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Tic disorders have been the subject of etiological speculation for at least the past 300 
years. Over the past 35 years, Tourette syndrome (TS) has come to be recognized as 
a model of neurodevelopmental disorder representing the nexus between neurology 
and psychiatry [1, 2]. The identification of abnormalities involving the basal ganglia 
in postmortem [3] and neuroimaging studies [4], the possibility of a post-infectious 
etiology for some cases of the disorder [5, 6], and the increasing appreciation of the 
interaction of genetic [7] and environmental factors [8] in disease expression, have 
all contributed to making TS a model for understanding developmental psychopa-
thology more broadly. The reality for patients is that TS can be a devastating condi-
tion, which alone, or in combination with other closely associated forms of 
psychopathology, causes patients and their families considerable suffering [9, 10].

TS is a childhood-onset neuropsychiatric disorder characterized by chronic 
motor and vocal tics that are often preceded by premonitory urges [11]. Although tic 
symptoms in the majority of children with TS improve during adolescence, adults 
with persistent illness can experience chronic and severe tics [12].

Randomized controlled trials (RCTs) have documented the efficacy of several 
behavioral and pharmacological treatments for TS [13, 14]. However, approximately 
one-third of individuals with TS do not benefit from first-line treatments, and several 
of the most effective medications used to treat tics have significant side effects [15, 16].

Considering that the basal ganglia and the thalamocortical systems play an 
important role in habit formation and are implicated in the pathophysiology of TS 
[17], the experimental use of deep brain stimulation (DBS), targeting the thalamus, 
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the posteroventrolateral part and the anteromedial part of the globus pallidus inter-
nus, the anterior limb of the internal capsule and the nucleus accumbens, has been 
shown to produce positive results for a proportion of children, adolescents, and 
adults with severe TS [18–20].

However, to date, the largest RCT failed to prove the efficacy of DBS in TS [21], 
and the optimal site for electrode placement has yet to be determined [22, 23]. In 
addition, DBS can be associated with serious adverse effects, including an increased 
risk of infection [24, 25]. In this context, novel, less-invasive treatments to reduce 
tic severity are urgently needed, especially for patients with severe TS.

Transcranial magnetic stimulation (TMS) is a noninvasive tool of stimulating 
targeted cortical regions in TS [26]. Initial repetitive TMS (rTMS) studies targeting 
motor and premotor cortical sites with either low-frequency (1-Hz) or high- 
frequency (15-Hz) protocols have had limited or no success in treating individuals 
with severe TS [27–29]. More recently, several open-label studies have reported that 
1-Hz rTMS targeting the supplementary motor area (SMA) can decrease the fre-
quency and intensity of tics [30–35].

Based on the importance of sensory signals and their integration with subse-
quent motor acts [36–38], the SMA seems to be a promising target for rTMS. As 
early as the 1980s, Eccles [39] speculated that the SMA was involved in the inten-
tional preparation of movements [40]. More recently, event-related functional 
Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET) 
techniques have implicated the SMA in the preparation and organization of volun-
tary movements [41, 42]. Not only does stimulation of this region produce both 
movements and urges to move (reminiscent of the premonitory urges of TS) but 
also the nature of the movements or corresponding urges ranges from simple motor 
acts to complex movements, paralleling the range of simple to complex tics expe-
rienced in TS [43]. Neuroimaging studies examining patterns of brain activation in 
individuals with TS have consistently identified the SMA as one of the structures 
that is active simultaneously with tics as well as in the seconds preceding tics 
[44–48].

Hampson et al. [49] compared the temporal patterns of brain activity during tics 
in 16 TS patients to those during intentional “tic-like” movements in control sub-
jects. Rather than relying on a subjective judgment of when tics occurred, a novel 
method was employed that first identified that part of the motor cortex specific to 
each patient’s tic movement, and then cross-correlated activity in that region with 
activity in other brain areas during tics. Regions implicated in sensory urges, par-
ticularly the SMA and somatosensory cortex, were hypothesized to show differen-
tial time courses in patients and controls. A nearly identical sequence of brain 
activity was observed across groups. However, only the SMA showed a signifi-
cantly different profile with cross-correlations to motor cortex extending over a sig-
nificantly broader time window in the patients relative to controls. The SMA was 
active both earlier and later in the patients, implying that it is involved in both tics 
and intentional movements. These findings highlight the potential importance of the 
SMA in tic generation and point toward novel focal brain stimulation intervention 
strategies for TS.
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An RCT with 1-Hz rTMS targeting the SMA failed to find a statistical difference 
in clinical improvement between the active and the sham (placebo) groups after 3 
weeks. However, in the 3-week open-label continuation phase of the study, patients 
who received a total of 6 weeks of rTMS showed on average 30% decrease in the 
Yale Global Tic Severity Score (YGTSS) with a sizable proportion of the TS sub-
jects who received active rTMS for 6 weeks judged to be responders (57.1%) [50].

rTMS was administered with the Magstim super-rapid stimulator (Magstim 
Company Ltd, UK) using a vacuum-cooled 70-mm figure-of-eight coil. Stimulation 
parameters were 1-Hz, 30-min train (1800 pulses/day) at 110% of resting motor 
threshold-MT (using the lowest value of right or left hemisphere), once a day, 5 
days/week, for 3 (in the double-blind phase) to 6 weeks (in the continuation open- 
label phase). The coil was positioned over pre-SMA using the International 10–20 
EEG System coordinates. Pre-SMA was defined at 15% of the distance between 
inion and nasion anterior to Cz (vertex) on the sagittal midline [33]. Brainsight TMS 
navigation system was used to locate and monitor online the stability of coil place-
ment during each rTMS session. The coil was placed with the handle along the 
sagittal midline, pointing toward the occiput to stimulate bilaterally and simultane-
ously the pre-SMA.

Sham rTMS was administered using the Magstim sham coil, which contains a 
mu-metal shield that diverts the majority of the magnetic flux so that a minimal 
(<3%) magnetic field is delivered to the cortex [51]. To maintain the blind, raters 
were blinded to treatment condition with a separation between the clinical team and 
rTMS treating physician(s). Moreover, patients who had received TMS treatments 
in the past were excluded.

Before and after each session, patients were asked a series of questions in a struc-
tured form to rate rTMS side-effects. In addition, subjects were asked to complete 
the Systematic Assessment for Treatment Emergent Effects (SAFTEE) [52].

Twenty patients entered and 18 completed phase 1 (3-week double-blind phase). 
Regarding the 20 patients who met criteria for TS, a 33% (3/9) response rate was 
observed in those randomized to active rTMS and 18% (2/11) with sham rTMS 
(Fisher’s exact test, p = 0.62). Analysis of 18 completers showed a response rate of 
37.5% (3/8) with active and 20% (2/10) with sham rTMS (Fisher’s exact test, 
p = 0.61) at the end of the double-blind phase.

Seventeen patients entered and 16 completed the open-label phase (seven ini-
tially randomized to active and nine to sham). Nine patients initially randomized to 
sham had no significant change in their YGTSS total tic scores after 3 weeks of 
active rTMS (from 32.9 ± 8.4 to 31.8 ± 8.5; F = 0.64, df = 2,16, p = 0.54). Seven 
patients initially randomized to active rTMS, who received an additional 3-week 
active rTMS, showed further improvements from weeks 3 to 6 on the YGTSS total 
tic scores (from 31.1 ± 9.5 to 25.3 ± 6.7, F = 0.58, df = 2,12, p = 0.57). The mean 
improvement in the total tic severity score from baseline to 6 weeks [mean reduc-
tion of YGTSS score = 10.7 points (29.7%)] for the 7 patients who completed the 6 
weeks of active treatment was statistically significant (t = 2.6, df = 6, p = 0.04).

No major side effects were noted during the course of treatment. Specifically, 
there were no seizures, neurological complications, or complaints about memory or 
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concentration difficulties. Headache, neck pain, and muscle sprain were the only 
side effects reported as “severe” in active treatment. Only in one instance was there 
a “severe” side effect, i.e., a severe headache, judged to be treatment related.

A major limitation of this study is the relatively small sample size and short 
blinded phase. A larger sample and longer blinded phase will be needed to defini-
tively evaluate whether 6 weeks of low-frequency rTMS targeting the SMA is clini-
cally efficacious in reducing tic severity. This is an important consideration given 
that optimal antidepressant effects result from the application of rTMS for 4–6 
weeks [53].

In fact, recently, three patients with severe, medication-refractory TS, and comor-
bid obsessive-compulsive disorder (OCD) in two of them, received rTMS at 1-Hz to 
the SMA for 4-week duration. The first two cases of TS-OCD showed, on average, 
57% improvement in the YGTSS scores and 45% improvement in Yale-Brown 
Obsessive–Compulsive Scale (Y-BOCS) scores; the third case of pure-TS showed 
marginal improvement of 10% only. The improvement in TS-OCD patients with 
rTMS treatment was maintained at the end of 3-month follow-up, with an average 
reduction of about 49% and 36% observed in YGTSS and Y-BOCS scores, respec-
tively [54].

rTMS to the SMA has been successfully tested in treatment-resistant OCD in 
RCTs [55–57] and as an augmentation to pharmacotherapy [58–60]. A recent meta- 
analysis showed that low-frequency rTMS of the SMA yielded the greatest reduc-
tions in Y-BOCS scores relative to other cortical targets in the short- and long- term 
follow-ups [61]. Specifically, the clinical effect of 1-Hz rTMS to the SMA corre-
lated with changes in cortical excitability measures, consistent with an inhibitory 
action of rTMS on dysfunctional premotor and motor circuits in OCD [62]. The 
SMA target was selected, based on the results of a deficient sensory gating and 
enhanced precentral somatosensory-evoked potentials in OCD, which might reflect 
the inability to modulate sensory information due to a tonic high level of cortical 
excitability of motor and related areas [63].

Recently, optogenetic stimulation revealed that secondary motor area (M2) post-
synaptic responses in central striatum were significantly increased in strength and 
reliability in Sapap3 knockout mouse model of compulsive behaviors, suggesting 
that increased M2-striatal drive may contribute to both striatal hyperactivity and 
compulsive behaviors. Because M2 is thought to be homologous to pre-SMA/SMA 
in humans, regions considered important for movement preparation and behavioral 
sequencing, these results are consistent with a model in which increased drive from 
M2 leads to the excessive selection of sequenced motor patterns and support a 
potential role for pre-SMA/SMA in the pathology and treatment of compulsive 
behavior disorders, like OCD and Tourette syndrome [64].

Considering the overlap in the pathophysiology of OCD and TS [65], with OCD 
symptoms reported in 50–90% of patients with TS [66], with studies suggesting an 
involvement of the basal ganglia circuit, especially disruption of the indirect path-
way resulting in repetitive behaviors and thoughts in comorbid OCD and TS [67], 
and considering that single and paired-pulse TMS found a deficit in intracortical 
inhibition in both OCD and TS [68], it is plausible to think that the application of 
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low-frequency rTMS to the SMA might be particularly helpful in patients with 
comorbid TS-OCD.

Studies using motor-evoked potential (MEP) and phosphene threshold have 
shown that 1-Hz rTMS to motor and occipital cortex, respectively, reduces cortical 
excitability [69, 70]. One-Hertz rTMS to prefrontal cortex reduces blood flow [71, 
72]. Studies have demonstrated that suppressive effects of rTMS to one region can 
be propagated to other cortical regions via functional connections. For example, 
1-Hz rTMS to motor cortex reduces MEP induction in the contralateral motor cor-
tex [73] and reduces the Bereitschaftspotential, a slow negative EEG potential aris-
ing from the SMA [74].

The mechanism of action of 1-Hz rTMS is thought to be analogous to long-term 
depression induced by direct electrical stimulation. One-Hertz rTMS may produce 
neuroplastic effects similar to that produced by direct 1-Hz electrical stimulation of 
gray matter in animal studies, which often produces a phenomenon known as long- 
term depression (LTD). LTD in the hippocampus and cerebral cortex has been 
widely replicated [75–77]. Like 1-Hz rTMS, LTD requires 15–30 minutes of con-
tinuous 1-Hz stimulation, has cumulative effects if stimulation is repeated over 
many days, and propagates trans-synaptically to other functionally connected brain 
regions [78]. LTD can last for many weeks, indeed as long as the experimental ani-
mal can be maintained [79]. If 1-Hz rTMS produces LTD-like effects, rTMS-
induced alterations in brain function may produce clinically significant effects 
lasting beyond the period of stimulation.

Our pioneering open-label study, which targeted the SMA, demonstrated that 
1-Hz rTMS produced a significant clinical improvement (67% reduction in tic 
severity) in patients with comorbid OCD and TS [33]. We demonstrated in two 
other cases affected with TS and comorbid OCD a 52% clinical improvement that 
matches or exceeds approved behavioral or pharmacological interventions for 
TS [80].

The clinical efficacy of rTMS in patients with TS and OCD was reported in a 
recent meta-analysis. The authors included eight studies, with a sample of 113 sub-
jects, and showed that rTMS significantly improved tic (g = −0.61; CI: −0.94 to 
−0.29) and OCD (g  =  −0.48; CI: −0.83 to −0.14) symptoms in TS patients. 
Stimulation of the SMA was more effective in tic symptoms than the stimulation of 
other areas (g = −0.70; CI: −1.11 to −0.30 vs. g = −0.36; CI: −0.84 to 0.14), and 
younger age was associated with a better treatment effect (coefficient  =  0.03, 
p = 0.027) [81].

Wu et al. [82] suggested using a patient-specific targeting procedure and a novel 
rTMS paradigm, named continuous theta burst stimulation (cTBS). In their RCT, 
mean YGTSS scores decreased in both active (27.5 ± 7.4 to 23.2 ± 9.8) and sham 
(26.8 ± 4.8 to 21.7 ± 7.7) groups. No significant difference in video-based tic sever-
ity rating was detected between the two groups. However, the two-day post- 
treatment fMRI activation during finger tapping decreased significantly with active 
rTMS and not with sham in the SMA (p = 0.02), left M1 (p = 0.0004), and right M1 
(p < 0.0001). Therefore, active fMRI-navigated cTBS administered over 2 days to 
the SMA induced significant inhibition in the motor network (SMA, bilateral M1), 

10 Application of Repetitive Transcranial Magnetic Stimulation in Tourette Syndrome



128

but larger sample size and protocol modifications (i.e., higher number of rTMS ses-
sions) may be needed to produce clinically significant tic reduction.

Since cTBS provides more potent inhibitory neuromodulatory effects [83], the 
efficacy of fMRI targeted cTBS should be evaluated over a longer period of time in 
TS patients before any definite conclusions can be made concerning its clinical 
efficacy. In addition, based on our laterality findings in TS and OCD patients’ right 
hemisphere cortical excitability measures after active rTMS but not sham [33, 50, 
56, 57, 62], and the recent work of Obeso et al. [84], a case can potentially be made 
to target preferentially the right pre-SMA with cTBS. Specifically, combining cTBS 
with oxygen 15-labeled water (H2

15O) PET scans acquired during a stop signal task, 
Obeso and colleagues found that cTBS-induced changes in the excitability of the 
right pre-SMA (as compared to sham cTBS) enhanced response inhibition. They 
also found that cTBS over the right pre-SMA was associated with increased blood 
flow in the left pre-SMA, the left inferior frontal gyrus, as well as the right premotor 
and right inferior parietal cortex. If cTBS over the right pre-SMA can enhance 
response inhibition, then it might also have a beneficial effect on tics. In a recent 
RCT, including 27 treatment-refractory OCD patients, fMRI-guided rTMS to the 
pre-SMA improved significantly symptoms, and such improvement correlated with 
measures of cortical excitability (i.e., % of reduction on self-reported YBOCS cor-
related with increased MT) [85]. In another study, bilateral stimulation of the pre- 
SMA induced a clinical improvement in OCD symptoms and increased functional 
connectivity between the rTMS target and the right inferior frontal gyrus and orbito- 
frontal cortex (Mantovani et al. unpublished data).

Therefore, based on the preliminary evidence of a clinical and neurophysiologi-
cal effect of rTMS applied to the SMA in patients with TS and OCD, the application 
of low-frequency rTMS protocols holds promise in the treatment of refractory cases 
and might be tried in the future with improved target selection and stimulation pro-
cedures before the application of more invasive interventions, such as electrocon-
vulsive therapy [86], DBS [20], and gamma knife capsulotomy [87].
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