
Structure-Aware Calculation
of Many-Electron Wave Function Overlaps

on Multicore Processors

Davor Davidović1(B) and Enrique S. Quintana-Ortí2

1 Centre for Informatics and Computing, Ruđer Bošković Institute,
Bijenička cesta 54, 10000 Zagreb, Croatia

davor.davidovic@irb.hr
2 Depto. de Informática de Sistemas y Computadores,

Universitat Politècnica de València, 46022 València, Spain
quintana@disca.upv.es

Abstract. We introduce a new algorithm that exploits the relationship
between the determinants of a sequence of matrices that appear in the
calculation of many-electron wave function overlaps, yielding a consider-
able reduction of the theoretical cost. The resulting enhanced algorithm
is embarrassingly parallel and our comparison against the (embarrass-
ingly parallel version of) original algorithm, on a computer node with
40 physical cores, shows acceleration factors which are close to 7 for the
largest problems, consistent with the theoretical difference.

Keywords: Wave functions · LU factorization · Multicore processors

1 Introduction

Many-electron wave function (MEWF) overlaps are extensively used in the nona-
diabatic dynamics and have significant importance in photochemical studies.
Concretely, the overlap functions provide a straightforward mechanism to record
the electronic states along different nuclear geometries. Therefore, they can be
leveraged for constructing multi-state, multi-dimensional potential energy sur-
faces for quantum dynamics [6]. In the context of nonadiabatic dynamics simu-
lations, for example, MEWF overlaps yield an approximation of time-derivative
couplings (TDCs) in fewest-switch surface hopping (FSSH) calculations [5,11].
The main drawback of the approaches based on MEWF overlaps lies in their
high computational complexity and poor scaling with the system size. Thus,
accelerating the calculation of the overlap functions can significantly augment
the dimension of the systems to which the FSSH method can be applied.

In this work, we improve the algorithm presented in [10] for computing the
overlaps between excited states using CIS-type wave functions. In particular,
we optimize the algorithm denoted there as OL2M –an approach based on the
level-2 minors obtained from Laplace’s recursive formula, or in other words,

c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12043, pp. 13–24, 2020.
https://doi.org/10.1007/978-3-030-43229-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43229-4_2&domain=pdf
http://orcid.org/0000-0003-2649-9236
http://orcid.org/0000-0002-5454-165X
https://doi.org/10.1007/978-3-030-43229-4_2

14 D. Davidović and E. S. Quintana-Ortí

the minors obtained by removing two rows and two columns from the input
referent matrix. In rough detail, our optimization targets the part of the OL2M
algorithm in which the determinants of all the level-2 minors are computed and
stored, introducing a structure-aware variant of the method that reduces the
theoretical cost of that part of the algorithm by an order of magnitude via
an update of the LU factorization; see, e.g., [4,8]. This enhancement results in
significantly shorter execution times for large problems solved in parallel on a
multicore processor.

The rest of the paper is structured as follows. In Sect. 2 we offer a brief
introduction to the computations of MEWF overlaps. The columnwise structure-
aware algorithm and its parallelization are described in Sect. 3; and the parallel
experimental results are presented in Sect. 4. Finally, a few concluding remarks
and future research directions close the paper in Sect. 5.

2 Problem Definition

Given two many-electron wave-functions, denoted by ΨI and ΨJ , the overlap
between these functions is expressed as:

SIJ = 〈ΨI |ΨJ 〉 , (1)

using bra-ket 〈∗|∗〉 notation [2], a common notation used in quantum mechanics
to describe quantum spaces. The SIJ is the (I, J) element of the overlap matrix
S, NA is the number of states, and the indices I, J ∈ {1, 2, . . . , NA}. The NA

states are described by CIS-type wave functions and, therefore, they can be
expanded using Slater determinants. In the Slater determinants expansion, the
electrons are divided into nσ and mσ respectively, representing the number of
occupied and virtual orbitals for each spin σ.

The mathematical-physics problem can be reformulated into a matrix repre-
sentation as that in Fig. 1. The main computational problem consists in obtaining
the determinants of all the matrices constructed such that a row i and column
j from the referent matrix Aref are replaced with the contents of row iβ and
column jα, respectively, from matrices WFβ and WFα, for all possible combi-
nations of i, j, iβ , jα.

The total number of possible matrices is n2
σm2

σ for each spin σ ∈ {α, β}.
Furthermore, if an LU factorization [4] is applied to compute these determinants,
which requires 2/3n3

σ flops (floating-point operations), this operation becomes
the main bottleneck of the entire MEWF, yielding a total cost of O(n5

σm2
σ) flops.

It is worth to note that, for a fixed row and column (i, j) of Aref , numerous
rows and columns from WFβ and WFα are to be tested, while all other rows and
columns in the referent matrix remain unchanged. Thus, the matrices, for which
we have to compute the determinants differ only in one row and one column. In
order to decrease the computational cost, the challenge is to reuse the unchanged
parts of referent matrix for computing other determinants.

The first approach to exploit this property was presented in [7]. There, the
authors reported a significant speedup by exploiting similarities between the

Parallel Calculation of Many-Electron Wave Function Overlaps 15

mα

iβ

i

mβ

nα jj α

nβ Aref WFα

WFβ

Fig. 1. Matrix representation of the computational problem. The referent matrix is
square with dimension nβ × nα. Rows/columns i/j are replaced with rows/columns
from the panels WFβ and WFα, respectively.

consecutive matrices differ in only one row/column. Concretely, the referent
matrix Aref was expanded by columns using the Laplace transformation. The
determinants of the minors were then stored and reused to compute determinants
of matrices which differ only in one column from the baseline determinant. With
this strategy, replacing any column for WFα is simply a linear combination of
factors from jα with pre-computed determinants of the minors.

The work presented in [10] improved the idea in [7] by computing the determi-
nants of the minors obtained from the second-level recursive Laplace expansion.
There, the minors were constructed by expanding the referent matrix along both
rows and columns; then the LU factorization was repeatedly applied to obtain
the determinants; and finally these results were reused to compute the overlap of
the corresponding Slater determinants. Hereafter, we will refer to this algorith-
mic approach as DL2M. Although this strategy yields a considerable reduction
in the computational complexity compared with the method in [7], obtaining the
determinants of the minors remains the major computational bottleneck.

A related topic is that of computing the LU factorization of a large collection
of small matrices. This problem has been tackled, on graphics processors, as part
of an effort to develop a batched version of the Basic Linear Algebra Subprograms
as well as in the framework of computing a block-Jacobi preconditioner for the
iterative solution of sparse linear systems [1,3]. However, in those applications
the matrices are independent and no structure-aware exploitation of the problem
is possible.

3 Algorithms for DL2M Calculations

3.1 Original

Consider the matrix A ∈ R
n×n representing the referent matrix Aref and

assume, for simplicity, that n = nα = nβ = mα = mβ . The calculation of the

16 D. Davidović and E. S. Quintana-Ortí

overlap between any two MEWFs, described in Sect. 2, requires the computation
of the determinants for all possible submatrices of A where any two rows/columns
have been eliminated from the matrix. Let us denote by Ar1,r2||c1,c2 the subma-
trix that results from eliminating rows r1, r2 and columns c1, c2 from A. The
straightforward solution to obtain the determinants is to explicitly construct all
possible submatrices with m = n − 2 rows/columns of A, and then compute the
LU factorization (with partial pivoting) of each submatrix, as shown in the naive
algorithm (NA) in Listing 1.1. For brevity, hereafter we employ pseudo-Matlab
notation in the presentation of the algorithms, and we do not consider the effect
of the row permutations obtained from the LU factorization on the determinant
sign. All our actual realizations of the algorithms include partial pivoting to
ensure numerical stability in practice.

The computational cost of the NA realization is, approximately,

n∑

r1=1

r1−1∑

r2=1

n∑

c1=1

c1−1∑

c2=1

2n3/3 ≈ n7/6 flops.

1 for r1=1:n
2 for r2=1:r1 -1
3 for c1=1:n
4 for c2=1:c1 -1
5 [L,U,P] = lu(Ar1,r2||c1,c2);
6 d[r1][r2][c1][c2] = prod(diag(U));

Listing 1.1. Naive algorithm for DL2M calculations.

3.2 Columwise Re-utilization

The naive algorithm in Listing 1.1 exposes that, between any two iterations of
the two inner loops (that is, those indexed by c1, c2), the matrix that needs
to be factorized only differs in two columns. A natural question is thus how to
exploit the fact that all other matrix columns remain the same between these
two iterations. To illustrate the response, let us define Ar = Ar1,r2||− ∈ R

m×n as
the submatrix with m = n−2 rows and n columns that results from eliminating
only rows r1, r2 from A. Next, consider the LU factorization of this submatrix:

L−1PAr = L−1P [a1, a2, . . . , an] = [u1, u2, . . . , un] = U, (2)

where L ∈ R
m×m is a unit lower triangular comprising the Gauss transforms that

are applied to annihilate the subdiagonal entries of the matrix, P is the m × m
permutation matrix due to the application of partial pivoting during the factor-
ization, and U ∈ R

m×n is the resulting upper triangular factor [4]. The answer
we are searching for should state the relationship between the factorization of
Ar in (2) and that of the submatrix

Ar1,r2||c1,c2 = [a1, a2, . . . , ac2−1, ac2+1, . . . , ac1−1, ac1+1, . . . , an] , (3)

Parallel Calculation of Many-Electron Wave Function Overlaps 17

for any two column values c1, c2. Since a Gauss transform, applied to a matrix
from the left, simply performs an independent linear combination of each matrix
column, the application of the factors L and P from the LU factorization in (2)
to Ar1,r2||c1,c2 results in:

L−1PAr1,r2||c1,c2 = [u1, u2, . . . , uc2−1, uc2+1, . . . , uc1−1, uc1+1, . . . , un] ; (4)

which corresponds to the columns of U in (2), except for uc1 and uc2 , which
have disappeared. The result is thus already upper triangular in the leftmost
c2 − 1 columns, but it contains zeros only below the first and second subdiag-
onals in columns [uc2+1, uc2+2, . . . , uc1−1] and [uc1+1, . . . , un], respectively; see
the example in Fig. 2.

x
x
x
x
x
x
x
x
x
x
x

x
x x x x x x x x xx
x x x x x x x xx
x x x x x x xx
+ x x x x x xx

x x x x x x+
+ x x x x x
+ x x x x
+ x x x
+ + x x
+ + x
+ +

1 2 3 5 7 8 10 11 12 13 146

x x x x x x x x x xx
2
3
4
5
6
7
8
9
10
11
12

1
1:c2−1

c2+1:c1−1
c1+1:n1:c2−1

c2:c1−1

c1−1:m

Fig. 2. Structure of the upper triangular matrix in (4), with n = 14, m = n− 2 = 12,
c2 = 4 and c1 = 9. Nonzero entries below the main diagonal are identified with the
symbol ‘+’. Columns are numbered taking into account that c1, c2 were eliminated.

In consequence, in order to obtain the desired upper triangular matrix, which
yields the determinant for Ar1,r2||c1,c2 we need to apply Gauss transforms (or,
alternatively, any type of orthogonal transform [4]) to eliminate the nonzero
entries below the main diagonal of this matrix. Let us consider the partitioning
of the quasi-upper triangular factor in (4) as follows:

L−1PAr1,r2||c1,c2 =

U11 U12 U13

}
1 : c2 − 1

U22 U23

}
c2 : c1 − 1

U33

}
c1 : m

︸ ︷︷ ︸
1 : c2 − 1

︸ ︷︷ ︸
c2 + 1 : c1 − 1

︸ ︷︷ ︸
c1 + 1 : n

(5)

18 D. Davidović and E. S. Quintana-Ortí

where U11 is upper triangular; and U22/U33 contain zeros below the first/second

subdiagonal. Furthermore, consider U23 =
[

UT

uB

]
, where uB corresponds to the

bottom row of U23. The algorithm that exploits the relationship between the
matrices factorized in the inner two loops is shown in Listing 1.2. Naturally, the
LU factorizations involving the blocks [U22, U23] and U33 leverage the special
quasi-upper triangular structure of these submatrices to reduce the cost of this
alternative method.

1 for r1=1:n
2 for r2=1:r1 -1
3 [L,U,P] = lu(Ar1,r2||−);
4 for c1=1:n
5 for c2=1:c1 -1
6 Partition U as in equation (5) → U11, U22, U23, U33
7 [L2 ,U2 ,P2] = lu([U22, U23]);% Exploit zeros below first subdiagonal
8 [L3 ,U3 ,P3] = lu([uB ;
9 U33]); % Exploit zeros below second subdiagonal

10 d[r1][r2][c1][c2] = prod(diag(U11))
11 * prod(diag(U2))
12 * prod(diag(U3));

Listing 1.2. Algorithm for DL2M calculations with columnwise structure-aware
reutilization.

The cost of the columnwise “structure-aware” realization is approximately
given by

n∑

r1=1

r1−1∑

r2=1

⎛

⎜⎜⎜⎜⎜⎜⎝
2m3/3
︸ ︷︷ ︸
LU of Ar

+

n∑

c1=1

c1−1∑

c2=1

⎛

⎜⎜⎜⎜⎜⎜⎝

c1−1∑

j1=c2+1

6(n − j1)

︸ ︷︷ ︸
LU of [U22,U23]

+

n−1∑

j2=c1+1

12(n − j2)

︸ ︷︷ ︸
LU of [uB ;U33]

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
≈ n6/2 flops,

where the sum for j1 corresponds to the cost of the LU factorization for [U22, U23]
and the sum for j2 to that for U33. Taking into account that m ≈ n, and neglect-
ing the lower order terms, the cost for this approach is n6/2 flops. Compared
with NA, this represents a reduction in the cost of one order of magnitude.

3.3 Parallel Implementation

Both the original NA and the columnwise structure-aware algorithm (CSA),
described in the previous subsections, are embarrassingly parallel. An analy-
sis of dependencies and concurrency is, therefore, trivial. From Listing 1.1, we
observe that the LU factorizations of the minors (and the accumulation of the
diagonal elements of the resulting triangular factors), in the inner-most loop, are
completely independent. In other words, each minor can be constructed indepen-
dently of other minors, and the corresponding calculations can proceed in par-
allel. Although this approach exhibits a much larger memory footprint, because

Parallel Calculation of Many-Electron Wave Function Overlaps 19

the minors are explicitly constructed, it accommodates a straight-forward paral-
lelization. In contrast, in real-world use cases, the dimension of the initial matrix
is up to n = 200, and exploiting only the parallelism intrinsic to the operations
involved in a single LU factorization will surely exhibit very low performance.
Therefore, our approach computes single-threaded (i.e. sequential) LU factoriza-
tions, but combines this with a parallelization of the outer loops around these
calculations to compute several decompositions concurrently.

For the parallelization on multicore processors, in this work we leverage
OpenMP. Concretely, in the DL2M NA case, in Listing 1.1, an OpenMP par-
allel for pragma is applied to the outer-most loop of the algorithm – that is, the
loop over index r1 – which corresponds to the first row to be removed from the
initial matrix. The work corresponding to the three inner loops (over r2, c1, and
c2) is then executed in parallel for each iteration of the row index r1.

For the CSA variant, in Listing 1.2, the inner-most LU factorizations and the
products of diagonal elements of the factors U{11,2,3} are independent for each
combination of the columns c1 and c2. They require only the U factor obtained
from the two outer-most loops (a unique combination of r1 and r2), as in Line 3 of
Listing 1.2. In consequence, the parallelization of DL2M with columnwise reuse
is done by distributing the iteration space across loop c1; that is over the first
column to be removed from the minor (without rows r1 and r2). For this variant,
it is also possible to parallelize across the outer-most loop r1 like it was done
for L2M NA. That approach can be followed, for example, to parallelize the
outer-most loop across multiple nodes, while the parallelization over c1 can be
applied at the node level. This multi-level parallel alternative for clusters is part
of ongoing work.

4 Experimental Results

In this section we illustrate the gains in performance attained by the DL2M
structure-aware algorithm, with columnwise re-utilization, for computing the
determinants of the level-2 minors of the referent matrix. For this purpose, the
new algorithm, CSA, is compared against the original NA realization, described
in Subsect. 3.1. In addition, in the final part of this section, we compare the
overall performance of the MEWF algorithms for computing the overlap of the
wave functions, using our DL2M algorithm with columnwise re-utilization, with
the algorithm OL2M, described in [10].

Set Up. The experiments in this section were obtained on the Juwels cluster from
Juelich Supercomputing Center. Each node consists of two Intel Xeon Platinum
8168 processors, running at 2.7GHz, with 24 cores each and 96GB of RAM.
The code was written in Fortran and C programming languages, compiled with
GCC 8.3.0 and linked against the Intel MKL 2019.3.199 (sequential) library. All
experiments are run on a single node and employ double precision arithmetic.

20 D. Davidović and E. S. Quintana-Ortí

Algorithmic Improvements. The first experiment assesses the speed up gains
achieved only by introducing algorithmic changes, without any parallelisation
strategies. The columnwise reutilization strategy yields a significant performance
gain up to 2.5× and 5× compared with the OL2M and NA variants, respectively,
even when executed sequentially, as illustrated in Fig. 3. Note that the difference
between CSA and other variants increases with the problem size. That is because
of much lower computational cost of CSA compared to NA and OL2M variants.
As an example, for n = 100 the flops count for NA is 1014/6 while CSA exhibits
1012/2 flops, that is approximately 33× less flops for CSA variant. However,
in NA and OL2M variants more flops are “fast” flops based on LU and BLAS-
3 operations, while in CSA, a part of flops, due to columnwise reutilization
strategy, are based on BLAS-1 operations (the update step).

1 2 3 4 5 6 7 8 9 101112131415161718
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Size of the referent matrix x10

C
om

pu
ta

tio
na

l t
im

e
lo

g(
se

co
nd

s)

CSA
OL2M
NA

Fig. 3. Execution time of the sequential NA, OL2M and CSA algorithms.

NA vs CSA. This experiment compares the DL2M CSA variant (Listing 1.2)
and the DL2M NA implementation (Listing 1.1). The input matrix for this test
was generated with random entries and a number of columns/rows ranging from
n = 10 to 180. The lower theoretical cost of the new CSA approach (of an order
of magnitude) becomes evident in Fig. 4(left), which shows a reduction of the
execution time by approximately one order of magnitude for sufficiently large
matrices. When increasing the matrix size though, the speedup compared to NA
significantly increases, because of the much lower computational cost of the CSA
variant. Figure 4(right) shows that the speed up of CSA (with respect to NA) is
consistent, independently of the number of cores in the test, and roughly grows
by a factor of up to 7 for the largest test matrices.

We can observe that the CSA algorithm is superior in performance to the
naive version for all configurations and matrix sizes, as presented in Fig. 4(right).
It can been seen that the speedup is similar, no matter how many cores we used
in test configuration, and is increasing up to more than 7× for larger test matrix
sizes.

Parallel Calculation of Many-Electron Wave Function Overlaps 21

1 2 3 4 5 6 7 8 9 101112131415161718
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Size of the referent matrix x10

C
om

pu
ta

tio
na

l t
im

e
lo

g(
se

co
nd

s)

CSA 10 cores
CSA 20 cores
CSA 30 cores
CSA 40 cores
NA 10 cores
NA 20 cores
NA 30 cores
NA 40 cores

(a)Execution time

1 2 3 4 5 6 7 8 9 101112131415161718
1

2

3

4

5

6

7

8

Size of the referent matrix x10

S
pe

ed
 u

p

CSA 10 cores
CSA 20 cores
CSA 30 cores
CSA 40 cores
NA

(b) Speedup

Fig. 4. Execution time and speed-up (left and right plots, respectively) for the parallel
DL2M CSA and NA algorithms for varying #cores and matrix size.

OL2M vs CSA. In Fig. 5(left) we compare the new DL2M CSA with the OL2M
algorithm [10] (considering only the part that computes the determinants of the
minors). In OL2M, the complete LU is computed inside the c1 loop, and the
accumulated U factors are reused only inside the c2 loop. By computing the LU
before the start of the c1 loop, the CSA variant offers a speed up of up to 3.3×
for the largest problems, Fig. 5(right).

Note that the speedup of CSA w.r.t. OL2M is also independent on the number
of cores (as in the case of NA) and that is almost the same for different test
configurations and larger test matrix sizes.

1 2 3 4 5 6 7 8 9 101112131415161718
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Size of the referent matrix x10

C
om

pu
ta

tio
na

l t
im

e
lo

g(
se

co
nd

s)

CSA 10 cores
CSA 20 cores
CSA 30 cores
CSA 40 cores
OL2M 10 cores
OL2M 20 cores
OL2M 30 cores
OL2M 40 cores

(a) Execution time

1 2 3 4 5 6 7 8 9 101112131415161718
0
1
2
3
4
5
6
7
8
9

10

Size of the referent matrix x10

S
pe

ed
 u

p

CSA 10 cores
CSA 20 cores
CSA 30 cores
CSA 40 cores
OL2M

(b) Speedup

Fig. 5. Execution time and speed-up (left and right plots, respectively) for the parallel
DL2M CSA and OL2M algorithms for varying #cores and matrix size.

Scalability. Although CSA re-uses the columns from the U factor for computing
determinants of the subsequent minors, the algorithm achieves a good scalability
with increasing number of cores, as presented in Fig. 6.

22 D. Davidović and E. S. Quintana-Ortí

10 20 30 40 48
0

1000

2000

3000

4000

5000

6000

Number of cores

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

NA
OL2M
CSA

Fig. 6. Strong scaling of CSA variant with the number of processor for n = 180 (number
of rows/columns of the referent matrix).

Real Use-Case. The final experiment compares DL2M CSA and the OL2M algo-
rithm on real test cases corresponding to the excited state wave functions of
poly-Alanine systems (with 100 and 195 occupied orbitals, i.e. the sizes of the
referent matrices) obtained using different basis sets. The results of this test
in Table 1 show that DL2M CSA offers higher scalability and achieves a speed
up factor above 5× over DL2M, on 48 cores, which is aligned with the results
reported in Fig. 5(right). For the Alanine-100 use-case, by increasing the number
of cores over 40 a drop in performance is occured. That is expected since the
problem becomes to small for the given number of cores in which the communi-
cation overhead, due the increased parallelism, becomes more significant in the
total execution time.

Table 1. Execution times (in seconds) of DL2M CSA and OL2M for Alanine-100 and
Alanine-195 on varying #cores.

#cores Algorithm Alanine-100 Alanine-195
Minors Total Minors Total

10 OL2M 78.02 92.57 4,233.16 4,432.2
CSA 37.61 51.96 1,364.06 1,568.2

20 OL2M 39.47 53.00 2,117.29 2,303.6
CSA 20.26 33.89 691.78 896.39

30 OL2M 29.29 43.74 1,557.32 1,755.0
CSA 14.13 28.79 478.16 674.98

40 OL2M 28.33 44.11 1,306.56 1,508.5
CSA 11.61 26.83 410.27 628.87

48 OL2M 29.41 44.92 1,142.5 1,365.7
CSA 10.72 26.46 364.56 581.14

Parallel Calculation of Many-Electron Wave Function Overlaps 23

5 Conclusion and Future Work

In this work, we leverage the connection between the level-2 minors of the referent
matrix appearing in MEWFs to save a considerable part of the computations
required to obtain the corresponding determinants. For that purpose, we use
an updating technique for the LU factorization, in order to reduce the cost
by an order of magnitude. Our tests show that the new approach considerably
accelerates the computation of the MEWF overlaps, by a factor of up to 7, in
principle allowing the solution of larger problems.

As part of future work, we plan to explore the parallelization of this algorithm
using different approaches and/or tools (e.g., to exploit task-level parallelism, or
to combine a cluster-level parallelization with a finer grain concurrent execution).
In addition, we will investigate how to exploit the connection between the level-2
minors across other dimensions to further reduce the theoretical cost of this type
of computations.

The source code is available at [9] and is part of the cto-nto library for
computing natural transition orbitals for CIS type wave functions.

Acknowledgement. This research was performed under project HPC-EUROPA3
(INFRAIA-2016-1-730897) and supported by Croatian Science Fundation under grant
HRZZ IP-2016-06-1142, the Foundation of the Croatian Academy of Science and Arts,
and the European Regional Development Fund under grant KK.01.1.1.01.0009 (DAT-
ACROSS). Enrique S. Quintana-Ortí was supported by project TIN2017-82972-R of
the MINECO and FEDER. The authors gratefully acknowledge the computer resources
provided by the Juelich Supercomputing center, and to BSC where the initial testings
and the code development were performed.

References

1. Anzt, H., Dongarra, J., Flegar, G., Quintana-Ortí, E.S.: Variable-size batched LU
for small matrices and its integration into block-Jacobi preconditioning. In: 2017
46th International Conference on Parallel Processing (ICPP), pp. 91–100 (2017).
https://doi.org/10.1109/ICPP.2017.18

2. Dirac, P.A.M.: A new notation for quantum mechanics. Math. Proc. Cambridge
Philos. Soc. 35(3), 416–418 (1939). https://doi.org/10.1017/S0305004100021162

3. Dong, T., Haidar, A., Luszczek, P., Harris, J.A., Tomov, S., Dongarra, J.: Lu fac-
torization of small matrices: accelerating batched DGETRF on the GPU. In: 2014
IEEE International Conference on High Performance Computing and Communica-
tions, 2014 IEEE 6th Internatinal Symposium on Cyberspace Safety and Security,
2014 IEEE 11th International Conference on Embedded Software and Systems
(HPCC, CSS, ICESS), pp. 157–160, August 2014. https://doi.org/10.1109/HPCC.
2014.30

4. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

5. Hammes-Schiffer, S., Tully, J.C.: Proton transfer in solution: molecular dynamics
with quantum transitions. J. Chem. Phys. 101(6), 4657–4667 (1994). https://doi.
org/10.1063/1.467455

https://doi.org/10.1109/ICPP.2017.18
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1109/HPCC.2014.30
https://doi.org/10.1109/HPCC.2014.30
https://doi.org/10.1063/1.467455
https://doi.org/10.1063/1.467455

24 D. Davidović and E. S. Quintana-Ortí

6. Li, S.L., Truhlar, D.G., Schmidt, M.W., Gordon, M.S.: Model space diabatization
for quantum photochemistry. J. Chem. Phys. 142(6), 064106 (2015)

7. Plasser, F., Ruckenbauer, M., Mai, S., Oppel, M., Marquetand, P., González, L.:
Efficient and flexible computation of many-electron wave function overlaps. J.
Chem. Theory Comput. 12(3), 1207–1219 (2016)

8. Quintana-Ortí, E.S., Van De Geijn, R.A.: Updating an LU factorization with piv-
oting. ACM Trans. Math. Softw. 35(2), 11:1–11:16 (2008)

9. Sapunar, M.: Natural transition orbitals for CIS type wave functions. https://
github.com/marin-sapunar/cis_nto. Accessed 24 Oct 2019

10. Sapunar, M., Piteša, T., Davidović, D., Došlić, N.: Highly efficient algorithms for
CIS type excited state wave function overlaps. J. Chem. Theory Comput. 15,
3461–3469 (2019)

11. Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2),
1061–1071 (1990). https://doi.org/10.1063/1.459170

https://github.com/marin-sapunar/cis_nto
https://github.com/marin-sapunar/cis_nto
https://doi.org/10.1063/1.459170

	Structure-Aware Calculation of Many-Electron Wave Function Overlaps on Multicore Processors
	1 Introduction
	2 Problem Definition
	3 Algorithms for DL2M Calculations
	3.1 Original
	3.2 Columwise Re-utilization
	3.3 Parallel Implementation

	4 Experimental Results
	5 Conclusion and Future Work
	References

