
A High-Performance Implementation
of a Robust Preconditioner
for Heterogeneous Problems

Linus Seelinger1(B) , Anne Reinarz2 , and Robert Scheichl3

1 Institute for Scientific Computing, Heidelberg University, Heidelberg, Germany
linus.seelinger@iwr.uni-heidelberg.de

2 Department of Informatics, Technical University of Munich, Garching, Germany
reinarz@in.tum.de

3 Institute for Applied Mathematics, Heidelberg University, Heidelberg, Germany
r.scheichl@uni-heidelberg.de

Abstract. We present an efficient implementation of the highly robust
and scalable GenEO (Generalized Eigenproblems in the Overlap) pre-
conditioner [16] in the high-performance PDE framework DUNE [6]. The
GenEO coarse space is constructed by combining low energy solutions of
a local generalised eigenproblem using a partition of unity. The main con-
tribution of this paper is documenting the technical details that are cru-
cial to the efficiency of a high-performance implementation of the GenEO
preconditioner. We demonstrate both weak and strong scaling for the
GenEO solver on over 15, 000 cores by solving an industrially motivated
problem in aerospace engineering. Further, we show that for highly com-
plex parameter distributions arising in certain real-world applications,
established methods become intractable while GenEO remains fully effec-
tive.

Keywords: Partial differential equations · Domain decomposition ·
Preconditioning · High performance computing

1 Introduction

Computer simulations have become a vital tool in science and engineering. The
demand for solving PDEs on ever larger domains and increasing accuracy neces-
sitates the use of high performance computers and the implementation of efficient
parallel algorithms. When designing parallel algorithms two issues are crucial:
Robustness and scalability.

(i) Robustness: The parameters involved in the PDE affect the performance of
the algorithm to a large extent. A frequent issue is a distribution of param-
eters with large contrast jumps at different length scales, which may lead to
slow or no solver convergence.

c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12043, pp. 117–128, 2020.
https://doi.org/10.1007/978-3-030-43229-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43229-4_11&domain=pdf
http://orcid.org/0000-0001-8632-8493
http://orcid.org/0000-0003-1787-7637
http://orcid.org/0000-0001-8493-4393
https://doi.org/10.1007/978-3-030-43229-4_11


118 L. Seelinger et al.

(ii) Scalability: The immediate scalability of the finite element method is lim-
ited as each degree of freedom is coupled with all others.

One approach to achieve scalability in solving partial differential equations
are domain decomposition methods (see e.g. [14,17]), splitting the given domain
into multiple subdomains. The solution of the original problem restricted to
each subdomain is computed in parallel and the results are combined to form an
approximate solution. This is repeated until convergence is reached. The number
of these iterations, however, still depends strongly on the number of subdomains
involved as well as coefficient variations. Introducing an additional coarse space
that covers all subdomains can restore performance for large numbers of subdo-
mains.

This global space can be tailored to specific problem, as in the generalized
finite element method [3]. While these methods are applicable to an entire class
of parameter distributions, each of these approaches is based on certain assump-
tions on the parameters, e.g. the parameters vary strongly only in one direction.
Over recent years, more generic approaches have been developed, e.g. [8,11].
The GenEO coarse space chosen in this work is a related approach, originally
introduced in [16]. It does not require a-priori knowledge of the parameter dis-
tribution and is applicable to a wide range of problems making it suitable as a
‘black-box’ solver.

In this paper we focus on two different elliptic problems; the Darcy equation
describing incompressible flow in a porous medium and the anisotropic linear
elasticity equations. For both equations the case of heterogeneous coefficients is
of great interest.

Composite materials, which make up over 50% of recent aircraft construc-
tions, are manufactured from carbon fibres and soft resin layers. The large jump
in material properties between the layers makes the simulation of these materials
challenging. Commercial solvers such as ABAQUS often rely on direct solvers
to deal with these jumps [12]. However, the scalability of direct solvers is lim-
ited. We demonstrate that the GenEO approach converges independently of the
contrast in material properties and the number of subdomains.

After introducing our PDE models in Sect. 2, we sketch the construction of
the GenEO preconditioner in Sect. 3. In Sect. 4, we then discuss how to efficiently
implement the solver in the high-performance finite element framework DUNE
[4,5]. Finally, in Sect. 5, we provide several numerical experiments demonstrating
both robustness and scalability of the solver, including a large-scale industrially
motivated example.

2 Problem Formulation and Variational Setting

Let V be a Hilbert space, a : V × V → R a symmetric and coercive bilinear
form and f ∈ V ′. We consider the following abstract variational problem. Find
v ∈ V such that

a(v, w) = 〈f, w〉, ∀w ∈ V, (1)



An HPC Implementation of a Robust Preconditioner 119

where 〈·, ·〉 denotes the duality pairing.
This variational problem is associated with an elliptic boundary value prob-

lem on a domain Ω ⊂ R
d, d = 2, 3 with Dirichlet boundary ∂ΩD. In particular,

we focus on the following two examples.

(i) Darcy problem: Given material properties κ ∈ L∞(Ω), find v ∈ V = {v ∈
H1(Ω) : v|ΩD

= 0} such that

a(v, w) =
∫

Ω

κ(x)∇v(x) · ∇w(x) dx =
∫

Ω

f(x)w(x) dx, ∀w ∈ V.

(ii) Linear Elasticity: Given material properties C, find v ∈ V = {v ∈
H1(Ω)d : v|ΩD

= 0} such that

a(v, w) =
∫

Ω

C(x)ε(v) : ε(w)dx =
∫

Ω

f · w dx +
∫

∂Ω

(σ · n) · v dx, ∀w ∈ V,

where εij(v) = 1
2 (∂ivj + ∂jvi) is the strain, and σij(v) =

∑d
k,l=1 Cijklεkl is

the stress.

Consider a discretization of the variational problem (1) using finite elements
on a mesh Th of Ω such that Ω = ∪τ∈Th

τ. Let Vh ⊂ V be a conforming space
of finite element functions. Then the discrete form of (1) is: Find vh ∈ Vh such
that

a(vh, wh) = 〈f, wh〉, ∀wh ∈ Vh. (2)

3 The GenEO Preconditioner

In order to construct a parallel and scalable preconditioner, we employ a two-
level Additive Schwarz preconditioner as comprehensively analyzed in [17]. Our
specific choice of coarse space is the GenEO (Generalized Eigenproblems in the
Overlap) space as introduced in [16] and proven to be robust in [15]. For brevity,
we only give a brief review of the main results and otherwise refer to [15] for full
details and notation.

Definition 1 (Two-level Additive Schwarz). We denote the finite element
matrix originating from (2) by A. Using appropriate restrictions, we denote the
problem restricted to subdomains by Aj := RjART

j and to the coarse space by
AH := RHART

H . Then the two-level Additive Schwarz preconditioner is given
by

M−1
AS,2 := RT

HA−1
H RH +

N∑
j=1

RT
j A

−1
j Rj .

Definition 2 (GenEO eigenproblem). For each subdomain j = 1, . . . , N ,
we define the generalized eigenproblem: Find p ∈ Vh(Ωj) such that

aΩj
(p, v) = λaΩo

j
(Ξj(p), Ξj(v)), ∀v ∈ Vh(Ωj).



120 L. Seelinger et al.

Note that the eigenproblems are local to their respective subdomain Ωj, i.e. they
can be computed in parallel. To use them as a global basis they need to be extended
to the entire domain using the partition of unity operators.

Definition 3 (GenEO coarse space). For each subdomain j = 1, . . . , N , let
(pj

k)mj

k=1 be the eigenfunctions from the eigenproblem in Definition 2 correspond-
ing to the mj smallest eigenvalues. Further, denote the partition of unity by Ξj.
Then the GenEO coarse space is defined as

VH := span{RT
j Ξj(p

j
k) : k = 1, . . . , mj ; j = 1, . . . , N}.

In [15], the following condition bound proves robustness with respect to
parameter contrast and number of subdomains.

Theorem 1. For all 1 � j � N , let the number of eigenvectors chosen in each
subdomain be

mj := min
{

m : λj
m+1 >

δj

Hj

}
,

where δj is a measure of the width of the overlap Ωo
j and Hj = diam(Ωj). Then,

κ(M−1
AS,2A) � (1 + k0)

[
2 + k0(2k0 + 1) max

1�j�N

(
1 +

Hj

δj

)]
.

4 HPC Implementation of GenEO in Modern PDE
Frameworks

When implementing the GenEO preconditioner in a PDE framework, the pri-
mary goal is to preserve the beneficial properties offered by its theoretical con-
struction, namely:

(i) High parallel scalability: Since the condition bound in Theorem1 is
independent of the number of subdomains we expect the implementation to
yield high parallel scalability. The solution of the eigenproblems parallelizes
trivially. However, care has to be taken when it comes to the communication
necessary to set up and solve the coarse matrix.

(ii) Robustness with respect to problem parameters: While this is an
inherent property of the preconditioner, some care is required in implement-
ing the Dirichlet boundary conditions.

(iii) Applicability to various types of PDEs: The theoretical framework
only requires a symmetric positive definite bilinear form as in (1). This
flexibility can be preserved in any numerical framework that is based on
abstract bilinear forms. This is the case for many modern PDE frameworks,
e.g. FEniCS [1], DUNE [4], or deal.ii [2].



An HPC Implementation of a Robust Preconditioner 121

In this section, we present a new implementation of the GenEO coarse space and
preconditioner within DUNE (Distributed and Unified Numerics Environment),
which fulfills these properties. This section serves as a reference for the imple-
mentation, which is freely available as part of the dune-pdelab module [6] since
version 2.6, as well as a general guideline for future implementations in other
software packages. DUNE is a generic package that provides the user with key
ingredients for solving any FEM problem. As an open source framework writ-
ten using modern C++ programming techniques, it allows for modularity and
reusability while providing HPC grade performance. Note that an alternative
GenEO implementation is available in FreeFEM++ [9].

4.1 Prerequisites

Many of the components required to implement a two-level Schwarz method
already exist within DUNE. In particular, we use the PDELab discretization
module’s functionality to assemble stiffness matrices based on bilinear forms
and for efficient communication across overlapping subdomains. The GenEO
basis functions have support not restricted to individual elements, which makes
the existing high-level components of PDELab unsuited for storing the coarse
space. As part of this project, components facilitating such coarse spaces were
fully integrated within the framework. Further, an efficient sequential solver for
generalized eigenproblems is needed. Here, we choose ARPACK [10].

4.2 General Structure

The implementation in PDELab closely follows the structure of the previous
section. All mathematical objects are represented as individual classes (see
Fig. 1). This separation of concerns leads to an easy to understand and well-
structured code. Further, components are easily interchangeable when construct-
ing related methods. In particular, the intricate process of constructing a global
coarse space from per-subdomain basis functions is entirely contained in the
class SubdomainProjectedCoarseSpace. Thus, the GenEO basis can easily be
replaced by a different local basis.

The following subsections describe the steps of setting up the local eigen-
problems, solving them, combining them to a coarse space and finally employing
that space as a two-level Schwarz preconditioner.

4.3 Discrete Basis

To calculate GenEO basis functions we solve the discrete form of the eigenprob-
lem in Definition 2, i.e.

Ãjp
j
k = λj

kXjÃ
o

jXjp
j
k,

where Xj is the discrete form of the partition of unity.
The matrix Ãj has to be assembled with Dirichlet constraints on the domain

boundary as prescribed by the given PDE problem. However, in contrast to the



122 L. Seelinger et al.

TwoLevelOverlappingAdditiveSchwarz

CoarseSpace

SubdomainBasis

PartitionOfUnity

(a) Abstract hierarchy

TwoLevelOverlappingAdditiveSchwarz

SubdomainProjectedCoarseSpace

GenEOBasis

StandardPartitionOfUnity

(b) Setup for GenEO preconditioner

Fig. 1. Class hierarchy of GenEO implementation in DUNE PDELab

matrices Aj needed for the one-level component of the two-level additive Schwarz
method, no Dirichlet constraints are imposed on subdomain boundaries.

For assembling Ã
o

j , the same boundary conditions can be applied. However,
additionally, the matrix should only be assembled on the overlap region. Inter-
nally overlap elements are identified by adding a vector of ones across subdomains
and checking for results greater than one.

The matrices Xj representing the partition of unity operator are diagonal
and can be stored as vectors. Entries of Xj corresponding to Dirichlet domain
boundaries or processor boundaries should be zero, and in sum they should add
up to one across subdomains. Such a partition of unity is generated by adding
vectors of ones with a single communication between subdomains.

4.4 Solving the Eigenproblem

As the eigenproblems are defined per-subdomain, the eigensolver itself does not
need to run in parallel. However, solving larger problems requires an efficient
iterative solver. A suitable choice is ARPACK [10].

In order to stabilize the method, the Shift and Invert Spectral Transformation
Mode supported by ARPACK is used. Instead of the generalized eigenproblem
Ax = Mxλ, ARPACK solves the transformed problem (A − σM)−1Mx = xν.
The eigenvalues of the transformed problem are related to those of the original
problem by ν = 1

λ−σ and the eigenvectors are identical. In the transformed
problem, the eigenvalues of the original problem whose absolute values are closest
to σ are now the eigenvalues of largest magnitude, and can therefore be efficiently
solved by the Krylov method. Choosing σ near zero, the method delivers the
eigenvalues of smallest magnitude at good performance. Finally, in order to
form the actual basis vectors, the eigenvectors are multiplied by Xj and then
normalized in the l2 norm, as ARPACK delivers vectors of strongly varying
norms.



An HPC Implementation of a Robust Preconditioner 123

4.5 Scalable Coarse Setup

Assembling the coarse matrix AH requires particular care, as it is a non-
localized, not trivially scalable operation. Due to domain decomposition, the
global matrix A is only available in distributed form as matrices Aj . Exploiting
local support of basis functions, the coarse matrix AH breaks down into

(AH)i,j = (RHART
H)i,j = ϕiAiϕj .

We note that ϕiAiϕj is zero for Ωi ∩ Ωj = ∅, leading to a sparse structure
in AH . Therefore, all rows i of AH associated to basis functions ϕi can be
computed on the associated process locally while only requiring basis functions
ϕj from adjacent subdomains. In the implementation multiple basis functions
are communicated in a single step.

The resulting blocks are combined into a matrix AH available on all pro-
cesses, using direct MPI calls, while exploiting sparsity. Communication effort
increases linearly with the dimension of VH . This is a direct consequence of how
two-level preconditioners are designed, and a good balance between coarse space
size and preconditioner performance must be found.

The restriction and prolongation operators RH and RT
H are also only avail-

able locally. In case of the restriction RHvh of a distributed vector vh ∈ Vh,0(Ω),
it holds

(RHvh)i = ϕi · vh.

Each row i can be computed by the process associated to ϕi, and the rows can be
exchanged among all processes via MPI Allgatherv . Again, the communication
effort increases with the dimension of VH .

Finally, the prolongation RT
HvH of a global vector vH ∈ VH fulfills

RT
HvH =

∑
i

ϕi(vH)i.

Here, each part of the sum associated with a processor can be computed locally
and combined by nearest-neighbor communication, scaling ideally. This com-
pletes the components needed for the two-level preconditioner according to
Definition 1.

5 Numerical Experiments

In this section we demonstrate the solver’s salient features, including its high
parallel scalability up to 15, 360 cores, its robustness to heterogeneous material
parameters and its applicability to different elliptic PDEs. With exception of the
final large-scale experiment all numerical examples in this section have been com-
puted using the Balena HPC cluster of the University of Bath. Balena consists
of 192 nodes each with two 8-core Intel Xeon E5-2650v2 Ivybridge processors,
each running at 2.6 GHz, giving a total of 3072 available cores.



124 L. Seelinger et al.

Fig. 2. Coarse approximation error. From left to right: The parameter distribution
and domain decomposition followed by the error u − uH with 1, 2 and 4 eigenvectors
respectively.

5.1 GenEO Basis on Highly Structured Problems

With clearly structured problems, it can be visually seen that the GenEO coarse
space systematically picks up inclusions or channels in the parameter distribu-
tion. In Fig. 2 the coarse approximation error is shown for a Darcy problem on
a square domain. Dirichlet conditions are set to one at the top and zero at the
bottom, Neumann conditions are set at the remaining boundary and a high-
contrast parameter distribution with jumps and channels as shown on the left.
We see that each inclusion has an effect on the approximation error. Adding
additional eigenvectors from each subdomain to the coarse basis removes some
of those error sources, the next eigenvectors pick up the skyscrapers and with
only 4 eigenvectors per subdomain most channels are resolved. A total of 16
coarse basis functions is enough to almost entirely solve the given problem.

5.2 Demonstration of Robustness

101 103 105
102

103

104

Parameter contrast (skyscrapers)

C
o
n
d
it

io
n

n
u
m

b
er

6 EV 8 EV
10 EV 12 EV
14 EV

101 102 103 104
101

104

107

Parameter contrast (layers)

C
o
n
d
it

io
n

n
u
m

b
er

2 EV 3 EV
4 EV 5 EV

Fig. 3. Robustness of GenEO preconditioner

Robustness with respect to parameter contrast can be demonstrated solving
the same Darcy problem as in Sect. 5.1. We choose a subdomain decomposition



An HPC Implementation of a Robust Preconditioner 125

into 8 by 8 squares, a two-cell overlap region diameter and a total of 800 Q1

elements in each direction. Figure 3 (left) shows the resulting condition number
for increasing contrast when setting up a GenEO basis with various numbers of
eigenvectors per subdomain. Clearly, the asymptotic robustness guaranteed by
the analysis is achieved in practice.

When running the same setup with a parameter distribution of 40 horizon-
tal equally thick layers, it becomes clear from Fig. 3 (right) that robustness is
achieved exactly at four eigenvectors per subdomain. That stems from the fact
that four coarse basis functions (together with the contribution of the one-level
Schwarz method) are sufficient to represent the five layers contained in that
subdomain. Similar relations can be observed with other strongly structured
parameter distributions.

5.3 Comparison to Other Solvers

In this section we compare the performance of various preconditioned CG solvers.
We compared with two different implementations of AMG, the implementation
included in dune-istl and boomerAMG [18]. For this test we consider a flat
composite plate made up of 12 composite layers stacked in a sequence of different
angles, referred to as a stacking sequence. The composite layers are seperated by
very thin layers of resin. There is a large jump in material strength between the
composite and resin layer and due to the rotated layers the anisotropy cannot
be grid aligned. We discretise with quadratic, 20-node serendipity elements to
avoid shear locking and use full Gaussian integration.

Table 1. Demonstration of performance of different preconditioners for a problem of
fixed size.

1-level GenEO BoomerAMG

Ncore iter. κ(A) iter. κ(A) dim(VH) iter.

4 89 79,735 16 10 78 258

8 97 84,023 15 9 126 258

16 107 98,579 16 10 182 257

32 158 226,871 16 9 526 263

In Table 1 we compare the convergence of three iterative solvers. We record
the condition number, the dimension of the coarse space dim(VH) and the num-
ber of CG iterations required to achieve a residual reduction of 10−5. As expected
the iteration counts increase steadily with the number of subdomains when no
coarse space is used. In contrast, the iterations and the condition number esti-
mates remain constant for the GenEO preconditioner as predicted by Theo-
rem 1. The boomerAMG solver also retains a near constant number of iterations,
although they are considerably higher. Due to a lower setup cost the boomerAMG



126 L. Seelinger et al.

Fig. 4. Left: Geometry of the wingbox with dimensions; the colouring shows the number
of eigenmodes used in GenEO in each of the subdomains. Right: the stacking sequence
change around the corner containing a wrinkle. (Color figure online)

solver is faster in actual CPU time than the GenEO solver in this small test case.
However, for more complex geometries, boomerAMG does not perform very well
and in our tests it does not scale beyond about 100 cores in composite applica-
tions [7]. In its current form the dune-istl implementation does not seem to be
robust for composite problems, especially in parallel [12]. In the test setup used
here the dune-istl AMG converges very slowly or not at all, thus we do not
include it in Table 1.

5.4 Industrially-Motivated Example: Wingbox

In this section we describe an industrially motivated example in which we asses
the strength of an airplane wingbox with a small localised wrinkle defect in one
corner. Wrinkle defects often form during the manufacturing process and lead
to strong local stress concentrations, which may cause premature failure [12,13].
We perform a weak scaling and a strong scaling experiment. The experiments in
this section were performed using the UK national HPC cluster Archer, which
consists of 4, 920 Cray XC30 nodes with two 2.7 GHz, 12-core E5-2697 v2 CPUs
each.

We model a single bay of a wingbox as shown in Fig. 4 (left). As in a typical
aerospace application, the stacking sequence differs across the wingbox as shown
in Fig. 4 (right). In total the wingbox is made up of 77 layers. One of the corner
radii contains a localised wrinkle with a parametrisation matching an observed
defect in a CT-Scan of a real corner section. An internal pressure of 0.109 MPa,
arising from the fuel, is applied to the internal surface. The influence of ribs that
constrain the wingbox are approximated by clamping all degrees of freedom at
one end and tying the degrees of freedom at the other end using a multipoint
constraint. A thermal pre-stress induced by the manufacturing process is also
imposed. More details on this test setup can be found in [7].

For the weak scaling experiment we refine the mesh, doubling the number of
elements as we double the number of cores. Table 2 (left) contains the number of
degrees of freedom, iteration numbers for the preconditioned CG, the dimension
of the coarse space dim(VH), as well as the total run time in seconds, time spent



An HPC Implementation of a Robust Preconditioner 127

in setup of the preconditioner and in CG iterations for each test. As expected the
weak scaling of the iterative CG solver with GenEO preconditioner is indeed
almost optimal up to at least 15, 360 cores.

It should be noted that while the runtime consists mainly of CG iterations
and the setup time for the GenEO preconditioner, which of these dominates
depends on the eigenvalue threshold chosen and can be tuned to ensure a low
total runtime. In this test case the same eigenvalue threshold is used for all
problem sizes, in each the setup time dominates. The setup can be performed
almost entirely in parallel and has very low MPI overhead as it is dominated by
the solution of local eigenproblems. Conversely the CG iterations do show a slight
increase in runtime for very large problems due to communication overhead.

Table 2. Parallel performance of the composites application on Archer. Left: Details
of the weak scaling test. Right: details of the strong scaling test.

Ncore DOF iter. dim(VH) time setup CG

480 6 · 106 156 5025 734 478 276
960 1 · 107 154 7840 806 528 278
1920 2 · 107 152 18752 800 513 287
3840 5 · 107 144 29444 772 490 282
7680 1 · 108 132 50930 764 489 275
15360 2 · 108 102 94527 845 510 335

Ncore dim(VH) it. time efficiency

2880 18843 167 2906 1.00
3840 26333 153 1766 1.23
7680 52622 132 1057 0.83
11320 78233 162 706 1.01

Table 2 (right) shows a strong-scaling experiment. The iterative CG solver
with GenEO preconditioner scales almost optimally to at least 11, 320 cores.
Memory constraints prevented tests with fewer than 2880 cores. Correspond-
ingly we take 2880 as a baseline for these tests, leading in some cases to a
parallel efficiency larger than 1. Table 2 shows that the number of iterations
indeed remains almost constant. The last column gives the parallel efficiency, it
remains high up to 11, 320 cores. Fluctuations are due mainly to the effects of
the domain decomposition and eigenvalue threshold.

Acknowledgements. This work was supported by an EPSRC Maths for Manufac-
turing grant (EP/K031368/1). This research made use of the Balena High Perfor-
mance Computing Service at the University of Bath. This work used the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk).

References

1. Alnæs, M.S., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100),
9–23 (2015). https://doi.org/10.11588/ans.2015.100.20553

2. Alzetta, G., et al.: The deal.II library version 9.0. J. Numer. Math. 26(4), 173–
183 (2018). https://doi.org/10.1515/jnma-2018-0054

http://www.archer.ac.uk
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1515/jnma-2018-0054


128 L. Seelinger et al.

3. Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class
of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal.
31(4), 945–981 (1994)

4. Bastian, P., Blatt, M.: On the generic parallelisation of iterative solvers for the
finite element method. Int. J. Comput. Sci. Eng. 4(1), 56–69 (2008)

5. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific com-
puting. Part ii. Implementation and tests in dune. Computing 82(2–3), 121–138
(2008)

6. Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element
methods in the distributed and unified numerics environment (DUNE). Kyber-
netika 46(2), 294–315 (2010)

7. Butler, R., Dodwell, T., Reinarz, A., Sandhu, A., Scheichl, R., Seelinger, L.: Dune-
composites - an open source, high performance package for solving large-scale
anisotropic elasticity problems. arXiv e-prints arXiv:1901.05188 (January 2019)

8. Chung, E., Efendiev, Y., Tat Leung, W., Ye, S.: Generalized multiscale finite ele-
ment methods for space-time heterogeneous parabolic equations. Comput. Math.
Appl. 76(2), 419–437 (2016). https://doi.org/10.1016/j.camwa.2018.04.028

9. Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C.: Scalable domain decomposition
preconditioners for heterogeneous elliptic problems. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 80:1–80:11. SC 2013. ACM, New York (2013). https://doi.org/10.
1145/2503210.2503212

10. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users guide: solution of large
scale eigenvalue problems by implicitly restarted Arnoldi methods (1997)

11. Pechstein, C., Dohrmann, C.R.: A unified framework for adaptive BDDC. Electron.
Trans. Numer. Anal. 46, 273–336 (2017)

12. Reinarz, A., Dodwell, T., Fletcher, T., Seelinger, L., Butler, R., Scheichl, R.: Dune-
composites - a new framework for high-performance finite element modelling of
laminates. Compos. Struct. 184, 269–278 (2018)

13. Sandhu, A., Reinarz, A., Dodwell, T.: A bayesian framework for assessing the
strength distribution of composite structures with random defects. Compos. Struct.
205, 58–68 (2018). https://doi.org/10.1016/j.compstruct.2018.08.074

14. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition. Cambridge Uni-
versity Press, Cambridge (1996). includes bibliographical references

15. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract
robust coarse spaces for systems of PDEs via generalized eigenproblems in the
overlaps. Numer. Math. 126(4), 741–770 (2014). https://doi.org/10.1007/s00211-
013-0576-y

16. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust
two-level domain decomposition preconditioner for systems of PDEs. C. R. Math.
349(23–24), 1255–1259 (2011)

17. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer Series in Computational Mathematics. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137868

18. Yang, U.M., Henson, V.E.: BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)

http://arxiv.org/abs/1901.05188
https://doi.org/10.1016/j.camwa.2018.04.028
https://doi.org/10.1145/2503210.2503212
https://doi.org/10.1145/2503210.2503212
https://doi.org/10.1016/j.compstruct.2018.08.074
https://doi.org/10.1007/s00211-013-0576-y
https://doi.org/10.1007/s00211-013-0576-y
https://doi.org/10.1007/b137868

	A High-Performance Implementation of a Robust Preconditioner for Heterogeneous Problems
	1 Introduction
	2 Problem Formulation and Variational Setting
	3 The GenEO Preconditioner
	4 HPC Implementation of GenEO in Modern PDE Frameworks
	4.1 Prerequisites
	4.2 General Structure
	4.3 Discrete Basis
	4.4 Solving the Eigenproblem
	4.5 Scalable Coarse Setup

	5 Numerical Experiments
	5.1 GenEO Basis on Highly Structured Problems
	5.2 Demonstration of Robustness
	5.3 Comparison to Other Solvers
	5.4 Industrially-Motivated Example: Wingbox

	References




