
Alea – Complex Job Scheduling Simulator

Dalibor Klusáček1(B), Mehmet Soysal2, and Frédéric Suter3

1 CESNET a.l.e., Brno, Czech Republic
klusacek@cesnet.cz

2 Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany

mehmet.soysal@kit.edu
3 IN2P3 Computing Center/CNRS, Lyon-Villeurbanne, France

frederic.suter@cc.in2p3.fr

Abstract. Using large computer systems such as HPC clusters up to
their full potential can be hard. Many problems and inefficiencies relate
to the interactions of user workloads and system-level policies. These
policies enable various setup choices of the resource management system
(RMS) as well as the applied scheduling policy. While expert’s assess-
ment and well known best practices do their job when tuning the perfor-
mance, there is usually plenty of room for further improvements, e.g., by
considering more efficient system setups or even radically new scheduling
policies. For such potentially damaging modifications it is very suitable to
use some form of a simulator first, which allows for repeated evaluations
of various setups in a fully controlled manner. This paper presents the
latest improvements and advanced simulation capabilities of the Alea job
scheduling simulator that has been actively developed for over 10 years
now. We present both recently added advanced simulation capabilities
as well as a set of real-life based case studies where Alea has been used
to evaluate major modifications of real HPC and HTC systems.

Keywords: Alea · Simulation · Scheduling · HPC · HTC

1 Introduction

The actual performance of a real RMS depends on many variables that include
the type (mix) of users’ workloads (e.g., parallel vs. sequential jobs, short vs.
long jobs), applied job scheduler and its scheduling algorithm (e.g., trivial First
Come First Served (FCFS) or backfilling [14]) and also additional system con-
figuration that typically defines job mapping to queues and their priorities and
various operational limits (e.g., max. number of CPUs available to a given user).
Therefore, designing a proper configuration is the most important, yet truly
daunting process. Due to the complexity of the whole system even straightfor-
ward (conservative) changes in the configuration of the production system can
have highly unexpected and often counterintuitive side effects that emerge from

c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 217–229, 2020.
https://doi.org/10.1007/978-3-030-43222-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-43222-5_19


218 D. Klusáček et al.

the mutual interplay of various policies and components of the RMS and sched-
uler [10]. Therefore, simulators that can emulate a particular production system
and its configuration represent highly useful tools for both resource owners, sys-
tem administrators and researchers in general.

Alea jobs scheduling simulator has been first introduced in 2007 as a basic
simulator and underwent a major upgrade in 2010 [9] that mainly focused on
improving the rather slow simulation speed and also introduced some visualiza-
tion capabilities. In 2016, Alea was the first mainstream open source simulator
to enable the use of so called dynamically adapted workloads, where the perfor-
mance of the simulated scheduler directly influences the submission rates (arrival
times) of jobs from the workload [22], providing an important step to mimic the
natural user feedback to the system performance [12].

Since then, many new features have been implemented and the simulator
has been successfully used for various purposes, both as a purely research tool as
well as when testing new setups and new scheduling policies for production HPC
and HTC systems. The main contribution of this paper is that (1) we describe
recent improvements in the simulator, that allow for truly complex simulations
that involve several detailed setups that correspond to typical real-life based
scenarios, (2) we describe the recent speedup of the simulator that enables us
to run truly large-scale simulations involving millions of jobs and thousands of
nodes that complete in just a few hours, (3) we compare the performance of Alea
with existing simulators, and (4) we provide several real-life based case studies
where Alea has been used to develop and evaluate effects of major modifications
of real HPC and HTC systems.

In Sect. 2 we provide a brief overview of existing related work. Next, Sect. 3
shows the current design of Alea and its major features and simulation capabil-
ities. Section 4 presents several real-life examples demonstrating how Alea has
been used in practice in order to improve the performance of production systems.
Finally, we conclude the paper in Sect. 5.

2 Related Work

Throughout the years, there have been many grid, HPC and cloud simulators.
In most cases, each such simulator falls into one of three main groups. The
first group represents ad hoc simulators that are built from scratch. Those
include, e.g., the recent AccaSim or Qsim. AccaSim is freely available library
for Python, thus compatible with any major operating system, and executable
on a wide range of computers thanks to its lightweight installation and light
memory footprint [5]. Qsim is an event-driven scheduling simulator for Cobalt,
which is an HPC job management suite supporting compute clusters of the IBM
BlueGene series [21]. It is using exactly the same scheduling and job allocation
schemes used (or proposed) for Cobalt and replays the job scheduling behav-
ior using historic workloads analyzing how a new scheduling policy can affect
system performance. Still, both simulators are somehow limited. Qsim is aiming



Alea – Complex Job Scheduling Simulator 219

primarily on BlueGene-like architectures, while AccaSim’s capabilities (e.g., sup-
ported scheduling policies) are still rather limited as of late 20191.

Second group of simulators is typically using some underlying simulation
toolkit, e.g., SimGrid, GridSim or CloudSim. This group is represented, e.g., by
the recent Batsim, Simbatch or GSSIM [3]. Batsim is built on top of SimGrid [4].
It is made such that any event-based scheduling algorithm can be plugged to
it and tested. Thus, it allows to compare various scheduling algorithms from
different domains. Such schedulers must follow a text-based protocol to commu-
nicate with Batsim properly. In the paper on Batsim [4], this is demonstrated
by using OAR resource manager’s scheduler with the Batsim simulator [4]. This
is certainly a very interesting feature adding to the realism of the simulations.
Still, it is not very straightforward to use existing schedulers in this way as they
are typically tightly coupled with the remaining parts of a given resource man-
ager and cannot be easily used in a standalone fashion. Simbatch and GSSIM [3]
were using SimGrid and Gridsim respectively, but their development is currently
discontinued for many years.

Finally, the last group typically uses some real-life RMS executed in a sim-
ulation mode. For example, the ScSF simulator [16] emulates a real system by
using Slurm Workload Manager inside its core to realistically mimic the real
RMS. ScSF extends an existing Slurm Simulator [18], improving its internal
synchronization to speed up its execution. Also, it adds the capability to gen-
erate synthetic workloads. Similar “simulation mode” was supported in Moab
in the past2 but has been discontinued in the recent versions. In all cases, sim-
ulators using a real RMS cannot process workload as quickly as the simulators
from the first two groups. This is caused by the fact that these simulators must
follow the complex timing model of a real RMS (see Sect. 3.4).

Alea simulator, which will be thoroughly described in the next section, rep-
resents the second group of simulators using an underlying simulation toolkit.
The major weakness of Alea is that it cannot use an existing scheduler and/or
RMS. Instead, the RMS/scheduler must be simulated using Alea and GridSim.
While this fact can be somehow limiting in certain cases, Alea offers a large set
of features that mimic the functionality of real schedulers (see Sect. 3). At the
same time, it allows to simulate large workloads and big systems in a very com-
petitive time (see Sect. 3.4) while remaining fully deterministic. This is not the
case for simulators using real RMS that are subject to varying “system jitter”
from the used RMS [18]. The aforementioned list of existing simulators is not
exhaustive and more details can be found in [5,9].

3 Architecture and Major Functionality

Alea is platform-independent event-driven discrete time simulator written in
Java. It is built on the top of the GridSim simulation toolkit [20]. GridSim pro-
vides the basic functionality to model various entities in a simulated computing
1 https://accasim.readthedocs.io/.
2 http://docs.adaptivecomputing.com/mwm/archive/6-0/2.5initialtesting.php.

https://accasim.readthedocs.io/
http://docs.adaptivecomputing.com/mwm/archive/6-0/2.5initialtesting.php


220 D. Klusáček et al.

system, as well as methods to handle the simulation events. The behavior of
the simulator is driven by an event-passing protocol. For each simulated event—
such as job arrival or completion—one message defining this event is created. It
contains the identifier of the message recipient, the type of the event, the time
when the event will occur and the message data. Alea extends this basic Grid-
Sim’s functionality and provides a model allowing for detailed simulation of the
whole scheduling process in a typical HPC/HTC system. To do that, Alea either
extends existing GridSim classes (e.g., GridResource or AllocationPolicy)
or it provides new classes on its own, especially the core Scheduler class and
classes responsible for data parsing and collection/visualization of simulation
results. Figure 1 shows the overall scheme of Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator. The blue color denotes recently added or heavily upgraded
components of the simulator.

Fig. 1. Main parts of the Alea simulator (blue color denotes new functionality). (Color
figure online)

The main part of the simulator is the centralized job scheduler. The scheduler
manages the communication with other parts of the simulator. Also, it main-
tains important data structures such as job queue(s). Job scheduling decisions
are performed by scheduling algorithms that can be easily added using existing
simple interfaces. Furthermore, scheduling process can be further influenced by
using additional system policies, e.g., the fair-sharing policy which dynamically
prioritizes job queue(s). Also, various limits that further refine how various job
classes are handled are supported by Alea. Additional parts simulate the actual
computing infrastructure, including the emulation of machine failures/restarts.
Workload readers are used to feed the simulator with input data about jobs being
executed and the simulator also provides means for visualization and generation
of simulation outputs. Alea is freely available at GitHub [1].

The primary goal of our job scheduling simulator is to allow for realistic
evaluation of new scheduling policies or new setups of computing systems. For



Alea – Complex Job Scheduling Simulator 221

this purpose, it is necessary to model all important features that have significant
impact on the performance of the system. Our own “hands on” experience from
operating production systems have taught us that many promising “theoretical”
works based on simulations are not usable in practice, due to the overly simplified
nature of performed simulations. Often, researchers focus solely on particular
scheduling algorithm while ignoring additional system-related constraints and
policies. However, production systems use literally dozens of additional parame-
ters, rules and policies that significantly influence the scheduler’s decisions and
thus the performance of the system [10,17]. Therefore, following subsections pro-
vide an overview of the advanced simulation capabilities that make Alea a very
useful tool for detailed simulations of actual systems.

3.1 Detailed System Simulation Capabilities

As we have observed in practice, system performance can be largely affected
by the interactions of various components and parameters of an actual RMS.
While their nature or scope can be basic and limited, they can easily turn a well
functioning system into a troublesome one. Therefore, the simulator should be
able to mimic these features within the simulation. These features include:

– queues and their priorities, constraints and various limits
– quotas limiting user CPU usage
– mechanisms to calculate job priorities such as fair-share
– common scheduling algorithms aware of aforementioned features

Queues, Limits and Quotas. First of all, Alea allows to specify the number
of job queues, their names, priorities and queue-related constraints such as the
maximum number of CPUs that can be used by jobs from that queue at any given
moment. Multiple queues are common in systems with heterogeneous workloads.
Here, system resources are usually partitioned into several (sometimes overlap-
ping) pools, where each pool has a corresponding queue. Users’ workloads (jobs)
are then mapped to these queues. Queue limits then avoid potentially dangerous
situations such as saturation of the whole system—either with jobs from a single
user, or with a single class of jobs [7]. For example, it would be very unwise to
fill the whole system with long running jobs as this would cause huge wait times
for shorter jobs. Also users and/or groups are often subject to a upper bound
on the amount of resources they can use simultaneously. For this purpose, Alea
now provides CPU quotas, that guarantee that a user/group will not exceed the
corresponding maximum allowed share of resources [2].

Fair-Sharing. Production systems—instead of default job arrival order—often
use some priority mechanism to dynamically prioritize system users. This is
typically done by fair-sharing. We provide several variants of fair-sharing mech-
anisms that are used to prioritize jobs (users) within queue(s) in order to guar-
antee user-to-user fairness. Fair-share mechanism dynamically adjusts job/user



222 D. Klusáček et al.

priorities such that the use of system resources is fairly balanced among the
users [7]. We support both basic fair-sharing mechanisms that only reflect CPU
usage as well as more complex multi-resource implementations3 which also reflect
memory consumption.

Scheduling Algorithms. Scheduling algorithms play a critical role in RMS.
Alea supports all mainstream algorithms that can be typically observed in prac-
tice, starting with trivial FCFS, Shortest Job First and Earliest Deadline First
and continuing to more efficient solutions such as EASY backfilling or Conser-
vative backfilling [14]. Alea also supports schedule optimization methods, that
can be used to further improve initial job schedules as prepared by, e.g., the
Conservative backfilling policy. Our optimization methods are based on meta-
heuristics and can use various objective functions to guide the metaheuristic
toward improved schedule [8]. Importantly, in the recent release we provide sev-
eral job walltime predictors, that can automatically refine (inaccurate) user-
provided walltime estimates in order to improve the precision of scheduling deci-
sions.

3.2 Dynamic Workloads

There is one more part which plays a significant role in job scheduling—the work-
load being processed by the system or the simulator. Alea supports two ways
how workload can be fed into the simulator. First, it uses traditional “workload
replay” mode, where jobs are submitted based on a historic workload description
file (log) and their arrival times are based on the original timestamps as recorded
in the log. Alternatively, Alea allows to use so called dynamic workload adapta-
tion, where job arrival times are not fixed but can change throughout the course
of the simulation, depending on the scheduler’s performance. For this purpose,
Alea provides a feedback loop that communicates with the workload reader and
informs it upon each job completion. Using this data, the workload reader can
either speed up or postpone job submissions for simulated users. This complex
behavior mimics real world experience, where users react to the performance of
the scheduler. In other words, real-life job arrival times are always correlated to
the “user experience”, thus it is unrealistic to use plain “workload replay” mode,
because the results will be somehow skewed by the “embedded” influence of the
original scheduler that is captured in the historic workload log, i.e., in the job
arrival time pattern. Alea’s implementation is based on the work of Zakay and
Feitelson [22], but it also allows to write your own workload adaptation engine,
having different job submission adaptation logic.

3.3 Simulation Speed

Since the start of Alea project, simulation speed was our second most impor-
tant goal right after the capabilities of our simulator. During the years, Alea
3 For example, we support Dominant Resource Fairness (DRF) inspired fair-share [6].



Alea – Complex Job Scheduling Simulator 223

Fig. 2. Number of completed jobs (log. scale) during 1 hour-long simulation using dif-
ferent implementations of SpaceShared policy and (un)optimized queue handling.

has introduced several improvements into the GridSim’s event-driven simulation
model that significantly speed up the simulation. Most changes relate to the way
job execution is modeled in the classes that implement job allocation policy on a
modeled physical system (see, e.g., GridSim’s SpaceShared class). As originally
designed, this model was not very time-efficient. Upon each start of a job j,
an internal event was generated that was scheduled to be delivered at the time
Tcompl(j), which is the time when such job would complete4. Although this event
at Tcompl(j) only corresponds to that job j, GridSim would always scan all cur-
rently executed jobs to check whether those are completed or not. Obviously, this
was not very time efficient way how to proceed with a simulation. Moreover, with
each such check GridSim would also generate one additional internal event to
trigger a similar check (delayed by a predefined time constant) to further assure
that no jobs are “forgotten” by the engine. However, this additional event gen-
erator was producing exponential-like increase of events that the GridSim core
had to handle, slowing down the simulation extremely. While these inefficiencies
are tolerable when dealing with small systems (hundreds of CPUs and few thou-
sands of jobs), they became a real show-stopper for large simulations involving
tens of thousands of CPUs and millions of jobs.

Therefore, in this new edition of Alea we have simplified the whole job pro-
cessing model such that each job now only needs one internal event to be pro-
cessed correctly. This did not change the behavior of the SpaceShared policy, but
it introduced a huge speedup of the whole simulator. Also, we have improved the
speed of scheduling algorithms. Simulations that struggle with large job queue
sizes (plenty of waiting jobs) are often slowed down by the scheduling algorithm
which repeatedly traverses long job queues, trying to schedule a new job. With
long queues, this may slow down the simulation significantly, especially when the
algorithm itself is not a trivial one. Therefore, we have introduced a more efficient
queue handling mechanism which—based on user specified parameters—limits

4 Tcompl(j) = Tcurrent + Truntime(j).



224 D. Klusáček et al.

the number of jobs that are checked at each scheduling run. This modification
brought another huge improvement.

Figure 2 shows an example of the speedup obtained by our techniques. It
shows the number of completed jobs (in log. scale) that were simulated during
one hour. This experiment involved large system with over 33K CPU cores and
many peaks in the job queue that reached up to 5 K of waiting jobs. The results
of our optimized event-processing mechanism and the queue handling mechanism
are compared to the original GridSim’s implementation, with the “exponential”
event generator either turned on (denoted as “Gridsim + additional events”)
or off (“no additional events”). Clearly, there is a huge difference when the
optimized event-processing mechanism is introduced (denoted as “Alea”). Even
bigger improvement is reached once the more efficient queue handling mechanism
is used (“Alea + improved queue handling”). This effect is amplified by the fact
that this experiment often experienced very long queue of waiting jobs.

3.4 Simulation Throughput and Speedup Comparison

To give the speed of our simulator into a context, we have studied the reported
speeds of different simulators and created a simple comparison of their perfor-
mance. We have used the recent published data about Slurm Simulator [18],
Batsim [13] and ScSF [16]. If possible, we show both the achieved speedup as
well as the throughput of the simulator. The speedup is the ratio of the origi-
nal makespan5 to the wall-clock time requested by the simulator to finish the
experiment. Throughput is measured as the average number of jobs simulated
(completed) in one minute. Since the speedup and throughput also depends on
the “size” of the experiment [18], we report the total number of CPU cores and
jobs being simulated (if available). The results are shown in Table 1 and show
the impressive speed and throughput of Alea. While Batsim reports a very nice
speedup, it must be noted that this result was achieved on a very small problem
instance (800 jobs and 32 cores) while Alea’s results were achieved in a truly
large setup (2,7M jobs and 33 K cores). Further comparisons (featuring Alea,
AccaSim and Batsim) can be found in the AccaSim report [5].

Table 1. Throughput and speedup of various simulators.

Jobs Cores Makespan (h) Runtime (s) Speedup Throughput (jobs/min)

Slurm Sim 65,000 7,912 571 15,866 130 246

ScSF N/A 322 168 43,200 14 N/A

Batsim 800 32 4 30 400 1,600

Alea 2,669,401 33,456 744 10,800 248 14,830

5 Makespan denotes the time needed to process the workload in a real system.



Alea – Complex Job Scheduling Simulator 225

3.5 Visualization

Alea offers Visualizator class that provides crucial methods to display graph-
ical outputs during a simulation. Several metrics and outputs that are generally
useful, e.g., for debugging purposes are available by default, including the visu-
alization of created job schedule and several popular objectives. An example of
such graphical output is captured in Fig. 3, which shows the average system uti-
lization, number of waiting and running jobs, average cluster utilization and the
number of used, requested and available CPUs.

Fig. 3. Alea’s visualization output showing various metrics.

Figure 4 shows the newly available visual representation of a job schedule as
constructed by the scheduler. This feature is very useful especially for debugging
purposes or when tuning a new algorithm. However, for larger systems the sched-
ule cannot be reasonably displayed due to the screen resolution limitation. In
this (cropped) example the vertical y-axis shows 112 CPUs of two clusters, and
the x-axis denotes the planned start/completion times. The time is not to scale
(linear) in order to save space. Instead, the horizontal axis uses fixed lengths
between two consecutive events. An event represents either planned job start or
job completion. Using this trick, the schedule can typically display rather long
schedules (several days) while fitting within the limits of one screen6.

4 Notable Usages

In this section we present four examples where Alea has been used to model an
existing system and analyze the impact of new scheduling approaches. Notably,
the two latter examples (Sects. 4.3 and 4.4) were achieved with the recently
upgraded Alea described in this paper.
6 In this case the schedule shows job-to-CPU mapping covering ∼3 days.



226 D. Klusáček et al.

Fig. 4. Alea’s new visualization feature showing constructed job schedule.

4.1 MetaCentrum Queue Reconfiguration

The first example is a major queue reconfiguration that took place in MetaCen-
trum, which is the largest Czech provider of distributed computing facilities for
academic and scientific purposes. In this case, Alea has been used to evaluate the
impact of new queue setup, where the goal has been to increase fairness, system
utilization and wait times across different classes of jobs. Existing conservative
setup with 3 major queues (short, normal and long jobs) and rather constrain-
ing limits concerning the maximum allowed number of simultaneously running
long jobs has been replaced with an improved design introducing new, more
fine-grained queues with more generous limits. The promising effect observed in
the simulations was then also validated in practice. With the new setup being
introduced in January 2014, the overall CPU utilization has increased by 43.2%
while the average wait time has decreased by 17.9% (4.4 vs. 3.6 h) [11].

4.2 Plan-Based Scheduler with Metaheuristic Optimization

In July 2014, CERIT Scientific Cloud started to use a unique Torque-compatible
scheduler that—instead of queuing—used planning and metaheuristics to build
and optimize job schedules. This new planning-based scheduler has been first
thoroughly modeled and refined in Alea and then remained in operation until
2017. It was a successful scheduler as it increased the avg. CPU utilization by
9.3% while decreasing the avg. wait time and the avg. bounded slowdown by
36.7% and 79.4%, respectively [8].



Alea – Complex Job Scheduling Simulator 227

4.3 Scheduling with Advance Data Staging

The I/O subsystem is an increasing storage bottleneck on HPC Systems. The
ADA-FS project [15] tries to close the bottleneck with deploying an on-demand
file system and staging the data in advance to the allocated nodes. In a recent
paper [19], Alea has been used to study the suitability of current mainstream
scheduling algorithms such as FCFS and backfilling to accurately predict target
nodes where a waiting job will be executed. Such a prediction is crucial when data
is staged in advance or private file system is deployed prior to actual computation
(while a job is still waiting). In this paper, we have demonstrated that current
schedulers relying on inaccurate user-provided runtime estimates are unable to
make reliable long-term predictions and even short-term predictions (less than
10 min ahead) are not possible for large fractions of jobs (∼50% of jobs).

4.4 Improving Fairness in Large HTC System

In 2019, Alea has been used to model and then reconfigure queue and quota
setup in a large HTC system. This system is shared by two different workloads—
a local user workload and a grid workload that comes from LHC experiments.
The motivation was to increase the fairness toward local users who often have
to wait much longer than those grid-originating jobs (roughly twice as long, on
average). In this work, the recently improved simulation speed of Alea was mostly
important, since the HTC system is rather large (33,456 cores), processing lots of
jobs each month (∼2.7 millions). Using Alea, we were able to model the system
and evaluate new setups for the system’s queues and the per-group CPU quotas.
This new setup allowed for improved fairness for local users, by better balancing
their wait times with the wait times of grid-originating jobs [2].

5 Conclusion and Future Work

This paper has presented the recently upgraded complex job scheduling simu-
lator Alea. We have demonstrated its capabilities and usefulness using real-life
examples. Importantly, we have shown that the simulator is capable to simulate
large systems and execute large workloads in an acceptable time frame. Alea can
be freely obtained at GitHub [1] under the LGPL license.

Acknowledgments. We acknowledge the support and computational resources pro-
vided by the MetaCentrum under the program LM2015042, and the support provided
by the project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the Ministry
of Education, Youth and Sports of the Czech Republic.



228 D. Klusáček et al.

References

1. Alea job scheduling simulator, April 2019. https://github.com/aleasimulator
2. Azevedo, F., Klusáček, D., Suter, F.: Improving fairness in a large scale HTC

system through workload analysis and simulation. In: Yahyapour, R. (ed.) Euro-
Par 2019. LNCS, vol. 11725, pp. 129–141. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29400-7 10

3. Bak, S., Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W., Weglarz, J.: GSSIM -
a tool for distributed computing experiments. Sci. Program. 19(4), 231–251 (2011)

4. Dutot, P.-F., Mercier, M., Poquet, M., Richard, O.: Batsim: a realistic language-
independent resources and jobs management systems simulator. In: Desai, N.,
Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 178–197. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61756-5 10

5. Galleguillos, C., Kiziltan, Z., Netti, A., Soto, R.: AccaSim: a customizable workload
management simulator for job dispatching research in HPC systems. arXiv e-prints
arXiv:1806.06728 (2018)

6. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: 8th USENIX
Symposium on Networked Systems Design and Implementation (2011)

7. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

8. Klusáček, D., Chlumský, V.: Planning and metaheuristic optimization in produc-
tion job scheduler. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol.
10353, pp. 198–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61756-5 11

9. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: 3rd International
ICST Conference on Simulation Tools and Technique, ICST (2010)

10. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient
queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 12

11. Klusáček, D., Tóth, Š., Podolńıková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016.
LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61756-5 5

12. Klusáček, D., Tóth, Š., Podolńıková, G.: Complex job scheduling simulations with
Alea 4. In: Ninth EAI International Conference on Simulation Tools and Techniques
(SimuTools 2016), pp. 124–129. ACM (2016)

13. Mercier, M.: Batsim JSSPP presentation (2016). https://gitlab.inria.fr/batsim/
batsim/blob/master/publications/Batsim JSSPP 2016.pdf

14. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

15. Oeste, S., Kluge, M., Soysal, M., Streit, A., Vef, M.-A., Brinkmann, A.: Exploring
opportunities for job-temporal file systems with ADA-FS. In: 1st Joint Interna-
tional Workshop on Parallel Data Storage and Data Intensive Scalable Computing
Systems (2016)

https://github.com/aleasimulator
https://doi.org/10.1007/978-3-030-29400-7_10
https://doi.org/10.1007/978-3-030-29400-7_10
https://doi.org/10.1007/978-3-319-61756-5_10
http://arxiv.org/abs/1806.06728
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
https://gitlab.inria.fr/batsim/batsim/blob/master/publications/Batsim_JSSPP_2016.pdf
https://gitlab.inria.fr/batsim/batsim/blob/master/publications/Batsim_JSSPP_2016.pdf


Alea – Complex Job Scheduling Simulator 229

16. Rodrigo, G.P., Elmroth, E., Östberg, P.-O., Ramakrishnan, L.: ScSF: a scheduling
simulation framework. In: Klusáček, D., Cirne, W., Desai, N. (eds.) JSSPP 2017.
LNCS, vol. 10773, pp. 152–173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77398-8 9

17. Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Cirne, W., Desai,
N. (eds.) JSSPP 2014. LNCS, vol. 8828, pp. 147–167. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15789-4 9

18. Simakov, N.A., et al.: A slurm simulator: implementation and parametric analysis.
In: Jarvis, S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724, pp.
197–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8 10

19. Soysal, M., Berghoff, M., Klusáček, D., Streit, A.: On the quality of wall time
estimates for resource allocation prediction. In: ICPP 2019 Proceedings of the
48th International Conference on Parallel Processing: Workshops. ACM (2019)

20. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling
and simulating data Grids: an extension to GridSim. Concurr. Comput.: Pract.
Exp. 20(13), 1591–1609 (2008)

21. Tang, W.: Qsim (2019). https://trac.mcs.anl.gov/projects/cobalt/wiki/qsim
22. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based

simulation of parallel job scheduling. In: 22nd Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 51–60 (2014)

https://doi.org/10.1007/978-3-319-77398-8_9
https://doi.org/10.1007/978-3-319-77398-8_9
https://doi.org/10.1007/978-3-319-15789-4_9
https://doi.org/10.1007/978-3-319-72971-8_10
https://trac.mcs.anl.gov/projects/cobalt/wiki/qsim

	Alea – Complex Job Scheduling Simulator
	1 Introduction
	2 Related Work
	3 Architecture and Major Functionality
	3.1 Detailed System Simulation Capabilities
	3.2 Dynamic Workloads
	3.3 Simulation Speed
	3.4 Simulation Throughput and Speedup Comparison
	3.5 Visualization

	4 Notable Usages
	4.1 MetaCentrum Queue Reconfiguration
	4.2 Plan-Based Scheduler with Metaheuristic Optimization
	4.3 Scheduling with Advance Data Staging
	4.4 Improving Fairness in Large HTC System

	5 Conclusion and Future Work
	References




