
MicroPython or Arduino C for ESP32 -
Efficiency for Neural Network Edge Devices

Kristian Dokic1(B) , Bojan Radisic1 , and Mirko Cobovic2

1 Polytechnic in Pozega, Pozega, Croatia
kdjokic@vup.hr

2 College of Slavonski Brod, Pozega, Croatia

Abstract. In the last few years, microcontrollers used for IoT devices became
more and more powerful, and many authors have started to use them in machine
learning systems. Most of the authors used them just for data collecting for ML
algorithms in the clouds, but some of them implemented ML algorithms on the
microcontrollers. The goal of this paper is to analyses the neural networks data
propagation speed of one popular SoC (Espressif System company ESP32) with
simple neural networks implementation with two different development environ-
ment, Arduino IDE and MycroPython. Neural networks with one hidden layer
are used with a different number of neurons. This SoC is analysed because some
companies started to produce them with UXGA (Ultra Extended Graphics Array)
camera implemented and it can be used to distribute computing load from central
ML servers.

Keywords: Neural network · ESP32 · Arduino ·MicroPython

1 Introduction

The traditional approach of artificial intelligence algorithm usage forces centralised
schema. This approach is simpler, but in some cases, it makes the high load on a central
server. One solution is to transfer tasks from the central server to smaller processors
or microcontrollers on edge, and this is called edge computing. This approach reduces
network traffic since edge nodes upload reduced data instead of complete input data [1].

In the last few years, many microcontroller producers have worked on artificial
intelligence implementation on microcontrollers. Some of them have developed special
libraries with AI functions, but the others have implemented special hardware with
enhanced AI capabilities.

In this paper, a low-cost Chinese SoC ESP32 is tested with feed-forward neural
networks on two different development environment, Arduino IDE and MycroPython.
Espressif System, a company from China introduced ESP32 before three years. It does
not have machine learning capabilities. It is manufactured using a 40 nm process by
TSMC (Taiwan Semiconductor Manufacturing Company) [2]. Many projects have been
developed with ESP32 SoC like water pumping solar system [3], or monitors for Lique-
fied petroleum gas [4]. Some authors suggested that ESP32 will play one of the major
role in future Internet of Things devices development [5].

© Springer Nature Switzerland AG 2020
C. Brito-Loeza et al. (Eds.): ISICS 2020, CCIS 1187, pp. 33–43, 2020.
https://doi.org/10.1007/978-3-030-43364-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43364-2_4&domain=pdf
http://orcid.org/0000-0003-4358-9065
http://orcid.org/0000-0001-7870-193X
http://orcid.org/0000-0001-7104-3321
https://doi.org/10.1007/978-3-030-43364-2_4


34 K. Dokic et al.

In the second section, some papers that deal with machine learning usage and ESP32
are presented, but in the third section, some development environments for ESP32 are
presented. In the fourth section, neural networks forward propagation times with a dif-
ferent number of neurons in the hidden layer are measured. Finally, in section five,
discussion and conclusion can be found.

2 ESP32 and Machine Learning

ESP32 is used for various machine learning tasks, but usually only for measuring and
collecting data for dislocated machine learning servers. On the other hand, some papers
deal with ESP32 usage in projects that have machine learning algorithms implemented.
In the next two paragraphs, papers that deal with these two different approaches are
analysed.

2.1 Machine Learning on the Cloud

Zidek et al. used ESP32 SoC with different sensors for wireless devices input data
optimization. Data was accumulated into the packet and then the hole packet was sent
to the cloud service [6].

Rosato and Masciadri have chosen Logistic Regression to detect sitting person with
the device based on ESP32 SoC. They made monitoring system and the key component
with ESP32 was installed under the person chair. Data has been analysed on the server,
and ESP32 has been wirelessly connected to it [7].

Islam et al. designed small device that can record electrical activity of the human
heart using electrodes placed on the skin. This device has been based on the Analog
Devices AD8232. They used ESP32 SoC to send data to the server. Linux server has
been used to analyse data with machine learning algorithms [8].

Fernoaga et al. used ESP32 to take pictures of gas, electricity or water counters.
These devices have had implemented cameras and they have sent pictures to the cloud.
Numbers from the counters are recognised by neural networks from supplied pictures
[9].

Komarek et al. presented a project that provide a layer that usesMQTT (MQTeleme-
try Transport) for interfacing sensors and nodes. They used ESP32 SoC to send data to
other nodes and the cloud for the ambient intelligence system [10].

Chand et al. used ESP32 SoC for a person behavior and status prediction in one
room. They used ultrasonic sensors and data from sensors are sent to a server. The main
goal of the server was to decide whether it is normal or abnormal situation. This decision
system is based on machine learning algorithms [11].

2.2 Machine Learning on an ESP32

Espressif Systems company developed ESP-WHO framework for face detection and
recognition. This framework is based on Multi-task Cascaded Convolutional Networks
model and new mobile architecture - MobileNetV2 and it is available on the GitHub.



MicroPython or Arduino C for ESP32 35

The main difference between this framework and previously mentioned projects is in the
fact that ESP-WHO has face detection and recognition algorithms on the ESP32 SoC
[12, 13].

Kokoulin et al. used ESP32 SoC for the system that process video stream and detect
presence of faces or silhouettes. Only images with faces or silhouette are sent to the cen-
tral face recognition server. The main goal of that system were network traffic reduction
as well as central face recognition server computing load reduction. Estimated network
traffic decrease up to 80–90% [14].

3 ESP32 Development Environments

ESP-IDF (Espressif IoT Development Framework) is the official development frame-
work for the ESP32 SoC. ESP-IDF is the most powerful framework, and it can be used
with Linux andWindowsOS. Because of ESP32 popularity some other tools are adapted
to ESP32. Most popular are Arduino IDE and MicroPython, and they will be analysed.

On the other hand, there are lots of development environments that can be used for
ESP32 projects development. KB-IDE is open IDE available on GitHub for ESP32 SoC
boards. It supports visual programming similar to Scratch, Arduino style programming,
and the official ESP-IDF framework for more experienced users (https://kbide.org/). Lua
programming language can be used with ESP32, too. With ChiliPeppr ESP32Web IDE,
a browser can be used for editing/uploading Lua code to ESP32 device. The ChiliPeppr
IDEhas a serial port JSON (JavaScriptObjectNotation) Server that can be used locally or
remotely to let browser communicate directly to serial port and ESP32 (http://chilipeppr.
com/esp32). ESP32 is supported by PlatformIO. It is a cross-platform code builder
and library manager. It supports more than 200 development boards, 15 development
platforms and ten frameworks.

3.1 Arduino IDE

Arduino IDE is java application used to write programs for Arduino compatible boards.
It can be used with ESP32, but first some additional software components have to be
downloaded before use. The Arduino IDE supports simplified versions of C and C++
languages. Arduino is well known Italian company with lots of microcontroller boards
that are licensed under the LGPL (Lesser General Public License) or the GPL (General
Public License). In Fig. 1, the Arduino IDE can be seen.

https://kbide.org/
http://chilipeppr.com/esp32


36 K. Dokic et al.

Fig. 1. Arduino IDE

3.2 MicroPython

MicroPython is an implementation of a Python programming language optimised to run
on somemicrocontrollers. Some of the core Python libraries are included, but it includes
modules that allow low-level hardware access to the programmer. MicroPython was
created by Australian programmer Damien George. It does not have rich IDE, but on
their web page spycraft IDE is suggested. In Fig. 2, uPyCraft IDE can be seen.

Fig. 2. uPyCraft IDE



MicroPython or Arduino C for ESP32 37

4 Neural Networks Forward Propagation Speed

Teerapittayanon suggests that their Distributed Deep Neural Networks model can reduce
the communication cost by a factor of over 20x but to achieve this, so-called “edge” or
“end” devices have to use simple Machine Learning models and process data from
sensors [15]. Zhang describes keyword spotting device based on Cortex-M7 based
STM32F746G-DISCO development board. Keyword spotting devices are typical exam-
ples of edge devices that are based on tiny microcontrollers with limited memory and
compute capability. They require real-time response and high accuracy for good user
experience [16]. Lai quotes that “Deep Neural Networks are becoming increasingly
popular in always-on IoT edge devices performing data analytics right at the source,
reducing latency as well as energy consumption for data communication”. Lai used
Arm Cortex-M processor board and achieved 4.6X improvement in runtime/throughput
and 4.9X improvement in energy efficiency with CMSIS-NN kernels [17].

There are lots of examples where a neural network is trained on a powerful computer
and then deployed to tinymicrocontroller to analyse some input data. In this paper ESP32
is tested for that task. The simple neural network is programmed with random weights
and different number of nodes and data propagation time is measured.

4.1 Data and Methods

Neural networkswith 50 input nodes and ten output nodes are programmedwithArduino
IDE and MicroPython. The number of hidden nodes in one hidden layer is between 50
and 200. A logistic sigmoid activation function is used (Fig. 3).

Fig. 3. Neural network with one hidden layer

Setup for testing is in Table 1.



38 K. Dokic et al.

Table 1. Testing setup

Input layer Hidden layer Output layer uC Weights
format

1 50 50 10 Arduino float

2 50 100 10 Arduino float

3 50 150 10 Arduino float

4 50 200 10 Arduino float

5 50 50 10 Arduino double

6 50 100 10 Arduino double

7 50 150 10 Arduino double

8 50 200 10 Arduino double

9 50 50 10 MicroPython float

10 50 100 10 MicroPython float

11 50 150 10 MicroPython float

12 50 200 10 MicroPython float

4.2 Microcontrollers

Two ESP32 based microcontrollers are used for testing purposes. ESP32 WROOM is
in Fig. 4, and PYCOMWIPY 3.0 is in Fig. 5. The main difference between them is that
PYCOM WIPY 3.0 has MicroPython installed and ready to be used. ESP32 WROOM
can be used with Arduino IDE without any setup.

Fig. 4. ESP32 WROOM (Arduino)

Both boards have Xtensa dual-core 32-bit LX6 microprocessor operating on
240MHz. ESP32WROOMhas only 520 KBRAM, but PYCOMWIPY 3.0 has 520 KB
and 4MB additional memory. WiFi and Bluetooth modules characteristics are same, but
ESP32 WROOM has serial to USB controller implemented on board.



MicroPython or Arduino C for ESP32 39

Fig. 5. PYCOM WIPY 3.0 (MicroPython)

4.3 Testing

There are different ways to test the speed of neural network data propagation, but in this
research digital oscilloscope is used. Some authors used implemented functions milis()
andmicros() on both platforms butmeasuringwith oscilloscope is better solution because
some processes in microcontroller cannot affect measuring.

To measure the time, GPIO (general-purpose input/output) output of the microcon-
troller is connected to an oscilloscope. Simple code in Arduino C andMicroPython with
tasks listed in Table 2 is prepared. This code has been used to measure frequency of
pin output rise and fall but these periods are too small to have any effect on measuring
accuracy. Periods can be seen in Table 3. All code listings can be found on GitHub.

Table 2. Code in Arduino C and MicroPython for pin output rise and fall

State Arduino C MicroPython

GPIO ON digitalWrite(LED_BUILTIN, HIGH); led.value(1)

GPIO OFF digitalWrite(LED_BUILTIN, LOW); led.value(0)

The results are in Table 3.

Table 3. Rise/fall period (Arduino C and MicroPython)

Platform Period

Arduino C 376 ns

MicroPython 11,75 µs

Oscilloscope screenshot can be seen in Fig. 6.
In the next step, neural network code has been implemented two times after GPIO

ON and GPIO OFF code on both platforms. The flowchart can be seen in Fig. 7.



40 K. Dokic et al.

Fig. 6. Oscilloscope screenshot

Fig. 7. Flowchart

Table 4. Final results

Input layer Hidden layer Output layer uC Weights
format

Period

1 50 50 10 Arduino float 2,58 ms

2 50 100 10 Arduino float 5,05 ms

3 50 150 10 Arduino float 7,56 ms

4 50 200 10 Arduino float 10,02 ms

5 50 50 10 Arduino double 6,50 ms

6 50 100 10 Arduino double 13,04 ms

7 50 150 10 Arduino double 19,63 ms

8 50 200 10 Arduino double 26,01 ms

9 50 50 10 MicroPython float 153,84 ms

10 50 100 10 MicroPython float 304,41 ms

11 50 150 10 MicroPython float 423,91 ms

12 50 200 10 MicroPython float 586,51 ms



MicroPython or Arduino C for ESP32 41

Results are in Table 4. Arduino C can use two floating-point number precisions,
and both of them are used in measuring. New MicroPython firmware support double-
precision floating-point numbers but it was unavailable to us, and in Table 4 there are
only four rows concerning MicroPython.

Results can also be seen in Fig. 8.

0 100 200 300 400 500 600 700

Arduino (float)

Arduino (double)

MicroPython (float)

period (ms)

200

150

100

50

Fig. 8. Periods for different platforms and hidden nodes

5 Discussion and Conclusion

It can be seen thatArduinoC based neural network has significant lower data propagation
latency than MicroPython based neural network. Some authors indicated this, but they
have tested propagation speed with integers. On the GitHub platform number of counts
running for 10 s for three different setups can be found. MicroPython on Teensy 3.1
(96 MHz ARM) counts to 1,098,681 for 10 s, but Arduino C on Teensy 3.1: (96 MHz
ARM) counts to 95,835,923 for the same period. Author used milis() function for time
measuring [18].

Arduino IDE is faster platform than MicroPython for neural networks development
on edge devices. This research can be expanded with other development environments,
especially with ESP-IDF. Some authors suggested that floating-point neural networks
can be replaced with integer neural networks when cost is primary design concern,
so it would be interesting to test performance and speed with integer neural networks
[19, 20].



42 K. Dokic et al.

References

1. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the Internet of Things with
edge computing. IEEE Network 32(1), 96–101 (2018)

2. Espressif System: ESP32Overview. https://www.espressif.com/en/products/hardware/esp32/
overview. Accessed 15 June 2019

3. Biswas, S.B., Iqbal, M.T.: Solar water pumping system control using a low cost ESP32micro-
controller. In: IEEE Canadian Conference on Electrical & Computer Engineering, Quebec
City (2018)

4. Abdullah, A.H., et al.: Development of ESP32-based Wi-Fi electronic nose system for mon-
itoring LPG leakage at gas cylinder refurbish plant. In: 2018 International Conference on
Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching
(2018)

5. Maier, A., Sharp, A., Vagapov, Y.: Comparative analysis and practical implementation of
the ESP32 microcontroller module for the Internet of Things. In: 7th IEEE International
Conference on Internet Technologies and Applications, Wrexham (2017)

6. Zidek, K., Janacova, D., Hosovsky, A., Pitel, J., Lazorik, P.: Data optimization for communi-
cation between wireless IoT devices and cloud platforms in production process. In: 3rd EAI
International Conference on Management of Manufacturing Systems, Dubrovnik (2018)

7. Rosato, D., Masciadri, A.: Non-invasive monitoring system to detect siting people. In:
Goodtechs, Bologna (2018)

8. Islam Chowdhuryy, M.H., Sultana, M., Ghosh, R., Ahamed, J.U., Mahmood, M.: AI
assisted portable ECG for fast and patient specific diagnosis. In: International Conference
on Computer, Communication, Chemical, Materials and Electronic Engineering, Rajshahi
(2018)

9. Fernoaga, V.P., Stelea, G.-A., Balan, A., Sandu, F.: OCR-based solution for the integra-
tion of legacy and-or non-electric counters in cloud smart grids. In: IEEE 24th International
Symposium for Design and Technology in Electronic Packaging (SIITME), Ias, i (2018)

10. Komarek, A., Pavlik, J., Mercl, L., Sobeslav, V.: Hardware layer of ambient intelligence envi-
ronment implementation. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński,
B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 325–334. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67077-5_31

11. Chand, G., Ali, M., Barmada, B., Liesaputra, V., Ramirez-Prado, G.: Tracking a person’s
behaviour in a smart house. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 241–
252. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17642-6_21

12. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted
residuals and linear bottlenecks. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City (2018)

13. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multi-task
cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

14. Kokoulin, A.N., Tur, A.I., Yuzhakov, A.A., Knyazev, A.I.: Hierarchical convolutional neural
network architecture in distributed facial recognition system. In: IEEEConference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg
and Moscow (2019)

15. Teerapittayanon, S., McDanel, B., Kung, H.: Distributed deep neural networks over the cloud,
the edge and end devices. In: IEEE 37th International Conference on Distributed Computing
Systems (ICDCS) (2017)

16. Zhang, Y., Suda, N., Lai, L., Chandra, V.: Hello edge: keyword spotting on microcontrollers.
arXiv preprint arXiv:1711.07128 (2017)

https://www.espressif.com/en/products/hardware/esp32/overview
https://doi.org/10.1007/978-3-319-67077-5_31
https://doi.org/10.1007/978-3-030-17642-6_21
https://arxiv.org/abs/1711.07128


MicroPython or Arduino C for ESP32 43

17. Lai, L., Suda, N., Chandra, V.: CMSIS-NN: efficient neural network kernels for arm cortex-M
CPUs. The Computing Research Repository (2018)

18. George Robotics Limited: Performance, 1 June 2014. https://github.com/micropython/
micropython/wiki/Performance. Accessed 1 Sept 2019

19. Behan, T., Liao, Z., Zhao, L.: Integer Neural Networks On Embedded Systems. In: Recent
Advances in Technologies. IntechOpen (2009)

20. Wang,N., Choi, J., Brand,D., Chen,C.-Y.,Gopalakrishnan,K.: Training deep neural networks
with 8-bit floating point numbers. In: 32nd Conference on Neural Information Processing
Systems (NeurIPS 2018), Montreal (2018)

https://github.com/micropython/micropython/wiki/Performance

	MicroPython or Arduino C for ESP32 - Efficiency for Neural Network Edge Devices
	1 Introduction
	2 ESP32 and Machine Learning
	2.1 Machine Learning on the Cloud
	2.2 Machine Learning on an ESP32

	3 ESP32 Development Environments
	3.1 Arduino IDE
	3.2 MicroPython

	4 Neural Networks Forward Propagation Speed
	4.1 Data and Methods
	4.2 Microcontrollers
	4.3 Testing

	5 Discussion and Conclusion
	References




