
107© Springer Nature Switzerland AG 2020
B. Dell’Osso, G. Di Lorenzo (eds.), Non Invasive Brain Stimulation  
in Psychiatry and Clinical Neurosciences, 
https://doi.org/10.1007/978-3-030-43356-7_9

L. Salerno · S. Pallanti (*) 
INS Istituto di Neuroscienze, Firenze, Italy
e-mail: stefanopallanti@yahoo.it

S. Gaur 
Stanford University School of Medicine, Stanford, CA, USA 

G. Grassi 
Florence, Italy

9Neuromodulation in Attention-Deficit/
Hyperactivity Disorder: Toward 
a Precision Psychiatry Approach

Luana Salerno, Sonia Gaur, Giacomo Grassi, 
and Stefano Pallanti

9.1	 �Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder 
with a childhood onset, characterized by developmentally inadequate levels of inat-
tention, hyperactivity, and impulsivity [1]. Epidemiological studies show a preva-
lence rate of ADHD in children of 5–6% [2, 3] and of 2.8% in adults [4]. ADHD 
persists in most cases from childhood to adulthood, and even if ADHD is considered 
“in partial remission,” it still causes interference with the individual functioning and 
psychosocial impairment [5–7]. Apart from the widely recognized impairment 
associated with untreated ADHD, including academic failure, self-esteem prob-
lems, and interpersonal relationship difficulties, people with ADHD have an 
increased risk for being involved in criminal situations, for facing unplanned preg-
nancies, for suffering from sexually transmitted diseases and several health prob-
lems due to their maladaptive lifestyle habits, such as excessive cigarette 
consumption, impulsive and dysregulated eating leading to obesity, hypertension, 
and type 2 diabetes mellitus [8]. Also, a high prevalence of fibromyalgia syndrome 
(FMS) has been reported in patients with ADHD [9].

A hallmark of ADHD is its high heterogeneity, which can manifest not only 
between individuals who received the diagnosis but also within the same individuals 
across the lifespan. The classification of ADHD in the three presentations of pre-
dominantly hyperactive-impulsive, predominantly inattentive, or combined ADHD 
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is only an attempt to deal with its heterogeneity, but even in this way two subjects 
with the same ADHD clinical presentation share no more than three symptoms [10]. 
Moreover, the ADHD presentation is not stable during the lifespan, as a child who 
received a diagnosis of predominantly inattentive ADHD can become an adult with 
a combined ADHD. The ADHD heterogeneity affects not only symptom profiles, 
but even neuropsychological impairments. In fact, although the evidence indicating 
that people with ADHD, as a group, are more impaired in some neuropsychological 
domains compared to healthy controls, and particularly in executive functioning 
and motivational processes [11–15], not all individuals with ADHD present this 
kind of deficits [11, 16, 17]. Furthmore, 50–75% of adults with ADHD have at least 
one comorbid learning, neurodevelopmental, or psychiatric disorder [18–22] com-
plicating the current clinical presentation, and it is possible that some comorbid 
conditions, such as anxiety or depression, are not simple coexistent disorders, but 
rather the direct consequence of the lifelong impairment caused by untreated ADHD.

At present, the diagnosis of ADHD does not take into account etiological sources 
or biological markers, but it is established on the presence of a certain number of 
symptoms, presenting in more than one context and with an onset before age 12. 
However, even though the current manuals for diagnosing psychiatric disorders 
have been of value in facilitating communication between clinicians and research-
ers, they did not keep the promise of a heightened focus on neurobiological markers 
and on the use of a dimensional system, and failed in establishing the validity of 
their diagnostic categories beyond the clinical level. The relationship between 
ADHD clinical definition and its neurobiological substrates constitutes an impor-
tant issue, as its etiological heterogeneity can be the result of diverse neural corre-
lates, which in turn can explain the treatment response to different therapeutic 
agents, to different doses, and to a combination of them. In this context, the approach 
proposed by the National Institute of Mental Health (NIMH) called Research 
Domain Criteria (RDoC) emerged as a useful framework, as a project aiming to 
transform diagnosis by incorporating genetics, imaging, cognitive science, and 
other information levels in order to establish the starting point for a new classifica-
tion system [23]. It assumes that mental disorders are biological conditions involv-
ing brain circuits that implicate specific domains of cognition, emotion, and 
behavior, and therefore symptoms cannot be constrained by the categories of cur-
rent diagnostic manuals. Its ultimate goal is “precision medicine” for psychiatry, 
and therefore a diagnostic refinement based on a deeper understanding of the cir-
cuitries and networks of psychiatric disorders considered to be responsible for brain 
diseases [24].

Even though the treatment with psychostimulants is a mainstay of ADHD treat-
ment, it is still challenged by stigma and fear regarding potential side effects. 
Moreover, it is estimated that at least 30% of individuals do not appropriately 
respond to, or are not able to tolerate them [25]. Last but not least, there are some 
concerns about the risk for stimulant misuse and diversion in ADHD patients [26]. 
Noninvasive brain stimulation (NIBS) techniques, such as repetitive transcranial 
magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), 
have been increasingly used in different contexts to improve cognitive performance 
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and ameliorate depressive symptoms [27]. Their use can be of value also for the 
treatment of the dysfunctional networks underpinning the clinical manifestation 
of ADHD.

9.2	 �The Rationale for the Use of NIBS in ADHD: Main 
Dysfunctional Networks

ADHD in children and adults is associated with several cognitive deficits and 
brain alterations. Studies on children with ADHD found impairments related to 
inhibitory control, sustained attention, visuospatial and verbal working memory, 
timing, vigilance, planning, and reward processing [11, 28–30]. Recently, great 
attention was focused on the finding regarding the association of ADHD with reac-
tion time variability (RTV), which is thought to represent attentional lapses [28, 
31, 32]. Similar impairments have been found in adults with ADHD [31–35]. 
There is consistent evidence indicating a disruption in several brain networks 
explaining the variety of cognitive deficits and behavioral symptoms characteriz-
ing people with ADHD.  Impairments in the anterior cingulate cortico-striato-
thalamo-cortical (ACCSTC) circuit, known as the selective attention circuit [36], 
are considered responsible for the lack of attention to details and distractibility 
characterizing people with ADHD. Deficient response inhibition appears related 
to impaired circuitry, including inferior frontal gyrus, anterior insula cortex, dor-
somedial frontal cortex with the presupplementary motor area or pre-SMA and 
caudate [37–40]. Timing-related dysfunction is associated with functional hypo-
activation of inferior frontal cortex, dorsolateral prefrontal cortex, supplementary 
motor area, anterior cingulate cortex, basal ganglia, parietal regions, and cerebel-
lum [41, 42]. Impulsive decision making has been associated with disrupted con-
nectivity between the nucleus accumbens and the anterior prefrontal cortex (PFC) 
and ventromedial PFC [43], ventro–striatal hypo-responsiveness during reward 
anticipation [44] and hyper-responsiveness in the ventral striatum/nucleus accum-
bens upon receipt of reward [45]. Alterations in the cortico-striatal network have 
been considered as underlying the deficits in motor control characterizing ADHD, 
causing excessive moving or talking in subjects affected by the disorder [46, 47]. 
Moreover, hypofunctionality in basal ganglia showed to predict poor movement 
preparations as well as cognitive planning deficits [48]. Emotional dysregulation 
seemed to be associated with an impaired emotion regulation network, including 
circuitry implicated in the emotional impulsivity (EI) and therefore mesolimbic 
circuitry, involving the orbitofrontal cortex, the amygdala, and the ventral striatum 
[49–51] as well as that of deficient emotional self-control (DESR) mediated by the 
ventrolateral prefrontal cortex, the medial prefrontal cortex, and the anterior cin-
gulate cortical region [52–55]. Finally, ADHD is associated with reduced activa-
tion in neuroanatomical regions involved in working memory such as occipital, 
inferior parietal cortex, caudate nucleus, cerebellar regions [56] during working 
memory tasks, and in left and right prefrontal brain regions in both children and 
adults [57, 58].
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Besides the rationale provided by the brain circuits alterations reported here, 
important insights for the use of NIBS for the treatment of ADHD symptomatology 
derive from studies indicating that the most used pharmacological agents for treat-
ing ADHD work by altering cortical excitability [59]. Indeed, methylphenidate 
influences motor cortex excitability in both inhibitory and excitatory neuronal cir-
cuitry in healthy subjects [59, 60].

On the basis of such evidence, NIBS techniques represent potential alternative tools 
with respect to ADHD medications for influencing cortical excitability. NIBS tech-
niques offer the opportunity to develop a tailored intervention targeting a specific cog-
nitive domain or other symptomatological dimension and, therefore, to the specific 
disrupted brain networks. Up until now, the NIBS brain targets in ADHD have been the 
dorsolateral prefrontal cortex (DLPFC) for inhibitory deficits, and the orbitofrontal 
cortex (OFC), which is more closely involved in motivational dysfunction [61].

The most used NIBS in ADHD are Transcranial Magnetic Stimulation or TMS 
and transcranial Direct Current Stimulation or tDCS. Both TMS and tDCS per-
mit to modulate cortical and brain regions through electromagnetic fields or 
direct electrical currents over the scalp, which can either increase or decrease 
cortical excitability in relatively focal areas according to different stimulation 
parameters [62].

rTMS consists of repetitive trains of magnetic pulses, inducing temporary elec-
trical currents in localized cortical tissue. Recently, two new rTMS protocols have 
been introduced, using theta burst stimulation or TBS. TBS consists of bursts of 
three pulses of stimulation with a frequency of 50 Hz repeated every 200 ms, pro-
vided through an intermittent bursting frequency (iTBS) with a facilitatory effect, or 
through a continuous bursting frequency (cTBS) with an inhibitory effect, inducing 
transient long-term depression of behavior [63, 64].

tDCS uses low-intensity direct current (up to 2.0 mA) through two or more elec-
trodes placed on the scalp and modulates the resting membrane potential according 
to the type of electrode application.

9.3	 �TMS as a Therapeutic Tool: rTMS Studies in ADHD

To date, there are still few rTMS studies in people with ADHD, and the vast major-
ity has been performed in children and adolescents. Helfrich and colleagues [65], in 
a randomized, sham-controlled study, investigated the effects of inhibitory rTMS in 
modifying the inhibitory/excitatory (I/E) unbalance in the motor system of children 
with ADHD (N = 25), by using as neurophysiological measures the TMS-evoked 
potentials (TEPs) and the motor-evoked potentials (MEPs). TEPs and MEPs in 
response to single-pulse TMS (110% resting motor threshold, RMT) were mea-
sured before and after active 1-Hz rTMS (900 pulses, 80% RMT) or sham stimula-
tion (achieved through a deactivated coil) over the left M1, with the stimulation 
conditions delivered in counterbalanced order 30 minutes apart. rTMS showed to be 
safe and well tolerated, but the study results showed a decrease in N100 after inhibi-
tory low frequency-rTMS (LF-rTMS) rather than an increase [66], not supporting 

L. Salerno et al.



111

the use of rTMS to increase intracortical inhibition in ADHD [61]. However, find-
ings from this study indicated that the N100 amplitude may be useful as an indicator 
to maximize the functional effects of rTMS on the cortex [65].

In a randomized, sham-controlled crossover study, nine adolescents and young 
adults with ADHD received either active or sham high frequency-rTMS (HF-rTMS) 
over the right DLPFC. The protocol was implemented in a counterbalanced order in 
two phases, each lasting 2 weeks, with 1-week interval of no treatment between 
phases. Ten-Hertz rTMS was delivered at 100% of the MT (2000 pulses per session, 
5 sessions per week), with informant ratings regarding functional impairment and 
ADHD symptoms obtained at baseline, midpoint, and end of the study. Results by 
the comparison of rating scales scores showed that, despite a significant improve-
ment in ADHD symptoms and impairment, there were no differences between 
active and sham rTMS [67]. Instead, a tolerability and safety pilot study performed 
by the group of Gómez and colleagues [68] using LF-rTMS in ten children with 
ADHD classified as nonresponders to conventional treatment showed interesting 
results. This study investigated the effects of 5 consecutive daily sessions of 1-Hz 
rTMS (90% RMT) over the left DLPFC, with a total of 1500 stimuli per session, by 
comparing informant reports (parents and teachers) collected before and 1 week 
after completing the rTMS sessions. For what concerns tolerability, all children 
completed treatment, reporting a slight headache or local discomfort in 70% of 
cases, neck pain in 20%, and one patient reporting brief dizziness (only in two ses-
sions). Results from informant ratings showed a significant improvement in inatten-
tive symptoms at school and hyperactive/impulsive behavior at home. However, 
several limitations of the study, such as the open-label design, the small sample, and 
the lack of a sham arm, could not allow testing its clinical efficacy [61].

Studies on the effectiveness of rTMS in adults with ADHD are very scarce. Bloch 
and co-workers [69], in their crossover double-blind, randomized, sham-controlled 
pilot study, investigated the effect of either a single session of HF-rTMS directed to 
the right prefrontal cortex (active rTMS) or a single session of sham rTMS on adults 
with an ADHD diagnosis according to DSM-IV (N = 13). The stimulation protocol 
consisted of a 20-Hz stimulation over the right DLPFC at a 100% MT for a total of 
1680 stimuli per session. They found a specific beneficial effect on attention 10 min-
utes after active rTMS, with a subsequent improvement in attention, according to 
Positive and Negative Affect Schedule (PANAS) scores. Any significant effect on 
measures of mood and anxiety was detected and the sham rTMS showed no effect at all.

Niederhofer [70] reported improved ADHD symptoms in a case study that con-
sisted of motor cortex stimulation using 1 Hz rTMS at 1200 pulses per day for 5 days.

Even though there are no published large, randomized, sham-controlled trials of 
therapeutic rTMS in ADHD so far, several clinical trials are ongoing, as documented 
on the website https://clinicaltrials.gov/.

Recently, also a trial with deep-TMS (dTMS), which uses special coils for reach-
ing up to 4 cm beneath the surface of the skull, and that has been recently approved 
for both treatment-resistant major depressive disorder and treatment-resistant 
obsessive-compulsive disorder, has been performed in subjects with 
ADHD.  Specifically, 26 adults with ADHD were included in a double-blind 
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sham-controlled study exploring the safety and effectiveness of bilateral prefrontal 
deep rTMS [71]. Subjects underwent 20 daily sessions targeting the prefrontal cor-
tex with a bilateral coil at 120% of MT at high frequency, and behavioral and cogni-
tive ADHD symptoms were evaluated through an ADHD-rating scale and a 
continuous performance test. At the end of the trial, results showed no differences 
in clinical outcomes between the active dTMS and sham groups, providing no sup-
port to the utility of such a bilateral prefrontal stimulation to treat adult ADHD.

Despite mixed results, the potential application of rTMS as an alternative or add-
on treatment in ADHD seems supported by evidence emerging from positron emis-
sion tomography (PET) studies of rTMS, which revealed changes in striatal 
dopamine receptor occupancy following rTMS, being the changes localized to the 
specific region of the striatum serving the cortical target (dorsomedial prefrontal 
cortex, DMPFC, and dorsolateral prefrontal cortex, DLPFC) of stimulation [72, 73]. 
Moreover, dopamine agonists and antagonists appeared to potentiate or block the 
effects of rTMS [74]. Furthermore, there is growing evidence indicating the utility 
of rTMS in enhancing cognitive control, such as the excitatory dorsomedial rTMS 
protocol, which resulted effective in reducing impulsivity on a delay-discounting 
task [75, 76]. In relation to tolerability, TMS treatment is generally well tolerated, 
and among adverse reactions, the most frequently reported are mild and self-limited 
headache, scalp pain at the stimulation site, and potential transient hearing altera-
tions caused by the clicking sound of the machine. The most serious adverse event 
is the seizure induction, which, however, is rare [77].

9.4	 �TMS as an Investigative Tool in ADHD

Since it permits us to evaluate motor pathways excitability, TMS represents a very 
useful investigative tool helping us to improve our understanding of the neurobiol-
ogy of ADHD. TMS pulses are delivered to the primary motor cortex, and single- 
and paired-pulse TMS can capture the neurophysiological correlates of behavioral 
symptoms of ADHD in the motor cortex. For example, evidence from TMS studies 
as an investigative tool showed an inverse correlation between the Short-Interval 
Cortical Inhibition (SICI) and hyperactivity. As low levels of intracortical inhibition 
appeared associated with greater hyperactivity, and these abnormalities normalized 
after methylphenidate (MPH) administration [78], it has been suggested that SICI 
may represent a putative biomarker of ADHD symptom severity [78–82]. 
Interestingly, another TMS study, investigating motor cortex excitability and its 
modulation by attention in healthy adults, showed that SICI decreases under task 
conditions requiring attentional focus on an internal or external locus, compared to 
a resting condition [83]. Authors suggested that altered SICI characterizing other 
conditions, such as Tourette’s syndrome [84] and ADHD [82, 85], may not be only 
the reflections of impaired intracortical GABA circuits per se, but the result of 
disorder-specific (and therefore different) attentional states [83].

Other TMS studies showed impaired transcallosal-mediated inhibition in ADHD 
[86–88], and that both latency and duration of the ipsilateral silent period (iSP) are 
prolonged in children with ADHD [86–88], with the duration being correlated with 
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hyperactivity and restlessness [89]. Instead, adults with ADHD showed a shortened 
iSP but a normal latency [89]. The increased iSP latencies in children with ADHD 
have been explained as a defective myelination of fast-conducting fibers in corpus 
callosum [86], indicating a callosal maturation deficit in ADHD approximating nor-
mality with increased age [86, 87]. Therefore, it is likely that the different iSP laten-
cies found between children and adults with ADHD are due to developmental 
differences in the inhibitory intracortical pathways [90].

TMS can be a useful tool for guiding ADHD pharmacotherapy. ADHD children 
under medication with methylphenidate showed a significant prolongation of iSP 
duration and a latency shortening [88], indicating that methylphenidate, as an indi-
rect dopamine agonist, might improve the imbalance between excitatory and inhibi-
tory interneuronal activities of this neuronal network, via dopaminergic modulatory 
effects on the striato-thalamo-cortical loop [89]. As TMS studies showed SICI to be 
correlated with hyperactivity, and MPH administration showed a normalizing effect 
on SICI and hyperactivity, SICI has been suggested as an objective and quantitative 
proxy of the therapeutic effectiveness of MPH [81]. By identifying ADHD individu-
als showing a greater SICI change after MPH administration, it would be possible 
to identify potential responders from nonresponders. Moreover, by monitoring SICI 
changes, clinicians could optimize drug titration [81]. However, these hypotheses 
require more research and may benefit from the advances of TMS-evoked poten-
tials. The combination of TMS with electroencephalography (TMS-EEG) appears 
as a powerful technology for characterizing and modulating brain networks. Indeed, 
TMS-EEG allows us to assess in vivo neural excitation, inhibition, connectivity as 
well as plasticity across brain regions providing useful information regarding brain 
function-behavior relationship in health and disease [91]. In this context, future 
research should take into account findings related to the utility of TEP monitoring, 
together with clinical EEG, for assessing the immediate online effects of rTMS on 
cortical excitability (N100 amplitude changed during 1 Hz stimulation) that may 
serve as a safety measure and to maximize the functional effects of rTMS on the 
cortex [65]. Moreover, TMS-EEG use may allow the assessment of neurophysiolog-
ical responses to medications outside of the motor cortex [81, 92].

9.5	 �tDCS Studies in ADHD

In respect to the evidence of TMS as a therapeutic tool for both behavioral and cog-
nitive symptoms in ADHD, which requires more research for establishing its effi-
cacy, promising results come from the studies investigating the tDCS use on people 
with the disorder. Studies performed in children and adolescents with ADHD inves-
tigated the acute effects of a single session of tDCS on working memory dysfunc-
tion and inhibitory control deficits. A double-blind, sham-controlled experimental 
design investigated the effect of a single session of anodal active electrode (1 mA) 
over the left DLPFC and cathodal active electrode over the Cz during an N-back 
working memory (WM) task. Interestingly, tDCS demonstrated to improve signifi-
cantly WM performance, but also the activation and connectivity of the WM net-
work. Compared to sham condition, tDCS led to a greater activation of the left 
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DLPFC, left premotor cortex, left supplementary motor cortex, and precuneus, and 
its effect was long lasting. In fact, tDCS influenced the resting-state functional con-
nectivity even 20 minutes after the stimulation [93].

In a sham-controlled experiment performed on 25 children with ADHD, anodal 
stimulation over the left DLPFC and cathodal stimulation over the right DLPFC 
showed a significant effect of tDCS on WM and interference inhibition. By changing 
parameters, using therefore cathodal stimulation of the left DLPFC and anodal stim-
ulation of the right orbitofrontal cortex (OFC), a positive tDCS effect on response 
inhibition and improvement of attentional shifting have been also found [94].

Both anodal and cathodal tDCS on the left DLPFC improved performance accu-
racy during a Go/NoGo task in a sham-controlled trial performed on students with 
ADHD, indicating that both types of stimulation could improve executive functions 
in people with the disorder [95].

As the right inferior frontal gyrus has been recognized as an important region in 
the inhibitory control network, the effects of tDCS applied over this area in 21 male 
adolescents with ADHD and matched controls were explored. Subjects underwent 
three separate sessions of tDCS (anodal, cathodal, and sham) while completing a 
Flanker task. The overall analysis did not show a significant effect of tDCS, but in 
consideration of the learning effect from the first to the second session, the perfor-
mance in the first session was therefore separately analyzed. This second analysis 
revealed that while ADHD patients receiving sham stimulation in the first session 
showed impaired interference control compared to controls, ADHD subjects who 
received anodal stimulation showed comparable performance levels (commission 
errors, reaction time variability) to the control group. According to these results, the 
authors concluded that anodal tDCS over the right inferior frontal gyrus could 
improve interference control in patients with ADHD [96].

A study exploring the effect of repeated sessions of tDCS (30 minutes for 5 days) 
with 2 mA anodal stimulation of the left DLPFC and cathode positioned over the 
right supraorbital area in a small group of children and adolescents with ADHD 
(N  = 9) showed that tDCS induced a more efficient processing speed, improved 
detection of stimuli, and improved ability in switching between an ongoing activity 
and a new one [97].

In a randomized, double-blinded, sham-controlled crossover study performed on 
adolescents with ADHD (N = 15), 1 session a day for 5 consecutive days of anodal 
tDCS (active stimulation: 1 mA) over the left DLPC and cathodal active electrode 
over the Cz (vertex), during which patients performed a working memory task, 
anodal tDCS showed to significantly reduce clinical symptoms of inattention and 
impulsivity compared to sham stimulation. Noteworthy, tDCS effects appeared 
more pronounced 7 days after the end of stimulation, supporting the putative long-
lasting clinical and neuropsychological changes of tDCS [98].

For what concerns adults with ADHD, tDCS studies performed on this kind of 
population showed promising results. A recent double-blind sham-controlled study 
investigated the effects of tDCS (2 mA) daily sessions of 20 minutes for 5 days with 
the anode over the right DLPFC and cathode over the left DLPFC in adults with 
ADHD (N  =  17), through self-report measures for both ADHD symptoms and 
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impairment (Adult ADHD Report Scale and Sheehan Disability Scale). Results 
showed that subjects treated with active vs. sham tDCS with ADHD displayed a 
symptom reduction and a decreased impairment. Follow-up data analysis revealed a 
positive interaction between time and treatment in both self-rated inattention, 
impairment, and total ADHD score [99]. As the study of Cachoeira et  al. [99] 
showed a clinical positive effect on ADHD symptomatology, which was driven pri-
marily by attentional improvement rather than impulsivity/hyperactivity reduction, 
another group of researchers explored the effectiveness of 2 mA anodal stimulation 
(tDCS) applied over the left DLPFC versus sham stimulation in improving impulse 
control. Overall, 37 adults with ADHD completed two periods of three tDCS (or 
sham) sessions 2 weeks apart in a within-subject, double-blind, counterbalanced 
order and performed a fractal N-back training task concurrent with tDCS (or sham) 
stimulation. For this aim, participants also performed the Conners Continuous 
Performance Test (CPT) and the Stop Signal Task (SST), and the CPT and the SST 
reaction time (SSRT) were analyzed. A comparison between the CPT and SST 
scores performed at baseline, at the end of the treatment, and at a 3-day post-stimu-
lation follow-up showed no significant change in SSRT but rather a decrease in CPT 
false-positive errors from baseline to end of treatment in the tDCS group, reflecting 
a reduction in impulsive response. Such positive effect did not persist at the follow-
up conducted 3 days after the final stimulation session, but authors concluded that 
repeated tDCS may be a novel treatment for impulsivity in ADHD, although addi-
tional research was necessary to determine whether an optimized treatment approach 
could induce persistent effects [100].

A parallel, randomized, double-blind, sham-controlled trial performed on 30 
adults with ADHD explored the efficacy of a single session of tDCS (1 mA anode 
over the left DLPFC and cathode over the right DLPFC) on the modulation of inhib-
itory control, as measured by a go/no-go task before and after the active/sham stim-
ulation [101]. Results did not show any significant differences between active and 
sham tDCS, and it is not clear whether this lack of effect was due to the use of 1 mA 
current stimulation rather than 2 mA (the most used tDCS intensity in psychiatric 
disorders), or to the fact that, unlike many tDCS trials, in this study people were not 
required to simultaneously perform a cognitive task (online tDCS). The latter 
hypothesis has been considered as very likely, as the application of tDCS when 
subjects are actively involved in a cognitive task may activate more specific brain 
networks, resulting in better performance than when they are at rest. This is in line 
with evidence from studies coupling tDCS with cognitive training showing greater 
effects compared to tDCS intervention at rest [102, 103]. Furthermore, evidence 
from neuroimaging studies showed that people with ADHD are characterized by 
reduced brain activation in the prefrontal regions, and therefore one single session 
of tDCS may not be strong enough to improve their cognitive performance, even 
though it may enhance cortical excitability [104].

In consideration of the high frequency of comorbid disorders in people with 
ADHD, such as sleep-wake disorders, the recent findings from a study performed 
by Munz et  al. [105] using slow-oscillating tDCS (so-tDCS) on children with 
ADHD (N = 14), aged 10–14 years, are noteworthy. They used so-tDCS, 0.75 Hz, 
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over the right and left DLPFC during non-REM sleep and evaluated its effect on 
inhibition using a Go/no-go Task. They found an enhancement of endogenous 
oscillatory activity as a result of their intervention, with an improvement of behav-
ioral inhibition performance, which is typically impaired in ADHD. Previously, 
so-tDCS applied to 12 children with ADHD over the bilateral DLPFC in a double-
blind crossover design showed an enhancement of declarative memory [106]. 
Therefore, Slow Oscillation (SO) has been considered as a promising somatic 
marker in the pathophysiology of ADHD [106–108] and a future potential thera-
peutic target [105].

In conclusion, tDCS is a low-cost, easily accessible, and pain-free stimulation 
method that is generally well tolerated, having limited side effects, such as itchiness 
or scalp irritation. It is easily applicable to children as well as adults with ADHD, 
notwithstanding the presence of a high level of hyperactivity. tDCS has been suc-
cessfully used in the treatment of several neurological and psychiatric disorders, 
including Parkinson’s disease and major depression [109]. Even though its mecha-
nism of action is not fully understood, tDCS demonstrated the potential to induce 
some neurochemical modifications in targeted brain tissues, which last longer than 
the period of active stimulation [110], therefore allowing maintenance of results.

9.6	 �Summary of NIBS in ADHD

Collectively, evidence up to date provides support to the use of NIBS as a treatment 
tool for neurodevelopmental disorders such as ADHD, as these interventions 
showed to produce positive effects and particularly when combined with functional 
cognitive training. However, the studies conducted hitherto are characterized by 
some methodological issues, such as small sample sizes and lack or inconsistent use 
of sham protocols. Moreover, despite the high heterogeneity characterizing the 
ADHD phenotype, the vast majority of studies have focused mainly on the DLPFC 
stimulation. It should be underscored that, in spite of being NIBS protocols divided 
into excitatory and inhibitory, many subjects show opposite effects or even no effect 
at all. In fact, about 50% of subjects who receive 1-Hz rTMS show a pattern of 
excitation instead of inhibition, and similarly, a consistent proportion of people who 
receive 10-Hz rTMS display an inhibitory rather than excitatory pattern [76]. 
Variability appeared to characterize also 1-Hz parietal rTMS on resting-state func-
tional connectivity, according to findings from fMRI studies [111]. As for TMS, 
also in studies using tDCS it has been reported that only the 36% show an excitatory 
effect after anodal stimulation and inhibitory effect after cathodal stimulation, while 
the opposite has been reported in 21% of cases [112].

In conclusion, NIBS techniques offer a promising new approach to reduce some 
ADHD dimensions of pathology. Although research in the use of NIBS in ADHD is 
still in its infancy, data deriving from protocols for strengthening cognitive control 
[76] may help to personalize the treatment plan of people with this neurodevelop-
mental disorder, and may be particularly well suited for comorbid cases. The use of 
combined TMS-EEG appears as particularly useful for the goal of “precision 
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medicine” for psychiatry, as interindividual differences in TMS-EEG markers of 
brain health seem to have a genetic basis [113]. Finally, the utility of Transcranial 
Near-Infrared Light Therapy, a noninvasive intervention in which near-infrared 
light (830 nm) is applied to forebrain, should be explored in ADHD, considering the 
recent evidence indicating some positive effects on core symptoms of autism spec-
trum disorders [114].
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