
The MPFI Library: Towards IEEE
1788–2015 Compliance

(In Memoriam Dmitry Nadezhin)

Nathalie Revol(B)

University of Lyon - Inria, LIP - ENS de Lyon, 46 allée d’Italie, 69007 Lyon, France
Nathalie.Revol@inria.fr

http://perso.ens-lyon.fr/nathalie.revol/

Abstract. The IEEE 1788–2015 has standardized interval arithmetic.
However, few libraries for interval arithmetic are compliant with this
standard. In the first part of this paper, the main features of the IEEE
1788–2015 standard are detailed, namely the structure into 4 levels, the
possibility to accomodate a new mathematical theory of interval arith-
metic through the notion of flavor, and the mechanism of decoration for
handling exceptions. These features were not present in the libraries
developed prior to the elaboration of the standard. MPFI is such a
library: it is a C library, based on MPFR, for arbitrary precision interval
arithmetic. MPFI is not (yet) compliant with the IEEE 1788–2015 stan-
dard for interval arithmetic: the planned modifications are presented.
Some considerations about performance and HPC on interval computa-
tions based on this standard, or on MPFI, conclude the paper.

Keywords: Interval arithmetic · IEEE 1788–2015 standard · MPFI
library · Compliance

1 Introduction and Context

Interval arithmetic has been defined even before the 1960s [15,27] and has con-
tinuously evolved and improved since then, with the development of algorithms
to solve larger classes of problems through the 1970s and 1980s [1,16,20], then
with a focus on the implementation [26] and more recently with its introduction
in master courses [17,29]. However, in 2008, it was noticed and strongly resented
that there were no definitions common to all authors and that it made it diffi-
cult to compare results. Under the auspices of IEEE where the standardization
of floating-point arithmetic took place, leading to IEEE 754–1985 [8] and IEEE
754–2008 [9], a standardization effort was launched. It led to the IEEE 1788–
2015 standard for interval arithmetic [10]. Its development phases and its main
features are explained in [14,21,25].

Nevertheless, only few libraries of interval arithmetic are compliant with the
IEEE 1788–2015 standard. Most libraries were developed before the standard.
Regarding the libraries developed since then and compliant with the standard,
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 353–363, 2020.
https://doi.org/10.1007/978-3-030-43222-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_31&domain=pdf
http://orcid.org/0000-0002-2503-2274
https://doi.org/10.1007/978-3-030-43222-5_31

354 N. Revol

let us mention libieee1788 [19], which was developed along with the stan-
dard as a proof-of-concept. However, its author has left academia and this C++
library is no longer maintained: it does not compile any more with recent ver-
sions of g++. JInterval [18] is a Java library that was more used to test the
compliance of interval arithmetic libraries with the standard, than used as an
interval arithmetic library per se. Unfortunately, this library has also untimely
lost its main developer, D. Nadezhin. The interval package for Octave [7] is
the only library that is still maintained and for public use, even if its author
has also left academia. MPDI [5] is another library for interval arithmetic that is
compliant with the standard, but it is not (yet?) distributed.

This lack of libraries compliant with the IEEE 1788–2015 standard led us
to consider the adaptation of our MPFI library for arbitrary precision interval
arithmetic into a compliant library. We will detail the required modifications in
Sect. 4, but we first detail the main features of the IEEE 1788–2015 standard
in Sect. 2, and we introduce MPFI and explain how far it is from being IEEE
1788–2015 compliant in Sect. 3. We conclude with some personal considerations
about the relevance of interval arithmetic computations in HPC.

2 IEEE 1788–2015 Standard for Interval Arithmetic

2.1 Structure in Four Levels

The IEEE 1788–2015 standard for interval arithmetic is structured in 4 lev-
els, similarly to the IEEE 754–1985 standard for floating-point arithmetic. This
structure clearly separates the mathematical notions from implementation issues,
all the way to bit encoding.

The first level is the mathematical level: this level is about intervals of real
numbers, such as [0, π]. Reasoning about intervals of real numbers, establishing
and proving mathematical theorems about such intervals, are done at Level 1.
No representation issue interferes with this level.

The second level addresses discretization issues: it deals with the fact that an
implementation on a computer will have a discrete, finite set of numbers at its
disposal for the representation of intervals, in particular for the representation
of the endpoints. It specifies the existence of directed rounding modes, because
it is required that every interval at Level 2 encloses the mathematical, Level 1,
interval it represents. For instance, the interval [0, π] is represented by an interval
of the form [rd(0), ru(π)] where rd stands for rounding downwards and ru stands
for rounding upwards. This second level remains quite abstract and does not
specify the set of numbers, it – only but completely – explicitly specifies how to
go from the real numbers at mathematical Level 1 to a finite and discrete set of
numbers at Level 2.

At Level 3, this finite and discrete set of numbers is specified: for instance it
can be the set of binary64 floating-point numbers given by the IEEE 754–2008
standard. Level 4 gives the binary encoding of the representation. Actually, the
bulk of the work has been done at the floating-point (or any other numbers
representation) level and the standard specifies only decorations, see Sect. 2.4.

MPFI and IEEE 1788–2015 355

2.2 Definitions: Intervals and Operations

Notation: following [13], intervals are denoted using boldface symbols, as in x.
Now that the structure of the standard is clear, let us detail the definitions

adopted in the standard. Regarding intervals: everybody agreed that [0, π] and
[1, 3] are intervals. Discussions were hot regarding whether ∅, [5,∞) or [3, 1]
should be considered as legal intervals. Thus, at Level 1, the definition for which
there was a consensus, a common agreement, is that an interval is a non-empty
bounded closed connected subset of R: x = [x, x̄] with x ∈ R, x̄ ∈ R and x ≤ x̄.

At Level 1, operations are defined in such a way that the FTIA holds.

Theorem 1 (FTIA: Fundamental Theorem of Interval Arithmetic).
Any operation ϕ evaluated on interval arguments x1,x2, . . . ,xk within its domain
returns its range on these arguments ϕ(x1,x2, . . . ,xk).

Implementation issues relax the FTIA to the requirement that the result
encloses the range of ϕ on x1,x2, . . . ,xk. The application of this principle yields
the well-known formulas for arithmetic operations such as +, −, ∗ or √ :

[x, x̄] + [y, ȳ] = [x + y, x̄ + ȳ],
[x, x̄] − [y, ȳ] = [x − ȳ, x̄ − y],
[x, x̄] ∗ [y, ȳ] = [min(x ∗ y, x ∗ ȳ, x̄ ∗ y, x̄ ∗ ȳ),max(x ∗ y, x ∗ ȳ, x̄ ∗ y, x̄ ∗ ȳ)],√

[x, x̄] = [
√

x,
√

x̄] if x ≥ 0,

and is used to evaluate mathematical functions, e.g. sin([3, 5]) ⊂ [−1,+0.14113].
Other operations are also specified by the IEEE 1788–2015 standard. Some

operations are specific to sets, such as the intersection or the convex hull of the
union, for instance [2, 4]∩[3, 7] = [3, 4] and [−2,−1]∪[3, 7] = [−2, 7]. In the latter
example, the closed convex hull of the result of the union must be returned, oth-
erwise the result has a “gap” and is not an interval. Some operations are specific
to intervals, such as the endpoints (infimum and supremum): inf([−1, 3]) = −1,
sup([−1, 3]) = 3; the width and the radius: wid([−1, 3]) = 4, rad([−1, 3]) = 2;
the magnitude and the mignitude1: mag([−1, 3]) = 3, mig([−1, 3]) = 0.

Some operations have been added to ease constraint solving: it is known
that the addition and subtraction defined above are not the reciprocal of each
other. The standard specifies two operations that are respectively the reciprocal
of addition, namely cancelMinus, and of subtraction, namely cancelPlus. The
formulas for cancelMinus and cancelPlus are as follows

cancelMinus(x,y) = z such that y + z = x
⇒ cancelMinus([x, x̄], [y, ȳ]) = [x − y, x̄ − ȳ], if wid(x) ≥ wid(y),

cancelPlus(x,y) = cancelMinus(x,−y) = z such that z − y = x,
⇒ cancelPlus([x, x̄], [y, ȳ]) = [x + ȳ, x̄ + y], if wid(x) ≥ wid(y).

For example, cancelMinus([2, 5], [1, 3]) = [1, 2] and cancelPlus([2, 5], [1, 3]) =
[5, 6]. Such reciprocal operations are called reverse operations.
1 The definition of the mignitude is mig([a, b]) = min(|x| : x ∈ [a, b]) = min(|a|, |b|) if

0 /∈ [a, b] and 0 otherwise.

356 N. Revol

2.3 Flavors

This definition of an interval and the specification of these operations are the
common ground of the IEEE 1788–2015 standard for interval arithmetic. How-
ever, this common ground was felt as too restrictive by many users of interval
arithmetic, who are accustomed to manipulate a larger set of intervals in their
daily practice. Still, it was impossible to extend the definition of an interval to
simultaneously encompass all varieties of intervals and still keep a consistent
theory. For instance, both ∅ and [5,+∞) are meaningful within the set-based
approach of interval arithmetic, but not [3, 1]. Conversely, [3, 1] is a valid interval
in Kaucher [12] or modal arithmetic, but neither ∅ nor unbounded intervals.

The standard is thus designed to accomodate “variants” of interval arith-
metic, called flavors in IEEE 1788–2015. After many discussions, including a
clear definition of modal arithmetic [3,4], the partisans of modal arithmetic
did not pursue their standardization effort. Currently, only the set-based flavor,
derived from set theory, is specified by the IEEE 1788–2015 standard.

Let us highlight the set-based flavor. First, the set-based flavor removes some
limitations on the allowed intervals: the empty set as well as unbounded intervals
are legal intervals for this flavor. An interval is a closed connected subset of R.
As the empty set is a valid interval, the definition of operations and functions
can be extended outside their domain, and

√
[−1, 2] now has a meaning. More

generally, the meaning of ϕ(x1,x2, . . . ,xk) is

ϕ(x1, . . . ,xk) = Hull {ϕ(x1, . . . , xk) : (x1, . . . , xk) ∈ (x1, . . . ,xk) ∩ Dom(ϕ)} .

Let us go back to the example given above:
√

[−1, 2] =
√

[− 1, 2] ∩ Dom√ =
√

[0, 2] = [0,
√

2]. Similarly, [2, 3]/[−1, 2] is permitted and [2, 3]/[−1, 2] = R,
whereas [2, 3]/[0, 2] = Hull([2, 3]/(0, 2]) = [1,+∞).

Another extension defined by the set-based flavor is the set of available oper-
ations, in particular of reverse operations. For instance, the reverse operation of
the square operation is sqrRev, examplified here:

sqrRev([1, 4]) = Hull
{
x : x2 ∈ [1, 4]

}
= Hull ([−2,−1] ∪ [1, 2]) = [−2, 2].

Another important reverse operation is mulRevToPair, that corresponds
to the extended division defined in [22]. This operation is rather pecu-
liar, as it returns 0, 1 or 2 interval(s), as in mulRevToPair([2, 3], [−1, 2]) =
((−∞,−2], [1,+∞)). It does not return the convex hull of the result, instead it
preserves the gap. This is particularly useful in Newton’s method for the deter-
mination of the zeroes of a function: as this gap corresponds to a region that
does not contain any zero and that can be eliminated for further exploration, it
also separates zeros. Newton’s method can subsequently be applied successfully
to each of the two results.

MPFI and IEEE 1788–2015 357

2.4 Decorations

Let us have a closer look at Newton’s method. A particularly useful side result
is the proof of existence, and sometimes uniqueness, of a zero in the computed
interval. This proof is obtained by applying Brouwer’s theorem.

Theorem 2 (Brouwer’s Theorem). If the image of a compact set K by a
continuous function f is enclosed in K, then f has a fixed point in K: if f(K) ⊂
K, then ∃x0 ∈ K such that f(x0) = x0.

Another way of stating this result is to say that the function g : x �→ x − f(x)
has a zero in K.

In particular, if K is a non-empty bounded interval, and if the result of
the evaluation of f on K returns an interval K ′ ⊂ K, then the existence of a
fixed-point of f on K is established.

Let us consider the following example: the function

f : x �→ √
x − 2,

has no real fixed point. We leave it to the reader, hint: x − √
x + 2 has no real

zero, or equivalently the polynomial y2 − y + 2 has no real root. The evaluation
of f on [−4, 9] using the set-based flavor of interval arithmetic yields:

√
[−4, 9] − 2 =

√
[0, 9] − 2 = [0, 3] − 2 = [−2, 1] ⊂ [−4, 9],

and a hasty application of Brouwer’s theorem falsely establishes that f has a fixed
point in [−4, 9]. The mistake here is to omit checking whether f is continuous over
[−4, 9]. Actually f is not even defined everywhere on [−4, 9]. As the assumption
of Brouwer’s theorem is not satisfied, no conclusion can be derived.

The IEEE 1788–2015 standard must offer a mechanism to handle exceptions
and to prohibit such erroneous conclusions from being drawn. After hot and
long debates, the chosen mechanism is called decoration; it consists in a piece of
information, a tag attached to or “decorating” each interval. Decorations have
been deemed as the best way (or, should we say, “the least worse”) to deal with
the abovementioned problem:

– they avoid the inappropriate application of Brouwer’s theorem: Brouwer’s
theorem can be used only when the tag indicates that it is valid to do so;

– they avoid the storage of any global information for exceptions, contrary to
the global flags defined in the IEEE 754–1985 standard for floating-point
arithmetic: such global flags are difficult to implement in a parallel context
(that is, SIMD, multithreaded, or distributed).

The meaning of a decoration, in the set-based flavor, is a piece of information
about the history of the computations that led to the considered interval. In
particular, it indicates whether every operation involved a defined and continu-
ous function applied to arguments within its domain or not. The user must thus
consult this decoration before applying Brouwer’s theorem for instance.

358 N. Revol

For the set-based flavor, the chosen decorations are listed below:
– com for common,
– dac for defined and

continuous,
– def for defined,

– trv for trivial (no information),
– ill for ill-formed (nowhere defined).

As a decoration results from the computation of the interval it is attached
to, this computation must also incorporate the determination of the decoration.
The set-based flavor specifies the propagation rules for decorations.

Last, every flavor must provide a FTDIA (Fundamental Theorem of Deco-
rated Interval Arithmetic), that accounts for decorations.

Theorem 3 (FTDIA for the Set-Based Flavor). Let f be an arithmetic
expression denoting a real function f . Let f be evaluated, possibly in finite pre-
cision, on a validly initialized decorated box X = xdx, to give result Y = ydy.
If some component of X is decorated ill, then the decoration dy = ill. If no
component of X is decorated ill, and none of the operations ϕ of f is an every-
where undefined function, then dy �= ill and y ⊃ Rangef(x) and the decoration
dy of y correctly (i.e., pessimistically) accounts for the properties of f over x.

By pessimistically, it is expected that a decoration never raises false hopes.
For instance, a function can be defined and continuous while the computed
decoration only states def, but the converse cannot happen.

2.5 Exact Dot Product

As the IEEE 1788–2015 standard addresses the quality of numerical compu-
tations, it also incorporates a recommendation regarding the accuracy of spe-
cific floating-point computations. Namely, it recommends that for each sup-
ported IEEE 754–1985 floating-point type, an implementation shall provide a
correctly rounded version of the four reduction operations sum, dot, sumSquare
and sumAbs, that take a variable number of arguments.

3 The MPFI Library

After this introduction to the IEEE 1788–2015 standard for interval arithmetic,
let us now concentrate on its implementation. As already stated, the libraries
that are compliant with the standard are rather rare. This section focuses on
the MPFI library, developed since 2000 and thus prior to the standard by large,
and on its transformation into an IEEE 1788–2015 compliant library.

MPFI stands for Multiple Precision Floating-point reliable Interval library.
It is a library written in C that implements arbitrary (rather than multiple)
precision interval arithmetic. More precisely, intervals are represented by their
endpoints and these endpoints are floating-point numbers of arbitrary precision:
for each endpoint, the significand can be arbitrarily precise, the only limit being
the memory of the computer. The MPFI library is based on MPFR [2] for arbi-
trary precision floating-point arithmetic. Its development started in 2000 with

MPFI and IEEE 1788–2015 359

Revol and Rouillier [24], it has evolved and improved since then thanks to the
contributions of S. Chevillard, C. Lauter, H. D. Nguyen and Ph. Théveny. The
library is freely available at https://gforge.inria.fr/projects/mpfi/.

Before digging in the functionalities and specificities of MPFI, let us recall
some justification for its development, as given by Kahan in [11]. In “How Futile
are Mindless Assessments of Roundoff in Floating-Point Computation?”, Kahan
lists tools for assessing the numerical quality of a computed result, in the presence
of roundoff errors. He exhibits examples that defeat these tools, when applied
mindlessly. A typical example of mindless use of a tool such as interval arithmetic
is the replacement of every floating-point datatype in the code by an interval
datatype that is not more precise, before running the code again, on data of
interval type(s). It is well known that, most of the time, such a mindless use
of interval arithmetic produces results with widths too large to be of any help.
However, if running time is not an issue, using interval arithmetic with arbitrary
precision, and increasing the precision as needed, is a mindless (as opposed to
artful, or expert) but cheap (in development time) and effective way to assess
the numerical quality of a code. As Kahan puts it [11], “For that price (slow
execution compared to the execution of the purely floating-point version) we may
be served better by almost foolproof extendable-precision Interval Arithmetic.”.
MPFI offers the required arbitrary precision interval arithmetic.

Let us go back to MPFI and detail the definitions it uses and the functionali-
ties it offers. MPFI is based on MPFR and thus on GMP, for accuracy, efficiency
and portability. As GMP and MPFR, MPFI is developed in the C language.
MPFR provides arbitrary precision floating-point arithmetic, that is compliant
with the IEEE 754–1985 philosophy. In particular, for every function, MPFR
guarantees that the returned result is equal to the exact result (that is, as if
it were computed with infinite precision), rounded using the required rounding
mode. This correct rounding is guaranteed not only for basic arithmetic opera-
tions but for every function of the mathematical library. In MPFI, an interval
is any closed connected subset of R whose endpoints are numbers representable
using MPFR. Thus the empty set and unbounded intervals are valid intervals,
However, this definition corresponds to Level 2 of the IEEE 1788–2015 standard.

Regarding the functionalities offered by MPFI, they correspond to most of
the requirements of IEEE 1788–2015, with some exceptions. On the one hand,
MPFI offers a richer set of mathematical constants (π, Euler constant, etc.) and
functions. On the other hand, there is (yet) no implementation of the reverse
functions, except mulRevToPair. MPFI offers most of the lengthy list of conver-
sions mandated by the standard: to and from integer, double precision floating-
point numbers, exact integers and rationals (through GMP), arbitrary preci-
sion floating-point numbers (through MPFR) and text strings. MPFI also acco-
modates intervals with any floating-point endpoints, including infinities, signed
zeroes and NaNs: again, MPFI has been designed at Level 2 of IEEE 1788–2015.

However, MPFI accounts for neither flavors nor decorations. Thus, oper-
ations are not defined according to any flavor and do not propagate decora-
tions. Still, MPFI has a mechanism for handling exceptions, which is a “Level 2”

https://gforge.inria.fr/projects/mpfi/

360 N. Revol

mechanism in the sense that it is based on the floating-point, IEEE 754–1985-like,
mechanism for handling exceptions. Let us illustrate this mechanism through an
example: when MPFI is given

√
[−1, 2], as [−1, 2] contains −1 and as

√−1 is
an invalid result denoted as NaN in floating-point arithmetic, MPFI considers
this computation as an invalid one and returns NaI: Not an Interval. In IEEE
1788–2015, the only NaIs are produced by meaningless inputs such as [“bla”, 1].

To sum up, MPFI has to be reworked in several directions to be compliant
with the IEEE 1788–2015 standard.

4 Towards Compliance of MPFI with IEEE 1788–2015

In order to incorporate the new concepts present in the standard, the data struc-
ture of a MPFI interval must be modified. First, a field flavor will be added
to each interval, even if this was not the original intent of IEEE 1788–2015: the
principle of flavors was that either a whole computation, or at least significant
portions of it, would be performed using a single flavor; thus a flavor would be
attached to a computation rather than to a data.

Second, parameterized by the flavor, a field decoration will be added and
its possible values will be the ones defined by the corresponding flavor. The
technicalities of “bare” intervals and “compressed” intervals will be handled in
an ad hoc way (by adding a boolean indicating whether the interval is bare or
not) or not implemented (in the case of compressed intervals). As these notions
were not detailed in Sect. 2, they will not be discussed further here.

Then, the code for each existing operation needs to be updated. When enter-
ing the code of an operation, a preliminary test on the flavors of the arguments
and on their compatibility will be performed, and the computation will then
be branched to the corresponding part of the code. Before quitting the code,
a postprocessing will be performed to determine and set the decoration of the
result. Code for the missing reverse operations must be developed.

Another issue is backward compatibility for users of MPFI who want to pre-
serve the existing behavior of their MPFI computations. This will be achieved
by adding a new “flavor” – even if it is not really one: no clear specification at
Level 1 – called MPFIoriginal, so that every computation behaves the same old
way. When this flavor is encountered, each operation will branch to the existing
and unmodified code to perform it.

5 Concluding Remarks Regarding Performance and HPC

The previous section is written in future tense, because most of the modifications
are still waiting to be implemented. Indeed, a major update of MPFI is ongoing,
but still not finished. This update consists not only in turning MPFI into a
IEEE 1788–2015 compliant library, but also in incorporating all mathematical
functions provided by MPFR, such as erf or Bernoulli. Another direction of
future developments concerns the ease of use of MPFI, through a Julia interface.

MPFI and IEEE 1788–2015 361

Let us now conclude with a few remarks regarding performance and HPC.
The author worked on the parallelization [23] of Hansen’s algorithm for global
optimization using interval arithmetic [6]. This algorithm is of branch-and-bound
type and the original idea to parallelize it was to explore simultaneously several
branches of the tree corresponding to the branch-and-bound exploration. How-
ever, it was rapidly obvious that brute force (that is, bisection of the candidate
box and evaluation of the objective function over each sub-box) was not the best
way to obtain speed-ups. A smarter, sequential processing of the candidate box
was more efficient, either to reduce it or to prune it. The simplest solution was,
as mentioned in [11], to use larger or arbitrary precision interval arithmetic. This
led to the development of MPFI.

Let us go back to parallel computations, with “parallel” covering a large
spectrum of possibilities, all the way from SIMD to multithreaded to multicore to
distributed to heterogeneous computations. The IEEE 1788–2015 standard has
tried to avoid some pitfalls, such as the use of global flags for handling exceptions.
However, the mechanism of decorations has also been heavily criticized. On the
one hand, adding this piece of information to each interval destroys padding
efforts and other memory optimizations. On the other hand, the computation and
propagation of decorations does not integrate gracefully with pipelined or SIMD
operations such as AVX, SSE or SSE2. Similarly, MPFI computations do no seem
suited for parallel execution. The MPFI library cannot benefit from hardware
accelerators. It is also not well suited to cache optimizations strategies, as its data
have irregular sizes, as opposed to fixed and constant sizes such as binary32 or
binary64 floating-point datatypes. Furthermore, each operation in MPFI takes
a large computing time, compared to the time of the same operation (such
as addition, multiplication or exponential) applied to binary64 operands. In
practice, a slowdown larger than 50, for one operation, has often been observed.

However, IEEE 1788–2015 and MPFI computations are not comparable with
binary32 or binary64 computations. First, the results they provide are guar-
anteed, in the sense that they contain the sought results, even in the presence
of roundoff errors. Second, they are well suited for multithreaded or distributed
computations: for such computations, it is well known that the communication
time needed to bring the data to the computational device is much larger, by
typically 3 orders of magnitude, than the computational time, that is, the time
required to perform the arithmetic operations on these data. It means that there
is plenty of time to apply numerical computations to the data. With interval
computations and, in particular, with arbitrary precision interval computations,
the computational time is much larger and becomes closer to the communica-
tion time. In other words, with interval computations, the numeric intensity
is increased, as already observed in [28, Chapter 8] for the product of interval
matrices with binary64 coefficients. HPC computations leave time for inter-
val computations and high-precision interval computations: the execution time
is better balanced between communication time and computation time, with a
better final accuracy and a guarantee on the results.

362 N. Revol

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Analysis. Academic Press,
Cambridge (1983)

2. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), 13-es (2007)

3. Goldsztejn, A.: Modal intervals revisited, part 1: a generalized interval natural
extension. Reliable Comput. 16, 130–183 (2012)

4. Goldsztejn, A.: Modal intervals revisited, part 2: a generalized interval mean value
extension. Reliable Comput. 16, 184–209 (2012)

5. Graillat, S., Jeangoudoux, C., Lauter, C.: MPDI: a decimal multiple-precision inter-
val arithmetic library. Reliable Comput. 25, 38–52 (2017)

6. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New
York (1992)

7. Heimlich, O.: Interval arithmetic in GNU Octave. In: SWIM 2016: Summer Work-
shop on Interval Methods, France (2016)

8. IEEE: Institute of Electrical and Electronic Engineers: 754–1985 - IEEE Standard
for Binary Floating-Point Arithmetic. IEEE Computer Society (1985)

9. IEEE: Institute of Electrical and Electronic Engineers: 754–2008 - IEEE Standard
for Floating-Point Arithmetic. IEEE Computer Society (2008)

10. IEEE: Institute of Electrical and Electronic Engineers: 1788–2015 - IEEE Standard
for Interval Arithmetic. IEEE Computer Society (2015)

11. Kahan, W.: How Futile are Mindless Assessments of Roundoff in Floating-Point
Computation? (2006). https://people.eecs.berkeley.edu/∼wkahan/Mindless.pdf

12. Kaucher, E.: Interval analysis in the extended interval space IR. Comput. Supple-
menta 2(1), 33–49 (1980). https://doi.org/10.1007/978-3-7091-8577-3 3

13. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-
ryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7–13
(2010)

14. Kearfott, R.B.: An overview of the upcoming IEEE P-1788 working group doc-
ument: standard for interval arithmetic. In: IFSA/NAFIPS, pp. 460–465. IEEE,
Canada (2013)

15. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
16. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Studies in

Applied Mathematics, Philadelphia (1979)
17. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,

Philadelphia (2009)
18. Nadezhin, D.Y., Zhilin, S.I.: Jinterval library: principles, development, and per-

spectives. Reliable Comput. 19(3), 229–247 (2014)
19. Nehmeier, M.: libieeep1788: A C++ Implementation of the IEEE interval standard

P1788. In: Norbert Wiener in the 21st Century, pp. 1–6, IEEE, Australia (2014)
20. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)
21. Pryce, J.: The forthcoming IEEE standard 1788 for interval arithmetic. In:

Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds.) SCAN 2015. LNCS,
vol. 9553, pp. 23–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31769-4 3

22. Ratz, D.: Inclusion Isotone Extended Interval Arithmetic. Report 5 (96 pages).
Institut für Angewandte Mathematik, Universität Karlsruhe (1996)

https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://doi.org/10.1007/978-3-7091-8577-3_3
https://doi.org/10.1007/978-3-319-31769-4_3
https://doi.org/10.1007/978-3-319-31769-4_3

MPFI and IEEE 1788–2015 363

23. Revol, N., Denneulin, Y., Méhaut, J.-F., Planquelle, B.: Parallelization of con-
tinuous verified global optimization. In: 19th IFIP TC7 Conference on System
Modelling and Optimization, Cambridge, United Kingdom (1999)

24. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Reliable Comput. 11(4), 275–290 (2005)

25. Revol, N.: Introduction to the IEEE 1788-2015 standard for interval arithmetic.
In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381, pp. 14–21. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63501-9 2

26. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.
Acta Numerica 19, 287–449 (2010)

27. Sunaga, T.: Geometry of Numerals. Master thesis, U. Tokyo, Japan (1956)
28. Théveny, P.: Numerical Quality and High Performance In Interval Linear Algebra

on Multi-Core Processors. PhD thesis, ENS Lyon, France (2014)
29. Tucker, W.: Validated Numerics - A Short Introduction to Rigorous Computations.

Princeton University Press, Princeton (2011)

https://doi.org/10.1007/978-3-319-63501-9_2

	The MPFI Library: Towards IEEE 1788–2015 Compliance
	1 Introduction and Context
	2 IEEE 1788–2015 Standard for Interval Arithmetic
	2.1 Structure in Four Levels
	2.2 Definitions: Intervals and Operations
	2.3 Flavors
	2.4 Decorations
	2.5 Exact Dot Product

	3 The MPFI Library
	4 Towards Compliance of MPFI with IEEE 1788–2015
	5 Concluding Remarks Regarding Performance and HPC
	References

