
A New Hardware Counters Based Thread
Migration Strategy for NUMA Systems

Oscar Garćıa Lorenzo1(B) , Rubén Laso Rodŕıguez1 ,
Tomás Fernández Pena1 , Jose Carlos Cabaleiro Domı́nguez1 ,

Francisco Fernández Rivera1 , and Juan Ángel Lorenzo del Castillo2

1 CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
oscar.garcia@usc.es

2 Quartz Research Lab - EISTI, Pau, France

Abstract. Multicore NUMA systems present on-board memory hier-
archies and communication networks that influence performance when
executing shared memory parallel codes. Characterising this influence
is complex, and understanding the effect of particular hardware config-
urations on different codes is of paramount importance. In this paper,
monitoring information extracted from hardware counters at runtime is
used to characterise the behaviour of each thread in the processes run-
ning in the system. This characterisation is given in terms of number
of instructions per second, operational intensity, and latency of memory
access. We propose to use all this information to guide a thread migra-
tion strategy that improves execution efficiency by increasing locality
and affinity. Different configurations of NAS Parallel OpenMP bench-
marks running concurrently on multicore systems were used to validate
the benefits of the proposed thread migration strategy. Our proposal pro-
duces up to 25% improvement over the OS for heterogeneous workloads,
under different and realistic locality and affinity scenarios.

Keywords: Roofline model · Hardware counters · Performance ·
Thread migration

1 Introduction

Current multicores feature a diverse set of compute units and on-board mem-
ory hierarchies connected by increasingly complex communication networks and
protocols. For a parallel code to be correctly and efficiently executed in a multi-
core system, it must be carefully programmed, and memory sharing stands out
as a sine qua non for general purpose programming. The behaviour of the code
depends also on the status of the processes currently executed in the system.
A programming challenge for these systems is to partition application tasks,
mapping them to one of many possible thread-to-core configuration to achieve a
desired performance in terms of throughput, delay, power, and resource consump-
tion, among others [11]. The behaviour of the system can dynamically change
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 205–216, 2020.
https://doi.org/10.1007/978-3-030-43222-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_18&domain=pdf
http://orcid.org/0000-0002-8332-5403
http://orcid.org/0000-0003-2574-4025
http://orcid.org/0000-0002-7622-4698
http://orcid.org/0000-0002-5674-5162
http://orcid.org/0000-0002-6728-9350
http://orcid.org/0000-0002-8354-1288
https://doi.org/10.1007/978-3-030-43222-5_18


206 O. Garćıa Lorenzo et al.

when multiple processes are running with several threads each. The number of
mapping choices increases as the number of cores and threads do. Note that, in
general purpose systems, the number of multithreaded processes can be large
and change dynamically. Concerning architectural features, particularly those
that determine the behaviour of memory accesses, it is critical to improve local-
ity and affinity among threads, data, and cores. Performance issues that are
impacted by this information are, among others, data locality, thread affinity,
and load balancing. Therefore, addressing these issues is important to improve
performance.

A number of performance models have been proposed to understand the per-
formance of a code running on a particular system [1,4,6,17]. In particular, the
roofline model (RM) [18] offers a balance between simplicity and descriptiveness
based on the number of FLOPS (Floating Point Operations per Second) and the
operational intensity, defined as the number of FLOPS per byte of DRAM traffic
(flopsB). The original RM presented drawbacks that were taken into account by
the 3DyRM model [14], which extends the RM model with an additional param-
eter, the memory access latency, measured in number of cycles. Also, 3DyRM
shows the dynamic evolution of these parameters. This model uses the informa-
tion provided by Precise Event Based Sampling (PEBS) [8,9] on Intel processors
to obtain its defining parameters (flopsB, GFLOPS, and latency). These parame-
ters identify three important factors that influence performance of parallel codes
when executed in a shared memory system, and in particular, in non-uniform
memory access (NUMA) systems. In a NUMA system, distance and connection
to memory cells from different cores may induce variations in memory latency,
and so the same code may perform differently depending on where it was sched-
uled, which may not be detectable in terms of the traditional RM.

Moving threads close to where their data reside can help alleviate memory
related performance issues, especially in NUMA systems. Note that when threads
migrate, the corresponding data usually stays in the original memory module,
and they are accessed remotely by the migrated thread [3]. In this paper, we use
the 3DyRM model to implement strategies for migrating threads in shared mem-
ory systems and, in particular, multicore NUMA servers, possible with multiple
concurrent users. The concept is to use the defining parameters of 3DyRM as
objective functions to be optimised. Thus, the problem can be defined in terms
of a multiobjective optimisation problem. The proposed technique is an itera-
tive method inspired from evolutionary optimisation algorithms. To this end, an
individual utility function to represent the relative importance of the 3DyRM
parameters is defined. This function uses the number of instructions executed,
operational intensity, and average memory latency values, for providing a char-
acterisation of the performance of each parallel thread in terms of locality and
affinity.

2 Characterisation of the Performance of Threads

The main bottleneck in shared memory codes is often the connection between
the processors and memory. 3DyRM relates processor performance to off-chip



HC Thread Migration 207

memory traffic. The Operational Intensity (OI) is the floating operations per
byte of DRAM traffic (measured in flopsB). OI measures traffic between the
caches and main memory rather than between the processor and caches. Thus,
OI incorporates the DRAM bandwidth required by a processor in a particular
computer, and the cache hierarchy, since better use of cache memories would
mean less use of main memory. Note that OI is insufficient to fully characterise
memory performance, particularly in NUMA systems. Extending RM with the
mean latency of memory access provides a better model of performance. Thus,
we employ the 3DyRM model, which provides a three dimensional representation
of thread performance on a particular placement.

PEBS is an advanced sampling feature of Intel Core based processors, where
the processor directly records samples from specific hardware counters into a
designated memory region. The use of PEBS as a tool to monitor a program
execution was already implemented in [15], providing runtime dynamic informa-
tion about the behaviour of the code with low overhead [2], as well as an initial
version of a thread migration tool tested with a toy examples. The migration tool
presented in this work continuously gathers performance information in terms of
the 3DyRM, i.e. GFLOPS, flopsB, and latency, for each core and thread. How-
ever, the information about floating point operations provided by PEBS may
sometimes be inaccurate [9] or difficult to obtain. In addition, accurate informa-
tion about retired instructions can be easily obtained, so giga instructions per
second (GIPS) and instructions retired per byte (instB) may be used rather than
GFLOPS and flopsB, respectively. For this reason, GIPS and instB are used in
this work.

3 A New Thread Migration Strategy

We introduce a new strategy for guiding thread migration in NUMA systems.
The proposed algorithm is executed every T milliseconds to eventually perform
threads migrations. The idea is to consider the 3DyRM parameters as objective
functions to be optimised, so increasing GFLOPS (or GIPS) and flopsB (or
instB), and decreasing latency in each thread improve performance in the parallel
code. There is a close relation between this and multiobjective optimisation
(MOO) problems, which have been extensively studied [5]. The aim of many
MOO solutions is to obtain the Pareto optimality numerically. However, this
task is usually computationally intensive, and consequently a number of heuristic
approaches have been proposed.

In our case, there are no specific functions to be optimised. Rather, we have
a set of values that are continuously measured in the system. Our proposal is
to apply MOO methods to address the problem using the 3DyRM parameters.
Thread migration is then used to modify the state of each thread to simultane-
ously optimise the parameters. Therefore, we propose to characterise each thread
using an aggregate objective function, P , that combines these three parameters.

Consider a system with N computational nodes or cores in which, at certain
time, multiple multithreaded processes are running. Let Pijk be the performance



208 O. Garćıa Lorenzo et al.

for the i-th thread of the j-th process when executed on the k-th computational
node. We define the aggregate function as

Pijk =
GIPSijk · intsBijk

latencyijk

, (1)

where GIPSijk is the GIPS of the thread, and instBijk and latencyijk are the
instB and average latency values, respectively. Note that, larger values of Pijk

imply better performance.
Initially, no values of Pijk are available for any thread on any node. On each

time interval, Pijk is computed for every thread on the system according to the
values read by the hardware counters. In every interval some values of Pijk are
updated, for those nodes k where each thread was executed, while others store
the performance information of each thread when it was executed in a different
node (if available). Thus, the algorithm adapts to possible behaviour changes
for the threads. As threads migrate and are executed on different nodes, more
values of Pijk are progressively filled up.

To compare threads from different processes, each individual Pijk is divided
by the mean Pijk of all threads of the same process, i.e. the j-th process,

̂Pijk =
Pijk

∑nj

m=1 Pmjh/nj

, (2)

where nj is the number of threads of process j, and h is, for each thread m of
the j-th process, the last node where it was running.

Every T milliseconds, once the new values of Pijk are computed, the thread
with the worst current performance, in terms of Pijk, is selected to be migrated.
Thus, for each process, those threads with ̂Pijk < 1 are currently performing
worse than the mean of the threads in the same process, and the worst performing
thread in the system is considered to be the one with the lowest ̂Pijk, i.e., the
thread performing worse when compared to the other threads of its process. This
is identified as the migration thread, and denoted by Θm.

Note that the migration can be to any core in a node other than the current
node in which Θm resides. A weighted random process is used to choose the
destination core, based on the stored performance values. In order to consider
all possible migrations, all Pijk values have to be taken into account. Therefore,
it is important to fill as many entries of Pijk as possible.

A lottery strategy is proposed in such a way that every possible destination
is granted a number of tickets defined by the user, some examples are shown in
Table 1, according to the likelihood of that migration improving performance.
The destination with the larger likelihood has a greater chance of being chosen.
Migration may take place to an empty core, where no other thread is currently
being executed, or to a core occupied with other threads. If there are already
threads in the core, one would have to be exchanged with Θm. The swap thread
is denoted as Θg, and all threads are candidates to be Θg. Note that, although
not all threads may be selected to be Θm (e.g. a process with a single thread



HC Thread Migration 209

Table 1. List of tickets.

Ticket Description Default value

MEM CELL WORSE Previous data show worst performance in a
given node

1

MEM CELL NO DATA No previous data in a given memory node 2

MEM CELL BETTER Previous data show better performance in a
given node

4

FREE CORE It is possible to migrate a thread to a free
core

2

PREF NODE It is possible to migrate a thread to a core
located in the node in which it makes most
of its memory accesses

4

THREAD UNDER PERF It is possible to interchange a thread with
another whose relative performance in
under a determined threshold

3

would always have ̂Pijk = 1 and so never be selected), they may still be consid-
ered to be Θg to ensure the best performance for the whole system. When all
tickets have been assigned, a final destination core is randomly selected based
on the awarded tickets. If the destination core is free, a simple migration will be
performed. Otherwise, an interchanging thread, Θg, is chosen from those cur-
rently being executed on that core. Once the threads to be migrated are selected,
the migrations are actually performed.

Migrations may affect not only the involved threads, Θm and Θg, but all
threads in the system due to synchronisation or other collateral relations among
threads. The total performance for each iteration can be calculated as the sum
of all Pijk for all threads. Thus, the current total performance, Ptcurrent, char-
acterises a thread configuration, independently of the processes being executed.
The total performance of the previous iteration is stored as Ptlast. On any inter-
val, Ptcurrent may increase or decrease relatively to Ptlast. Depending on this
variation, decisions are made regarding the next step of the algorithm.

Our algorithm dynamically adjusts the number of migrations per unit of
time by changing T between a given minimum, Tmin, and maximum, Tmax, dou-
bling or halving the previous value. To do that, a ratio, 0 ≤ ω ≤ 1 is defined
for Ptcurrent/Ptlast, to limit an acceptable decrement in performance. So, if a
thread placement has a lower total performance, more migrations should be
performed to try to get a better thread placement, because they are likely to
increase performance (Ptcurrent ≥ ωPtlast). This way, T is decreased to perform
migrations more often and reach optimal placement quicker. However, if current
thread placement has high total performance, migrations have a greater chance
of being detrimental. In this case, if Ptcurrent < ωPtlast, T is increased. Addi-
tionally, a rollback mechanism is implemented, to undo migrations if they result



210 O. Garćıa Lorenzo et al.

in a significant loss of performance, returning migrated threads to their former
locations. Summarising, the rules guiding our algorithm are:

– If Ptcurrent ≥ ωPtlast then the total performance improves, so, migrations
are considered productive, T is halved (T → T/2), and a new migration is
performed according to the rules indicated previously.

– If Ptcurrent < ωPtlast then the total performance decreases more than a given
threshold ω, so, migrations are considered counter-productive, T is doubled
(T → 2 × T ), and the last migration is rolled back.

This algorithm is named Interchange and Migration Algorithm with Performance
Record and Rollback (IMAR2). To simplify notation, IMAR2 and its parameters
are denoted as IMAR2[Tmin, Tmax;ω].

4 Experimental Results

NPB-OMP benchmarks [10] were used to study the effect of the memory alloca-
tion. They are broadly used and their diverse behaviour when executed is well
known. These benchmarks are well suited for multicore processors, although
they do not greatly stress the memory of large servers. To study the effects of
NUMA memory allocation, different memory stress situations were considered
using the numactl tool [12], which allows the memory cell to store specific data,
and threads to be pinned to specific cores or processors. Two servers were used
to test NUMA effects. Both processors have one memory controller with four
memory channels for connecting DIMM memory chips. In both systems node 0
has greater affinity with cell 0, node 1 with cell 1, and so on. Also, a NUMA
aware Linux kernel was used. More specifically:

– Server A: An Ubuntu 14, with Linux kernel 3.10, NUMA server with four
nodes, each has one octo-core Xeon E5-4620 (32 physical cores in total),
Sandy Bridge architecture, 16 MB L3 cache, 2.2 GHz–2.6 GHz, and 512 GB
of RAM. This server has memory chips connected in all four memory channels
and may use all the available memory bandwidth.

– Server B: A Debian GNU/Linux 9, kernel version 5.1.15 composed by four
nodes with Intel Xeon E5-4620 v4 with 10 cores each (40 in total), Broadwell-
EP architecture, 25 MB L3 cache, 2.1 GHz–2.6 GHz, and 128 GB of RAM.
Only one memory channel is used in this server, increasing the chances of
memory congestion in remote accesses and increasing NUMA effects.

We designed experiments in which four instances of the NPB-OMP bench-
marks are executed concurrently, and the placement of each can be controlled.
Each benchmark instance was executed as a multi-threaded process with just
enough threads to fill one node. We tested a representative set of memory and
thread placements. The memory placements are:

– Free: No specific memory placement is selected, the OS decides where to
place the data of each benchmark. This is the most common case for regular
users.



HC Thread Migration 211

– Direct: Each benchmark have its preferred memory set to a different cell.
In the case of four benchmarks, each one have one memory cell for its data,
as long as its memory is large enough. This is a common option used by
experienced users who know the limits of their applications [13,16].

– Interleaved: Each benchmark have its memory set to interleaved, with
each consecutive memory page set to a different memory cell in a round robin
fashion. This is a common option used by experienced users who do not know
the specific characteristics of their programs or want to use all the available
bandwidth.

and the thread one’s:

– OS: The OS decides where to place the threads, as well as their possible
migrations. Note that the four benchmarks can not be initiated at exactly
the same time, but only one at a time. This fact influences the initial thread
placement. This is the most common case for regular users.

– Pinned: Each benchmark had its threads pinned to one node. When com-
bined with the direct memory placement the same node is used for one
benchmark. This is a common option used by experienced users [7].

– IMAR2: The IMAR2 algorithm is used to place and migrate the threads.

Different combinations of these memory and thread placements were tested.
Results of four class C NPB-OMP codes were selected to be shown in this paper:
lu.C, sp.C, bt.C and ua.C. Benchmarks were compiled with gcc and O2 opti-
misation. This selection was made according to three following criteria: First,
these are codes with different memory access patterns and different computing
requirements. The DyRM model was used to select two benchmarks with low
flopsB (lu.C and sp.C) and two with high flopsB (bt.C and ua.C). Second,
since the execution times of these codes are similar, they remain in concurrent
execution most of the time. This helps studying the effect of thread migrations.
Third, they are representative to understand the behaviour of our proposal.

Each test was executed on the four nodes, combined as four processes of the
same code that produced four combinations, named 4 lu.C, 4 sp.C, 4 bt.C, and
4 ua.C, and four processes of different codes, that produced one combination
named (lu.C/sp.C/bt.C/ua.C). Tables 2 and 3 show the results for servers A
and B, respectively. The times for all benchmarks of lu.C/sp.C/bt.C/ua.C
are shown, whereas only the times of the slowest instances are shown for the
four equal benchmarks. A graphical comparison is shown in Fig. 1, where times
of each test are normalised to the time of a normal OS execution, the free
memory placement with OS thread placement, with times in the first column of
Tables 2 and 3 are shown as a percentage. A percentage greater that 100 means
a worse execution time, while a result under 100 shows a better execution time.



212 O. Garćıa Lorenzo et al.

Table 2. Times for four NAS benchmarks in server A. When all benchmarks are of the
same kind only the time of the slowest is shown. Best time on each row is remarked in
bold. Best time for each memory policy is shown in italics.

Test Time (s)

Benchmarks Free Direct Interleaved

OS IMAR2 OS Pinned IMAR2 OS Pinned IMAR2

lu 220.24 245.05 344.82 210.00 223.33 300.55 428.41 310.68

lu.C/sp.C
bt.C/ua.C

sp 235.53 238.39 544.63 267.89 267.86 350.73 557.39 367.57

bt 201.69 214.50 321.39 180.77 217.15 271.34 260.46 270.52

ua 197.03 222.02 409.35 190.26 212.27 307.57 316.26 299.89

4 lu.C 215.84 313.24 428.85 212.20 258.43 401.49 452.15 392.84

4 sp.C 287.49 324.00 1397.28 267.71 323.59 616.40 763.88 610.91

4 bt.C 185.37 200.70 395.95 182.29 207.21 241.76 246.90 223.57

4 ua.C 203.54 211.21 545.63 190.46 220.65 319.67 313.59 297.92

Table 3. Times for four NAS benchmarks in server B. When all benchmarks are of the
same kind only the time of the slowest is shown. Best time on each row is remarked in
bold. Best time for each memory policy is shown in italics.

Test Time (s)

Benchmarks Free Direct Interleaved

OS IMAR2 OS Pinned IMAR2 OS Pinned IMAR2

lu 305.00 187.00 177.08 176.37 217.99 417.75 355.42 194.01

lu.C/sp.C
bt.C/ua.C

sp 476.00 354.95 474.79 453.60 412.59 494.71 469.10 402.60

bt 276.75 281.97 241.27 229.83 289.74 417.75 222.39 310.07

ua 371.87 326.74 319.47 298.33 335.64 376.74 430.46 363.81

4 lu.C 263.26 341.69 199.27 259.40 326.85 293.02 317.60 449.19

4 sp.C 758.59 592.73 619.26 642.74 569.48 780.20 762.14 627.22

4 bt.C 322.58 291.79 225.72 232.30 267.85 305.67 299.00 280.73

4 ua.C 316.93 378.06 297.95 348.99 364.65 400.66 409.65 358.03

4.1 Server A

Note that the direct memory placement with pinned threads gets the best exe-
cution time (it is below 100), while interleaved memory and pinned threads
is not a good solution in this case. In Fig. 1(a) the results of using IMAR2 with
free memory placement are also shown and, in this case, the migrations do not
improve, but actually decrease performance. This is due to the fact that IMAR2

does not move memory, it depends on the OS for that, so it cannot reach as
good results as the direct memory with pinned threads. Note that in this case
the sp.C benchmark takes a longer time to execute, so it is favoured in the end
by having the whole system for itself; both IMAR2 and OS are able to take
it into account and reach a similar end time. In Fig. 1(c), results with direct
memory are shown. In this case the OS does not migrate threads or memory



HC Thread Migration 213

(a) Free memory - A (b) Free memory - B

(c) Direct memory - A (d) Direct memory - B

(e) Interleaved memory - A (f) Interleaved memory - B

Fig. 1. Normalised execution times (in seconds, Y axis) against free - OS for all tests

taking into account that the benchmarks have their memory on just one node,
so it results in worse performance; meanwhile the IMAR2 migrations are able to
move the threads to their correct location and performance does not suffer much.
In Fig. 1(e), the results with interleaved memory are shown. Neither in this
case is the OS able to fix the memory or thread placement, and results are not
worse that leaving the OS alone; IMAR2 migrations are able to improve the OS
somewhat, but, since they cannot move the memory, the margin for improve-
ment is low. In conclusion, in this system, while migrations may improve the
OS in certain cases, the OS does a good work and there is little margin for
improvement.

4.2 Server B

Figure 1(b) shows that global performance is greatly improved when different
benchmarks run concurrently compared to the OS scheduling when memory



214 O. Garćıa Lorenzo et al.

policy is free. Improvements reach up to 38% the individual execution times,
and up to 25% in total execution time. Note that, a migration strategy has
more chances for improving performance when different processes are executed,
as they may have different memory requirements. When a set of instances of
the same benchmark is executed, results depend heavily on the behaviour of
the code. As mentioned before, the influence of migrations is huge in 4 sp.C,
since memory latency is critical. The case for 4 bt.C is similar, which improves
too. For 4 lu.C and 4 ua.C, memory saturation makes almost impossible to
improve the results, and even migrations cause a performance slowdown. When
the memory is directly mapped to a node, see Fig. 1(d), OS outperforms the
pinned scheduling in many of the cases. Due to the work balance, OS mitigates
the possible memory congestion caused when all the data is placed in a single
memory node. Is must be noted that in this situation IMAR2 improves the
execution times of sp.C, the most memory intensive benchmark. Finally, when
the Interleaved strategy for memory is used, Fig. 1(f), IMAR2 succeeds in
achieving the best performance in the memory intensive benchmarks, thanks to
a better thread placement through the cores of the server.

5 Conclusions

Thread and data allocation significantly influence the performance of modern
computers, being this fact particularly true in NUMA systems. When the dis-
tribution of threads and data is far from being the optimum, the OS by itself
is not able to optimise it. In this paper, a dynamic thread migration algorithm
to deal with this issue is proposed. It is based on the optimisation of the opera-
tional intensity, the GIPS, and the memory latency, parameters that define the
3DyRM model. The proposed technique improves execution times when thread
locality is poor and the OS is unable to improve thread placement in runtime.

In this paper, we define a product that combines the three 3DyRM parame-
ters in a single value, which can be considered a fair representation of the whole
performance of the system in terms of locality and affinity. To optimise this value,
we propose a migration algorithm, named IMAR2, based on a weighted lottery
strategy. Hardware counters allow us to obtain information about the perfor-
mance of each thread in the system in runtime with low overhead. IMAR2 uses
this information to quantify the 3DyRM parameters and then performs thread
migration and allocation in runtime. Using benchmarks from the NPB-OMP,
we evaluate IMAR2 in a variety of scenarios. Results show that our algorithm
improves execution time by up to 25% in realistic scenarios in terms of local-
ity and affinity. Besides, only small performance losses were obtained in cases
where the thread configuration was initially good. Rollbacks and changes in the
time between migrations are mechanisms to adapt dynamically to the current
behaviour of the system as a whole. These provide better results in cases where
migrations are unnecessary, while still improving the performance in cases with
low initial performance.



HC Thread Migration 215

Several improvements might be considered as future work, like a precise mea-
surement of FLOPS, including vector extensions, that could improve both per-
formance estimation and migration decisions. Also, some modifications of the
current objective function might be explored, like weighing its parameters or
even testing different functions. Finally, other migration algorithms could be
considered, maybe based on stochastic scheduling, optimisation techniques, or
other state of the art approaches.

Acknowledgements. This work has received financial support from the Con-
selleŕıa de Cultura, Educación e Ordenación Universitaria (accreditation 2016-2019,
ED431G/08 and reference competitive group 2019-2021, ED431C 2018/19) and the
European Regional Development Fund (ERDF). It was also funded by the Ministerio
de Economı́a, Industria y Competitividad within the project TIN2016-76373-P.

References

1. Adhianto, L., Banerjee, S., Fagan, M., et al.: HPCToolkit: tools for performance
analysis of optimized parallel programs. Concurr. Comput.: Pract. Exp. 22(6),
685–701 (2010). https://doi.org/10.1002/cpe.1553

2. Akiyama, S., Hirofuchi, T.: Quantitative evaluation of intel PEBS overhead for
online system-noise analysis. In: Proceedings of the 7th International Workshop
on Runtime and Operating Systems for Supercomputers ROSS 2017, ROSS 2017,
pp. 3:1–3:8. ACM, New York (2017). https://doi.org/10.1145/3095770.3095773

3. Chasparis, G.C., Rossbory, M.: Efficient dynamic pinning of parallelized applica-
tions by distributed reinforcement learning. Int. J. Parallel Program. 47(1), 24–38
(2017). https://doi.org/10.1007/s10766-017-0541-y

4. Cheung, A., Madden, S.: Performance profiling with EndoScope, an acquisitional
software monitoring framework. Proc. VLDB Endow. 1(1), 42–53 (2008). https://
doi.org/10.14778/1453856.1453866

5. Cho, J.H., Wang, Y., Chen, R., Chan, K.S., Swami, A.: A survey on modeling and
optimizing multi-objective systems. IEEE Commun. Surv. Tutor. 19, 1867–1901
(2017). https://doi.org/10.1109/COMST.2017.2698366

6. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6),
702–719 (2010). https://doi.org/10.1002/cpe.1556

7. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Performance
evaluation of the sparse matrix-vector multiplication on modern architectures. J.
Supercomput. 50(1), 36–77 (2009). https://doi.org/10.1007/s11227-008-0251-8

8. Intel Corp.: Intel 64 and IA-32 Architectures Software Developer Manuals (2017).
https://software.intel.com/articles/intel-sdm. Accessed Nov 2019

9. Intel Developer Zone: Fluctuating FLOP count on Sandy Bridge (2013). http://
software.intel.com/en-us/forums/topic/375320. Accessed Nov 2019

10. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical report, Technical Report NAS-99-011, NASA
Ames Research Center (1999)

11. Ju, M., Jung, H., Che, H.: A performance analysis methodology for multicore,
multithreaded processors. IEEE Trans. Comput. 63(2), 276–289 (2014). https://
doi.org/10.1109/TC.2012.223

https://doi.org/10.1002/cpe.1553
https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1007/s10766-017-0541-y
https://doi.org/10.14778/1453856.1453866
https://doi.org/10.14778/1453856.1453866
https://doi.org/10.1109/COMST.2017.2698366
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1007/s11227-008-0251-8
https://software.intel.com/articles/intel-sdm
http://software.intel.com/en-us/forums/topic/375320
http://software.intel.com/en-us/forums/topic/375320
https://doi.org/10.1109/TC.2012.223
https://doi.org/10.1109/TC.2012.223


216 O. Garćıa Lorenzo et al.

12. Kleen, A.: A NUMA API for Linux. Novel Inc. (2005)
13. Lameter, C., et al.: NUMA (non-uniform memory access): an overview. ACM

Queue 11(7), 40 (2013). https://queue.acm.org/detail.cfm?id=2513149
14. Lorenzo, O.G., Pena, T.F., Cabaleiro, J.C., Pichel, J.C., Rivera, F.F.: 3DyRM: a

dynamic roofline model including memory latency information. J. Supercomput.
70(2), 696–708 (2014). https://doi.org/10.1007/s11227-014-1163-4

15. Lorenzo, O.G., Pena, T.F., Cabaleiro, J.C., Pichel, J.C., Rivera, F.F.: Multiob-
jective optimization technique based on monitoring information to increase the
performance of thread migration on multicores. In: 2014 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 416–423. IEEE (2014). https://
doi.org/10.1109/CLUSTER.2014.6968733

16. Rane, A., Stanzione, D.: Experiences in tuning performance of hybrid
MPI/OpenMP applications on quad-core systems. In: Proceedings of 10th LCI
International Conference on High-Performance Clustered Computing (2009)

17. Schulz, M., de Supinski, B.R.: PNMPI tools: a whole lot greater than the sum of
their parts. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing
(2007). https://doi.org/10.1145/1362622.1362663

18. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://queue.acm.org/detail.cfm?id=2513149
https://doi.org/10.1007/s11227-014-1163-4
https://doi.org/10.1109/CLUSTER.2014.6968733
https://doi.org/10.1109/CLUSTER.2014.6968733
https://doi.org/10.1145/1362622.1362663
https://doi.org/10.1145/1498765.1498785

	A New Hardware Counters Based Thread Migration Strategy for NUMA Systems
	1 Introduction
	2 Characterisation of the Performance of Threads
	3 A New Thread Migration Strategy
	4 Experimental Results
	4.1 Server A
	4.2 Server B

	5 Conclusions
	References




