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Abstract. Underwater images often suffer from scattering and color
distortion because of underwater light transportation characteristics and
water impurities. Presence of such factors make underwater image clas-
sification task very challenging. We propose a novel classification con-
volution autoencoder (CCAE), which can classify large size underwater
images with promising accuracy. CCAE is designed as a hybrid network,
which combines benefits of unsupervised convolution autoencoder to
extract non-trivial features and a classifier, for better classification accu-
racy. In order to evaluate classification accuracy of proposed network,
experiments are conducted on Fish4Knowledge dataset and underwater
synsets of benchmark ImageNet dataset. Classification accuracy, preci-
sion, recall and f1-score results are compared with state-of-the-art deep
convolutional neural network (CNN) methods. Results show that pro-
posed system can accurately classify large-size underwater images with
promising accuracy and outperforms state-of-the-art deep CNN methods.
With the proposed network, we expect to advance underwater image clas-
sification research and its applications in many areas like ocean biology,
sea exploration and aquatic robotics.

Keywords: Convolutional autoencoder · Deep learning ·
Convolutional neural network · Underwater images

1 Introduction

Underwater image classification has recently attracted many computer vision
researchers because of its applications in marine sciences and autonomous under-
water vehicles (AUV). Underwater image classification is a challenging task
because of complex underwater environment and poor lighting conditions. Fac-
tors such as wavelength dependent absorption and scattering of light degrade the
visibility of underwater images and make them poorly contrasted and blur [1].
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These factors hinder the performance of underwater image classification appli-
cations used in sea exploration, aquatic robotics and sea environmental surveil-
lance [2].

In recent years, most of the studies used for underwater image classification
are deep learning based. Hongwei et al. [3] used combination of CNN, support
vector machine (SVM), principal component analysis (PCA) and spatial pyramid
pooling (SPP) for classification of fish species from Fish4Knowledge dataset. Xin
et al. [4] used same Fish4Knowledge dataset for fish classification and tracking
from videos. Xu et al. [5] used pre-trained GoogleNet along with augmentation
techniques for underwater image classification. Limited labelled data is used by
Siddiqui et al. [6] for automatic classification of fish through pre-trained neural
networks. Jin et al. [7] used pre-trained AlexNet, trained on ImageNet dataset,
for underwater image recognition in small sample size situations.

Convolutional Autoencoder (CAE) is a type of unsupervised learning [8].
CAE extends the basic structure of the autoencoder by using convolution layers
instead of the fully connected layers to preserve the spatial locality of input data
[9]. It consists of two parts, encoder and decoder [10]. Encoder part consists of
pooling layers and convolutional layers. Decoder part consists of up-sampling
layers and deconvolution layers. CAE tries to regenerate input at the output by
using learned convolution filters. Learned convolutional filters extract non trivial
features from the input. Extracted features can be used for classification.

In this study we propose a novel deep classification convolutional autoen-
coder, named CCAE. CCAE is designed as a hybrid classification convolutional
autoencoder architecture. The main objective behind architecture of CCAE is
the better feature extraction mechanism by combining classification layer with
deep encoder-decoder network during the training as well as the testing phase.
It extracts spatially localized features with hint of class. It combines capabil-
ity of CNN to extract features from images [11] and capability of autoencoder
(AE) to compress high dimensional data to low dimension [12] and a classifier to
extract features with hint of class. Experiments are conducted, on underwater
synsets of benchmark ImageNet dataset [13] and Fish4Knowledge dataset [14]
(fish recognition ground truth dataset made by the Fish4-Knowledge project), to
verify the architecture of CCAE. Results show that CCAE can correctly classify
underwater images with promising accuracy. Classification accuracy, precision,
recall and f1-score results of the proposed method are compared with state-of-
the-art deep CNN methods such as ResNet [15], DenseNet [16], Inception [17]
and Xception [18].

The rest of this paper is organized as follows. In Sect. 2, we review CAE. In
Sect. 3, we present details of the proposed deep network. Experimental design is
discussed in Sect. 4. Experiment results are presented and discussed in Sect. 5.
Conclusion is drawn in Sect. 6.
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2 Background

2.1 Convolutional Autoencoder

AE is a special type of neural network mainly used for data dimension reduction
[19]. The AE consists of an encoder and a decoder. The encoder part encodes
the input data to a hidden representation by using a deterministic nonlinear
function, and then the decoder part reconstructs the input back to the original
input space [20]. The connections between layers are fully connected.

CAE is categorized as unsupervised learning algorithm [8]. It combines bene-
fits of CNN with unsupervised pre-training of AE [21,22]. It also consists of two
parts, encoder and decoder [10]. Encoder part mainly consists of convolutional
layers and pooling layers. The encoder convolutionally transforms the input into
a latent space. Contrary to traditional AE, CAE preserves the spatial relation-
ship of the input through a bank of 2-D convolutional filters [23]. CAE archi-
tecture is mainly used for semantic segmentation [24], image denoising/dehazing
[25], deep clustering [26] and for feature extraction [23].

Encoder part is used to extract non-trivial (compressed) features [27].
Decoder part consists of deconvolution layers and up-sampling layers. The
decoder tries to regenerate the input by mapping the latent layer data back
to the original input space by minimizing the reconstruction error. Extracted
compressed features can also be used for classification [23].

For a given input image X the encoder function is defined as

Yi = encoder(X) = σ(X ∗ W i + b) (1)

Where b is encoder bias, Yi is encoding of the input X in a low dimensional space,
W i is 2-D convolutional filter, * is 2-D convolution and σ denotes activation
function such as ReLU [28].

In decoding phase, Yi is the input of the decoding function, which can be
defined as

G = decoder(Yi) = σ(Yi ∗ W̃ i + b̃) (2)

Where W̃ i is 2-D convolutional filter in decoder and b̃ is bias of decoder,
Mean square error (MSE) function E, as described below, is used as cost

function to make output G as close as possible to input X.

E(θ) = 1/n
∑m

i=1
(Gi − Xi)

2 (3)

Back propagation algorithm is used to calculate the gradient of the error function
with respect to the parameters as

δE(θ)
δW i

= X ∗ ∂Yi + Ỹi ∗ ∂G (4)

∂G and ∂Y are deltas of the reconstruction and latent space.
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Fig. 1. CCAE architecture diagram

3 Proposed Method

Proposed deep neural network CCAE combines benefits of unsupervised learning
and supervised learning. It consists of deep encoder network and corresponding
decoder network, combined with a classification layer. CCAE layer wise architec-
ture is elaborated in Fig. 1. Each convolution layer consists of different number
of channels. CCAE encoder part takes an image as an input, convolves the input
with convolution filters trained during the training phase and extracts non-trivial
features of the input image. After the last layer (average pooling) of encoder, a
classification layer is attached. The classification layer i.e. softmax, is an inte-
gral part of encoder-decoder network during the training as well as during the
testing phase. This architecture is used to leverage better features with hint of
class. Output of the average pooling layer of encoder is taken as an input to
the decoder module. Proposed layers configuration of the encoder module and
number of channels in each layer, offer improved feature extraction capability for
better classification results. Table 1 summarizes configuration of CCAE layers in
terms of number of channels, filter sizes, layer type, output size and input to
each layer. Layers of encoder and decoder are separately arranged in Table 1.
Keeping in view limitation of space, batch normalization layer used after every
convolution layer is not mentioned in Table 1.

As convolution autoencoder is a type of unsupervised learning, so it is trained
in an unsupervised way to extract features. In proposed network encoder-decoder
network is trained through ensemble of a classification layer with the encoder
during the training phase. Moreover, the decoder part is an integral part of
the network during the training and testing phases. This training mechanism
improves feature extraction by extracting non-trivial features with hint of class,
which results in improvement in classification accuracy.
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The following subsections describe the proposed module in detail.

3.1 Encoder

The encoder part of CCAE takes an image as an input and extracts the non-
trivial features of the input image as described in Eq. (1). The encoder module
consists of 8 convolution layers as shown in Fig. 1. Size of feature map output
of each layer decreases from the first conv1 (192 × 192) to the last convolu-
tion layer con8 (6 × 6). Number of channels of convolution layers of encoder
module increases from the first convolution layer conv1 (64 channels) to the last
convolution layer conv8 (512 channels), as shown in Table 1. Each convolution
layer performs the convolution operation to generate a set of feature maps. For
element-wise non-linearity ReLU max(0, x) [28] is used with each convolution
layer. Regularization of network is done by decreasing the inner co-variate shift
of data by using batch normalization layer after every convolution layer [29].

Pooling is used in the encoder network to filter noisy activations in lower
layers and to retain robust activations in upper layers [30]. It also reduces the
number of connections between convolutional layers which results in computa-
tional efficiency. Max-pooling layer with stride 2 (non-overlapping) and window
size 2 × 2 is used after each convolution block to sub-sample output by factor of
2. For robust feature extraction, translation in-variance is achieved by using sev-
eral max-pooling layers. After the last convolution layer (conv8) of the encoder
module, an average pooling layer is used instead of a max pooling layer. Softmax
classifier is used as activation non-linearity at the end of the encoder module.
Output of the average pooling layer is first flattened (reshaped) and then it is
given as an input to softmax classifier.

3.2 Decoder

The decoder module tries to reconstruct the same input at output layer through
the combination of up-sampling and de-convolution as described in Eq. (2). It
up-samples the encoded feature maps, by using a trainable filter bank. In the
decoder, there are de-convolutional and up-sampling layers corresponding to each
convolution and pooling layer in encoder. Hence, decoder part also consists of 8
de-convolution layers.

In the decoder, de-convolution operation is achieved using convolution oper-
ation along with up-sampling [31]. Contrary to convolution and pooling oper-
ations, the output of the de-convolutional operation is an enlarged and dense
activation map. The output of an unpooling layer is an enlarged, yet sparse
activation map. The convolution layer is used to densify the sparse activations
obtained as output of unpooling. Each convolution layer performs convolution
operation to up-sampled input by a factor of stride value with padding through
trainable decoder filter banks. A batch normalization layer is employed after each
convolution layer. Inspired by DeepLab [32], bilinear interpolation algorithm is
employed in up-sampling layer.
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Table 1. CCAE layers configuration

Encoder

Layer Type Filter Output Size Connected to

Input – 192 × 192 × 3 –

conv1 3 × 3 192 × 192 × 64 Input

maxpooling1 2 × 2 96 × 96 × 64 conv1

conv2 3 × 3 96 × 96 × 64 maxpooling1

maxpooling2 2 × 2 48 × 48 × 64 conv2

conv3 3 × 3 48 × 48 × 64 maxpooling2

maxpooling3 2 × 2 24 × 24 × 64 conv3

conv4 3 × 3 24 × 24 × 128 maxpooling3

maxpooling4 2 × 2 12 × 12 × 128 conv4

conv5 3 × 3 12 × 12 × 256 maxpooling4

conv6 3 × 3 12 × 12 × 256 conv5

maxpooling5 2 × 2 6 × 6 × 256 conv6

conv7 3 × 3 6 × 6 × 512 maxpooling5

conv8 3 × 3 6 × 6 × 512 conv7

avgpooling1 6 × 6 1 × 1 × 512 conv8

softmax . avgpooling1

Decoder

conv9 1 × 1 1 × 1 × 512 avgpooling1

upsampling1 6 × 6 6 × 6 × 512 conv9

conv10 3 × 3 6 × 6 × 512 upsampling1

conv11 3 × 3 6 × 6 × 512 conv10

upsampling2 2 × 2 12 × 12 × 512 conv11

conv12 3 × 3 12 × 12 × 256 upsampling2

conv13 3 × 3 12 × 12 × 256 conv12

upsampling3 2 × 2 24 × 24 × 256 conv13

conv14 3 × 3 24 × 24 × 128 upsampling3

upsampling4 2 × 2 48 × 48 × 128 conv14

conv15 3 × 3 48 × 48 × 64 upsampling4

upsampling5 2 × 2 96 × 96 × 64 conv15

conv16 3 × 3 96 × 96 × 64 upsampling5

upsampling6 2 × 2 192 × 192 × 64 conv16

conv17 3 × 3 192 × 192 × 3 upsampling6
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In decoder module, the trained filters in convolutional layers correspond to
bases to reconstruct shape of an input image. Therefore, similar to the encoder
module, a hierarchical structure of convolutional layers are used to capture dif-
ferent level of input image details.

3.3 Loss Function

CCAE has two output layers, so it is a challenging task to train this deep network.
Let L represents the total loss function of CCAE, which is can be calculated as
follow:

L = Lr + Lc (5)

Where, Lr represents mean square error (MSE) and used to make output of
convolutional autoencoder as close as possible to input, as discussed in Eq. (3).
Lc represents categorical cross entropy loss used for classification.

Lc = −
∑N

i=1

∑K

k=1
tiklog(yik) (6)

Where, tik is the target, yik is the calculated output probability. During the
training process, in order to minimize loss L, CCAE tries to minimize Lr and
Lc simultaneously.

4 Experimental Design

We conducted experiments on underwater synsets of benchmark ImageNet
dataset [13] and Fish4Knowledge dataset to demonstrate the effectiveness of
proposed method for better classification. We perform comparisons with state-
of-the-art deep CNN methods such as ResNet [15], DenseNet [16], Inception [17]
and Xception [18].

4.1 Datasets

Experiments are conducted on Fish4Knowledge dataset [14] and underwater
synsets of benchmark ImageNet dataset. Scattering and absorption of underwa-
ter light causes color distortion and visibility degradation to underwater images.
Water impurities and high water density augment the complexity of underwa-
ter image classification task. In both datasets images vary significantly in size,
object orientation, scale and underwater opacity level [33].

Fish4Knowledge. Fish4Knowledge dataset consists of underwater images of
different fish species. The detail of classes included in this dataset is shown in
Table 2. This underwater live fish dataset is prepared from live videos recorded
from the under sea. There are total 23 species and total 27,370 fish images.
Images in dataset are manually labeled by expert marine biologists. Images vary
in size ranging from about 20 × 20 to about 200 × 200 pixels. The number of
fish images in different classes are quite imbalanced. The number of images in
big class is almost 1000 times of the least one. So it is quite difficult to achieve
a high accuracy over the whole dataset.
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Table 2. Fish4Knowledge dataset

ID Class Images ID Class Images

1 Dascyllus reticulatus 12112 13 Plectroglyphidodon dickii 3683

2 Chromis chrysura 3593 14 Amphiprion clarkii 4049

3 Chaetodon lunulatus 253 15 Chaetodon trifascialis 190

4 Myripristis kuntee 450 16 Acanthurus nigrofuscus 218

5 Neoniphon sammara 299 17 Abudefduf vaigiensis 98

6 Hemigymnus fasciatus 241 18 Pomacentrus moluccensis 181

7 Canthigaster valentini 147 19 Hemigymnus melapterus 42

8 Lutjanus fulvus 206 20 Scolopsis bilineata 49

9 Scaridae 56 21 Pempheris vanicolensis 29

10 Zanclus cornutus 21 22 Neoglyphidodon nigroris 16

11 Zebrasoma scopas 90 23 Balistapus undulatus 41

12 Siganus fuscescens 25 ... ...

ImageNet Underwater Synsets. There are forty five (45) synsets related
to underwater environment in ImageNet dataset [5]. These synsets consists of
images both from underwater and on water surface. The detail of these under-
water synsets is shown in Table 3. We take all forty five underwater synsets for
experiments, and divided them in three (03) groups i.e. G I, G II and G III. So,
each group consists of fifteen (15) synsets. One group is taken at a time for a
single experiment.

Table 3. ImageNet underwater synsets

Group I synsets Images Group II synsets Images Group III synsets Images

Great White Shark 1242 Lobster 1206 Steller Seal 1342

Scubadiving 1507 Hammer head shark 1094 Liner 1385

Australian Seal 1200 Snorkel Diving 1257 Nuclear submarine 1161

Star Fish 1396 California seal 1245 Whale Shark 1185

Sea Fan 1270 Sea slug(Hermissenda) 2211 Dugong 1018

Attack Submarine 1014 Prawn 1156 Skin diving 1211

Sea snake 1108 Corel Reef 1706 Lion fish 1513

king crab 1019 Wreck 1240 American lobster 1123

Shrimp 1236 Sea pen 1084 Rock crab 1215

Sea turtle 1485 Sea cucumber 1167 Sea urchin 1186

Sea bed 1071 Sea horse 1272 Walrus 1101

Aircraft career 1321 Battle ship 1185 Sea otter 1385

Sea hare 1138 Manatee 1360 Sea slug 711

Chiton 971 Sea cow 424 Bivalve 865

Sea lampery 670 Oster 882 Rockfish 1415
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4.2 Parameters Settings

To leverage computational efficiency all images of ImageNet underwater synsets
are resized to 192 × 192 pixels. All images of Fish4Knowledge dataset are resized
to 96 × 96 pixels.

For fair comparison all methods are trained only on synsets used in experi-
ments without any data augmentation technique. CCAE is trained using ADAM
[34] with learning rate=0.001 and batch size 32. For fair comparison, all meth-
ods used for comparison are trained with same parameters. All methods run for
120 epochs for ImageNet dataset and for 50 epochs for Fish4Knowledge dataset.
In all experiments 70% of the available data is randomly allocated for training
and remaining 30% for testing. We implemented CCAE using TensorFlow with
Keras as deep learning framework on Google Colab having Tesla K80 GPU.

5 Results and Discussion

5.1 Results

To make comparison, we implemented ResNet [15], DenseNet [16], Inception [17]
and Xception [18] as per settings recommended by respective authors.

Table 4 shows the results of classification accuracy, precision, recall and f1-
score of all methods for ImageNet underwater synsets of Group I. Results show
that proposed approach achieved accuracy of 73.75% and outperformed all other
methods. DenseNet performed better than other CNN methods and achieved
accuracy of 70.54%. Accuracy of Inception remained low among all methods
with score of 58.95%. CCAE achieved f1-score of .72, whereas both DenseNet
and Xception net achieved f1-score of .71.

Table 4. Classification accuracy, precision, recall and f1-score comparison for ImageNet
synsets group I

Method Accuracy Precision Recall F1-Score

CCAE 0.7375 0.73 0.72 0.72

DenseNet 0.7054 0.72 0.71 0.71

ResNet 0.6129 0.67 0.63 0.65

Inception 0.5895 0.61 0.60 0.60

Xception 0.6988 0.73 0.70 0.71

Classification accuracy, precision, recall and f1-score of ImageNet synsets of
Group II are elaborated in Table 5. Proposed method achieved 70.98% accuracy,
best among all methods. Among other methods DenseNet achieved better accu-
racy of 68.38%. Inception remained again at bottom level with 57.14% accuracy.

Results for classification accuracy, precision, recall and f1-score Group III
synsets are depicted in Table 6. Proposed method again achieved best accuracy
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Table 5. Classification accuracy, precision, recall and f1-score comparison for ImageNet
synsets group II

Method Accuracy Precision Recall F1-Score

CCAE 0.7098 0.72 0.71 0.71

DenseNet 0.6838 0.70 0.69 0.69

ResNet 0.5966 0.64 0.62 0.63

Inception 0.5714 0.60 0.59 0.59

Xception 0.6718 0.69 0.68 0.68

Table 6. Classification accuracy, precision, recall and f1-score comparison for ImageNet
synsets group III

Method Accuracy Precision Recall F1-Score

CCAE 0.7137 0.71 0.70 0.70

DenseNet 0.6735 0.69 0.69 0.69

ResNet 0.6149 0.65 0.63 0.64

Inception 0.5826 0.58 0.58 0.58

Xception 0.6538 0.66 0.65 0.65

with score 71.37%. DenseNet achieved accuracy of 67.35%, which is better than
remaining methods.

Table 7 shows the classification accuracy, precision, recall and f1-score results
of Fish4Knowledge dataset. All twenty three (23) classes are taken simultane-
ously for classification. It is evident that proposed method CCAE performed bet-
ter than other methods and achieved accuracy of 99.28%. Among other methods
DeepFish net with SVM classifier using data augmentation and scaling proposed
by Hongwei achieved better accuracy with score 98.64%. Whereas, classification
accuracy of 98.59% was achieved by DeepFish net with data augmentation. It
is not worthy that our method achieved best accuracy among all methods with-
out using any augmentation technique. Among other deep CNN methods Xcep-
tion achieved better accuracy of 98.34%. Classification accuracy of Inception
remained low among all used methods with scorer of 90.50%. CCAE achieved
0.99 precision score, the highest among all methods. Recall score of three meth-
ods such as CCAE, DenseNet and Xception remained same i.e. 0.98. Similarly
CCAE, DenseNet and Xception achieved the same f1-score i.e. 0.98.

As observed, proposed method achieves best classification accuracy in all
experiments for both datasets, which also highlights the robustness of our
method. Whereas, it can also be observed that generally DenseNet performed
better classification than ResNet, Inception and Xception in ImageNet under-
water synsets classification. Whereas, DeepFish achieved better classification
accuracy results as compared to state-of-the-art deep CNN methods. It is note-
worthy that all five methods achieved best accuracy results for classification of
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Table 7. Classification accuracy, precision, recall and f1-score comparison for
Fish4Knowledge dataset

Method Accuracy. Precision Recall F1-Score

CCAE 0.9928 0.99 0.98 0.98

DenseNet 0.9758 0.98 0.98 0.98

ResNet 0.9480 0.96 0.95 0.95

Inception 0.9050 0.92 0.91 0.91

Xception 0.9834 0.98 0.98 0.98

DeepFish-SVM-aug-scale [3] 0.9864 ... ... ...

DeepFish-SVM-aug [3] 0.9859 ... ... ...

Deep-CNN [3] 0.9857 ... ... ...

DeepFish-Softmax-aug-scale [3] 0.9849 ... ... ...

fish4knowledge dataset as compared to ImageNet underwater synsets classifi-
cation. Whereas, generally all five methods achieved worst accuracy results for
classification of ImageNet underwater synsets group II.

5.2 Discussion

CCAE architecture takes advantage of both unsupervised learning as well as
the localized spatial features enabled by convolutional filtering. It outperformed
other state-of-the-art deep CNN architectures such as Deepfish, Inception,
ResNet, DenseNet and Xception. The training of CCAE is carried out by ensem-
ble of a softmax classifier during training time with the convolutional autoen-
coder architecture. This training strategy enabled the network to extract better
feature extraction, which resulted in improved classification accuracy results.

Experiments are also conducted to assess the impact of number of layers and
number of channels in each layer, on classification accuracy. Various experiments
are conducted to determine the most appropriate number of layers and filters for
best classification results. ImageNet underwater synsets of group I are taken for
experiments. Table 8 shows the result of comparison of classification accuracy
for different number of layers and filters.

Table 8. Impact of no. of layers and no. of filter on accuracy

Sr. no. Layers Filters in each layer Accuracy

1 08 64-64-64-128-256-256-512-512 0.7375

2 08 64-128-256-256-512-512-512-512 0.7216

3 09 64-64-128-256-256-512-512-512-512 0.6269

4 10 x64-64-128-128-256-256-512-512-512-512 0.6114
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Results as shown in Table 8 suggest that best classification accuracy with
score 73.75% is achieved with CCAE encoder architecture which consists of 08
convolution layers (serial no 1 in Table 8). When number of channels in few layers
changed by keeping the number of layers same, as shown at serial no 2 of Table 8,
the classification accuracy of 72.16% achieved. This configuration of layers and
channels in the encoder module is similar to VGG11 architecture. Classification
accuracy keeps decreasing when one more convolution layer having 64 channels
added to the serial 2 configuration. New configuration is shown at serial number
3 in Table 8. Configuration of layers and channels of the encoder at serial no
4 in Table 8 is similar to the VGG13 architecture. It consists of 10 convolution
layers. Classification accuracy of 61.14% is achieved by using this configuration.
From this experiment it can be inferred that increasing number of channels and
number of layers in design of the encoder of CCAE does not result in increase
in classification accuracy. And CCAE encoder architecture is most optimized to
achieve best classification accuracy results.

Max pooling layer is used after every convolution layer of the encoder module.
Avg pooling layer is used after last convolution layer of the encoder module.
Two commonly used pooling layers in deep CNN are avg pooling layer and max
pooling layer. We conducted the experiments to find better pooling layer to be
used after last convolution layer of encoder. It was found during the experiments
that classification accuracy of 73.75% was achieved by using Avg pooling layer.
Whereas, classification accuracy dropped to 57.38% when max pooling layer is
used after last convolution layer of the encoder module. It can be inferred that
important information of features of the input image is retained by using avg
pooling layer at the end of last convolution layer of the encoder module, which
in result improves the classification accuracy.

6 Conclusion

In this paper, a novel feature extraction technique is proposed to improve the
accuracy of image classifiers. Proposed model uses the strength of unsupervised
deep convolutional autoencoder to learn useful features from large training data
set to train a supervised softmax classifier. Experiments on underwater image
data sets demonstrate that proposed model has remarkably improved classi-
fication accuracy. Classification accuracy, precision, recall and f1-score results
showed that proposed model has out performed state-of-the-art deep CNN meth-
ods. The proposed model can easily be used to other image classification and
object recognition tasks.
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