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Abstract. For large scale systems, such as data centers, energy effi-
ciency has proven to be key for reducing capital, operational expenses
and environmental impact. Power drainage of a system is closely related
to the type and characteristics of workload that the device is running.
For this reason, this paper presents an automatic software tuning method
for parallel program generation able to adapt and exploit the hardware
features available on a target computing system such as an HPC facil-
ity or a cloud system in a better way than traditional compiler infras-
tructures. We propose a search based approach combining both exact
methods and approximated heuristics evolving programs in order to find
optimized configurations relying on an ever-increasing number of tunable
knobs i.e., code transformation and execution options (such as the num-
ber of OpenMP threads and/or the CPU frequency settings). The main
objective is to outperform the configurations generated by traditional
compiling infrastructures for selected KPIs i.e., performance, energy and
power usage (for both for the CPU and DRAM), as well as the runtime.
First experimental results tied to the local optimization phase of the
proposed framework are encouraging, demonstrating between 8% and
41% improvement for all considered metrics on a reference benchmark-
ing application (i.e., Linpack). This brings novel perspectives for the
global optimization step currently under investigation within the pre-
sented framework, with the ambition to pave the way toward automatic
tuning of energy-aware applications beyond the performance of the cur-
rent state-of-the-art compiler infrastructures.

Keywords: HPC - Performance evaluation - Energy efficiency -
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1 Introduction

With the advent of the Cloud Computing (CC) paradigm, the last decade has
seen massive investments in large-scale High Performance Computing (HPC) and
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storage systems aiming at hosting the surging demand for processing and data-
analytic capabilities. The integration of these systems in our daily life has never
been so tied, with native access enabled within our laptops, mobile phones or
smart Artificial Intelligence (AI) voice assistants. Outside the continuous expan-
sion of the supporting infrastructures performed in the private sector to sus-
tain their economic development, HPC is established as a strategic priority in
the public sector for most countries and governments. For large scale systems,
energy efficiency has proven to be key for reducing all kinds of costs related
to capital, operational expenses and environmental impact. A brief overview of
the latest Top 500 list (Nov. 2019) provides a concrete indication of the current
power consumption in such large-scale systems and projections for the Exaflop
machines foreseen by 2021 with a revised power envelop of 40 MW. Reaching this
target involves combined solutions mixing hardware, middleware and software
improvements, when power drainage of a system is closely related to the type
and characteristics of the workload. While many computing systems remain het-
erogeneous with the increased availability of accelerated systems in HPC centers
and the renewed global interest for AI methods, the energy efficiency challenge
is rendered more complex by the fact that pure performance and resource usage
optimization are also Key Performance Indicators (KPIs). In this context, this
paper aims at extending HPC middleware into a framework able to transpar-
ently address the runtime adaptation of execution optimizing priority KPIs i.e.,
performance, energy and power usage (for both the CPU and DRAM), as well
as the runtime in an attempt to solve the following question: Can we produce
energy-aware HPC workloads through source code evolution on heterogeneous
HPC resources? To that end, we propose EVOCODE, an automatic software
tuning method for parallel program generation able to better exploit hardware
features available on a target computing system such as an HPC facility or a
cloud system.

This paper is organized as follows: Sect.2 details the background of this
work and reviews related works. Then, the EvOCODE framework is presented
in Sect. 3. Implementation details of the framework, as well as the first exper-
imental results validating the approach, are expounded in Sect.4. Based on a
reference benchmarking application (i.e., Linpack, measuring a system’s floating
point computing power), the initial hyper-parameter optimization phase already
demonstrate concrete KPIs improvements with 8% performance and runtime
gains, up to 19% energy and power savings and even 41% of energy and power
usage decrease at the DRAM level. Finally, Sect.5 concludes the article and
provides future directions and perspectives.

2 Context and Motivations

Recent hardware developments support energy management at various levels
and allow for the dynamic scaling of the power (or frequency) for both the CPU
and Memory through integrated techniques such as Dynamic Voltage and Fre-
quency Scaling (DVFS) able also to handle idle states. These embedded sensors
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permit recent hardware to measure energy and performance metrics at a fine
grain, aggregating instruction-level measurements to offer an accurate report
of code region or process-level contributions. This can be done through low-
level power measurement interfaces such as Intel’s Running Average Power
Limit (RAPL) interface. Introduced in 2011 as part of the SandyBridge micro-
architecture, RAPL is an advanced power-capping infrastructure which allows
the users (or the operating system) to specify maximum power limits on pro-
cessor packages and DRAM. This allows a monitoring and control program to
dynamically limit the maximum average power, such that the processor can
run at the highest possible speed while automatically throttling back to stay
within the expected power and cooling budget. To respect these power limits,
the awareness of the current power usage is required. Direct measures being
often unfeasible at the processor level, power estimates are performed within a
model exploiting performance counters and temperature sensors, among others.
These estimations are made available to the user via a Model Specific Register
(MSR) or specific daemons which can be used when characterizing workloads.
Thus RAPL energy results provide a convenient interface to collect feedback
when optimizing code for a diverse range of modern computing systems. This
allows for unprecedented easy access to energy information when designing and
optimizing energy-aware code. Moreover, on the most recent hardware archi-
tectures and DRAMs, it was demonstrated that RAPL readings are providing
accurate results with negligible performance overhead [4,7]. Finally, it is also
worth to note that non-Intel processors such as the recent AMD architectures
(Ryzen, Epyc) also expose RAPL interfaces which can be used via the AMD
uProf performance analysis tool.

At the NVIDIA GPU accelerator level, A C-based API called NVidia Man-
agement Library (NVML) permits to monitor and manage various states of
GPU cards. The runtime version of NVML is embedded with the NVIDIA dis-
play driver, and direct access to the queries and commands are exposed via
nvidia-smi.

In all cases, these fine-grained interfaces (i.e., RAPL, NVML...) are used
in general-purpose tools able to collect low level performance metrics. Table 1
reviews the main performance analysis tools embedding Hardware counter mea-
surement able to report fine-grain power measurements, as well as global profiling
suites that eventually build on top of these low-level hardware counter interfaces.

Optimization and Auto-Tuning of Parallel Programs. Optimizing parallel pro-
grams becomes increasingly difficult with the rising complexity of modern parallel
architectures. On the one hand, parallel algorithmic improvement requires a deep
understanding of performance bottleneck to tune the code application with the
objective to run optimally on high-end machines. This assumes a complete work-
flow of performance engineering of effective scientific applications (based on stan-
dard MPI, OpenMP, an hybrid combination of both or accelerators frameworks),
including instrumentation, measurement (i.e., profiling and tracing, timing and
hardware counters), data storage, analysis, and visualization. Table 1 presents the
main performance and profiling analysis tools sustaining this complete workflow.
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Table 1. Main performance analysis tools embedding hardware counter measurement
for fine-grained power monitoring.

Name ‘ Version ‘ Description

Low-level performance analysis tools

Perf 4.10 Main interface in the Linux kernel and
a corresponding user-space tool to
measure hardware counters

PAPI 5.7.0 Performance Application Programming
Interface
LikWid 5.0.1 CLI applications & API to measure

hardware events

Generic performance and profiling analysis tools

ARM Forge/Perf. Report | 20.0 Profiling and Debugging for C, C++,
and Fortran High Performance code

TAU 2.29 Tuning & Analysis Utilities to
instrument code

Score-P 6.0 A Scalable Perf. Measurement Infra. for
Parallel Codes

HPC-Toolkit 2018.09 | Integrated suite of tools/performance

analysis of optimized parallel programs

However, none of these tools embed automatic software tuning solutions. To that
end, Auto-tuning [10] arose as an attempt to better exploit hardware features by
automatically tuning applications to run optimally on a given high-end machine.
An auto-tuner tries to find promising configurations for a given program execut-
ing on a given target platform to influence the non-functional behavior of this
program such as runtime, energy consumption or resource usage. A configuration
can be created by applying code changes to a program, also called static tunable
knobs or code transformations. Alternatively, runtime tuning knobs such as the
number of threads, the affinity or mapping of threads onto physical processors,
or the frequency at which the cores are clocked can be adapted. The literature
offers numerous studies dedicated to the optimization of the runtime knobs, much
less on the code transformation exploration since this requires the use of advanced
compiler infrastructures such as LLVM [9]. Furthermore, optimization is often lim-
ited to a single criteria such as runtime, while it is desirable to improve multiple
objectives simultaneously which is more difficult as criteria may be conflicting. For
instance, optimizing for performance may reduce energy efficiency and vice versa.
In all cases, the ever-increasing number of tunable knobs (both static or runtime),
coupled with the rise and complexity escalation of HPC applications, lead to an
intractable and prohibitively large search space since the order of the code trans-
formations applied matters. This explains why a wider adoption of auto-tuning
systems to optimize real world applications is still far from reality and all mod-
ern compilers such as GCC or LLVM rely on static heuristics known to produce
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good results on average but may even impede performances in some cases. The
huge search space induced by the quest of optimal sequences of tunable knobs for
each region composing a given source code represents a severe challenge for intelli-
gent systems. Two approaches are traditionally considered: (1) Machine Learning
(ML) [1], recognized to speed up the time required to tune applications but is too
dependent on rare training data and thus fail to guarantee the finding (local and
global) of optimal solutions. (2) Iterative search-based methods, relying on exact
or approximated (i.e., Evolutionary Algorithm (EA) inspired) heuristics. Identi-
fied as computationally expensive [6], this approach mainly targets performance
or execution time optimization. Moreover, their suitability for a specific applica-
tion depends on the shape of its associated search space of possible configurations.
Nevertheless, search-based approaches remain the most promising and effective
ones despite their identified concerns. To optimize simultaneously multiple objec-
tives i.e., performance, runtime, energy and power usage (for both the CPU and
DRAM), while minimising the time consuming evaluations of the objective vec-
tor on the target computing system, we propose EVOCODE, a search-based frame-
work for automatic tuning of parallel programs which permits to evolve a given
source code to produce optimized energy-aware versions. Combining both exact
and approximated heuristics in a two-stage Multi-Objective Evolutionary Algo-
rithm (MOEA) optimization phase relying on the LLVM Compiler Infrastructure,
the proposed approach is detailed in the next section.

3 Toward Automatic Software Tuning of Parallel
Programs for Energy-Aware Executions

An overview of the EvOCODE framework is proposed in Fig.1 and is now
depicted. It aims at tuning an input program denoted as P,.s for an opti-
mized execution on a target computing system such as an HPC facility or a
cloud system. “Optimized” in this context means the generation of semantically
equivalent programs Py, Ps, ... demonstrating improvement for selected KPIs i.e.,
performance, energy and power usage (both for the CPU and DRAM), as well
as runtime. In practice, we assume that P,.s is composed of multiple regions
{Ri, ..., R}, where each region delimits a single-entry single-exit section of the
source code subjected to tuning. For instance, an OpenMP section, an outermost
loop within a loop nest, or a function definition associated to a function call (i.e.,
at least the main() function). The identification and analysis of these regions
in Pres (eventually to isolate code portions that can be ignored) corresponds to
the Step A and B in EVOCODE. Note that some regions may exist as CUDA
kernels for hybrid (CPU+GPU) runs. Then in Step C, EVOCODE will operate a
two-stage MOEA optimization phase aiming at the automatic evolution of P,..y
as follows: (1) a local optimization is achieved aiming at the best configuration
selection for each region R; ;. Typically, a categorical hyper-parameter optimiza-
tion for the foreseen tunable knobs is performed for the selected KPIs leading to
different versions of these regions. (2) A global MOEA combines the regions to
measure the effect on the entire program instead of considering the effect only
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for individual region executions. In this way, we optimize the whole program exe-
cution instead of focusing on specific regions, to provide semantically equivalent
programs P1, Pa, ... based on approximated Pareto-optimal solutions. In practice,
new multi-objective surrogate-based approaches [8] hybridizing multi-objective
meta-heuristics (e.g., NSGA-IIT [3]) and Machine Learning models based on
Gaussian Processes are proposed to minimize the time consuming evaluations of
the objective vector on the target computing system. More precisely, configura-
tions are evaluated using surrogate versions of the objectives functions handled
by an oracle. If the prediction error ¢ is smaller than a predefined threshold,
the oracle will consider that evaluations are accurate (and thus do not need to
be executed in the target system), else it will update the surrogate models with
the true objectives values, obtained from the running evaluation of the selected
configurations. After the Pareto set for the whole program is computed, a set
of code configurations for the entire program can be selected from the Pareto
set, either manually or automatically to allow for the Step D of EVOCODE, to
help for the decision making phase. For the initial developments of EVOCODE,
preferences rankings provided from the decision-maker (i.e., to avoid providing
specific weight values between the objective functions) will be used as proposed
in [2], where the pruning method restricts the considered solutions within the
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Fig. 1. Overview of the EvoCode framework.
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Pareto set using threshold boundaries (e.g., afford for 10% performance penal-
ties while reducing by at least 25% of the energy). Other heuristics relying on
clustering methods i.e., grouping solutions with similar characteristics, will be
then considered to improve the decision making process.

4 Validation and First Experimental Results

This section presents the first experimental results obtained by the EvOCODE
framework implemented as a dedicated Python module. The technical details
of the environment supporting this implementation are provided in the Table 2.
The experiments detailed in the sequel were conducted on the HPC facility of
the University of Luxembourg [11], more precisely on the “regular” computing
nodes of the iris cluster, each featuring 2 Intel Skylake Xeon Gold 6132 pro-
cessors (totalling 28 cores, 2.6 GHz per node). For this reason, it was important
to favor libraries able to scale and exploit effectively these parallel resources.
For instance, the choice of DEAP was motivated by the fact that this framework
works in perfect harmony with parallelisation mechanism such as multiprocessing
and SCOOP. Then the application of the static tunable knobs (the only ones
considered at this early stage of developments) was done through the LLVM
compiler infrastructure. In practice, EVOCODE exploits the flexibility offered
by this suite to represent each program and source code from its LLVM byte-
code or Internal Representation (IR) obtained using the appropriate front-end
i.e., Clang for programs written in the C language family (mainly C, C++,
OpenCL and CUDA). In particular, EVOCODE takes as input the reference IR
representation Z"¢f of the program P, ¢ to optimize, and the target computing
system expected to run the derived programs (for instance the Skylake nodes
of the iris cluster in this section). The static tunable knobs are sequences of
codes transformations i.e., LLVM transformation passes. 54 such passes exist

Table 2. Libraries and components details part of EVOCODE implementation.

Component Version | Description

Python 3.74 |n/a

NumPy 1.17.4 | Fundamental package for scientific computing in Python

DEAP 1.3.0 Distributed Evolutionary Algorithms in Python

Optuna 0.19.0 | Define-by-Run Hyperparameter Optimization
Framework

Pandas 0.25.3 | Python Data Analysis Library

plotly 4.4.1 Data Analytic Visualization Framework

LLVM/ Clang | 8.0.0 LLVM Compiler Infrastructure and its front-end for the
C language family (C, C++, OpenCL, CUDA...)

LikWid 5.0.0 Performance monitoring suite for RAPL hardware
counter
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Table 3. LikWid-based objective values reported on EVOCODE individuals evaluation.

Metric name Counter | Event Description

perf [MFlops] |n/a n/a Program result (Ex: Linpack)
runtime [s] n/a n/a time: Runtime (RDTSC)
energy [J] PWRO PWR_PKG_ENERGY RAPL Energy contribution
power [W] PWRO PWR_PKG_ENERGY/time |RAPL Power contribution
dram_energy [J] |PWR3 PWR_DRAM_ENERGY DRAM Energy contribution
dram_power [W]|PWR3 PWR_DRAM_ENERGY/time DRAM Power contribution

on the considered version, and examples of such transformations include dce
(Dead Code Elimination), dse (Dead Store Elimination), loop-reduce (Loop
Strength Reduction), loop-unroll (Unroll loops) or sroa (Scalar Replacement
of Aggregates). It follows that an individual Z; in EVOCODE corresponds to
the ordered sequence of applied transformations and the resulting LLVM byte-
code obtained using the LLVM optimizer opt to apply the transforms on the
reference IR code Z"¢f or sub-part of it i.e., the identified code regions. The
generation of the individuals, either in the local or the global phase, consists
then in aggregating the regions, compiling the LLVM bytecode into an assembly
language specific to the target computing architecture using the LLVM static
compiler 11c, before producing the final binary from the linking phase using the
LLVM front-end i.e., clang. The program P; is normally semantically equiva-
lent to Py since built from, and validated against, the reference Z7¢f. Checking
this equivalence is left outside the scope of EVOCODE which only validates the
viability of the generated individuals from the fact that (1) the generation is suc-
cessful, (2) the produced binary executes successfully on the target platform and
(3) the outputs of the execution on a pre-defined set of random inputs (common
to all individuals and initiated in the Step A) are equal to the ones produced
upon invocation of the reference program. Then the time consuming evalua-
tion of an individual consists in running and monitoring the hardware counters
attached to the generated binary execution on the target platform. The energy
metrics are collected from the ENERGY performance group of LikWid which sup-
ports the PWR,{PKG,PPO,PPl ,DRAM,PLATFORM}E.NERGY energy counter from the
RAPL interface on the Intel Skylake and Broadwell micro-architecture present
on the considered computing platform. In particular, the reported fitness values
are composed by a vector of the metrics presented in the Table 3, more precisely
on the mean values obtained from at least 20 runs. The validation proposed in
this section was performed against a set of reference benchmarking applications
i.e., the C version of Linpack [5], STREAM (the industry standard for measur-
ing node-level sustained memory bandwidth) or FFT. For the sake of simplicity
and space savings, only the results tied to the reference Linpack benchmarks
are now presented. The focus of this study was not to maximize the bench-
mark results, but to set a common input parameter set enabling fast evaluations
for all individuals. The Linpack source code (in its C version) is structured in
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13 functions, used as regions Ry, ..., R13 optimized by the local optimization
phase of EVOCODE. An hyperparameter optimization is performed for each of
these regions, and the complete program is for the moment rebuilt from the
best configurations obtained for each region when it is planned for EVOCODE
to perform the global MOEA-based optimization phase to rebuilt the program.
Thus the results presented in this paper focus on the sole local optimization
phase. The Fig. 2 presents the optimization history of all trials in the EVOCODE
Hyper-parameter study for the perf,runtime,energy,power,dram energy and
dram_power metrics upon reconstruction of the full program from the individ-
ual region evolution. The Table 4 summarizes the best results obtained from the
EvoCODE auto-tuning, demonstrating improvement obtained for all criteria i.e.,
performance, runtime, energy, power, DRAM energy and DRAM power metrics.
The improvement obtained at the DRAM level are quite astonishing (demon-
strating up to 41% of energy and power savings), but the associated contribution
in the energy and power dissipation is relatively small. For more classical metrics,
the auto-tuning performed by EvVOCODE still exhibits 8% performance and run-
time improvement, and up to 19% energy and power savings. This demonstrates
quite significant gains, especially when considering that these results have been
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Fig. 2. Linpack benchmark Automatic tuning in EVOCODE: local hyper-parameter
optimization for performance, runtime, energy, power, DRAM energy & power metrics).
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obtained against the program compiled with the highest level of optimization
flags known by the compiler infrastructure (i.e., -03).

The Fig. 3 reports the slice parameter relationships obtained for the sole energy
optimization over the reconstructed program (thus considered in this case as a
single region). Other similar figures were generated for the other fitness metrics,
i.e., performance, runtime, power, DRAM energy and DRAM power, yet could
not be presented for obvious space reasons. The objective of these analyses is to
identify during the local optimization phase of EVOCODE and for each optimized
region the most sensitive code transformations to prune at an early stage of
the global optimization unpromising configurations. Of course, it is crucial to
correctly size the window for this local search strategy to avoid a premature
convergence toward a local optima that may result in a non-diversity of the
population. This type of evaluation is at the heart of the NSGA-III [3] heuristic
currently under investigation within EVOCODE.

Table 4. Best results obtained by EVOCODE on the Linpack benchmark.

Metric ‘ P,cy (-03 optimized) ‘ Best EvoCode
perf (MFlops) | 1109.39 1194.43 85,04
runtime (s) 0.70 0,65 —0,05
energy Q)] 40.20 33.08 7,11
power (W) 57.27 46.24  —11,03
dram_energy | (J) 3.28 1.93 -1,35
dram_power | (W) 4.68 2.85 —1,83

Slice Plot - 'linpack' Energy (RAPL measures)

Energy 1]

Fig. 3. Slice parameter relationships for the energy optimization tied to a single region
(the full Linpack program).
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5 Conclusion and Perspectives

This position paper presented the EvVOCODE framework aiming at the auto-
matic software tuning of parallel programs for energy-aware executions. A refer-
ence source code is evolved using a two-stage MOEA heuristic (local and global)
exploiting a compiler infrastructure (LLVM in this case) to apply static tunable
knobs or code transformations to generate individuals'. The objective remains
to address simultaneously multiple KPIs optimization i.e., performance, energy
and power usage (for both for the CPU and DRAM) and the runtime, bringing a
set of optimized binaries derived (and a priori semantically equivalent) from the
reference program used as input of the EVOCODE framework together with the
target computing system. Our framework will also integrate a decision making
process through post-Pareto-front analysis to suggest the best trade-off between
the obtained solutions. EVOCODE has been implemented and validated over a
set of reference benchmarking applications being auto-tuned. The preliminary
experimental results presented in this article (restricted to the most well-known
benchmark i.e., Linpack) are quite promising. While illustrating and validat-
ing the local optimization strategy performed within EVOCODE, they already
demonstrate improvement for all considered metrics (ranging from 8% to 41%)
when compared to the most optimized configuration set by the compiler on the
reference program. The validation of the global MOEA phase within EVOCODE
through NSGA-III is under investigation and is bringing further improvements
which will be presented in an extension of this work.

Acknowledgments. The experiments presented in this paper were carried out using
the HPC facilities of the University of Luxembourg [11] — see hpc.uni.lu.
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