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Abstract. Published results for cancer patients have been previously estimated
by applying various machine learning techniques to large. especially, for lung
cancer, it is not well known to the time, which sorts of techniques would generate
more imminent information, and which data attributes should be employed in
order to prepare this information. In this study, a supervised learning technique is
implemented to analyze lung cancer patients in terms of survival, the purpose of
this study is to predict lung cancer and to compose an aiding model that will help
form a more reliable prediction as a factor that is vital for advancing survival time
evaluation. We utilize general regression neural networks (GRNN) for replacing
the regular predictions with prediction periods to achieve a moderate percentage
of confidence. The mechanism applied here employs a machine learning system
called conformal prediction (CP), to assign consistent confidence measures to
predictions, which are combined with GRNN.We apply the resulting algorithm to
the problem of lung cancer diagnosis of supervised learning techniques is applied
to the NCI database to classify lung cancer patients. Experimental results confirm
that the prediction formed by this method is feasible and could be useful in clinical
institutions.

Keywords: Neural network · Conformal prediction · Lung cancer
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1 Introduction

CP is an originalmethod,which can complement the predictions of conventionalmachine
learning algorithms by measuring their confidence [4] in order to help to determine how
accurate the prediction is, and to suggest good decision-making process consequently.
References [4] and [5] proposed ICP to solve the computational ineffectiveness problem
of CP.

This work uses a regression CP [1] built on neural networks (NNs). An adjusted
CP was needed so as to apply CP to NNs, which is called generalized regression neural
network conformal prediction (GRNN-CP). In the case of regression, CPs give a suf-
ficient level of confidence compared to conventional techniques We used the National
Cancer Institute (NCI) at the National Institutes of Health (NIH). As the largest publicly
available cancer dataset [3], this database provides de-identified information on cancer
statistics of the United States population, thus facilitating large-scale outcome analysis.
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We apply machine learning techniques to this dataset to analyze data specific to lung
cancer, with the goal of evaluating the predictive power of these techniques. Lung cancer
was chosen as it ranks as a leading cause of cancer-related death, with dismal 5-year sur-
vival rates. The goal of identifying survivability given a specific medical diagnosis is of
great importance in improving care and providing information to patients and clinicians.
Given a dataset of lung cancer patients with certain information such as age, tumor size,
Radiation, and Surgery applied, the question is whether patient survival can be computa-
tionally predicted with any accuracy. Although survival time analysis may be considered
clinically relevant to evaluate patient prognosis, doctors have struggled to estimate the
diagnosis of lung cancer patients. In a recent study, physician consultants predicted a
survival time median of 25.7 months, while physician registrars and residents predicted
survival times of 21.4 and 21.5 months, respectively, for patients on average with 11.7
months actual survival [6]. The study found that only ∼60% of patients whose physi-
cians estimated survival time >3 months survived this long. Another study found that
physicians correctly predicted survival time to the month 10% of the time, to 3 months
59% of the time, and to 4 months 71% of the time, and tended to overestimate short
term survival times but underestimate long term survival times [7, 10, 11]. Applying a
correlational methodology via machine learning to predict survivability could help to
improve such predictions.

In this study, patients diagnosed with lung cancer during the years 2006–2011 were
selected in order to be able to predict their survival time. Some supervised learning
methods were employed to classify patients based on survival time as a function of
crucial attributes and, thus, help illustrate the predictive value of the several methods.
The dataset in this study emphasizes on dimensions available at or near the time of
diagnosis, which represents a more positive set of survival predictors

1.1 Producing Confidence Information

Machine learning may be used to produce accepted confidence of information, e.g., the
Bayesian framework and ‘probably approximately correct’ (PAC theory) [5, 8]. This
experiment will focus on the robustness of prediction intervals for a future independent
observation to examine the dilemma of constructing prediction intervals in a regression
phase. An improvement of a prediction interval over a point estimate is that it takes into
account the variation of the future observation around the point estimate [6].

An expected failure might occur for the confidence levels to attribute the percentage
of expected errors. The next section explains the framework then investigates, via a
simulation study, the performance of these prediction intervals in terms of the prediction
intervals robustness and their possible uses

1.2 The CP Framework

In this section, we describe the idea behind CP, and a more detailed description is
provided by [1]. The interest here is in predicting the label of an example xl + g, based
on a set of training examples {(x1, y1), . . . , (xl, yl)}, where each xi ∈ qd is the vector of
attributes: for example, i and yi∈R is the label of that example.Theonly assumptionmade
is that all (xi, yi), i = 1, 2, . . . , n have been produced from the probability distribution.



Lung Cancer patient’s survival Prediction Using GRNN-CP 145

The main aim of CP [6, 2] is to presume that each probable label ŷ is presented in the
form of the example xl + g, to check the possibility to generate the prediction rule:

{
(x1, y1), . . . , (xl, yl),

(
xl + g, ŷ

)}
(1)

This rule maps every input pattern xi to a predicted label yi:

D
{
(x1, y1), . . . , (xl, yl),

(
xl + g, ŷ

)}
(2)

The nonconformity total of every set (xi, yi): y = 1, . . . , l, l+g later estimated as the
degree of contention between the prediction and the actual label yi; it may be noted that,
in the case of the pair (xl + g, y), the actual label is replaced by the assumed label y. The
function used for measuring this degree of contention is referred to as the nonconformity
measure of theCP.A change in the assumed label ŷ affects all predictions. Following this,
the nonconformity score xl + g is compared to the nonconformity results of remaining
examples to ascertain how rare the pair (xl + g, y) is, regarding the nonconformity
measure used by the following function:

ŷi = D
{
x1, y1), . . . , (xl, yl),

(
xl + g, ŷ

)}
) (3)

The main weakness of the prime CP technique is that, given its inspirational quality,
all its computations require repeating each new test example for every assumed label.
Thismakes it computationally incompetent. CP is tightly efficient [6], andmaybemerged
with any traditional regression technique.

CP splits the training set (of size l) into two smaller sets; the convenient training
set with m < l examples, and the calibration set with q: = l − m examples. Then, it
uses the convenient training set for training, and the calibration set for calculating the
probability distribution of each possible label y for (x1, y1), . . ., (xm, ym) to generate the
prediction rule, where the nonconformity of each example in the calibration set is i =
1, …, q, and the confidence level to be calculated as 1 − o which provide the minimum
and maximum ŷ

CP algorithm requires a critical parameter that is the number q, of training examples
to be allocated to the calibration set, while the nonconformity scores used by the CP to
create its prediction intervals. This number is critical and should only relate to a small
portion of the training set, where removing these examples causes a significant decrease
in the predictive capability of the NN, and accordingly, to broader prediction intervals.

1.3 GRNN-CP Framework

The GRNN created by [5] is an estimation method for function regression that has been
applied to engineering and science applications. GRNN is useful since it could employ a
few training samples to converge to the underlying function of the data available. GRNN
also is a useful tool to perform predictions and comparisons of system performance in
practice. The standard GRNN in Fig. 1 can be used with a rapid training procedure due to
the single training parameter σ. Finally, it does not require an exact topology definition
such as the MLP, or basis function centers and weights, such as the RBF.
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Fig. 1. General GRNN architecture (adapted from [9])

Employing CP with GRNN has the advantage of enabling much better control of
the smoothness of the approximation so that the regression surface adapts to the local
properties of the occurring in that area concedes a predicted output value data. In order
to use CP in conjunction with some traditional algorithms, a nonconformity measure
first needs to be defined.

As previously discussed, a nonconformity measure is a function measuring the con-
tention between the actual label yi and prediction yi’ produced by the prediction rule
described by [6] of the underlying algorithm for the example xi. Regression meanwhile,
can be readily defined as the absolute difference Between the two. This section describes
the GRNN in CP shown in (4)

D(x, x) =
∑P

(x − x/σ)2 (4)

where yi is the ith case actual output value, D(x, xi) is calculated from (5), and n is the
total number of cases in the dataset j = 1

D(x, x) =
∑P

(x − x/σ)2 (5)

(GRNN CP) algorithm, and defines a normalized nonconformity measure, which has
the effect of producing tighter prediction intervals by taking into account the expected
accuracy of GRNN.

The GRNN predicts continuous outputs. GRNN nodes require two main functions
to calculate the difference between all sets of input pattern vectors and estimate the
probability density function of the input variables. Euclidean distance is used to calculate
the difference between input vectors between data values in attribute space. Weighting
the calculated distance of any point by the probability of other points, where x is the input
vector, xi is the ith case vector, xj is the jth data value in the input vector, xij is the jth data
value in the ith case vector, and σj is the smoothing factor (Parzen’s window) for the jth

variable [6]. The error measurement of the mean square error (MSE) used in this work.
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TheMSEmeasures the average of the square amount bywhich the estimator differs from
the quantity to be estimated. While finding the error, the calculation mentioned earlier
will frequently be running with different smoothing factors (sigmas) [8]. Training stops
when either a threshold minimum square error value reached, or the test set square error
concluded. Since the aim is to produce a level of confidence information, we employ
GRNN here to complement predictions with probabilistic texture. The purpose of the
global parameter σ is to regulate the smoothness of the regression surface. However,
as discussed previously, because the data density can vary in different regions, different
values of σ may be needed for different patterns xi. Allocating an individual σ i for each
ith pattern in (5) and combining with (6) produces the standard GRNN as follows:

The smoothness parameter was arbitrarily chosen to σ = 0.1. As explained earlier in
Sect. 3, CP splits the training set {(x1, y1), . . . , (xl, yl)} into two subsets: the convenient
training set: {(x1, y1), . . . , (xm, ym)}, and the calibration set:

{(xm + 1, ym + 1), . . . , (xm + q, ym + q)}.

αi = ∣∣yi − ŷi
∣∣ (6)

The GRNN-CP continues as follows:
Sort the nonconformity scores in descending order achieving the following order

α(m + 1), . . . , α(m + q) (7)

For each new test example xl + g: supply the input pattern xl + g to the trained
GRNN to get the prediction ŷl + g and output the prediction interval

(
ŷl + g − α(m + s), ŷl + g + α(m + s)

)
(8)

where s = o(q + 1).

2 Experimental Evaluation

The suggested approach has been examined on the NCI [9] dataset as Table 1 shows,
dataset contains 683 instances with nine integers valued attributes for each instance.
Prior to conducting the experiments in this section, datasets were normalized to the
range between [−1, 1]. A random split has been conducted into k folds, and the trials
were repeated k epochs, each using one k fold was tested, and the other k − 1 folds
to be the training set. Trial and error decided the number of hidden neurons, through a
fold cross-validation process, with the GRNN predictor on stochastic sequences, which
were different from those that evaluated the GRNN- CP. The GRNNwas applied to both
calibration and test samples.

The performance of the point predictions of the method used in this section, compar-
ing its predictions to the estimated values, can estimate a model trained on the training
set. These values are determined by periodically adjusted various model parameters. The
fulfillment of the model was evaluated in terms of its root mean squared error (RMSE),
see Fig. 2.
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Fig. 2. Survival rate prediction with GRNN

Table 1. Data attributes. AJCC [9]:

Number Attribute Description Type

1 Age: Age at time of diagnosis Discrete

2 Grade Appearance of cancer cells and how
fast they may grow

Numeric

3 Radiation Sequence with Surgery Order of
surgery and radiation therapy
administered for patients who
received both

Numeric

4 The number of Primaries Number of malignant tumors other
than the lung

Discrete

5 T AJCC component describing tumor
size

Numeric

6 N AJCC component describing lymph
node involvement

Numeric

7 M AJCC component describing tumor
dissemination to other organs

Numeric

8 Radiation Indication of whether patient has
received radiation

Numeric

9 Stage: Stage of tumor - based on T, N, and
M

Numeric

10 Primary Site Location of the tumor within the lungs Numeric
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Measures, since we would like to have as many precise predictions as possible, given
high confidence levels. The validation data across theAge, Stage, Grade, and Tumor Size
groupings. Each frame has multiple lines showing the decrease in survival probability
for each value, e.g., Stage, etc. The bulk of the curves is below the 50% survivability
rate.

Since 50% of the validation patients survive less than 15 months, the standard devi-
ation of residuals is higher than the survival time of half the population; any guess
∼15 months would have a similar result. Most of this deviation originates from the
most extended surviving patients, which turned out to be the most difficult to predict.
In contrast, the RMSE for patients in the validation set with survival time ≤35 months,
compared to the ensemble prediction, is 11 months.

The comparison of the results to those in previous work or to clinical estimates is
non-trivial. Much of the previous work differs from the approach here primarily through
logistic regression into categorical survival times. 81% of those the model predicted
results to live longer than 3 months.

The RMSE value is not the only factor to consider, however, favorable RMSE value,
does not certainly monitor that RMSE correlates to relevance. The resulted values show
that the prediction intervals produced by the method developed in this chapter are quite
tight. The median widths obtained using nonconformity measures are 76.4% and 49.2%
of the label range of the two datasets correspondingly, while the best widths achieved
using the nonconformity degree are 72.5%, and 42.1% of the label range.

3 Conclusion

A new prediction system has been constructed in this paper. The proposed algorithm
is based on using CP to find the most reliable prediction regressions using GRNN, to
achieve low errors and more reliable predictions as the results show. The tests performed
on the proposed training algorithm show that the right level of accuracy may be achieved
when compared to other models.

A moderately considerable correlation was recognized between the measured and
predicted values using the hybrid GRNN-CP method. The proposed algorithm produces
prediction intervals to achieve a fitting confidence level. In terms of point predictions,
the performed correlation coefficient between the predicted and the actual values was
convenient; For example, 89% confidence level covers 21.5% of the data, while for
the 91% confidence level, it covers 16.9%. It is worth mentioning that the prediction
intervals produced by the proposed method are not only well-calibrated, and therefore
highly stable, but they are also tight enough to be useful in patients’ trials. Besides,
GRNN-CP made progress in terms of prediction interval tightness over the average
regression measure, but it still could be developed by reaching more tightness when it
comes to prediction regression. Also, other regression methods could be implemented
and examined with CP, taking into attention that adding extended datasets with more
records could enhance prediction confidence. The models excel when dealing with low
to moderate survival time instances, which is the large majority of the data, although
there were challenges with both the data and the models, such as the non-linearity of
outcomes. As themodels struggle to predict patient survival time exceeding 35+months,
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logistic regression may be preferred. The cause could be having too many less weighty
criteria or too few rules, or that the inexperienced volume of data is needed. Moreover,
the more complex models may be insignificantly more precise than the linear regression
but maybe more difficult to decipher. Whether or not the increment in performance is
worth the extended complexity should be investigated in future.

Future work could also reassess the data optimization and inputs.
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