
Vectorized Parallel Solver for Tridiagonal
Toeplitz Systems of Linear Equations

Beata Dmitruk(B) and Przemys�law Stpiczyński

Institute of Computer Science, Maria Curie–Sk�lodowska University,
ul. Akademicka 9, 20-033 Lublin, Poland

beata.dmitruk@umcs.pl, przem@hektor.umcs.lublin.pl

Abstract. The aim of this paper is to present two versions of a new
divide and conquer parallel algorithm for solving tridiagonal Toeplitz sys-
tems of linear equations. Our new approach is based on a recently devel-
oped algorithm for solving linear recurrence systems. We discuss how to
reduce the number of necessary synchronizations and show proper data
layout that allows to use cache memory and SIMD extensions of mod-
ern processors. Numerical experiments show that our new implemen-
tations achieve very good seedup on multicore and manycore architec-
tures. Moreover, they are more energy efficient than a simple sequential
algorithm.

Keywords: Tridiagonal Toeplitz systems · Parallel algorithms ·
Vectorization · SIMD extensions · OpenMP · Energy efficiency

1 Introduction

Tridiagonal Toeplitz systems of linear equations play an important role in many
theoretical and practical applications. They appear in numerical algorithms
for solving boundary value problems for ordinary and partial differential equa-
tions [12,14]. For example, a numerical solution to the heat-diffusion equation
of the following form

∂u

∂t
(x, t) = α2 ∂2u

∂x2
(x, t), for 0 < x < l and 0 < t,

with boundary conditions u(0, t) = u(l, t) = 0, for 0 < t and u(x, 0) = f(x),
for 0 ≤ x ≤ l can be found using finite difference methods that reduce
to the problem of solving tridiagonal Toeplitz systems. Such systems also arise
in piecewise cubic interpolation and splines algorithms [2,11,13]. Moreover, such
systems are useful when we solve the 2D Poisson equation by the variable sepa-
ration method and the 3D Poisson equation by a combination of the alternating
direction implicit and the variable separation methods [13]. Banded Toeplitz
matrices also appear in signal and image processing [1].

There are several methods for solving such systems [3–5,7–9,13–15]. The
basic idea comes from Rojo [9]. He proposed a method for solving symmetric
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12043, pp. 93–103, 2020.
https://doi.org/10.1007/978-3-030-43229-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43229-4_9&domain=pdf
http://orcid.org/0000-0001-9823-2595
http://orcid.org/0000-0001-8661-414X
https://doi.org/10.1007/978-3-030-43229-4_9

94 B. Dmitruk and P. Stpiczyński

tridiagonal Toeplitz systems using LU decomposition of a system with almost
Toeplitz structure together with Sherman-Morrison’s formula [4]. This approach
has been modified to obtain new solvers for a possible parallel execution [5,14].
A simple vectorized but non-parallel algorithm was proposed in [3]. A differ-
ent approach was proposed by McNally et al. [8] who developed a scalable
communication-less algorithm. It finds an approximation of the exact solution
of a system with a given acceptable tolerance level. However, the algorithm
does not utilize vectorization explicitly. Terekhov [13] proposed a highly scalable
parallel algorithm for solving tridiagonal Toeplitz systems with multiple right
hand sides. It should be noticed that well-known numerical libraries optimized
for modern multicore architectures like Intel MKL, PLAPACK or NAG do not
provide routines for solving tridiagonal Toeplitz systems. These libraries pro-
vide solvers for more general systems i.e.non-Toeplitz or dense Toeplitz systems.
The case studied here is more detailed, but it allows to formulate more efficient
solvers.

In this paper, we present two versions of a new divide and conquer paral-
lel vectorized algorithm for finding the exact solution of tridiagonal Toeplitz
systems of linear equations. As the starting point, we consider the splitting
T = LR + P, where L, R are bidiagonal and P has only one non-zero entry [3].
Our new approach for solving bidiagonal Toeplitz systems is based on recently
developed algorithms for solving linear recurrence systems [10,12]. We discuss
possible OpenMP implementations and show how to reduce the number of neces-
sary synchronizations to improve the performance. Further improvements come
from the proper data layout that allows to use cache memory and SIMD exten-
sions of modern processors. Numerical experiments performed on Intel Xeon
CPUs and Intel Xeon Phi show that our new implementations achieve good
performance on multicore and manycore architectures. Moreover, they are more
energy efficient than a simple sequential algorithm.

2 Parallel Algorithm for Tridiagonal Toeplitz Systems

Let us consider a tridiagonal Toeplitz system of linear equations Tx = b
of the following form

⎡
⎢⎢⎢⎢⎢⎣

d a
1 d a

. . .
. . .

. . .

1 d a
1 d

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

...
xn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b0
b1
...
...

bn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

For the sake of simplicity let us assume that n = 2m, m ∈ N, and |d| > 1 +
|a|. Thus, T is not singular and pivoting is not needed to assure numerical
stability. To find the solution to (1) we can follow the approach presented in [3]
and decompose T as follows

Vectorized Parallel Solver for Tridiagonal Toeplitz Systems 95

⎡
⎢⎢⎢⎢⎢⎣

d a
1 d a

. . .
. . .

. . .

1 d a
1 d

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r2
1 r2

. . .
. . .

1 r2
1 r2

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎡
⎢⎢⎢⎢⎢⎣

1 r1
1 r1

. . .
. . .

1 r1
1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
R

+

⎡
⎢⎢⎢⎢⎣

r1 0 . . . 0

0 0
...

...
. . .

...
0 0

⎤
⎥⎥⎥⎥⎦

, (2)

where r2 = (d±√
d2 − 4a)/2 and r1 = d− r2. Using this formula we can rewrite

the Eq. (1) as follows
⎡
⎢⎢⎢⎣

x0

x1

...
xn−1

⎤
⎥⎥⎥⎦ + r1x0 (LR)−1

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
u

= (LR)−1

⎡
⎢⎢⎢⎣

b0
b1
...

bn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
v

(3)

or simply x + r1x0u = v. Then the solution to (1) can be found using
{

x0 = v0
1+r1u0

xi = vi − r1x0ui, i = 1, . . . , n − 1.
(4)

Let ek = (0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0)T ∈ R
s, k = 0, . . . , s − 1. Note that to apply (4)

we only need to have vectors u and v that are solutions to systems of linear
equations LRu = e0 and LRv = b, respectively. The solution to the system
of linear equations LRy = f can be found using a simple sequential algorithm
based on the following recurrence relations

{
z0 = f0/r2
zi = (fi − zi−1)/r2, i = 1, . . . , n − 1,

(5)

and {
yn−1 = zn−1

yi = zi − r1yi+1, i = n − 2, . . . , 0.
(6)

Thus, to solve (1) using (4), such a simple sequential algorithm based on (5)
and (6) should be applied twice for LRu = e0 and LRv = b, respectively. This
sequential algorithm requires 9n + O(1) flops. It should be pointed out that (5)
and (6) contain obvious data dependencies, thus they cannot be parallelized and
vectorized automatically by the compiler.

To develop a new parallel algorithm for solving LRy = f that could utilize
vector extensions of modern multiprocessors, we apply the divide-and-conquer
algorithm for solving first-order linear recurrence systems with constant coeffi-
cients [10,12]. Let us assume that n = rs and r, s > 1. First, we arrange entries
of L into blocks to obtain the following block matrix

96 B. Dmitruk and P. Stpiczyński

L =

⎡
⎢⎢⎢⎣

Ls

B Ls

. . .
. . .

B Ls

⎤
⎥⎥⎥⎦ , Ls =

⎡
⎢⎢⎢⎣

r2
1 r2

. . .
. . .

1 r2

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 1
... 0 0
... . .

. ...
0 0

⎤
⎥⎥⎥⎥⎦

. (7)

Let zi = (zis, . . . , z(i+1)s−1)T and fi = (fis, . . . , f(i+1)s−1)T . Then the lower
bidiagonal system of linear equations Lz = f can be rewritten in the following
recursive form {

Lsz0 = f0
Lszi = fi − Bzi−1, i = 1, . . . , r − 1.

(8)

Equation (8) reduces to the following form
{
z0 = L−1

s f0
zi = L−1

s fi − zis−1L
−1
s e0, i = 1, . . . , r − 1.

(9)

Note that (9) has a lot of potential parallelism. Just after all vectors L−1
s fi,

i = 0, . . . , r − 1, have been found, we can apply (9) to find zi, i = 1, . . . , r − 1,
“one-by-one” using the OpenMP “for simd” construct. It is clear that to find
zi we need the last entry of zi−1. Thus, before calculating the next vector, all
threads should be synchronized. Alternatively, we can find last entries of all
vectors zi and then s − 1 first entries can be found in parallel without the need
for the synchronization of threads.

Similarly, in case of the upper bidiagonal system Ry = z, assuming the same
as previously, we get

R =

⎡
⎢⎢⎢⎢⎣

Rs C

Rs
. . .

. . . C
Rs

⎤
⎥⎥⎥⎥⎦

, Rs =

⎡
⎢⎢⎢⎢⎣

1 r1

1
. . .

. . . r1
1

⎤
⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎣

0 0
... . .

. ...

0 0
...

r1 0 . . . 0

⎤
⎥⎥⎥⎥⎦

. (10)

The solution of the system (i.e. vectors yi, i = 0, . . . , r − 1), satisfies
{

Rsyr−1 = zr−1

Rsyi = zi − Cyi+1, i = r − 2, . . . , 0.
(11)

Finally, we get
{
yr−1 = R−1

s zr−1

yi = R−1
s zi − r1y(i+1)sR

−1
s es−1, i = r − 2, . . . , 0.

(12)

We have a similar situation as previously, but to find yi, i = 0, . . . , r−2, we need
to know first entries of all vectors yi, i = 1, . . . , r − 1. Then we can find other
entries simultaneously. Such a parallel algorithm requires 16n − 3r − 6s + O(1)
flops.

Vectorized Parallel Solver for Tridiagonal Toeplitz Systems 97

3 Implementation and Results of Experiments

Following (9), (12) and (4) we can formulate two OpenMP versions of our algo-
rithm for solving (1). They are presented in Fig. 1. The overall structure of both
versions is the same. We assume that the value of s is a power of two, thus
each column is properly aligned in memory (lines 14, 32). Moreover, each col-
umn occupies a contiguous block in memory. We have two kinds of loops. The
first one (lines 12–19) does not utilize vector extensions, but can be executed
in parallel. Note that the inner loop (lines 17–18) retrieves successive elements
of columns, thus necessary entries can be found in cache memory. Lines 35–37
contain another kind of loop. It is a parallel loop that utilize vector extensions
(using the OpenMP “for simd” construct). The difference between the versions
is relatively small. In case of the first version, there is an implicit barrier after
the inner loop 35–37, because we need the last entry of the previous column in
the next iteration of the outer loop (lines 30–39). Alternatively, we find all last
entries in a sequential loop (lines 26–28) and then the inner loop (lines 35–37)
can be launched with the “nowait” clause. However, the explicit barrier must
be issued after the outer loop (line 39) to ensure that all necessary computations
have been completed.

All experiments have been carried out on a server with two Intel Xeon E5-
2670 v3 processors (CPU) (totally 24 cores, 2.3 GHz, 256-bit AVX2), 128 GB
RAM and a server with Intel Xeon Phi Coprocessor 7120P (KNC, 61 cores
with multithreading, 1.238 GHz, 16 GB RAM, 512-bit vector extensions) which
is an example of Intel MIC architecture, running under Linux with Intel Parallel
Studio ver. 2017. Experiments on Xeon Phi have been carried out using its
native mode. We have tested Sequential implementation based on (5), (6),
(4), optimized automatically by the compiler, and two versions of our parallel
algorithm (Version 1 and Version 2). On both architectures (CPU and MIC),
in most cases, the best performance of the parallel algorithm is obtained for one
thread per core. However, on MIC for larger problem sizes, Version 1 achieves
better performance for two threads per core.

Examples of the results are presented in Figs. 2, 3 and Tables 1, 2. Figures 2, 3
show the execution time for various n ∈ {226 or 227, . . . , 229 or 230} (depending
on the architecture) and r.

It should be observed that the right choice of r and s = n/r is very important
for achieving good performance. When a bigger value of r is used, the perfor-
mance is better only to a certain value of r. A bigger r implies smaller s. Thus
we need to find a trade-off between getting the benefits form separating one part
of loop and making this loop too long. Both parallel implementations achieve
the best performance when the value of r is a small multiple of the number of
available cores.

98 B. Dmitruk and P. Stpiczyński

1 void method(int n,int r,double a,double d,double *b,double *u){
2 const double r2=(d>0)?((d+sqrt(d*d-4*a))/2):((d-sqrt(d*d-4*a))/2);
3 const double r1=d-r2, tmp=-1/r2;
4 u[0]=1./r2;
5 int s=n/r;
6 double *es=_mm_malloc(s*sizeof(double), 64); es[s-1]=1;
7

8 #pragma omp parallel // parallel region starts here
9 {

10 double tmp=u[0];
11 #pragma omp for nowait schedule(static)
12 for(int j=0;j<r;j++){
13 double *col;
14 __assume_aligned(col,64); // each column is properly aligned
15 col=&b[j*s];
16 col[0]/=r2;
17 for(int i=1;i<s;i++)
18 col[i]=(col[i]-col[i-1])/r2;
19 }
20 #pragma omp single
21 for(int i=1;i<s;i++)
22 u[i]=u[i-1]*tmp;
23 // implicit barrier

24 //version 1
25

26

27

28

29

30 for(int j=1;j<r;j++){
31 double *col;
32 __assume_aligned(col,64);
33 col=&b[j*s];
34 double last=b[j*s-1];
35 #pragma omp for simd \
36 schedule(static)
37 for(int i=0;i<s;i++)
38 col[i]-=last*u[i];
39 // implicit barrier
40 }
41 ...the rest of the implementation

//version 2

#pragma omp single
for(int j=1;j<r;j++)

b[(j+1)*s-1]-=b[j*s-1]*u[s-1];

for(int j=1;j<r;j++){
double *col;
__assume_aligned(col,64);
col=&b[j*s];
double last=b[j*s-1];
#pragma omp for simd nowait \

schedule(static)
for(int i=0;i<s-1;i++)

col[i]-=last*u[i];
}

#pragma omp barrier
...the rest of the implementation

41 #pragma omp single
42 b[0]/=(1+r1*u[0]);
43

44 tmp=r1*b[0];
45 #pragma omp for simd schedule(static)
46 for(int i=1;i<n;i++)
47 b[i]-=tmp*u[i];
48

49 } // end of parallel region
50 _mm_free(es);
51 }

Fig. 1. Two OpenMP versions of the parallel algorithm (abbreviated)

Vectorized Parallel Solver for Tridiagonal Toeplitz Systems 99

 0

 2

 4

 6

 8

 10

 12

 14

20 22 24 26 28 210 212 214

tim
e[

s]

r

227

228

229

230

(a)

 0

 2

 4

 6

 8

 10

 12

 14

20 22 24 26 28 210 212 214

tim
e[

s]

r

227

228

229

230

(b)

Fig. 2. Execution time for various n and r on CPU: Version 1 (a), Version 2 (b)

 0

 5

 10

 15

 20

 25

 30

 35

20 22 24 26 28 210 212 214

tim
e[

s]

r

226

227

228

229

(a)

 0

 5

 10

 15

 20

 25

 30

 35

20 22 24 26 28 210 212 214

tim
e[

s]

r

226

227

228

229

(b)

Fig. 3. Execution time for various n and r on MIC: Version 1 (a), Version 2 (b)

Tables 1, 2 show the execution time and speedup obtained for optimal values
of r. On CPU, Version 1 achieves better performance for smaller values of n,
but on MIC the situation is reversed: Version 1 achieves better performance
for bigger values of n. Better speedup (up to 30) and efficiency can be observed
on MIC, where the use of vector extensions is crucial for achieving good perfor-
mance.

100 B. Dmitruk and P. Stpiczyński

Table 1. Execution time [s] and speedup for optimal values of r (CPU)

Sequential Version 1 Version 2

n time r time speedup r time speedup

220 0.0160 24 0.0095 1.69 25 0.0090 1.79

221 0.0336 24 0.0141 2.37 26 0.0119 2.83

222 0.0704 26 0.0233 3.02 26 0.0219 3.22

223 0.1393 24 0.0409 3.41 28 0.0435 3.21

224 0.2786 24 0.0746 3.74 24 0.0783 3.56

225 0.5572 24 0.1410 3.95 24 0.1433 3.89

226 1.1143 26 0.2609 4.27 26 0.2621 4.25

227 2.2263 26 0.4873 4.57 26 0.4755 4.68

228 4.4509 27 0.9606 4.63 27 0.9183 4.85

229 8.9077 28 1.8586 4.79 28 1.7777 5.01

230 17.8155 29 3.7072 4.81 29 3.5225 5.06

Table 2. Execution time [s] and speedup for optimal values of r (MIC)

Sequential Version 1 Version 2

n time r time speedup r time speedup

220 0.1095 26 0.1503 0.73 26 0.1391 0.79

221 0.2177 26 0.1711 1.27 27 0.1524 1.43

222 0.4328 25 0.1981 2.19 27 0.1705 2.54

223 0.8582 24 0.2458 3.49 28 0.2008 4.27

224 1.7095 25 0.2974 5.75 28 0.2633 6.49

225 3.4111 25 0.3649 9.35 29 0.3671 9.29

226 6.8127 25 0.5095 13.37 25 0.5357 12.72

227 13.6193 25 0.7563 18.01 25 0.8088 16.84

228 27.2880 26 1.1568 23.59 25 1.3780 19.80

229 54.5765 26 1.8531 29.45 27 2.2310 24.46

4 The Energy Efficiency

Figure 4 and Table 3 present the exemplary results of our experiments concern-
ing the energy efficiency of our implementations. Data for this plot have been
collected on the server with two Intel Xeon E5-2670 v3 processors using Intel’s
Running Average Power Limit (RAPL) [6]. This interface enables to measure
the power consumption for CPUs and DRAMs. Figure 4 shows how the power
consumption changes during the execution of the program, which comprises calls
to Sequential, Version 1 and Version 2, respectively.

Vectorized Parallel Solver for Tridiagonal Toeplitz Systems 101

sequential v1 v2

po
w

er
 [W

]

time [s]

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35

Fig. 4. Total power consumption required by all considered implementations.

We also present the total power consumption of CPUs and DRAMs for n =
230 and the optimal value of r (in case of the parallel implementations). We start
with the sequential method (it takes 18.2 s), next we perform Version 1 (4.2 s)
and Version 2 (3.8 s). It is clear that current power draw during the execution
of Version 1 and Version 2 is much higher, but it only lasts for a short time.

The power consumption [J] for various problem sizes is presented in Table 3.
We can observe that both parallel versions need about 50% of the energy required
by Sequential.

Table 3. Total power consumption [J] on CPU required by all considered implemen-
tations

n 220 221 222 223 224 225 226 227 228 229 230

Sequential 1.06 2.10 4.10 8.57 17.57 35.88 70.25 139.68 277.47 544.99 1092.91

Version 1 1.25 1.98 3.17 5.44 10.26 20.80 40.17 75.03 147.28 291.43 583.29

Version 2 0.97 1.95 3.11 6.03 11.02 20.78 39.17 71.32 142.93 281.67 543.25

5 Conclusions and Future Work

We have presented the new vectorized parallel algorithm for solving tridiagonal
Toeplitz systems of linear equations. Numerical experiments have shown that it
achieves good performance and speedup on multicore and especially manycore

102 B. Dmitruk and P. Stpiczyński

architectures. Moreover, it is more energy efficient than the simple sequential
algorithm optimized automatically by the compiler. We plan to show that our
approach can be easily implemented on GPUs using OpenACC.

Acknowledgements. The use of computer resources installed at Maria Curie-
Sk�lodowska University in Lublin is kindly acknowledged.

References

1. Belhaj, S., Dridi, M.: A fast algorithm of two-level banded Toeplitz systems of
linear equations with application to image restoration. New Trends Math. Sci. 2,
277–283 (2017). https://doi.org/10.20852/ntmsci.2017.178

2. Chung, K.L., Yan, W.M.: Parallel B-spline surface fitting on mesh-connected com-
puters. J. Parallel Distrib. Comput. 35, 205–210 (1996). https://doi.org/10.1006/
jpdc.1996.0082

3. Chung, K.L., Yan, W.M.: Vectorized algorithms for solving special tridiagonal
systems. Comput. Math. Appl. 32, 1–14 (1996). https://doi.org/10.1016/S0898-
1221(96)00203-9

4. Du, L., Sogabe, T., Zhang, S.L.: A fast algorithm for solving tridiagonal quasi-
Toeplitz linear systems. Appl. Math. Lett. 75, 74–81 (2018). https://doi.org/10.
1016/j.aml.2017.06.016

5. Garey, L., Shaw, R.: A parallel method for linear equations with tridiagonal
Toeplitz coefficient matrices. Comput. Math. Appl. 42(1), 1–11 (2001). https://
doi.org/10.1016/S0898-1221(01)00125-0

6. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: RAPL in action: experi-
ences in using RAPL for power measurements. ACM Trans. Model. Perform. Eval.
Comput. Syst. 3(2), 9:1–9:26 (2018). https://doi.org/10.1145/3177754

7. McNally, J.M., Garey, L.E., Shaw, R.E.: A split-correct parallel algorithm for solv-
ing tridiagonal symmetric Toeplitz systems. Int. J. Comput. Math. 75(3), 303–313
(2000). https://doi.org/10.1080/00207160008804986

8. McNally, J.M., Garey, L., Shaw, R.: A communication-less parallel algorithm
for tridiagonal Toeplitz systems. J. Comput. Appl. Math. 212, 260–271 (2008).
https://doi.org/10.1016/j.cam.2006.12.001

9. Rojo, O.: A new method for solving symmetric circulant tridiagonal systems of
linear equations. Comput. Math. Appl. 20, 61–67 (1990). https://doi.org/10.1016/
0898-1221(90)90165-G

10. Stpiczyński, P.: Solving linear recurrence systems using level 2 and 3 BLAS rou-
tines. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2003. LNCS, vol. 3019, pp. 1059–1066. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24669-5 137

11. Stpiczyński, P., Potiopa, J.: Piecewise cubic interpolation on distributed memory
parallel computers and clusters of workstations. In: Fifth International Conference
on Parallel Computing in Electrical Engineering (PARELEC 2006), Bialystok,
Poland, 13–17 September 2006, pp. 284–289. IEEE Computer Society (2006).
https://doi.org/10.1109/PARELEC.2006.68

12. Stpiczyński, P., Potiopa, J.: Solving a kind of boundary-value problem for ordinary
differential equations using Fermi—the next generation CUDA computing archi-
tecture. J. Comput. Appl. Math. 236, 384–393 (2011). https://doi.org/10.1016/j.
cam.2011.07.028

https://doi.org/10.20852/ntmsci.2017.178
https://doi.org/10.1006/jpdc.1996.0082
https://doi.org/10.1006/jpdc.1996.0082
https://doi.org/10.1016/S0898-1221(96)00203-9
https://doi.org/10.1016/S0898-1221(96)00203-9
https://doi.org/10.1016/j.aml.2017.06.016
https://doi.org/10.1016/j.aml.2017.06.016
https://doi.org/10.1016/S0898-1221(01)00125-0
https://doi.org/10.1016/S0898-1221(01)00125-0
https://doi.org/10.1145/3177754
https://doi.org/10.1080/00207160008804986
https://doi.org/10.1016/j.cam.2006.12.001
https://doi.org/10.1016/0898-1221(90)90165-G
https://doi.org/10.1016/0898-1221(90)90165-G
https://doi.org/10.1007/978-3-540-24669-5_137
https://doi.org/10.1007/978-3-540-24669-5_137
https://doi.org/10.1109/PARELEC.2006.68
https://doi.org/10.1016/j.cam.2011.07.028
https://doi.org/10.1016/j.cam.2011.07.028

Vectorized Parallel Solver for Tridiagonal Toeplitz Systems 103

13. Terekhov, A.V.: A highly scalable parallel algorithm for solving Toeplitz tridiago-
nal systems of linear equations. J. Parallel Distrib. Comput. 87, 102–108 (2016).
https://doi.org/10.1016/j.jpdc.2015.10.004

14. Vidal, A.M., Alonso, P.: Solving systems of symmetric Toeplitz tridiagonal equa-
tions: Rojo’s algorithm revisited. Appl. Math. Comput. 219, 1874–1889 (2012).
https://doi.org/10.1016/j.amc.2012.08.030

15. Wang, H.H.: A parallel method for tridiagonal equations. ACM Trans. Math. Softw.
7(2), 170–183 (1981). https://doi.org/10.1145/355945.355947

https://doi.org/10.1016/j.jpdc.2015.10.004
https://doi.org/10.1016/j.amc.2012.08.030
https://doi.org/10.1145/355945.355947

	Vectorized Parallel Solver for Tridiagonal Toeplitz Systems of Linear Equations
	1 Introduction
	2 Parallel Algorithm for Tridiagonal Toeplitz Systems
	3 Implementation and Results of Experiments
	4 The Energy Efficiency
	5 Conclusions and Future Work
	References

