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Abstract. We give a stability condition for a semi–implicit numerical
scheme and prove unconditional stability for an implicit scheme for a
nonlinear advection – diffusion equation, meant as a model of crowd
dynamics. Numerical stability is given for a wider class of equations and
schemes.
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1 Introduction

We consider a macroscopic description of how pedestrians exit a space, typically
a room. We identify the crowd through the pedestrians’ density, say ρ = ρ(t, x),
and assume that the crowd behavior is well described by

∂tρ + ∇ ·
(
ρ

−→
V

)
− κ Δρ = 0 in R

+ × Ω , (1)

which is a regularization (κ > 0) of the continuity equation

∂tρ + div
(
ρ

−→
V

)
= 0 , in R

+ × Ω , (2)

where Ω ⊂ R
2 is the environment available to pedestrians,

−→
V =

−→
V (x, ρ) ∈ R

2

is the velocity of the individual at x, given the presence of the density ρ. The
(small) parameter κ > 0 describes the diffusion part, allowing people to spread
independently of the direction they are given so as to reach the exit.

The velocity vector should be given as a function of x, possibly also of ρ(x)
or even some nonlocal average of ρ. Several choices for the velocity function
are available in the literature, see for instance [1,4–6] for velocities depending
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nonlocally on the density, and [7, Sect. 4.1], [2,10] for velocities depending locally
on the density. In this last case, the following assumption is usually made:

−→
V =

−→
V (x, ρ) = v(ρ) −→w (x), where −→w is a vector field in Ω,

and v : R → [0, vmax) is a scalar function, smooth and non-increasing.
(3)

So, −→w (x), often normalized, is here the direction given for an individual at x, and
v(ρ) its velocity value, translating the common attitude of moving faster when
the density is lower. In this case, the velocity value depends on the density, but
not on its direction. The correction proposed in (1) allows a direction change by
spreading, and seems to be a realistic model of the crowd behaviour.

We assume that the boundary ∂Ω of Ω is a union of three disjoint parts: the
walls Γw, the exit Γ and the corners Γc. The set of corners is finite; Γw and Γ
possess a field of exterior normal vectors −→n . Their natural functions translate
into the following conditions on

−→
V =

−→
V (x, ρ(x)):

∂Ω = Γ ∪ Γw ∪ Γc; (4)
−→
V · −→n = 0 on Γw, (5)
−→
V · −→n > 0 on Γ. (6)

As for the boundary conditions on ρ, there are again several choices for these.
A natural one seems to be a homogeneous Dirichlet or Neumann boundary con-
dition on the walls Γw. As for the condition on the exit, it can be of Dirchlet or
Neummann.

The main point of interest in this particular phenomenon is the widely known
now Braess paradox. It consists in the fact that what seems to improve the
traffic can make it slower and, on the contrary, an obstacle to the traffic may
accelerate it. In evacuation, this mean that an obstacle placed in front of the
exit may shorten the evacuation time. Our aim is to check this paradox on some
examples, so as to be able, later on, to compare diverse obstacles and their
respective effect on evacuation.

In this paper, we propose several finite elements (FE) numerical schemes to
solve our problem, in particular a semi-implicit scheme, and discuss its stability.
Such a scheme has been proposed in [8] for the case inspired by hydrodynamics,
where

−→
V is a function of x only, and additionally

−→
V is divergence free. The

advection term is then linear. We treat here the fully nonlinear case
−→
V =

−→
V (ρ, x),

and we relax the zero divergence condition to:

div
−→
V = div

−→
V (x, ρ(x)) ≥ 0. (7)

We also assume the existence of a weak solution, in a sense that we define in
Sect. 2. This weak formulation is formulated in more abstract terms, so as the
numerical schemes that we give in Sect. 3. We prove there, in Theorem 2, stability
of the semi–implicit scheme, which is the main result of this paper. The CFL
condition required in Theorem 2 is given in a general abstract form, we give also
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its special forms in the following corollaries. In Sect. 4, we show an important
example of

−→
V coming from the eikonal equation, for which the condition (7)

seems to be satisfied in the numerical tests.
In the forthcoming [3] we will show the well posedeness of (1) and perform

the simulations of its dynamics using the numerical schemes that we present
here.

2 Weak Formulation

In what follows, we assume that our problem has a unique solution. For the well–
posedeness of the problem (1), we refer to the forthcoming paper [3]. Clearly,
we will be dealing with its weak solution in order to build a FE approximation.
As far as weak solutions are considered, it is clear that the finite set Γc has no
importance and we can restrict our attention to the Γw ∪ Γ part of the boundary.
More regularity for the solution can be easily obtained if the boundary and the
boundary conditions are regular enough.

In order to build a numerical scheme, we adapt the main ideas of [8], where
such a scheme is built for the linear divergence free case (which is the case (3)
with v ≡ const and div−→w = 0). These assumptions are clearly too much restric-
tive for our case.

Let us define H = L2(Ω), with (·, ·) the scalar product in H and ‖·‖ the
norm in H. Let V ⊂ H1(Ω) be a Hilbert space, being our working space. The
choice of V shall depend on the boundary conditions imposed on our problem,
e.g. it is H1(Ω) if we impose a homogeneous Neumann boundary condition on
∂Ω, and V = {u ∈ H1(Ω) : u = 0 on Γ} if a homogeneous Dirichlet condition
is imposed on Γ . We call W the space containing the traces of functions from V
and of their normal derivatives. This flexibility in the boundary condition will
be allowed by our abstract approach. We observe the following fact relating the
situation we are modeling and the boundary condition on the exit.

Lemma 1. Consider (1) with the boundary assumptions (4)–(6); assume addi-
tionally that a homogeneous boundary condition ∇ρ · −→n is imposed on Γw. At

time t ≥ 0, evacuation happens, i.e.
d

dt

∫

Ω

ρ(t, x) dx < 0, if and only if

∫

Γ

{
κ ∇ ρ(t, ξ) − ρ(t, ξ)

−→
V (ρ(t, ξ))

}
· −→n (ξ) dξ < 0. (8)

Proof. Integrate (1) on Ω by parts.

This lemma says that a homogeneous Neumann boundary condition on ρ on the
walls as well as on the exits ensures the evacuation process.

Our aim is now to write the Eq. (1) in the abstract form as:

(ρt, η) + A0(ρ)(ρ, η) + A1(ρ)(ρ, η) − A2(ρ)(ρ, η) = 0, ∀η ∈ V, (9)

where, for i = 0, 1, 2, Ai(ϕ)(·, ·) are bilinear forms.
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Definition 1. Let α > 0 be an arbitrary constant. Define the operator (nonlin-
ear in the first, linear in the second variable),

B : W × W → W, B(ϕ)ρ =
(

κ ∇ρ − 1
2
ρ

−→
V (ϕ)

)
· −→n

and the following functionals (nonlinear in the first, linear in the other variables)

A0 : V × V 2 → R, A1, A2 : W × W 2 → R,

A0(ϕ)(ρ, η) =
∫

Ω

{
−ρ

−→
V (ϕ) · ∇η + 2κ ∇ρ · ∇η + κ ρΔη

}
,

A1(ϕ)(ρ, η) ≡ Aα
1 (ϕ)(ρ, η) =

1
2α

∫

∂Ω

[B(ϕ)ρ − αρ] [B(ϕ)η − αη] ,

A2(ϕ)(ρ, η) ≡ Aα
2 (ϕ)(ρ, η) =

1
2α

∫

∂Ω

[B(ϕ)ρ + αρ] [B(ϕ)η + αη] .

We will in general omit the dependence on α in the functionals A1, A2. Note
that A1, A2 are by definition positive and symmetric and that

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) =
∫

∂Ω

{ρB(ϕ)η + ηB(ϕ)ρ} (10)

Lemma 2. With the forms A0, A1, A2 given in Definition 1, the weak form of
(1) can be written as (9).

Proof. Multiply (1) by η, integrate on Ω and apply integration by parts (twice
on the diffusive term), use the definition of A0 and B and (10).

Lemma 3. Assume (5), (6), (7). The forms A0, A1, A2 given in Definition 1
satisfy, for any ϕ, ρ ∈ V

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) ≤ 2A0(ϕ)(ρ, ρ). (11)

Assume also a homogenous (Neumann or Dirichlet) boundary condition for ρ
on Γ . Then for any ϕ, ρ ∈ V

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) ≤ 0. (12)

Proof. By integration by parts and noting that

2
∫

Ω

ρ∇ρ · −→V = −
∫

Ω

ρ2 div
−→
V +

∫

∂Ω

ρ2
−→
V · −→n ,

the inequality (11) writes, by virtue of (10), (5),

1
2

∫

Ω

ρ2 div
−→
V (ϕ) + κ

∫

Ω

|∇ρ|2 ≥ 0,

which is satisfied by (7). This proves (11). Now, by virtue of (10),

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) = 2
∫

∂Ω

ρB(ϕ)ρ = 2κ

∫

Γ

ρ∇ρ · −→n −
∫

Γ

ρ2
−→
V (ϕ) · −→n .

This is clearly negative by (6) and the homogeneous boundary condition on Γ .
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Remark 1. We may also assume here ∇ρ · −→n ≤ 0 on Γ .

Corollary 1. As A1(ϕ), A2(ϕ) are symmetric and positive, (12) implies

A2(ϕ)(u, v) ≤ 1
2

[A1(ϕ)(u, u) + A2(ϕ)(v, v)] . (13)

Proof. By positivity, symmetry and bilinearity of A2 we have

0 ≤ A2(ϕ)(u − v, u − v) = A2(ϕ)(u, u) − 2A2(ϕ)(u, v) + A2(ϕ)(v, v)

which together with (12) gives the desired conclusion.

Remark 2. Corollary 1 implies that conditions (11)–(12), together with the addi-
tional assumption that the bilinear form A2(ϕ) is positive, imply a condition of
the form of (2.2) of [8] for Ai = Ai(ϕ). Take A3 = A2(ϕ).

3 Numerical Scheme and Its Stability

Lemma 4. Let Ai : V × V 2 → R for i = 0, 1, 2 be such that Ai(ϕ)(·, ·) are
bilinear symmetric forms satisfying (11), (12) for any ϕ, ρ ∈ V . Let ρ be the
solution to (9). Then t �→ (ρ, ρ)(t) decreases, i.e. the solution ρ is L2 stable.

Proof. Note that (11)–(12) imply

A0(ρ)(ρ, ρ) + A1(ρ)(ρ, ρ) − A2(ρ)(ρ, ρ) ≥ 0. (14)

From (9) one gets directly the desired conclusion.

We will now consider a family of finite element spaces Vh ⊂ V , where H is, as
usual, the mesh parameter and consider approximated solutions in these spaces.

Preserving the important solution’s property given by Lemma 4 is not obvi-
ous when dealing with a numerical approximation, especially with schemes that
are not fully implicit. Any disturbance of this property, however, may cause a
geometrically growing error. Schemes preserving it will be called stable.

Definition 2. Let Vh ⊂ V be a finite-dimensional vectorial subspace of V .
Denote the unknown at time step n by ρn

h ∈ Vh. Denote the test function as
ηh ∈ Vh. The fully implicit first order scheme for (9) reads: find a sequence
ρn

h ∈ Vh, n = 0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0

(
ρn+1

h

) (
ρn+1

h , ηh

)
+ A1

(
ρn+1

h

) (
ρn+1

h , ηh

)

−A2

(
ρn+1

h

) (
ρn+1

h , ηh

)
= 0. (15)

The semi–implicit first order scheme for (9) reads: find a sequence ρn
h ∈ Vh,

n = 0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0 (ρn

h)
(
ρn+1

h , ηh

)
+ A1 (ρn

h) (ρn
h, ηh) − A2 (ρn

h) (ρn
h, ηh) = 0.

(16)
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The explicit first order scheme for (9) reads: find a sequence ρn
h ∈ Vh, n =

0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0 (ρn

h) (ρn
h, ηh) + A1 (ρn

h) (ρn
h, ηh) − A2 (ρn

h) (ρn
h, ηh) = 0.

(17)
We say that a scheme is stable if (ρn+1

h , ρn+1
h ) ≤ (ρn

h, ρn
h) for any n.

Theorem 1 (Unconditional stability). Assume that Ai(ϕ)(·, ·), i = 0, 1, 2,
are bilinear forms satisfying (11)–(12). Then the fully implicit scheme (15) is
unconditionally stable. If (12) is replaced by a stronger condition

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) ≤ 0 ∀ρ, η ∈ V, (18)

the semi–implicit scheme (16) is also unconditionally stable. If, additionally,
(11) is replaced by a stronger condition

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) ≤ 2A0(ϕ)(ρ, η) ∀ρ, η ∈ V, (19)

the explicit scheme (17) is also unconditionally stable.

Proof. Take ηh = ρn+1
h . For the implicit scheme, use (14) and the Schwarz

inequality. For the semi–implicit scheme,

(
ρn+1
h , ρn+1

h

) ≤ (
ρn
h, ρn+1

h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1
h , ρn+1

h

) − Δt

2
A2 (ρn

h)
(
ρn+1
h , ρn+1

h

)

−Δt A1 (ρn
h)

(
ρn
h, ρn+1

h

)
+ Δt A2 (ρn

h)
(
ρn
h, ρn+1

h

)
(by (11))

≤ (
ρn
h, ρn+1

h

) − Δt

2
A1 (ρn

h)
(
ρn
h − ρn+1

h , ρn+1
h

)
+

Δt

2
A2 (ρn

h)
(
ρn
h − ρn+1

h , ρn+1
h

)

−Δt

2
A1 (ρn

h)
(
ρn
h, ρn+1

h

)
+

Δt

2
A2 (ρn

h)
(
ρn
h, ρn+1

h

)
(by linearity)

≤ (
ρn
h, ρn+1

h

)
(by (18)).

We conclude by the Schwarz inequality. For the explicit scheme, we have

(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h

) − Δt

2
A2 (ρn

h)
(
ρn

h, ρn+1
h

)

−Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)
+ ΔtA2 (ρn

h)
(
ρn

h, ρn+1
h

)
(by (19))

≤ (
ρn

h, ρn+1
h

)
(by (18)).

The conclusion comes again by the Schwarz inequality.

Remark 3. As in Theorem 1 the fully implicit scheme does not require symmetry
of the forms A1, A2, it can also be applied for a stronger variational formulation,
where the diffusive term is integrated by part just once.
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Theorem 2 (CFL condition for stability). Assume that Ai(ϕ), for i ∈
{0, 1, 2}, are bilinear forms such that A1(ϕ), A2(ϕ) are symmetric and posi-
tive, and the conditions (11), (12) are satisfied. The semi–implicit scheme (16)
is stable under the abstract CFL condition

Δt A1(ρh)(uh, uh) ≤ (uh, uh) ∀ρh, uh ∈ Vh. (20)

The explicit scheme is stable under the above condition and (18)–(19).

Proof. Take again ηh = ρn+1
h . We have

(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

)

−Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)
+ ΔtA2 (ρn

h)
(
ρn

h, ρn+1
h

)

≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

) − Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (13))

≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

)

+
Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h,

)

−Δt

2
A1 (ρn

h)
(
ρn+1

h , ρn+1
h

)
+

Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)
(by (11)),

which gives
(
ρn+1

h , ρn+1
h

) ≤ (ρn
h, ρn

h) by (20). For the explicit scheme,
(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn

h, ρn+1
h

) − Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (13))

≤ (
ρn

h, ρn+1
h

) − Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h

) − Δt

2
A2 (ρn

h)
(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (19))

≤ (
ρn

h, ρn+1
h

) − Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h − ρn

h

)
+

Δt

2
A2(ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)

−Δt

2
A1 (ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)
+

Δt

2
A2(ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)
(by (18)).

This gives again stability by (20).

Theorem 2 and Lemma 3 imply immediately the following.
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Corollary 2. Assume (5), (6), (7) and a homogenous Neumann boundary con-
dition ∇ρ · −→n = 0 on Γw ∪ Γ . If α, h and Δt are positive constants such that
for any ρh, uh ∈ Vh the CFL condition

Δt

∫

Γ

u2
h

(−→
V (ρh) · −→n − 2α

)2

8α

∫

Ωh

u2
h

≤ 1 (21)

is satisfied, the semi–implicit scheme is stable.

Corollary 3. Assume (5), (6), (7), a homogenous Neumann boundary condition
∇ρ · −→n = 0 on Γw and a homogenous Dirichlet boundary condition ρ = 0 on
Γ . If α, h and Δt are positive constants such that for any uh ∈ Vh the CFL
condition

Δt

∫

Γ

(κ ∇uh · −→n − α uh)2

2α

∫

Ωh

u2
h

≤ 1 (22)

is satisfied, the semi–implicit scheme is stable.

Remark 4. The CFL condition giving stability of the semi–implicit scheme can
also be written for the case when ∇ρ · −→n ≤ 0 on Γ .

4 Example

An interesting example that seems, by a numerical evidence, to satisfy (7), is−→
V = −∇Φ where Φ is a solution to the regularized eikonal equation

⎧
⎨
⎩

‖∇ Φ‖2 − δ ΔΦ = 1 x ∈ Ω
∇ Φ(ξ) · −→n (ξ) = 0 ξ ∈ Γw

Φ(ξ) = 0 ξ ∈ Γ ,

If δ = 0, this equation is known as the eikonal equation it comes from optics.
−∇Φ gives the shortest path to Γ followed by a light ray. With the regularization
(δ > 0), the vector field −∇Φ can be seen as giving an approximation to the
shortest way to Γ , having the advantage that different paths do not cross; see
Fig. 1. We show in [2] that −∇ Φ satisfies conditions (5), (6).

By integration by parts, it clearly follows that
∫

Ω

−ΔΦ =
∫

Ω

div(−∇Φ) =
∫

Ω

div
−→
V > 0.

Although we have not got a formal proof yet, the numerical simulations suggest
that the same inequality is satisfied pointwise: ‖∇ Φ‖ ≤ 1, which would mean
−ΔΦ = div

−→
V ≥ 0.

The density–dependent case
−→
V = −v(ρ)∇Φ is to be considered. More simu-

lations are given in [9].
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Fig. 1. Some examples for −∇Φ, a vector field giving approximately the shortest path
to the exit. The legend gives the values of ‖∇ Φ‖.
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