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Abstract. Future HPC programming systems must address the chal-
lenge of how to integrate shared and distributed memory parallelism.
The growing number of server cores argues in favor of shared memory
multithreading at the node level, but makes interfacing with distributed
communication libraries more problematic. Alternatively, implementing
rich message passing libraries to run across codes can be cumbersome
and inefficient. The paper describes an attempt to address the challenge
with OpenSHMEM, where a lean API makes for a high-performance
shared memory operation and communication semantics maps directly
to fast networking hardware. DiPOSH is our initial attempt to implement
OpenSHMEM with these objectives. Starting with our node-level POSH
design, we leveraged MPI one-sided support to get initial internode func-
tionality. The paper reports our progress. To our pleasant surprise, we
discovered a natural and compatible integration of OpenSHMEM and
MPI, in contrast to what is found in MPI+X hybrids today.

Keywords: OpenSHMEM · Distributed run-time system · One-sided
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1 Introduction

The trend of increasing core counts of shared memory servers that make up the
nodes of scalable high-performance computing (HPC) systems raise questions
of how parallel applications should be programmed in the future. Distributed
programming models based on message passing are effective for internode paral-
lelism, but their runtime implementation can be less efficient for intranode paral-
lelism. This put pressure on these programming paradigms to be used in hybrid
forms. For instance, while MPI everywhere programs are perfectly reasonable for
programming HPC machines, concerns for node-level performance argues for an
MPI+X approach, where X is a shared memory programming methodology of
choice. In doing so, conflicts can arise between the MPI and X runtime support,
especially with respect to managing higher degrees of node-level parallelism.
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Alternatively, shared memory programming models are effective for intranode
parallelism, but must be adapted to maintain a shared memory abstraction on
distributed memories. Advances in low-latency, RDMA communication hardware
make it possible to support (partitioned) global address space (P)GAS semantics
with high-efficiency data transfer between nodes. For instance, the SHMEM
interface and its OpenSHMEM standardization embody peer-to-peer one-sided
put and get operations on distributed “shared” memory. While the abstraction
is more compatible with shared memory programming, it was created originally
from a perspective of internode interaction.

In this paper we consider the viability of OpenSHMEM as a unified parallel
programming model for both intranode and internode parallelism. Our starting
point is Coti’s high-performance OpenSHMEM implementation for shared mem-
ory system called Paris OpenSHMEM (POSH for short) [6]. The goal of POSH
is to deliver an OpenSHMEM implementation on a shared memory system that
is both fast and lightweight as possible. Now we look to extend POSH for dis-
tributed HPC systems. The challenge in creating distributed POSH (DiPOSH
for short) is first to support the OpenSHMEM API and second to optimize per-
formance. For this reason, we take the strategy of layering DiPOSH on MPI
one-side communication. This will give us a baseline to evaluate future enhance-
ments. More importantly, it will expose any critical factors at the nexus between
intranode and internode operation.

2 Related Works

Parallel programming approaches for evolving HPC systems must address the
challenges of greater intranode concurrency, while connecting to powerful intern-
ode communication infrastructure. The MPI interface has dominated the mes-
sage passing paradigm with important high-performance implementations avail-
able, including OpenMPI, MPICH, MVAPICH. However, MPI’s generic seman-
tics makes it more complex to implement for distributed communication and
unnecessarily complicated at the node level. Efforts to integrate multithreaded
shared memory programming (e.g., OpenMP) with MPI can suffer from mis-
matches in the runtime systems.

In contrast, the OpenSHMEM interface is very simple and straightforward
to implement. Its remote memory access semantics is equally natural for target-
ing intranode and internode parallelism. In fact, MPI’s one-sided communication
support [8] is all that we needed to develop DiPOSH’s remote functionality. This
approach is attractive, because it takes advantage of already existing communica-
tion routines, along with the rest of MPI’s infrastructure, such as optimized col-
lective communications. However, it involves a thick software stack and required
some additional synchronization to implement OpenSHMEM’s communication
model.

Certainly, there are several other (P)GAS programming systems actively
being pursued, such as CoArray Fortran, Chapel, UPC/UPC++, Global Arrays,
and HPX. As a library, DiPOSH target a lower-level OpenSHMEM API, increas-
ing its portability and interoperability with other software.
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3 Architecture

The core idea behind POSH is to implement the OpenSHMEM communication
interface with a minimal API-to-network software stack, thereby minimizing the
software overhead. As shown in [11,12], traversing the software stack can have a
significant overhead on performance-critical communication networks. However,
in order to be portable across parallel machines, the communication library needs
to be able to use several types of networks. In this section, we are describing
how DiPOSH handles the different types of communication channels.

3.1 Shared Heap

In the OpenSHMEM memory model, the memory of each process is made of
two parts: its private memory, which only it can access, and a shared heap, that
can be accessed in read and write mode by all the other processes. In POSH,
this shared heap is implemented by a segment of shared memory. Each process
on a node owns a segment of shared memory, which is accessed by all the other
processes on the node, enabling straightforward communications locally.

Fig. 1. High-level DiPOSH design illustrating intranode communication through
shared segments and internode communication via MPI.

In DiPOSH, communications are also performed using this segment of shared
memory: the remote memory access routines read and write data from and into
the remote process’s heap. Since the shared heaps are symmetric (i.e., processes
allocate the same space on their own heap), memory locations can be addressed
within this segment of shared memory by using their offset from the beginning
of the segment.

An example is presented in Fig. 1. Processes within a given node can com-
municate with each other using these segments of shared memory and processes
located on different nodes use another communication channel, for instance, MPI
one-sided routines.

In the particular case of MPI’s one-sided communications, these routines use
a window to perform one-sided communications. When the application is initial-
ized, each process creates a window and associates the beginning of the segment
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of shared memory as its base address. Therefore, one-sided communications han-
dle directly data in the shared heap, making both communication channels (local
and MPI) compatible. Moreover, since, unlike OpenSHMEM, MPI’s one-sided
communications are asynchronous and non-blocking, completion of the commu-
nication is ensured by lock and unlock operations on the window.

3.2 Network Portability

Using the appropriate communication channel to reach another process is a
highly critical point of the design of DiPOSH. Indeed, choosing the right function
and calling it is in the critical path of the software stack and therefore, needs
to be handled carefully in the aim of minimizing the software overhead of the
communication library.

Fig. 2. Data structure handling how processes select the communication channel to be
used with each other process. In the table of neighbors, for each other process there is
a set of function pointers pointing to the appropriate communication routines.

We chose to make this decision once, when the communication library is
initialized. All the processes exchange their contact information in an allgather-
like collective operation. Then, each process knows how it can reach every other
process and determine which communication channel it will use when they need
to communicate with the other process.

Each process maintains a data structure that keeps information on their
neighbors (i.e., the other processes). This data structure also contains function
pointers to the communication routines that correspond to the communication
channel that will be used to communicate with this process. This organization
is represented in Fig. 2.

It was measured in [1] that calling a function from a function pointer has
an acceptable cost, compared to other call implementations (close to a direct
call). Moreover, data structure requires about 1 kB per neighbor on a 64 bit
architecture, which is not significant regarding the memory footprint of parallel
scientific applications, even at large scale.
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3.3 Cohabitation with Other Models

As mentioned earlier in this paper, combinations of programming models is an
attractive solution to program extreme-scale machines. Therefore, it is necessary
for parallel execution environment to be compatible with each other. The Open-
SHMEM specification v1.4 mentions a few examples of OpenSHMEM and MPI
compatibility in some implementations (annex D).

DiPOSH is fully compatible with MPI. In its current implementation, its
run-time environment is written in MPI, which means that the coordination
between the OpenSHMEM processing units (e.g., communication of their con-
tact information) is made using MPI calls. As a consequence, when the OpenSH-
MEM application is initialized by start pes(), the OpenSHMEM library calls
MPI Init. In future versions, DiPOSH might use another run-time environment
in order to be independent of MPI and avoid requiring having an MPI imple-
mentation on the system. However, MPI is common enough to make having it
installed on a parallel machine a very weak assumption.

An excerpt of a program using both MPI and OpenSHMEM and supported
by DiPOSH is given in Fig. 3. We can see that MPI and OpenSHMEM com-
munication routines can be mixed in the program, for the programmer to use
whichever paradigm fits better its need for each communication.

start_pes( 0 );

rank = shmem_my_pe();

value = (int*)shmalloc( sizeof( int ) );

/* ... do stuff ... */
if( 0 == rank )

shmem_int_put( value, &result, 1, 1 );

MPI_Barrier( MPI_COMM_WORLD );

/* ... do stuff ... */
if( 0 == rank )

MPI_Send( &number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD );

if( 1 == rank )

MPI_Recv( &number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &stat );

/* ... do stuff ... */
MPI_Allgather( &number, &result, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD );

Fig. 3. Excerpt of a program using both OpenSHMEM and MPI.

In addition to being an interesting feature for application developers, being
able to use MPI in OpenSHMEM programs can also be useful for supporting
tools, that can take advantage of some MPI-specific collective operations (such
as reductions using user-defined operations and datatypes) to aggregate data.

3.4 Profiling

Profiling OpenSHMEM applications can be done by TAU without any specific
tool interface [10]. DiPOSH can provide more low-level information, such as
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profiling information on the communication channels, for the user to be able to
tune the communication library.

TAU’s measurement model give access to a multitude of possible perfor-
mance data about the execution, from hardware counters to MPI information
from MPI T. Interestingly, MPI T also gives the possibility to modify some
parameters. For instance, OpenMPI provides several levels of parameters: end-
user, application user, developer. Some of these parameters can be used in write
mode by the application in order to tune the library at run-time. For instance,
the maximum size of a message sent in eager mode, the size of a shared memory
segment... can be modified through the MPI T interface. Moreover, TAU can
keep track of the memory usage in the shared heaps.

An example of profiling information about NUMA (NUMA hits, misses, and
so on) is given in the performance section of this paper, in Subsect. 4.3.

4 Performance

We have run preliminary performance evaluations of DiPOSH on the Grid’5000
platform [4], using the Grimoire cluster in Nancy. It is made of 8 nodes, each
of which featuring two 8-core Intel Xeon E5-2630v3 CPUs, 4 10 Gb Ethernet
NICs and a 56 Gbps Infiniband network interconnection. The operating system
deployed on the nodes is a Debian 9.8 with a Linux kernel 4.9.0. All the code was
compiled using g++ 6.3.0 with -O3 optimization flag, and DiPOSH was linked
against some Boost’s libraries version 1.62 and OpenMPI 2.0.1.

4.1 Communication Performance

We evaluated the communication time using shmem char put() and
shmem char get() operations on buffers of variable sizes. Each communication
time was measured using clock gettime() and run 20 times, except for small
buffers (less than 104 bytes), that were run 200 000 times, since they are more
subject to various noises on the system.

We measured the latency and the throughput on a single node and com-
pared between when processes are bound to the same socket (--map-by core in
OpenMPI) and on two different sockets (--map-by socket in OpenMPI). The
latencies are given in Fig. 4 and the throughputs are given in Fig. 5.

As expected, communications are slightly faster when both processes are exe-
cuted on the same socket. Also as expected, the performance of the direct shared
memory implementation (called POSH SM in the captions) is significantly faster
than the implementation using MPI-3 RDMA calls. This can be explained by
the fact that implementing on top of MPI involves communicating through a
thick software stack (see the aforementioned notion of software overhead), but
more importantly, implementing the semantics of OpenSHMEM’s one-sided com-
munications using MPI-3’s one-sided operations involves additional operations
(MPI Win lock() and MPI Win unlock()).
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Fig. 4. Latency between two processes on the same node, over POSH’s shared memory
communication channel vs over MPI one-sided communications.

We have also measured the communication performance between two nodes,
here using the implementation using MPI one-sided communications. The
latency and the bandwidth are given in Fig. 6. It is interesting to see that, in
spite of the harmfulness of the transposition between MPI-3’s RDMA commu-
nication model and OpenSHMEM’s communication model, the throughput is
close to the announced bandwidth of the network used (56 Gbps).

4.2 Parallel Matrix-Matrix Multiplication

We implemented a parallel matrix-matrix multiplication using Cannon’s algo-
rithm. The initial local submatrices are placed in the shared heap, for other
processes to fetch them using get() communications, hence placing their local
copy in the private memory. Therefore, the local computations themselves are
made on private memory. We used the DiPOSH communication channel on top
of MPI-3 RDMA calls. The performance is represented in Fig. 7 and we can see
that the OpenSHMEM model allowed us to write a straightforward implemen-
tation of the algorithm and DiPOSH provided good parallel performance.
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Fig. 5. Throughput between two processes on the same node, over POSH’s shared
memory communication channel vs over MPI one-sided communications.

Fig. 6. Communication performance between two nodes, DiPOSH over MPI.

4.3 Some Profiling Information

As described in Sect. 3.4, DiPOSH can extract low-level profiling information
from the communication channels and provide them to TAU through user-
defined events. We executed the parallel matrix-matrix multiplication on a sin-
gle node using the POSH shared memory communication channel, and obtained
NUMA statistics during the execution. The result displayed by TAU is given in
Fig. 8. For instance, we can see, for this particular shmem get call, how much
time was spent reaching data on another NUMA node (numa foreign). Such
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Fig. 7. Scalability of a parallel matrix-matrix multiplication (Cannon’s algorithm)
implemented in OpenSHMEM, using DiPOSH over MPI.

Fig. 8. Low-level profiling information: in addition to the usual function calls (in red,
MPI Init() and in purple, shmem * get), TAU displays information about the NUMA
communications. (Color figure online)

information can be useful to understand how time is spent in communications
and optimize data locality in order to minimize communication time.

5 Conclusion and Perspective

In this paper, we have presented the core design philosophy of DiPOSH,
a high performance, distributed run-time environment and communication
library implementing the OpenSHMEM specification. More specifically, DiPOSH
focuses on taking advantage of the simple communication patterns of OpenSH-
MEM in order to implement a very thin software stack between the API and the
network. Furthermore, it aims at being highly portable, able to take advantage of
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high performance communication drivers, and delivering exceptional node-level
efficiency with its POSH core.

In contrast to MPI+X hybrids, DiPOSH is completely compatible with MPI,
making it possible to implement hybrid-like MPI+OpenSHMEM applications
that can take advantage of the communication models of both libraries. More-
over, tools that support the parallel execution of an OpenSHMEM application
can use these MPI communications, for instance, for global performance data
aggregation and in situ analytic.

We have seen that DiPOSH can interface with the TAU measurement library
in order to provide low-level profiling information about the communication
channel. This can be used by application users in order to tune the library they
are using, but it also opens perspective for a tooling interface that would exploit
this information.

Future developments with DiPOSH include experimenting with high perfor-
mance communication channels, for instance UCX [12], and KNEM for intra-
node communications [7], in order to be able to support a large number of
networks while keeping the API-to-network path short. Moreover, we will work
on providing fault tolerance capabilities, which is both necessary and challeng-
ing on exascale machines [5], particularly, for OpenSHMEM [9]. Fault tolerance
can be achieved at system-level, for automatic fault-tolerance such as transpar-
ent checkpoint-restart [3] and at user-level, in order to provide the programmer
with features that allow them to implement fault tolerant parallel applications,
such as ULFM for MPI [2].

In addition to supporting a broad variety of networks, we are looking at
a set of benchmarks and mini applications that can emphasize and stress the
characteristics and choices of OpenSHMEM implementations. The next step will
be to evaluate DiPOSH on large-scale supercomputers on these applications and
benchmark its performance at fine grain.

We are currently working on supporting the complete OpenSHMEM interface
and preparing a release. In the meantime, a partial support of the standard
(providing at least point-to-point communications) can be found on a famous
Git platform at the following URL: https://github.com/coti/POSH.

Acknowledgment. Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
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