥τ0+1

|a(i, j )|p(uα(i, j ))p
)1/p( ∑

|j−i|≥τ0+1

(uα(i, j ))
−p′)1/p′

≤ ‖A‖B(�2)(2τ0 + 1)1/2 + 21/p′(αp′ − 1)−1/p′ ‖A‖Ap,α (τ0 + 1)−α+1/p′

≤ D‖A‖1−θ0
Ap,α

‖A‖θ0
B(�2)

, (2.20)

where D is an absolute constant depending on p, α only, and the last inequality
follows from (2.19) and the following estimate

‖A‖B(�2) ≤ ‖A‖A1,0 ≤
(
∑

k∈Z
(|k|+1)−αp′

)1/p′‖A‖Ap,α
≤
(αp′ + 1

αp′ − 1

)1/p′‖A‖Ap,α
.

Similarly we can prove that

sup
j∈Z

∑

i∈Z
|a(i, j)| ≤ D‖A‖1−θ0

Ap,α
‖A‖θ0

B(�2)
. (2.21)

Combining (2.20) and (2.21) leads to

‖A‖A1,0 ≤ D‖A‖1−θ0
Ap,α

‖A‖θ0
B(�2)

. (2.22)

Replacing the matrix A in (2.22) by the matrix B gives

‖B‖A1,0 ≤ D‖B‖1−θ0
Ap,α

‖B‖θ0
B(�2)

. (2.23)
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Therefore it follows from (2.18), (2.22) and (2.23) that

‖C‖Ap,α
≤ 2αD‖A‖Ap,α

‖B‖1−θ0
Ap,α

‖B‖θ0
B(�2)

+ 2αD‖B‖Ap,α
‖A‖1−θ0

Ap,α
‖A‖θ0

B(�2)
,

(2.24)

which proves the differential subalgebra property for Banach algebras Ap,α with
1 < p <∞ and α > 1− 1/p. ��

The argument used in the proof of Theorem 2.5 involves a triplet of Banach
algebras Ap,α,A1,0 and B2 satisfying (2.18) and (2.22). In the following theorem,
we extend the above observation to general Banach algebra triplets (A,M,B).

Theorem 2.6 Let A,M and B be Banach algebras such that A is a Banach
subalgebra of M and M is a Banach subalgebra of B. If there exist positive
exponents θ0, θ1 ∈ (0, 1] and absolute constantsD0,D1 such that

‖AB‖A ≤ D0‖A‖A‖B‖A
((‖A‖M
‖A‖A

)θ0 +
(‖B‖M
‖B‖A

)θ0
)

for all A,B ∈ A,

(2.25)

and

‖A‖M ≤ D1‖A‖1−θ1
A ‖A‖θ1

B for all A ∈ A, (2.26)

then A is a differential subalgebra of order θ0θ1 in B.

Proof For any A,B ∈ A, we obtain from (2.25) and (2.26) that

‖AB‖A ≤ D0‖A‖A‖B‖A
(

(D1‖A‖1−θ1
A ‖A‖θ1

B
‖A‖A

)θ0 +
(D1‖B‖1−θ1

A ‖B‖θ1
B

‖B‖A
)θ0
)

≤ D0D
θ0
1 ‖A‖A‖B‖A

(( ‖A‖B
‖A‖A

)θ0θ1 +
( ‖B‖B
‖B‖A

)θ0θ1
)

,

which completes the proof. ��
Following the argument used in (2.3), we can show that C2[a, b] is a differential

subalgebra of C1[a, b]. For any distinct x, y ∈ [a, b] and f ∈ C2[a, b], observe
that

|f ′(x)| = |f (y)− f (x)− f ′′(ξ)(y − x)2/2|
|y − x| ≤ 2‖f ‖C[a,b]|y−x|−1+ 1

2
‖f ′′‖C[a,b]|y−x|

for some ξ ∈ [a, b], which implies that

‖f ′‖C[a,b] ≤ max
(

4‖f ‖1/2
C[a,b]‖f ′′‖1/2

C[a,b], 8(b − a)−1‖f ‖C[a,b]
)

. (2.27)
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Therefore there exists a positive constant D such that

‖f ‖C1[a,b] ≤ D‖f ‖1/2
C2[a,b]‖f ‖

1/2
C[a,b] for all f ∈ C2[a, b]. (2.28)

As an application of Theorem 2.6, we conclude that C2[a, b] is a differential
subalgebra of order 1/2 in C[a, b].

We finish the section with the proof of Theorem 2.4.

Proof of Theorem 2.4 The conclusion follows from (2.17) and Theorem 2.5 with
p = 1 and α = 1. ��

3 Generalized Differential Subalgebras

By (2.1), a differential subalgebra A satisfies the Brandenburg’s requirement:

‖A2‖A ≤ 2D0‖A‖2−θ
A ‖A‖θB, A ∈ A. (3.1)

To consider the norm-controlled inversion of a Banach subalgebraA of B, the above
requirement (3.1) could be relaxed to the existence of an integer m ≥ 2 such that
the m-th power of elements in A satisfies

‖Am‖A ≤ D‖A‖m−θA ‖A‖θB, A ∈ A, (3.2)

where θ ∈ (0,m− 1] and D = D(A,B,m, θ) is an absolute positive constant, see
Theorem 4.1 in the next section. For h ∈ C1[a, b] and m ≥ 2, we have

‖hm‖C1[a,b] = m‖hm−1h′‖C[a,b] + ‖hm‖C[a,b] ≤ m‖h‖C1[a,b]‖h‖m−1
C[a,b],

and hence the differential subalgebra C1[a, b] of C[a, b] satisfies (3.2) with θ =
m − 1. In this section, we introduce some sufficient conditions so that (3.2) holds
for some integer m ≥ 2.

Theorem 3.1 Let A,M and B be Banach algebras such that A is a Banach
subalgebra of M and M is a Banach subalgebra of B. If there exist an integer
k ≥ 2, positive exponents θ0, θ1, and absolute constants E0, E1 such that

‖A1A2 · · ·Ak‖A ≤ E0

(
k
∏

i=1

‖Ai‖A
)

k
∑

j=1

(‖Ai‖M
‖Ai‖A

)θ0
, A1, . . . , Ak ∈ A (3.3)

and

‖A2‖M ≤ E1‖A‖2−θ1
A ‖A‖θ1

B , A ∈ A, (3.4)
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then (3.2) holds for m = 2k and θ = θ0θ1.

Proof By (1.1), (3.3) and (3.4), we have

‖A2k‖A ≤ kE0‖A2‖k−θ0
A ‖A2‖θ0

M ≤ kE0E
θ0
1 Kk−θ0‖A‖2k−θ0θ1

A ‖A‖θ0θ1
B , A ∈ A,

(3.5)

which completes the proof. ��
For a Banach algebra triplet (A,M,B) in Theorem 2.6, we obtain from (2.25)

and (2.26) that

‖A1A2 · · ·Ak‖A ≤ D0‖A1‖A‖A2 · · ·Ak‖A
(

(‖A1‖M
‖A1‖A

)θ0 +
(‖A2 · · ·Ak‖M
‖A2 · · ·Ak‖A

)θ0
)

≤ D̃0

(
k
∏

i=1

‖Ai‖A
)

k
∑

j=1

(‖Aj‖M
‖Aj‖A

)θ0
, A1, . . . , Ak ∈ A, (3.6)

and

‖A2‖M ≤ K̃‖A‖2
M ≤ D2

1K̃‖A‖2−2θ1
A ‖A‖2θ1

B , A ∈ A, (3.7)

where D̃0 is an absolute constant and K̃ is the constant K in (1.1) for the Banach
algebra M. Therefore the assumptions (3.3) and (3.4) in Theorem 3.1 are satisfied
for the Banach algebra triplet (A,M,B) in Theorem 2.6.

For a differential subalgebra A of order θ0 in B, we observe that the require-
ments (3.3) and (3.4) with M = B, k = 2 and θ1 = 2 are met, and hence (3.2)
holds for m = 4 and θ = 2θ0. Recall that B is a trivial differential subalgebra
of B. In the following corollary, we can extend the above conclusion to arbitrary
differential subalgebras M of B.

Corollary 3.2 Let A,M and B be Banach algebras such that A is a differential
subalgebra of order θ0 in M and M is a differential subalgebra of order θ1 in B.
Then (3.2) holds for m = 4 and θ = θ0θ1.

Following the argument used in the proof of Theorem 3.1, we can show that (3.2)
holds for m = 4 if the requirement (3.3) with k = 3 is replaced by the following
strong version

‖ABC‖A ≤ E0‖A‖A‖C‖A‖B‖1−θ0
A ‖B‖θ0

M, A,B,C ∈ A. (3.8)

Theorem 3.3 Let A,M and B be Banach algebras such that A is a Banach
subalgebra of M and M is a Banach subalgebra of B. If there exist positive
exponents θ0, θ1 ∈ (0, 1] and absolute constants E0, E1 such that (3.4) and (3.8)
hold, then (3.2) holds for m = 4 and θ = θ0θ1.



478 C. E. Shin and Q. Sun

Let Lp := Lp(R), 1 ≤ p ≤ ∞, be the space of all p-integrable functions on R

with standard norm ‖ · ‖p , and B(Lp) be the algebra of bounded linear operators on
Lp with the norm ‖ · ‖B(Lp). For 1 ≤ p ≤ ∞, α ≥ 0 and γ ∈ [0, 1), we define the
norm of a kernel K on R×R by

‖K‖Wγ
p,α
=
⎧

⎨

⎩

max
(

supx∈R
∥

∥K(x, ·)uα(x, ·)
∥

∥

p
, supy∈R

∥

∥K(·, y)uα(·, y)
∥

∥

p

)

if γ = 0

‖K‖W0
p,α
+ sup0<δ≤1 δ

−γ ‖ωδ(K)‖W0
p,α

if 0 < γ < 1,

(3.9)

where the modulus of continuity of the kernel K is defined by

ωδ(K)(x, y) := sup
|x ′|≤δ,|y ′|≤δ

|K(x + x ′, y + y ′)−K(x, y)|, x, y ∈ R, (3.10)

and uα(x, y) = (1+|x−y|)α, x, y ∈ R are polynomial weights on R×R. Consider
the set Wγ

p,α of integral operators

Tf (x) =
∫

R

KT (x, y)f (y)dy, f ∈ Lp, (3.11)

whose integral kernels KT satisfy ‖KT ‖Wγ
p,α

<∞, and define

‖T ‖Wγ
p,α
:= ‖KT ‖Wγ

p,α
, T ∈Wγ

p,α.

Integral operators in Wγ
p,α have their kernels being Hölder continuous of order

γ and having off-diagonal polynomial decay of order α. For 1 ≤ p ≤ ∞ and
α > 1 − 1/p, one may verify that Wγ

p,α, 0 ≤ γ < 1, are Banach subalgebras
of B(L2) under operator composition. The Banach algebras Wγ

p,α, 0 < γ < 1,
of integral operators may not form a differential subalgebra of B(L2), however the
triple (Wγ

p,α,W0
p,α,B(L2)) is proved in [42] to satisfy the following

‖T0‖B ≤ D‖T0‖W0
p,α
≤ D‖T0‖Wγ

p,α
, (3.12)

‖T 2
0 ‖W0

p,α
≤ D‖T0‖1+θ

Wγ
p,α
‖T0‖1−θ

B(L2)
(3.13)

and

‖T1T2T3‖Wγ
p,α
≤ D‖T1‖Wγ

p,α
‖T2‖W0

p,α
‖T3‖Wγ

p,α
(3.14)

holds for all Ti ∈Wγ
p,α, 0 ≤ i ≤ 3, where D is an absolute constant and

θ = α + γ + 1/p

(1+ γ )(α + 1/p)
.
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Then the requirements (3.4) and (3.8) in Theorem 3.3 are met for the triplet
(Wγ

p,α,W0
p,α,B(L2)), and hence the Banach space pair (Wγ

p,α,B(L2)) satisfies the
Brandenburg’s condition (3.2) with m = 4 [15, 42].

4 Brandenburg Trick and Norm-Controlled Inversion

Let A and B are ∗-algebras with common identity and involution, and let B be
symmetric. In this section, we show that A has norm-controlled inversion in B if it
meets the Brandenburg requirement (3.2).

Theorem 4.1 Let B be a symmetric ∗-algebra with its norm ‖·‖B being normalized
in the sense that (1.1) holds with K = 1,

‖ÃB̃‖B ≤ ‖Ã‖B‖B̃‖B, Ã, B̃ ∈ B, (4.1)

andA be a ∗-algebra with its norm ‖ · ‖A being normalized too,

‖AB‖A ≤ ‖A‖A‖B‖A, A,B ∈ A. (4.2)

If A is a ∗-subalgebra of B with common identity I and involution ∗, and the pair
(A,B) satisfies the Brandenburg requirement (3.2), then A has norm-controlled
inversion in B. Moreover, for any A ∈ A being invertible in B we have

‖A−1‖A ≤ ‖A∗A‖−1
B ‖A∗‖A

×
⎧

⎨

⎩

(

2t0 + (1− 2logm(1−θ/m))−1(ln a)−1)a exp
(

lnm−ln(m−θ)
ln(m−θ) t0 ln a

)

if θ < m− 1

a2(ln a)−1(Db)m−1	
(

(m−1) ln(Db)
lnm lna + 1

)

if θ = m− 1,

(4.3)

where 	(s) = ∫∞
0 ts−1e−t dt is the Gamma function, m ≥ 2 and 0 < θ ≤

m − 1 are the constants in (3.2), κ(A∗A) = ‖A∗A‖B‖(A∗A)−1‖B, a = (

1 −
(κ(A∗A))−1

)−1
> 1,

b = ‖I‖A + ‖A
∗A‖−1

B ‖A∗A‖A
1− (κ(A∗A))−1 ≥ a > 1,

and

t0 =
( (m− 1)(m− θ) logm(m− θ) ln(Db)

(m− 1− θ) ln a

)lnm/(lnm−ln(m−θ))
for 0 < θ < m− 1.

(4.4)
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Proof Obviously it suffices to prove (4.3). In this paper, we follow the argument
in [36] to give a sketch proof. Let A ∈ A so that A−1 ∈ B. As B is a symmetric
∗-algebra, the spectrum of A∗A in B lies in an interval on the positive real axis,

σ(A∗A) ⊂ [‖(A∗A)−1‖−1
B , ‖A∗A‖B

]

. (4.5)

Therefore B := I − ‖A∗A‖−1
B A∗A ∈ A satisfies

‖B‖B ≤ 1− (κ(A∗A))−1 = a−1 < 1 (4.6)

and

‖B‖A ≤ ‖I‖A + ‖A∗A‖−1
B ‖A∗A‖A = ba−1. (4.7)

For a positive integer n = ∑l
i=0 εim

i , define n0 = n and nk, 1 ≤ k ≤ l,
inductively by

nk = nk−1 − εk−1

m
=

l
∑

i=k
εim

i−k, 1 ≤ k ≤ l, (4.8)

where εi ∈ {0, 1, . . . ,m − 1}, 1 ≤ i ≤ l − 1 and εl ∈ {1, . . . ,m − 1}. By (3.2)
and (4.1), we have

‖Bmnk‖A ≤ D‖Bnk ‖m−θA ‖Bnk‖θB ≤ D‖Bnk‖m−θA ‖B‖nkθB , k = 1, · · · , l − 1.
(4.9)

By (4.1), (4.2), (4.6), (4.7), (4.8) and (4.9), we obtain

‖Bn‖A = ‖Bn0‖A ≤ ‖Bmn1‖A‖B‖ε0
A ≤ D‖Bn1‖m−θA ‖B‖ε0

A‖B‖n1θ

B

≤ D1+(m−θ)‖Bn2‖(m−θ)2

A ‖B‖ε0+ε1(m−θ)
A ‖B‖n1θ+n2θ(m−θ)

B
≤ · · ·
≤ D

∑l−1
k=0(m−θ)k‖B‖

∑l
k=0 εk(m−θ)k

A ‖B‖θ
∑l

k=1 nk(m−θ)k−1

B

= D
∑l−1

k=0(m−θ)k‖B‖
∑l

k=0 εk(m−θ)k
A ‖B‖n−

∑l
k=0 εk(m−θ)k

B

≤ D
∑l−1

k=0(m−θ)k b
∑l

k=0 εk(m−θ)k a−n

≤

⎧

⎪

⎨

⎪

⎩

(Db)
(m−1)(m−θ)

m−1−θ nlogm(m−θ)
a−n if θ < m− 1

(Db)(m−1) logm(mn+1)a−n if θ = m− 1,

(4.10)
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where the last inequality holds since

l
∑

k=0

εk(m− θ)k ≤ (m− 1)
l
∑

k=0

(m− θ)k ≤ (m− 1)

{

(m−θ)l+1−1
m−1−θ if θ < m− 1

l + 1 if θ = m− 1

≤ (m− 1)

{

m−θ
m−1−θ n

logm(m−θ) if θ < m− 1
logm(mn+ 1) if θ = m− 1.

Observe that A∗A = ‖A∗A‖B(I − B). Hence

A−1 = (A∗A)−1A∗ = ‖A∗A‖−1
B

( ∞
∑

n=0

Bn

)

A∗.

This together with (4.2), (4.10) and (4.11) implies that

‖A−1‖A ≤ ‖A∗A‖−1
B ‖A∗‖A

∞
∑

n=0

‖Bn‖A

≤ ‖A∗A‖−1
B ‖A∗‖A ×

{

∑∞
n=0(Db)

(m−1)(m−θ)
m−1−θ nlogm(m−θ)

a−n if θ < m− 1
∑∞

n=0(Db)(m−1) logm(mn+1)a−n if θ = m− 1.
(4.11)

By direct calculation, we have

∞
∑

n=0

(Db)(m−1) logm(mn+1)a−n ≤ a

∞
∑

n=0

∫ n+1

n

(Db)(m−1) logm(mt+1)a−t dt

≤ a2(Db)m−1
∫ ∞

0
(t + 1)(m−1) logm(Db)e−(t+1) lnadt

≤ a2(Db)m−1(ln a)−1	
( (m− 1) ln(Db)

lnm ln a
+ 1

)

. (4.12)

This together with (4.11) proves (4.3) for θ = m− 1.
For 0 < θ < m− 1, set

s(t) = t − (m− 1)(m− θ) ln(Db)

(m− 1− θ) ln a
t logm(m−θ).

Observe that

s′(t) = 1− (m− 1)(m− θ) ln(Db)

(m− 1− θ) ln a
logm(m− θ)t logm(1−θ/m).
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Therefore

min
t≥0

s(t) = s(t0) = − lnm− ln(m− θ)

ln(m− θ)
t0 < 0 (4.13)

and

1 ≥ s′(t) ≥ s′(2t0) = 1− 2logm(1−θ/m) for all t ≥ 2t0, (4.14)

where t0 is given in (4.4). By (4.13) and (4.14), we have

∞
∑

n=0

(Db)
(m−1)(m−θ)

m−1−θ nlogm(m−θ)
a−n ≤ a

∞
∑

n=0

∫ n+1

n

(Db)
(m−1)(m−θ)

m−1−θ t logm(m−θ)
a−t dt

= a
(

∫ 2t0

0
+
∫ ∞

2t0

)

exp(−s(t) ln a)dt

≤ 2at0 exp(−s(t0) ln a)+ (1− 2logm(1−θ/m))−1a

∫ ∞

s(2t0)
exp(−u ln a)du

≤
(

2t0 + (1− 2logm(1−θ/m))−1(ln a)−1
)

a exp
( lnm− ln(m− θ)

ln(m− θ)
t0 ln a

)

. (4.15)

Combining the above estimate with (4.11) proves (4.3) for θ < m− 1. ��
For m = 2, the estimate (4.3) to the inverse A−1 ∈ A is essentially established in

[19, 20] for θ = 1 and [36, 40] for θ ∈ (0, 1), and a similar estimate is given in [34].
The reader may refer to [15, 21, 42, 43, 45] for norm estimation of the inverse of
elements in Banach algebras of infinite matrices and integral operators with certain
off-diagonal decay.

Remark 4.2 A good estimate for the norm control function h in the norm-controlled
inversion (1.4) is important for some mathematical and engineering applications.
For an element A ∈ A with A−1 ∈ B, we obtain the following estimate from
Theorem 4.1:

‖(A∗A)−1‖A ≤ C‖A∗A‖−1
B a(ln a)−1 ×

{

t1 exp(Ct1) if θ < m− 1

abm−1 exp
(

C ln b
ln a ln

( ln b
ln a

)

)

if θ = m− 1,

(4.16)

where C is an absolute constant independent of A and

t1 = (ln b)lnm/(lnm−ln(m−θ))(ln a)− ln(m−θ)/(lnm−ln(m−θ)).

We remark that the above norm estimate to the inversion is far away from the optimal
estimation for our illustrative differential subalgebra C1[a, b]. In fact, give any f ∈
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C1[a, b] being invertible in C[a, b], we have

‖1/f ‖C1[a,b] ≤ ‖f ′‖C[a,b]‖f−1‖2
C[a,b] + ‖1/f ‖C[a,b] ≤ ‖1/f ‖2

C[a,b]‖f ‖C1[a,b].

Therefore C1[a, b] has norm-controlled inversion in C[a, b] with the norm control
function h(s, t) in (1.4) being h(s, t) = st2. Gröchenig and Klotz first considered
norm-controlled inversion with the norm control function h having polynomial
growth, and they show in [19] that the Baskakov-Gohberg-Sjöstrand algebra
C1,α, α > 0 and the Jaffard algebra Jα, α > 1 have norm-controlled inversion
in B(�2) with the norm control function h bounded by a polynomial. In [36], we
proved that the Beurling algebras Bp,α with 1 ≤ p ≤ ∞ and α > 1 − 1/p admit
norm-controlled inversion in B(�2) with the norm control function bounded by some
polynomials. Following the commutator technique used in [36, 39], we can establish
a similar result for the Baskakov-Gohberg-Sjöstrand algebras Cp,α with 1 ≤ p ≤ ∞
and α > 1− 1/p.

Theorem 4.3 Let 1 ≤ p ≤ ∞ and α > 1 − 1/p. Then the Baskakov-Gohberg-
Sjöstrand algebra Cp,α and the Beurling algebra Bp,α admit norm-controlled
inversion in B(�2) with the norm control function bounded by a polynomial.

It is still unknown whether Gröchenig-Schur algebras Ap,α, 1 ≤ p < ∞, α >

1 − 1/p, admit norm-controlled inversion in B(�q), 1 ≤ q < ∞, with the norm
control function bounded by a polynomial. In [19], Gröchenig and Klotz introduce
a differential operator D on a Banach algebra and use it to define a differential
∗-algebra A of a symmetric ∗-algebra B, which admits norm-controlled inversion
with the norm control function bounded by a polynomial. However, the differential
algebra in [19] does not include the Gröchenig-Schur algebras Ap,α , the Baskakov-
Gohberg-Sjöstrand algebra Cp,α and the Beurling algebra Bp,α with 1 ≤ p < ∞
and α > 1 − 1/p. It could be an interesting problem to extend the conclusions in
Theorem 4.3 to general Banach algebras such that the norm control functions in the
norm-controlled inversion have polynomial growth.

Remark 4.4 A crucial step in the proof of Theorem 4.1 is to introduce B := I −
‖A∗A‖−1

B A∗A ∈ A, whose spectrum is contained in an interval on the positive real
axis. The above reduction depends on the requirements that B is symmetric and both
A and B are ∗-algebras with common identity and involution. For the applications
to some mathematical and engineering fields, the widely-used algebras B of infinite
matrices and integral operators are the operator algebras B(�p) and B(Lp), 1 ≤
p ≤ ∞, which are symmetric only when p = 2. In [1, 15, 36, 38, 42, 48], inverse-
closedness of localized matrices and integral operators in B(�p) and B(Lp), 1 ≤
p ≤ ∞, are discussed, and in [14], Beurling algebras Bp,α with 1 ≤ p < ∞
and α > d(1 − 1/p) are shown to admit polynomial norm-controlled inversion
in nonsymmetric algebras B(�p), 1 ≤ p < ∞. It is still widely open to discuss
Wiener’s lemma and norm-controlled inversion when B and A are not ∗-algebras
and B is not a symmetric algebra.
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Hermitian Metrics on the Resolvent Set
and Extremal Arc Length

Mai Tran and Rongwei Yang

Abstract For a bounded linear operator A on a complex Hilbert space H, the
functions gx(z) = ‖(A − z)−1x‖2, where x ∈ H with ‖x‖ = 1, defines a family
of Hermitian metrics on the resolvent set ρ(A). Thus the arc length of a fixed circle
C ⊂ ρ(A) with respect to the metric gx is dependent on the choice of x. This paper
derives an integral equation for the extremal values of the arc length. Solution x of
the equation, if exists, has particular properties as related to A. In the case A is the
unilateral shift operator on the Hardy space H 2(D), the paper proves that the arc
length of C is maximal if and only if x is an inner function.

Keywords Resolvent set · Hermitian metric · Nilpotent operator · Extremal
equation · Unilateral shift · Inner function
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and its complement ρ(A) = C \ σ(A) is called the resolvent set of A. As an open
subset of C, ρ(A) is naturally equipped with the Euclidean metric which clearly
is indifferent to the operator A. Is there a natural A-dependent metric g on ρ(A)

under which the geometric properties of ρ(A) may reveal new information aboutA?
This question is studied in [5, 13] where a family of operator-and-vector-dependent
metrics gx on ρ(A) is defined as follows. Consider the operator-valued 1-form

ωA =
(

A− zI
)−1

d
(

A− zI
) = −(A− zI

)−1
dz.

Then the wedge product

−ω∗A ∧ ωA =
(

A∗ − z̄I
)−1(

A− zI
)−1

dz ∧ dz

is an operator-valued (1, 1)-form. For an arbitrary x ∈ H such that ‖x‖ = 1 the
vector state φx on the C∗-algebra B(H) of bounded linear operators on H is defined
by

φx(a) = 〈ax, x〉, a ∈ B(H).

Then we have

φx
(− ω∗A ∧ ωA

) = ‖(A− zI
)−1

x‖2 dz ∧ dz,

which defines a Hermitian metric on ρ(A) with metric function gx(z) = ‖(A −
zI
)−1

x‖2. In other words, the infinitesimal arc length ds under this metric is given
by

ds2 = gx(z)|dz|2 = gx(z)(du
2 + dv2),

where z = u + iv, u, v ∈ R. The family of metrics gx, x ∈ H, makes it possible
to study A by geometric means. A motivating example studied in [5] is when A is
quasinilpotent, i.e., when ρ(A) = C \ {0}. In this case, the singular behaviors of
gx at z = 0 turn out to reveal much information about A. The connection between
the geometry of (ρ(A), gx) and properties of A is further investigated in [9] and
[10], where the classical Volterra operators on L2[0, 1] and H 2(D) are considered
in details. This paper follows the same line, with a focus on extremal value problem
for the arc length with respect to the choice of x and the example of the unilateral
shift operator Tw on the Hardy space H 2(D). In Sect. 2, we will derive an integral
equation for the extremal values of the length of circles with respect to gx . In Sect. 3,
we will prove that for the unilateral shift operator Tw on H 2(D), the length of the
circle Cr = {z ∈ C : |z| = r > 1} is maximal with respect to the change of x in the
metric gx if and only if x is an inner function. Further, the infimum of the arc length
of Cr is shown to be unattainable.
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2 Extremal Equation

Consider a smooth manifold M with a Riemannian metric g defined on its tangent
bundle. Then for a piece-wise smooth path γ (t), t ∈ [0, 1] in M connecting two
fixed points p = γ (0) and q = γ (1), its arc length is given by

L(γ ) =
∫ 1

0

√

g(γ ′(t), γ ′(t))dt.

A path γ that minimizes L(γ ) is called a geodesic. In this section we will study the
extremal value problem for the arc length with respect to the family of metrics gx
but with a different point of view. We will study, given a fixed circle, which choice
of x will give a metric gx that maximizes or minimizes the arc length of the circle.
We believe that such x, if exists, may reveal particular information about A.

Consider a bounded linear operator V ∈ B(H) and fix a x ∈ H with ‖x‖ = 1.
We pick any circle Cr with a fixed radius r big enough such that σ(V ) lies properly
inside Cr , for instance we may let r be bigger than the spectral radius r(V ). Let us
parametrize the path Cr = {z(t) = re2πit , 0 ≤ t ≤ 1}. Then the arc length of Cr

with respect to the metric gx is

Lx(Cr) =
∫ 1

0

√

gx(z(t))|z′(t)|dt = 2πr
∫ 1

0

∥

∥

∥

(

V − re2πit I
)−1

x

∥

∥

∥ dt. (2.1)

As the choice of vector x varies the metric function gx will also vary, thus the arc
length of Cr will change correspondingly. Since gx(re

2πit ) ≤ ‖(V − re2πit I
)−1‖

which is a bounded function with respect to t , the set

Sr := {Lx(Cr) | x ∈ H, ‖x‖ = 1}

is a bounded subset of [0,∞). It is then a natural question whether sup Sr or inf Sr
is obtainable at some x. First, we use calculus of variations to give a necessary
condition for this situation. For simplicity, we set θ = 2πt and let V (θ) = (V −
reiθ I)−1. Then (2.1) becomes

Lx(Cr) =
∫ 1

0

√

gx(z(t))|z′(t)|dt = r

∫ 2π

0
‖V (θ)x‖ dθ.

Theorem 2.1 Let V be a bounded linear operator on the Hilbert space H and
r > r(V ). Suppose there exists x ∈ H such that ‖x‖ = 1 and Lx(Cr) is extremal in
Sr , then x satisfies the extremal equation

r

∫ 2π

0

V ∗(θ)V (θ)x

‖V (θ)x‖ dθ = Lx(Cr)x.
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Proof Let x be a vector such that either Lx(Cr) = sup Sr or Lx(Cr) = inf Sr .
Without loss of generality we assume the former holds. Let y ∈ H be any non-zero
vector with ‖y‖ < 1. We set

h(t) = x + ty

‖x + ty‖ , t ∈ C,

and let

F(t) = 1

r
Lh(t)(Cr) =

∫ 2π

0
‖V (θ)h(t)‖ dθ.

Since F(0) is extremal, we must have

∂F (t)

∂t

∣

∣

∣

t=0
= 0 = ∂F (t)

∂ t̄

∣

∣

∣

t=0
. (2.2)

Since F is real, the second equality follows from the first. We use several steps

to compute
∂F (t)

∂t

∣

∣

∣

t=0
. First let’s compute

∂

∂t

[ ‖x + ty‖ ]
∣

∣

∣

t=0
. We have

∂

∂t

[ ‖x + ty‖ ] = ∂

∂t

[

√〈x + ty, x + ty〉
]

= 1

2
〈x + ty, x + ty〉−1/2

[

∂

∂t

(

〈x, x〉 + 〈x, ty〉 + 〈ty, x〉 + |t|2〈y, y〉
)]

= 〈y, x〉 + t̄〈y, y〉
2
√〈x + ty, x + ty〉 .

Setting t = 0 and using the fact that ‖x‖ = 1, we have

∂

∂t

[ ‖x + ty‖ ]
∣

∣

∣

t=0
= 1

2
〈y, x〉. (2.3)

Second, we set

L(x + ty) =
∫ 2π

0
‖V (θ)(x + ty)‖ dθ

and compute
∂

∂t

[

L(x + ty)
]

∣

∣

∣

t=0
. Through similar calculation,

∂

∂t

[

L(x + ty)
] =

∫ 2π

0

∂

∂t
‖V (θ)(x + ty)‖ dθ



Hermitian Metrics on the Resolvent Set and Extremal Arc Length 491

=
∫ 2π

0

∂

∂t

[
√

〈

V (θ)(x + ty), V (θ)(x + ty)
〉

]

dθ

=
∫ 2π

0

〈

V (θ)y, V (θ)x
〉+ t̄‖V (θ)y‖2

2
√〈V (θ)(x + ty), V (θ)(x + ty)〉 dθ.

Setting t = 0, we have

∂

∂t

[

L(x + ty)
]

∣

∣

∣

t=0
=
∫ 2π

0

〈

V (θ)y, V (θ)x
〉

2 ‖V (θ)x‖ dθ.

Now since

∂F (t)

∂t
= ∂

∂t

[

L(x + ty)

‖x + ty‖
]

=
‖x + ty‖ ∂

∂t

[

L(x + ty)
]− L(x + ty)

∂

∂t
‖x + ty‖

‖x + ty‖2 ,

Setting t = 0 and using (2.3) and the computations above, we have

∫ 2π

0

〈V (θ)y, V (θ)x〉
‖V (θ)x‖ dθ − 1

r
Lx(Cr)〈y, x〉 = 0, ∀y ∈ H, (2.4)

which implies

r

∫ 2π

0

V ∗(θ)V (θ)x

‖V (θ)x‖ dθ = Lx(Cr)x. ��

Observe that if we set

Tr = r

∫ 2π

0

V ∗(θ)V (θ)

‖V (θ)x‖ dθ

then Tr is a positive linear operator, and Theorem 2.1 indicates that when Lx(Cr) is
extremal the vector x is an eigenvector of Tr with eigenvalue equal to Lx(Cr). The
following two examples further illustrate this theorem.

Example 2.2 It is shown in [13] that if ‖x‖ = 1 such that V x = 0, then Lx(Cr) =
2π , which is independent of r and is minimal. One verifies easily that in this case

V (θ)x = −1

r
e−iθ x, and hence ‖V (θ)x‖ = 1

r
is constant. Further,

Trx = r

∫ 2π

0
−V ∗(θ)e−iθ xdθ = 2π

(

1

2πi

∫

Cr

(V − zI)−1dz

)∗
x.
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By functional calculus the integral is equal to I , thus Trx = 2πx which satisfies
Theorem 2.1.

Example 2.3 Now we take a look at an elementary example. Consider the nilpotent
operator V on C2, and the vectors x1 and x2 as follows:

V =
[

0 1
0 0

]

, x1 =
[

1
0

]

, x2 =
[

0
1

]

.

Clearly, in this case we have V (θ) = (V − reiθ )−1 = −e−iθ
r

(I + e−iθ
r
V ), and it

follows that

Tr = r

∫ 2π

0

V ∗(θ)V (θ)

‖V (θ)x‖ dθ = 2π
I + 1

r2 V
∗V

√

1+ 1
r2

.

Since V x1 = 0, we have Lx1(Cr) = 2π which is the minimal arc length of
Cr as mentioned in Example 2.2. By direct computation one can verify that x2

also satisfies the extremal equation, and the arc length Lx2(Cr) = 2π
√

1+ 1
r2 is

maximal.

3 The Unilateral Shift Operator

In the finite dimension case, since the closed unit ball H1 of H is compact and
the metric function gx is norm continuous in x, the values sup Sr and infSr are
both obtainable. In the infinite dimension case, although H1 is weakly compact by
Alaoglu’s theorem, the metric function gx is not weakly continuous in x, hence the
values sup Sr and infSr may not be obtainable. For example, consider the Volterra
operator V on H 2(D) defined by

Vf (w) =
∫ w

0
f (t)dt, f ∈ H 2(D).

It is well-known that V is quasinilpotent, and by [1, 4] its invariant subspaces are of
the form wkH 2(D) for some k ≥ 0. Let C = C1 be the unit circle. Then in [10] it is
shown that sup S1 is obtainable at constant function 1, and infSr = 2π which it is
not obtainable because V has no nontrivial kernel. In this section we take a look at
the extremal value problem for the unilateral shift operator Tw on the Hardy space
over the unit disk which is defined as

H 2(D) =
{

f ∈ hol(D) : ‖f ‖2 := sup
0<r<1

∫ 2π

0

∣

∣

∣f (re
iθ )

∣

∣

∣

2 dθ

2π
<∞

}

.
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Its inner product is defined by

〈f, g〉 =
∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
.

It is well-known that the reproducing kernel of H 2(D) is

K(λ,w) = 1

1− λw
, |λ| < 1, |w| ≤ 1.

The unilateral shift operator Tw on the Hardy space is defined as Twf = wf , where
f ∈ H 2(D). It is well-known that the spectrum σ(Tw) = D (cf. [3, 12]). We let T
stand for the unit circle {w ∈ C : |w| = 1}. A function f ∈ H 2(D) is said to be
inner if |f (w)| = 1 almost everywhere on T. A classical theorem due to Beurling
states that M is an invariant subspace for Tw if and only if M = fH 2(D) for some
inner function f (cf. [2, 6]). Given f ∈ H 2(D) with ‖f ‖ = 1, consider the metric
defined on ρ(Tw) = {z ∈ C : |z| > 1} through the metric function

gf (z) =
∥

∥

∥(Tw − z)−1f

∥

∥

∥

2 =
∫

T

|f (w)|2
|w − z|2 dm(w), |z| > 1,

where dm(w) = dθ

2π
for w = eiθ . Pick any r > 1 and let Cr = {z(t) = re2πit |

0 ≤ t ≤ 1} be the circle as before. Then by (2.1) its arc length with respect to the
metric gf is thus

Lf (Cr) = 2πr
∫ 1

0

[ ∫

T

|f (w)|2
∣

∣w − re2πit
∣

∣

2 dm(w)

]1/2

dt. (3.1)

Theorem 3.1 For the unilateral shift Tw on H 2(D) and any r > 1, we have

sup Sr = 2πr√
r2 − 1

, and Lf (Cr) = sup Sr if and only if f is an inner function.

Proof First, using the Cauchy-Schwarz inequality for the outside integral we have

Lf (Cr) ≤ 2πr

[∫

T

∫ 1

0

|f (w)|2
∣

∣w − re2πit
∣

∣

2 dm(w)dt

]1/2

. (3.2)

Fourier series and Parseval’s identity give

∫ 1

0

1
∣

∣w − re2πit
∣

∣

2
dt = 1

r2 − 1
=
∫

T

1
∣

∣w − re2πit
∣

∣

2
dm(w).
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Therefore, we have

Lf (Cr) ≤ 2πr√
r2 − 1

‖f ‖ = 2πr√
r2 − 1

, (3.3)

and the first equality in (3.3) holds if f is inner. Now suppose for some f ∈ H 2(D)

with ‖f ‖ = 1 the first equality in (3.3) holds. Then by the Cauchy-Schwarz
inequality the inside integral in (3.1) (which is gf (re2πit )) is constant with respect
to t . Write

gf (re
2πit ) =

∫

T

|f (w)|2
∣

∣w − re2πit
∣

∣

2 dm(w)

=
∫

T

|f (w)|2
(

w − re2πit
) (

w − re−2πit
) dm(w).

Expanding gf (re2πit ) out as a Fourier series
∑

k∈Z
Cke

2πkit , one verifies that

Ck = 1

r |k|(r2 − 1)

∫

T

|f (w)|2 w−kdm(w), k ∈ Z.

Since gf (re2πit ) is constant, we must have Ck = 0 for all k �= 0. This implies that
|f (w)| is constant a.e. on T and hence it is inner since ‖f ‖ = 1. ��

Theorem 3.1 shows that sup Sr is obtainable precisely at inner functions. Observe
that this fact is independent of the choice of r . More interestingly, inner functions
are rediscovered here without resorting to the concept of invariant subspaces (of
Tw). In view of Theorem 3.1, a natural question then is whether inf Sr is obtainable,
and if so by what type of functions in H 2(D). The following theorem addresses this
question.

Theorem 3.2 For the unilateral shift Tw on H 2(D) and any r > 1, we have

inf Sr = 2π
∫ 1

0

dt
∣

∣

∣e2πit − 1
r

∣

∣

∣

,

and it is unattainable.

Proof For f ∈ H 2(D) with ‖f ‖ = 1, the measure dmf (w) := |f (w)|2dm(w) is
a probability measure on the unit circle. Hence by (3.1) and the Cauchy-Schwarz
inequality one has

Lf (Cr) = 2πr
∫ 1

0

[ ∫

T

|w − re2πit |−2dmf (w)

]1/2

dt
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≥ 2πr
∫ 1

0

[ ∫

T

1

|w − re2πit |dmf (w)

]

dt

= 2π
∫

T

|f (w)|2
[ ∫ 1

0

1

|w̄e2πit − 1
r
|dt
]

dm(w)

Since the inside integral in the line above is constant with respect to w and ‖f ‖ = 1,
one readily obtains the inequality

Lf (Cr) ≥ 2π
∫ 1

0

1

|e2πit − 1
r
|dt

for every f . Hence

inf Sr ≥ 2π
∫ 1

0

dt
∣

∣

∣e2πit − 1
r

∣

∣

∣

.

The above argument is communicated to us by C. Zu [14].
For the inequality in the other direction, in view of Theorem 3.1 a nonconstant

outer function will give an arc length of Cr that is less than sup Sr . To gauge
the value of inf Sr we consider a particular type of outer functions, namely the
normalized reproducing kernel

kλ(w) =
√

1− |λ|2
1− λw

, |λ| < 1.

In this case the metric function

gkλ(z) = ‖(Tw − z)−1kλ‖2 =
∫

T

1− |λ|2
|1− λ̄w|2|w − z|2 dm(w), |z| > 1. (3.4)

Letting β = 1

z
and using the power series of

1

(1− λ̄w)(w − z)
with respect to w,

one computes that

gkλ(z) = ‖(Tw − z)−1kλ‖2

= (1− |λ|2)|β|2
[

1+ ∣∣λ+ β
∣

∣

2 +
∣

∣

∣λ
2 + λβ + β2

∣

∣

∣

2 + . . .

]

= (1− |λ|2)|β|2
∞
∑

k=1

∣

∣

∣

∣

∣

λ
k − βk

λ− β

∣

∣

∣

∣

∣

2

= (1− |λ|2)|β|2
|λ− β|2

∞
∑

k=1

|λk − βk|2.
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The infinite sum can be computed as

∞
∑

k=1

∣

∣

∣λ
k − βk

∣

∣

∣

2 = |λ|2
1− |λ|2 −

λβ

1− λβ
− λβ

1− λβ
+ |β|2

1− |β|2

=
∣

∣λ− β
∣

∣

2 [
1− |λβ|2 ]

(1− |λ|2)|1− λβ|2(1− |β|2) .

Therefore,

gkλ(z) =
|β|2[1− |λβ|2 ]

|1− λβ|2(1− |β|2) =
|z|2 − |λ|2

(|z|2 − 1)|z− λ|2 . (3.5)

Clearly, the metric gkλ has singularities on the unit circle. By (3.1), we have

Lkλ(Cr) = 2πr√
r2 − 1

∫ 1

0

√
r2 − λ2

∣

∣re2πit − λ
∣

∣

dt = 2πr√
r2 − 1

∫ 1

0

√

1− |�|2
∣

∣e2πit −�
∣

∣

dt,

(3.6)

where � = λ

r
∈ D. Observe that the integrand in (3.6) is the square root of the

Poisson kernel on the unit disc. Hence by the Cauchy-Schwarz inequality we have

Lkλ(Cr) <
2πr√
r2 − 1

∫ 1

0

1− |�|2
∣

∣e2πit −�
∣

∣

2
dt = 2πr√

r2 − 1

when λ �= 0. This is consistent with Theorem 3.1. The integral in (3.6), which we
denote by I (�), is related to the elliptic integral of the first kind. The following
chart shows the values for I (�) based on various fixed values for r > 1 and λ ∈ D.

I (�) =
∫ 1

0

√

1− |�|2
∣

∣e2πit −�
∣

∣

dt, � = λ/r

r = 1.1 I (�) r = 1.25 I (�) r = 5 I (�) r = 13 I (�)

λ = 1/8 0.996 λ = 1/8 0.997 λ = 1/8 0.999 λ = 1/8 0.999

λ = 1/4 0.986 λ = 1/4 0.989 λ = 1/4 0.999 λ = 1/4 0.999

λ = 1/3 0.978 λ = 1/3 0.981 λ = 1/3 0.998 λ = 1/3 0.999

λ = 1/2 0.942 λ = 1/2 0.956 λ = 1/2 0.997 λ = 1/2 0.999

λ = 2/3 0.888 λ = 2/3 0.918 λ = 2/3 0.995 λ = 2/3 0.999

λ = 3/4 0.850 λ = 3/4 0.891 λ = 3/4 0.994 λ = 3/4 0.999

λ = 8/9 0.754 λ = 8/9 0.832 λ = 8/9 0.991 λ = 8/9 0.998

λ = 9/10 0.743 λ = 9/10 0.826 λ = 9/10 0.991 λ = 9/10 0.998

λ = 1 0.615 λ = 1 0.762 λ = 1 0.989 λ = 1 0.998
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This chart shows that when r is fixed and |λ| approaches 1 the value of I (�) is
decreasing. Hence by (3.6) we have

inf Sr ≤ lim|λ|→1
Lkλ(Cr) = 2πr√

r2 − 1

∫ 1

0

√

1− 1
r2

∣

∣

∣e2πit − 1
r

∣

∣

∣

dt

= 2π
∫ 1

0

dt
∣

∣

∣e2πit − 1
r

∣

∣

∣

,

and this completes the proof. ��

4 Energy Functional

In the remaining part of the paper we make a brief remark about the energy
functional. Consider a smooth manifold M with a Riemannian metric g defined
on its tangent bundle. Then for a piece-wise smooth path γ (t), t ∈ [0, 1] in M that
connects two fixed points γ (0) = p and γ (1) = q in M , the associated energy
functional is

E(γ ) = 1

2

∫ 1

0
g(γ ′(t), γ ′(t))dt,

where g(γ ′(t), γ ′(t)) is the square of the length of γ ′(t) in the tangent space with
respect to metric g. Recall that the arc length of γ is given by

L(γ ) =
∫ 1

0

√

g(γ ′(t), γ ′(t))dt.

Hence it follows easily from the Cauchy-Schwarz inequality that

L2(γ ) ≤ 2E(γ ).

If γ is the path of a moving particle in a field defined by the metric g, then the
length of the vector γ ′(t) is the speed of the particle, hence E(γ ) is the integral
of the kinetic energy of a particle of unit mass along path γ . In particular, it is
known that γ is a geodesic if and only if the energy functional E(γ ) is minimal
with respect to variation of γ . This reflects the natural phenomenon that a particle in
a field travels between two points with minimal work. For more information about
energy functional we refer readers to [7, 8]. In this section we use the unilateral
shift operator Tw as an example to show that this phenomenon does not occur in the
extremal value problem with respect to the variation of x in the metric gx .
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As before, we let V be a bounded linear operator in the Hilbert space H and let
x ∈ H such that ‖x‖ = 1. Assume the radius r > r(V ). Then using parametrization
γ (t) = re2πit , 0 ≤ t ≤ 1, the energy functional

Ex(Cr) = 1

2

∫ 1

0
gx(γ

′(t), γ ′(t))dt = 1

2

∫ 1

0
‖(V − reiθ )−1x‖2|γ ′(t)|2dt

= πr2
∫ 2π

0
‖(V − reiθ )−1x‖2dθ.

Since

V (θ) = (V − reiθ )−1

= −e−iθ

r
(I − e−iθ

r
V )−1 = −e−iθ

r

∞
∑

k=0

(

e−iθ

r
V

)k

, (4.1)

direct computation shows that

T (r) := πr2
∫ 2π

0
V ∗(θ)V (θ)dθ = 2π2

∞
∑

k=0

V ∗kV k

r2k ,

which is a positive operator. Hence Ex(Cr) = 〈T (r)x, x〉. The energy functional
Ex was defined and studied in [10, 11], where among other things it shows that if
Ex(Cr) is extremal, then x is an eigenvector of T (r) with corresponding eigenvalue
equal to Ex(Cr). A natural question is whether a unital vector x ∈ H that minimizes
Lx(Cr) if and only if it minimizes Ex(Cr). When V = Tw is the unilateral shift

operator on the Hardy space, we have V ∗V = I , and hence T (r) = 2π2r2

r2−1
I . Thus

Ex(Cr) = 〈T (r)x, x〉 = 2π2r2

r2 − 1
,

which is independent of the choice of unital vector x ∈ H 2(D). Therefore, if x = kλ
for some nonzero λ ∈ D, then Ex(Cr) is minimal (and also maximal), but Lx(Cr)

is not minimal in view of Theorem 3.1.
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equivalence requires some existence results for weak wave operators, which is the
aim of the present paper (the particular case of integrable multiplicity functions
could have been deduced directly from the formula for the modulus of quasicentral
approximation). Thus our aim here will be to extend one of the main results of [3]
showing that certain weak limits for the quantities which are considered in order to
get wave operators, give rise to intertwiners with vanishing kernels and kernels of
adjoints. In essence the extension is not far from the earlier result in [3], however the
argument in [3] is already rather intricate and having also to make a few technical
improvements we felt the reader may not be too happy to get to fill in all these
details as one of the so-called “exercises left to the reader”. So we opted for a more
detailed presentation of the proofs.

This paper has two more sections besides the introduction and references.
Section 2 gives the hybrid existence result for weak wave operators. Section 3 is
devoted to consequences, especially the invariance of the n-dimensional Lebesgue
absolutely continuous parts.

This paper being the second one on hybrid normed ideal perturbations we use
consistently the notation and definitions introduced in the first paper of the series.

2 Existence of Generalized Wave Operators

The hybrid setting which we will use in this section involves a separable C∗-algebra
A, 1 ∈ B ⊂ A a dense ∗-subalgebra with a countable basis as a vector space and
1 ∈ Bk ⊂ B, 1 ≤ k ≤ n, ∗-subalgebras of B, so that B is generated by ∪1≤k≤nBk as
an algebra. Let also ϕ ∈ F([n]). Here, we recall, [n] is the set {1, 2, . . . , n} and F
the set of norming functions for normed ideals, so that ϕ is an n-tuple of norming
functions indexed by [n].

If ρ is a non-degenerate ∗-representation of A on H, we define the ϕ-singular
and ϕ-absolutely continuous projections E0

ϕ(ρ) and Eϕ(ρ) and the corresponding
subspace H0

ϕ(ρ) and Hϕ(ρ) as follows. We consider all p-tuples, p ∈ N, τ of

operators in β̃ = 81≤j≤nBj and denote this by τ ⊂ β̃ (all p ∈ N are considered).
Then we form

E0
ϕ(ρ) =

∧

τ⊂β̃
E0
ϕτ
(ρ(τ ))

where ϕτ (h) = ϕ(j) if τ (h) ∈ Bj , 1 ≤ h ≤ p, 1 ≤ j ≤ n (concerning
E0
ϕ(ρ(τ )), Eϕ(ρ(τ )) see the definitions in section 6 of [4]). Remark that

E0
ϕτ18τ2

(ρ(τ1 8 τ2)) ⊂ E0
ϕτ1

(ρ(τ1)) ∧E0
ϕτ2

(ρ(τ2))
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so that for Eϕτ (ρ(τ )) = I − E0
ϕτ
(ρ(τ )) we have

Eϕτ18τ2 (ρ(τ1 8 τ2)) ⊃ Eϕτ1
(ρ(τ1)) ∨ Eϕτ2

(ρ(τ2)).

We also define Eϕ(ρ) = I − E0
ϕ(ρ) so that

Eϕ(ρ) =
∨

τ⊂β̃
Eϕ(ρ(τ )).

We shall also use the notation H0
ϕ(ρ) = E0

ϕ(ρ)H,Hϕ(ρ) = Eϕ(ρ)H.
It is easy to infer the following extension of Proposition 6.1 [4].

Proposition 2.1 If Am = A∗m ∈ K,m ∈ N are so that

sup
m∈N

‖Am‖ <∞ and

lim
m→∞|[ρ(b),Am]|ϕ(j) = 0

when b ∈ Bj , 1 ≤ j ≤ m, then we have

s − lim
m→∞AmEϕ(ρ) = 0.

MoreoverH0
ϕ(ρ) andHϕ(ρ) are ρ(A)-invariant and the restrictions ρ | H0

ϕ(ρ) and
ρ | Hϕ(ρ) are disjoint representations ofA.

Proof For all p-tuples τ ⊂ β̃ by Prop. 6.1 [4] we have that

s − lim
m→∞AmEϕ(ρ(τ)) = 0.

Since the union of the Hϕ(τ)(ρ(τ )) = Eϕ(τ)(ρ(τ ))H is dense in Hϕ(ρ) we get that

s − lim
m→∞AmEϕ(ρ) = 0.

Clearly H0
ϕτ
(ρ(τ )) = E0

ϕτ
(ρ(τ ))H is invariant under ρ(τ) and hence their

intersection over all τ ⊂ β̃,H0
ϕ(ρ) = E0

ϕ(ρ)H is invariant under ρ(β̃), that is under

ρ(A). Also, since there are no non-zero ρ(τ)-intertwiners between E0
ϕτ
(ρ(τ ))H

and Eϕτ (ρ(τ ))H, there are no non-zero ρ(τ)-intertwiners between E0
ϕ(ρ)H and

Eϕτ (ρ(τ ))H. It follows also that there are no non-zero ρ(β̃)-intertwiners between
E0
ϕ(ρ)H and Eϕ(ρ)H. ��
One of the facts which will be used in the proof of the main result of this section,

a theorem which improves and extends Theorem 1.4 of [3], is a fact also used in the
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proof of the earlier result. If G(0)
� �= C1 then for every X ∈ G(0)

� we have

lim
j→∞ 1/j |X⊕ · · · ⊕X

︸ ︷︷ ︸

j-times

|� = 0.

When X is a rank one orthogonal projection this is due to Kuroda (see [1, ch. X,
§2, the proof of Theorem 2.3]). For general X ∈ G(0)

� this then follows immediately

from the fact that rank one projections are total in G(0)
� .

Theorem 2.1 Let ϕ be such that ϕ(j) �= �1, 1 ≤ j ≤ n and let ρ1, ρ2 be unital
∗-representations ofA onH such that ρ1(b)− ρ2(b) ∈ G(0)

ϕ(j) if b ∈ Bj , 1 ≤ j ≤ n.
Assume moreover that there is a sequence of unitary elements um ∈ Z(A),m ∈ N,
where Z(A) is the center of A, such that

w − lim
m→∞ ρ1(um) = w − lim

m→∞ ρ2(um) = 0

and that the weak limit

W = w − lim
m→∞ ρ2(u

∗
m)ρ1(um)Eϕ(ρ1)

exists. Then W intertwines ρ1 and ρ2 and Ker W = E0
ϕ(ρ1), Ker W∗ = E0

ϕ(ρ2).
Moreover we have

W∗ = w − lim
m→∞ ρ1(u

∗
m)ρ2(um)Eϕ(ρ2)

and the representations ρ1|Hϕ(ρ1), ρ2|Hϕ(ρ2) of A, are unitarily equivalent.

Proof Since the Bj ’s generate B, we have ρ2(b) − ρ1(b) ∈ K for all b ∈ B and
hence since B is dense in A it follows that ρ1(a) − ρ2(a) ∈ K for all a ∈ A. If
a ∈ A we have

Wρ1(a)− ρ2(a)W = w − lim
m→∞ ρ2(u

∗
m)(ρ1(a)− ρ2(a))ρ1(um)Eϕ(ρ1)

and since ρ1(a)− ρ2(a) ∈ K and w − limm→∞ ρ1(um) = 0 we infer that

s − lim
m→∞ ρ2(u

∗
m)(ρ1(a)− ρ2(a))ρ1(um)Eϕ(ρ1) = 0

and hence that Wρ1(a) = ρ2(a)W . This implies that ρ2 | WH is unitarily
equivalent to a subrepresentation of ρ1 | W∗H and since W = WEϕ(ρ1) this is
a subrepresentation of ρ1 | Hϕ(ρ1). We then must have WH ⊥ H0

ϕ(ρ2), that is

WH ⊂ Hϕ(ρ2) or equivalently W = Eϕ(ρ2)W . Let W̃ = Hϕ(ρ2) | W | Hϕ(ρ1),
that is the operator from Hϕ(ρ1) to Hϕ(ρ2) one gets from W . The main fact to be
proved will be that Ker W̃ = 0 and Ker W̃∗ = 0. Before taking up this task, we
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shall prove a certain symmetry between W and W∗. More precisely the symmetry
is between ρ1, ρ2, um,W and ρ2, ρ1, um,W

∗. For this, we must show that the weak
limit

V = w − lim
m→∞ ρ1(u

∗
m)ρ2(um)Eϕ(ρ2)

exists and that V = W∗. Without assuming the existence of this weak limit, we can
pass to a subsequence so that the weak limit defining V exists and it will suffice to
show that V = W∗ in this case, since then the operator V we get will not depend
on the chosen subsequence. Repeating for V the argument with which we began
the proof of the theorem, we find that V intertwines ρ2 and ρ1 and hence that
Eϕ(ρ1)V Eϕ(ρ2) = V . But then V = w − limm→∞ Eϕ(ρ1)ρ1(u

∗
m)ρ2(um)Eϕ(ρ2)

and since W = w − limm→∞ Eϕ(ρ2)ρ2(u
∗
m)ρ1(um)Eϕ(ρ) it follows that V = W∗.

To prove that Ker W̃ = 0 and Ker W̃∗ = 0, we shall assume the contrary and
show that this leads to a contradiction. Let P,Q be the orthogonal projections onto
Ker W̃ and Ker W̃∗ respectively and remark that

P ∈ ((ρ1 | Hϕ(ρ1))(A))′, Q ∈ ((ρ2 | Hϕ(ρ2)))(A))′.

In view of the symmetry we can assume that P �= 0. Note also that rank P must be
infinite since otherwise P ≤ E0

ϕ(ρ1).
The assumption P �= 0 means there is ξ ∈ Hϕ(ρ1), ‖ξ‖ = 1 so that

w − lim
m→∞Wmξ = 0

where Wm = ρ2(u
∗
m)ρ1(um). Replacing the um’s by a subsequence we may assume

p �= q ⇒ ‖Wpξ − Wqξ‖ > 1. Let then Ak = W∗
mk+1

Wmk − I for a sequence
m1 < m2 < . . . which we shall define recurrently. Since P has infinite rank let
(ξk)k∈N be an orthonormal basis of PH so that ξ1 = ξ . Let further βj be a basis of
the vector space Bj and let (br)r∈N be an enumeration of β18· · ·8βn. In particular
there is a map γ : N → [n] so that br ∈ βγ (r) and βj = {br | r ∈ γ−1(j)} for
1 ≤ j ≤ n. We take m1 = 1. Suppose m1 < · · · < mk have been chosen. Then we
can find mk+1 > mk so that

‖(ρ1(bl)− ρ2(bl))ρ2(umk+1)ρ2(u
∗
mk
)ρ1(umk )ξi‖ < 1/k

‖(ρ1(bl)− ρ2(bl))ρ2(umk )ρ2(u
∗
mk+1

)ρ1(umk+1)ξi‖ < 1/k

for 1 ≤ i, l ≤ k + 1. This is indeed possible because ρ1(bl)− ρ2(bl) ∈ K and

w − lim
m→∞ ρ2(um) = 0, w − lim

m→∞ ρ2(u
∗
m)ρ1(um)P = 0
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which implies that

lim
m→∞‖(ρ1(bl)− ρ2(bl))ρ2(um)ρ2(u

∗
mk
)ρ1(umk )ξi‖ = 0

lim
m→∞‖(ρ1(bl)− ρ2(bl))ρ2(umk )ρ2(u

∗
m)ρ1(um)ξi‖ = 0

for all i, l ∈ N.
For the above choice of the sequence m1 < m2 < . . . we shall prove that

s − lim
k→∞[PAkP, ρ1(b)] = 0 and

s − lim
k→∞[PA

∗
kP, ρ1(b)] = 0

for all b ∈ B. Since β1 ∪ · · · ∪ βn generates B as an algebra it will suffice to prove
this when b ∈ β1 ∪ · · · ∪ βn = {br | r ∈ N}.

We have [PAkP, ρ1(br)] = P [Ak, ρ1(br )]P and [PA∗kP, ρ1(br)] =
P [A∗k, ρ1(br)]P so that it will suffice to show that for all i, r ∈ N we have

lim
k→∞‖[Ak, ρ1(br)]ξi‖ = 0

lim
k→∞‖[A

∗
k, ρ1(br)]ξi‖ = 0.

We have

[Ak, ρ1(br)] = [W∗
mk+1

Wmk , ρ1(br)]
= [ρ1(u

∗
mk+1

)ρ2(umk+1)ρ2(u
∗
mk
)ρ1(umk ), ρ1(br)]

= ρ1(u
∗
mk+1

)ρ2(umk+1u
∗
mk
)(ρ1(br)− ρ2(br ))ρ1(umk )

− ρ1(u
∗
mk+1

)(ρ1(br)− ρ2(br))ρ2(umk+1)ρ2(u
∗
mk
)ρ1(umk ).

This gives

lim sup
k→∞

‖[Ak, ρ1(br)]ξi‖
≤ lim sup

k→∞
(‖(ρ1(br)− ρ2(br))ρ1(umk )ξi‖

+‖(ρ1(br )− ρ2(br))ρ2(umk+1)ρ2(u
∗
mk
)ρ1(umk )ξi‖) = 0

because ρ1(br )− ρ2(br ) ∈ K, w− limk→∞ ρ1(umk ) = 0 and because of the choice
of mk’s we made. Similarly we have

[A∗k, ρ1(br)] = ρ1(u
∗
mk
)ρ2(umku

∗
mk+1

)(ρ1(br)− ρ2(br))ρ1(umk+1)

− ρ1(u
∗
mk
)(ρ1(br)− ρ2(br))ρ2(umk )ρ2(u

∗
mk+1

)ρ1(umk+1)
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so that

lim sup
k→∞

‖[A∗k, ρ1(br)]ξi‖ ≤ lim sup
k→∞

(‖(ρ1(br)− ρ2(br ))ρ1(umk+1)ξi‖
+ ‖(ρ1(br)− ρ2(br))ρ2(umk )ρ2(u

∗
mk+1

)ρ1(umk+1)ξ1‖)
= 0

again because ρ1(br)− ρ2(br ) ∈ K, w − limk→∞ ρ1(umk+1) = 0 and of the choice
of the mk’s.

Remark now that Ak + I being unitary we have

A∗kAk = AkA
∗
k = −Ak − A∗k.

This then gives

s − lim
k→∞[PA

∗
kAkP, ρ1(br )] = s − lim

k→∞[ρ1(br), PAkP + PA∗kP ] = 0

for all r ∈ N. Since B is self-adjoint this also gives

s − lim
k→∞([PA

∗
kAkP, ρ1(br)])∗ = 0

for all r ∈ N. Further, since un ∈ A, we have ρ1(un) − ρ2(un) ∈ K so that
Wn ∈ I + K and Ak ∈ K, k ∈ N. The computations of [Ak, ρ1(br)] and
[A∗k, ρ1(br )] we did earlier in this proof, show that there are unitary operators
Vk, V

′
k, V

′′
k , V

′′′
k , ˜Vk, ˜V

′
k,
˜V ′′k , ˜V ′′′k so that

[ρ1(br ), Ak] = Vk(ρ1(br)− ρ2(br ))V
′
k + V ′′k (ρ1(br)− ρ2(br))V

′′′
k

and

[ρ1(br ), A
∗
k] = ˜Vk(ρ1(br)− ρ2(br ))˜V

′
k + ˜V ′′k (ρ1(br)− ρ2(br))˜V

′′′
k .

It follows that

[PA∗kAkP, ρ1(br)] = P [ρ1(br), Ak + A∗k]P
= P(Vk(ρ1(br)− ρ2(br))V

′
k + V ′′k (ρ1(br)− ρ2(br))V

′′′
k

+ ˜V ′k(ρ1(br)− ρ2(br))˜V
′
k + ˜V ′′k (ρ1(br )− ρ2(br))˜V

′′′
k )P

∈ G(0)
ρ(γ (r)).
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On the other hand the ∗-strong convergence of [PA∗kAkP, ρ1(br)] to 0, easily gives
that there are k1 < k2 < . . . so that

lim
j→∞

∣

∣

∣j
−1|[PA∗k1

Ak1P, ρ1(br)] + · · · + [PA∗kj Akj P, ρ1(br)]|ϕ(γ (r))

− j−1 |([PA∗k1
Ak1P, ρ1(br)])⊕ · · · ⊕ ([PA∗kj Akj P, ρ1(br)])|ϕ(γ (r))

∣

∣

∣

= 0

for all r ∈ N.
In view of the result of the computation of [PA∗kAkP, ρ1(br)] we have

|([PA∗k1
Ak1P1, ρ1(br)])⊕ · · · ⊕ ([PA∗kj Akj P, ρ1(br )])|ϕ(γ (r))

≤ 4|(ρ1(br)− ρ2(br))⊕ · · · ⊕ (ρ1(br)− ρ2(br))
︸ ︷︷ ︸

j-times

|ϕ(γ (r)).

Since G(0)
ϕ(γ (r)) �= C1 we have

lim
j→∞ j−1|(ρ1(br)− ρ2(br))⊕ · · · ⊕ (ρ1(br )− ρ2(br))

︸ ︷︷ ︸

j-times

|ϕ(γ (r)) = 0.

Hence, if Bj = j−1(PA∗k1
Ak1P + · · · + PA∗kj Akj P ) we have

lim
j→∞ |[Bj , ρ1(br)]|ϕ(γ (r)) = 0

for all r ∈ N, which then implies

lim
j→∞|[Bj , ρ1(b)]|ϕ(�) = 0

for all b ∈ B�.
Since ‖Bj‖ ≤ 4, Bj ∈ K and 0 ≤ Bj ≤ P ≤ Eϕ(ρ1) it follows from

Proposition 2.1 that

s − lim
j→∞Bj = 0.

Recall now that ξ1 = ξ ∈ PHϕ(ρ1) had the property that p �= q ⇒ ‖Wpξ −
Wqξ‖ > 1 which implies ‖AkPξ‖ = ‖Akξ‖ = ‖W∗

mk+1
Wmkξ − ξ‖ > 1 or

equivalently 〈PA∗kAkPξ, ξ〉 > 1 for all k ∈ N. This in turn implies 〈Bj ξ, ξ〉 > 1,
for all j ∈ N which is a contradiction. ��
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In the statement of Theorem 2.1 if we leave out the assumption that the weak
limit

w − lim
m→∞ ρ2(u

∗
m)ρ1(um)Eϕ(ρ1)

exists, it is always possible to find a subsequence of the um’s for which this weak
limit exists and draw the conclusion that ρ1 | Eϕ(ρ1) and ρ2 | Eϕ(ρ2) are unitarily
equivalent. Thus we have the following corollary.

Corollary 2.1 Let ϕ be such that ϕ(j) �= �1, 1 ≤ j ≤ n and let ρ1, ρ2 be unital
∗-representations ofA andH such that ρ1(b)−ρ2(b) ∈ G(0)

ϕ(j) if b ∈ Bj , 1 ≤ j ≤ n.
Assume moreover that there is a sequence of unitary elements um ∈ Z(A),m ∈ N,
where Z(A) is the center of A, such that

w − lim
m→∞ ρ1(um) = w − lim

m→∞ ρ2(um) = 0.

Then the representations ρ1 | Hϕ(ρ1) and ρ2 | Hϕ(ρ2) of A are unitarily
equivalent.

3 Invariance of Lebesgue Absolutely Continuous Parts
Under Perturbations

Theorem 3.1 Let ϕ ∈ F([n]), ϕ(j) = �−pj , pj > 1, 1 ≤ j ≤ n, n > 1 be so

that p−1
1 + · · · + p−1

n = 1. Let τ and τ ′ be two n-tuples of commuting hermitian
operators onH so that τ (j)−τ ′(j) ∈ C−pj , 1 ≤ j ≤ n. Then the Lebesgue absolutely

continuous parts τac and τ ′ac of τ and τ ′, are unitarily equivalent.

Proof Consider the decompositions τ = τac ⊕ τs, τ
′ = τ ′ac ⊕ τ ′s with respect

to n-dimensional Lebesgue measure and let L > 0 be such that [−L,L]n ⊃
σ(τ) ∪ σ(τ ′). Recall also that by section 10 of [4] these decompositions coincide
with those into ϕ-singular and ϕ-absolutely continuous subspaces, in particular
we have kϕ(τs) = kϕ(τ

′
s) = 0. Consider also δ and n-tuple of multiplication

operators by the coordinate functions in L2([−L,L]n, dλ), where λ is Lebesgue
measure. If A = C([−L,L]n) is the C∗-algebra of continuous functions and
B ⊂ A, the subalgebra of polynomial functions, with generator β = (b1, . . . , bn)

the n coordinate functions we may form the representations of A arising from
functional calculus. Using Theorem 5.1 [4] the adaptation of our non-commutative
Weyl–von Neumann type theorem, we find that τs ⊕ δ is unitarily equivalent mod
the hybrid n-tuple G(0)

ϕ with δ and similarly τ ′s ⊕ δ is also unitarily equivalent

with δ mod G(0)
ϕ . This implies the existence of a unitary operator U so that

τac ⊕ δ − U(τ ′ac ⊕ δ)U∗ is in G(0)
ϕ . Let ρ1 and ρ2 be the representations of A

defined by f → f (τac ⊕ δ) and f → f (U(τ ′ac ⊕ δ)U∗). Denoting by Bj the
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subalgebra of B consisting of polynomials in the j -th coordinate function we will
have ρ1(b) − ρ2(b) ∈ G(0)

ϕ(j) = C−pj if b ∈ Bj . Let further um ∈ A be the
function um(x1, . . . , xn) = exp(imx1). Since the spectral measures of τac ⊕ δ and
U(τ ′ac⊕δ)U∗ are absolutely continuous with respect to Lebesgue measure it is easily
seen that w− limm→∞ ρ1(um) = w− limm→∞ ρ2(um) = 0. Thus the assumptions
of Corollary 2.1 are satisfied and we get that ρ1 and ρ2 are unitarily equivalent
(the singular parts being zero). This is in turn the same as the unitary equivalence of
τac⊕δ and U(τ ′ac⊕δ)U∗ or τ ′ac⊕δ. If mac and m′ac are the multiplicity functions of
τac and τ ′ac we have proved that mac+χ[−L,L]n and m′ac+χ[−L,L]n are equal almost
everywhere with respect to Lebesgue measure. Clearly this implies mac = m′ac a.e.
which is the unitary equivalence of τac and τ ′ac. ��
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1 Vector Bundle and Curvature Relevant to Operator

Let T = (T1, · · · , Tm) be a commuting tuple of operators on a separable infinite
dimensional complex Hilbert space H , that is, TiTj = TjTi, 1 ≤ i, j ≤ m. We
write T ∈ Bn(!) over an open domain ! in Cm if the following conditions are
satisfied:

1. The operator DT−w = (T1 − w1, · · · , Tm − wm), for all w = (w1, · · · , wm) in
!, has closed range;

2. span{kerDT−w = ∩mi=1 ker(Ti −wi) : w ∈ !} is dense in H ;
3. dim∩mi=1 ker(Ti −wi) = n for all w ∈ !.

These operators, called Cowen–Douglas operators, were introduced in [5, 6] and
surprising connection with complex geometry was established.
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Associated to each T ∈ Bn(!) is a family of eigenspaces ker(T−w),w ∈ ! of
dimension n, and it defines a vector bundle !

ET = {(w, x) : w ∈ !, x ∈ ET(w) :=
⋂

i

ker(Ti −wi)}.

Note that ET, as a sub-bundle of the trivial bundle ! ⊗ H , has a natural
Hermitian holomorphic structure. Cowen and Doulgas proved the following very
deep theorem.

Theorem 1.1 (Cowen–Douglas) The operator tuples T and T̃ in Bn(!) are
unitarily equivalent if and only if the corresponding Hermitian bundle ET and ET̃
are equivalent.

This theorem provides a bridge between the study of unitary invariant classes of T
in Bn(!) with the complex geometry of the Hermitian bundles ET leading to new
methods for the unitary classifications of operators in Bn(!). In complex geometry,
a significant tool in the study of Hermitian bundles is the curvature. Let E be a
Hermitian vector bundles of rank n over the domain !. For a given point z, choose
a holomorphic frame γ1, · · · , γn nearby z. Then the curvature matrix is given by the
formula

KT(z) =: −∂(G−1
γ ∂Gγ ),

where Gγ is Gram matrix whose (i, j) component Gγ (i, j) = 〈γj , γi〉. In case of
! ⊆ C and T ∈ B1(!), we have, in particular,

KT(w) = −∂w∂w log ‖γ1(w)‖2.

Since the curvature is a complete invariant for a line bundle, we obtain the following
theorem:

Theorem 1.2 (Cowen–Douglas) For T ∈ B1(!), the curvature KT is a complete
invariant for the unitarily equivalence of T.

The fundamental work of Cowen and Douglas has inspired sustained research to
find operator theoretic properties for the tuple T from the geometry of ET and
its curvature KT. Specifically, much progress has been made on the similarly and
unitary equivalence problems of operators in the Cowen–Douglas class. We refer
the reader to a comprehensive references [13].

In a recent paper [20], refining the construction of Cowen–Douglas, Zhang and
the author of this paper, associate a class of holomorphic Hermitian vector bundles
El

T to commuting tuples of operators T in Bn(!). Here El
T is the vector bundle of

rank l defined by

El
T = {(w, x) ∈ !×H : x ∈

⋂

|α|=l
ker(T−w)α}
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with the projection π(w, x) = w, where α is a multi-index and

(T−w)α = (T1 −w1)
α1 · · · (Tm −wm)

αm.

As above,El
T is also a Hermitian sub-bundle of !×H . Obviously, the vector bundle

El
T and the curvature are also invariants for the operator tuple T.
We introduce an equivalent definition of the curvature. Consider El

T as a sub-
bundle of the trivial bundle !×H . Then we have that the D = P∂ is the canonical
Chern connection onEl

T, whereP is the fiberwise orthogonal projection from!×H
onto the fiber E1

T and ∂ is the ordinary derivative. Therefore, for any holomorphic
section u in El

T, the curvature tensor RT satisfies that

(RT(∂i, ∂j )u = −∂jP∂iu.

It is well known that two definitions for curvature coincide [3]. Moreover, a direct
computation show that if u is a holomorphic section of El−1

T , which is a sub-bundle
of El

T, then

RT(∂i, ∂j )u = 0

since ∂u is a section of El
T.

Let Wl(w) be the orthogonal complement of El−1
T (w) in El

T(w) with respect to
the Hermitian inner product inherited from H , that is, El

T(w) = El−1
T (w)⊕Wl(w).

We have the following:

Theorem 1.3 (Wang-Zhang) On the Hermitian vector bundle El
T with l > 1

induced from T ∈ Bn(!), we have the decomposition

RT,w(∂i, ∂j ) =
(

0 0
0 Rl

T,w(∂i, ∂j )

)

with respect to El
T(w) = El−1

T (w)⊕Wl(w).

Note Rl
T,w(∂i, ∂j ) is also a unitary invariant for the Cowen–Douglas class Bn(!).

We will see that they contain some new information for Cowen–Douglas class.

2 Curvature Inequities for Cowen–Douglas Operator

The Cowen–Douglas theory shows how the properties of the operator T in Bn(!)

are completely determined by the corresponding vector bundle ET. However, it
seems an intractable problem to obtain properties of T from the curvature alone.
We discuss below what is known.
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2.1 Curvature Inequalities of Order 1

In [11] Misra started to attack this type problem and investigate the relation of
operator inequalities versus curvature inequalities. He first considered the case of
T ∈ B1(!) on a planar domain ! ⊆ C.

Recall that the closed set cl! is said to be a spectral set for T if cl! ⊇ σ(T ) and
‖f (T )‖ ≤ ‖f ‖∞ for all f ∈ Rat(cl!).

Theorem 2.1 (Misra) If T ∈ B1(!) and cl! is a spectral set of T , then

KT (w) ≤ − sup{|f ′(w)|2 : f ∈ Holw(!,D)}.

where Holw(!,D) = {f : !→ D analytic, f (w) = 0}.
The main idea of the proof is that the local operator Nw = T |ker(T−w)2 is a 2 ×
2 matrix and cl! is also a spectral set for it. Let H 2(∂!, dmw(z)) be the Hardy
space with respect to the measure dmw(z), where dmw(z) be the harmonic measure
for the point w ∈ !. Then the supremum on the right hand side of the curvature
inequality equals−K̂!(w, w̄)2, where K̂!(w, w̄) is the reproducing kernel at point
w for H 2(∂!, dmw).

In the special case of ! = D, by the von Neumann inequality, clD is a spectral
set for an operator T if and only if T is contractive, that is, ‖T ‖ ≤ 1. Recall that
KS∗(z) = −KD(w, w̄) = − 1

(1−|w|2)2 , where S is the Hardy shift on the classical

Hardy space H 2(D).

Theorem 2.2 (Misra) For T ∈ B1(D), if ‖T ‖ ≤ 1, then

KT (w) ≤ KS∗(w) = − 1

(1− |w|2)2
.

This result provides one way to check whether an operator is contractive or not from
a numerical inequality involving the curvature function on D.

Uchiyama [19] extended the above result to the case of Bn(!) for a planar
domain !. He observed the connection between the inequality and the Sz.-Nagy
and Foias dilation theory[18], and prove that

Theorem 2.3 (Uchiyama) If a contraction T ∈ Bn(!) for ! ⊂ D, then

KT (w) ≤ − 1

(1− |w|2)2
In.
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For a general planar domain ! ⊆ C, using the Ahlfors map from ! to the disc, he
also prove that

Theorem 2.4 (Uchiyama) Let ! be a p-ply connected Jordan region, and T ∈
Bn(!). Suppose cl! is a spectral set of T. Then we have

KT (w) ≤ −K̂(w, w̄)2In.

To describe the case of domains which are not necessarily planar, we use the
Hilbert framework of Hilbert modules for T ∈ Bn(!), which was introduced by
Douglas and Paulsen[7].

Definition 2.5 (Douglas and Paulsen) The Hilbert space H is called a Hilbert
module over an algebraA provided thatH is equipped with a mappingA×H → H ,
which we denote (f, h)→ f · h, satisfying: for f, g ∈ A, h, k ∈ H, α, β ∈ C.

(1) 1 · h = h,

(2) (fg) · h = f · (g · h),
(3) (f + g) · h = f · h+ g · h,
(4) f · (αh+ βk) = α(f · h)+ β(f · h),
(5) There exists Kf (> 0) such that ‖f · h‖ ≤ Kf ‖f ‖‖h‖.
For a tuple operators T on a Hilbert space H , we endows H with a Hilbert module
structure over the polynomial ring C[z1, · · · , zn] by

p · ξ = p(T1, · · · , Tn)ξ, p ∈ C[z1, · · · , zn], ξ ∈ H.

In such a framework, the central theme is to understand the structure of the Hilbert
module. For example, we call a Hilbert module H contractive if for any polynomial
p, ‖p(T )‖ ≤ ‖p‖! := sup{|p(z)| : z ∈ !}.

In [15], Misra and Sastry proved the following inequality.

Theorem 2.6 (Misra and Sastry) Suppose HT is a contractive Hilbert module
determined by T ∈ B1(!). For a fixed but arbitrary point w ∈ !, let θw is a
bi-holomorphic automorphism on ! such that θw(w) = 0. Then

‖Dθw(w)KT(w)
−1Dθw(w)

t‖!!∗ ≤ 1.

For the case of domains like the Euclidean ball, the polydisc and bounded symmetric
domains, we refer the reader to the careful computation [2, 12–14, 16]. Another
curvature inequality involving the Caratheodory metric appeared in [17] by Misra
and Reza. The technique is also heavily depended on the local operator.

In the recent past, Misra and his collaborators obtained the curvature inequality
without using the local operators but directly using the metric of the holomorphic
vector bundle[4, 8]. This also inspired us to consider curvature inequalities of higher
order.



516 K. Wang

2.2 Curvature Inequalities of Higher Order

We first recall the definition of curvature negative in complex geometry. The vector
bundle is said to be positive in the sense of Griffiths if for any section u and vector
v ∈ Cm with u �= 0 and v �= 0,

∑

(R(∂i , ∂j )u, u)vivj > 0.

It is said to be positive in the sense of Nakano if for any nonzero m-tuple u1, · · · , um
of sections

∑

(R(∂i , ∂j )ui, uj ) > 0.

Clearly Nakano positivity implies Griffiths positivity in general.
In the case l = 1, the theorem stated below shows that the bundle is negative in

the sense of Nakano.

Theorem 2.7 (Wang and Zhang) Let T ∈ Bn(!). The bundle E1
T over ! is

Nakano negative.

In the case, where the rank l > 1, we have only the following fact:

Theorem 2.8 (Wang and Zhang) For l > 1, the restriction Rl
T,w is negative in the

sense of Griffiths: For a holomorphic section u with 0 �= u(w) ∈ Wl(w) and the
coefficients 0 �= (a1, · · · , am),

∑

1≤i,j≤m
aiaj 〈Rl

T,w(∂i, ∂j )u , u〉 < 0.

In particular the Ricci curvature Ricl(∂i , ∂j ) of El,Ricl(∂i , ∂j ) = trRl
T,w(∂i, ∂j )

is always negative.

Such a result would yields the corresponding inequality. Unfortunately, we can only
solve the case of planar domain.

Theorem 2.9 (Wang and Zhang) If T ∈ Bn(D) and T is contractive, then Rl
T ≤

Kl
S∗In = − l2

(1−|w|2)2 In.

For a general multi-connected planar domain, we also prove that

Theorem 2.10 (Wang and Zhang) Suppose T ∈ Bn(!) and cl! is a spectral set
for the operator T . Then Rl

T ,w ≤ −l2̂K!(w,w)
2In for w ∈ !.

It might be interesting to find the converse to these results.
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Proposition 2.11 (Wang and Zhang) If T ∈ B1(D) and the adjoint T ∗ is a
unilateral weighted shift operator with no zero weights, then T is contractive if
and only if Kl

T ,0 ≤ Kl
S∗,0 = −l2,∀l ≥ 1.

The new curvature inequalities of higher order is necessary for the converse
direction. Note that [4] Biswas, Keshari and Misra have constructed a backward
shift T which is not contractive, but satisfies the curvature inequality of order 1.

2.3 Further Discussion

The most interesting problem would be the converse of the curvature inequalities.

Problem 2.12 Suppose T ∈ B1(D) and Rl
T ,w ≤ Rl

S∗,w for all integer l ≥ 1, then
does it follow that T is contractive?

For unilateral weighted shifts, by Proposition 2.11, the answer is affirmative.
However, to prove or disprove the general case appears to be too ambitious. As
suggested by Rongwei Yang, we may consider the following question first.

Problem 2.13 Suppose T ∈ Bn(D) and T is a homogeneous operator in the sense
of Misra, prove or disprove that Rl

T ,w ≤ Kl
S∗,wIn for all integer l ≥ 1 imply that T

is contractive.

The homogeneous operator on the unit disc D has been completely classified by
Koranyi and Misra [9, 10]. By the homogeneous property, we only need to check
the inequalities at one point. However, this problem doesn’t seem so simple at first
glance, due to the lack of computational technique for curvature of higher order.

Another direction to continue is to establish the inequalities for domains of higher
dimension.

Problem 2.14 What is the right generalization of Theorems 2.9 and 2.10 on the
domain ! ⊆ Cn.

Theorem 2.8 prompts the possibility of considering the Ricci curvature. In the case
of the unit ball Bd . Thus, we may compare the Ricci curvature of Cowen–Douglas
operator with the backward shifts over the Drury–Arveson space H 2

d .

Example The Drury–Arveson space H 2
d , by the computation in [1], has an orthonor-

mal basis

{eα =
√ |α|!

α! z
α : α = (α1, · · · , αd ) ∈ N

d+}

and the reproducing kernel is

K(z,w) =
∑

α

|α|!
α! z

αwα = 1

1− 〈z,w〉 .
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Therefore, at z = 0, the space

El = {∂αK0(z) : |α| ≤ l − 1}

with

∂αK0(z) = |α|!zα.

Write εi be the multi-index with 1 in position i and 0 in others. By the computation
in [20], for |α| = |β| = l − 1,

〈R0(∂i , ∂i)∂
αK0, ∂

βK0〉 = −〈∂α+εiK0, ∂
β+εiK0〉.

Therefore, we have that for |α| = |β| = l − 1,

∑

i

〈Rl
0(∂i, ∂i )e

α, eα〉 = −(l + 1)(l + n).

and

∑

i

〈Rl
0(∂i, ∂i )e

α, eβ〉 = 0, if α �= β.

Using the transitivity of the automorphism group for the unit ball Bd , we have that
at a point w ∈ Bd

Riclw = −
(l + 1)(l + n)

(1− |w|2)2 I.

Problem 2.15 For an operator tuple T = (T1, · · · , Td) ∈ B1(B
d ), if T is a row

contractive, can we have

RiclT,w ≤ −
(l + 1)(l + n)

(1− |w|2)2
I?

This also shows that for domains other than the Euclidean ball, the nature of the
curvature inequalities may be different.
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Reproducing Kernel of the Space
Rt(K,μ)
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Dedicated to the memory of Ronald G. Douglas

Abstract For 1 ≤ t < ∞, a compact subset K of the complex plane C, and a
finite positive measure μ supported on K, Rt (K,μ) denotes the closure in Lt (μ)

of rational functions with poles off K . Let ! be a connected component of the set
of analytic bounded point evaluations for Rt (K,μ). In this paper, we examine the
behavior of the reproducing kernel of Rt (K,μ) near the boundary ∂!∩T, assuming
that μ(∂! ∩ T) > 0, where T is the unit circle.

Keywords Reproducing kernel · Cauchy transform · Analytic capacity ·
Analytic bounded point evaluations
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1 Introduction

Throughout this paper, let D denote the unit disk {z : |z| < 1} in the complex
plane C, let T denote the unit circle {z : |z| = 1}, let m denote normalized
Lebesgue measure on T. Let μ be a finite, positive Borel measure that is compactly
supported in C. We require that the support of μ be contained in some compact
set K and we indicate this by spt(μ) ⊆ K . Under these circumstances and for
1 ≤ t < ∞ and t ′ = t

t−1 , functions in P(the set of analytic polynomials) and
Rat(K) := {q : q is a rational function with poles off K} are members of Lt (μ).
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We let P t (μ) denote the closure of P in Lt (μ) and let Rt (K,μ) denote the closure
of Rat(K) in Lt (μ). A point z0 in C is called a bounded point evaluation for P t (μ)

(resp., Rt (K,μ)) if f �→ f (z0) defines a bounded linear functional for functions
in P (resp., Rat(K)) with respect to the Lt (μ) norm. The norm of the bounded
linear functional is denoted by Mz0 . The collection of all such points is denoted
bpe(P t (μ)) (resp., bpe(Rt (K,μ))). If z0 is in the interior of bpe(P t (μ)) (resp.,
bpe(Rt (K,μ))) and there exist positive constants r and M such that |f (z)| ≤
M‖f ‖Lt (μ), whenever |z − z0| ≤ r and f ∈ P (resp., f ∈ Rat(K)), then we
say that z0 is an analytic bounded point evaluation for P t (μ) (resp., Rt(K,μ)).
The collection of all such points is denoted abpe(P t (μ)) (resp., abpe(Rt (K,μ))).
Actually, it follows from Thomson’s Theorem [10] (or see Theorem 1.1, below)
that abpe(P t (μ)) is the interior of bpe(P t (μ)). This also holds in the context of
Rt (K,μ) as was shown by J. Conway and N. Elias in [6]. Now, abpe(P t (μ))

is the largest open subset of C to which every function in P t (μ) has an analytic
continuation under these point evaluation functionals, and similarly in the context
of Rt (K,μ). Let Sμ denote the multiplication by z on Rt (K,μ). It is well known
that Rt (K,μ) = Rt (σ (Sμ), μ) and σ(Sμ) ⊂ K , where σ(Sμ) denotes the spectrum
of Sμ (see, for example, Proposition 1.1 in [6]). Throughout this paper, we assume
K = σ(Sμ).

Our story begins with celebrated results of J. Thomson, in [10].

Theorem 1.1 (Thomson [10]) Let μ be a finite, positive Borel measure that is
compactly supported in C and suppose that 1 ≤ t < ∞. There is a Borel partition
{�i}∞i=0 of spt(μ) such that the space P

t (μ|�i ) contains no nontrivial characteristic
function (i.e., P t (μ|�i ) is irreducible) and

P t (μ) = Lt (μ|�0)⊕
{⊕∞i=1P

t (μ|�i )
}

.

Furthermore, if Ui := abpe(P t (μ|�i )) for i ≥ 1, then Ui is a simply connected
region and�i ⊆ Ui .

We mention a remarkable result of A. Aleman, S. Richter and C. Sunberg. It’s
proof involves a modification of Thomson’s scheme along with results of X. Tolsa
on analytic capacity.

Theorem 1.2 (Aleman et al. [2]) Suppose that μ is supported in D, abpe(P t (μ))

= D, P t (μ) is irreducible, and that μ(T) > 0.

(a) If f ∈ P t (μ), then the nontangential limit f ∗(ζ ) of f at ζ exists a.e. μ|T and
f ∗ = f |T as elements of Lt(μ|T).

(b) Every nontrivial, closed invariant subspace M for the shift Sμ on P t (μ) has
index 1; that is, the dimension ofM/zM is one.

(c) If t > 1, then

lim
λ→z

(1− |λ|2) 1
t Mλ = 1

h(z)
1
t

nontangentially for m-a.a. z ∈ T, where μ|T = hm.
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J. Thomson’s proof of the existence of bounded point evaluations for P t (μ)

uses Davie’s deep estimation of analytic capacity, S. Brown’s technique, and
Vitushkin’s localization for uniform rational approximation. The proof is excellent
but complicated, and it does not really lend itself to showing the existence of
nontangential boundary values in the case that spt(μ) ⊆ D, P t (μ) is irreducible
and μ(T) > 0. X. Tolsa’s remarkable results on analytic capacity opened the door
for a new view of things, through the works of [1–3] and [4], etc.

In this paper, we assume that Rt (K,μ) is irreducible and ! is a connected region
satisfying:

abpe(Rt(K,μ)) = !, K = !, ! ⊂ D, T ⊂ ∂!. (1.1)

It is well known that, in this case, μ|T << m. So we assume μ|T = hm.

For δ > 0 and λ ∈ C, set B(λ, δ) = {z : |z − λ| < δ}. For 0 < σ < 1, let
	σ (e

iθ ) denote the polynomial convex hull of {eiθ } and B(0, σ ). Define 	δ
σ (e

iθ ) =
	σ (e

iθ )∩B(eiθ , δ). In order to define a nontangential limit of a function in Rt (K,μ)

at eiθ ∈ ∂!, one needs 	δ
σ (e

iθ ) ⊂ ! for some δ. Therefore, we define the strong
outer boundary of ! as the following:

∂so,σ! = {eiθ ∈ ∂! : ∃0 < δ < 1, 	δ
σ (e

iθ ) ⊂ !}. (1.2)

It is known that ∂so,σ! is a Borel set (i.e., see Lemma 4 in [9]) and m(∂so,σ1! \
∂so,σ2!) = 0 for σ1 �= σ2. Therefore, we set ∂so! = ∂so, 1

2
!.

The paper [1] presents an alternate and simpler route to prove Theorem 1.2
(a) and (b) that has extension to the context of mean rational approximation as in
Theorem 1.3 below. It also uses the results of X. Tolsa on analytic capacity.

Theorem 1.3 (Akeroyd et al. [1]) Let ! be a bounded connected open set
satisfying (1.1). Suppose that μ is a finite positive measure supported in
K, abpe(Rt (K,μ)) = !,Rt(K,μ) is irreducible, μ|T = hm, and μ(∂so!) > 0.
Then:

(a) If f ∈ Rt (K,μ) then the nontangential limit f ∗(z) of f exists forμ|∂so! almost
all z, and f ∗ = f |∂so! as elements of Lt(μ|∂so!).

(b) Every nonzero rationally invariant subspace M of Rt (K,μ) has index 1, that
is, dim(M/(Sμ − λ0)M) = 1, for λ0 ∈ !.

Theorem 1.3 is a direct application of Theorem 3.6 in [1], which proves a
generalized Plemelj’s formula for a compactly supported finite complex-valued
measure. In fact, the generalized Plemelj’s formula holds for rectifiable curve (other
than T), so Theorem 1.3 is valid if ∂! is a certain rectifiable curve.

In this paper, we continue the work of section 3 in [1] to generalize Theorem 1.2
(c). We refine the estimates of Cauchy transform of a finite measure in [1] and
provide an alternate proof of Theorem 1.2 (c) that can extend the result to the context
of certain mean rational approximation space Rt(K,μ).
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By Riesz representation theorem, there exists kλ ∈ Lt ′(μ) for λ ∈
abpe(Rt(K,μ)) such that Mλ = ‖kλ‖Lt ′ (μ) and

f (λ) =
∫

f (z)k̄λ(z)dμ(z), f ∈ Rat(K).

The function kλ is called the reproducing kernel for Rt (K,μ).

Theorem 1.4 (Main Theorem) Let ! be a bounded connected open set
satisfying (1.1). Suppose that μ is a finite positive measure supported in
K, abpe(Rt (K,μ)) = !,Rt(K,μ) is irreducible, μ|T = hm, and μ(∂so!) > 0.
If t > 1, then

lim
	 1

4
(eiθ )7λ→eiθ

(1− |λ|2) 1
t Mλ = lim

	 1
4
(eiθ )7λ→eiθ

(1− |λ|2) 1
t ‖kλ‖Lt ′ (μ) =

1

h(eiθ )
1
t

for μ-almost all eiθ ∈ ∂so!.

2 Proof of Main Theorem

Let ν be a finite complex-valued Borel measure that is compactly supported in C.
For ε > 0, Cε(ν) is defined by

Cε(ν)(z) =
∫

|w−z|>ε
1

w − z
dν(w). (2.1)

The (principal value) Cauchy transform of ν is defined by

C(ν)(z) = lim
ε→0

Cε(ν)(z) (2.2)

for all z ∈ C for which the limit exists. If λ ∈ C and
∫ d |ν|
|z−λ| < ∞, then

limr→0
|ν|(B(λ,r))

r
= 0 and limε→0 Cε(ν)(λ) exists. Therefore, a standard application

of Fubini’s Theorem shows that C(ν) ∈ Ls

loc(C), for 0 < s < 2. In particular, it
is defined for almost all z with respect to area measure on C, and clearly C(ν) is
analytic in C∞\spt(ν), where C∞ := C∪{∞}. In fact, from Corollary 3.1 in [1], we
see that (2.2) is defined for all z except for a set of zero analytic capacity. Thoughout
this section, the Cauchy transform of a measure always means the principal value of
the transform.

The maximal Cauchy transform is defined by

C∗(ν)(z) = sup
ε>0
|Cε(ν)(z)|.
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If K ⊂ C is a compact subset, then we define the analytic capacity of K by

γ (K) = sup |f ′(∞)|,

where the supremum is taken over all those functions f that are analytic in C∞ \K
such that |f (z)| ≤ 1 for all z ∈ C∞ \K; and f ′(∞) := limz→∞ z(f (z)− f (∞)).

The analytic capacity of a general subset E of C is given by:

γ (E) = sup{γ (K) : K⊂⊂E}.

Good sources for basic information about analytic capacity are Chapter VIII of [7],
Chapter V of [5], and [13].

A related capacity, γ+, is defined for subsets E of C by:

γ+(E) = sup ‖μ‖,

where the supremum is taken over positive measures μ with compact support
contained in E for which ‖C(μ)‖L∞(C) ≤ 1. Since Cμ is analytic in C∞ \ spt(μ)
and (C(μ)′(∞) = ‖μ‖, we have:

γ+(E) ≤ γ (E)

for all subsets E of C. X. Tolsa has established the following astounding results.

Theorem 2.1 (Tolsa [12])

(1) γ+ and γ are actually equivalent. That is, there is an absolute constantAT such
that

γ (E) ≤ AT γ+(E) (2.3)

for all E ⊂ C.

(2) Semiadditivity of analytic capacity:

γ

(

m
⋃

i=1

Ei

)

≤ AT

m
∑

i=1

γ (Ei) (2.4)

where E1, E2, . . . , Em ⊂ C.

(3) There is an absolute positive constant CT such that, for any a > 0, we have:

γ ({C∗(ν) ≥ a}) ≤ CT

a
‖ν‖. (2.5)

Proof (1) and (2) are from [12] (also see Theorem 6.1 and Corollary 6.3 in [13]).
(3) follows from Proposition 2.1 of [11] (also see [13] Proposition 4.16). ��
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The following lemma is a modification of Lemma 3.2 of [1].

Lemma 2.2 Let ν be a finite measure supported in D̄ and |ν|(T) = 0. Let 1 < p ≤
∞, q = p

p−1 , f ∈ C(D̄), and g ∈ Lq(|ν|). Assume that for some eiθ ∈ T we have:

lim
r→0

∫

B(eiθ ,r) |g|qd|ν|
r

= 0 (2.6)

Then, for any a > 0, there exists δa, 0 < δa < 1
4 , such that whenever 0 < δ < δa ,

there is a subset Ef
δ of B(eiθ , δ) and ε(δ) > 0 satisfying:

lim
δ→0

ε(δ) = 0, (2.7)

γ (E
f
δ ) < ε(δ)δ, (2.8)

for all λ ∈ B(eiθ , δ) \ Ef
δ , |λ0 − eiθ | = δ

2 and λ0 ∈ 	 1
2
(eiθ ),

lim
ε→0

Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ) (2.9)

exists, and

∣

∣

∣

∣

C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ)− C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(
1

λ̄0
)

∣

∣

∣

∣

≤a‖f ‖Lp(|ν|).
(2.10)

Notice that the set Ef
δ depends on f and all other parameters are independent of f.

Proof Let

M = sup
r>0

∫

B(eiθ ,r) |g|qd|ν|
r

.

Then, by (2.6), M <∞. For a > 0, choose N and δa, 0 < δa <
1
4 , satisfying:

N = 6+
(

256

a

∞
∑

k=0

2
−k
q

)q

M,

(∫

B(λ0,Nδ)
|g|qd|ν|
δ

) 1
q

<
a

43+ 2
q
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for 0 < δ < δa. We now fix δ, 0 < δ < δa , and let

νδ =
χB(eiθ ,Nδ)

(1− λ̄0z)
1− 2

p δ
1
p

fgν,

where χA denotes the characteristic function of the set A. For 0 < ε < δ and
λ ∈ B(eiθ , δ), we get:

2(1− |λ0|) ≤ δ ≤ 4(1− |λ0|),

B(λ, ε) ⊂ B(eiθ , 2δ) ⊂ B(eiθ ,Nδ),

and
∣

∣

∣

∣

Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ)− C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(
1

λ̄0
)

∣

∣

∣

∣

≤|1− λ̄0λ|
δ

1
p

∣

∣

∣

∣

∣

∫

|z−λ|>ε
fgdν

(z− λ)(1 − λ̄0z)
1− 2

p

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

C

⎛

⎝χB̄(λ,ε)
(1− λ̄0z)

2
p

δ
1
p

fgν

⎞

⎠ (
1

λ̄0
)

∣

∣

∣

∣

∣

∣

≤2δ
1
q

∣

∣

∣

∣

∣

∫

B(eiθ ,Nδ)c

fgdν

(z− λ)(1 − λ̄0z)
1− 2

p

∣

∣

∣

∣

∣

+ 2δ

∣

∣

∣

∣

∫

|z−λ|>ε
dνδ

(z− λ)

∣

∣

∣

∣

+
∫

B̄(λ,ε)

δ
− 1

p

|1− λ̄0z|1−
2
p

|fg|d|ν|

≤2δ
1
q

∞
∑

k=0

∫

2kNδ≤|z−eiθ |<2k+1Nδ

|f ||g|d|ν|
|z− λ||1− λ̄0z|1−

2
p

+ 2δ|Cενδ(λ)|

+
∫

B(eiθ ,2δ)

|1− λ̄0z|δ−
1
p

|1− λ̄0z|
2
q

|fg|d|ν|

≤2δ
1
q

∞
∑

k=0

(2k+1Nδ)
1
q (2kNδ + 2δ)

2
p

(2kNδ − δ)(2kNδ − 2δ)

(∫

B(eiθ ,2k+1Nδ)
|g|qd|ν|

2k+1Nδ

) 1
q

‖f ‖Lp(|ν|)

+ 2δC∗νδ(λ)+ 4
∫

B(eiθ ,2δ)

δ
1
q

|1− λ̄0z|
2
q

|fg|d|ν|
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≤4(N + 2)1+ 1
p
∑∞

k=0 2
−k
q M

1
q

(N − 1)(N − 2)
‖f ‖Lp(|ν|) + 2δC∗νδ(λ)

+ 41+ 2
q ‖f ‖Lp(|ν|)

(∫

B(eiθ ,2δ) |g|qd|ν|
δ

) 1
q

≤a

4
‖f ‖Lp(|ν|) + 2δC∗νδ(λ).

Let

Eδ = {λ : C∗(νδ)(λ) ≥ a‖f ‖Lp(|ν|)
8δ

} ∩ B(λ0, δ).

Then

{λ : |Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ)− C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(
1

λ̄0
)|

≥ a‖f ‖Lp(|ν|)} ∩ B(λ0, δ) ⊂ Eδ.

From Theorem 2.1 (3), we get

γ (Eδ) ≤ 8CT δ

a‖f ‖Lp(|ν|)
‖νδ‖ ≤ 32CT δ

a

(∫

B(eiθ ,Nδ)
|g|qd|ν|

δ

) 1
q

.

Let E be the set of λ ∈ C such that limε→0 Cε (fgν) (λ) does not exist. By
Corollary 3.1 in [1], we see that γ (E) = 0. It is clear that (2.9) exists for λ ∈ D \E
because

lim
ε→0

Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ)− (1− λ̄0λ)
2
p δ
− 1

p lim
ε→0

Cε (fgν) (λ)

=
∫

(1− λ̄0z)
2
p δ
− 1

p − (1− λ̄0λ)
2
p δ
− 1

p

z− λ
fgdν

exists for all λ ∈ D \ E.
Now let Ef

δ = Eδ ∪ E. Applying Theorem 2.1 (2) we find that

γ (Eδ) ≤ AT (γ (Eδ)+ γ (E)) <
32ATCT

a

(∫

B(eiθ ,Nδ) |g|qd|ν|
δ

) 1
q

δ.
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Letting

ε(δ) = 32ATCT

a

(∫

B(eiθ ,Nδ)
|g|qd|ν|

δ

) 1
q

,

we conclude that (2.7) and (2.8) hold. On B(λ0, δ) \Eδ and for ε < δ, we conclude
that
∣

∣

∣

∣

Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ)− C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(
1

λ̄0
)

∣

∣

∣

∣

< a‖f ‖Lp(|ν|).

Therefore, (2.10) follows since

lim
ε→0

Cε
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ) = C
(

(1− λ̄0z)
2
p δ
− 1

p fgν
)

(λ).

��
Proposition 2.3 Let μ be a finite positive measure with support in K ⊂ D̄ and
μ|T = hm. Let 1 < p < ∞, q = p

p−1 , f ∈ C(D̄), g ∈ Lq(μ), and fgμ ⊥
Rat(K). Then for 0 < β < 1

16 , b > 0, and m-almost all eiθ ∈ T, there exist

0 < δa < 1
4 , E

f
δ ⊂ B(eiθ , δ), and ε(δ) > 0, where 0 < δ < δa, such that

limδ→0 ε(δ) = 0, γ (Ef
δ ) < ε(δ)δ, and for λ0 ∈ (∂B(eiθ , δ

2 )) ∩ 	 1
4
(eiθ ),

∣

∣

∣

∣

∣

∣

C
⎛

⎝

(1 − λ̄0z)
2
p

(1− |λ0|2)
1
p

fgμ

⎞

⎠ (λ)

∣

∣

∣

∣

∣

∣

≤
⎛

⎝b + 1+ 4β

1− 4β

(∫

T

1− |λ0|2
|1− λ̄0z|2 |g|

qdμ

)
1
q

⎞

⎠ ‖f ‖Lp(μ)

for all λ ∈ B(λ0, βδ) \ Ef
δ .

Proof Let ν = μ|D. We now apply Lemma 2.2 for p, q, f, g, and a = 1

2
1
p

b. From

Lemma 3.5 in [1], there exists E with γ (E) = 0 such that for eiθ ∈ T \E, |g|qd|ν|
satisfies (2.6). There exist 0 < δa < 1

4 , E
f
δ ⊂ B(eiθ , δ), and ε(δ) > 0, where 0 <

δ < δa, such that limδ→0 ε(δ) = 0, γ (Ef
δ ) < ε(δ)δ, and for λ0 ∈ (∂B(eiθ , δ

2 )) ∩
	 1

4
(eiθ ),

∣

∣

∣

∣

∣

∣

C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgν

⎞

⎠ (λ)− C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgν

⎞

⎠ (
1

λ̄0
)

∣

∣

∣

∣

∣

∣

≤ b‖f ‖Lp(μ)
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for all λ ∈ B(eiθ , δ) \Ef
δ .

C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgμ

⎞

⎠ (
1

λ̄0
) = 0

since fgμ ⊥ Rat(K). Therefore, for all λ ∈ B(λ0, βδ) \Ef
δ , we get

∣

∣

∣

∣

∣

∣

C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgμ

⎞

⎠ (λ)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgν

⎞

⎠ (λ)− C

⎛

⎝

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgν

⎞

⎠ (
1

λ̄0
)

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

∫

T

⎛

⎝

1

z− λ
− 1

z − 1
λ̄0

⎞

⎠

(1− λ̄0z)
2
p

(1− |λ0|2)
1
p

fgμ

∣

∣

∣

∣

∣

∣

≤b‖f ‖Lp(μ) +
∫

T

|1− λλ̄0|
|z− λ|

(1− |λ0|2)−
1
p

|1− λ̄0z|1−
2
p

|fg|dμ

≤b‖f ‖Lp(μ) + 1+ 4β

1− 4β

∫

T

(1− |λ0|2)
1
q

|1− λ̄0z|
2
q

|fg|dμ

where the last step follows from

|1− λλ̄0|
|z− λ| ≤1− |λ0|2 + |λ0||λ− λ0|

|z− λ0| − |λ− λ0|

≤ (1+ 4β)(1− |λ0|2)
|z− λ0| − 4β(1− |λ0|)

≤ (1+ 4β)(1− |λ0|2)
(1− 4β)|1− λ̄0z|

for z ∈ T. The proposition now follows from Holder’s inequality. ��
Let R = {z : |Re(z)| < 1

2 and |Im(z)| < 1
2 } and Q = D̄ \ R. For a bounded

Borel set E ⊂ C and 1 ≤ p ≤ ∞, Lp(E) denotes the Lp space with respect to the
area measure dA restricted to E. The following Lemma is a simple application of
Thomson’s coloring scheme.
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Lemma 2.4 There is an absolute constant ε1 > 0 with the following property. If
γ (D \K) < ε1, then

|f (λ)| ≤ ‖f ‖L∞(Q∩K)

for λ ∈ R and f ∈ A(D), the uniform closure of P in C(D̄).

Proof We use Thomson’s coloring scheme that is described at the beginning of
section 2 of [14]. Let ε1 be chosen as in Lemma 2 of [14]. By our assumption
γ (D \ K) < ε1 and Lemma 2 of [14], we conclude that Case II on Page 225 of
[14] holds, that is, scheme(Q, ε,m, γn, 	n, n ≥ m) (ε < 10−3) does not terminate.
In this case, one has a sequence of heavy ε barriers inside Q, that is, {γn}n≥m and
{	n}n≥m are infinite.

Let f ∈ A(D), by the maximal modulus principle, we can find zn ∈ γn such that
|f (λ)| ≤ |f (zn)| for λ ∈ R. By the definition of γn, we can find a heavy ε square Sn
with zn ∈ Sn ∩ γn. Since γ (Int (Sn) \ K) ≤ εdSn (see (2.2) in [14]), we must have
Area(Sn ∩ K) > 0. We can choose wn ∈ Sn ∩ K with |f (wn)| = ‖f ‖L∞(Sn∩K).
f (w)−f (zn)

w−zn is analytic in D, therefore, by the maximal modulus principle again, we
get

∣

∣

∣

∣

f (wn)− f (zn)

wn − zn

∣

∣

∣

∣

≤ sup
w∈γn+1

∣

∣

∣

∣

f (w)− f (zn)

w − zn

∣

∣

∣

∣

≤ 2‖f ‖L∞(D)

dist (zn, γn+1)
.

By Lemma 2.1 in [10] (there is a buffer zone of yellow squares between γn and
γn+1), we have dist (zn, γn+1) ≥ n22−n. Therefore,

|f (λ)| ≤|f (zn)| ≤ |f (wn)| + 2|zn −wn|‖f ‖L∞(D)

dist (zn, γn+1)

≤‖f ‖L∞(Q∩K) + 2
√

22−n‖f ‖L∞(D)

n22−n

for λ ∈ R. The lemma follows by taking n→∞. ��
Corollary 2.5 There is an absolute constant ε1 > 0 with the following property. If
λ0 ∈ C, δ > 0, and γ (B(λ0, δ) \K) < ε1δ, then

|f (λ)| ≤ ‖f ‖L∞(B(λ0,δ)∩K)

for λ ∈ B(λ0,
δ
2 ) and f ∈ A(B(λ0, δ)), the uniform closure of P in C(B(λ0, δ)).

Proof (Main Theorem) From Lemma VII.1.7 in [5], we find a function G ∈
Rt (K,μ)⊥ such that G(z) �= 0 for μ-almost every z. There exists Z1 ⊂ T with
m(Z1) = 0 such that G(eiθ )h(eiθ ) �= 0 for eiθ ∈ ∂so! ∩ N (h) \ Z1, where
N (h) = {eiθ : h(eiθ ) > 0}.
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By Theorem 3.6 (Plemelj’s Formula for an arbitrary measure) in [1], for eiθ ∈
∂so! ∩ N (h) \ Z1 \ Z2 with m(Z2) = 0, 	r0

1
2
(eiθ ) ⊂ !, and b > 0, there exist

0 < δ0
a < 1−max( 3

4 , r0), Eδ ⊂ B(eiθ , δ), and ε0(δ) > 0, where 0 < δ < δ0
a, such

that limδ→0 ε
0(δ) = 0, γ (Eδ) < ε0(δ)δ,

∣

∣

∣

∣

C(Gμ)(λ)− C(Gμ)(eiθ )− 1

2
e−iθG(eiθ )h(eiθ )

∣

∣

∣

∣

≤ b

2

and
∣

∣

∣

∣

C(Gμ)(
1

λ̄
)− C(Gμ)(eiθ )+ 1

2
e−iθG(eiθ )h(eiθ )

∣

∣

∣

∣

≤ b

2
,

hence,

∣

∣

∣C(Gμ)(λ)− e−iθG(eiθ )h(eiθ )

∣

∣

∣ ≤ b (2.11)

since C(Gμ)( 1
λ̄
) = 0 for all λ ∈ B(eiθ , δ) ∩ 	 1

2
(eiθ ) \ Eδ.

By Proposition 2.3 for p = t, q = t ′, f ∈ Rat(K) ⊂ C(D), and g = G, for
eiθ ∈ ∂so! ∩ N (h) \ Z1 \ Z3 with m(Z3) = 0, 	r1

1
2
(eiθ ) ⊂ !, 0 < β < 1

16 , and

b > 0, there exist 0 < δ1
a < 1−max( 3

4 , r1), E
f
δ ⊂ B(eiθ , δ), and ε1(δ) > 0, where

0 < δ < δ1
a, such that limδ→0 ε

1(δ) = 0, γ (Ef
δ ) < ε1(δ)δ,

∣

∣

∣

∣

∣

C
(

(1− λ̄0z)
2
t

(1− |λ0|2) 1
t

f Gμ

)

(λ)

∣

∣

∣

∣

∣

≤
⎛

⎝b + 1+ 4β

1− 4β

(∫

T

1− |λ0|2
|1− λ̄0z|2 |G|

t ′dμ

)
1
t ′
⎞

⎠ ‖f ‖Lt (μ)

(2.12)

for λ0 ∈ ∂B(eiθ , δ
2 ) ∩ 	 1

4
(eiθ ) and all λ ∈ B(λ0, βδ) \ Ef

δ .

Set Z = Z1 ∪ Z2 ∪ Z3. For eiθ ∈ ∂so! ∩ N (h) \ Z, set δa = min(δ0
a, δ

1
a) and

ε(δ) = min(ε0(δ), ε1(δ)). Then for eiθ ∈ ∂so! ∩N (h) \Z and 0 < δ < δa, (2.11)
and (2.12) hold. From semi-additivity of Theorem 2.1 (2), we get

γ (Eδ ∪ E
f
δ ) ≤ AT (γ (Eδ)+ γ (E

f
δ )) ≤ 2AT ε(δ)δ.

Let δ be small enough so that ε(δ) < β
2AT

ε1, where ε1 is as in Corollary 2.5. For

λ0 ∈ ∂B(eiθ , δ
2 ) ∩ 	 1

4
(eiθ ) and all λ ∈ B(λ0, βδ) \ (Eδ ∪ E

f
δ ), it is clear that

f (λ)C(Gμ)(λ) =
∫

f (z)

z− λ
G(z)dμ(z) = C(fGμ)(λ)
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since f (z)−f (λ
z−λ ∈ Rt (K,μ). Together with (2.11) and (2.12), we have the following

calculation:

|1− λ̄0λ| ≥ 1− |λ̄0|2 − |λ− λ0||λ̄0| ≥ 1− |λ̄0|2 − βδ|λ0|

and

(1− |λ0|2) 1
t |f (λ)| ≤ |(1− λ̄0λ)

2
t (1− |λ0|2)− 1

t f (λ)|
(1− β

δ|λ0|
1−|λ0|2 )

2
t

= 1

(1− β
δ|λ0|

1−|λ0|2 )
2
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C
(

(1− λ̄0z)
2
t

(1− |λ0|2) 1
t

fGμ

)

(λ)

C(Gμ)(λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
b + 1+4β

1−4β

(

∫

T

1−|λ0|2
|1−λ̄0z|2 |G|

t ′dμ
) 1

t ′

(1− 4β)
2
t (|G(eiθ )|h(eiθ )− b)

‖f ‖Lt (μ).

Since γ (Eδ ∪ E
f
δ ) < ε1βδ, from Corollary 2.5, we conclude

Mλ0 ≤ sup
f∈Rat(K)
‖f ‖

Lt (μ)
=1

|f (λ0)| ≤ sup
f∈Rat(K)
‖f ‖

Lt (μ)
=1

‖f ‖
L∞(B(λ0,βδ)\(Eδ∪Ef

δ ))

for λ0 ∈ ∂B(eiθ , δ
2 ) ∩ 	 1

4
(eiθ ). Hence,

lim
	 1

4
(eiθ )7λ0→eiθ

(1− |λ0|2) 1
t Mλ0 ≤

b + 1+4β
1−4β |G(eiθ )|(h(eiθ )) 1

t ′

(1− 4β)
2
t (|G(eiθ )|h(eiθ )− b)

since 1−|λ0|2
|1−λ̄0z|2 is the Poisson kernel. Taking b→ 0 and β → 0, we get

lim
	 1

4
(eiθ )7λ→eiθ

(1− |λ|2) 1
t Mλ ≤ 1

h(eiθ )
1
t

.

The reverse inequality is from Lemma 1 in [8] (applying the lemma to testing

function (1− λ̄0z)
− 2

t ). This completes the proof. ��
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