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Abstract. In this paper, a domain decomposition parallel precondi-
tioner for the 4th order multiscale elliptic problem in 2D with highly het-
erogeneous coefficients is constructed. The problem is discretized by the
conforming C1 reduced Hsieh-Tough-Tocher (HCT) macro element. The
proposed preconditioner is based on the classical overlapping Schwarz
method and is constructed using an abstract framework of the Additive
Schwarz Method. The coarse space consists of multiscale finite element
functions associated with the edges and is enriched with functions based
on solving carefully constructed generalized eigenvalue problems locally
on each edge. The convergence rate of the Preconditioned Conjugate
Method of our method is independent of the variations in the coefficients
for a sufficient number of eigenfunctions in the coarse space.

Keywords: Fourth order problem · Finite element method · Domain
Decomposition Method · Additive Schwarz Method · Abstract coarse
space

1 Introduction

When modeling physical or engineering phenomena one has to numerically solve
partial differential equations with highly heterogeneous contrast. The hetero-
geneity of the media makes many standard numerical methods to work very
slowly. Domain Decomposition Methods (DDM), in particular, Schwarz meth-
ods, form a class of parallel highly efficient methods for solving a system of
equations arising from the standard discretizations of elliptic partial differential
equations, e.g., cf. [14] and references therein. In classical overlapping Schwarz

L. Marcinkowski—The work was partially supported by Polish Scientific Grant:
National Science Center 2016/21/B/ST1/00350.

c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 245–255, 2020.
https://doi.org/10.1007/978-3-030-43222-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-43222-5_21


246 L. Marcinkowski and T. Rahman

method the domain is decomposed into the overlapping subdomains where the
local subproblems are solved in the application of the preconditioner. We also
usually add a global coarse problem obtaining proper scalability, e.g., cf. [14].
Recently, the research of DDM and in particular Schwarz method extended into
to problems with highly heterogeneous coefficients, e.g., cf. [3,5,6,9–11,13]. It is
common that the coarse space is built by enriching a small standard coarse
space with eigenfunctions of some generalized eigenvalue problems, e.g., cf.
[3–5,13]. The resulting methods are robust with respect to the heterogeneity
of the coefficients, and quite often are adaptive in a sense that we can construct
it automatically by adding those eigenfunctions which are associated with all
respective eigenvalues below a preset threshold. The condition bounds of the
obtained preconditioned problem depend only on the threshold and are inde-
pendent of the coefficients.

The goal of this paper is to construct an adaptive coarse space for the
standard overlapping Schwarz method with the minimal overlap for the macro
finite element reduced Hsieh-Clough-Tocher (RHCT) discretization of the fourth
order elliptic problem with highly heterogeneous highly varying coefficients in
two dimensions. Then, the preconditioned problem is solved by the Precondi-
tioned Conjugate Gradient Method (PCG), e.g., cf. [7]. The method is based
on the abstract Schwarz framework. The coarse space is an algebraic sum of a
specially constructed multiscale global space associated with the edges of the
subdomains and local edge subspaces formed by eigenfunctions of generalized
eigenvalue problems. This work is an extension of the recent results of [5] for
the second order elliptic problem to the fourth order problem discretized by the
RHCT method.

The obtained estimates are independent of the geometries of the subdomains,
and the heterogeneities in the coefficients. The bounds are depended only on the
parameters chosen in the eigenvalue problems, i.e. a user has to decide in a pre-
computational step how many eigenvectors have to be computed and included
in our coarse space construction. It can be done adaptively, i.e., including the
eigenfunctions for which the respective eigenvalues are below a preset threshold.

The remainder of this paper is organized as follows, in Sect. 2 we present
the RHCT macro finite element discretization. In Sect. 3 our coarse space is
constructed. Section 4 contains a description of the overlapping additive Schwarz
preconditioner, and in Sect. 5 we briefly discuss some implementation issues.

2 Finite Element Discretization

In this section, we present our model problem and its RHCT macro element
discretization.

Let Ω be a convex and polygonal domain in the plane. The differential prob-
lem is to find u∗ ∈ H2

0 (Ω) such that

a(u∗, v) =
∫

Ω

fv dx ∀v ∈ H2
0 (Ω), (1)
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where
f ∈ L2(Ω),

H2
0 (Ω) = {u ∈ H2(Ω) : u = ∂nu = 0 on ∂Ω},

and
a(u, v) =

∫
Ω

β(x)[ux1x1vx1x1 + 2 ux1x2vx1x2 + ux2x2vx2x2 ] dx. (2)

Here β is a strictly positive bounded function, and ∂n is a normal unit deriva-
tive. Hence, we can always scale β by its minimal value.

We introduce a quasiuniform triangulation Th = Th(Ω) of Ω consisting of
triangles, h = maxτ∈Th

diam(τ) be the parameter of the triangulation, e.g., cf.
[1]. Let Ωh, Ωh, ∂Ωh be the sets of vertices or the nodes of Th(Ω), belonging to
Ωh, Ωh, ∂Ωh, respectively.

For a two-dimensional multi-index α = (α1, α2), where α1, α2 are nonnegative
integers, we define

|α| = α1 + α2, ∂α =
∂|α|

∂xα1
1 ∂xα2

2

.

Further, we assume that β is piecewise constant over Th, it may have jumps
across the 1D common edges of two neighboring elements in Th.

The reduced Hsieh-Clough-Tocher (RHCT) macro element space Vh is
defined as follows, e.g., cf. Chap. 7, Sect. 46, p. 285 in [2], (also cf. Fig. 1):

Vh = {u ∈ C1(Ω) : u ∈ P3(τi), τi ∈ Th(Ω), for triangles τi,
i = 1, 2, 3, formed by connecting the vertices of

any τ ∈ Th(Ωk) to its centroid, ∂nu|e ∈ P1(e) for
e an edge of τ and u = ∂nu = 0 on ∂Ω}.

(3)

Fig. 1. The reduced Hsieh-Clough-Tocher macro element. There are three degrees of
freedom at each vertex.
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The degrees of freedom of the RHCT element are given by

{v(p), vx1(p), vx2(p)},

where p is a vertex of an element, cf. Fig. 1.
The discrete RHCT element problem will then be formulated as follows: find

uh ∈ Vh such that

a(uh, v) =
∫

Ω

fv dx ∀v ∈ Vh. (4)

The problem has a unique solution by the Lax-Milgram lemma. By formulating
the discrete problem in the standard RHCT nodal basis {φα

i }xi∈Ωh,|α|≤1, we get
the following system of algebraic equations

Ahuh = fh (5)

where Ah = (a(φα1
i , φα2

j ))i,j
α1,α2

, fh = (fα
j )xj∈Ωh

|α|≤1

with fj =
∫

Ω
f(x)φα

i dx, and

uh = (uα
i )i,α with uα

i = ∂αuh(xi). Here uh =
∑

xi∈Ωh

∑
|α|≤1 uα

i φi. The result-
ing system is symmetric which is in general very ill-conditioned; any standard
iterative method may perform badly due to the ill-conditioning of the system.

In this paper, we present a method for solving such systems using the precon-
ditioned conjugate method (cf. [7]) and propose an overlapping additive Schwarz
preconditioner (e.g., cf. [14]). Let assume that there exists a partition of Ω into a
collection of disjoint open and connected polygonal substructures Ωk, such that

Ω =
N⋃

k=1

Ωk.

We need another assumption, namely, let the triangulation Th be aligned with
the subdomains Ωk, i.e. let any triangle of Th be contained in a substructure Ωk.
Hence, each subdomain Ωk inherits the local triangulation Th(Ωk) = {τ ∈ Th :
τ ⊂ Ωk}. We make an additional assumption that the number of subdomains
which share a vertex or an edge of an element of Th is bounded by a constant.
An important role plays an interface Γ =

∑N
k=1(∂Ωk \ ∂Ω).

The non-empty intersection of two subdomains ∂Ωi ∩ ∂Ωj not on ∂Ω is
either an 1D edge E ij = ∂Ωi ∩ ∂Ωj , or it is a vertex of Th. A common vertex of
substructures that is NOT on ∂Ω is called a crosspoint. The sum of closed edges
of substructures, which are not on ∂Ω equals Γ the interface of this partition.
We define local sets of nodal points, Ωk,h, Ekl,h, Ωk,h, Ekl,h etc., as the sets of
vertices of elements of Th, which are in Ωk, Ekl, Ωk, Ekl etc., respectively.

3 Coarse Space

In this section, we present an adaptive coarse space, which is a space of discrete
biharmonic functions, cf. Sect. 3.1 below, consisting of two space components: the
multiscale coarse space component and the generalized edge based eigenfunction
space component.
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3.1 Discrete Biharmonic Extensions

In this section, we define the discrete biharmonic functions. We define the local
subspace Vh(Ωk) as the space of restrictions to Ωk, of the space Vh, i.e.,

Vh(Ωk) = {u|Ωk
: u ∈ Vh},

and we let introduce its subspace of functions with zero boundary conditions (in
H2

0 sense), i.e.,

Vh,0(Ωk) = Vh(Ωk) ∩ H2
0 (Ωk).

We also need a local bilinear form

ak(u, v) =
∫

Ωk

β(x)[ux1x1vx1x1 + 2 ux1x2vx1x2 + ux2x2vx2x2 ] dx.

Let Pku ∈ Vh,0(Ωk) for any u ∈ Vh(Ωk) be the ak orthogonal projection onto
Vh,0(Ωk), i.e.,

ak(Pku, v) = ak(u, v) ∀v ∈ Vh,0(Ωk). (6)

Then, let the local discrete biharmonic extension operator

Hk : Vh(Ωk) → Vh(Ωk)

be defined as
Hku = u − Pku, (7)

or equivalently Hku is the unique solution to the following local problem:
{

ak(Hku, v) = 0 ∀v ∈ Vh,0(Ωk)
Tr Hku = Tr u on ∂Ωk

, (8)

where Tr uk = (uk|∂Ωk
,∇uk|∂Ωk

) for uk ∈ Vh(Ωk), e.g., cf. [8]. Since it is a
discrete case, the boundary conditions are equivalently to the discrete boundary
conditions: Tr Hku(x) = Tr u(x) for all x ∈ ∂Ωk,h. A function u ∈ Vh(Ωk) is
discrete biharmonic in Ωk if u|Ωk

= Hku ∈ Vh(Ωk). If for u ∈ Vh all its restric-
tion to local subdomains are discrete biharmonic, then u is piecewise discrete
biharmonic in our partition. Please note, that a discrete biharmonic function
in Vh(Ωk) is uniquely defined by its values of degrees of freedom at the nodal
points of ∂Ωk,h and has the following minimizing property:

ak(Hku,Hku) = min{ak(u, u) :
u ∈ Vh(Ωk) : Tr u(x) = Tr Hku(x) x ∈ ∂Ωk}. (9)

3.2 Multiscale Coarse Space Component

Our coarse space comprises two parts, in this section, we define the multiscale
component. We need a definition of a patch around an edge Ekl, namely let the
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E kl Ekl

δ,k

Ekl

δ, l

Ω l

Ω k

Fig. 2. The patch Eδ
kl and its two subpatches related to Ekl the common edge to sub-

domains Ωk and Ωl.

patch Eδ
kl an open domain which closure is the closed union of all fine triangles

of Th(Ωk) and Th(Ωl) such that either one of its open edges or vertices are
contained in Ekl. We can naturally split the patch into two disjoint parts:

Eδ

kl = Eδ,k

kl ∪ Eδ,l

kl ,

where Eδ,s
kl = Eδ

kl ∩ Ωs, s = k, l., cf. Fig. 2.
The sum of all patches contained in Ωk form a boundary layer interior to Ω

defined as

Ω
δ

k =
⋃

Γkl⊂∂Ωk\∂Ω

Eδ,k

kl .

For simplicity of presentation we assume that all patches Eδ,k
kl for a substructure

Ωk, are disjoint.
Let Vh(Eδ

kl) be the space of restrictions of functions from Vh to Eδ
kl

Vh(Eδ
kl) = {u|Eδ

kl
: u ∈ Vh}

and its subspace Vh,0(Eδ
kl) with zero boundary condition, i.e.,

Vh,0(Eδ
kl) = Vh(Eδ

kl) ∩ H2
0 (Eδ

kl). (10)

A function in this space is uniquely defined by the values of three degrees of
freedom at all nodes in Ekl,h.

Note that Tr u onto each fine edge of Ekl can be represented as (u, ∂su, ∂nu),
where u is a C1 piecewise cubic function on the inherited 1D triangulation of
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this edge, ∂su is its derivative, and ∂nu is a continuous piecewise linear function.
We also define two bilinear forms related to an edge Ekl, the first one being the
restriction of the form a(u, v), cf. (2), to the patch, namely,

akl(u, v) =
∫

Ekl

β[∂ssu ∂ssv + ∂nsu ∂nsv ds] (11)

where ∂ssu is the weak second order tangential derivative of the trace of u onto
the edge Ekl, and ∂nsu is the weak tangential derivative of the trace of the normal
derivative on this edge. Here β is constant over each fine edge e ⊂ Ekl being the
common edge of fine 2D triangles τ+ ∈ Th(Ωk) and τ− ∈ Th(Ωl). Let it be
defined as max(β|τ+ , β|τ−).

The second patch bilinear form is the scaled weighted L2 over the patch, i.e.,

bkl(u, v) = h−3

∫
Eδ

kl

βuv dx. (12)

We have a simple proposition.

Proposition 1. The both forms akl(u, v) and bkl(u, v) are symmetric and pos-
itive definite over Vh,0(Eδ

kl).

We now introduce the multiscale coarse space.
Let a subspace Vms ⊂ Vh be formed by all discrete biharmonic functions in the

sense of (8), which satisfies the following variational equality on each patch Eδ
kl:

akl(ûkl, v) = 0 ∀v ∈ Vh,0(Eδ
kl), (13)

where ûkl ∈ Vh,0(Eδ
kl) satisfies ∂αû(x) = ∂αu(x) x ∈ Ekl,h.

We have a straightforward proposition.

Proposition 2. A function u ∈ Vms is uniquely defined by its dofs at all cross-
points.

Proof. Since u ∈ Vms is discrete biharmonic, it is defined by the values of its dofs
at interface i.e., at crosspoints and in Ekl,h for all interfaces. Thus, it is enough
to show that all dofs of u are uniquely defined on all interfaces Ekl. Let define
the function ûkl ∈ Vh(Ekl) such that it satisfies ∂αûkl(x) = ∂αu(x) for |α| ≤ 1
and x ∈ ∂Ekl, ∂αûkl(x) = 0 for all remaining fine vertices on the boundary of
the patch Ekl and:

akl(ûkl, v) = 0 ∀v ∈ Vh,0(Eδ
kl).

We can represent ûkl = w1 + w0 with w0 ∈ Vh,0(Eδ
kl). E.g., we can take w1 with

the DOFs equal to DOFs of ûkl on the boundary of the patch, and with zero
valued remaining DOFs. Then, the last variational equation is equivalent to: find
w0 ∈ Vh,0(Eδ

kl) such that

akl(w0, v) = −akl(w1, v) ∀v ∈ Vh,0(Eδ
kl).

It follows from Proposition 1, that w0, and thus ûkl, is uniquely defined. It is
clear that all DOFs of ûkl and u have the same values at Ekl,h, so u is unique.
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The values of its DOFs at the nodal points of each face can be computed by
solving (13), and then the values of DOFs at the nodal points of each subdomain
can be computed by solving (8).

3.3 Generalized Edge Based Eigenfunction Space Component

First we define a generalized eigenproblem of the form: find (λkl
j , φkl

j ) ∈ R ×
Vh,0(Eδ

kl) such that

akl(φkl
j , v) = λkl

j bkl(φ, v) ∀v ∈ Vh,0(Eδ
kl). (14)

Proposition 1 yields, that there are real and positive eigenvalues and their respec-
tive bkl - orthonormal eigenvectors satisfying (14), such that

0 < λkl
1 ≤ λkl

2 ≤ . . . ≤ λkl
M ,

where M is the dimension of Vh,0(Eδ
kl).

For any 1 ≤ n = n(Ekl) ≤ M we can define the orthogonal projection:
πkl

n : Vh,0(Eδ
kl) → span{φkl

j }n
j=1 ⊂ Vh,0(Eδ

kl) as

πkl
n v =

n∑
j=1

bkl(v, φkl
j )φkl

j . (15)

Then for each eigenvector φkl
j , 1 ≤ j ≤ n(Ekl) we define Φkl

j ∈ Vh which
has DOFs equal to the ones of φkl

j at all nodes on the edge Ekl, zero DOFs on
the remaining edges and at all crosspoints, and finally discrete biharmonic inside
each subdomain, in the sense of (8), what defines uniquely the values of its DOFs
at all interior nodes of the subdomain. Then, the edge terms of the coarse space
are introduced as:

V kl
h,n = span{Φkl

j }n(Ekl)
j=1 , ∀Ekl ⊂ Γ.

The coarse space is defined as

V0 := Vms +
∑

Ekl⊂Γ

V kl
h,n. (16)

4 Additive Schwarz Method (ASM) Preconditioner

Our preconditioner is based on the abstract framework of ASM, i.e. is based
on a decomposition of the global space Vh into local subspaces and one global
coarse space, equipped into respective symmetric positive definite bilinear forms,
e.g., cf. [14]. Here we take only the original form a(u, v), i.e. (2), as the local
forms Each local subspace Vk related to Ωk, is defined as the space formed by
all functions u ∈ Vh whose DOFs take the value zero at all nodal points that lie
outside Ωk.
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The coarse space V0 was introduced in the previous section, cf. (16). We get

Vh = V0 +
N∑

k=1

Vk.

Then, we introduce the additive Schwarz operator T : Vh → Vh as

T = T0 +
N∑

k=1

Tk,

where the coarse space projection operator, T0 : Vh → V0, is defined by

a(T0u, v) = a(u, v) ∀v ∈ V0,

and the local subspace projection operators, Tk : Vh → Vk, are determined by

a(Tku, v) = a(u, v) ∀v ∈ Vk, k = 1, . . . , N.

The problem (1) is then replaced as the equivalent preconditioned system,

Tuh = g, (17)

where

g = g0 +
N∑

k=1

gk

with g0 = T0u
∗
h, gk = Tku∗

h, k = 1, . . . , N , and u∗
h the discrete solution, cf. (4).

Note, that the right hand side vectors, gk, k = 0 · · · , N, can be calculated
without explicitly knowing the discrete solution, e.g., cf. [12,14].

4.1 An Estimate of the Condition Number

We present the main result of this paper, namely an estimate of the condition
number of the preconditioned system (1).

We have the following theorem:

Theorem 1. There exist positive constants c, C independent of h, β, and num-
ber of subdomains, such that

c(min
kl

λkl
n+1) a(u, u) ≤ a(Tu, u) ≤ C a(u, u) ∀u ∈ Vh,

where λkl
n+1 and n = n(Ekl) are defined in Sect. 3.3.

The theorem proof uses the abstract ASM framework, e.g., cf. [14], we check the
three key assumptions of this framework. The key component is to define a so
called stable decomposition which is done with the help of the operators πkl

n , cf.
(15), and then to utilize its properties.

The number of eigenfunctions needed for the robustness of our method usu-
ally corresponds to the number of channels crossing a subdomain interface. This
number can be predefined from experience or chosen adaptively by looking at the
smallest eigenvalues. Note that the lower bounds in Theorem 1 is dependent on
how many eigenvectors of the local face generalized eigenproblem are included
in our coarse grid.
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5 Implementation Issues

In this section, we briefly discuss the implementation of our ASM precondi-
tioner. For the simplicity of presentation, we use our preconditioner with the
Richardson’s iteration. In practice, one uses the preconditioned conjugate gra-
dient iteration (e.g., cf. [7]) for the system (17).

– Precomputation step. Computing the coarse grid basis.
Constructing the coarse space requires the solution of the generalized eigen-
value problem (14) on each subdomain face (interface), the first few eigen-
functions corresponding to the smallest eigenvalues are then included in the
coarse space. Prescribing a threshold λ0, and then computing the eigenpairs
with eigenvalues smaller than λ0, we can get an automatic way to enrich
the coarse space. The simplest way would be to compute a fixed number of
eigenpairs, e.g. n = 5 or so, this may however not guarantee robustness as
the number of channels crossing a face may be much larger.

– Richardson iteration.
The Richardson iteration with the parameter τ is defined as follows: starting
with any u(0), iterate until convergence:

u(i+1) = u(i) + τ (g − T (u(i))) = u(i) + τ T (u∗
h − u(i))

= u(i) − τ r(i)
, i ≥ 0.

Computing of r(i) = g − T (u(i)) requires solving the following problems:
� Local subdomain problems:

Compute rk ∈ Vk k = 1, . . . , N by solving the following local problems

a(rk, v) = a(Tk(u∗
h − u(i)), v) = f(v) − a(u(i), v) ∀v ∈ Vk.

� Coarse problem:

Compute r0 ∈ V0 such that

a(r0, v) = a(T0(u∗
h − u(i)), v) = f(v) − a(u(i), v) ∀v ∈ V0,

Then

r(i) = r0 +
N∑

k=1

rk.

All these problems are independent and can be solved in parallel.

The local subdomain problems are solved locally on their respective subdomains.
The coarse problem is global, and its dimension equals the number of the cross-
points times three plus the number of local eigenfunctions.
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