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Abstract. At the airports, everything must work with remarkable preci-
sion and coordination, especially since their operational processes involve
managing a large number of moving human groups in order to minimize
waiting and service times of individuals, as well as to eliminate phenom-
ena resulting from the interaction of large crowds, such as crowding and
congestion around points of interest. The aim of the study is the develop-
ment of an integrated automated simulation model for human behavior
and traffic in the spaces of an airport. Thus, the model simulates the
behavior of the human crowds in different operational areas of an air-
port. The area of the airport is divided into levels that are characterized
by differences in the way that people move within. A fully analytical
model based on the computational tool of the Cellular Automata (CA)
was realised as well as an obstacle avoidance algorithm that is based
on the A star (A*) algorithm. According to its structure, the model is
microscopic and discrete in space and time while inherent parallelism
boosts its performance. Its prominent feature is that the crowd consists
of separate, autonomous or non-autonomous entities rather than a mass.
During the simulation, each entity is assigned unique features that affect
the person’s behavior in the different areas of the airport terminal.

Keywords: Crowd modelling · Cellular Automata · Airport · A*
algorithm · Obstacles · Simulation

1 Introduction

Almost recent studies on the full assessment of airports have shown that there is
an imbalance between passenger terminal design and airspace planning even at
major airports [1]. This stems from the fact that traditionally greater emphasis
is put on the development and analysis of the airspace of the airport than on the
design of the spaces used by the passengers. An immediate consequence of this
potential design deficiency is the congestion problems encountered at passenger
terminals in many airports around the world, a problem that is growing as the
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number of people using airports continues to grow at a skyrocketing rate [1].
An airport consists of three areas: (a) airspace, (b) the runway and (c) the
passenger terminal(s), whereas each of these sectors is characterized by different
types of flow. Airspace is the part of the airport used by different types of aircraft,
the airfield is characterized by different aircraft movements in the ground and
includes both landing and take-off, while the passenger terminal is the part of
the airport that is occupied by flows of people, passengers and non-passengers,
but also luggage. Passenger terminals are an important element of the airport
structure. They are designed to serve passengers and usually consist of complex
and often expensive buildings. Large airports are built to serve tens of millions
of people per year [1]. Naturally, an airport’s capacity is directly related to
demand characteristics, operational parts, and service specifications set by the
airport managing authority. Passengers travelling at the airport terminal are
often forced to wait and therefore delays due to overcrowding and queues arise,
usually resulting from reduced service capacity and inadequate design of the
terminal facilities or terminal terminals of the airport’s passengers.

An indicator of the efficiency of an airport terminal is the number of pas-
sengers served daily [2,3]. Overcrowding and congestion are major problems for
hundreds of thousands of passengers. This problem has worsened over the last
few years due to increased security measures at airports [2]. Therefore, capac-
ity planning in the airport terminal planning process is more important than
ever, which suggests the need for more accurate analysis methods. However, the
uncertainty associated with future levels of passenger demand and the complex-
ity of airport terminals makes this work particularly difficult. The problem of
designing the service capacity of an airport terminal is concerned with identi-
fying optimal design and capacity expansion of different terminal areas, given
the uncertainty regarding both future demands and expansion costs. Analyti-
cal modeling of passenger flows at airport terminals under transitory demand is
difficult due to the complex structure of the terminal. To the best of our knowl-
edge, the airport terminal passenger capacity planning problem has not been
studied holistically, meaning that the studies usually either do not take account
of scalability or focus only on a specific area of the terminal [5].

One of the first models of passengers’ behavior within an airport is presented
in [4]. This study refers to the behavior of passengers at the airport terminal
as well as to their needs. Other studies are focusing on the passengers process-
ing times and the importance of dealing with that problem [5–7]. Studies that
focus on continuously variable states indicate that such states can hardly be
solved due to the complexity of the flow at an airport terminal [1]. Thus, most
of them include simulations to model these random and complex flows. In these
studies, simulation results are used to estimate the capacities required to make
various processes more efficient [8]. In [9] the aim is to understand the dynamics
of the discretionary activities of passengers. Focusing on microscopic modeling,
very efficient models have been proposed that describe agents’ behavioral char-
acteristics [10–12]. A very effective model that is able to simulate the passenger
behavior in situations of congestion is Cellular Automata (CA). CA describe the
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behavior of each person as an individual and the result of the overall system is
emerging from the interactions between people that are close one to each other.
CA models are widely used in crowd control [13–17], or more specifically, in
controlling the disembarking or emergency evacuation of people in an airplane
[18].

The main contribution of this study can be summarized as the development
of a multi-parameterized, topological oriented simulation model for describing
human moving behavior and traffic in the areas of an airport. The model is
based on CA that combines low computational cost of a macroscopic simulation
model with the focused use of separate individual microscopic features for all
operational elements of the model, similar to an Agent-Based model (ABM).
Moreover, an A* (A-star) based obstacle avoidance algorithm has been incorpo-
rated to the model aiming at the realistic representation of the travellers’ moving
tendencies. During the simulation, each entity is assigned with unique features
that affect the person’s behavior in the different areas of the airport terminal. It
should be mentioned though that due to the fact that the density is restricted by
the cell size, movement artifacts may arise because of the fixed footstep size. In
Sect. 2, the proposed model is described providing all the parameters taken into
consideration during the design and realisation process as well as the innovative
elements that it incorporates. Section 3 presents the results of the simulation
and a comparative listing of these for the various demand scenarios that may
arise in the terminal of an airport during its operation. Finally, in Sect. 4 the
conclusions are drawn, as well as the future perspectives of the model.

2 Model Description

This study presents a general simulation model for the final design of the air-
port passenger terminal using the computerized model of Cellular Automata
(CA). The main and final objective is to develop an airport terminal design
tool. This tool will allow the management of the terminal as well as the plan-
ning of either different designs or improvements for both existing and proposed
terminals before construction. Simulation of a system of such a scale involves
many complicated processes such as data collection, space modeling, experimen-
tation, presentation and analysis of results, and proposals to be implemented
according to these results. The model of an airport departure area was imple-
mented, which is used both by passengers traveling on domestic flights and by
passengers on international flights. Passengers enter the terminal after they have
passed the corresponding check-in windows, depending on whether their flight
is domestic or international. Then, passengers departing are characterized by
freedom of movement among a number of options.

Initially, it is worth mentioning some basic principles governing the simula-
tion model that has been developed with the usage of the MATLAB program-
ming platform. In particular, the physical space represents the ground plan of
an airport passenger terminal and is simulated by a cellular discrete mesh, each
cell of which has a physical dimension of 60 × 60 cm, greater than 40 × 40 cm,
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which studies have shown to be the typical area occupied by an adult stand-
ing in crowded conditions [19], as the passenger terminal does not experience
severe crowding and congestion. In addition, passengers may have to carry hand
luggage, which increases the space they occupy in total.

Also, the neighborhood selected to realize the evolution rule is the Moore
neighborhood. This means that the state Ct

i,j of the cell (i, j) at time t + 1 is
affected by the states of its nine neighboring cells, including the cell i, j itself,
at this time t according to the following equation. Therefore, the evolution rule
that is applied is provided by Eq. (1):

Ct+1
i,j = Ct

i,j + Ct
i−1,j + Ct

i+,j + Ct
i,j−1 + Ct

i,j+1 + Ct
i−1,j+1

+Ct
i−1,j−1 + Ct

i+1,j−1 + Ct
i+1,j+1

(1)

In this way, the diagonal movement in the grid is also allowed, which repre-
sents the human movement in a more realistic way [20,21]. Consequently, each
agent can move no more than one cell within its neighborhood at each time step
of the simulation. Moreover, it was assumed that all agents entering, leaving and
moving within the airport terminal are characterized by the same speed, which is
the average walking speed of an adult, calculated at 1.3 m/s [19], corresponding
to 4.68 km/h. An initial description of the transition rule of the CA-based model
M can take place according to the following relationship:

M = [S, t, L,D, T ] (2)

S = [F,G, P, d(F, t)] (3)

where S stands for the schedule of the flights that is created separately and it
is defined itself, by Eq. (3), with F describing the unique flight code, G(F ) the
corresponding gate, P (F ) the total number of passengers of flight F , and d(F )
the departure time of flight F . Continuing the description of Eq. (2), t stands for
the current time step and is the metric of time in the model. Since each agent has
to cover an average distance of approximately 1

2 × (0.6+
√

2 × (0.6)2) ∼= 0.725 m
at every simulation time step and the average speed of movement of persons
within the terminal equals 1.3 m/s, each of the time steps will be approximately
0.56 s [19]. Binary parameter L clarifies whether an individual is part of a group
of passengers (0), such as a family, or travels alone (1). Parameter D corresponds
to a finite set of k potential destinations that each agent can move towards,
such as gates of terminals, duty-free shops, restaurants and cafes, resting seats,
information benches, automatic cash dispensers, toilets. It can also describe the
states of an individual that wanders in the terminal area without a specific
destination, as well as the absence of movement. Finally, T describes the topology
of the terminal station that is the exact location of all possible destinations
within the terminal area.

According to the adopted modeling strategy, the services that are provided to
the agents can be divided into different levels based on certain features in order
to be more effective in managing them. In the context of this study, the first
level refers to the check-in process and includes both the check-in windows and
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the queues that the passengers form when trying to approach the corresponding
serving points. The generation of waiting queues in public places is a problem
of great research concern [22]. In the case of airport checkpoints, it is more com-
mon to use a queue for multiple service windows, known as “snake-type” queue
coupled with the so-called “fork-type” queue, where separate shorter queues are
formed in front of each service window. The use of this type of queue is pre-
ferred when waiting at airports, because it allows longer queue lengths to take
advantage of the space provided more effectively, and because people waiting in
the queue maintain eye contact with the service windows, and thus the feeling of
impatience is not increased as long as people wait [23]. Based on the airport sce-
nario studied, the ticket control area is simulated coupling “snake-” and “fork-”
type queues, ending in multiple ticket control windows [23].

In addition, the probability q of a new person to appear in the queue is
adjusted by taking into account the S flight schedule. Specifically, it is inversely
proportional to the time remaining until a flight departs (Eq. (4)):

q ∝ 1
∏n

i=1[d(i, t) − t]
(4)

where n is the maximum number of flights that can be served at the same time,
with nmax = |G|, since n could not exceed the number of gates at the airport
terminal. The model incorporates the options of increasing and/or decreasing
the length of the queue, adding additional service windows, and changing the
service times of each window.

As soon as the agents leave the check-points, they enter the second level. It
represents the main area of the terminal and includes all the available points that
an agent can visit until she/he is directed to the gate of boarding. As soon as
an agent enters the main terminal area, she/he decides to move in one direction,
according to the model description factors discussed previously. The factor being
considered first is that of the remaining time until the departure of the flight, and
whether or not it exceeds a predetermined limit. This, at a real airport terminal,
is equivalent to whether the gate that corresponds to the flight to which each
agent is going to fly is disclosed or not. In the event that the gateway has not
yet been announced, the agent will move inside the 2nd level, choosing a certain
point among all available options that are expressed by parameter D in Eq. (2).
The instantaneous density pAoI,t of the passengers in the individual areas of the
main terminal depends on the flight schedule since the total number of persons
using the terminal at the airport varies not only from season to season but also
during the day, and it is calculated on the basis of the following relationship:

pAoI,t =
NAoI,t

AoI
(5)

where AoI is the area of interest and N the number of people within the AoI. The
model allows the topological parameterization of the main area of the terminal
station that is the topological re-location of all available visiting points within
the second level. Though, it should be pointed out that the measurement area
does not always coincide with the topological area.
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The space around the gates, although located within the terminal, should be
considered as a separate level, since individuals behave completely differently in
terms of their movement when they approach the gates in order to board. Once
the boarding gateway is announced, the majority of the passengers is considered
to be heading towards it. The proposed system provides the potentiality for the
automated calling of passengers to the gate (call for flight), which is triggered
when the following relationship is verified:

Remainingtime(F, t) = d(f, T ) − t < P (F ) × (GateDelay(t) + 0.5) + α (6)

where α = 100 an additional time parameter for security reasons and
GateDelay(t), the parameterized gate delay, i.e. the average number of time
steps that each agent remains at the gate from the moment she/he arrives at the
gate until she/he leaves it in order to board the airplane. In case that the board-
ing pass check takes place automatically then the minimum GateDelay(t) = 1 is
considered, otherwise, GateDelay(t) > 1. Algorithmically, the gate opens when
the following relationship is satisfied:

Remainingtime(F, t) = d(f, T ) − t < P (F ) × (GateDelay(t) + 0.5) (7)

Then the corresponding agent tries to leave the gate as soon as possible.
At these points, there are phenomena of dislocation, which are absent in both
the first and second level of the terminal. Naturally, these phenomena are not
particularly intense, since there are no emergency conditions under normal cir-
cumstances. Thus, there is no reason for a rapid abandonment of the site through
the gate. It is worth mentioning that the model description factors are reviewed
for each individual, at each time step. Therefore, the desired destination for each
agent can change at any time. In the case of obstacles, agents should have the
ability to avoid obstacles that may be in their route while keeping their direc-
tion to the point they want to reach. In the context of this study, an obstacle
avoidance algorithm, based on the optimal path finder algorithm A* (A-star)
has been developed [24] in a CA environment. The algorithm takes into account
the starting position of a person, the desired destination, and the topology of
the obstacles as defined by the ground plan of the airport terminal. Then it is
repeatedly trying to find the optimum path to the desired point, where the opti-
mum term is the closest route, that is, the shortest path. Taking into account
that variable x represents the agent’s position at time t then the fact that the
distance to the destination is minimized is represented mathematically by the
following equation:

xt+1 = xt + [a, b] with a, b ∈ −1, 0, 1 (8)

where a and b are calculated so that Euclidean distance equals to:

d =
√

(ig − 1 + a)2 + (jg − 1 + a)2 (9)
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with (ig, jg) referring to the coordinates of the desired destination, to be min-
imised. Potential paths to the desired position are then calculated by the cells-
to-extend method [24]. In case that the optimal path that each person has to
follow is found, then it is stored and the person moves according to it for each
next step until it reaches the desired position. The algorithm is evolved that
way provided that no other obstacle appears in the calculated optimal route
and there is no need or desire for the agent to move to a place other than that
originally considered as desirable; for example, in the case that an agent who is
moving to a vacant seat and suddenly decides to use an automatic teller machine,
or another that is wandering in the terminal’s premises and she/he is informed
that she/he has to move to the gate of her/his flight. In the event that one of
the above conditions is not met, the algorithm is called to re-calculate either
the optimal path to the same desired position taking into consideration the new
obstacle that has appeared or the shortest path to the new desired position. In
such a manner the computational complexity of the algorithm is lowered by the
implementation of the proposed method.

3 Simulation Results

The cellular grid that simulates the physical space of the airport terminal equals
150 × 130 cells. Therefore, the total area of the physical system is described by
Eq. (10), whereas the main area of the terminal is described by Eq. (11). Then
taking into account walls and set places, the space left for agents to move is
given by Eq. (12). Finally, the area of interest around each gate is provided by
Eq. (13).

Atotal = 150 × 130 (cells) × 0.6 (m) × 0.6 (m)
cell

= 7, 020m2 (10)

Aterminal = 150 × 100 (cells) × 0.6 (m) × 0.6 (m)
cell

= 5, 400m2 (11)

Applterm = Aterminal − seats − walls =

[148 × 98 − 448 (cells) × 0.6 (m) × 0.6 (m)
cell

] ∼= 5, 060m2
(12)

Agate = 10 × 10 (cells) × 0.6 (m) × 0.6 (m)
cell

= 36m2 (13)

The scenario that is presented in the framework of this study is described by
Table 1.

It is clear that the flight schedule determines how the airport terminal will
operate, and any changes to it may result in various different scenarios of simula-
tion. Figure 1 shows the evolution of the experiment based on the flight schedule
of Table 1. Regarding Fig. 1(a), it is worth making two comments on that pro-
cess. The first one refers to the queue that is formed before the boarding control
windows; the density of people in the queue is relatively small. This is because
a flight does not depart soon, thus as derived from Eq. (4), the probability q of
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Table 1. The flights’ schedule of the adopted scenario.

Number of flight
(F )

Gate
(G(F ))

Number of agents
(Passengers) (P (F ))

Departure time
(d(F, t))

100 1 37 1,000

101 2 78 1,500

102 3 48 2,000

500

(a)

900

(b)

Fig. 1. Top view of the terminal as simulated by the electronic system with an emphasis
on some of its separated venue; the boarding pass control windows (left), the recreation
and waiting areas (centre), as well as three terminal gates that the passengers leave to
board the plane (down). (a) Time step 500; no boarding (b) Time step 900; boarding
from Gate 1 has commenced.

a new person to appear in the queue is relatively small. The second comment
refers to the groups that form some of the agents, with a size that varies. These
groups remain inseparable throughout the wandering in the terminal area until
the people leave the gate. In Fig. 1(b) we can observe that the density of agents
has increased significantly (900-time step) since more flights are expected. Fur-
thermore, the process of boarding from Gate 1 has started. Besides, this fact
derives from the implementation of Eq. (6), when replacing the corresponding
parameters of the equation with their current values of the time step, the num-
ber of agents expected to travel on the flight served by Gate 1 and the time step
that corresponds to the departure of that flight. Figure 2 shows the graphs of
crowd density in relation to the time resulting from conducting this experiment.
We can observe that the densities in the area around each gate initially increase,
then they form a maximum and finally decrease (Fig. 2(a)). The maximum den-
sity differs for the area around each gate and it is proportional to the number
of agents that will be served by the corresponding gate. The time periods that
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(a)

0 500 1000 1500 2000 2500
0

0.5

1
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Simulation Time Steps

Density−Time Curve

Gate 1
Gate 2
Gate 3
Overall Density

(b)

Fig. 2. (a) Recorded densities in the area around the gates as a function of time; Gate
1 (left - red), Gate 2 (center - green) and Gate 3 (right - blue). (b) The density in
the terminal area (straight line with a small inclination at the bottom of the graph –
red) compared to the crowd density around the gates (blue) depending on time. (Color
figure online)



454 M. Mitsopoulou et al.

the density increases around the gates are identical to the periods before the
scheduled departure of the flight. Finally, the moment that the density reaches
its maximum value, it is the one that satisfies Eq. (6). Density is expressed in
1/m2 and it is obtained by multiplying Eq. (5) with pmax

∼= 2.77778 persons
m2 ,

which is the maximum density for this electronic system, as the length of the
side of each cell equals to 0.6 m. In Fig. 2(b), the comparisons of the densities
around the gates with the densities that are observed at the rest of the terminal
station take place. It is obvious that the densities reached around the gates, when
agents approach them to board the planes, are much larger than those observed
at the rest of the areas of the terminal station. Figure 2 highlights that the over-
all density has fluctuations that are strongly dependent on the flight schedule
and what is happening at the terminal’s gates. Initially, the total density is zero,
as the first few people have not yet passed boarding documents checking. Sub-
sequently, the density increases almost linearly with time, except for the time
periods where one of the gates is evacuated, where it exhibits a downward trend.

4 Conclusions

An electronic system for the study and optimization of crowd behavior in the
airport is proposed in this study. It is based on the computational tool of Cellu-
lar Automata (CA). Concerning the problem under study, CA present a number
of extremely interesting features, such as local interactions, mass parallelism
through the application of the rule, the flexibility of boundary conditions selec-
tion, the number of possible situations, the CA cells that form a simple structural
element. Simulated experimental scenarios proved that the density of the crowd
and its variations in time are directly related to the flight schedule according to
which an airport operates for a given period of time. In order to avoid crowding
and dissatisfaction of agents, the flight schedule must be appropriately designed
so that the density does not increase beyond certain safety levels since it has
a major impact on the speed at which people move of the terminal but also in
the operation of the airport in general. In a physical system, both behavior and
movement of people are affected by innumerable social and psychological factors.
Thus, this feature could also be incorporated in the parameterization process of
the proposed model. Finally, the model can be validated with the use of real
data that could further enforce its efficiency.
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