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Abstract. As machine learning (ML) techniques and sensor technology continue
to gain importance, the data-driven perspective has become a relevant approach
for improving the quality of maintenance for machines and processes in indus-
trial environments. Our study provides an analytical literature review of existing
industrial maintenance strategies showing first that, among all extant approaches
to maintenance, each varying in terms of efficiency and complexity, predictive
maintenance best fits the needs of a highly competitive industry setup. Predic-
tive maintenance is an approach that allows maintenance actions to be based on
changes in the monitored parameters of the assets by using a variety of techniques
to study both live and historical information to learn prognostic data and make
accurate predictions. Moreover, we argue that, in any industrial setup, the quality
of maintenance improves when the applied data-driven techniques and methods
(i) have economic justifications and (ii) take into consideration the conformity
with the industry standards. Next, we consider ML to be a prediction methodol-
ogy, and we show that multimodal ML methods enhance industrial maintenance
with a critical component of intelligence: prediction. Based on the surveyed lit-
erature, we introduce taxonomies that cover relevant predictive models and their
corresponding data-driven maintenance techniques. Moreover, we investigate the
potential of multimodality for maintenance optimization, particularly the model-
agnostic data fusion methods. We show the progress made in the literature toward
the formalization of multimodal data fusion for industrial maintenance.

Keywords: Maintenance strategies · Predictive maintenance ·Multimodal
machine learning · Predictive models · Data fusion · CRISP_DM · Industrial
Data Space

1 Introduction

Aproper quality ofmaintenance is crucial in assuring both the desired quality of planning
for the service/production/distribution chain and the desired quality of the commodities
in any industry area. In the context of our research work, we investigate the optimization
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of maintenance quality. Among all the existing approaches to maintenance, varying in
terms of efficiency and complexity, predictive maintenance seems to fit the needs of a
highly competitive industry setup, as argued by [1]. Predictivemaintenance evolved from
condition-based maintenance, where decisions are based on evaluation of the machine
status through inspections and measurements.

Predictive maintenance allows maintenance actions to be based on changes in the
parameters of industrial assets, that are continuouslymonitored by sensors. Due to recent
advances in sensor technology, data communication, and computing, the ability to col-
lect significant volumes of heterogeneous, raw sensor data produced by industrial assets
under observation is exponentially increasing. Therefore, historical information about
normal and abnormal patterns and the related corrective actions employed during the
lifetime of an industrial asset is becoming available. Consequently, the capability of
forecasting failures based on aggregated live and historical data—i.e., the predictive
maintenance approach—is currently a relevant research topic with applicability in all
industrial fields and the research object of our analytical literature review. To deal with
such high-dimensional problems, predictive maintenance approaches must continuously
optimize themselves using a variety of techniques and prediction models that study both
live and historical information. This information is further used for learning prognostics
data and making accurate diagnostics and predictions, as presented by references [2–4].
Although the authors argue that the implementation of effective prognosis for mainte-
nance has a variety of benefits, including increased system safety, improved operational
reliability, reduced service times/repair failure times, and life cycle costs, the existing
literature does not inform us about the optimal methodologies to be used in practice for
the implementation of a particular maintenance scenario. Past works on predictive main-
tenance show that maintenance actions are performed by employing various prediction
models and modeling techniques by applying different perspectives; i.e., (i) knowledge-
based perspective with predictionmodels comprising expert systems and fuzzy logic; (ii)
data-based perspective with ANNs, stochastic and statistical models, respectively; and
(iii) hybrid prediction models encompassing a mixture of distinct methods for reaching
the same end goal: a higher maintenance quality.

Among statistical predictionmodels,machine learning (ML)methods are considered
the most suitable to deal with high dimensional and unstructured data, as argued by
[5, 6]. Moreover, multimodality is increasingly used byMLmethods for combining data
frommultiple, diversemodalities and sources to retrieve new insights from the combined
knowledge. There are a lot of previous works onmultimodality, as the topic dates back to
the 90s. Maintenance scenarios that implement multimodal ML methods for predictive
maintenance optimization purposes are defined by [2, 3, 6, 7].

However, to date, no standard or good practice recommendations for the fusion
and integration of multimodal data have emerged. Our research reviews the model-
agnostic data fusion techniques to find solutions for their optimal usage. We argue that
understanding the capabilities and challenges of existingmultimodal data fusionmethods
and techniques has the potential to deliver better data analysis tools across all domains,
including in the maintenance quality and management field of research.

Furthermore, we envision the problem of maintenance’s quality as a complex topic
with many complementary aspects: technical, economic, and the conformity with the
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mainstream industrial standards. The first aspect follows the classical optimization con-
cerns relative to maintenance costs by considering aspects related to maintenance invest-
ment costs and resulting benefits. Traditional approaches consider maintenance only as a
cost. However, maintenance activities have direct implications on production and quality
and, therefore, should be treated as an investment, as argued by [8]. Moreover, choosing
the appropriate timing for performing maintenance activities has economic justifica-
tions as explained by [9] in the description of the damage model. The damage model
recommends the use of maintenance actions only when clear evidence of the machine or
equipment status exists. It shows that, based on long-term historical data, it is possible
to adapt the predictive maintenance interval to the industrial item life cycle by fore-
casting the item’s wear and its impact on the production chain. Reference [9] explains
that the probability that an item will fail is high at the beginning of its operational
life in its burn-in period. During the burn-in period, the failure probability of an item
decreases continuously. During the item’s working period, the failure probability is low
and remains constant; therefore, predicting the item’s failure during the working period
is challenging. The probability of failure increases with the number of working hours,
so that, in the wear period, the probability for an item to fail is again high. Therefore,
as a good practice, [9] recommends performing maintenance actions during the wear
period of an item’s life cycle.

The second aspect thatwe believe influences the quality ofmaintenance is conformity
to industrial standards during the development life cycle of a maintenance product. Our
review of the literature shows that ad-hoc maintenance model development and imple-
mentations that do not comply with existing mainstream standards are problematic. This
situation leads to the absence of good practice recommendations or general solutions
in the development of maintenance products. We briefly review two existing industrial
standards for model development: Industrial Data Space [10] and Cross-Industry Stan-
dard Process for Data Mining (CRISP-DM) [11]. The CRISP-DM standard represents a
guideline to follow in the process of prototyping a learning model for maintenance pur-
poses. We shortly list the guideline steps: business understanding, data understanding,
data preparation, data fusion, model prototyping, model evaluation, and deployment.
On its turn, Industrial Data Space represents the solution to the actual problems raised
by the huge volume of heterogeneous data that needs to be handled in a standardized
way in the industrial setup. Among the expected benefits of any standard, we mention
knowledge sharing and (re)use, which help build complex operational models.

The technical aspect of maintenance quality is related to the set of decisions concern-
ing the appropriate techniques and methods that should be used for the development of
an operational and highly qualitative maintenance model. Our literature survey focuses
on analyzing the technical aspect, but further works are planned to consider its con-
nections with the economic aspect. To our knowledge, none of the reviewed research
works consider the conformity with industrial standards for model development and data
management and security. One of the main issues with actual maintenance techniques
and methods is precisely the absence of this holistic view in considering the problem
of the maintenance quality, as directly influenced by all of the above three mentioned
aspects; i.e., technical (data-driven oriented), economic (maintenance as a long-term
investment), and conformity with industrial standards.
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The rest of the paper is structured as follows: Sect. 2 describes the theoretical back-
groundof our paper, i.e., themaintenance taxonomyaccording to the terminologydefined
by both [12, 13] maintenance standards, and the multimodal MLmethods, as in [14, 15].
The description of the review process and the selection of the literature are presented
in Sect. 3. The findings and results of the investigated approaches are highlighted in
Sect. 4. Section 5 discusses the identified problems and further research challenges for
the reviewed topics. Finally, Sect. 6 concludes our review by outlining our approach and
planned future works.

2 Theoretical Background

2.1 Classification of Maintenance Approaches

The European recognized maintenance standards: DIN EN 13306 - Maintenance Ter-
minology [12] and DIN EN 31051 - Fundamentals of Maintenance [13], are defining
maintenance-related terminology and concepts. According to the DIN EN 31051 stan-
dard, the maintenance concept is defined as: the combination of all technical and admin-
istrative actions as well as actions of management in the lifetime of a unit, in order
to be in the fully functional state or to recover in this one so that this unit can fulfill
his requirements. The main maintenance activities (i.e., service, inspection, repair, and
improvement) are defined by the DIN EN 31051 standard. Their definitions, together
with other relevant maintenance concepts defined by the DIN EN 31051 maintenance
standard, are listed in Table 1. On the other hand, the DIN EN 13306 maintenance stan-
dard defines the existing maintenance strategies, i.e. corrective maintenance, preventive
maintenance, condition-based maintenance, and predictive maintenance. They are dis-
cussed in the following subsections. Moreover, the definition of a further maintenance
strategy, namely prescriptive maintenance—which is not yet standardized but is already
used in practice—is discussed in the following subsection.

Corrective Maintenance. According to the DIN EN 13306 standard, corrective main-
tenance is defined as: the maintenance carried out after fault recognition that is intended
to put an item into a state in which it can perform a required function. A system that
employs corrective maintenance should be aware of all its predefined sets of failures
and damages. However, in the industrial operational context, new faults and their cor-
responding patterns may appear over time because of the item’s usage during working
hours.

One main advantage of applying corrective maintenance techniques is that the wear
limit of an item, i.e., the service time, is fully used. This implies that the effort for item
inspection and for repairing or replacing the deteriorated item is significantly reduced
compared with the case of preventive maintenance.

The main disadvantage is that corrective maintenance interventions are performed
only after the occurrence of failures: it is the simplest approach to applyingmaintenance,
and therefore it is still frequently adopted. However, it is the least effective, and the costs
of interventions are substantial. The main challenge in applying corrective maintenance
is that the item can fail at a time not previously known or decided and, consequently,
can produce damages and additional costs of interventions that can be higher than the
yield of the full usage of its wear margin.
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Table 1. Fundamentals of maintenance - DIN EN 31051

Item Defines a component, device, subsystem, functional unit, equipment or a
system which can be described and considered as an entity.

Wear Represents the reduction of wear margin due to chemical or physical processes.

Wear limit Is the defined minimum value of the wear margin.

Wear margin Defines the possible reserve function capacity under defined circumstances
which a unit possesses.

Service Includes all activities delaying the degradation of the wear margin. The
activities include cleaning, conservation, greasing, oiling, complementing,
changing and readjusting.

Inspection Refers to all activities used to determine and evaluate the actual condition of
facilities, machines, assemblies, or components. Inspection refers to collecting
data, and related activities that can be measured, verified and monitored.

Repair Covers activities for retrieving the nominal condition, such as renewing,
patching and adjusting.

Improvement Defines the combination of all technical and administrative activities as well as
activities of management to increase the reliability, maintainability, or safety of
an item without changing its initial function.

Preventive Maintenance. TheDINEN13306 standard defines preventivemaintenance
as: the maintenance carried out at predetermined intervals or according to prescribed cri-
teria and intended to reduce the probability of failure or the degradation of the functioning
of an item. Consequently, preventive maintenance defines a set of actions carried out
before failure, which is intended to prevent failures or the degradation of a machine.

One main challenge of preventive maintenance approaches in an operational context
is that industrial scenarios for data analysis do not provide tracking of the past, abnormal
behavior, or maintenance operations that were performed to correct or prevent a faulty
behavior. The general assumption is that after several operational hours, the wear margin
of an item is worn out. The employed approach is to change the item or overhaul part of
it before the wear margin is used. Consequently, this approach leads to inefficient use of
resources, as unnecessary corrective actions are often performed.

Condition-Based Maintenance. The DIN EN 13306 standard defines condition-based
maintenance as preventive maintenance, which includes a combination of condition
monitoring and/or inspection and/or testing, analysis, and ensuringmaintenance actions.
Condition-based maintenance (CbM) aims to anticipate a maintenance operation, based
on the evidence of degradation and deviations from a supposed asset’s normal behavior.
The equipment is monitored with multiple sensors that are supposed to acquire relevant
data about the equipment’s operation life. Additionally, contextual parameters like vibra-
tion, temperature, humidity, etc., may also provide important information. Key Process
Indicators (KPIs) or health indicators are usually computed and analyzed to discover
trends that lead to abnormal contexts and failure events. Consequently, CbM enables
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existing failures to be detected, diagnosed, and corrected before breakdowns or other
serious consequences occur.

The challenge is how to use this asset health information for optimizing the accu-
racy of predicting the remaining asset lifetime, optimizing maintenance schedules, and
maximizing the industrial efficiency.

Predictive Maintenance. According to the DIN EN 13306 standard, predictive main-
tenance (PdM) is defined as: the condition-based maintenance carried out following a
forecast derived from repeated analysis or known characteristics and evaluation of the
significant parameters of the degradation of the item. PdM is a subclass of CbM. Conse-
quently, PdM is performed based on an estimate of the asset’s health status, e.g., detection
of Remaining Useful Life (RUL), saving costs, and improving the overall process effi-
ciency. PdM uses a variety of approaches and ML methods to study both real-time data
and historical data and to learn prognostic models that are expected to make accurate
predictions about the status of a machine or equipment. Themain challenge of predictive
models is that they rely on the assumption that there are certain contexts in the equip-
ment lifetime where the failure rate is increasing. In the industrial operational context,
there are patterns in which the failure probability does not increase but remains constant
during the equipment’s lifetime. Therefore, the equipment can fail at any time; this is
the case with electrical and electronic components.

Prescriptive Maintenance. Terminologically, neither the DIN EN 13306 nor the DIN
EN 31051 maintenance standards mentions it, but its functionality can be consequently
deduced and is seen as: a recommendation of one or more courses of action based on
the outcomes of models for corrective and predictive maintenance. Existing prescriptive
maintenance models are based on ad-hoc model development where ML methods and
data fusion techniques are jointly used with fuzzy reasoning, simulation techniques, and
evolutionary algorithms. Themain challenge of prescriptivemaintenance is the difficulty
with building prescriptive, operative models in practice.

Tables 3, 4 and 5 introduced in Sect. 4 are constructed based on the reviewed literature
on corrective, preventive, and predictive maintenance strategies. The tables present the
surveyed literature, a structured review of themaintenance type and goals correlatedwith
a specific statistical or data-driven operational method, and the corresponding results.

2.2 Multimodal ML Methods

Understanding the specific application context, or the business requirements is the first
step for any learning model developed and deployed in an industrial environment. The
main business requirements in the form of business goals must be identified, as they
strongly influence all processes of model development. The basic steps of the model
development life cycle for maintenance purposes are formalized by the CRISP-DM
standard and explained in [11] i.e. (1) Business understanding, (2) Data acquisition and
understanding, (3) Data preparation, (4) Data fusion, (5) Model development, (6) Model
evaluation, and (7) Deployment.
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Table 2. Multimodal ML methods

Representation Learning to represent heterogeneous information in a unitary way, easy to be
understood and processed by a learning model.

Translation Mapping the information from one modality to another in a most accurate way.

Alignment Identifying the inherent relations between sub-components. It also implies
dealing with similarity measurements.

Fusion Joining/combining in a meaningful way the information from different
modalities.

Co-learning Transferring knowledge among modalities: the modality with limited
resources can benefit from another with more information.

In the context of the CRISP-DM data-driven development life cycle, our focus is the
model development and the understanding of multimodal ML methods, in particular the
model-agnostic multimodal data fusion.

Multimodality is defined by [14] as referring to the way something happens or
is experienced: we read textual information, we see objects, we hear sounds, we feel
textures and smell odors. All these perceptions representmodalities. A research problem,
application, or data set is multimodal when it includes multiple such modalities.

To understand and to make sense of the world around us, A.I. techniques multimodal
ML, must be able to interpret multimodal information and further to reason about it and
make decisions. Multimodal ML is a multi-disciplinary field of research that builds
models, that process and relate information from multiple modalities, as defined in [14].
The main idea is that data from different sensors provide different representations of the
same phenomena. In MML literature, this is known as multimodal, multi-view, multi-
representation, or multi-source learning, as described in [15]. The main multimodal ML
methods were identified and defined in [14] i.e., representation, translation, alignment,
fusion, and co-learning. Their definitions, according to references [14, 15], are listed in
Table 2.

3 Research Methodology

3.1 Selection of Literature

A systematic search was employed to find journals and proceeding between 2016 and
2019 using theEnglish language and the keywords:maintenanceANDmachine learning.
We iteratively continued the search using the following keywords: predictive mainte-
nance, multimodal machine learning, multimodal methods, multimodality, maintenance
AND big data, maintenance AND Industry 4.0. A useful and predictive condition-based
maintenance literature review using bibliometric indicators [16] helped us determine the
most influential journals, articles, authors, and institutions in predictive condition-based
maintenance, with the only drawback that the research reviews articles published up
until December 2017, with the most cited papers dating back to the interval 2006–2009.
We finally obtained a shorter literature list, which was further reduced by eliminating the
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duplicates when similar topics and approaches were found. Science Direct, Scopus, and
Google Scholars were used, due to their wide collection of proceedings and journals. The
conference and journal publications selected for our review belong to the non-empirical
conceptual and mathematical fields of research. Consequently, they describe issues and
perspectives related to maintenance strategies and their modeling techniques applied in
an industrial setup. The overview of the reviewed maintenance literature is presented in
Sect. 4, in Tables 3, 4 and 5.

3.2 Description of the Criteria Used for Analysis

Our survey focuses on: (i) the decision process in choosing a specific maintenance
approach, i.e., maintenance goals, benefits, challenges, and obtained results; and (ii) the
implementation of the maintenance approach, i.e., the employed prediction models and
their correspondingmodeling techniques. The selected literaturewas carefully examined
to extract useful information based on the following criteria:

• Prediction models: reveal a taxonomy of the most active prediction model types
employed in a maintenance process, i.e., physical models, knowledge-based models,
database models, and hybrid models.

• Modelling techniques: represent the implementation pipeline (data analysis + algo-
rithms) used. It is a relevant criterion which further helps us select the set of the most
used ML algorithms to be critically reviewed.

• Obtained results/performance metrics: extract the information concerning how the
model was evaluated and give us a hint about how optimal the data analysis and
learning algorithms were applied.

• Maintenance goals: provide uswith a taxonomyof topics showing thefinal decisions of
the algorithm’s pipeline. Paired with the modeling techniques criterion, it gives useful
information about the successful algorithm pipeline used for a certain maintenance
goal.

The literature review we conduct is formalized by [17, 18] and starts with clarify-
ing relevant maintenance terminology and definitions based on the accepted, European
maintenance standards [12, 13]. Thereby, the surveyed works we consider are grouped
by maintenance approach, and further on, they are grouped by prediction models and
the modeling techniques used in the implementation of the maintenance strategies.

4 Research Findings

This section presents the reviewed results displayed in Tables 3, 4 and 5.
The surveyed works we consider are grouped by maintenance type, and further on,

they are grouped by prediction modeling types and relevant modeling techniques used
in the implementations.
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4.1 Corrective Maintenance

Our survey shows that the fault recognition and diagnostic is generally seen as a process
of pattern recognition, i.e., the process of mapping the information, i.e., the features
obtained in the measurement space to the machine faults in the fault space, as described
in [19–22].

Table 3. Review of corrective maintenance models and corresponding implementation
techniques: simplified table view. Full table view available in [23]

Prediction models Modeling
techniques

Obtained
results

Maintenance goals References

Knowledge-based
models

Expert Systems + fault
tree analysis

Real time supervision
and monitoring +
detection of foreseen
faults

Real time monitoring:
maintenance
inspection on request

(Alexandru, A.; 1998)
[24]

Fuzzy similarity, fuzzy
c-means algorithm

Drawback: new faults
cannot be classified
into new groups
without repeatedly
applying the spectral
analysis

Classification models
for fault diagnosis
using unsupervised
clustering

(Baraldi, P. et al.;
2014)
[22]

Data-based models Stochastic model:
HMMs

HMMs are fully
probabilistic models
incorporating
quasi-stationarity as a
feature + they build
robust and flexible
classification models

Machine health status
diagnostics +defect
type classification

(Bunks, C., et al.;2004)
[19]

Artificial Neural
Networks ANNs

Minimizes the
frequency of revision
inspections + in time
online warning for
unexpected new
failures

Machine health status
diagnostics in useful
time

(Deuszkiewick, P.,
et al.;2003)
[20]

Statistical model: SVM
+k-fold cross
validation

Accuracy: 90% even
when the standard
deviation of noise is 3
times larger than
normal: a better
generalization than
ANNs

Identification of 3 most
possible faults types

(Hao, Y., et al.;2005)
[21]

Diagnosis is a necessary part of any maintenance system, as using prognostics only
cannot provide, in practice, a sure prediction that covers all failures and faults. In case
of an unsuccessful prognosis, a diagnosis is a complementary tool for providing mainte-
nance decision support. The methods employed in order to deal with fault classification
and diagnostics are diverse: from expert systems [24] to hiddenMarkovmodels (HMM)s
as presented in [19], artificial neural networks (ANN)s as described in [20], a support
vectormachine (SVM) as in [21], and fuzzy algorithms enhancedwith spectral clustering
and Haar wavelet transform as described in [22].
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4.2 Preventive Maintenance

The reviewed literature shows that a relevant class of preventive maintenance techniques
are the prognostics through pattern recognition, classification, and machine health status
identification.

Table 4. Review of preventive maintenance models and corresponding implementation
techniques: simplified table view. Full table view available in [23]

Prediction models Modeling
techniques

Obtained
results

Maintenance goals References

Knowledge-based
models

Fuzzy Classifier +
Decision Tree

Feature extraction and
classification
explained. The
performance of the
fuzzy inference has
95% accuracy

Pattern recognition +
fault recognition and
classification

(Krishnakumari, A.,
et al.;2017) [25]

Data-based models Statistical model:
Bayesian Inference

Feature-based fusion +
concepts of
global/local fusion
(explained) +
Bayesian inference
explained

Machine health status
assessment and
condition monitoring

(Jaramillo, V. H.,
et al.;2017)
[26]

Statistical model: SVM
+ Fourier
transformation +
discrete Wavelet
decomposition

Accuracy: 90%-
feature-based fusion
with multiple sensors
provides
complementary
information to
machining conditions

Multiple machine
condition monitoring
and recognition

(Liu, C., et al.; 2016)
[27]

k-NN based outlier
remover + clustering
approach of vibration
events and joints +
Fourier transformation

Real-time health score
learned from historical
data and used to check
new events based on
cluster centroids and
joints representatives

Damage detection of
abnormal or damaged
patterns

(Diez, A., et al.; 2016)
[28]

ANNs and Deep
Learning

Deep learning with
statistical feature
representation shows
better performance
metrics. Statistical
features: time,
frequency and
time-frequency
domains have different
representation
capabilities for fault
patterns

Fault diagnostic and
fault patterns
identification

(Li, C., et al.; 2017)
[29]

Hybrid models Outlier Detection High degree outliers
are effective indicators
of incipient failures

Fault detection (Manco, G.,
et al.;2017)
[3]
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Prognostics analyze data by automatically finding new insights in terms of behavioral
patterns. The information extracted from the monitored data can help detect patterns that
characterize the machine working conditions or anticipate and estimate critical events
like fault detection as in [3] and Remaining Useful Life (RUL) estimation as in [5].

Prognostics are considered superior to diagnostics in the sense that they prevent
faults and are employed for prediction problems with items like spare parts and human
resources, saving unplanned maintenance costs. The reference [30] proposes a data
mining maintenance approach for predicting material requirements in the automotive
industry by measuring the similarity of customer order groups. Identifying behavioral
patterns in data means classifying similar data in some data-groups that share the same
characteristics, i.e., operational conditions, as described by references [25–29].

Within these classified groups, there are data-points that are far from the identified
pattern (i.e., the outliers), or they may correspond to a distinctive property (i.e., the mean
point or the group distribution). Such patterns may help to identify faults or any other
type of abnormal behavior. Large groups of data are interpreted as normal behavior, while
small groups of data or events that are far from the pattern usually represent anomalies.

4.3 Predictive Maintenance

The survey shows that the predictive maintenance process has the goal of providing an
accurate estimate of the RUL, but also, it should assess the provided estimate, as argued
in [31–33]. Time series analysis is used to anticipate anomalies and malfunctions in
equipment and process maintenance procedures. Traditional approaches are moving at
an average rate over a time window, ARMA/ARMAX, Kalman filter, and cumulative
sum, as described in [6].

Recursive neuronal networks (RNNs) show relevant characteristics for time series
forecasting, as their loops allow information to persist, as presented in [5]. Multi-sensor
fusion ranges from multi-signal combinations, as argued in [5, 6], to a more complex
integration of the conditional assessment, RUL estimations, and decision-making, as
presented in [2] and [7].

Operational predictive approaches are based on a schema that implies frequent and
sometimes unnecessary maintenance of the equipment and of the entire production pro-
cess that leads to high maintenance time and costs. They use complex AI-based algo-
rithms, and data fusion strategies—in an ad-hoc manner, usually after trial and error
approaches—which imply the usage of consecutive fusion algorithms, as described by
reference [27]. The uncertainty in prediction is always a challenge, and, to this time,
the fuzzy logic is used to represent uncertainties in prediction, as argued by [4]. As a
case of condition-based maintenance, reference [34] shows that techniques for condition
monitoring and diagnostics are gaining acceptance in the industry sectors, as they also
prove to be effective in the predictive maintenance and quality control areas. The authors
apply a feature-based fusion technique implemented with the cascade correlation neu-
ronal network to multiple sensor data collected from rotating imbalance vibration of a
test rig. The results show that themulti-sensory data fusion outperforms the single sensor
diagnostic. The reference [35] focuses on the capability of providing real-time mainte-
nance by extracting knowledge from the monitored assets (with vibration sensors) on
the production line. Using intelligent, data-driven monitoring algorithms (ADMM), data
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Table 5. Review of predictive maintenance models and corresponding implementation
techniques: simplified table view. Full table view available in [23]

Prediction models Modeling
techniques

Obtained
results

Maintenance goals References

Knowledge-based
models

Rule-based fuzzy logic
+ condition-based
fusion diagnosis

Greater accuracy for
multiple classifier
fusion
(vibration/current
features)

General Maintenance (Niu, G., et al.;2017)
[4]

Data-based
models

ADMM (altering
direction method of
multipliers) algorithm
+ Decision Fusion

Minimize operational
costs + efficient energy
consumption

Real-time analysis and
processing of machine
faults + health status
monitoring

(Xenakis, A., et al.;
2019)
[35]

RNN-based health
indicator for RUL
prediction

High RUL prediction
accuracy of generator
bearings

RUL Prediction (Guo, L., et al.; 2017)
[5]

kNN + discrete
Bayesian filter

3-fold cross validation
is successfully
validating the
approach. Average
MAPE is computed
and generates low
errors for both
applications

RUL Prediction (Mosallam, A.,
et al.;2016)
[31]

Statistics + Deep
Learning

Health Condition
Profile with RUL and
PoF (Probability of
Failure) computed in a
predetermined window
of time

RUL and PoF
Prediction

(Cristaldi, I., et al.;
2016)
[33]

PCA + kNN Data from different
sensors provide more
information (as using
only one sensor)

Condition-based
monitoring and
diagnosis

(Safizadeh, M., et al.;
2014)
[10]

Hybrid models k-means, association
rules (GSP, Apriori),
ANNs, Random Forest,
Decision Tree, kNN

Accuracy: 90%,
Random Forest with
low precision (38%)
which implies false
alarms
Recall(74%-ANNs)

Fault Prediction (Acorsi, R., et al.;2016)
[6]

Simulation +
multi-sensor fusion

Digital twin concept
and many levels of
Fusion for hard/soft
data

Health Status
estimation and
maintenance

(Liu, Z., et al.;2018)
[2]

fusion strategies, and the proposed three-level (IoT, Fog with gateway nodes for sensors
aggregation, and Decision) layered system model, the authors argue on the efficiency of
cloud-oriented maintenance.

The uncertainty in prediction is always a challenge, and to this time, fuzzy logic is
used to represent uncertainties in prediction, as argued by [4, 30, 36–38], which showed
that the problem of scheduling under the constraint of the deadline for all production
jobs could also be solved using predictive maintenance algorithms. The efficiency of the
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algorithms for predicting machine failures is further evaluated by using simulation tests.
The results, i.e., the optimized job schedules, show a nearly 50% drop in the number of
operations compared with the initial nominal schedule.

4.4 Multimodal ML Methods: Data Fusion

A relevant research challenge for the multimodal data fusion perspective is to iden-
tify patterns and common governance rules that can be used to apply the appropriate
multimodal data fusion technique in an application-specific context or for a data set.

Reference [38] argues that data fusion is a multidisciplinary research area with ideas
raised from many diverse research fields such as signal processing, information theory,
statistical estimation and inference, and artificial intelligence.

Data fusion appeared in the literature as mathematical models for data manipulation.
The diversity of the research fields is indeed reflected in the reviews of maintenance
techniques in Tables 3, 4 and 5.

Multimodal data fusion represents the integration of information from multiple
modalities, with the goal of (i) making a prediction, and (ii) retrieving new insights
from the joined knowledge, as defined by [14].

There are many approaches to data fusion, as the topic dates back to the 90s. The
model-agnostic technique of data fusion is discussed in [14, 39] and later described by
[15], which also lays the ground for the formal multimodal data fusion theory. Multi-
modal data fusion has a direct economic impact on the implementation of maintenance
techniques, that are based on the aggregation of data from heterogeneous sources into
actionable decisions for maintenance purposes. Multimodal data fusion represents the
core concept in MML, as argued in references [14, 15, 38, 39]. The model-agnostic data
fusion types that are used in the operational environment are listed in Table 6.

Table 6. Model-agnostic fusion types

Early Fusion Features from all the modalities are concatenated as one long input and trained
by a single learner.

Hybrid Fusion There is a single learning model that is trained with a preprocessed input from
modalities in the fused layer. It is implemented by neural networks and
multikernel support vector machine algorithms.

Late Fusion Each modality is trained with a different learning model that independently
decides. All decisions generated by learning models are later combined based
on a fusing schema.

Reference [15] lays the grounds for the multimodal data fusion theory by giving
a solution to the research problem of determining the appropriate type of data fusion
for a specific application context or a data set. In the authors’ view, the main challenge
in multimodal data fusion research revolves around the dependency-problem, i.e., the
arguments for choosing a specific type of data fusion. The assumption is that the optimal
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fusion type to be employed in an operational environment depends on the level of depen-
dency we expect to see between the inputs in the modalities: (i) feature-based fusion
assumes a dependency at the lowest level of features (or raw input unprocessed data),
(ii) intermediate-fusion assumes a dependency at a more abstract, semantic level; and
(iii) decision-based fusion assumes no dependency at all in the input, but only later at
the level of decisions.

5 Discussion of Findings

Our literature review reveals that past works on industrial maintenance approaches show
that maintenance actions are performed by employing various prediction models and
modeling techniques.

Modelling 
Techniques

Predic on Models

PREDICTION

PHYSICAL

ANALITICAL
EQUATIONS

KNOWLEDGE-
BASED

EXPERT 
SYSTEMS

FUZZY 
SYSTEMS

DATA-
BASED

STOCHAS
TIC

STATISTI
CAL ANNs

HYBRID

Fig. 1. Taxonomy of prediction models

However, the existent literature does not inform us to which extent the new A.I.
technology, based on ML methods and techniques, is influencing and changing the
maintenance strategies in the industrial environment.

We show in Fig. 1 that predictive maintenance models can be classified into four
distinctive categories: physical models, knowledge-based models, data-driven models,
and hybrid models.

Physical models use the laws of physics to describe the behavior of a failure, as
presented in reference [2]. Knowledge-based models assess similarities among observed
situations and a set of previously defined failures. These models can be sub-divided in
expert system models that are able to answer complex queries as presented by reference
[24] and fuzzy models as in reference [4]. Both model types employ a deductive, top-
down approach that builds mathematical models and rule-based models, respectively,
based on the domain experts’ knowledge of the analyzed system. The higher complexity
of real systems represents the main challenge for these models.

Data-driven models are based on acquired data. These types of models can further be
distinguished among stochastic models, statistical models and artificial neural networks
(ANNs). Data-based models employ an inductive, bottom-up approach that empirically
builds a learning model from historical or live data. Stochastic models provide event-
based information with hidden Markov models and Kalman filters belonging to this
category. Statistical models predict a future state by comparing the monitored results
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with a machine-health state without faults. Hybrid models use combinations of two or
more modeling techniques as in [40–42].

Among data-driven models, the ML models represent a category of relevant predic-
tion models for maintenance optimization. Some consider them to be statistical models.
However, the ML methods are focusing on increasing the accuracy of their predictions,
while the classical statistical community is more concerned with the understanding of
their models and of the model’s parameters, i.e., model calibration and inference.

As displayed in Fig. 2, ML techniques for maintenance can be divided into two
main categories depending on their type of employed ML approach: (i) a supervised
approach, where information on the occurrence of failures is present in the dataset and
(ii) an unsupervised approach, where the asset/process information is available but no
maintenance-related data exists.

Classification is oneof themost usedMLmethods that occurs in awide rangeofmain-
tenance scenarios. Classification models predict categorical (discrete and unordered)
class labels. Maintenance classification techniques are applied when there is a need to
distinguish between the faulty and non-faulty conditions of the system being monitored.

Machine 
Learning 

SUPERVIZED

BINARY 
CLASSIFICATION

ALARM 
DETECTION

FAILURE 
PREDICTION

MULTI-CLASS 
CLASSIFICATION

HEALTH STATUS 
ESTIMATION

FAILURE 
PREDICTION

MULTIPLE 
CLASSIFICATION

DEGRADATION 
PATTERNS 

PREDICTION

REGRESSION

RUL

UNSUPERVIZED

CLUSTERING

ANOMALY 
DETECTION

Fig. 2. ML approaches and techniques for prediction models

Binary classification methods are used to predict the probability that an industrial
asset fails within an established time period in the future. The testing datasets must
contain positive and negative examples that indicate the failure and normal operating
conditions, respectively. Consequently, the target variables are usually categorical in
nature. The learning model identifies each new example as likely to fail or likely to work
over the next period.

The business requirements, the analyzed available data, and the domain experts
make estimations for the (i) minimum lead time required to replace components, deploy
resources, and perform maintenance actions to avoid a problem that is likely to occur
in the future or (ii) a minimum count of events that can be triggered before a critical
problemoccurs.Multi-class classificationmethods are used formaking predictions in the
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following possible scenarios: (i) defining a plan maintenance schedule, i.e., estimation
of the time intervals when an asset has the bigger probability of failing; (ii) monitoring
the health status of an asset, i.e., estimation of the probability that an asset will fail due to
a specific cause-/root problem; and (iii) prediction that an asset will fail due to a specific
type of failure. In this case, a set of prescriptive maintenance actions can be considered
for each of the previously identified set of failures.Multiple classifiers represent a type of
ML method for classification, which can be used in the process of knowledge discovery
to discern patterns of data degradation for an asset or a process. The benefits of multiple
classifiers reside in allowing the planning of themaintenance schedules using a statistical
cost minimization approach, as discussed in [1].

Regressions are typically used to compute the RUL of an item, as presented in
[36]. RUL is defined as the amount of time that an asset is operational before the next
failure occurs. The operational historical data is needed because the RUL calculation is
not possible without knowing how long the asset has survived before a failure. While
classificationmethods are used to distinguish between faulty and healthy behaviors based
on the historical data, they do not intuitively map to health factors that can be further
used in maintenance-related decision making, unlike RUL regression methods.

Clustering is the process of grouping a set of data into multiple classes, subsets or
clusters, where data within a cluster have high similarity. The reviewed ML literature
recommends the following clustering methods: PCA + k-Means [37] and variants of
Deep Learning using RNNs [36] and ANNs [5, 31]. They can be used for information
clustering when there is no knowledge or understanding of the monitored system, as
discussed in [5, 31, 36].

6 Conclusions

6.1 Research Contribution

Sections 4 and 5 represent our contribution to the actual research that intends to (i)
formalize the usage of multimodal MLmethods for maintenance goals, and (ii) optimize
the quality of maintenance in operational environments.

Based on the surveyed literature, we construct taxonomies that cover the main pre-
dictive models and their modeling techniques relative to maintenance goals. We show
that among all data-driven prediction models, the ML approaches are the most suitable
to deal with big volumes of heterogeneous data. They are accepted in the field because
prediction is considered easier than model inference, i.e., theMLmodels are performing
tests to check how well a learning model that is trained on a data set, can accurately
predict new data. This allows the ML methods to work with larger volumes of complex,
heterogeneous, and unstructured data easily.

6.2 Implications for Research and Practice

Our review shows thatML andmultimodality are receiving attention fromboth academia
and practice as technical ways for implementing maintenance goals. However, the
research is still in its early phase, as there are basic issues that are biasing the usage
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of multimodal ML methods in operational environments. As argued in reference [43],
(i) there are no established, standard methods by which to identify feature dependencies
in multiple sensors and modalities; (ii) the technology exists, but there are no standard
methods bywhich to extract unbiased feature from raw data, and therefore, deep learning
methods are preferred; (iii) multimodal data fusion best practices, i.e., data sets, fusion
algorithms, success stories, training, and evaluation of results, should be recorded and
shared; (iv) the absence of a clearly defined generic framework to standardize the usage
of a data fusion pipeline, i.e., it is clear that in an operational environment, more than
one data fusion technique should be applied; (v) there are no standard techniques for
dealing with temporal and spatial (aka contextual) data alignment and synchronization;
and (vi) there is a lack of research studies by which to analyze the performance of ML
algorithms in a cloud environment.

Thus, we argue that the quality of maintenance in an industrial setup can be improved
only when, in the development of a generalized architecture for predictive maintenance
purposes, the following aspects are considered: (i) the technological aspect that rec-
ognizes the potential of multimodal ML methods for maintenance purposes; (ii) the
business aspect that envisions a structured development of the implementation works,
starting with the business model’s conceptualization and assuring its conformity with
industry standards, such as Industrial Data Space andCRISP_DM; and (iii) the economic
aspect that follows the classical optimization concerns relative to maintenance costs.

The approach we envision for the optimization of predictive, industrial maintenance
investigates theML technical perspective and, consequently, focuses on a variety of (mul-
timodal) MLmethods that study both live and historical information to learn prognostics
data and perform accurate diagnostics and predictions.

6.3 Limitations and Future Works

For our research work, we are not considering the empirical research perspective, i.e.,
we are not discussing the maintenance strategies and their operationalization based on
information obtained from interviews or from analyzing relevant case studies.

Future works are planned to analyze the usage of multimodal ML methods com-
bined with semantic technologies in a cloud-oriented environment. The goal is to over-
come the problem of sensor integration for efficient data analysis. We recognize that
the actual trend for maintenance engineering is cloud maintenance. Within this context,
the envisioned digital platform is seen as a management system of smart services, i.e.,
prediction-as-a-service and maintenance-as-a-service, with expected benefits in terms
of technology, performance, and costs.
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