
Segmentation of Echocardiographic
Images in Murine Model of Chagas

Disease

Rafael Viana-Camara1(B), Carlos Brito-Loeza1, Anabel Martin-Gonzalez1,
and Nidiyare Hevia-Montiel2

1 Computational Learning and Imaging Research Group, Universidad Autónoma
de Yucatán, Mérida, Mexico
leafar1314@gmail.com

2 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,
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Abstract. In this work, we present a methodology for the semiauto-
matic segmentation of left ventricle of the hearth of mice in echocardio-
graphic images of the murine model for Chagas disease. The methodology
presented is based on the active contour model with shape prior. We will
show through experimental results the good performance of the model
and discuss pros and cons of the methodology.

Keywords: Image segmentation · Chagas disease · Active contours ·
Shape prior

1 Introduction

Chagas disease is an illness caused by the protozoan parasite Trypanosoma Cruzi.
Within the last years, Chagas disease has spread around the globe very rapidly
threatening the life of thousands of people. Once infected, the T. Cruzi parasites
remain hidden mainly in the heart muscle of the patient, yielding an infection
that over the years may cause sudden death from heart failure.

This disease consists of two different phases: initially, the acute phase that
lasts for a period of about two months after the infection has been contracted
[2], and the second phase also known as chronic phase that may last years.

In the acute phase, a large number of parasites may be observed circulating
in the bloodstream and usually, there are no symptoms or they are mild in
this phase. Then again, in the chronic phase the parasites are hidden mainly
in the heart and digestive muscle causing patients to suffer from cardiac and
digestive disorders. Over the years, the infection can cause sudden death from
cardiac arrhythmias or progressive heart failure from the destruction of the heart
muscle and its innervations [6].
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In order to study and analyze the reactions of the disease, the murine model
(use of strains of special mice to study a human disease or condition, as well as
the way to prevent and treat it) turns out to be very useful in Chagas disease
research [9]. Murine model presents much of the immunological, pathological and
physiological characteristics of Chagas disease in humans and the acquisition of
samples is relatively easy compared to that of other animals. It is also a low cost
procedure and therefore highly attractive for research.

In the present echocardiographic study, for the following up of the strains
of infected mice, ultrasound videos of the heart were obtained. Due to hearth
anatomy, quantifying the damages caused by the disease is quite difficult due
to the very condition of the ultrasonic image. The ultrasound technique used to
capture the images, uses high frequency sound waves to provide cross-sectional
images of the region under study. This very same technique is popular in almost
all medical fields and a variety of clinical situations [7]. This imaging mode is
rapidly evolving with significant advances in transducer technology and more
sophisticated imaging routines [1].

In spite of recent advances, segmentation of ultrasound images is strongly
influenced by the quality of the data and by no means an easy task. There
are characteristic artifacts, such as attenuation, mottling, shadows and signal
loss that makes difficult to obtain reasonable partitions of the images. Typical
complications also arise because the contrast between the areas of interest is
often low [5].

In this work a semiautomatic segmentation technique for the left ventricle in
echocardiographic images of the murine model for Chagas disease will be shown.

The outline of the paper is as follows. In Sect. 2, we review the foundations
of the active contour model without edges, the level set method and shape-prior
based model. In Sect. 3, we present how to construct the shape prior for the left
ventricle of the hearth of mice, how to select proper parameters for the model
and the morphological post processing applied to the results, finally in Sect. 4
we present our conclusions.

2 Active Contour Model with for Image Segmentation
with Shape Prior

2.1 Active Contours

An active contour (commonly called Snake) consists of a elastic curve that,
placed on an image, starts deforming from an initial form in order to delimit
the regions of interest in the scene. Curve deformation is achieved by applying
internal forces, intrinsic to the Snake that control the smoothness of the curve, as
well as external forces, that pushes the Snake towards the salient characteristics
of the image. The active contour property makes deformable models an effective
tool in multiple tasks, such as in the analysis of medical images, where the
low signal-to-noise ratio makes the results obtained through classical techniques
insufficient.



134 R. Viana-Camara et al.

Geometrically, a Snake is a parametric contour c(s, t) = (x(s, t), y(s, t)), vari-
able in time and defined in the image plane (x, y) ∈ R2, where the x(s, t), y(s, t)
coordinates of the contour are functions of the parametric variable s ∈ [0, 1],
and time t. The contour is supposed to be closed, through boundary conditions.
The shape of the contour is expressed by the following energy function Etotal,
which must be minimized in order to determine the shape and final position of
the Snake:

Etotal =
∫ 1

0

α|c′(s)|2 + β|c′′(s)|2
2

ds +
∫ 1

0

g(u(c(s)))ds (1)

where and Eext correspond to the terms of internal and external energy, respec-
tively. Eint gives the deformation characteristics of the elastic contour and the
functions α(s) and β(s) determine the degree to which the Snake can be stretched
or curved. These functions are useful for manipulating the physical behavior and
local continuity of the model. Thus, for example, an increment in the magnitude
of α(s) results in increments in the tension of the curve, which tends to eliminate
loops or curls by reducing the contour length. On the other hand, an increment
in β(s) increases the rigidity of the Snake, making it softer in shape and less
flexible.

These functions, α(s) and β(s), may be dependent of s, curve length, and
by adjusting them it is possible to change the characteristics of the Snake in
each parametric coordinate. However, most applications specify constant values
along the contour for α and β. The external energy function Eext, is derived from
the image in such a way that it takes in its smallest values the characteristics
that are of interest to us, such as the edges or borders. For this case, g(u(c(s))),
denotes a potential scalar function that is defined in the image plane.

2.2 Level Sets

A simple but clever way to track evolving active contours was designed Osher and
Sethian [8]. The main idea behind this method is the representation of curves
or surfaces as the zero level set of a hyper-surface of higher dimension. For
instance, sharp curves on a 2-dimensional space are considered as the level sets
of a continuous surface of in the 3-dimensional space. This is, a smooth function
φ(x, y, t) can be defined to represent the surface while the set of definitions
φ(x, y, t) = 0 for some values of t may represent the evolving contours. By doing
so, the evolution of a curve can be transformed into the evolution of a function
of level sets in 3D space.

To obtain such a representation, let φ(x, y, t = 0) be a function of level sets,
where the zero level set corresponds to the curve being tracked. By making the
curve as the boundary surface, it is possible to define two separated regions, the
region inside the curve and region outside the curve. A signed distance function
(SDF) is then defined within the surface. This is

φ(x, y, t = 0) = d (2)
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where, d represents the shortest distance from the point x on the surface and the
curve. Throughout the process of evolution of the curve its points are adjusted
by the following equation:

φt + F |∇φ| = 0 (3)

known as the Eikonal equation, where F represents the velocity related to the
evolution of the surface properties such as the normal direction and its curvature.

When used for the task of image segmentation, F may depend on image
information with an ideal value of zero at the edge of the object, that is, the
largest value of the image intensity gradient.

Some advantages of using the level set method for curve evolution are the
stability of the method and its capacity of handling changes of curve topology
very easily.

2.3 Active Contours Without Edges

The active contours model without edges, also known as the Chan-Vese model,
was introduced some years ago by Chan and Vese [3]. This model assumes that
the gray level image can be split in regions of almost constant brightness. The
mathematical formulation of the model is the minimization of a functional with
the following components:

F (c1, c2, C) = μ · long(C) + v · Area(In(C)) + λ1F1(c1, C) + λ2F2(c2, C). (4)

with
F1(c1, C) =

∫
In(C)

|u0(x, y) − c1|2dΩ (5)

F2(c2, C) =
∫

Out(C)

|u0(x, y) − c2|2dΩ, (6)

where the given image (allowed to be noisy) is denoted by u0 and defined on
Ω ⊂ R2, the initial curve will be C and can take any form, size and location in
the image, c1, c2 are constants that represent the average of the image inside and
outside the curve respectively. Area(In(C)) and long(C) are terms for keeping
bounded the longitude of the curve and the area inside the curve. Finally, μ, v ≥ 0
and λ1, λ2 > 0 are parameters chosen in advance.

The problem is therefore to compute the minimum of F with respect to
(c1, c2, C). The active contours model without edges can be rewritten using the
level set formulation as follows:

min
c1,c2,φ

FCV (c1, c2, φ) = μ

∫
Ω

δ(φ)|∇φ|dΩ + ν

∫
Ω

H(φ)dΩ

+ λ1

∫
Ω

|u0 − c1|2H(φ)dΩ + λ2

∫
Ω

|u0 − c2|2(1 − H(φ))dΩ

(7)
where δ(·) is the delta function and H(·) the Heaviside function.
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2.4 Shape-Prior Based Model

A strong limitation of the Chan-Vese model is that it does not consider the
shape of the region or object to be segmented. Therefore, artifacts with similar
gray level to the one of the object of interest (OOI) are also assigned to the
same region completely ruining the segmentation result. To remedy this, in [4]
a shape-prior was introduced in the mathematical formulation. The main idea
is to construct a shape model from a set of different views of the OOI and use
this a priori information somehow in the model to force the contour to move in
that direction. The model is as follows:

FPS(c1, c2, φ) = FCV (c1, c2, φ) + αFshape(φ), (8)

where
Fshape(φ) =

∫
Ω

(φ(x) − φ0(x))2dx, (9)

and φ0 represents the shape prior constructed by averaging the level set functions
of a set of images containing the OOI. Here α > 0 is a weight.

3 Experiments

In this section, we present experimental results of using the active contour model
with shape prior on ultrasound images of the heart of mice. In particular, the
objective is to segment the left ventricle when it is in any of two states: diastole
or systole. To this aim, shape priors were constructed for each state using a set of
manually segmented images (the training set). To validate the results obtained
from the semi-automatic segmentation, a python script was coded that generates
a confusion matrix returning the true positive (TP), true negative (TN), false
positive (FP) and false negative values (FN). With the values obtained from
the confusion matrix we can calculate the accuracy, F1 score and the Mathews
correlation coefficient (MCC).

3.1 Shape Prior Construction

The quality of construction of the shape prior is of paramount importance for
the performance of the model. In this case, a set of manually segmented ultra-
sound images was used for this purpose. The manual segmentation focused in
segmenting the left ventricle of the hearth in images from mice infected with the
T. Cruzi parasite. It was decided to analyze only two states of the ventricle: the
diastole state and the systole state.

Once the manual segmentation of the image set was finished, the binary
images were processed with the level set algorithm to yield signed distance func-
tions. This process even though slow, is relevant since it brings stability to the
whole algorithm.

In Fig. 1(a), some samples of different ventricles, in diastole state, are shown.
Although they are similar in shape, it is possible to observe some differences.
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In Fig. 1(b) the resultant level set prior is presented. The shape prior looks as an
out of focus image. This is due to the averaging process of all the level sets. The
blurred regions may be interpreted as regions of uncertainty for the algorithm.

In Fig. 2(a), samples for the left ventricle in systole state are presented. The
correspondent level set prior is shown in Fig. 2(b).

Fig. 1. (a) Diastole masks from the training set. (b) Average diastole mask.

Fig. 2. (a) Systole masks from the training set. (b) Average systole mask.

3.2 Tuning the Model and Results

The selection of the parameters α, dt and μ is critical for the performance of the
method. In this section, we show how to compute them and illustrate with some
Figures the results for different combinations of them.

The first experimental tests were carried out over the ultrasonic images of
the mice control group in the acute phase of the illness. Images of the hearth in
diastole and systole states were used.

In Fig. 3, from (a) to (d), a good segmentation of the left ventricle, in both
states, can be observed. The best parameters were obtained by trial and error
by running the algorithm with different sets of values and evaluating accuracy,
F1 score and Mathews coefficient correlation (MCC) at each iteration.
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The parameters used here were α = 0.01, a step size dt = 0.1 which allows a
rapid convergence of the algorithm and a fixed μ = 0.2. The algorithm converged
on average after 1, 485 iterations. In the second experimental tests, the value of
the weight parameter was increased to α = 15, forcing contour to keep very close
to the shape prior, the step size remained at dt = 0.1 and the value of μ = 0.2
fixed. With this set of values, convergence was acquired after 1, 458 iterations
on average.

(a) Diastole ventricle segmentation with
accuracy of 97.3154%, F1 score of
98.5493% and MCC of 80.5765%

(b) Systole ventricle segmentation, re-
sulting in an accuracy of 98.0501%,
F1 score of 98.9745% and MCC of
79.1784%

(c) Diastole ventricle segmentation with
accuracy of 97.3906%, F1 score of
98.5933% and MCC of 80.7767%

(d) Systole ventricle segmentation with
accuracy of 98.8602%, F1 score of
99.4016% and MCC of 87.4044%

Fig. 3. Segmentation results with α = 0.01, a step size dt = 0.1 and a fixed μ = 0.2

The results of this experiment can be seen in Fig. 4 from (a) to (d). There it
can be appreciated that a very small reduction on the quality of segmentation was
obtained for the diastolic images while an improvement in accuracy of 0.025%, F1
score of 0.014% and MCC of 0.24% were obtained in Fig. 4(b) and also increases
of 0.03% in accuracy, 0.01% in the F1 score and 0.4% in MCC for Fig. 4(d) can
be observed. Finally, the third set of experimental tests were carried out with
a value of α = 50, a step size dt = 0.5 in order to accelerate the convergence
of the algorithm and a μ = 0.2. This time, it was observed that the algorithm
converged on average in 364 iterations. The results are presented in Figs. 5 from
(a) to (d) where, compared to the previous experiments, an overall increase in
the accuracy values, F1 score and MCC, can be seen in both diastole and systole
states.
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(a) Diastole ventricle segmentation, re-
sulting in an accuracy of 97.3154%, F1
score of 98.5480% and MCC of 80.7796%

(b) Systole ventricle segmentation
with accuracy of 98.0752%, F1 score
of 98.9878% and MCC of 79.4107%

(c) Diastole ventricle segmentation with
accuracy of 97.3763%, F1 score of
98.5849% and MCC of 80.7796%

(d) Systole ventricle segmentation
with accuracy of 98.8924%, F1 score
of 99.4184% and MCC of 87.8153 %

Fig. 4. Segmentation results with α = 15, a step size dt = 0.1 and μ = 0.2 fixed.

(a) Diastole ventricle segmentation with
accuracy of 97.7419%, F1 score of
98.7755% and MCC of 84.3559%

(b) Systole ventricle segmentation with
accuracy of 98.1075%, F1 score of
99.0033% and MCC of 80.3443%

(c) Diastole ventricle segmentation with
accuracy of 97.3763%, F1 score of
98.5849% and MCC of 80.7527%

(d) Systole ventricle segmentation with
accuracy of 98.8853%, F1 score of
99.4146% and MCC of 87.7450%

Fig. 5. Segmentation result with α = 50, a step size dt = 0.5 and μ = 0.2 fixed.
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3.3 Morphological Post-processing

The output of the active contour model with shape prior very often presents
some artifacts, either due to the inherent instability of the algorithm or due to
noise present in the region of interest. Therefore, to smooth out the result and
improve precision of the segmentation, we applied morphological filters such as
bridge and fill to the output of the active contour model.

Fig. 6. Segmentation result for image problem in Fig. 3(a) for the diastole state. (a)
Output from the active contour method (b) After morphological processing (c) Ground
truth

Fig. 7. Segmentation result for image problem in Fig. 3(c) for the diastole state. (a)
Output from the active contour method (b) After morphological processing (c) Ground
truth

In Figs. 6 and 7 we compare the results for the diastole state from the outcome
of the active contours model, after morphological processing, and the ground
truth (manual segmentation by the expert). In Figs. 8 and 9, we do the same for
the systole state.

It can be appreciated by simple observation that morphological processing
removes artifacts yielding a cleaner segmentation.

Finally, in Table 1, we present a summary of the different metrics we com-
puted for each experiment.
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Fig. 8. Segmentation result for image problem in Fig. 4(b) for the systole state. (a)
Output from the active contour method (b) After morphological processing (c) Ground
truth

Fig. 9. Segmentation result for image problem in Fig. 4(d) for the systole state. (a)
Output from the active contour method (b) After morphological processing (c) Ground
truth

Table 1. Results of segmentation for the left ventricle in diastole state (first two rows)
and systole state (last two rows).

Image problem Accuracy (%) F1 score (%) MCC (%) TP TN FP FN

Figure 6 97.6416 98.7307 82.1177 25591 1651 313 345

Figure 6
with morphological
operation

97.9104 98.8731 84.5971 25575 1742 222 361

Figure 7 97.8423 98.8447 82.5822 25752 1546 350 252

Figure 7
with morphological
operation

97.9570 98.9051 83.6814 25744 1586 310 260

Figure 8 98.3011 99.1183 75.9173 26642 784 254 220

Figure 8
with morphological
operation

98.3333 99.1345 76.6819 26632 803 235 230

Figure 9 98.4409 99.1832 82.1062 26412 1053 179 256

Figure 9
with morphological
operation

98.4337 99.1791 82.2135 26399 1064 168 269



142 R. Viana-Camara et al.

4 Conclusion

In this paper we presented a methodology to segment the left ventricle of the
hearth of mice in ultrasound images by using the active contours model with
shape prior. We shortly reviewed the theory of the active contours model and
level set method and discussed the way to construct the shape prior for the two
states of the ventricle: diastole and systole. The obtained results are encouraging
since the quality and precision of the segmentation was pretty much in accor-
dance with the manual segmentation from medical experts. Some metrics such
as precision, F1 score and MCC were computed on the results and overall they
achieved high values. We also presented how to further improve the quality of the
segmentation by applying morphological post-processing to the binary images.

There is however still much to do in order to take this methodology to the
next level. For instance, constructing the shape prior is very time consuming and
tedious. There is also the need to align the shape prior to the region of interest
in the image. This is an important step that now has to be carried out manually.
The implementation of a simultaneous image registration and segmentation with
shape prior algorithm would improve results by facilitating the alignment. This
will be part of our future work.

Acknowledgements. Special thanks to Dr. Paulina Haro from the regional research
center Dr. Hideyo Noguchi where part of this project was carried out. We also thank
CONACYT for the funding provided in the form of a student scholarship.

References

1. Bridal, S.L., Correas, J.M., Saied, A., Laugier, P.: Milestones on the road to higher
resolution, quantitative, and functional ultrasonic imaging. Proc. IEEE 91(10),
1543–1561 (2003)

2. Uc-Cetina, V., Brito-Loeza, C., Ruiz-Piña, H.: Chagas Parasites Detection through
Gaussian Discriminant Analysis. 1998 ACM Computing Classication System 8, 6–
17, 2013 (1998)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process.
10(2), 266–277 (2001)

4. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
June 2005, vol. 2, pp. 1164–1170 (2005)

5. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans.
Med. Imaging 25(8), 987–1010 (2006)

6. World Health Organization: Chagas disease (American trypanosomiasis) (2018)
7. World Health Organization: Diagnostic imaging (2018)
8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algo-

rithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49
(1988)

9. Zhou, Y.-Q., Foster, F.S., Nieman, B.J., Davidson, L., Chen, X.J., Henkelman,
R.M.: Comprehensive transthoracic cardiac imaging in mice using ultrasound biomi-
croscopy with anatomical confirmation by magnetic resonance imaging. Physiol.
Genomics 18(2), 232–244 (2004)


	Segmentation of Echocardiographic Images in Murine Model of Chagas Disease
	1 Introduction
	2 Active Contour Model with for Image Segmentation with Shape Prior
	2.1 Active Contours
	2.2 Level Sets
	2.3 Active Contours Without Edges
	2.4 Shape-Prior Based Model

	3 Experiments
	3.1 Shape Prior Construction
	3.2 Tuning the Model and Results
	3.3 Morphological Post-processing

	4 Conclusion
	References




