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Preface

This volume comprises the proceedings of the 13th International Conference on
Parallel Processing and Applied Mathematics (PPAM 2019), which was held in
Białystok, Poland, September 8–11, 2019. It was organized by the Department of
Computer and Information Science of the Częstochowa University of Technology
together with Białystok University of Technology, under the patronage of the
Committee of Informatics of the Polish Academy of Sciences, in technical cooperation
with the IEEE Computer Society and IEEE Computational Intelligence Society. The
main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. 12 previous events have been held in different
places in Poland since 1994, when the first PPAM took place in Częstochowa. Thus,
the event in Białystok was an opportunity to celebrate the 25th anniversary of PPAM.
The proceedings of the last nine conferences have been published by Springer in the
Lecture Notes in Computer Science series (Nałęczów, 2001, vol. 2328; Częstochowa,
2003, vol. 3019; Poznań, 2005, vol. 3911; Gdańsk, 2007, vol. 4967; Wrocław, 2009,
vols. 6067 and 6068; Toruń, 2011, vols. 7203 and 7204; Warsaw, 2013, vols. 8384 and
8385; Kraków, 2015, vols. 9573 and 9574; and Lublin, 2017, vols. 10777 and 10778).

The PPAM conferences have become an international forum for the exchange of the
ideas between researchers involved in parallel and distributed computing, including
theory and applications, as well as applied and computational mathematics. The focus
of PPAM 2019 was on models, algorithms, and software tools which facilitate the
efficient and convenient utilization of modern parallel and distributed computing
architectures, as well as on large-scale applications, including artificial intelligence and
machine learning problems.

This meeting gathered more than 170 participants from 26 countries. A strict ref-
ereeing process resulted in the acceptance of 91 contributed papers for publication in
these conference proceedings. For regular tracks of the conference, 41 papers were
selected from 89 submissions, thus resulting in an acceptance rate of about 46%.

The regular tracks covered important fields of parallel/distributed/cloud computing
and applied mathematics such as:

– Numerical algorithms and parallel scientific computing, including parallel matrix
factorizations

– Emerging HPC architectures
– GPU computing
– Parallel non-numerical algorithms
– Performance analysis in HPC systems
– Environments and frameworks for parallel/distributed/cloud computing
– Applications of parallel computing
– Soft computing with applications



The invited talks were presented by:

– David A. Bader from the New Jersey Institute of Technology (USA)
– Fabio Baruffa from the Intel Corporation
– Anne Benoit from ENS Lyon (France)
– Jack Dongarra from the University of Tennessee and ORNL (USA)
– Lin Gan from the Tsinghua University and National Supercomputing Center in

Wuxi (China)
– Mary Hall from the University of Utah (USA)
– Torsten Hoefler from the ETH Zurich (Switzerland)
– Kate Keahey from the University of Chicago and Argonne National Lab (USA)
– Alexey Lastovetsky from the University College Dublin (Ireland)
– Miron Livny from the University of Wisconsin (USA)
– Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)
– Bernd Mohr from the Jülich Supercomputing Centre (Germany)
– Manish Parashar from the Rutgers University (USA)
– Javier Setoain from ARM (UK)
– Leonel Sousa from the Technical University of Lisbon (Portugal)
– Jon Summers from the University of Lulea (Sweden)
– Manuel Ujaldon from the University of Malaga (Spain) and Nvidia
– Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of

Technology (USA)
– Tobias Weinzierl from the Durham University (UK)

Important and integral parts of the PPAM 2019 conference were the workshops:

– The 8th Workshop on Language-Based Parallel Programming Models (WLPP
2019), organized by Ami Marowka from the Bar-Ilan University (Israel)

– Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism
in New HPC Systems, organized by Giulliano Laccetti and Marco Lapegna from
the University of Naples Federico II (Italy), and Raffaele Montella from the
University of Naples Parthenope (Italy)

– Workshop on Power and Energy Aspects of Computation (PEAC 2019), organized
by Ariel Oleksiak from the Poznan Supercomputing and Networking Center
(Poland) and Laurent Lefevre from Inria (France)

– Special Session on Tools for Energy Efficient Computing, organized by Tomas
Kozubek and Lubomir Riha from the Technical University of Ostrava
(Czech Republic), and Andrea Bartolini from the University of Bologna (Italy)

– Workshop on Scheduling for Parallel Computing (SPC 2019), organized by Maciej
Drozdowski from the Poznań University of Technology (Poland)

– The Third Workshop on Applied High-Performance Numerical Algorithms in
PDEs, organized by Piotr Krzyżanowski and Leszek Marcinkowski from the
Warsaw University (Poland) and Talal Rahman from the Bergen University College
(Norway)

– Minisymposium on HPC Applications in Physical Sciences, organized by Grzegorz
Kamieniarz and Wojciech Florek from the A. Mickiewicz University in Poznań
(Poland)
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– Minisymposium on High Performance Computing Interval Methods, organized by
Bartłomiej J. Kubica from the Warsaw University of Technology (Poland)

– Workshop on Complex Collective Systems, organized by Paweł Topa and Jarosław
Wąs from the AGH University of Science and Technology in Kraków (Poland)

The PPAM 2019 meeting began with two tutorials:

– Modern GPU Computing, by Dominik Göddeke from the Stuttgart University
(Germany), Robert Strzodka from the Heidelberg University (Germany), and
Manuel Ujaldon from the University of Malaga (Spain) and Nvidia.

– Object Detection with Deep Learning: Performance Optimization of Neural Net-
work Inference using the Intel OpenVINO Toolkit, by Evgenii Vasilev and Iosif
Meyerov from the Lobachevsky State University of Nizhni Novgorod (Russia), and
Nadezhda Kogteva and Anna Belova from Intel Corporation.

The PPAM Best Paper Award is awarded in recognition of the research paper
quality, originality, and significance of the work in high performance computing
(HPC). The PPAM Best Paper was first awarded at PPAM 2019 upon recommendation
of the PPAM Chairs and Program Committee. For the main track, the PPAM 2019
winners were Evgeny Kuznetsov, Nikolay Kondratyuk, Mikhail Logunov, Vsevolod
Nikolskiy, and Vladimir Stegailov from the National Research State University High
School of Economics in Moscow and Russian Academy of Sciences (Russia), who
submitted the paper “Performance and portability of state-of-art molecular dynamics
software on modern GPUs.” For workshops, the PPAM 2019 winners were Dominik
Ernst, Georg Hager, and Gerhard Wellein from the Erlangen Regional Computing
Center and Jonas Thies from the German Aerospace Center (Germany), who presented
the paper “Performance Engineering for a Tall & Skinny Matrix Multiplication Kernel
on GPUs.”

A New Topic at PPAM 2019 was the Special Session on Tools for Energy Efficient
Computing, focused on tools designed to improve the energy-efficiency of HPC
applications running at scale.

With the steaming out of Moore’s law and the end of Dennard’s scaling, the pace
dictated on the performance increase of HPC systems among generations has led to
power constrained architectures and systems. In addition, the power consumption
represents a significant cost factor in the overall HPC system economy. For these
reasons, it is important to develop new tools and methodologies to measure and
optimize the energy consumption of large scale high performance system installation.
Due to the link between the energy consumption, power consumption, and execution
time of the application executed by the final user, it is important for these tools and
methodologies to consider all these aspects empowering the final user and the system
administrator with the capability to find the best configuration given different high level
objectives.

This special session provided a forum to discuss and present innovative solutions in
following topics: (i) tools for fine grained power measurements and monitoring of HPC
infrastructures, (ii) tools for hardware and system parameter tuning and its challenges
in the HPC environment, (iii) tools and libraries for dynamic tuning of HPC applica-
tions at runtime, (iv) tools and methodology for identification of potential dynamic
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tuning for performance and energy, and (v) evaluation of applications in terms of
runtime and energy savings.

These topics were covered by four presentations:

– Overview of application instrumentation for performance analysis and tuning
(by O. Vysocky, L. Riha, and A. Bartolini) focused on automatizing the process of
an application instrumentation which is an essential step for future optimization that
leads to time and energy savings.

– Energy-efficiency tuning of the Lattice Boltzmann simulation using MERIC
(by E. Calore, et al.) presents the impact of CPU core and uncore frequency dynamic
tuning on energy savings, that reaches up to 24 % for this specific application.

– Evaluating the advantage of reactive MPI-aware power control policies
(by D. Cesarini, C. Cavazzoni, and A. Bartolini) shows the COUNTDOWN library,
that automatically down-scales the CPU core frequency during long-enough
communication phases, with neither any modifications of the code nor complex
application profiling.

– Application-aware power capping using Nornir (by D. De Sensi and M. Danelutto)
presents how to combine DVFS and thread packing approaches to keep power
consumption under a specified limit. This work shows that the proposed solution
performs better than the state-of-the-art Intel RAPL power-capping approach for
very low power budgets.

The organizers are indebted to PPAM 2019 sponsors, whose support was vital to the
success of the conference. The main sponsor was the Intel Corporation and the other
sponsors were byteLAKE and Gambit. We thank all the members of the International
Program Committee and additional reviewers for their diligent work in refereeing the
submitted papers. Finally, we thank to all of the local organizers from the Częstochowa
University of Technology and the Białystok University of Technology, who helped us
to run the event very smoothly. We are especially indebted to Łukasz Kuczyński,
Marcin Woźniak, Tomasz Chmiel, Piotr Dzierżak, Grażyna Kołakowska, Urszula
Kroczewska, and Ewa Szymczyk from the Częstochowa University of Technology;
and to Marek Krętowski and Krzysztof Jurczuk from the Białystok University of
Technology.

We hope that this volume will be of use to you. We would like everyone who reads
it to feel welcome to attend the next conference, PPAM 2021, which will be held
during September 12–15, 2021, in Gdańsk, the thousand-year old city on the Baltic
coast and one of the largest academic centers in Poland.

January 2020 Roman Wyrzykowski
Jack Dongarra
Ewa Deelman

Konrad Karczewski
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Abstract. The aim of this paper is to present a new high-performance
implementation of Marsa-LFIB4 which is an example of high-quality
multiple recursive pseudorandom number generators. We propose a new
algorithmic approach that combines language-based vectorization tech-
niques together with a new divide-and-conquer method that exploits a
special sparse structure of the matrix obtained from the recursive for-
mula that defines the generator. We also show how the use of intrinsics
for Intel AVX2 and AVX512 vector extensions can improve the perfor-
mance. Our new implementation achieves good performance on several
multicore architectures and it is much more energy-efficient than simple
SIMD-optimized implementations.

Keywords: Pseudorandom numbers · Recursive generators ·
Language-based vectorization · Intrinsics · Algorithmic approach ·
OpenMP

1 Introduction

Pseudorandom numbers are very important and pseudorandom number gen-
erators are often central parts of scientific applications such as simulations of
physical systems using Monte Carlo methods. There are a lot of such generators
with different properties [8]. Recursion-based generators have good statistical
properties and they are commonly used [5,9,11,14,15]. Marsa-LFIB4 [13] is a
great example of such recursive generators. It is simple and it passed all empir-
ical tests from TestU01 Library [12] and it was used in practical applications
[10]. However, we do not know any of its high performance implementations.

The problem of effective implementation of pseudorandom number generators
is very important from a practical point of view [1,3,16,17]. It is clear that
an efficient implementation should utilize not only multiple cores of modern
processor architectures but also exploit their vector extensions. It is crucial when
we expect such implementations to achieve really high performance.

SPRNG Library [14] has been developed using cycle division or other param-
eterizing techniques like block splitting or leapfrogging [2,4]. Our proposed app-
roach for developing not only parallel but also fully vectorized pseudorandom
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 3–12, 2020.
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number generators is quite different. Instead of using rather complicated par-
allelization techniques [4], we rewrite recurrence relations as systems of linear
equations and try to optimize them for multicore processors. Then statistical
properties of such parallel generators are exactly the same as for correspond-
ing sequential ones, thus there is no need to perform special statistical (and
rather expensive) tests. Such systems can be solved using vectorized parallel
algorithms with more efficient data layouts. Recently, this algorithmic approach
has been successfully applied to develop new parallel versions of Linear Con-
gruential Generator and Lagged Fibonacci Generator [19–21]. Unfortunately, in
case of LFG, the number of operations required by the algorithm increases when
the lag parameter increases. This is the reason why this approach cannot be
directly applied for Marsa-LFIB4, where the lag is 256. In order to design a
high-performance implementation of the generator, we propose a new algorithmic
approach that combines language-based vectorization techniques together with
a new divide-and-conquer parallel algorithm that can exploit the special sparse
structure of the matrix obtained from the recursive formula that defines the gen-
erator. We also show how the use of intrinsics for Intel AVX2 and AVX512 vector
extensions can improve the performance of the new implementation. Numerical
experiments show that the new implementation achieves good performance on
several multicore architectures. Moreover, it is much more energy-efficient than
simple SIMD-optimized implementations.

2 SIMD Optimization of Marsa-LFIB4

A multiple recursive generator (MRG) of order k is defined by the linear recur-
rence of the form xi = (a1xi−1 + . . . + akxi−k) mod m. It produces numbers
from Zm = {0, 1, . . . ,m− 1}. Usually m is a power of two, thus modulus opera-
tions to be computed by merely truncating all but the rightmost 32 bits. When
we use “unsigned int” C/C++ data type, we can neglect “mod m”. A simple
example of MRG is Lagged Fibonacci generator xi = (xi−p1 + xi−p2) mod m,
0 < p1 < p2. Another important high-quality recursive generator is Marsa-
LFIB4 [13] based on the following recursive equation

xi = (xi−p1 + xi−p2 + xi−p3 + xi−p4) mod 232, (1)

where p1 = 55, p2 = 119, p3 = 179, and p4 = 256. A simple implementation
of (1) requires 3n arithmetic operations (additions) to generate a sequence of n
numbers.

Figure 1 (left) shows a SIMD-optimized version of the algorithm. It utilizes
the OpenMP simd directive that asks the compiler to make every possible effort
to vectorize the loop [6]. The safelen clause indicates the maximum number
of iterations per chunk. It is clear that it should be less than p1, but the best
performance can be achieved when the indicated value is a power of two, thus
we use 32. It should be noticed that due to obvious data dependencies the loop
from lines 6–7 cannot be automatically vectorized by the compiler, even if the
highest optimization level is switched on.
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1 void LFIB4(uint32_t n,uint32_t *x)
2 {
3 // x[0..P4] contains a ’seed’
4 __assume_aligned(x,64);
5 #pragma omp simd safelen(32)
6 for(uint32_t k=P4;k<n;k++)
7 x[k]=x[k-P1]+x[k-P2]
8 +x[k-P3]+x[k-P4];
9 }

10

11

__m512i x1,x2;
for(uint32_t k=P4;k<n;k+=16){

x1 = _mm512_load_si512(&x[k-P4]);
x2 = _mm512_loadu_si512(&x[k-P3]);
x1 = _mm512_add_epi32(x1,x2);
x2 = _mm512_loadu_si512(&x[k-P2]);
x1 = _mm512_add_epi32(x1,x2);
x2 = _mm512_loadu_si512(&x[k-P1]);
x1 = _mm512_add_epi32(x1,x2);
_mm512_store_si512(&x[k],x1);

}

Fig. 1. Two SIMD-optimized sequential versions of Marsa-LFIB4 using OpenMP simd

directive (left) and AVX512 intrinsics (right)

x-P4 x-P3 x-P2 x-P1 x x+vl

⊕ ⊕ ⊕
vector registers

memory

aligned load, store
unaligned load

Fig. 2. Vectorization of Marsa-LFIB4 using SIMD extensions

Figure 1 (right) shows another SIMD-optimized version using intrinsics for
AVX512 instructions that take full advantage of Intel SIMD extensions. Intrin-
sics allow programmers to write constructs that look like C/C++ function calls
corresponding to actual SIMD instructions. Such calls are replaced with assem-
bly code inlined directly into programs. The general idea is presented in Fig. 2.
The output data is produced as a sequence of vectors of length vl. Necessary
previously computed numbers are loaded into vector registers and added using
simple vector-add operations. Note that in each iteration we have one load of
aligned data, three load operations of unaligned vectors (less efficient) and one
store to aligned memory area.

The disadvantage of this solution is the lack of the code portability between
different versions of vector extensions. Figure 3 (left) shows the intrinsic-based
implementation of Marsa-LFIB4 for Intel AVX2 256-bit extensions that is quite
similar to AVX512 but vl = 8. The implementation for Intel KNC 512-bit
extensions (Fig. 3, right) is more complicated because this architecture does not
support simple load operations of unaligned vectors. Thus, we have to use more
complicated technique that uses two special vector load operations.

3 New Algorithmic Approach

Recently,we have developed a newparallel approach that can be used to implement
multiple recursive generators [19–21]. Unfortunately, in case of Lagged Fibonacci
generator, the number of operations required by the algorithm increases when the



6 P. Stpiczyński

1 __m256i x1,x2;
2 for(uint32_t k=P4;k<n;k+=8){
3 x1=_mm256_load_si256(
4 (union __m256i*)&x[k-P4]);
5 x2=_mm256_loadu_si256(
6 (union __m256i*)&x[k-P3]);
7 x1=_mm256_add_epi32(x1,x2);
8 x2=_mm256_loadu_si256(
9 (union __m256i*)&x[k-P2]);

10 x1=_mm256_add_epi32(x1,x2);
11 x2=_mm256_loadu_si256(
12 (union __m256i*)&x[k-P1]);
13 x1=_mm256_add_epi32(x1,x2);
14 _mm256_store_si256(
15 (union __m256i*)&x[k],x1);
16 }
17

__m512i x1,x2;
for(uint32_t k=P4;k<n;k+=16){
x1=_mm512_load_si512(&x[k-P4]);
x2=_mm512_loadunpacklo_epi32(x2,&x[k-P3]);
x2=_mm512_loadunpackhi_epi32(x2,

&x[k-P3]+16);
x1=_mm512_add_epi32(x1,x2);
x2=_mm512_loadunpacklo_epi32(x2,&x[k-P2]);
x2=_mm512_loadunpackhi_epi32(x2,

&x[k-P2]+16);
x1=_mm512_add_epi32(x1,x2);
x2=_mm512_loadunpacklo_epi32(x2,&x[k-P1]);
x2=_mm512_loadunpackhi_epi32(x2,

&x[k-P1]+16);
x1=_mm512_add_epi32(x1,x2);
_mm512_store_si512(&x[k],x1);

}

Fig. 3. Two SIMD-optimized sequential versions of Marsa-LFIB4 using AVX2 (left)
and 512-bit KNC intrinsics (right)

values of p2 increases. This is the reason why this approach cannot be directly
applied for Marsa-LFIB4, where p4 = 256. In order to design a high-performance
implementation of the generator, we will propose a new approach that will combine
techniques presented in Sect. 2withmore efficient divide-and-conquer approach for
solving linear recurrence systems (see Algorithm 1 in [18]).

Let n = rs, s > 2p4. To find a sequence of pseudorandom numbers defined
by (1) for a given seed d0, . . . , dp4−1, we have to solve the following system of
linear equations ⎡

⎢⎢⎢⎣

A0

B A
. . . . . .

B A

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x0

x1

...
xr−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f
0
...
0

⎤
⎥⎥⎥⎦ , (2)

where f = (d0, . . . , dp4−1, 0, . . . , 0)T ∈ Z
s
m, xi = (xis, . . . , x(i+1)s−1)T ∈ Z

s
m, and

the matrices A,A0, B ∈ Z
s×s
m are as shown in Fig. 4. The block system of linear

equations (2) can be rewritten as follows
{
A0x0 = f
Bxi−1 + Axi = 0, i = 1, . . . , r − 1.

(3)

Let ek denotes the k-th unit vector from Z
s
m, i.e. ek = (0, . . . , 0, 1, 0, . . . , 0)T .

It can be observed that non-zero columns of B satisfy

−Bi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ei−s−p4 , i = s − p4, . . . , s − 1 − p3,

ei−s−p3 + ei−s−p4 , i = s − p3, . . . , s − 1 − p2,

ei−s−p2 + ei−s−p3 + ei−s−p4 , i = s − p2, . . . , s − 1 − p1,

ei−s−p1 + ei−s−p2 + ei−s−p3 + ei−s−p4 , i = s − p1, . . . , s − 1.
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p4

p1p2p3p4

Fig. 4. Shapes of A0, B, A. Black dots: 1, grey dots: −1, otherwise: 0

From (3) we have

xi = −A−1Bxi−1 =
p4−1∑
k=0

xis−k−1A
−1(−Bs−1−k).

It is clear that A−1(ei + ej) = A−1ei + A−1ej , thus

a0 = A−1(−Bs−p4) (4)
b0 = A−1(−Bs−p3) = a0 + ap4−p3 (5)
c0 = A−1(−Bs−p2) = a0 + ap4−p2 + ap3−p2 (6)
d0 = A−1(−Bs−p1) = a0 + ap4−p1 + ap3−p1 + ap2−p1 (7)

Moreover, all vectors ak = A−1(−Bs−p4+k), k = 1, . . . , p4 − p3 − 1,

ak = (0, . . . , 0︸ ︷︷ ︸
k

, a0, . . . , as−1−k)T , (8)

where a0 = (a0, . . . , as−1)T . Similarly, bk = A−1(−Bs−p3+k), k = 1, . . . , p3 −
p2 − 1, ck = A−1(−Bs−p4+k), k = 1, . . . , p2 − p1 − 1, dk = A−1(−Bs−p4+k),
k = 1, . . . , p1 − 1, can be easily derived from (5–7) using simple shift operations
(8). Finally, we get the following:

xi =
n4−1∑
k=0

xis−p4+kak +
n3−1∑
k=0

xis−p3+kbk +
n2−1∑
k=0

xis−p2+kck +
n1−1∑
k=0

xis−p1+kdk,

(9)
where n4 = p4 − p3, n3 = p3 − p2, n2 = p2 − p1, n1 = p1. Note that n1 + n2 +
n3 + n4 = p4, thus each xi is the sum of p4 vectors.

The direct application of (9) allows to develop a new fully vectorized parallel
algorithm. Unfortunately, the required number of operations is really huge

N1(s, r) = 2p4(s − p4)(r − 1) = 512n − 2p24r − 2p4s + 2p24.

In order to propose a more efficient method, let us observe that to find each vector
xi, i = 1, . . . , r−1, we need p4 last entries of xi−1. Thus, we can apply (9) to find
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Algorithm 1: Parallel Vectorized Marsa-LFIB4
Data: n, x0, . . . , xp4−1 – seed
Result: xp4 , . . . , xn−1 – generated numbers

1 r ← #cores � initially r should equal to the number of cores
2 if s%256 �= 0 then
3 s ← (s/256 + 1) ∗ 256 � s should be a multiple of 256
4 r ← n/s

5 end
� now each xi is aligned

6 apply (1) to find x0 and a0 � using SIMD-optimized method
7 apply (5–7) to find 2p4 last entries of b0, c0, d0 � using OpenMP simd

8 for i = 1, . . . , r − 1 do
9 apply (9) to find p4 last entries of xi � using OpenMP simd

10 end
11 parallel for i = 1, . . . , r − 1 do
12 apply (1) to find s − p4 first entries of xi � using SIMD-optimized method
13 end
14 apply (1) to find xrs, . . . , xn−1

p4 last entries of each xi and then find in parallel s−p4 first entries of each vector
using the SIMD-optimized implementation from Sect. 2 (see Algorithm 1 for
details). It can be easily verified that the total number of arithmetic operations
required by the new algorithm is only

N2(s, r) = 12p4r + 2p24(r − 1) + 3(s − p4)(r + 1)
= 3n + 3s + (9p4 + 2p24)r − 2p24 − 3p4. (10)

The question is how to choose the values of the parameters r and s. It is clear
that the total number of operations grows when the value of r grows. However,
then the potential parallelism of the algorithm also grows. Therefore, the number
of available cores can be used as the actual value of r. Then the value of s is
calculated to ensure that each vector xi is properly aligned (lines 2–5).

4 Results of Experiments

All experiments were carried out on two platforms. The first one was a server
with two Intel Xeon E5-2670 v3 processors (totally 24 cores with hyperthreading,
2.3 GHz, 256-bit AVX2), 128GB RAM, with Intel Xeon Phi Coprocessor 7120P
(KNC, 61 cores with multithreading, 1.238 GHz, 16GB RAM, 512-bit vector
extensions). The next one was a server with Intel Xeon Phi 7210F (KNL, 64
cores, 1.3 GHz, AVX512), 128GB RAM. Both servers worked under Linux with
Intel Parallel Studio version 2017. Experiments on Xeon Phi have been carried
out using its native mode. We tested Simple (non optimized) implementation,
two SIMD-optimized (non parallel) implementations of Marsa-LFIB4 using the



Parallel Fully Vectorized Marsa-LFIB4 9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5e+08  1e+09  1.5e+09  2e+09

tim
e 

[s
]

n

Execution time (Simple)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3

 0

 2

 4

 6

 8

 10

 1.5e+07  5e+08  1e+09  1.5e+09  2e+09

sp
ee

du
p

n

Speedup (SIMD over Simple)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3

 0

 2

 4

 6

 8

 10

 12

 5e+08  1e+09  1.5e+09  2e+09

tim
e 

[s
]

n

Execution time (SIMD)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3

 0

 5

 10

 15

 20

 1.5e+07  5e+08  1e+09  1.5e+09  2e+09

sp
ee

du
p

n

Speedup (OpenMP over SIMD)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5e+08  1e+09  1.5e+09  2e+09

tim
e 

[s
]

n

Execution time (OpenMP)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3

 0

 5

 10

 15

 20

 25

 30

 1.5e+07  5e+08  1e+09  1.5e+09  2e+09

sp
ee

du
p

n

Speedup (OpenMP over Simple)

Xeon Phi 7120 (KNC)
Xeon Phi 7210 (KNL)
2x Xeon E5-2670 v3
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OpenMP simd construct and intrinsics, respectively, and the parallel algorithm
(i.e. OpenMP). Examples of the results are presented in Fig. 5.

As expected, the simple (non optimized) implementation achieved the worst
performance. The intrinsic-based implementation is faster than the implemen-
tation based on the OpenMP simd construct on both Intel MIC architectures
(up to 5% on KNL and up to 6% on KNC). In case of Xeon E5-2670 both imple-
mentations achieve the same performance. Thus, our parallel implementation
(OpenMP) uses intrinsics. It should be noticed that on all platforms the best per-
formance is achieved when only one thread per core is used. The use of SIMD
extensions improves the performance of Marsa-LFIB4 5−6× on KNL and about
1.8× on CPU with AVX2. In case of KNL, the SIMD-optimized implementation
is only 18% faster than Simple. The use of multiple cores results in a significant
increase in performance. On Xeon E5-2670 the highest speedup relative to SIMD
is up to 12, thus the efficiency is about 0.5. On KNC and KNL the efficiency
of the use of multiple cores is worse, especially in case of KNL. However, on
KNL we can observe the best speedup relative to Simple (about 31). In case
of Xeon E5-2670 such speedup is about 21. It means that on this platform the
efficiency of our parallel implementation relative to Simple is up to 88%. The
low efficiency of using multiple cores on KNC and KNL is probably due to time
overheads associated with the fork-join operation and the synchronization of
multiple threads.

po
w

er
 [W

]

time [s]

n=2048000000, #threads=24

simple: 308[J] SIMD: 183[J]

O
penM

P
: 40[J]

 0

 50

 100

 150

 200

 0  1  2  3  4  5  6  7  8

Fig. 6. Current power draw and total power consumption required by all considered
implementations (Simple, SIMD and OpenMP)

Figure 6 presents the exemplary results of our experiments concerning the
energy efficiency of the considered implementations. Data for this plot were



Parallel Fully Vectorized Marsa-LFIB4 11

collected on the server with two Intel Xeon E5-2670 v3 processors using Intel’s
Running Average Power Limit (RAPL) [7]. This interface enables to measure the
power consumption for CPUs and DRAMs. This figure shows how the power con-
sumption changes during the execution of the program which comprises calls to
Simple, SIMD and OpenMP+SIMD implementations, respectively. Time ticks from
0 to 0.5 show the power consumption of CPUs and DRAMs when the system was
idle. Then we can observe the power consumption of all three implementations.
It is clear that current power draw during the execution of OpenMP+SIMD is much
higher but it only lasts during a very short time. Simple needs 308J of energy,
SIMD 183J , while OpenMP+SIMD requires only 40J . Thus, its power consumption
is only 22% and 13% of SIMD and Simple, respectively.

5 Conclusions

We have shown that Marsa-LFIB4 which is a fine example of linear recurrence
computations can be efficiently implemented on modern multiprocessors with
vector extensions using language-based tools together with the algorithmic app-
roach. Using intrinsics instead of the simple simd construct increases perfor-
mance slightly but also limits code portability. Our parallel SIMD-optimized
implementation achieves good performance and it is much more energy efficient.

Acknowledgements. The use of computer resources installed at Maria Curie-
Sk�lodowska University in Lublin and Czestochowa University of Technology is kindly
acknowledged.
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Abstract. The performance of parallel algorithms is often inconsis-
tent with their preliminary theoretical analyses. Indeed, the difference is
increasing between the ability to theoretically predict the performance of
a parallel algorithm and the results measured in practice. This is mainly
due to the accelerated development of advanced parallel architectures,
whereas there is still no agreed model for parallel computation, which
has implications for the design of parallel algorithms.

In this study, we examined the practical performance of Cormen’s
Quicksort parallel algorithm. We determined the performance of the algo-
rithm with different parallel programming approaches and examine the
capacity of theoretical performance analyses of the algorithm for predict-
ing the actual performance.

Keywords: Python · Quicksort · Performance modeling

1 Introduction

The runtime of a parallel algorithm is affected by many parallel overheads and
most are not considered by the performance models employed, thereby result-
ing in a difference between the predicted performance and actual performance.
These significant parallel overheads include barrier synchronization, spawning
and destroying processes and threads, cache memory effects (e.g., cache misses
and false sharing), TLB effects, memory bandwidth and latency issues, cache
replacement policies and algorithms, the non-deterministic behavior of parallel
algorithm, multi-level cache allocation policies (exclusive versus inclusive), and
load unbalancing [1].

Cormen recently presented a vector-based parallel Quicksort algorithm for
shared-memory multi-core processors [2] based on Blelloch’s study of vector
models [3,4]. Cormen described the design and analyzed the theoretic perfor-
mance of the algorithm in detail, but did not implement the proposed algorithm
on an actual multi-core machine or present actual performance analyses for any
of the algorithm’s functions. Therefore, the effectiveness of the algorithm was
not evaluated in a current multi-core processor environment. The functions of
the algorithm were presented as Python pseudo-code. Cormen claimed that:
“The Python code we use does not itself run in parallel. In order to run code
in parallel with Python, we would have to lock into a particular Python library.
c© Springer Nature Switzerland AG 2020
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The concepts behind parallel programming are more important than the exact
means to achieve parallelism.” We argue that this claim is not realistic with
respect to parallel computing and programming. Indeed, the design of Cormen’s
parallel Quicksort algorithm and the analysis of its computational complexity
are theoretically impressive, but we found that its efficiency cannot be demon-
strated in actual tests. We argue that a parallel algorithm designed on the basis of
sophisticated programming principles with inspiring theoretical computational
complexity has no value when it cannot be efficiently implemented in practice in
order to achieve linear performance and scalability improvements as the number
of cores increases. The main contributions of this study are as follows.

– In the present study, we analyzed the performance of Cormen’s parallel Quick-
sort algorithm based on implementations using Python shared-memory multi-
processing and multi-threading approaches. It is important to emphasize that
we implemented Cormen’s algorithm in Python because the algorithm was
originally presented in Python.

– We compared the performance of Cormen’s algorithm based on implemen-
tations of recursive parallel Quicksort using Python multi-processing and
multi-threading approaches with Python built-in Quicksort implementations.
We aimed to show that the method used for achieving parallelism is not less
important than the concepts behind parallel programming.

– We compared the capacity for the theoretical prediction of an algorithm’s per-
formance with predictions based on a combination of theoretical and practical
analyses.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
building blocks of Cormen’s parallel Quicksort algorithm based on an example,
and we demonstrate the computational complexity of the algorithm. In Sect. 3,
we explain the implementation of the algorithm for different parallel program-
ming models and assessments of their performance are presented. In Sect. 4, we
examine the capacity of theoretical performance analyses of the algorithm for
predicting the actual performance. In Sect. 5, we summarize the findings obtained
in this study and give our conclusions.

2 Vector-Based Quicksort Algorithm

In the following, we briefly review the key functions of Cormen’s algorithm and
their associated data structures. Highly technical descriptions of the operat-
ing methods for the algorithm are presented but we do not provide exhaustive
explanations of why these methods are applied. These descriptions provide the
reader with a general idea of the design of the algorithm. A full description
of the algorithm was given by Cormen [2]. The algorithm uses two main func-
tions: Reduction and Scan . The Scan function is also known as Prefix Sums.
The input for the Reduction function is an array of elements and its output
is a scalar, where the value is the sum of the array elements, e.g., Reduction
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Table 1. Demo of the main processing steps of Cormen’s parallel Quicksort algorithm.

Steps First iteration

index 0 1 2 3 4 5 6 7 8 9

input 5 2 8 4 7 2 9 2 8 0

seg 1 0 0 0 0 0 0 0 0 0

1 pivot 5 5 5 5 5 5 5 5 5 5

2 less 0 1 0 1 0 1 0 1 0 1

3 equal 1 0 0 0 0 0 0 0 0 0

4 greater 0 0 1 0 1 0 1 0 1 0

5 less scan 0 0 1 1 2 2 3 3 4 4

6 equal scan 0 1 1 1 1 1 1 1 1 1

7 greater scan 0 0 0 1 1 2 2 3 3 4

8 less reduce 5 5 5 5 5 5 5 5 5 5

9 equal reduce 1 1 1 1 1 1 1 1 1 1

10 index scan 0 0 0 0 0 0 0 0 0 0

11 less perm 0 0 1 1 2 2 3 3 4 4

12 equal perm 5 6 6 6 6 6 6 6 6 6

13 greater perm 6 6 6 7 7 8 8 9 9 10

14 perm 5 0 6 1 7 2 8 3 9 4

partition 2 4 2 2 0 5 8 7 9 8

15 equal start 5 5 5 5 5 5 5 5 5 5

16 greater start 6 6 6 6 6 6 6 6 6 6

17 new seg 1 0 0 0 0 1 1 0 0 0

Second partition

input 2 4 2 2 0 5 8 7 9 8

seg 1 0 0 0 0 1 1 0 0 0

pivot 2 2 2 2 2 5 8 8 8 8

less 0 0 0 0 1 0 0 1 0 0

equal 1 0 1 1 0 1 1 0 0 1

greater 0 1 0 0 0 0 0 0 1 0

less scan 0 0 0 0 0 0 0 0 1 1

equal scan 0 1 1 2 3 0 0 1 1 1

greater scan 0 0 1 1 1 0 0 0 0 1

less reduce 1 1 1 1 1 0 1 1 1 1

equal reduce 3 3 3 3 3 1 2 2 2 2

index scan 0 0 0 0 0 5 6 6 6 6

less perm 0 0 0 0 0 5 6 6 7 7

equal perm 1 2 2 3 4 5 7 8 8 8

greater perm 4 4 5 5 5 6 9 9 9 10

perm 1 4 2 3 0 5 7 6 9 8

partition 0 2 2 2 4 5 7 8 8 9
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Table 2. The sequence of steps of a single iteration of Cormen’s Algorithm and their
relative average performance cost for Multi-Threading (MT) and Multi-Processing
(MP) implementations for n = 100K and p = 4.

The input array is the array to be sorted.
The index array marks the indexes of the input’s ele-
ments. The seg array marks the beginning of each seg-
ment. The algorithm starts with one segment.

MT MP

steps

1 The first element of each segment of the input array is
selected as the pivot of the segment. The pivot array
holds these values.

40% 15%

2-4 The less, equal and greater arrays mark whether the cor-
responding element is less, equal or greater than the
pivot respectively.

10% 3%

5-7 The less scan, equal scan and greater scan arrays hold
the results of scan operations on the less, equal and
greater arrays respectively.

11% 27%

8-9 The less reduce and equal reduce arrays hold the results
of reduction operations on the less and equal arrays re-
spectively.

20% 40%

10 The index scan holds for each segment the index value
of its first element.

4% 9%

11-13 The less perm, equal perm and greater perm arrays are
computed as follows:

less perm[i] = index scan[i] + less scan[i]
equal perm[i] = index scan[i] + less reduce[i] +

equal scan[i]
greater perm[i] = index scan[i] + less reduce[i] +

equal reduce[i] + greater scan[i]

1% 1%

14 The less perm, equal perm and greater perm arrays are
used to create the perm array. We do not show here how
this is done. The perm array holds the corresponding in-
dexes for the permutation operation on the input array.
The partition array is the result of this permutation op-
eration.

10% 4%

15-16 The equal start and greater start arrays are computed as
follows:

equal start[i] = index scan[i] + less reduce[i]
greater start[i] = less reduce[i] + equal reduce[i]

4% 1%

17 The new seg array is computed using the equal start and
greater start arrays as follows:

if index[i] == index scan[i] or
index[i] == equal start[i] or
index[i] == greater start[i]

than new seg[i] = 1
else new seg[i] = 0
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([1, 2, 3, 4]) = 10. The input for the Scan function is an array of elements and
its output is an array of elements, where the values are computed as follows:

output [i] = input [0] + input [1] + ... + input [i-1],

e.g., Scan ([1, 2, 3, 4]) = [0, 1, 3, 6]. The algorithm is a vector-based and itera-
tive algorithm. In each stage, the input array is divided into smaller partitions
according to the value of the selected pivots. Cormen refers to these partitions as
Segments, and the Segmented Scan and Segmented Reduction functions perform
the reduction and scan operations on the different segments simultaneously. The
algorithm is constructed in a modular manner, which allows most of the auxiliary
functions in the algorithm to be performed using these two functions. Further-
more, the Segmented Reduction function is implemented by the Segmented Scan
function with the help of a nice trick. It is important to note that the algorithm
uses data parallelism, i.e., parallel processing is performed on the different arrays
by dividing them equally between the different threads or processes. Moreover,
each element of the input array is processed independently and without any
dependency on its neighbor elements. This feature provides the algorithm with
high scalability.

In order to illustrate the behavior of the algorithm, we use the example
shown in Table 1, where the input comprises 10 non-sorted items. In this case,
two iterations of the algorithm are sufficient to sort the input array. Table 2
shows the sequence of steps for a single iteration.

The partition and new seg arrays in the first iteration are the input and the
seg arrays in the second iteration. The algorithm is ended after the partition
array has been sorted in the second iteration. The two columns on the right in
Table 2 show the average runtimes for each step in Cormen’s algorithm with the
Multi-threading (MT) and Multi-processing (MP) implementations, and for n
= 100K and p = 4. We discuss these results in the next section. It is important
to note that the full algorithm uses functions and other data structures that are
not described in the present study.

Next, we analyze the computational complexity of the algorithm in a sim-
plified manner. A more detailed analysis was given by Cormen [2]. As shown in
Tables 1 and 2, the dominant functions during one partition step are the Seg-
mented Scan and Segmented Reduction functions. These functions use simple
recursive Reduction and Scan functions. Again, step 1 and steps 5–10 in Table 2
are implemented using the Segmented Scan function. Let us analyze the parallel
runtime of the Reduction function. The parallel runtime of an operation usually
comprises two factors: computational time + synchronization time. We assume
that the Reduction operation is applied to an array of size n while using p pro-
cesses. We also assume that n � p, which is what usually occurs in reality, such
as in our performance benchmarks where n ≥ 100000 and p ≤ 4.

In the Reduction function, the input array is evenly divided between pro-
cesses. In the first stage, each process performs a local sequential reduction
operation on n/p elements. At the end of this stage, barrier synchronization is
invoked in order to wait for all of the processes to complete their operations.
This synchronization operation requires time β. The output from the first stage
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is an array of size p containing the local results from each process, which we
refer to as Reductions.

Next, a reduction operation is performed on the elements of the Reductions
array, where the Reduction function invokes the Simple Reduction function to
perform the reduction operation on Reductions in parallel and recursively. There-
fore, log2(p)) recursive steps are required and every recursion step ends with bar-
rier synchronization. Hence, the parallel runtime for the Reduction operation is:
n/p+β+βlog2(p). It can be shown that the parallel runtime of a scan operation
is similar. The number of reduction and scan operations is constant, so it can
be estimated that the parallel runtime of a partition step is: O(n/p + βlog2(p)).
However, is the first term dominated by the second term? We measured the
actual values of these terms in our test environment for n = 100000 and p = 4,
and found that n/p = 0.01534 s and βlog2(p) = 0.12693 s in the case of the MP
approach, and n/p = 0.024177 s and βlog2(p) = 0.01560 s in the case of the MT
approach. None of the terms differed significant compared with the others, so
none can be dropped.

How many partition steps are required to accomplish the whole Quicksort
algorithm? If we assume that in the average case, each partition step divides each
segment into sub-segments of equal sizes, then log2(n) recursive partition steps
are required to complete the whole Quicksort algorithm. Therefore, the total
cost of the parallel runtime for the algorithm is: O(log2(n)(n/p + βlog2(p))).

3 Implementations and Results

In the following, we describe our test environment, the methods used in this
study, the implementation of the algorithms, and an analysis of the performance
results.

3.1 Anaconda-Numba Python Environment

We used Numba [5] Python programming environment for developing and testing
the algorithms. Numba offers a comprehensive, user-friendly solution for portable
high performance computing. Numba is a NumPy-aware Python programming
model and a Just-in-Time compiler based on source-code annotations. Numba
uses the LLVM compiler for generating optimized machine code similar in perfor-
mance to C. It was designed in mind for array-oriented and numerical code that
supports CPUs, CUDA GPUs, and HSA APUs. Numba is in active development
(the current version is 0.30.1). Numba is part of Anaconda Accelerate [9], which
is available under a free license for academic users. It runs on top of Anaconda
Python [10], which is a completely free package and environment manager for
large scale data processing and scientific computing. It includes hundreds of open
source packages to include the popular packages of NumPy [6], SciPy [7], Mat-
plotlib [8], IPython, and Spider IDE. Our benchmarking environment includes
Windows 10; Python 2.7; Anaconda version 4.2.13; Numba 0.30.1; Spyder 3.0;
NumPy 1.11.1; and Intel Core-i7 3.4 GHz quad-core 2-hyper-threads processor.
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3.2 Experimental Methods

All of the algorithms were developed in the same environment. Each algorithm
was tuned to obtain the maximum performance. Side effects such as just-in-time
compilations and cache effects were eliminated and amortized based on pre-runs
where the time was not considered, where we ran the algorithms at least 10
times and calculated their average runtimes. In order to avoid confounding the
comparisons of the runtime results obtained with different models, numbers of
processes, and input sizes, all of the tests were performed using the same pool of
random inputs.

Table 3 shows the runtime measurements for the sequential Quicksort algo-
rithm, Cormen’s vector-based parallel Quicksort algorithm, and the recursive
parallel Quicksort algorithm. The Python parallel algorithms were implemented
using two parallel programming models: MT and MP. The times shown in Table 3
are in seconds.

Table 3. Runtime results of sequential, recursive parallel and Cormen’s Quicksort
algorithms. Times shown are in seconds

Sequential quicksort

Multi-processing Multi-threading

100K 0.2988 0.0094

1M 2.8700 0.0562

4M 10.900 0.1985

Parallel quicksort

Multi-processing Multi-threading

Number of threads 1 2 4 Input size 1 2 4 Input size

Cormen’s 840 900 1196 100K 2.14 2.75 5.64 100K

Parallel 4578 4497 5180 1M 16.62 12.67 18.87 1M

Quicksort 17920 16128 21590 4M 55.61 46.73 45.67 4M

Speedup (4M) 1.11 0.83 1.19 1.21

Recursive 0.54 0.39 0.54 100K 0.0250 0.0122 0.0123 100K

Parallel 12.72 7.08 5.79 1M 0.1843 0.1014 0.0721 1M

Quicksort 153.13 87.77 72.26 4M 0.1970 0.1317 0.1187 4M

Speedup (4M) 1.74 2.11 1.49 1.65

The results in Tables 2 and 3 indicate the following.

– The Python MT algorithms performed better than the Python MP algo-
rithms by one to three orders of magnitude. These results clearly demonstratde
that the choice of the method utilized to achieve parallelism was dramatically
affected the performance of the algorithm.

– The Cormen’s parallel Quicksort algorithms had very low scalability.
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– The Python recursive parallel Quicksort algorithms based on the MT and MP
approaches exhibited low scalability as the input size increased. However, the
performance achieved by the MT approach with an input size of 4M elements
was better than that with the sequential approach. For example, the runtime
of the sequential MT algorithm with an input size of 4M was 0.1985 s and the
runtime of the parallel MT algorithm was 0.1187 s, which indicated a speed
up of 1.67.

– The last two columns in Table 2 show the percentage of the total runtime
for each step in Cormen’s algorithm with the Python MT and MP imple-
mentations. These results showed that the performance costs of the different
steps in the two implementations were not identical because they employed
two different parallelism approaches. For example, the first step in the MT
approach required 40% of the runtime, whereas it only required 15% in the
MP approach.

– The results in Table 2 illustrated another phenomenon that was important
for understanding the performance of the algorithm. The first step in the
algorithm consumed 40% and 15% of the runtime with the MT and MP
approaches, respectively. However, why does the simple operation involving
filling all of the segments with their respective pivot values takes so much
time? The answer is that this filling operation is implemented with the Seg-
mented Scan function, which is not effective for this purpose. Thus, why is
this function used? The main features of the design of the algorithm were
explained in Sect. 2, which shows that the idea is to construct an algorithm
based on two functions: Segmented Scan and Segmented Reduce. Theoreti-
cally, this approach is impressive but it is not efficient in practice, as clearly
demonstrated by the results.

The observations presented above demonstrated that an apparently well-
designed parallel algorithm in theory can obtain very disappointing performance
when tested in practice. Moreover, the runtime results illustrated the differences
in performance between various parallel programming models.

Is it possible to analyze the performance of a parallel algorithm by using a
performance model to determine its actual performance? In the next section,
we present the theoretical performance analysis of the algorithm proposed by
Cormen and we examine its predictive ability in practice.

4 Performance Prediction

In order to assess the degree to which Cormen’s parallel Quicksort algorithm
performs better than the sequential Quicksort algorithm, Cormen theoretically
analyzed the computational complexities of the Scan and Reduction functions.
These theoretical analysis results were not supported by actual experiments.
Next, we briefly review Cormen’s theoretical analysis of the Reduction function
and its ability to predict the performance in practice.
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Cormen started his analysis by determining when the parallel execution time
Tp will be less than the sequential execution time Ts:

Tp < Ts (1)

This analysis considered the following two cases.

1. When n ≤ p and the reduce operation is performed by the Simple Reduction
function.

2. When n > p and the reduce operation is performed by the Reduction function.

The relationship between Simple Reduction and Reduction functions is
explained in Sect. 2. Let us start with the case where n ≤ p. In order to maintain
the inequality n ≤ p, the following inequality must be satisfied:

Tp = (t + h)log2(n) < t(n − 1) = Ts (2)

where t is the time of one plus operation and h is the time overhead per recursive
call, which includes barrier synchronization and all other computations excluding
the plus operation. After rearranging the above inequality, we obtain:

n1+h/t < 2n−1 (3)

What does the inequality (3) indicate? The inequality allows us to find the
input size at the crossover point given the ratio between the parallel overhead
time (h) and the computation time (t) as defined above, and vice versa. Thus,
any input size greater than the input size at the crossover point ensures that
the parallel computation time of the Simple Reduction will be less than the
sequential computation time of the reduce operation.

Now, let us examine inequality (3) in practice. First, let us assume that our
parallel system is a 6-core system, i.e., p = n = 6. In order to maintain inequality
(3), our system must comply with the condition that h/t < 0.934. Therefore, in
our 6-core system, the parallel overhead time of the Simple Reduction algorithm
must be less than the computation time of one plus operation. This result is
excessively optimistic compared with the overhead costs in real systems. In real-
ity, the parallel overhead costs are significantly greater than the computational
time of simple arithmetic operations.

Now, let us look at inequality (3) from the opposite perspective. Let us
assume that h/t = 20. Then, according to inequality (3), the parallel time
required for Simple Reduction will be less than the sequential time for n ≥ 154.
Thus, because the Simple Reduction function is invoked for n ≤ p and n ≥ 154,
then p must hold as p ≥ 154. A typical parallel system of 154 cores or more will
yield a ratio of the overhead time relative to the computational time of greater
than 20, as defined above. We measured the values of h/t in our parallel system
for n = p = 4 and found that these values were not constant and they varied
among the development environments. The measured values were 105 and 18132
for the Python MT and MP approaches, respectively, which are higher than the
optimistic assumption obtained from inequality (3).
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We measured the performance of the Simple Reduction function for n = p = 4.
Table 4 shows the runtime of the Simple Reduction function with the Python MT
and MP approaches, and the performance of sequential reduction and the built-
in Python reduction function np.sum. The performance of the recursive parallel
Simple Reduction function was slower than that of the sequential algorithm by two
and five orders of magnitude with the MT and MP approaches, respectively.

Table 4. Sequential and parallel runtimes of the simple reduction function for
Python MT and MP approaches and for input size n = 4. Times shown are in micro
seconds.

Multi-processing Multi-threading

Sequential np.sum Parallel Sequential np.sum Parallel

1.61 13.58 130991 1.79 21.7 181

Now, let’s examine the case where n > p. Here, we first divide the n elements
into p partitions, and each process performs a local reduction operation on one
partition of n/p elements. In the second stage, a reduction operation is performed
on the local results using the Simple Reduction function that was analyzed in
the previous case. Therefore, the following inequality must be satisfied:

Tp = (tn/p + β + (t + h)log2(p) < t(n − 1) = Ts (4)

After rearranging the above inequality and taking in account that h > β we get:

n/p + h/t + (1 + h/t)log2(p) < n − 1 (5)

Now, let us examine this inequality (5) in practice.
First, let us consider the performance of the Reduction function. Table 5

shows the runtime results for the Reduction function with the MT and MP
approaches for one and four processes/threads, and the performance of sequential
reduction and the built-in Python reduction function np.sum for various input
sizes. The performance of the MT approach was up to three orders of magnitude
better than that of the MP approach. These results highlight an important issue.

In the analysis given above, we defined the sequential runtime as t(n−1) = Ts.
The sequential runtime is a reference time that determines whether the parallel
runtime obtained improves the performance. However, what time do we use as
the practical reference time? We could use the runtime of the parallel algorithm
when using one process/thread, the time of the sequential algorithm that uses
the same data structures as the parallel algorithm, or the time of the fastest
sequential algorithm.
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Next, we consider the results in Table 5 and focus on the measurements
obtained with the MP approach. If the reference time is selected as the runtime
of a single process or the sequential runtime, the performance of the parallel algo-
rithm improved as the input size increased compared with the performance of
the sequential algorithms. Table 5 shows that for four processes and an input size
of 4M elements, a speedup of 1.86 was achieved when the reference time was set
as the runtime for a single process. However, if we select the runtime of np.sum
as the reference time, then the parallel reduction algorithm only matched the
runtime for np.sum with a very large input, if at all.

Table 5. Sequential and parallel runtimes of the reduction function for MP and MT
approaches and for various input sizes. Times shown are in micro seconds.

Input size Multi-processing

Sequential np.sum 1 process 4 processes

100000 9913 78 153200 292000

1000000 125300 589 362300 358600

4000000 503088 2023 1067100 573500

Input size Multi-threading

Sequential np.sum 1 thread 4 threads

100000 24 66 425 1607

1000000 519 583 1272 1501

4000000 1612 1970 3761 2807

Now, let us consider the measurements obtained with the MT approach. If
the reference time is selected as that for one of the sequential algorithms, then
the parallel reduction algorithm obtained very poor performance compared with
the sequential algorithms. However, if we select the runtime of a single process
as the reference, then a speedup of 1.33 was achieved with four threads and an
input size of 4M elements.

Thus, which sequential algorithm should be selected as a reference?
In general, if we want to examine the scalability of a parallel system, the

runtime of the parallel algorithm for a single thread/process is selected as the
reference time. However, if we are interested in examining the speed of our
parallel algorithm, then we select the best sequential algorithm as a reference
algorithm.

Now, let us reconsider inequality (5). Suppose that p = 4 and h/t = 20.
The inequality shows that the parallel reduction function will perform better
than the sequential reduction function for n > 84. However, as shown by the
results shown in Table 5, the parallel algorithm actually performed better when
n > 4M elements and n > 1M elements with the MT and MP approaches,
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respectively, and when the comparison was performed against the runtime for a
single process/thread. If the runtime of one of the other sequential algorithms is
selected as a reference, then much larger input values will be required.

Thus, what is the source of the difference in the predicted theoretical perfor-
mance and the actual performance? The answer is that the difference is due to
the deficiencies of the performance model employed, i.e., inequalities (3) and (5).
In particular, these inequalities lack expressions for all of the parallel overheads,
and thus they are not considered when analyzing the theoretical performance. As
shown by our experiments, these overheads significantly affect the performance
of a parallel system. Table 5 shows that the differences are substantial between
the sequential algorithm runtimes and the parallel runtimes obtained for a single
thread/process. These results showed that considerable overheads are incurred
simply by activating the parallelism mechanisms and without parallelizing any-
thing.

5 Conclusions

In this study, we investigated the vector-based Quicksort algorithm proposed by
Cormen. In particular, we implemented this algorithm in an advanced Python
environment using two parallel programming models: process-based and thread-
based parallel programming models. We compared the performance of these
algorithms with those of recursive parallel algorithms and serial algorithms.

Our analysis of the runtime results indicated that Cormen’s algorithm did not
exhibit good scalability. In addition, the parallel programming model selected
for the implementation of the algorithm significantly affected the performance
of the algorithm. We also examined the predictive ability of the theoretical per-
formance model and found a large difference between the predicted performance
and the actual performance derived from parallel overhead sources that are not
considered in the theoretical model.
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Abstract. In this paper, we consider Zuker’s RNA folding algorithm,
which is a challenging dynamic programming task to optimize because
it is resource intensive and has a large number of non-uniform depen-
dences. We apply a previously published approach, proposed by us, to
automatically tile and parallelize each loop in the Zuker RNA Folding
loop nest, which is within the polyhedral model. First, for each loop nest
statement, rectangular tiles are formed within the iteration space of the
Zuker loop nest. Then, those tiles are corrected to honor all dependences
exposed for the original loop nest. Correction is based on applying the
exact transitive closure of a dependence graph. We implemented our
approach as a part of the source-to-source TRACO compiler. We com-
pare code performance and energy consumption with those obtained with
the state-of-the-art PluTo compiler based on the affine transformation
framework as well as with those generated by means of the cache-efficient
manual method Transpose. Experiments were carried out on a modern
multi-core processor to achieve the significant locality improvement and
energy saving for generated code.

Keywords: RNA folding · High-performance computing · Zuker
algorithm · Loop tiling · Energy consumption

1 Introduction

Dynamic programming (DP) recurrences have been one of the most ongoing
approaches to sequence analysis and structure prediction in biology. However,
achieving good code performance is limited due to memory latency and band-
width on modern multi-core platforms.

Fortunately, DP algorithms involve mathematical computations, which are
easily implemented as affine control loop nests [2,4], thus, the iteration space
can be represented by the polyhedral model for optimizing their locality and
parallelism. It provides a powerful theoretical framework that can analyze regular
loop programs with static dependences [10].

Loop transformations such as tiling for improving locality group loop nest
statement instances in the loop nest iteration space into smaller blocks (tiles)
c© Springer Nature Switzerland AG 2020
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allowing reuse when the block fits in local memory. To our best knowledge, well-
known tiling techniques are based on linear or affine transformations [1,2,4,20].

In this paper, we focus on the automatic code locality improvement of RNA
folding realized with Zuker’s algorithm [22]. It predicts the structure using
more detailed and accurate energy models [5] and entails a large number of
non-uniform loop dependences. Therefore, the algorithm belongs to the non-
serial polyadic dynamic programming (NPDP) class. The NPDP irregular loop
dependence patterns prevent applying commonly-know polyhedral optimization
techniques [12].

Recently, we introduced an algorithm to tile affine arbitrary nested loops.
It is based on the transitive closure of program dependence graphs [12]. First,
rectangular tiles are formed, then they are corrected to establish tiling validity
and a cycle-free inter-tile dependence graph by means of the transitive closure of
loop nest dependence graphs. The approach is able to tile non-fully permutable
loops, which are exposed for NPDP algorithms. To parallelize corrected tiles,
we use the ISL scheduler [18]. The tiling strategy is implemented within the
TRACO compiler1.

In the experimental study, we compare generated code performance with that
obtained with related cache-efficient strategies and analyze the energy consump-
tion on a modern multi-core computer.

The rest of the paper is organized as follows. Section 2 explores related
approaches. Section 3 presents Zuker’s algorithm. Section 4 discusses optimiza-
tion ways to accelerate Zuker’s code. In Sect. 5, we report experimental results
to validate our claims. Finally, conclusions are presented in Sect. 6.

2 Related Work

In recent years, many research groups have been doing research in the area
of manual and automatic accelerating NPDP algorithms used in bioinformat-
ics for multi-core processors, graphics accelerators, and FPGAs [5,7–10,17]. In
this paper, we consider implementations dedicated to reducing memory access
latency and the cache bandwidth on modern multi-core CPUs.

GTfold [9] is a well-known optimized multi-core implementation of RNA
secondary structure prediction algorithms. It optimizes the memory layout of
the arrays to improve spatial locality. However, GTfold does not perform tiling
to improve temporal locality.

Li et al. [6] suggested a manual cache efficient version of simplified Nussi-
nov’s recurrence by using the lower triangle of a dynamic programming table
to store the transpose of computed values in the upper triangle. Li’s modifica-
tions accelerate rapidly code execution because reading values in a row is more
cache efficient than reading values in a column. Diagonal scanning of statements
exposes parallelism in Li’s code.

Zhao et al. improved the Transpose method to generate energy-efficient code
[21]. Their benchmarking shows that depending on a studied computational
1 traco.sourceforge.net.

http://www.traco.sourceforge.net
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platform and programming language, either ByRow or ByBox gives minimal run
time and energy consumption. As a result, using the same amount of memory,
the algorithms proposed by Zhao et al. can solve problems up to 40% larger
than those solvable by Transpose. However, the authors do not present how to
generate multi-threaded code.

The state-of-the-art source-to-source PluTo compiler [1] is able to tile RNA
folding loop nests in an automatic way. It forms and applies affine transforma-
tions to generate tiled code within the polyhedral model. However, PluTo fails
to generate tiles of the maximal dimension for NPDP codes [12] because the tile
dimensionality is limited to the number of linearly independent solutions to the
space/time partition constraints.

Mullapudi and Bondhugula presented dynamic tiling for Zuker’s optimal
RNA secondary structure prediction [10]. An iterative tiling for dynamic schedul-
ing is calculated by means of reduction chains. Operations along each chain can
be reordered to eliminate cycles in an inter-tile dependence graph. But this tech-
nique is not able to generate static tiled code.

Wonnacott et al. introduced 3-d tiling of “mostly-tileable” loop nests of RNA
secondary-structure prediction codes in paper [19]. However, the authors demon-
strated how to generate only serial tiled code for the Nussinov loop nest.

In our previous work, we have accelerated Nussinov’s RNA folding loop nest
[12] by means of the exact transitive closure of loop dependence graphs. Paper
[15] presents locality improvements for Zuker’s recurrence without any paral-
lelism. Papers [13,14] consider the tile correction application for the minimum
cost polygon triangulation and Smith-Waterman alignment codes, respectively.

3 Zuker’s Algorithm

Zuker’s algorithm is executed in two steps. First, it calculates the minimal free
energy of the input RNA sequence on recurrence relations as shown in the for-
mulas below. Then, it performs a trace-back to recover the secondary structure
with the base pairs. The first step consumes almost all of the total execution
time. Thus, optimization of computing energy matrices is crucial to improve
code performance.

Zuker defines two energy matrices, W (i, j) and V (i, j), where O(n2) pairs
(i, j) satisfying 1 ≤ i ≤ N ; i ≤ j ≤ N , and N is the length of a sequence. W (i, j)
is the total free energy of sub-sequence defined with values of i and j, V (i, j) is
defined as the total free energy of the sub-sequence starting with i and ending
with j if i and j pairs, otherwise V (i, j) = ∞.

The main recursion of Zuker’s algorithm for all i, j with 1 ≤ i < j ≤ N ,
where N is the length of a sequence, is the following.

W (i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W (i + 1, j) (1)
W (i, j − 1) (2)
V (i, j) (3)
min
i<k<j

{W (i, k) + W (k + 1, j)} (4)
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Below, we present the computation of V .

V (i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

eH(i, j) (5)
V (i + 1, j − 1) + eS(i, j) (6)

min
i≤i′≤j′≤j

2<i′−i+j−j′<d

{V (i′, j′) + eL(i, j, i′, j′)} (7)

min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)} (8)

eH (hairpin loop), eS (stacking) and eL (internal loop) are the structure
elements of energy contributions in the Zuker algorithm.

The computation of Eqs. 1, 2, 3, 5, 6 takes O(n2) steps. Equations 4 and
8 requires O(n3) steps. The time complexity of a direct implementation of this
algorithm is O(n4) because we need O(n4) operations to compute Eq. 7. This
formulation as a computational kernel involves float arrays and operations.

The computation domain and dependences for Zuker’s recurrence cell (i, j)
is similar but more complex than Nussinov’s recurrence dependence pattern.
Long-range (non-local) dependences of cell (i, j) are generated within Eqs. 3, 4
and 8. The V(i’,j’) element computation in Eq. 3 is spread within the triangle
whose area is limited to several dozens or hundreds of cells in nature. The other
equations present short-range (local) dependences.

Listing 1 shows the affine loop nest for finding the minimums of the V and
W energy matrices.

Listing 1. Zuker’s recurrence loop nest

f o r ( i = N−1; i >= 0 ; i −−){
f o r ( j = i +1; j < N; j++) {
f o r ( k = i +1; k < j ; k++){
f o r (m=k+1; m <j ; m++){
i f (k−i + j − m > 2 && k−i + j − m < 30)

V[ i ] [ j ] = MIN(V[ k ] [m] + EL( i , j , k ,m) , V[ i ] [ j ] ) ; // Eq . 3
}
W[ i ] [ j ] = MIN ( MIN(W[ i ] [ k ] , W[ k+1] [ j ] ) , W[ i ] [ j ] ) ; // Eq . 8
i f ( k < j −1)

V[ i ] [ j ] = MIN(W[ i +1] [ k ] + W[ k+1] [ j −1] , V[ i ] [ j ] ) ; // Eq . 4
}

V[ i ] [ j ] = MIN( MIN (V[ i +1] [ j −1] + ES( i , j ) , EH( i , j ) , V[ i ] [ j ] ) ;
// Eq . 1 ,2

W[ i ] [ j ] = MIN( MIN ( MIN ( W[ i +1] [ j ] , W[ i ] [ j −1]) , V[ i ] [ j ] ) , W[ i ] [ j ] ) ;
// Eq . 5 ,6 ,7

}
}

4 Optimizing the Zuker Loop Nest

The Zuker loop nest has similar dependence patterns to those of the Nussinov
one. It uses also only the upper-right triangles of the energy arrays. It is possible
to parallelize the second outermost loop nest with the statement execution in
the diagonal order (Listing 2). No data exchange between threads is needed. All
threads synchronize before moving to the next diagonal [6].
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Li et al. [6] proposed the Transpose method to improve locality of this code.
In Eqs. 4 and 8, there are not cache-efficient column reading of the W array,
W [k+1][j] and W [k+1][j−1], respectively. The transpose method changes these
array accesses to the row reading and add the following statement W [col][row] =
W [row][col] to make a transposed copy of the cells in the lower-left triangle.

Li’s algorithm uses all elements in the W array, i.e., the algorithm keeps and
writes the double number of cells in the memory.

Listing 2. Zuker’s recurrence loop nest after applying Transpose

f o r ( diag=2; diag<=N−1; diag++)
#pragma omp p a r a l l e l f o r shared ( diag ) p r i va t e ( co l , row , k , m)
f o r ( row=0; row<=N−diag −1; row++){
c o l = diag+row ;
f o r ( k=row ; k<c o l ; k++){
f o r (m=k+1; m <c o l ; m++)
i f (k−row + co l − m > 2 && k−row + co l − m < 30 )
V[ row ] [ c o l ] = MIN(V[ k ] [m] + EFL[ row ] [ c o l ] , V[ row ] [ c o l ] ) ;

W[ row ] [ c o l ] += MIN ( MIN(W[ row ] [ k ] , W[ co l ] [ k+1]) , W[ row ] [ c o l ] ) ;
i f ( k < co l −1)
V[ row ] [ c o l ] = MIN(W[ row+1] [ k ] + W[ col −1] [ k+1] , V[ row ] [ c o l ] ) ;

}
V[ row ] [ c o l ] = MIN( MIN (V[ row+1] [ co l −1] , EHF[ row ] [ c o l ] ) , V[ row ] [ c o l ] ) ;
W[ row ] [ c o l ] = MIN( MIN ( MIN ( W[ row+1] [ c o l ] , W[ row ] [ co l −1]) ,

V[ row ] [ c o l ] ) , W[ row ] [ c o l ] ) ;
W[ co l ] [ row ] = W[ row ] [ c o l ] ;

}

Optimizing compilers allow us to automatically produce parallel tiled code
using the serial code (Listing 1) as the input. We use the two source-to-source
tools in an experimental study: Traco and PluTo.

The PluTo compiler parallelizes code by means of the loop skewing method
found with the PluTo scheduler algorithm based on the affine transformation
framework (ATF). The compiler is unable to tile the third loop k [10]. Because
the third loop k is innermost and not tiled, locality improvement of generated
tiled code is limited.

The Traco compiler is able to tile all loops in this nest. It uses a tile correction
algorithm based on the transitive closure of program dependence graphs [12].
First, rectangular tiles are formed, then they are corrected to establish tiling
validity. Tile statement instances, which are dependence destinations, are moved
to lexicographically greater tiles containing dependence sources. Next, tiled loops
are skewed to generate parallel code. To our best knowledge, tile correction is
the only method that allows us to tile all loops in the nest and generate static
parallel tiled code for Zuker’s recurrence.

Figure 1 exhibits an example pattern of two uniform dependences i, j →
i, j +1 and i, j → i+1, j − 1, respectively, with the dependece vectors [0, 1] and
[1, −1] in the O(n2) domain. Statement instances in tiles are executed in the
serial order. Bold arrows represent inter-tile dependences.

The second negative element −1 in the dependence vector [1, −1] disables
rectangular tiling. Dark gray statement instances are “problematic” because
they are the dependence destinations whose sources belong to lexicographically
greater tiles. There are cycles in the inter-tile dependence graph.
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Fig. 1. An example dependence pattern and its tile correction.

Transitive closure allows us to find all invalid tiles and statement instances
that make the corresponding tiles invalid. Then such statement instances are
moved from original tiles to the lexicographically greatest tiles including the
corresponding dependence sources.

It is worth noting that the computation of point (i, j) in the (i, j, k) domain
depends on the points in the domain from the i-th row and the points from the
j-th column. Dependences among neighboring points (connected with paths of
length 1) are uniform, while ones among points connected with paths of length
2 or more for each value of k are non-uniform. Both uniform and non-uniform
dependences involve original tile correction along those axes corresponding loop
iterators (i, j, k,m), for which the corresponding elements of distance vectors are
negative. For the Zuker loop nest, distance vectors have negative elements in the
third and fourth positions (k and m, respectively). Tile correction along axes k
and m allows for tiling loops k and m that improves code locality. Techniques
based on affine transformations do not allow for tiling loops k and m.

Tile correction changes the shape of original tiles and reduces the number
of inter-tile dependences (from 13 to 7 in the example depicted in Fig. 1). The
inter-tile dependence graph is acyclic. If the calculation of the transitive closure
of a dependence graph is possible, TRACO is able to tile all loops in the nest.
Details of the tile correction algorithm are presented in paper [15]. For the Zuker
loop nest, TRACO calculates the exact transitive closure of a dependence graph.

Dark gray tiles in Fig. 1 are independent, so they can be scheduled to the
same schedule time. Corrected valid tiles can be scheduled with an arbitrary
technique. In other words, tile correction and scheduling are independent steps
in opposite to the PluTo strategy.
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To generate parallel code on the tile level, we apply the ISL scheduler [18],
which is as a variation of the PluTo scheduler with Feautrier’s one as fallback.
The ISL scheduler is improved with unscaling, domain compression, incremental
scheduling, grouping and coalescing.

The schedule returned with the ISL scheduler corresponds to the loop skew-
ing transformation, which can be represented with the following map of tile
identifiers (ii, jj, ...) → (ii + jj, jj, ...). TRACO applies this schedule to gener-
ate target parallel tiled code with the OpenMP pragmas parallel for [11] placed
before the second loop in the nest, which scans values of tile identifier jj.

Table 1. Execution time in seconds

Size Serial TRACO PluTo Transpose

1000 21.1 3.7 4.5 3.7

1500 102.0 23.9 27.0 18.3

2000 317.8 45.2 63.8 56.5

2500 773.0 105.6 153.8 138.8

3000 1595.2 211.9 325.8 285.9

3500 2946.1 391.9 619.2 526.9

4000 4923.8 664.9 1074.5 894.2

4500 7819.0 1030.8 1683.5 1413.7

5000 11474.4 1561.6 2602.9 2148.8

5 Experimental Study

We implemented the Zuker loop nest and its transposed version [6] in C and
generated parallel tiled code by means of the Traco and PluTo compilers2. Then,
we examined code performance on an Intel i7-8700 processor (3.2 GHz, 4.6 GHz
in turbo, 6 cores, 12 threads, 12 MB Cache). Codes were compiled using the GCC
version 7.3.0 with the O3 option. We used the “perf” [16] software to measure
energy consumption through the RAPL interface [3].

Randomly generated RNA sequences, used by us for carrying out experi-
ments, are comparable to real similarly sized sequences [12].

For generated tiled code, we empirically discover that the best tile size is 16
× 16 × 16 × 16. All studied codes were parallelized by applying the OpenMP
parallel directives and for directives [11] with the dynamic schedule of loop
iterations and the chunk size equal to 1 as the most efficient work-sharing.

Table 1 presents execution time (in seconds) for serial code and parallel code
generated with TRACO, PluTo, and the Transpose technique for all 12 available
2 The source codes are available at the repository https://github.com/markpal/zuker.

The tiled codes are too long to present in this paper.

https://github.com/markpal/zuker
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i7 threads. The tiled code generated with TRACO demonstrates the best speed-
up 7.35 for the longest studied sequence. Li’s code is more cache-efficient than
the PluTo code.

Table 2 presents energy consumption measured at the processor and its com-
ponents (cores and cache) in kilojoules. The TRACO code is also the most
energy-efficient program. The serial implementation requires from 3 to 7 times
larger energy (it engages only one CPU thread). The rest optimized codes also
reduce energy consumption, but to a lesser extent.

Table 2. Energy usage on CPU cores and cache (kJ).

Size Serial TRACO PluTo Transpose

1000 0.574 0.253 0.299 0.246

1500 2.720 1.535 1.752 1.189

2000 8.448 2.939 4.140 3.672

2500 20.072 6.855 9.981 9.0230

3000 41.730 13.756 21.014 18.574

3500 78.405 25.442 39.953 34.220

4000 134.566 43.130 68.842 58.076

4500 214.407 66.869 107.940 91.806

5000 319.190 98.319 166.379 139.540

6 Conclusion

In this paper, we presented how to generate parallel cache and energy efficient
code for the Zuker loop nest, which is one of the most sophisticated algorithms
for folding single RNAs. We applied the transitive closure of a dependence graph
to improve locality of the RNA folding code and compared its performance and
energy consumption with those obtained with the Transpose and affine transfor-
mation methods. We observed higher performance and lower energy consumption
at the cores of obtained code in comparison with those of code generated with
the techniques mentioned above.

In future work, we plan to study more complex polyhedral implementations of
Zuker’s recurrence and compare them with related implementations included in
sophisticated bioinformatics packages. We intend to develop novel more efficient
tiling strategies dedicated to irregular dependence patterns.
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1 Jülich Supercomputing Centre, Institute for Advanced Simulation,
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Abstract. We have implemented the computation of Coulomb interac-
tions in particle systems using the performance portable C++ frame-
work Kokkos. Coulomb interactions are evaluated with an Ewald-sum-
based solver, where the interactions are split into long- and short-range
contributions. The short-range contributions are calculated using pair-
wise contributions of particles while long-range interactions are calcu-
lated using Fourier sums. We evaluate the performance portability of
the implementation on Intel CPUs, including Intel Xeon Phi, and Nvidia
GPUs.

Keywords: Programming model · Accelerator · Performance
modeling · Long-range interaction

1 Introduction

The development of modern computer architectures shows a clear trend towards
increased complexity and heterogeneity. This increases the complexity of efficient
code development for multiple architectures that takes advantage of all available
components. GPUs, for example, are powerful processors available in cell phones
as well as supercomputers that usually require their own programming model.
As a matter of fact GPUs have become more and more important as a source of
computing power in supercomputers, as can be seen in the increase of systems
using GPUs in the Top500 list [17] over the past ten years. While in November
2008 there was no system that included GPUs, in November 2013 there were
39 systems, and in the current list from November 2018 126 systems contained
GPUs. There are many ways of programming GPUs but unfortunately few are
even function portable without large changes to the source code [10]. This matter
becomes even worse if we want to write code for different kind of accelerators,
e.g., Intel’s Xeon Phi series.

In the domain of particle simulation methods of complex systems, electro-
static interactions represent a class of algorithms of high computational com-
plexity. This arises as a result of pair-wise interactions between all particles
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R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 35–45, 2020.
https://doi.org/10.1007/978-3-030-43222-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_4&domain=pdf
http://orcid.org/0000-0002-4895-3762
http://orcid.org/0000-0003-2831-9761
http://orcid.org/0000-0002-9004-604X
https://doi.org/10.1007/978-3-030-43222-5_4


36 R. Halver et al.

in a system, which basically scale as O(N2). More efficient methods can be
reduced to O(N log(N)) or even O(N) but come with a large implementation
effort [3,6,13,15,19]. In the present paper we consider the Ewald summation
method, which is suitable for particle systems in three dimensions under periodic
boundary conditions and which can be optimized by proper choice of parame-
ters to O(N3/2) (there are also formulations for one- or two-dimensional systems,
which we do not consider here). The basic structure of the Ewald summation is
sufficiently transparent and not too complex, allowing an analysis of the oper-
ational count and providing insight into the procedure to measure performance
portability.

Performance portable approaches have been supported recently by the US
department of Energy and have resulted in frameworks like Kokkos [1,5] or
Raja [2,4], which offer C++ software abstractions for code execution and mem-
ory management.

In this paper, we compare the performance of an Ewald sum implemented
in Kokkos on various Intel CPUs including Intel Xeon Phi Knights Landing
and Nvidia GPUs. We start with a quick overview of Kokkos and its main
features (Sect. 3). Then we introduce the problem of a system of electric charges
with periodic boundary conditions and show how the Ewald sum can be used
to calculate it efficiently (Sect. 2). In Sect. 4 we establish a base line for the
achievable performance. Afterwards we present our implementation and show
our performance benchmarks (Sect. 5).

2 Calculating Long-range Interactions with Periodic
Boundaries

When computing energies and forces in particle systems composed of N particles,
which are dominated by long range interactions, each particle i gets partial
contributions of each other particle j ∈ [1, N ]. Long range interactions arise
when the potential energy function φ(r) decays slower than 1/rd, where d is the
dimension of the system and r is the distance from a point in space to a particle.
Here, we consider electrostatic potentials created by point charges, for which the
potential energy at a point r in free space is given by φ(r) = qj/|r − rj | which
leads to a total electrostatic energy U = 1/2

∑
i,j qiφ(rij). When simulating

bulk systems, the number of particles in a simulation is always small, compared
with laboratory samples and therefore, in order to avoid surface effects, periodic
boundary conditions are often applied [9] and the electrostatic potential energy
at particle position ri can formally be written as

φ(ri) =
∑

n

†
N∑

j=1

qj

‖rij + nL‖2

where n ∈ Z
3 is a so called lattice vector, L the length of the (cubic) system

and “†” indicates that j �= i for ‖n‖2 = 0. This sum cannot be evaluated by a
straightforward summation rule, since (i) the first sum is formally over an infinite
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number of lattice vectors; and (ii) the lattice sum is conditionally convergent,
i.e., the result depends on the order of summation. Ewald proposed [7] a way to
overcome the conditional convergence by subdividing the expression into a short
range and a long range part, which is introduced via a splitting function, f(r),
which decays to zero within a finite range. A function u(r) = 1/r can then be
rewritten as u(r) = f(r)/r + (1 − f(r))/r. The first term is short range (since
it decays to zero), while the second one is long range (since asymptotically it
decays as 1/r). This reformulation has the advantage that it can be transformed
into an unconditionally convergent sum for a proper choice of f . Originally,
f(r) = erfc(αr) was chosen, where α is a splitting parameter, controlling the
width of the short range part. The long range part can be elegantly computed
in Fourier space, which leads to [9]

φ(ri) =
N∑

j=1

∑

n

†qj
erfc(α‖rij + nL‖)

‖rij + nL‖2

+
4π

L

∑

|k|�=0

N∑

j=1

qj

|k|2 e− |k|2
4α2 eikrij −qi

2α√
π

(1)

The last term corresponds to a correction for particle i, which also appears
in the k-space summation (second term). For practical computations the infi-
nite sums (over n and k) have to be approximated. For large arguments erfc(x)
decays as a Gaussian, as it does the k-space summation. Therefore, both sums
can be limited to a finite range of values, which still allows for control of approx-
imation error. In most cases, due to the spherical symmetry of erfc(x) and a fast
decay, the first sum can be restricted to contributions within a spherical region
of radius Rc. Furthermore, it can be shown that via a proper set of parame-
ters [8,16], the computational complexity is reduced from O(N2) to O(N3/2).

3 Kokkos at a Glance

Kokkos uses C++ to provide an abstraction of parallel algorithms, their exe-
cution and memory spaces. The basic algorithms include parallel for, paral-
lel reduce, and parallel scan. Each of these algorithms can be executed in dif-
ferent execution spaces, for example, using an OpenMP execution space on the
CPU or a CUDA execution space on an Nvidia GPU.

CPUs and GPUs use different approaches to vectorization. CPUs use a sin-
gle instruction multiple data paradigm. GPUs use a single instruction multiple
threads paradigm. These two approaches lead to different preferred memory lay-
outs. To accommodate different memory layouts and memory locations Kokkos
introduces so called Views.

A View is a thin wrapper around the data. It knows its dimensionality,
its sizes, its layout, and its memory space. Kokkos::View<double∗> v(n);, for
example, initializes a one dimensional array of doubles of size n in the default
execution space, which can be set at compile time. A View can be mirrored on
the host side. In GPU computing it is not uncommon to initialize data on the
host, transfer them to the GPU, perform computations, and transfer the results
back. A mirrored View can do just that. Any transfer between a View and its
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mirror needs to be done explicitly using Kokkos::deep copy. The code shown in
Listing 1.1 creates a 1d View and a host mirror of it, fills the mirrored View with
random numbers, copies the numbers to the View, sums them up in parallel, and
gets the result.

Listing 1.1. Reduction using Kokkos. This program can be executed using OpenMP
on a CPU or on a GPU. Second level curly brackets are needed to ensure deallocation
of views before calling Kokkos::finalize.

#include <random>
#include <Kokkos Core . hpp>

int main ( int argc , char∗ argv [ ] ) {
Kokkos : : i n i t i a l i z e ( argc , argv ) ;
{

std : : de fau l t random eng ine generator ;
s td : : u n i f o rm r e a l d i s t r i b u t i o n <double> un i f o rm d i s t (0 , 1) ;
auto uniform = [&]{ return un i f o rm d i s t ( generator ) ; } ;
int n = 1024 ;
double sum = 0 ;
// Create a view in the d e f a u l t e xecu t i on space
Kokkos : : View<double∗> v ( ”v” , n) ;
// Create a mirror o f v in hos t memory
auto h v = Kokkos : : c r e a t e m i r r o r v i ew (v ) ;
for ( int i = 0 ; i < n ; ++i ) h v ( i ) = uniform ( ) ;
// Copy data from hos t to dev i c e i f necessary
Kokkos : : deep copy (v , h v ) ;
// Pa r a l l e l r educ t i on in d e f a u l t e xecu t i on space
Kokkos : : p a r a l l e l r e d u c e (n , KOKKOSLAMBDA( int i , double&

localSum ) {
localSum += v( i ) ;

} , sum) ;
std : : cout << ”The average value o f the e lements o f v i s ”

<< (sum / n) << ” .\n” ;
}
Kokkos : : f i n a l i z e ( ) ;

}

If the program is compiled for OpenMP, the mirror view becomes an alias
and the deep copy does not have to do anything, but if the program is compiled
for CUDA, the original View lives on the GPU and the deep copy transfers the
data from the CPU to the GPU.

On GPUs neighboring threads should access consecutive memory. Thread i
should access a[i] and thread i+1 a[i+1], but on a CPU this prevents vec-
torization and can introduce an unnecessary dependency. If a[i] and a[i+1]
belong to the same cache line and thread i writes to a[i] it invalidates the entire
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cache line. If thread i+1 wants to access a[i+1] it first needs to read the entire
cache line again. This effect is called false sharing [18]. So for CPUs a single
thread should deal with a chunk of data. The effects due to different memory
layout requirements become even more pronounced for multi-dimensional data.
Note that in Kokkos, the left-most index is assumed to be the one over which
parallelization is performed.

4 Achievable Performance

To determine how well our implementation takes advantage of the available
hardware, we need to know what the hardware is capable of. Theoretical peak
performance is not a good measure of the performance that is achievable for a
particular algorithm. If the calculation is dominated by square roots or exponen-
tials, for example, it does not matter how quickly a compute device can calculate
multiplications and additions. To estimate the number of cycles needed for the
Ewald summation (Eq. 1), we use vendor information and mini benchmarks.

We first initialize an array of elements to some range of values and then
loop over this array applying the operation in question one to a few times. The
idea is to access data from cache or registers to minimize the effect of mem-
ory bandwidth and latency. We check that vectorized versions of the functions
are used where available. The important operations are multiplication, division,
square roots, exponentials (exp), sine (sin) and cosine (cos), and the error func-
tion (erfc). Table 1 lists the duration of an operation in cycles and its inverse
(throughput per cycle) for each device. For operations for which we found infor-
mation from the vendors, the values are listed in parenthesis as well.

In the following sections we look at the number of instructions performed by
the Ewald solver.

4.1 Ewald Solver

The Ewald solver consists of a k-space (Fourier space) and a real-space part. Let
N be the number of particles in the central cell and Nk be the number of wave
vectors.

Real-Space Contributions. To calculate a single particle-particle interaction
energy, we first need to calculate the distance between the particles (c.f. first
term of Eq. 1). In our implementation the central cell is large enough that we
do not need to add additional image cells and thus do not have contributions of
the type nL. A distance calculation consists of 3 subtraction, 2 multiply-adds, 1
multiplication and a square root (sqrt). For the particles within a cutoff radius
defined by a tunable parameter α, we then calculate the error function (erfc) of
the distance, divide by it, and multiply the result by the charge of particle j.
All these partial results need to be added up for each particle i and the result
is multiplied by the charge of particle i and a constant. Finally, the potential
energy of all particles needs to be summed up to get the total energy. This leads
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Table 1. Average duration in cycles per core or streaming multiprocessor (SMs) for
additions, multiplication, (fused) multiply-add, division, square roots, exponentials, sin
and cos, and the error function. All values are approximate. The number of cycles is
calculated as the number of cycles per vector instruction divided by the width of the
vector. A division using AVX512 instruction on Skylake-X, for example, takes 16 cycles
and does 8 division in parallel during those 16 cycles. We therefore have 2 cycles per
division. The numbers in parenthesis are from [11,14]. The line for Skylake (zmm)
shows results when the compiler was asked for a high usage of zmm registers. On the
CPU architectures, we used a single core for the measurements. On the GPUs, we used
all SMs and divided the throughput by the number of SMs.

add mul (f)ma div sqrt exp sin cos erfc

Skylake ( 1
16

) ( 1
16

) ( 1
16

) 2.0 (2) 3.06 (3) 12.5 11.58 12.63 16.77

Skylake (zmm) ( 1
16

) ( 1
16

) ( 1
16

) 0.96 1.20 6.32 6.51 6.76 9.25

Haswell ( 1
8
) ( 1

8
) ( 1

8
) 3.97 3.97 2.66 2.84 3.35 5.85

KNL ( 1
16

) ( 1
16

) ( 1
16

) 1.12 2.04 3.82 6.94 7.09 9.20

Kepler ( 1
64

) ( 1
64

) ( 1
64

) 0.15 0.21 0.37 0.55 0.55 1.25

Volta ( 1
32

) ( 1
32

) ( 1
32

) 0.30 0.31 0.57 0.84 0.84 2.04

to a total of N2((3 sub + 2 multiply-add + 1 mul + 1 sqrt) + Vf (2 mul + 1
div + 1 erfc)) + Nmultiply-adds, where Vf is the fraction of the total volume
within the cutoff radius. For Skylake (zmm) this becomes

(1.58 + 10.34Vf )N2 + N/16 (2)

cycles. On a Volta GPU we need

(0.50 + 2.40Vf )N2 + N/32 (3)

cycles.

K-Space Contributions. The second term of Eq. 1 contains 2 nested sums.
The outer sum is over Nk = (2kint +1)3, where kint is the integer ceiling of kmax

and kmax is determined by the required precision and the factor α mentioned in
the Sect. 2. It requires the calculation of the square of the length of the k-vector
(2 multiply-add, 1 multiplication), which is used twice. Only wave vectors with
a length less than kmax are included for the remaining calculations. There are
3 divisions, 7 multiplication, 2 multiply-adds, and 1 exponential. The argument
of the inner sum includes the dot product between k and ri(2 multiply-add, 1
multiplication). The exponential of the complex argument is calculated using 1
sin and 1 cos. This is then multiplied by qi and summed up (1 multiply-add).

The argument of the inner sum is executed NNkVf times, where Vf =
4π
3 k3

max
Nk

. In
total this becomes Nk(3 (sub,multiply-add,mul) + Vf (9 (sub,multiply-add,mul)
+ 3 div + 1 exp + N(sin + cos + 3 (sub,multiply-add,mul))). For Skylake (zmm)
this becomes

(0.19 + (9.76 + 13.46N)Vf )Nk (4)



Examining Performance Portability for an Ewald Coulomb Solver 41

cycles. On a Volta GPU we need

(0.09 + (1.75 + 1.77N)Vf )Nk (5)

cycles.

5 Results

The program was benchmarked on five different architectures: three different
Intel CPUs and two different Nvidia GPUs. The benchmarks were performed
on the JURECA and JUWELS clusters at the Jülich Supercomputing Centre
[12]. On JURECA the tests were run on (i) a CPU compute node, equipped
with two Intel Xeon E5-2680 v3 Haswell CPUs, (ii) a GPU node equipped with
two NVIDIA K80 (Kepler) cards, of which only a single one was used, and (iii)
a booster node consisting of a single Xeon-Phi 7250-F Knights Landing (KNL)
processor. The nodes used on JUWELS are (i) a CPU node containing two Intel
Xeon Platinum 8168 Skylake-X (SKX) processors and (ii) a GPU node with four
NVIDIA V100 (Volta) cards, of which again only one is used for the benchmarks.

For each benchmark the same source code was used, containing only minor
adjustments concerning the used ExecutionSpace and MemorySpace, depending
on the use of (i) a GPU architecture and (ii) the use of the host mirror mechanic
of Kokkos. The possibility to change the memory layout is also included. For the
CPU benchmark runs a complete node was used, i.e., two processors of Haswell
and Skylake and one KNL processor, while for the GPU benchmarks only a
single GPU was used, i.e., ‘half’ a K80 and a single Volta V100 card. Therefore
the presented runtimes are per-node runtimes, not per processor runtimes.

For the benchmarks a cubic NaCl crystal was simulated, for which the exact
solution to the Coulomb potential is known, so that the accuracy of the computed
solution could be compared to the exact solution. During the benchmark the
size of the crystal was increased by increasing the edge length L of the crystal,
thereby increasing the number of particles by L3. Due to the nature of the
system, the contribution of the Fourier-space is much smaller than the real-space
contribution, due to screening effects. This does not decrease the computational
demand of the algorithm if a given accuracy has to be achieved.

In the optimal case the Ewald solver shows an complexity of O(N3/2), which
depends on an optimal choice of the splitting parameter α, the real-space cut-off
radius rc and the k-space cut-off kmax. Due to the implementation of the real-
space computation, which is basically a direct solver of complexity O(N2), in
our results it can be seen that for larger systems sizes the resulting runtimes
behave more like O(N2) than O(N3/2) (see Fig. 1). The figure also shows the
expected relations of runtime to architecture, as the more powerful architectures
shows faster runtimes than the less powerful ones. Another detail that can be
seen is that the GPUs show the same scaling behavior as the CPUs, with the
Volta card resulting in the shortest runtimes of all architectures.

In order to achieve some more insight into the performance portability
between the same types of architectures, i.e., CPU-CPU, GPU-GPU, and across
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Fig. 1. Comparison of the runtime for different systems sizes on all tested architectures.
For reference two guide lines showing a complexity of O(N3/2) and O(N2) are shown.

Table 2. Nominal peak performance data for each of the architectures used in the
benchmarks

Architecture Note Nominal peak performance [TFlops/s]

Haswell Complete node (two processors) 0.9

Kepler Single GPU (half a K80 card) 0.945

KNL One processor 3.05

Skylake Complete node (two processors) 4.1

Volta Single GPU 7.8

types of architectures, i.e., CPU-GPU, we consider the peak-performance nor-
malized runtime on the architectures. The runtime can be expressed by the num-
ber of operations divided by a fraction γ, where γ is a measure for the proximity
to maximum performance, trun = Ninstruc

γPpeak
; γ ∈ [0, 1]. This can be rewritten as

trun · Ppeak = Ninstruct/γ. (6)

To compare the performance portability of the implementation the runtimes
need to be compared between the different architectures. Assuming that on each
architecture a comparable number of instructions are executed for a given sim-
ulation, one can assume that the product of runtime trun and the nominal peak
performance Ppeak will be equal across all platforms, if the reached relative per-
formance γ is equal (Eq. 6).

For a qualitative comparison based on this thought, the runtimes are multi-
plied with the nominal peak performance for each of the architectures given in
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Table 2. All peak performance data is with regard to double precision compu-
tations, which are used in the code. The resulting plot (Fig. 2) shows that the
normalized number of instructions computed for each of the different architec-
tures is similar. It can also be seen that the lines for the same type of architecture
(CPU, GPU) are nearly identical to each other, indicating on a qualitative level,
that the achieved relative performance is similar within a given type of architec-
ture (with the exception of KNL).
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Fig. 2. Runtime on each architecture normalized by the nominal peak performance
of the architecture. If the achieved performance on two architectures relative to the
nominal peak performance is equal, the lines should be overlapping.

No significant difference could be measured between the variants of the code
using the Kokkos host mirror functionality and using the option with unified
memory. While this was expected on CPU architectures, it was interesting to
see that required hard copies of data between devices where handled in a very
efficient way on GPU architectures independent of the GPU model.

We can do a quantitative analysis of the performance based on the results
from Sect. 4. As an example, for N = 1283 we obtain an optimal runtime of
56.44 s based on Eqs. 2 and 4 for the Skylake system. The measured runtime is
206.74 s. This corresponds to a relative performance γSKX of 0.27. For Volta we
get an optimal runtime of 18.61 s and a measured runtime of 71.56 s resulting
in a relative performance γSKX of 0.26. While the scaling with the nominal
peak performance Ppeak (Fig. 2) suggests that γVolta is larger than γSKX, above
analysis shows that they are nearly equal.



44 R. Halver et al.

6 Discussion and Conclusions

The performed benchmarks indicate that it is possible to write a performance
portable Ewald solver code with Kokkos that can utilize different architectures
without the requirement of intensive code adaptations for each of the architec-
tures. Of course it might be possible to write more efficient code specialized for
certain architectures, but this kind of code would lose the advantage of versatil-
ity concerning architectures it could usefully run on. The quantitative analysis
shows that the expected runtime for Skylake is three times longer than for Volta,
which our measurement confirm. On the other hand, the nominal peak perfor-
mance predicts only a factor of two leading to the discrepancy with Fig. 2.

It is noticeable that the performance of the KNL is worse than the perfor-
mance of the other architectures when using smaller number of particles. This
could be related to a massive overhead in the administration of threads, as each
thread might not be fully utilized due to the smaller amount of work for each
thread. For larger system sizes, it can be seen that the KNL behaves comparable
to the other architectures, with regard to the scaling behavior.

Implementing the Ewald solver with Kokkos was slightly more difficult than
implementing the code with OpenMP, as the correct usage of the corresponding
parallel for and parallel reduce constructs is a bit more intricate than the usage
of OpenMP pragmas. The advantage is that they can be used on GPUs as well
if certain restrictions regarding memory access are obeyed. As can be seen from
our benchmarks this can be done with nearly no loss of relative performance on
the different architectures.

Our first results indicate that implementations of algorithms based on Kokkos
on a given architecture allows a simplified way of porting to other architectures
without a redesign of code (e.g., porting an efficient code for GPUs from stan-
dard C++ to CUDA). This allows for an easier transition to other (future)
architectures and to investigate and utilise this hardware in an earlier stage of
their availability.

For the future it needs to be examined, if the O(N3/2) complexity can be
achieved for the Kokkos implementation, e.g., by implementing nearest-neighbor
lists for the real-space contribution computation. Also, it would be beneficial to
implement more advanced Coulomb solvers, like PME, P3M or the fast multipole
method, with Kokkos to see if the solvers can also be used performance portable.
With regard to Kokkos features, it will also be investigated how large the impact
is of choosing an unsuitable memory layout for a given architecture.
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Abstract. The main contribution of this paper is to show efficient
implementations of the convolution-pooling in the GPU, in which the
pooling follows the multiple convolution. Since the multiple convolution
and the pooling operations are performed alternately in earlier stages of
many Convolutional Neural Networks (CNNs), it is very important to
accelerate the convolution-pooling. Our new GPU implementation uses
two techniques, (1) convolution interchange with direct sum, and (2)
conversion to matrix multiplication. By these techniques, the compu-
tational and memory access cost are reduced. Further the convolution
interchange is converted to matrix multiplication, which can be com-
puted by cuBLAS very efficiently. Experimental results using Telsa V100
GPU show that our new GPU implementation compatible with cuDNN
for the convolution-pooling is at least 1.34 times faster than the multiple
convolution and then the pooling by cuDNN, the most popular library
of primitives to implement the CNNs in the GPU.

Keywords: Deep learning · Neural Networks · Convolution · Average
pooling · GPU

1 Introduction

The GPU (Graphics Processing Unit) is a specialized circuit designed to accel-
erate computation for building and manipulating images [4,5,9,13,15]. Latest
GPUs are designed for general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence, GPUs have recently
attracted the attention of many application developers. NVIDIA provides a par-
allel computing architecture called CUDA (Compute Unified Device Architec-
ture) [10], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. Application programs running on GPUs can be
developed using CUDA C programming language. Further, NVIDIA provides
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several libraries of primitives to accelerate application programs. For example,
cuBLAS [11], a linear algebra library including matrix computations, is opti-
mized for each of GPU architecture generations, such as Kepler, Maxwell, Pas-
cal, Volta, and Turing. So, we can attain the best performance for operations
of linear algebra using cuBLAS, and it makes no sense to develop them using
CUDA C language by ourselves in most cases.

GPUs have been used for accelerating machine learning by Deep Neural Net-
works (DNNs). NVIDIA provides cuDNN [2,12], a GPU-accelerated library of
primitives for DNNs such as the convolution and the pooling. Developers can
use cuDNN APIs to implement DNN operations in GPUs. Further, popular
machine learning frame works such as TensorFlow, CNTK, PyTorch, and Caffe2
call cuDNN APIs to accelerate operations of DNN using GPUs. Hence, it is
very important to improve library calls of cuDNN. The main purpose of this
paper is to provide an efficient cuDNN-compatible GPU implementation for the
convolution-pooling, in which the pooling follows the convolution as illustrated
in Fig. 1. Since the convolution and the pooling are performed alternately in ear-
lier stages of a Convolutional Neural Network (CNN), a kind of DNN for images,
training and inference of CNNs can be accelerated.

X

W0

Ap(X ∗ W3)

Ap(X ∗ W2)

Ap(X ∗ W1)

Ap(X ∗ W0)

X2

X1

X0

X ∗ W3

X ∗ W2

X ∗ W1

multiple
convolution

average
pooling

K
X ∗ K

X ∗ W0W1

W2

W3

Fig. 1. The convolution-pooling for I = 3 input channels and R = 4 output channels

Our new GPU implementation for the convolution-pooling uses two tech-
niques, (1) convolution interchange with direct sum, and (2) conversion to matrix
multiplication. In (1), the direct sum operation is performed before the convo-
lution to obtain the same results. The computational and memory access cost
are reduced by this technique. To further accelerate the convolution-pooling,
the computation in (1) is converted to equivalent matrix multiplication, which
can be computed by cuBLAS very efficiently. Our experimental results using
Telsa V100 GPU show that our new GPU implementation for the convolution-
pooling is at least 1.34 times faster than the multiple convolution and then the
pooling by cuDNN APIs. From the theoretical analysis, our convolution-pooling
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algorithm reduces the computational cost of the convolution-pooling. Thus, our
acceleration technique is applicable for any architecture if regular memory access
performed by it does not have large memory access penalty.

There are a lot of approaches to accelerate the operations in the DNN [1,8,14,
16]. In [7], the convolution interchange technique to accelerate the convolution-
pooling has been presented. They use the Summed Area Table (SAT) of the
input channels to reduce the computational cost, which is inverse proportional
to the pooling size. However, in most DNNs, the pooling of size only 2 × 2 is
used. We have used the direct sum computation, which is more efficient than
the SAT when the pool size is small. In addition, we have used the matrix
multiplication conversion for the convolution interchange technique for further
acceleration. We have used two techniques above and evaluate the performance
on Tesla V100 GPU.

2 Convolution-Pooling in the CNN

The main purpose of this section is to explain the details of convolution-pooling,
in which pooling operation follows convolution operation and show the compu-
tational cost, which is the number of arithmetic operations such as addition and
multiplication.

2.1 Convolution-Pooling and Straightforward Implementation

Let X and W be matrices of size n × n and k × k, respectively. The convolution
of X and W denoted by X ∗ W is a (n − k + 1) × (n − k + 1) matrix defined by
the following formula:

(X ∗ W )[i, j] =
k−1∑

i′=0

k−1∑

j′=0

X[i + i′, j + j′]W [i′, j′] (0 ≤ i, j ≤ n − k) (1)

Sometimes zero padding operation, which expands the size of X or W by padding
zero elements, is performed before the convolution to obtain an n × n resulting
matrix. Usually, in the area of image processing and machine learning, n � k
holds and matrices X and W are called a channel and a kernel, respectively. For
a set X = {X0,X1, . . . , XI−1} of I channels and a set W = {W0,W1, . . . ,WI−1}
of I kernels, we write X ∗ W to denote the element-wise sum of the pairwise
convolutions, that is,

(X ∗ W)[i, j] =
I−1∑

l=0

(Xl ∗ Wl)[i, j] (0 ≤ i, j ≤ n − k) (2)

Suppose that a set X of I channels and R sets K = {W0,W1, . . . ,WR−1} of I
kernels each are given. The multiple convolution is a task to compute R products

X ∗ K = {X ∗ W0,X ∗ W1, . . . ,X ∗ WR−1}.



Efficient cuDNN-Compatible Convolution-Pooling on the GPU 49

Clearly, the total computational cost of X ∗ K is O(n2k2IR). The reader should
refer to Fig. 1 illustrating multiple convolution for I = 3 input channels and
R = 4 output channels.

The (average) pooling of a matrix is a down-sampling by dividing an input
matrix into blocks, and computing the average of each block. More specifically,
for an n × n matrix X, the resulting matrix Ap(X) of the average pooling is an
n
p × n

p matrix such that

Ap(X)[i, j] =
pi+p−1∑

i′=pi

pj+p−1∑

j′=pj

X[i′, j′]/p2 (0 ≤ i, j ≤ n
p − 1) (3)

where p×p is the pooling size. Since the sum of p2 input elements is computed for
each element of the resulting n

p × n
p matrix, the computational cost is p2×(np )2 =

O(n2).
In the CNN, it is often the case that the pooling follows the multiple

convolution as illustrated in Fig. 1. We call these computations combined the
convolution-pooling, which is a task to output

Ap(X ∗ K) = {Ap(X ∗ W0), Ap(X ∗ W1), . . . , Ap(X ∗ WR−1)}
Clearly, the total computational cost to obtain these R matrices is (O(n2k2I) +
O(n2)) · R = O(n2k2IR), and we have,

Lemma 1. The convolution-pooling can be done in O(n2k2IR) computational
cost.

We will show that the computational cost can be reduced to O(n
2k2IR
p2 ) later.

2.2 Fused Kernel Implementation of Convolution-Pooling Layer

The convolution operation is associative, that is, (X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z)
holds for any matrices X, Y , and Z. We will show that, using this associative
law, the convolution-pooling can be implemented by the convolution with the
down-sampling.

Let Sp be a down-sampling operation to pick one element in each p×p block
of a matrix X. More specifically, Sp(X) of size n

p × n
p is defined as follows:

Sp(X)[i, j] = X[pi, pj] (0 ≤ i, j ≤ n
p − 1).

Let αp be a kernel of size p × p with every element taking value 1
p2 . Clearly, the

convolution X ∗ αp corresponds to the average filter for X. Hence, the resulting
matrix Ap(X) of the average pooling for X can be computed by evaluating
Sp(X ∗ αp), that is, Ap(X) = Sp(X ∗ αp) always holds. Thus, each resulting
matrix of convolution-pooling can be obtained by the following formula:

Ap(X ∗ Wr) = Sp(
I−1∑

l=0

(Xl ∗ (Wr,l ∗ αp))) (0 ≤ r ≤ R − 1), (4)
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where Wr,l denotes the l-th kernel in Wr. We can think that each fused kernel
Wr,l∗αp is a fixed matrix of size (k + p−1)×(k + p−1). After that, Xl∗(Wr,l∗αp)
is computed. However, it is not necessary to compute all matrix elements of
Xl ∗ (Wr,l ∗ αp), because the down-sampling Sp is performed; Only one element
in every p × p block is necessary. Thus, we have,

Lemma 2. The convolution-pooling by fused kernels can be done in
O(n

2(k+p)2IR
p2 ) computational cost.

The computational cost is not better than that of the straightforward implemen-
tation shown for Lemma 1. However, since convolution operation is performed
only once, fused kernel implementation can be faster from the practical point of
view.

2.3 Convolution Interchange for the Convolution-Pooling

This section shows the convolution interchange technique to implement the
convolution-pooling, and it runs in only O(n

2k2IR
p2 ) computational cost by com-

puting the summed area table (Fig. 2, [7]). We then go on to show that our direct
sum technique for the convolution interchange for further acceleration.
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Fig. 2. The summed area table (SAT) computed by column-wise prefix-sums and then
by row-wise prefix-sums

Since convolution operation is associative and commutative, we can rewrite
formula (4) as follows:

Ap(X ∗ Wr) = Sp

I−1∑

l=0

((Xl ∗ αp) ∗ Wr,l) (0 ≤ r ≤ R − 1). (5)

Clearly, each Xl ∗ αp can be computed in O(n2p2) computational cost. If we use
the summed area table (SAT) as presented in [7], the computational cost can be
reduced to O(n2). For an n × n matrix X, the SAT S(X) is defined as follows:

S(X)[i, j] =
i∑

i′=0

j∑

j′=0

X[i′, j′] (6)
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It is known that S(X) can be obtained by computing the column-wise prefix-
sums of X and then computing the row-wise prefix-sums [3,6]. Hence, S(X) can
be computed in O(n2) computational cost. The sum of any rectangular block
can be computed by four elements of S(X). For example, the sum of any p × p
block of X can be computed by four elements of S(X) as follows:

i+p−1∑

i′=i

j+p−1∑

j′=i

X[i′, j′] = S(X)[i + p − 1, j + p − 1]

+S(X)[i − 1, j − 1] − S(X)[i − 1][j + p − 1] − S(X)[i + p − 1][j − 1] (7)

For example, in Fig. 2, the sum of elements in the red square can be computed by
four elements with blue circle such that 20+6−10−12 = 4. Thus, each element
of Xl ∗ αp can be computed by O(1) computational cost by computing the
sum of each p × p region and dividing it by p2, and so the total computational
cost to obtain all Xl ∗ αp for all l (0 ≤ l ≤ I − 1) is O(n2I). After that,
each element of Sp(

∑I−1
l=0 ((Xl ∗αp) ∗Wl)) is computed in O(k2I) computational

cost. Since we have n2

p2 elements, Sp(
∑I−1

l=0 ((Xl ∗ αp) ∗ Wl)) can be computed

in n2

p2 · O(k2I) = O(n
2k2I
p2 ) computational cost. Since the convolution-pooling is

performed for R sets of I kernels each, we have,

Theorem 1. The convolution-pooling by the convolution interchange can be
completed in O(n

2k2IR
p2 + n2I) computational cost.

Clearly, if k
√

R ≥ p, then the computational cost is O(n
2k2IR
p2 ). Actually, p is

smaller than both k and R in practical implementations of CNNs. Further, in the
CNN, most pooling operation is performed with parameter p = 2. If this is the
case, it makes no sense to compute the SAT to obtain Xl ∗αp. By computing the
sum of each neighboring pair in row direction, and then by computing the sum
of each neighboring pair in row direction, we can obtain the sum of every 2 × 2
block as illustrated in Fig. 3. By dividing each sum by 4, we can obtain Xl ∗α2 in
O(n2I). For later reference, we call this computation direct sum. After computing
the direct sum of each input channel, we can compute Sp

∑I−1
l=0 ((Xl ∗α2) ∗Wr,l)

to complete the convolution-pooling in the same way.

3 Matrix Multiplication Conversion for Convolution-
Pooling

This section explains the matrix multiplication conversion technique known as
im2col, which is implemented in Python, MATLAB, cuDNN, etc. It converts
input channels combined are converted in a single matrix and kernel set combined
is also converted in a single matrix so that the product of them equals to the
result of the multiple convolution. We apply this technique to the convolution-
pooling, and use cuBLAS to multiply two matrices.

We first show that the multiple convolution represented as formula (2)
can be computed by a matrix multiplication. First, I input channels X =
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Fig. 3. The direct-sum computation to obtain Xl ∗ α2

{X0,X1, . . . , XI−1} and R kernel sets K = {W0,W1, . . . ,WR−1} are converted
into two matrices D(X ) and V (K) of size (n − k + 1)2 × k2I and k2I × R as
illustrated in Fig. 4. The matrix D(X ) has k2I columns such that consecutive k2

columns are copied from an input channel. Each row in consecutive k2 columns
corresponds to a k×k block. For example, green blocks of X0 and X1 are arranged
in the top row of D(X ). Hence, D(X ) has (n−k +1)2 rows. Each column of the
matrix V (K) corresponds to a kernel set and the value of I kernels in a kernel set
are copied in the corresponding column as illustrated in Fig. 4. From the figure,
the reader should have no difficulty to confirm that the product of D(X ) and
V (K) is equal to the values of R output channels X ∗Wi for all i (0 ≤ i ≤ R−1).
Thus, the multiple convolution can be obtained by the product of D(X ) and
V (K).

The computational cost for generating D(X ) is O((n − k + 1)2 × k2I) ≤
O(n2k2I). Also, that for V (K) is O(k2IR). Their product can be computed
in O((n − k + 1)2 · k2I · R) ≤ O(n2k2IR). Hence, the total computing cost is
O(n2k2IR).

We will show that the same technique can be used for the convolution
interchange, which computes Sp

∑I−1
l=0 ((Xl ∗ αp) ∗ Wl). Suppose that X ∗ αp =

{X0 ∗ αp,X1 ∗ αp, . . . , XI−1 ∗ αp} and R kernel sets K = {W0,W1, . . . ,WR−1}
are given. Clearly, by the product of two matrices D(Xl ∗ αp) and V (K), we can
obtain

∑I−1
l=0 ((Xl ∗ αp) ∗ Wr,l). Since we need the down-sample Sp

∑I−1
l=0 ((Xl ∗

αp) ∗ Wr,l), which is obtained by selecting one element from every p × p block
of

∑I−1
l=0 ((Xl ∗ αp) ∗ Wr,l), we can remove unnecessary rows from D(Xl ∗ αp) to

obtain Sp

∑I−1
l=0 ((Xl ∗ αp) ∗ Wr,l). Let Dp(Xl ∗ αp) denote the matrix obtained

by this down-sampling such that one out of every p2 rows in D(Xl ∗ αp) is
picked appropriately. The product of Dp(Xl ∗ αp) and V (K) can be computed
in O(n

2k2IR
p2 ) and so the total computational cost is O(n

2k2IR
p2 + n2I).

Also, the same technique can be used for fused kernels. Let W ′
i =

{W0 ∗ αp,W1 ∗ αp, . . . ,WI−1 ∗ αp} be a set of I fused kernels, and K′ =
{W ′

0,W ′
1, . . . ,W ′

R−1} be R sets of I fused kernels. The convolution-pooling by
fused kernels can be computed by the product of Dp(X ) and V (K′). The total
computational cost is O(n

2(k+p)2IR
p2 ).
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Fig. 4. The multiple convolution by matrix multiplication for I = 2 input channels
X = {X0, X1} with R = 3 kernel sets K = {W0, W1, W2}.

4 GPU Implementations

In this section,we explain the details of fiveGPU implementations, cuDNN(naive),
cuDNN(fused), cuBLAS(fused), cuDNN(direct), and cuBLAS(direct) to compute
the convolution-pooling. We call parameters of the multiple convolution such as
data type (double, float, half), the size n × n and the number I of channels, the
size k × k and the number I of kernels, and the batch size B, the configuration of
the multiple convolution.

cuDNN(naive): The multiple convolution X ∗ K is computed by the cuDNN
and then the pooling Ap(X ∗ K) is computed by cuDNN. The convolution of
cuDNN can have several options of convolution algorithms.
We use the function call cudnnGetConvolutionForwardAlgorithm() returns the
best algorithm for the configuration of the multiple convolution. After that,
we first execute cudnnGetConvolutionForwardWorkspaceSize() with the best
selected algorithm and the configuration which allocates memory space in the
global memory for multiple convolution computation by cuDNN. We call cud-
nnConvolutionForward() with the best selected algorithm and the configuration
to perform the multiple convolution. Finally, we cal cudnnPoolingForward() with
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the configuration to perform the pooling. When we evaluate the running time
of cuDNN(naive), the time for cudnnConvolutionForward() and cudnnPooling-
Forward() is included. The running time for cudnnGetConvolutionForwardAl-
gorithm() is excluded because it is executed only once.

cuDNN(fused): All fused kernels Wr,l ∗ αp are computed in advance and then
the multiple convolution Sp

∑I−1
l=0 (Xl ∗ (Wr,l ∗ αp)) is computed for each r-th

kernel set by cuDNN.
We first compute the fused kernel Wr,l∗αp for a kernel set by our implementation
in an obvious way. Similarly, cudnnGetConvolutionForwardAlgorithm() is called
to obtain the best algorithm for the configuration. We then executes cudnnGet-
ConvolutionForwardWorkspaceSize() to allocate the global work memory space,
and cudnnConvolutionForward() with stride p to compute the multiple convolu-
tion. Since the fused filter computation is executed once for the same kernel set,
and cudnnGetConvolutionForwardWorkspaceSize() is called only once, the run-
ning time of cudnnConvolutionForward() is used for evaluating the performance
of cuDNN(fused).

cuBLAS(fused): A matrix V (K′) is generated from the resulting values of
Wr,l ∗ αp in advance, a matrix Dp(X ) is generated by our CUDA C program,
and then the product Dp(X ) · V (K′) is computed by cuBLAS.
We first compute the fused filter and convert it to the corresponding matrix
V (K′). We then covert input channels of each channel set to the correspond-
ing matrix Dp(X ) by our CUDA C program. Since we have B channel sets,
the corresponding B matrices are concatenated into one large matrix. Finally,
we execute cublasSgemmStridedBatched() to complete the convolution-pooling.
Since the V (K′) is computed only once, the running time of the computation of
the corresponding matrix Dp(X ) and cublasSgemmStridedBatched() are evalu-
ated.

cuDNN(direct): Each Xl∗αp is computed by the direct sum using our CUDA C
program and then the multiple convolution Sp

∑I−1
l=0 ((Xl∗αp)∗Wr,l) is computed

by cuDNN.
Each Xl ∗ αp is computed by the direct sum using our CUDA C program. Sim-
ilarly to cuDNN(naive), the best algorithm is obtained by calling cudnnGet-
ConvolutionForwardAlgorithm() for the configuration of the multiple convolu-
tion. We then executes cudnnGetConvolutionForwardWorkspaceSize() to allo-
cate the global work memory space, and cudnnConvolutionForward() with stride
p to compute the multiple convolution. Since cudnnGetConvolutionForward-
WorkspaceSize() is executed only once, the running time of the computation
of Xl ∗ αp by our CUDA C program and cudnnConvolutionForward() are used
to evaluate the performance.

cuBLAS(direct): Each Xl∗αp is computed by the direct sum and then Dp(Xl∗
αp) and V (K) are generated by our CUDA C program.
The product of Dp(Xl ∗ αp) and V (K) are computed by cuBLAS. We first con-
vert kernels to the corresponding matrix V (K) by our CUDA C program. We
then compute Each Xl ∗ αp is computed by the direct sum and convert it to the
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corresponding matrix Dp(Xl∗αp) by our CUDA C program. We execute cublasS-
gemmStridedBatched() to compute the product of Dp(Xl ∗αp) and V (K). Since
V (K) for a kernel set K is computed only once, the running time of the compu-
tation of Dp(Xl ∗ αp) and cublasSgemmStridedBatched() are evaluated.

If developers implement the convolution-pooling using cuDNN as it is, they
will use cuDNN(naive) implementation. Further, if they use DNN frame works
such as Chainer, PyTorch, and TensorFlow, the convolution-pooling is exe-
cuted on the GPU as cuDNN(naive). Thus, the performance of cuDNN(naive)
approximates that using DNN frameworks. If developers know the fused kernel
technique, they may use cuDNN(fused) to implement the convolution-pooling.
Both cuDNN(direct) and cuBLAS(direct) use the convolution interchange and
the direct sum. Their difference is to use cuDNN or cuBLAS to compute the
convolution.

Also, please note that the convolution performed for a multiple channel sets
called batch at the same time in most DNNs. More specifically, let B denote the
size of batch, i.e. the number of channel sets. The multiple convolution of a batch
of size B performs the convolution for B channel sets of I channels each with
respect to a single kernel set of I kernels. We should evaluate the performance
of the running time of the convolution for a batch.

5 Experimental Results

Table 1 shows the running time of the convolution-pooling by cuDNN(naive),
cuDNN(fused), cuBLAS(fused), cuDNN(direct), and cuBLAS(direct) for input
channel size from 8 × 8 to 64 × 64 and for the number of input/output channels
from 32/32 to 512/512. The data type is a 32-bit single precision floating point
number. We have used NVIDIA Tesla V100 with cuDNN v7.1.4 and cuBLAS
v9.0. Since kernels of size 3 × 3 and the pooling for 2 × 2 are used in the most
DNNs, we use these parameters for the experiments. The running time is eval-
uated for 64 sets of the multiple convolution, thus, it corresponds to batch size
64 in the DNN. The running time in the table is the average of 100 computa-
tions. In the table, the best running time of the five implementations for each
parameter set is highlighted. It also shows the speedups of the best result of
cuDNN(direct) and cuBLAS(direct) over cuDNN(naive), and that of over the
best result of cuDNN(fused) and cuBLAS(fused). From the table, we can see that
either cuDNN(direct) or cuBLAS(direct) is always faster than cuDNN(naive) for
each case. Also, they are faster than cuDNN(fused) and cuBLAS(fused) in most
cases. They are slower for few cases but the difference is quite small. The maxi-
mum speedup of 9.49 is achieved for 128 input/output channels of size 64 × 64,
because cuDNN(naive) does not select an appropriate algorithm and takes a lot
of time for the multiple convolution.

Unfortunately, the best algorithm of the five differs depending on configu-
rations. Usually, DNNs have many layers with different configurations. We can
choose the best one for each layer to minimize the total computing time.
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Table 1. The running time (ms) of the convolution-pooling with 3 × 3 kernels and
2 × 2 pooling for I input channels and R output channels for batch size 64

Input channel size: 8 × 8

channels I/R 32/32 64/64 128/128 256/256 512/512

cuDNN(naive) 0.104 0.137 0.206 0.651 1.87

cuDNN(fused) 0.105 0.153 0.259 0.425 0.961

cuBLAS(fused) 0.103 0.141 0.281 0.929 3.17

cuDNN(direct) 0.107 0.133 0.340 0.341 0.701

cuBLAS(direct) 0.0473 0.0739 0.154 0.479 1.92

Speed-up: cuDNN(naive) 2.20 1.85 1.34 1.91 2.67

Speed-up: fused 2.18 1.91 1.68 1.25 1.37

Input channel size: 16 × 16

channels I/R 32/32 64/64 128/128 256/256 512/512

cuDNN(naive) 0.186 0.262 0.663 1.87 6.51

cuDNN(fused) 0.102 0.155 0.299 0.824 3.18

cuBLAS(fused) 0.110 0.174 0.335 0.922 3.34

cuDNN(direct) 0.112 0.146 0.342 0.616 1.92

cuBLAS(direct) 0.0488 0.101 0.192 0.577 1.89

Speed-up: cuDNN(naive) 3.81 2.59 3.45 3.24 3.44

Speed-up: fused 2.09 1.53 1.56 1.43 1.68

Input channel size: 32 × 32

channels I/R 32/32 64/64 128/128 256/256 512/512

cuDNN(naive) 0.247 0.42 2.03 5.98 20.9

cuDNN(fused) 0.156 0.254 0.836 2.82 10.7

cuBLAS(fused) 0.294 0.538 1.05 3.3 12.5

cuDNN(direct) 0.163 0.255 0.626 1.85 7.25

cuBLAS(direct) 0.164 0.315 0.610 1.85 7.02

Speed-up: cuDNN(naive) 1.52 1.65 3.33 3.23 2.98

Speed-up: fused 0.957 0.996 1.37 1.52 1.52

Input channel size: 64 × 64

channels I/R 32/32 64/64 128/128 256/256 512/512

cuDNN(naive) 0.936 1.85 20.6 13.9 47

cuDNN(fused) 0.327 1.19 4.03 13.5 49.3

cuBLAS(fused) 0.989 1.96 4.06 12.8 44.3

cuDNN(direct) 0.355 0.685 2.17 7.03 24.2

cuBLAS(direct) 0.548 1.12 2.28 7.01 25.0

Speed-up: cuDNN(naive) 2.64 2.70 9.49 1.98 1.94

Speed-up: fused 0.921 1.74 1.86 1.83 1.83
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6 Conclusion

We have presented new GPU implementations for the convolution-pooling based
on convolution interchange with direct sum. Experimental results using Tesla
V100 GPU show that our new GPU implementation compatible with cuDNN for
the convolution-pooling is at least 1.34 times faster than the multiple convolution
and then the pooling by cuDNN.
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Abstract. Many applications in high performance computing are
designed based on underlying performance and execution models. While
these models could successfully be employed in the past for balancing
load within and between compute nodes, modern software and hardware
increasingly make performance predictability difficult if not impossible.
Consequently, balancing computational load becomes much more diffi-
cult. Aiming to tackle these challenges in search for a general solution, we
present a novel library for fine-granular task-based reactive load balanc-
ing in distributed memory based on MPI and OpenMP. With our app-
roach, individual migratable tasks can be executed on any MPI rank.
The actual executing rank is determined at run time based on online
performance data. We evaluate our approach under an enforced power
cap and under enforced clock frequency changes for a synthetic bench-
mark and show its robustness for work-induced imbalances for a realistic
application. Our experiments demonstrate speedups of up to 1.31X.
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1 Introduction and Related Work

Over the past decades, most scientific applications have been developed under
the assumption of a homogenous execution environment where every compute
node – and even every single core – in a larger cloud or High Performance
Computing (HPC) system has a constant equal speed. Therefore, executing the
same work on every node should require the same computation time. In the
past, this execution model was shown to be highly accurate and efficient for
balancing computational load. However, as both hardware and software become
increasingly complex, this model might no longer be sufficient on current and
future systems.
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Today’s architectures already exhibit run time variations, e.g., with dynamic
voltage and frequency scaling (DVFS), sophisticated memory hierarchies com-
prising caches, DRAM, NVRAM and HBM or features like Intel’s Turbo
Boost [1,3]. Further, CPU power efficiency variations arising from the manu-
facturing process can lead to performance variations in presence of an enforced
power cap [7]. Another source of dynamic variability stems from modern numer-
ics in simulation applications such as particle simulations or iterative codes
employing adaptive mesh refinement (AMR) where the workload distributed
across processing units changes over time causing load imbalances both in shared
and distributed memory. In the ADER-DG numerical scheme with a-posteriori
limiting [15], additional computation work arises dynamically in regions where
the solution is not considered to be physically admissible.

Consequently, the assumption that the execution time can be accurately pre-
dicted does no longer apply. In order to prevent load imbalances and performance
declines resulting from performance variability both in hardware and software,
we believe that it is necessary that applications are able to dynamically react on
the changing execution conditions.

The literature describes several approaches to mitigate effects of load imbal-
ance. Shared memory runtime systems such as Cilk [2], TBB [12] and several
OpenMP [10] implementations apply work stealing to dynamically balance load
between threads in shared-memory only. Other distributed runtime systems such
as Charm++ [8] enable work redistribution in distributed memory. However,
they act to the best of our knowledge typically on a rather coarse-grained level
and require defined synchronization points where load migration is triggered.

Producer-consumer patterns or global repartitioning of work or data (e.g., [11])
are common application-level load balancing approaches. Both strategies typically
induce high overhead for message and data transfer between processes. Further,
while global repartitioning of work – usually done at global synchronization points
– was an effective technique to ensure proper balance in the past, it is based on a
cost model to predict future execution time. Such a cost model is doomed to fail
in increasingly complex hardware and software environments.

To mitigate these shortcomings of traditional predictive load balancing, we
present a library for fine-grained reactive load balancing of task-parallel MPI+X
applications that allows reactive load balancing within and across process bound-
aries. Further, as our goal is not to create a completely new programming lan-
guage or paradigm, our library rather builds on top of the established standards
MPI and OpenMP and provides an incremental solution to support the large
amount of existing codes developed in C, C++ and Fortran. In our previous
work [13], we carried out a feasibility study of our reactive approach in the
PDE framework sam(oa)2. In this work, we extend and improve our concept as
well as generalize and modularize it to make it available to other MPI-parallel
applications. Consequently, this paper makes the following contributions:

1. We present the first conceptual generalization of reactive load balancing to
arbitrary MPI-parallel task-based applications, detailing both requirements
and limitations associated with it.
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2. We present our library implementation based on MPI+OpenMP that allows
an incremental integration into existing task-based applications with mini-
mal programming efforts. Further, we have a deeper look at implementation
extensions and decisions that have changed compared to our feasibility study.

3. To demonstrate the effectiveness and scalability of our approach we conduct a
systematic evaluation using a comprehensible synthetic benchmark comparing
different implementation decisions as well as the sam(oa)2 framework [9].

The remainder of this paper is structured as follows. Section 2 introduces the
fundamental concept and requirements for a reactive hybrid task-based load bal-
ancing solution. In Sect. 3, we describe our implementation and different design
choices. An experimental evaluation is carried out in Sect. 4 before we conclude
and discuss future work in Sect. 5.

2 Reactive Load Balancing

This section details our concept of fine-granular task-based load balancing in
both shared and distributed memory. We review fundamental assumptions and
objectives with respect to the generalizability of our approach. Further, we iden-
tify three essential components: a task-based execution environment, self intro-
spection and an analysis component and discuss their requirements and impli-
cations for a general solution.

2.1 Assumptions and Objectives

Our guiding underlying observation is that any imbalances (both predictable as
well as unpredictable imbalances) manifest in increased waiting times at global
MPI synchronization points. In case an imminent imbalance is detected, our app-
roach attempts to quickly/immediately migrate tasks to underloaded processes,
thus replacing the aforementioned waiting times with useful computation. A key
assumption is that tasks represent basic units of work without any side effects
(e.g., accessing global variables inside the task) that can be executed on the
local or on a remote process. As these tasks are candidates for being executed
remotely, we call them migratable.

In our previous work [13], we identified the following key objectives of a
distributed work stealing implementation:

1. Reactivity: Since load imbalances can result from dynamically changing
execution conditions or computational load on a very short time scale, it is
necessary to detect these changes as quickly as possible.

2. Smart decision making: Relying on permanently collected introspection
data an implementation has to identify an emerging imbalance and decide
whether to migrate tasks or not. Further, it has to select adequate victims
to migrate tasks to. However, inaccurate or incorrect decisions can result in
a performance decline.
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3. Hiding overhead: Compared to work stealing in shared memory, migrat-
ing tasks in distributed memory induces additional overhead as task-related
information and data needs to be transferred over the network. Consequently,
it is desired to migrate tasks as soon as possible to sufficiently overlap com-
munication with computation and hide any migration overhead.

4. Ease of integration: Augmenting existing applications with task migration
should not require extensive programming efforts or code modifications.

5. Generalization and modularity: Although the objective is to create a gen-
erally applicable solution that can be integrated into arbitrary applications, it
might be desired and profitable to customize introspection/load specification
or migration strategy in order to incorporate domain and application knowl-
edge. Nevertheless, an implementation should provide a default behavior.

2.2 Execution Environment for Migratable Tasks

An execution environment for migratable tasks needs to satisfy the following
requirements. First, it has to provide means to create migratable tasks by speci-
fying an action to perform as well as data items accessed by the task. To be able
to migrate tasks via inter-process communication the specification for a data
item must contain a reference to the corresponding data, its size, as this infor-
mation might not be available automatically (e.g., when using native pointers
in C/C++), and a type t ∈ {input, output} that indicates whether the corre-
sponding item is only used within the task (input) or whether it is updated and
needs to be available for subsequent operations (output).

To trigger the execution of queued tasks synchronization is required, simi-
lar to taskwait or barrier in OpenMP. However, this synchronization is not
allowed to terminate until all tasks (of all processes) and outstanding commu-
nication is finished. An implementation can then decide at run time to either
execute a task locally or migrate the task to another process. Contrary to other
approaches that perform a redistribution in separate defined phases, it is desired
to detect impending imbalances and take appropriate counter measures as soon
as possible to overlap data transfers and communication with calculation, i.e.,
the execution of other tasks.

After a migrated task has been executed on a remote process, data items
specified as output will be sent back to the original process that created the
task. This process allows an incremental integration into existing applications
that use the resulting data for subsequent calculations or communication such
as a halo exchange, effectively preventing a complex change of communication
partners.

It is recommended to perform both a thread-parallel task creation and task
execution to apply load balancing within a process and exploit a large degree of
shared memory concurrency.
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2.3 Introspection and Analysis

A reactive solution requires to quickly detect changing run conditions, hardware
behavior or unequal workload distribution. Hence, each process continuously
monitors its execution condition and characteristics. As suitable characteristics
can range from coarse-grained information to fine-grained metrics (e.g., time
measurements or hardware performance counters) and might depend on the
application, one question is:

Question 1. What is an appropriate general load metric that can be used for
arbitrary applications?

Complemented with an analysis component that consolidates collected per-
process introspection data to a coherent global view this procedure lays the foun-
dations for identifying dynamically changing execution conditions and predicting
imbalances between processes. Based on the result of the analysis the imple-
mentation can decide to trigger task migrations in order to mitigate upcoming
imbalances. Yet, an implementation also needs to address the following questions
(implementation details are discussed in Sect. 3):

Question 2. Based on provided introspection/load data, what is a good default
strategy to decide whether to migrate tasks and when to stop migrating?

Question 3. How to select proper victims for task migration?

3 Implementation

We implemented our reactive load balancing concept in a MPI+OpenMP-
parallel library allowing existing codes to use our proposed solution with only
minimal code modifications.

3.1 A Migratable Task Paradigm

In contrast to our previous application-level prototype [13] where we used a
pull-oriented work stealing approach, we now follow a push-oriented mechanism,
where migratable tasks are offloaded from overloaded to underloaded processes.
While this is logically only an inversion of responsibility, it saves some commu-
nication overhead: in the pull-oriented variant, a handshake between a stealing
rank and the selected stealing victim was required. Further, offloading allows
us to leverage OpenMP’s target offloading infrastructure making a first step
towards an extension of OpenMP’s programming model. Conceptually, instead
of offloading tasks to an accelerator, tasks are offloaded to MPI processes in our
approach. However, while the decision where to execute the offloaded task is
already made at task creation for classic OpenMP offloading, we need to defer
that decision to runtime as we strive to reactively balance load.

We implemented a custom libomptarget plugin in the LLVM OpenMP run-
time that calls our library at task creation. Combined with the clang compiler,
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Listing 1.1. Example of a synthetic dense matrix multiplication code creating migrat-
able tasks in parallel with the OpenMP target construct or API

1 // function that performs MxM
2 void compute_matrix_matrix (double *A, double *B, double *C, int mat_size);
3
4 int main()
5 {
6 void* lit_size = *(void **)(&size); // pointer literal representing value of size
7 #pragma omp parallel
8 {
9 #pragma omp for nowait

10 for(int i=0; i<num_tasks; i++) {
11 double *A = matrices_a[i];
12 double *B = matrices_b[i];
13 double *C = matrices_c[i];
14
15 #if USE_OPENMP_TARGET_CONSTRUCT
16 #pragma omp target map(tofrom: C[0: size*size]) map(to: A[0: size*size], B[0: size*size])
17 compute_matrix_matrix (A, B, C, size);
18 #else // API approach
19 map_data_entry_t * args = new map_data_entry_t [4];
20 args [0] = map_data_entry_create (A, size*size*sizeof(double), MAPTYPE_INPUT);
21 args [1] = map_data_entry_create (B, size*size*sizeof(double), MAPTYPE_INPUT);
22 args [2] = map_data_entry_create (C, size*size*sizeof(double), MAPTYPE_INPUT | MAPTYPE_OUTPUT);
23 args [3] = map_data_entry_create (lit_size , sizeof(void*), MAPTYPE_INPUT | MAPTYPE_LITERAL);
24
25 add_task (( void *)&compute_matrix_matrix , 4, args);
26 #endif
27 }
28
29 // trigger execution (In background: introspection + task migration)
30 distributed_taskwait ();
31 }
32 }

this enables us to fully specify a migratable task using the #pragma omp target
directive and its data environment using the associated map clause. The compiler
takes care of creating a task entry function and generates appropriate calls to
the custom plugin, where both a reference to the task entry function (action)
and the task’s data environment (data items) are then forwarded to our library.
As usually the same hybrid binary is executed by all ranks, an offset from the
start of the loaded binary to the corresponding task entry function can be used
to determine the correct entry point on a remote rank in case a task is offloaded.

While creating migratable tasks using OpenMP’s target offloading construct
is our preferred choice, we found that there is a lack of compiler support for
this variant, specifically for Fortran compilers. Therefore, we additionally imple-
mented an API (C and Fortran available) that allows to create migratable tasks
by manually specifying a reference to the task entry function and the task’s
data environment. An example code snippet for both approaches is shown in
Listing 1.1.

3.2 Communication Infrastructure

We implemented a communication infrastructure to handle task migration as
well as introspection and continuous global distribution of online load informa-
tion. All communication is fully non-blocking using a dedicated communication
thread on a separate core per rank with the desire to overlap communication and
computation. We found that using a dedicated core is essential to guarantee suf-
ficient progression of MPI messages and achieving our objective of fine-granular
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reactivity. Similar findings have been reported in [4,6]. In contrast to predic-
tive load balancing, there is no mutual a-priori agreement on the task migration
pattern. In fact, the reactive nature of our approach demands that an over-
loaded rank can very quickly migrate tasks which requires responsiveness on the
sender and victim rank. Even employing hyper-threading where a physical core
is shared by the communication thread and another application thread is not a
viable option here: there is in-determinism in thread scheduling by the OS and
the hyper-thread would compete for resources with a computation thread, thus
creating additional imbalances and degrading reactivity.

3.3 Task Execution and Termination Detection

As mentioned in Sect. 2.2 an implementation requires a synchronization point
that ensures that all tasks of all ranks (i.e., local and migrated tasks exe-
cuted on a remote rank) and all outstanding communication (i.e., transfer-
ring results back to the original rank) have been completed. We implemented a
distributed taskwait function (see Listing 1.1 line 30) where each rank par-
ticipates in completing the created tasks and communication before terminating.
Although there are more efficient solutions for global termination detection like
proposed by Dinan et al. [5], we already exchange load information continu-
ously. Hence, we append the number of outstanding operations per rank to the
corresponding messages, achieving a termination detection almost for free. The
distributed taskwait routine triggers the execution of queued tasks and acti-
vates the communication thread that handles task migration and load exchange.
As it is desired to overlap communication as much as possible, our implementa-
tion prioritizes the execution of incoming migrated tasks before working on local
tasks.

3.4 Making Effective Load Balancing Decisions

To build a generally applicable responsive load balancing solution three rel-
evant questions have been pointed out in Sect. 2.3 that we address with our
implementation.

What is an appropriate general load metric that can be used for arbitrary appli-
cations? A suitable introspection metric that precisely reflects the load or run
condition of a rank is the key for a good outcome. This metric might highly
depend on the hardware, application and domain knowledge confronting us with
two conflicting goals. On one hand it might be desired to incorporate such domain
or application knowledge. On the other hand we are seeking for an appropriate
default metric that can be used for arbitrary applications. Since most tasking
codes apply over-decomposition we selected the number of tasks per rank as a
general load metric. While it is easy to determine and induces low overhead com-
pared to more sophisticated calculations, it might not work well for tasks with
varying complexity or size. However, our library also provides a tools interface
that enables the user to customize introspection, load specification and migration
strategy including victim selection.
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Load 8 2 4 3 0 7 5 3 1

Rank 0 1 2 3 4 5 6 7 8

(a) Migrate to rank with lowest load

Load 8 2 4 3 0 7 5 3 1

Rank 0 1 2 3 4 5 6 7 8

Load 0 1 2 3 3 4 5 7 8

Rank 4 8 1 3 7 2 6 5 0

Sorted by load:

(b) Sort-based approach

Fig. 1. Potential choices for identifying proper task migration victims assuming that
only ranks with load higher than average (red) migrate tasks (Color figure online)

What is a good default strategy to decide whether to migrate tasks and when to
stop migrating? The migration strategy is a sensitive component of this app-
roach. Although our solution targets to compensate small imbalances, migrating
a tasks comes with an additional communication cost that has to be consid-
ered. An imbalance between sender and victim rank has to be large enough in
order to amortize the task migration. Thus, our default strategy only migrates
tasks if the imbalance is larger than a configurable absolute or relative threshold.
Further, migration should not be performed too late, as this would prevent full
overlap. As a result, threads would only wait for completing outstanding commu-
nication. It is critical to determine when to stop migrating tasks. Our strategy
only migrates if the number of outstanding local tasks per rank is greater than a
configurable value, e.g. number of threads. Thus, we ensure to keep all threads
busy while preventing idle times and overhead caused by late migrations. All
thresholds can be set via environment variables.

How to select proper victims for task migration? Our previous prototype selected
the rank with the highest load as victim for task stealing. However, as now task
migration decisions are made on each rank separately1 in a short time frame
only pushing tasks from the rank with maximum load might not be sufficient
and pushing tasks to the rank with the lowest load might lead to contention or
could result in load imbalances again. Our library applies a sort-based approach
to identify proper victims aiming to achieve a good load balance while avoid-
ing contention as illustrated in Fig. 1. Ranks are sorted by load. After that, in
case the imbalance between the current rank and the corresponding counterpart
exceeds the configured threshold this rank is selected as victim.

4 Experimental Evaluation

In this section, we evaluate our generalized approach and implementation
decisions against hardware variability (Sect. 4.1) and work-induced imbalances
(Sect. 4.2).
1 Migration decision are made on a each rank separately based on per rank load

information that has been exchanged before. Consequently, this step does not require
any additional two-sided or collective communication.
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All tests are conducted on the HPC production system of RWTH Aachen
University CLAIX that is equipped with an Intel Omni-Path interconnect and
dual-socket Intel Xeon E5-2650v4 (codename “Broadwell”) processor nodes with
a TDP of 105 W and 24 cores in total running at 2.2 GHz.2 Our library as well
as benchmarks are compiled with Intel C/C++ or Intel Fortran Compiler 19.0.1
and Intel MPI 2018.4. Hybrid MPI+OpenMP application runs are performed
using a single rank per node where OpenMP threads are pinned to cores using
OMP PLACES and OMP PROC BIND. In order to exploit the shared-memory paral-
lelism of the nodes using OpenMP we differentiate between the following two
situations:

1. Runs without task migration: Applications are executed with ncores

OpenMP threads acting as a baseline.
2. Runs with task migration: As a separate communication thread is running

on the last core, applications are executed with ncores − 1 threads.

4.1 Robustness Against Hardware Variations

In order to evaluate the robustness against dynamic variability caused by hard-
ware we use a synthetic hybrid matrix multiplication benchmark, where each
rank has to perform a configurable number of dense matrix multiplications
C = A ∗B with the same computational complexity (see Listing 1.1). To ensure
an adequate execution time and sufficiently large tasks, every rank has to solve
2400 multiplications with a matrix size of S = 600 × 600. In an ideal scenario
where all nodes and CPUs have the same speed and efficiency, all ranks are
expected to finish the calculation in the same time. However, to demonstrate
the effectiveness when working with dynamic imbalances or show effects of vary-
ing hardware efficiencies we run experiments under an enforced power cap or by
adapting CPU core frequencies.

Experiment 1: Power Capping. In this experiment, we run the aforementioned
benchmark on 4 nodes with a version that solely employs regular OpenMP tasks
to balance load in shared memory and a version featuring our task migration
approach that is also capable of balancing load in distributed memory. Every run
is conducted 10 times under enforced power caps ranging from 40 W to 105 W
(no powercap). Resulting mean values and standard deviations are depicted in
Fig. 2. However, it should be noted that the results highly depend on the energy
efficiency of the selected compute nodes. For our tests we included a compute
node known to have a lower energy efficiency.

Empirical tests have shown that the average power draw for such an applica-
tion run is around 90 W. If the selected power cap is close to or larger than 90 W
task migration will not result in much improvement but is also not suffering

2 Although we planned to conduct the tests on our new Intel Xeon Skylake processors,
this partition was still in the process of getting into production at the time of creating
the paper.
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Fig. 3. Speedup with a single slow node

much from overhead. With lower thresholds effects from varying hardware effi-
ciencies become visible and task migration can help mitigate arising imbalances.
This leads to improvements of 4% to 20% depending on the selected power cap.
As an example, an execution of the task migration version with a power cap of
60 W took on average 17.42 s. Investigating a single execution showed that during
this time frame the dedicated communication threads that are also responsible
for continuous self introspection (e.g. load of the corresponding rank) performed
1, 267, 978 load exchanges. Based on that information it was able to dynamically
detect imbalances between ranks at run time leading to a migration of 148 out
of 4, 800 tasks between the participating ranks.

Experiment 2: Varying Core Frequencies. To provoke imbalances we run the
same setups as in experiment 1. However, we are not setting any power cap
but use likwid-setFrequencies [14] to reduce the core frequency of a single node
whereas the other nodes run with the default frequency of 2.2 GHz. We conduct
tests varying the frequency of the single slow node from 1.2 GHz to 2.1 GHz.
Results are shown in Fig. 3. As expected, setting no power cap leads to a slight
performance decline due to loosing one core for communication purposes. With a
power cap close to the base frequency of the other nodes there is only a marginal
speedup. With larger frequency differences, e.g. with 1.2 GHz, task migration
achieves a speedup up to 1.31X.

4.2 Robustness Against Work-Induced Imbalances

While our load balancing approach is targeted at treating unpredictable imbal-
ances, we also evaluated whether it can be used to improve performance of
work-imbalanced codes. As a realistic application, we use the sam(oa)2 frame-
work for parallel adaptive mesh refinement [9] to simulate the Tohoku tsunami in
2011. To provoke work imbalances, we disabled the application-level load balanc-
ing and benchmark against our reactive load balancing library instead. Figure 4
presents the degree of work imbalance that changes during the simulation time
for a run with and without reactive load balancing on 32 nodes. As illustrated,
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task migration can help to reduce the emerging imbalance but is not capable of
completely eliminating it. Figure 5 shows the strong scaling results on up to 32
nodes where we tested the victim selection strategies depicted in Fig. 1. We find
that using reactive load balancing improves scalability despite using one core
less for computation. The sort-based victim selection outperforms the strategy
where the rank with the lowest load is selected as a victim. Speedups of up to
1.20X are obtained with our approach relative to the baseline.

5 Conclusion and Future Work

In this paper, we presented a library for reactive load balancing across process
boundaries for hybrid task-parallel applications. We demonstrated how continu-
ous introspection, a (possibly user-defined) migration strategy and a task-based
execution environment interplay in order to effectively balance the load in dis-
tributed memory at run time. Our results show performance improvements up to
1.31X for hardware-induced imbalances and 1.20X for work-induced imbalances
using a realistic application with AMR. Our approach is minimal invasive in
that it builds upon the established programming models MPI and OpenMP
and requires little code modifications, facilitating the integration into existing
MPI+OpenMP applications. The approach is designed to tackle fine granular
and unpredictable imbalances by temporarily migrating tasks to other processes
while any communication overhead is hidden. We demonstrated that task migra-
tion is even capable of reducing higher work imbalances (see Fig. 4). However, for
those kinds of applications and scenarios we recommended to combine a domain
decomposition based load balancing scheme with reactive task migration: the
computational domain could be repartitioned every x iteration steps to account
for large load imbalances while our reactive approach allows to target emerging
fine-granular imbalances in between.
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There are multiple natural directions for future work. Our present model
assumes that tasks are independent from each other. A more general approach
would allow for dependencies between tasks, rendering the decision making of
when and where to offload tasks more complicated. It is an ongoing research
question how fine-granular tasking in distributed memory with dependencies
can be implemented effectively.

Moreover, we are currently exploring another reactive load balancing mech-
anism that makes use of task replication. Keeping tasks replicated on multiple
MPI ranks and deciding at run time which rank computes a replicated task
would allow us to further boost reactivity and help mitigate potential issues
arising when too many tasks have been migrated to a victim rank.

Finally, we strive to broaden the class of applications benefiting from our
approach.
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Abstract. The standard formulation of Kalman Filter (KF) becomes
computationally intractable for solving large scale state space estima-
tion problems as in ocean/weather forecasting due to matrix storage
and inversion requirements. We introduce an innovative mathemati-
cal/numerical formulation of KF using Domain Decomposition (DD)
approach. The proposed DD approach partitions ab-initio the whole KF
computational method giving rise to local KF methods that can be solved
independently. We present its feasibility analysis using the constrained
least square model underlying variational Data Dssimilation problems.
Results confirm that the accuracy of solutions of local KF methods are
not impaired by DD approach.

Keywords: Kalman Filter · Domain Decomposition · Data
Assimilation · Constrained Least Square Problem

1 Introduction and Related Works

Kalman Filter (KF) dates back to 1960, when Kalman [19] provided a recur-
sive algorithm to compute the solution of a (linear) data filtering and prediction
problem. It is also known as linear quadratic estimation algorithm that infers
parameters of interest from indirect, inaccurate, or uncertain observations (Data
Assimilation, DA). During the last years, DA reached a widespread interests at
many federal research institutes as well as at many universities [NCAR (National
Center for Atmospheric Research), NCEP (National Centers for Environmen-
tal Prediction), DWD (Deutscher Wetterdienst), Met Office with University of
Reading and Imperial College of London in UK, JMA (Japan Meteorological
Agency), CMC (Canadian Association of Management Consultants) and the
CMCC (EuroMediterranean Center for Climate Changes)].

In the past years KF has become a main component in satellite navigation,
economics, or telecommunications and in the validation of the mathematical
models used in meteorology, climatology, geophysics, geology and hydrology. Its
main strength is its recursive property: new measurements can be processed as
they arrive. Nevertheless, the standard formulation of the KF becomes com-
putationally intractable for solving large scale state space estimation problems
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 75–92, 2020.
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due to matrix storage and inversion requirements. So, several variants have been
proposed to reduce the computational complexity, designed on the basis of a
reduction in the order of the system model (usually the approximation is per-
formed trough the use of the Empirical Orthogonal Functions (EOF)) [18,21], or
based on the Ensemble methods where a prediction of the error at a future time
is computed by integrating each ensemble state independently by the model.
The integrations are typically performed until observations are available. At this
time, the information from the observations and the ensemble are combined
by performing an analysis step based on KF [15]. However, the choice of the
dimension of the reduced-state space or of the ensemble size giving an accurate
approximation of KF still remains a delicate question [2].

We present a new Domain Decomposition (DD) framework suitable for using
KF in large scale applications. As case study, we consider Constrained Least
Squares (CLS) problem, as this is the prototype model of variational DA appli-
cations (Sect. 2.2). In Sect. 3 we first show how to compute CLS solution by using
KF (we refer to this method as KF-CLS method); in Sect. 4, we introduce DD
into CLS problem. As a consequence we get a certain number of local problems
we call DD-CLS problems. We note that DD-CLS problems are defined by adding
an overlapping operator to the variational model describing CLS problem. This
is a sort of regularization approach needed in order to guarantee the matching of
local solutions on the overlapping domains. A regularization parameter balances
the weight given to the overlapping operator with respect to the CLS problem.

Then, by applying KF for concurrently solving local DD-CLS sub problems,
we get the so called KF-DD-CLS method. Main contribution of the present work
is to prove, both theoretically (see Theorem 3) and experimentally (see Valida-
tion results), that KF-DD-CLS method is equivalent to DD-KF-CLS method,
i.e. the innovative DD method we propose in the present work (see Theorem 2),
which arises decomposing ab-initio KF method once it is used for solving CLS
problem, i.e. decomposing ab-initio KF-CLS method.

In Fig. 1 we give a schematic picture of these approaches showing how they
arise. We see that KF-DD-CLS is obtained by following the path on the right,
while on the left we get DD-KF-CLS. Finally, experiments are reported in Sect. 5
and conclusions are given in Sect. 6. It is worth noting that results we present
are concerned not so much with parallel efficiency as with the capability to solve
this problem by using such a full decomposition. We are currently working on
designing the related parallel algorithm. We hope that these findings encourage
readers to further extend the framework according to their specific application’s
requirements.
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Fig. 1. Schematic description of DD framework we introduce in KF method solving
CLS problems.

2 Preliminaries

2.1 Kalman Filter Method

Given x0 ∈ R
n, let x(t) ∈ R

n, ∀t ∈ [0, T ], denote the state of a dynamic system
governed by the mathematical model Mt,t+Δt[x(t)], Δt > 0:

{
x(t + Δt) = Mt,t+Δt(x(t)), ∀t, t + Δt ∈ [0, T ]
x(0) = x0

, (1)

and let:
y(t + Δt) = Ht+Δt[x(t + Δt)], (2)

denote observations where Ht+Δt is observations mapping. Chosen r ∈ N, we
consider r + 2 points in [0, T ] and Δt = T

r+1 .
Let {tk}k=0,1,...,r+1 be a discretization of [0, T ], where tk = kΔt, we will use

the following discrete formulation of KF method [22]:

– xk ≡ x(tk) ∈ R
n: state of system at time tk, for k = 0, 1, ..., r + 1;

– x̂0 ≡ x0: state estimate at time t0 ≡ 0;
– x̂k: the state estimate at time tk, for k = 1, ..., r + 1;
– Mk,k+1 ∈ R

n×n: discretization of a linear approximation of Mtk,tk+1 , for
k = 0, 1, ..., r;

– Hk ∈ R
m×n: discretization of a linear approximation of Ht with m > n, for

k = 0, 1, ..., r + 1;
– wk ∈ R

n and vk ∈ R
m: model and observation errors with normal distribution

and zero mean such that E[wkvT
i ] = 0, for i, k = 0, 1, ..., r + 1, where E[·]

denotes the expected value;
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– Qk ∈ R
n×n and Rk ∈ R

m×m: covariance matrices of the errors on the model
and on the observations, respectively i.e.

Qk := E[wkwT
k ] Rk := E[vkvT

k ] ∀ k = 0, 1, ..., r + 1. (3)

These matrices are symmetric and positive definite.

KF Method: KF method consists in calculating an estimate x̂k+1, at time tk+1,
of

xk+1 = Mk,k+1xk + wk, ∀k = 0, 1, ..., r (4)

which is
yk+1 = Hk+1xk+1 + vk+1, ∀k = 0, 1, ..., r. (5)

KF Procedure: Given x̂0 ∈ R
n and P0 = O ∈ R

n×n a null matrix, for each
k = 0, 1, ..., r KF procedure is composed by:

– Predicted phase.
• Compute predicted state estimate:

xk+1 = Mk,k+1x̂k; (6)

• Compute predicted error covariance matrix:

Pk+1 = Mk,k+1PkMT
k,k+1 + Qk. (7)

– Corrector phase.
• Compute Kalman gain:

Kk+1 = Pk+1H
T
k+1(Hk+1Pk+1H

T
k+1 + Rk+1)−1. (8)

• Compute Kalman covariance matrix:

Pk+1 = (I − Kk+1Hk+1)Pk+1, (9)

• Compute Kalman state estimate:

x̂k+1 = xk+1 + Kk+1(yk+1 − Hk+1xk+1). (10)

2.2 The Constrained Least Squares (CLS) Problem

Let
H0x0 = y0, H0 ∈ R

m0×n, y0 ∈ R
m0 , x0 ∈ R

n (11)

be an overdetermined linear system, where rank(H0) = n > 0, m0 > n, Given
H1 ∈ R

m1×n, y1 ∈ R
m1 , x1 ∈ R

n, x ∈ R
n, let us consider the system

S : Ax = b (12)
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where

A =
[

H0

H1

]
∈ R

(m0+m1)×n, b =
[

y0
y1

]
∈ R

m0+m1 , (13)

and m1 > 0. Let R0 ∈ R
m0×m0 , R1 ∈ R

m1×m1 be the weight matrices and
R = diag(R0, R1) ∈ R

(m0+m1)×(m0+m1). CLS problem is

CLS : x̂ = argminx∈RnJ(x) (14)

with
J(x) = ||Ax − b||2R = ||H0x − y0||2R0

+ ||H1x − y1||2R1
, (15)

where x̂ is
(AT RA)x̂ = AT Rb ⇒ x̂ = (AT RA)−1AT Rb (16)

or in summation form

x̂ = (HT
0 R0H0 + HT

1 R1H1)−1(HT
0 R0y0 + HT

1 R1y1). (17)

We refer to x̂ as solution in least squares sense of system in (12).

3 KF-CLS Method: KF Method Solving CLS Problems

We prove that solution of CLS problem in (14), can be obtained by applying KF
to S in (12). To this end, regarding (12) as an inverse ill posed problem [7,9,12],
we rewrite KF as a Variational problem, the so called VAR-KF formulation,
obtained minimizing the sum of the weighted Euclidean norm || · ||Qk

of the
model error wk = xk+1 − Mk,k+1xk and the weighted Euclidean norm || · ||Rk+1

of the observation error vk+1 = yk+1 − Hk+1xk+1.

VAR-KF Method: Var KF method consists in computing or each k = 0, 1, ..., r

x̂k+1 = argminxk+1∈RnJk+1(xk+1)
= argminxk+1∈Rn

{
||xk+1 − Mk,k+1x̂k||2Qk

+ ||yk+1 − Hk+1xk+1||2Rk+1

}
.

(18)
Then, by using linear algebra results we prove that:

Proposition 1 (KF-CLS). Let S be the overdetermined linear system in (12)
with A ∈ R

(m0+m1)×n, b ∈ R
m0+m1 defined in (13). Let us consider

– for k = 0, 1, Hk ∈ R
mk×n and yk ∈ R

mk with m0 > n and m1 > 0;
– M = (HT

0 R0H0)−1HT
0 R0 ∈ R

n×m0 with R0 ∈ R
m0×m0 , R1 ∈ R

m1×m1 and
R = diag(R0, R1) ∈ R

(m0+m1)×(m0+m1) weight matrices;
– x̂0 = My0 ∈ R

n, solution in least squares sense of system in (11);
– x̂ = (AT RA)−1AT Rb ∈ R

n solution in least squares sense of S in (12).
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We pose:
M0,1 ≡ In,n ∈ R

n×n,
Q0 ≡ On,n ∈ R

n×n,
P0 ≡ (HT

0 R0H0)−1 ∈ R
n×n;

(19)

where In,n is the identity matrix and On,n is the null matrix, then by using KF
procedure 2.1, for k = 0, we obtain KF estimate x̂1 in (10) such that

x̂ ≡ x̂1. (20)

Proof. Solution of CLS problem (14), i.e. x̂, can be obtained solving the linear system

(ATRA)x̂ = ATRb, (21)

or in summation form

(HT
0 R0H0 + HT

1 R1H1)x̂ = HT
0 R0y0 + HT

1 R1y1. (22)

Consider x̂0 ∈ R
n, solution of the normal equations obtained by considering the

matrix H0 i.e. solution of the following system:

(HT
0 R0H0)x̂0 = HT

0 R0y0, (23)

that can be written as
x̂0 = (HT

0 R0H0)
−1HT

0 R0y0. (24)
We define

P0 = (HT
0 R0H0)

−1, P1 = (HT
0 R0H0 + HT

1 R1H1)
−1 (25)

and we write x̂0 as

x̂0 ≡ My0 = (HT
0 R0H0)

−1HT
0 R0y0 = P0H

T
0 R0y0, (26)

so that we have
HT

0 R0y0 = P−1
0 x̂0. (27)

We write a recursive expression for P−1
1 and obtain P−1

0 as follows:

P−1
1 = P−1

0 + (HT
1 R1H1) ⇒ P−1

0 = P−1
1 − (HT

1 R1H1), (28)

so from (27) and (28), we have

HT
0 R0y0 = (P−1

1 − (HT
1 R1H1))x̂0, (29)

and from (22), (25) and (29), x̂ can be rewritten as follows

x̂ = (ATRA)−1ATRb
= (HT

0 R0H0 + HT
1 R1H1)

−1(HT
0 R0y0 + HT

1 R1y1)
= P1

[(

HT
0 R0H0)x̂0 + HT

1 R1y1
)]

= P1

[(

P−1
1 − (HT

1 R1H1)
)

x̂0 + HT
1 R1y1

]

.

(30)

so, from (30) we have
x̂ = x̂0 + P1H

T
1 R1 (y1 − H1x̂0) . (31)



Ab-initio Functional Decomposition of Kalman Filter 81

Defining
K1 = P1H

T
1 R1, (32)

then x̂ in (31) can be rewritten as follows

x̂ = x̂0 + K1(y1 − H1x̂0). (33)

In particular
P−1
1 = P−1

0 + (HT
1 R1H1)

and using the Sherman-Morrison-Woodbury formula1 we get

P1 = P0 − P0H
T
1 (R1 + H1P0H

T
1 )−1H1P0. (34)

We note that K1 ∈ R
n×m1 in (32) can be rewritten as

K1 = P0H
T
1 (R1 + H1P0H

T
1 )−1, (35)

which coincides for k = 0 with Kalman gain in (8), from the hypothesis we have
M0,1 = In,n this means that predicted estimate in (6) is x1 = x̂0. So, we get

x̂ ≡ x̂1, (36)

where x̂1 is Kalman estimate in (10) for k = 0.

By adding (r + 1) · m equations, with r ≥ 0, m > 0, to system in (11) and
posing, for k = 0, 1, ..., r,

Mk,k+1 := In,n ∈ R
n×n,

Qk := On,n ∈ R
n×n

P0 := (HT
0 R0H0)−1 ∈ R

n×n
, (37)

and R ∈ R
(r+2)·m×(r+2)·m the weight matrix, KF procedure 2.1 can be applied

to solve the overdetermined system

Mz = p (38)

where

M =

⎡
⎢⎢⎢⎣

H0

H1

...
Hr+1

⎤
⎥⎥⎥⎦ ∈ R

(r+2)·m×n; p =

⎡
⎢⎢⎢⎣

y0
y1
...
yr+1

⎤
⎥⎥⎥⎦ ∈ R

(r+2)·m, z ∈ R
n (39)

and Hk ∈ R
m×n, yk ∈ R

m, where m0 ≡ m and . This means, as proved in
Proposition 1, that the KF estimate ẑr+1 at step k = r coincides with ẑ =
(MT RM)−1MT Rp, i.e. the solution in least squares sense of (38).

1 Let A ∈ R
n×n, U ∈ R

n×k, V ∈ R
k×n, R ∈ R

k×k and B = A + URV . Then,
B−1 = A−1 − A−1U(R + V A−1U)−1V A−1.
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4 DD Approaches

We apply DD approach solving system S in (12). We refer to this problem as
DD-CLS problem.

Definition 1 (Reduction of matrices). Let B = [B1 B2 ... Bn] ∈ R
m×n be

a matrix with m,n ≥ 1 and Bj the j − th column of B and Ij = {1, ..., j} and
Ii,j = {i, ..., j} for i = 1, ..., n − 1; j = 2, ..., n, and i < j for every (i, j). The
reduction of B to the set Ij is:

|Ij : B ∈ R
m×n → B|Ij = [B1 B2 ... Bj ] ∈ R

m×j , j = 2, ..., n, (40)

and to Ii,j

|Ii,j : B ∈ R
m×n → B|Ii,j = [Bi Bi+1 ... Bj ] ∈ R

m×j−i, i = 1, ..., n − 1, j > i,
(41)

where B|Ij and B|Ii,j denote the reduction of B to Ij and Ii,j, respectively.

Definition 2 (Reduction of vectors). Let w = [wt wt+1 ... wn]T ∈ R
s be a

vector with t ≥ 1, n > 0, s = n − t and I1,r = {1, ..., r}, r > n and n > t. The
extension of w to Ir is:

EOIr : w ∈ R
s → EOIr (w) = [w̄1 w̄2 ... w̄r]T ∈ R

r, (42)

where for i = 1, ..., r

w̄i =
{

wi if t ≤ i ≤ n
0 if i > n and i < t

. (43)

We now introduce the reduction of J in (15).

Definition 3 (Reduction of functionals). Let us consider A ∈ R
(m0+m1)×n,

b ∈ R
m0+m1 , the matrix and the vector defined in (13), I1 = {1, ..., n1}, I2 =

{1, ..., n2} with n1, n2 > 0 and the vectors x ∈ R
n. Let

J |(Ii,Ij) : (x|Ii , x|Ij ) 	−→ J |(Ii,Ij)(x|Ii , x|Ij ) ∀i, j = 1, 2 (44)

denote the reduction of J defined in (15). It is defined as

J |(Ii,Ij)(x|Ii , x|Ij ) = ||H0|Iix|Ii −(y0+H0|Ijx|Ij )||2R0 +||H1|Iix|Ii −(y1+H1|Ijx|Ij )||2R1 ,

(45)
for i, j = 1, 2.

For simplicity of notations we let Ji,j ≡ J |(Ii,Ij) with i, j = 1, 2.

4.1 DD-CLS Problems: DD of CLS Problems

Definition 4 (DD-CLS problem). Let S be the overdetermined linear system in
(12) and A ∈ R

(m0+m1)×n, b ∈ R
m0+m1 the matrix and the vector defined in

(13) and R0 ∈ R
m0×m0 , R1 ∈ R

m1×m1 , R = diag(R0, R1) ∈ R
(m0+m1)×(m0+m1)

be the weight matrices with m0 > n and m1 > 0. Let us consider the index set
of columns of A, I = {1, ..., n}. DD-CLS problem consists in:
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– DD step:
• decomposition of I into

I1 = {1, ..., n1}, I2 = {n1 − s + 1, ..., n}, (46)

where s ≥ 0 is the number of indexes in common, |I1| = n1 > 0, |I2| =
n2 > 0, and the overlap sets

I1,2 = {n1 − s + 1, ..., n1}, (47)

If s = 0, then decomposition of I is without overlap, i.e. I1 ∩ I2 = ∅
and I1,2 �= ∅, instead if s > 0 decomposition of I is with overlap, i.e.
I1 ∩ I2 �= ∅ and I1,2 = ∅.

• reduction of A to I1 and I2 defined in (46)

A1 = A|I1 ∈ R
(m0+m1)×n1 , A2 = A|I2 ∈ R

(m0+m1)×n2 , (48)

– DD-CLS step: given x0
2 ∈ R

n2 , according to the ASM (Alternating Schwarz
Method) in [16], DD approach consists in solving for n = 0, 1, 2, ... the fol-
lowing overdetermined linear systems:

Sn+1
1 : A1x

n+1
1 = b − A2x

n
2 Sn+1

2 : A2x
n+1
2 = b − A1x

n+1
1 . (49)

This means to solve

Pn+1
1 : x̂n+1

1 = argminxn+1
1 ∈Rn1 J1(xn+1

1 , xn
2 )

= argminxn+1
1 ∈Rn1

[
J |(I1,I2)(x

n+1
1 , xn

2 ) + μ · O1,2(xn+1
1 , xn

2 )
]

(50)

Pn+1
2 : x̂n+1

2 = argmin
xn+1
2 ∈R

n2J2(x
n+1
2 , xn+1

1 )

= argmin
xn+1
2 ∈R

n2

[

J |(I2,I1)(xn+1
2 , xn+1

1 ) + µ · O1,2(x
n+1
2 , xn+1

1 )
]

(51)
where Ii is defined in (46) and J |Ii,Ij is defined in (45), O1,2 is the overlapping
operator and μ > 0 is the regularization parameter.

Remark 1. If decomposition of I is without overlap (i.e. s = 0) then x̂n+1
1 ∈ R

n1

and x̂n+1
2 ∈ R

n2 can be written in terms of normal equations as follows

S̃n+1
1 : (AT

1 RA1)x̂n+1
1 = AT

1 R(b − A2x
n
2 ) ⇒ x̂n+1

1 = (AT
1 RA1)−1AT

1 Rbn
1

S̃n+1
2 : (AT

2 RA2)x̂n+1
2 = AT

2 R(b − A1x
n+1
1 ) ⇒ x̂n+1

2 = (AT
2 RA2)−1AT

2 Rbn+1
2 ,
(52)

where bn
1 = b − A2x

n
2 and bn+1

2 = b − A1x
n+1
1 .

Remark 2. Regarding the overlapping operator O1,2, we consider x1 ∈ R
n1 and

x2 ∈ R
n2 , for i = 1, 2 and we pose

O1,2(xi, xj) = ||EOIi(xi|I1,2) − EOIi(xj |I1,2)||, i, j = 1, 2 (53)

with EOIix1|I1,2 , EOIix2|I1,2 be extension to Ii, of reduction to I1,2 in (47) of
x1 ∈ R

n1 and x2 ∈ R
n2 , respectively. The overlapping operator O1,2 represents

the exchange of data on the overlap set I1,2 in (47).



84 L. D’Amore et al.

We note that S̃n+1
1 and S̃n+1

2 in (52) can be obtained by applying Jacobi
method to normal equations in (16).

Proposition 2. DD approach (49) applied to S in (12) is equivalent to Block
Jacobi method to normal equations in (16).

Remark 3. In particular, we get the sequences {xn+1}n∈N0 :

xn+1 =

⎧⎨
⎩

x̂n+1
1 |I1\I1,2 on I1 \ I1,2

μ
2 (x̂n+1

2 |I1,2 + x̂n+1
1 |I1,2) on I1,2

x̂n+1
2 |I2\I1,2 on I2 \ I1,2

, (54)

with the sets I1, I2 be defined in (46) and I1,2 in (47).

We note that if decomposition of I is without overlap, if the matrix D −
2AT A where D = diag(AT

1 RA1, A
T
2 RA2) is symmetric and definite positive, the

convergence of DD method is guaranteed, i.e.

lim
n→∞ xn+1 = x̂, (55)

where x̂ is the solution of CLS problem in (14).

4.2 KF-DD-CLS Method: KF Method Solving DD-CLS Problems

Let A ∈ R
(m0+m1)×n and b ∈ R

(m0+m1) be as in (13) and R ∈
R

(m0+m1)×(m0+m1), with m0 > n and m1 > 0. We aim to find an estimate
of x̂ = (AT RA)−1AT Rb ∈ R

n, i.e. solution in least squares sense of S in (12), by
using DD-CLS and KF procedure. To this end, for n = 0, 1, 2, ..., we prove that
x̂n+1
1 ∈ R

n1 , x̂n+1
2 ∈ R

n2 , solutions of Pn+1
1 and Pn+1

2 in (50) and (51) respec-
tively are equal to KF estimates x̂n+1

1,1 , x̂n+1
2,1 obtained by applying KF procedure

to CLS problems Pn+1
1 , Pn+1

2 . We refer to this as KF-DD-CLS method.
To apply KF method Pn+1

1 and Pn+1
2 in (50) and (51), we need x̂1,0 ∈ R

n1

and x̂2,0 ∈ R
n2 i.e. reduction of x̂0 = (HT

0 RH0)−1HT
0 Ry0 that can be calculated

as follows:

1. decomposition without overlap (i.e. s = 0).

Theorem 1. Let us consider H0 ∈ R
m0×n, y0 ∈ R

m0 and R0 ∈ R
m0×m0 , with

m0 > n, m1 > 0, system H0x0 = y0 and I. Let us consider the following steps:

– decomposition of I:

I1 = {1, ..., n1} and I2 = {n1 + 1, ..., n}. (56)

– reduction of H0:

H1,0 = H0|I1 ∈ R
m0×n1 and H2,0 = H0|I2 ∈ R

m0×n2 . (57)
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– computation of PHi,0 ∈ R
m0×m0 :

PHi,0 = R0 − R0Hi,0(HT
i,0R0Hi,0)−1HT

i,0R0, i=1,2. (58)

– computation of x1 ∈ R
n1 and x2 ∈ R

n−n1 :

x1 = (HT
1,0PH2,0H1,0)−1HT

1,0PH2,0y0, x2 = (HT
2,0PH1,0H2,0)−1HT

2,0PH1,0y0.
(59)

Then x̂0 = (HT
0 R0H0)−1HT

0 R0y0 ∈ R
n, which is the solution in least squares

sense of H0x0 = y0, is obtained as:

x̂0|I1 = x1, x̂0|I2 = x2, (60)

where x̂0|Ii is the reduction of x̂0 to respective sets Ii, for i = 1, 2.

Proof. We consider
(HT

0 R−1
0 H0)x̂0 = HT

0 R−1
0 y0, (61)

that can be written

[H1,0 H2,0]T R−1
0 [H1,0 H2,0]

[
x̂0|I1
x̂0|I2

]
= [H1,0 H2,0]T R−1

0 y0, (62)

where H1,0, H2,0 are defined in (57). We get two linear systems

(HT
1,0R

−1
0 H1,0)x̂0|I1 = HT

1,0R
−1
0 (y0 − H2,0x̂0|I2) →

x̂0|I1 = (HT
1,0R

−1
0 H1,0)−1HT

1,0R
−1
0 (y0 − H2,0x̂0|I2)

(HT
2,0R

−1
0 H2,0)x̂0|I2 = HT

2,0R
−1
0 (y0 − H1,0x̂0|I1) →

x̂0|I2 = (HT
2,0R

−1
0 H2,0)−1HT

2,0R
−1
0 (y0 − H1,0x̂0|I1). (63)

Below we get x̂0|I1 as follows:

(HT
1,0R

−1
0 H1,0)x̂0|I1 = HT

1,0R
−1
0 (y0 − H2,0(H

T
2,0R

−1
0 H2,0)

−1HT
2,0R

−1
0 (y0 − H1,0x̂0|I1)),

that can be written

HT
1,0(R

−1
0 H1,0 − R−1

0 H2,0(HT
2,0R

−1
0 H2,0)−1H2,0R

−1
0 H1,0)x̂0|I1 = HT

1,0R
−1
0

· (y0 − H2,0(HT
2,0R

−1
0 H2,0)−1HT

2,0R
−1
0 y0)

(64)
or

(HT
1,0PH2,0H1,0)x̂0|I1 = HT

1,0PH2,0y0, (65)

where PH2,0 is defined in (58). So, we have

x̂0|I1 = (HT
1,0PH2,0H1,0)−1HT

1,0PH2,0y0, (66)

we obtain the thesis in (59) and we get x̂0|I2 in the same way.



86 L. D’Amore et al.

2. decomposition with overlap i.e. s �= 0 and overlap set I1,2 in (47).

x̂0|I1 = x1 ∈ R
n1 x̂0|I2 =

{
x1|I1,2 ∈ R

s on I1,2

x2 ∈ R
n2−s on I2 \ I1,2

∈ R
n2 , (67)

where x1 ∈ R
n1 and x2 ∈ R

n2 are defined in (59) and n1 = |I1|, n2 = |I2|,
s = |I1,2|.

Next theorem formally states the mathematical framework of DD approach,
which is main contribution of the present work.

Theorem 2 (DD-KF-CLS). Let us consider the overdetermined linear system
in (12), H0 ∈ R

m0×n, R0 ∈ R
m0×m0 , M = (HT

0 R0H0)−1HT
0 R0 ∈ R

n×m0 and
y0 ∈ R

m0 and x̂0 = My0 ∈ R
n, m0 > n, m1 > 0. DD-KF-CLS procedure is

composed by the following steps.

– DD step. decomposition of I = {1, ..., n}, i.e. the columns index set of A ∈
R

(m0+m1)×n of S in (12) into

I1 = {1, ..., n1} and I2 = {n1 + 1, ..., n}, (68)

with |I1| = n1 and |I2| = n2.
– KF-CLS step. Computation of x̂1,0 ≡ x̂0|I1 ∈ R

n1 and x̂2,0 ≡ x̂0|I2 ∈ R
n2 ,

reduction of x̂0 ∈ R
n as in (60) to I1 and I2 in (68).

Given x̂0
2,0 ∈ R

n2 , we consider

M1
0,1 = In,n ∈ R

n×n, M2
0,1 = In,n ∈ R

n×n,
Q1

0 = On,n ∈ R
n×n, Q2

0 = On,n ∈ R
n×n

P1,0 = (HT
0 |I1R0H0|I1)−1 ∈ R

n1×n1 P2,0 = (HT
0 |I2R0H0|I2)−1

, (69)

with In,n identity matrix and On,n null matrix.
For each n = 0, 1, 2, ... and for k = 0, applying KF procedure 2.1 to Pn+1

1 and
Pn+1
2 in (50) and (51), we obtain KF estimates x̂n+1

1,1 ∈ R
n1 and x̂n+1

2,1 ∈ R
n2

such that
x̂n+1
1,1 = x̂n+1

1

x̂n+1
2,1 = x̂n+1

2

(70)

where x̂n+1
1 , x̂n+1

2 are solutions in least squares sense of systems S̃n+1
1 and S̃n+1

2

defined in (52).

Proof. We apply KF in 2.1 to Pn+1
1 , Pn+1

2 in (50), (51). For k = 0, we obtained
as predicted estimates

{
x1,1 = M1

0,1x̂1,0 = x̂1,0

x2,1 = M2
0,1x̂2,0 = x̂2,0

, (71)

predicted covariance matrices
{

P1,1 = M1
0,1P1,0(M1

0,1)
T + Q1

0 = P1,0

P2,1 = M2
0,1P2,0(M2

0,1)
T + Q2

0 = P2,0
, (72)
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Kalman gains
{

K1,1 = P1,1H1|TI1(H1|I1P1,1H
T
1 |I1 + R1)−1

K2,1 = P2,1H1|TI2(H1|I2P2,1H
T
1 |I2 + R1)−1 , (73)

Kalman covariance matrices{
P1,1 = (I − K1,1H1|I1)P1,1,
P2,1 = (I − K2,1H1|I2)P2,1,

, (74)

and matrices {
K̃1,1 = P1,1H0|TI1R−1

0

K̃2,1 = P2,1H0|TI2R−1
0

. (75)

So, for n = 0, 1, 2, ... Kalman estimates are

x̂n+1
1,1 = x̂1,0 + K1,1

[
(y1 − H1|I2 x̂n

2,1) − H1|I1 x̂1,0

]
+ SI1↔I2(x̂

n
2,1)

x̂n+1
2,1 = x̂2,0 + K2,1

[
(y1 − H1|I1 x̂n+1

1,1 ) − H0|I2 x̂2,0

]
+ SI1↔I2(x̂

n+1
1,1 )

, (76)

where for i, j = 1, 2, SI1↔I2(x̂
n
i,1) := K̃i,j

[
H0|Ii(x̂i,0 − x̂n

i,1)
]
, represents the

exchange of data between the sets I1, I2.
For each n = 0, 1, 2, ... and from Proposition 1 applied to Pn+1

1 and Pn+1
2 in

(50), (51) we obtain:
x̂n+1
1,1 ≡ x̂n+1

1 x̂n+1
2,1 ≡ x̂n+1

2 , (77)

therefore we get the thesis.

Remark 4. Decomposition of I with overlap i.e. I1 = {1, ..., n1} and I2 =
{n1 − s+1, ..., n}, and I1,2 = {n1 − s+1, ..., n1} with s �= 0 is similarly obtained
by considering initial estimates as in (67). Furthermore, at each n = 0, 1, 2, ...,
we add operator O1,2 to Pn+1

1 and Pn+1
2 in (50) and (51). It means that it is

x̂n+1
1,1 ≡ x̂n+1

1,1 + P1,1μ∇O1,2(EOI1(x̂
n
1,1|I1,2), EOI1(x̂

n
2,1|I1,2))

x̂n+1
2,1 ≡ x̂n+1

2,1 + P2,1μ∇O1,2(EOI2(x̂
n+1
1,1 |I1,2), EOI1(x̂

n+1
2,1 |I1,2))

(78)

where ∇O1,2 (EOIi (x̂n
i,1|I1,2), EOIi (x̂n

j,1|I1,2)) =
[
EOI1(x̂

n
j,1|I1,2)− EOI1

(x̂n
i,1|I1,2)

]
, with EOIi(x̂

n
1,0|Ĩ1,2), EOIi(x̂

n
2,0|Ĩ1,2), i, j = 1, 2, be extensions to

Ii of reduction to Ĩ1,2 of x̂n
1,0 and x̂n

2,0 and μ regularization parameter.

Finally, last result proves that KF-DD-CLS is equivalent to DD-KF-CLS
method. To this end, we prove that these methods provides the same solutions.

Theorem 3. Let S be the overdetermined linear system in (12), A ∈
R

(m0+m1)×n, b ∈ R
m0+m1 defined in (13) with m0 > n and m1 > 0. Let x̂1 ∈ R

n

be Kalman estimate in (10) of x̂, i.e. solution of P in (14) and let x̂n+1
1,1 , x̂n+1

2,1

in (78) be Kalman estimates of Pn+1
1 and Pn+1

2 given in (50), (51). Then, it
holds that

x̂n+1
1,1 → x̂1|I1 , x̂n+1

2,1 → x̂1|I2 . (79)
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Proof. We consider decomposition of I, the indexes set of the columns of matrix A,
into I1 and I2 as in (68). From the convergence of {xn+1}n∈N0 to x̂ in (55), where x̂ is
the solution in least squares sense of S in (12), we get

xn+1 → x̂ ⇒
{

x̂n+1
1 → x̂|I1 on I1

x̂n+1
2 → x̂|I2 on I2

(80)

with x̂n+1
1 , x̂n+1

2 solutions of S̃n+1
1 , S̃n+1

2 in (52) and x̂|I1 , x̂|I2 reduction of x̂ to I1,
I2, respectively. For i = 1, 2, using Proposition 2 we have x̂n+1

i,1 ≡ x̂n+1
i and using

Proposition 1 it follows that x̂|Ii ≡ x̂1|Ii , so we get the thesis. The case with overlap is
similarly obtained.

5 Validation Results

We perform validation analysis of the proposed approach. We underline that
results we present are concerned not so much with parallel efficiency as with the
trustworthy and usability of the proposed approach to solve this problem. Sim-
ulation results, implemented using MATLABR2018b on a laptop with 1.6 GHz
CPU and 4 GB of memory, are described in details essentially to ensure their
reproducibility.

We consider:

– H0 ∈ R
11×6: random matrix;

– H1 ≡ hT ∈ R
1×6: random vector;

– y0 ∈ R
11: random vector;

– y1 ∈ R: a random constant;
– b =

[
y0, y1

] ∈ R
12 the vector in (12);

– R0 = 0.5 · I: weight matrix, with I ∈ R
11×11 identity matrix, R1 = 0.5 and

R = diag(R0, R1) ∈ R
12×12 weight matrix.

We calculate:

– x̂0 ∈ R
6: solution of normal equations in (11);

– x̂ ∈ R
6: solution of normal equations in (16) obtained by using Conjugate

Gradient method;
– x̂1 ∈ R

6 Kalman estimate as in (10) at step k = 1.

We apply DD approach to CLS problem in (14) by using:

– nmax = 50: maximum number of iterations;
– tol = 10−6: tolerance;
– x̂ ∈ R

6: solution of normal equations in (16) by Conjugate Gradient method.

Decomposition of I = {1, 2, 3, 4, 5, 6} without overlap i.e.

– I1 = {1, 2, 3, 4}, I2 = {5, 6};
– n ≡ |I| = 6,
– n1 ≡ |I1| = 4,
– n2 ≡ |I2| = 2;
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– x̂1,0 ≡ x̂0|I1 ∈ R
n1 ,

– x̂2,0 ≡ x̂0|I2 ∈ R
n2 : as in (67) with x̂0 solution in least squares sense of (11);

– for i = 1, 2, x̂0
i,1 ≡ zeros(ni) ∈ R

ni , where zeros(ni) is the null vector;
– for n = 1, 2, ..., nmax, x̂n+1

1,1 ∈ R
4, x̂n+1

2,1 ∈ R
2: Kalman estimates;

– ‖rn+1‖ < tol: stopping criterion, where rn+1 := (AT RA)xn+1 − AT Rb is the
residual n + 1 (16);

– ns: number of iterations needed to stop iterative procedure.

xn+1, i.e. DD solution, is:

xn+1 =
{

x̂n+1
1,1 on I1

x̂n+1
2,1 on I2

. (81)

Fig. 2. Tolerance tol = 10−6 is exceeded at ns = 20.

In Fig. 2 we see that residual norm exceeds tol = 10−6 in correspondence
of ns = 20. In particular, we note that the order of magnitude of error =
‖x̂ − xns‖ ≈ 6.2668 × 10−7 is the same of ‖rns‖ ≈ 6.6801 × 10−7. In Table 1, we
report values of error and the relative number of iterations (ns).

Decomposition of I = {1, 2, 3, 4, 5, 6} in I1 and I2 with overlap, for s = 1, 2, 3:

– I1 = {1, 2, 3, 4}, I2 = {4 − s, ..., n} and I1,2 = {4 − s, ..., 4};
– n ≡ |I| = 6,
– n1 ≡ |I1| = 4,
– n2 ≡ n + s − n1 ≡ |I2| = 2 + s;
– for i = 1, 2, x̂0

i,1 ≡ zeros(ni) ∈ R
ni , where zeros(ni) is the null vector;
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– for n = 1, 2, ..., nmax, we compute x̂n+1
1,1 ∈ R

4, x̂n+1
2,1 ∈ R

2: Kalman estimates
as in (78) [6,13,14,20].

DD estimate xn+1
s ∈ R

9 is obtained as

xn+1
s =

⎧⎨
⎩

x̂n+1
1,1 |I1\I1,2 on I1 \ I1,2

μ
2 (x̂n+1

1 |I1,2 + x̂n+1
2 |I1,2) on I1,2

x̂n+1
2,1 |I2\I1,2 on I2 \ I1,2

, (82)

with μ ≡ 1 regularization parameter; ‖rn+1
s ‖ < tol stopping criterion, where

rn+1 := (AT RA)xn+1
s − AT Rb is the residual at n + 1 of (16); nss is the corre-

sponding iteration. As expected and shown in Table 2, the size of the overlapping
set impacts the convergence behaviour of the algorithm.

Table 1. Values of error = ||x̂ − xns|‖ for different values of tol.

tol ns error

10−6 20 6.4037e − 07

10−9 29 4.8394e − 10

10−14 33 6.7045e − 15

Table 2. Values of errors = ‖x̂ − xns
s ‖ for tol = 10−6.

nss errors s

17 7.2526e − 07 1

15 5.1744e − 07 2

22 7.2741e − 07 3

6 Conclusions and Future Work

The present work is placed in the context of a research activity devoted to the
development of scalable algorithms for using Data Assimilation in large scale
applications [3,5,10,11]. Main purpose of this article is to describe a mathe-
matical framework for using a DD-based approach for KF method that is both
relatively easy to implement and computationally efficient. We provide the math-
ematical framework of this method. The key point of the present work is to
formulate and prove the necessary results that underpin this framework by con-
sidering, let us say, a first-level decomposition. Nevertheless, such configuration
should be considered as a part of a multilevel DD scheme designed according to
the features of the application and of the computing environment. Innovation
mainly goes from the introduction - ab initio, i.e. on the numerical/mathematical
model - of a decomposition approach [1]. Hence, results we presented were con-
cerned not so much with parallel efficiency as with the capability to solve this
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problem by using such a full decomposition. We are currently working on design-
ing the related parallel algorithm. We hope that these findings encourage readers
to further extend the framework according to their specific application’s require-
ments.

Results confirm that the accuracy of local solutions of the forecast model
and hence of local KF estimates, are not impaired by DD approach. Just to
prove the reliability of the proposed approach, for simplicity of notations, we
considered a simplified configuration of domain decomposition. We are working
on the design and development of the related parallel algorithm by considering
a more general configuration which could be used in concrete scenarios. Indeed,
DD configuration may depend both on the particular application and on the
mapping on the available parallel computing environment. It is worth noting that
one-level Schwarz DD methods are known to not often scale to a large number of
processors, that is, we need a multi-level DD methods. Such a scalable approach
is the subject of ongoing research [3].
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Abstract. This paper presents an experimental performance study of
a parallel implementation of the Poissonian image restoration algo-
rithm. Hybrid parallelization based on MPI and OpenMP standards
is investigated. The implementation is tested for high-resolution radio-
graphic images on a supercomputer using Intel Xeon processors as well as
Intel Xeon Phi coprocessors. The experimental results show an essential
improvement when running experiments for a variety of problem sizes
and number of threads.
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1 Introduction

Accurate 3D Computed Tomography (CT) reconstruction of microstructures has
numerous applications and is crucial for future realistic numerical simulations of
the material’s macro characteristics. It is also a quite complicated task, due to
the presence of noise in the image. For example, directly segmenting the noisy
3D CT image is not reliable for porous data where standard algorithms may not
be able to reconstruct even up to 50% of the material voxel data, thus important
quantities (e.g., absolute porosity, average pore size, size and shape of individual
pores) which determine its properties are completely miscomputed.

Typically, the CT data consist of thousands of 2D radiographic images. Opti-
mal feature extraction from 2D radiographic image data is a vital process from
an application point of view, since the image edges and singularities contain
most of the important information about the structure and the properties of
the scanned object. On the other hand, it is a theoretically challenging task and
an ongoing research field due to the usually poor quality of the analyzed data.
In radiography data acquisition is obtained by counting particles that gives rise
to Poisson-dominated noisy output. Poisson noise is non-additive and exhibits
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 93–100, 2020.
https://doi.org/10.1007/978-3-030-43222-5_8
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mean/variance relationship, thus nonlinear filters are necessary to be applied
for its successful removal. Using variance-stabilizing transformations, such as
the Anscombe transform, the Poisson noise can be approximated by a Gaussian
one, for which classical denoising filters can be used.

We consider an algorithm which solves an Anscombe-transformed constrained
optimization problem, based on Least Squares techniques [5]. It allows for com-
plete splitting of the pixel data and allows for their independent treatment within
each iteration. Furthermore, it was experimentally observed that the convergence
rate of the algorithm heavily depends on both the image size and the choice of
input parameters, making the sequential realization of the algorithm impractical
for large-scale industrial images. On the other hand, the CT data consist of thou-
sands of high resolution (e.g. size 1446× 1840) 2D radiographic images. Thus,
the sequential implementation of the algorithm cannot be used for real-time 3D
volume reconstruction.

The proposed algorithm is taken from [5] and can be written as follows:

Algorithm 1
Initialization:
u(0), ζ(0),

(
p(0)

j

)
1≤j≤3

=
(
p̄(0)

j

)
1≤j≤3

, ρ > 0, σ > 0, ρσ < 1/9.

For k = 0, 1, . . . repeat until a stopping criterion is reached

1. u(k+1) = max
{

min
{(

u(k) − σρ
(
H∗p̄(k)

1 + ∇∗p̄(k)
2

))
, ν1n

}
,0

}

2. ζ(k+1) = PVn

(
ζ(k) − σρp̄(k)

3

)

3. (v1,i, ηi) = Pepiϕi

(
p
(k)
1,i +

(
Hu(k+1)

)
i
+ 3/8 , p

(k)
3,i + ζ

(k+1)
i

)
, i = 1, . . . , n

4. v2 = p(k)
2 + ∇u(k+1)

5. p(k+1)
1 = p(k)

1 + Hu(k+1) + 3/8 − v1

6. p(k+1)
2 = v2 − proxσ−1‖·‖2,1

(v2)

7. p(k+1)
3 = p(k)

3 + ζ(k+1) − η

8. p̄(k+1)
j = p(k+1)

j +
(
p(k+1)

j − p(k)
j

)
, j = 1, 2, 3.

In [4] we have developed a hybrid parallel code based on the MPI and
OpenMP standards [1–3,6,7]. It is motivated by the need to maximize the par-
allel efficiency of the implementation of the proposed algorithm.

The remainder of the paper is organized as follows. We introduce the exper-
imental setup in the Sect. 2. A set of numerical tests are presented in the Sect. 3.
Finally, some conclusions andnext steps in ourwork are included in the last section.

2 Experimental Setup

Let us now report on the experiments performed with the parallel implementa-
tion of the algorithm. A portable parallel code was designed in C. As outlined
above, the hybrid parallelization is based on joint application of the MPI and
the OpenMP standards.
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Table 1. Execution time (in seconds) for 100000 iterations of the algorithm using only
processors of a single node of the Avitohol.

M N k

1 2 4 8 16 32

723 920 5520.07 4371.80 2294.13 1288.48 849.77 557.19

1446 1840 21547.00 18157.96 9400.75 5299.85 3576.14 3052.74

1840 1446 21057.86 18033.88 9389.83 5310.77 3581.53 2528.93

In our experiments, times were collected using the MPI provided timer,
and we report the average time from multiple runs. In what follows, we report
the average elapsed time Tp (in seconds), when using m MPI processes and k
OpenMP threads per MPI process. During the numerical experiments, we have
tested the parallel algorithm on one node for the number of OpenMP threads
from one to the maximal available number of threads. On many nodes we tested
the algorithm for the number of OpenMP threads varying from the number of
cores per node to the maximal available number of threads. Let us denote the
global number of threads by p. Then, we report the parallel speed-up Sp = T1/Tp

(T1 is the average elapsed time of the same algorithm using one MPI process
and one thread) and the parallel efficiency Ep = Sp/p.

We have tested the parallel algorithm on images obtained from the Tomo-
graph XTH 225 Compact industrial CT scanning. The images have size 723×920
or 1446 × 1840 pixels. Also, in order to study the performance of the developed
algorithm, we applied it to a “transposed image,” with size 1840 × 1446 pixels.
In the tables the size of the image is denoted by M × N .

The parallel code has been tested on cluster computer system Avitohol, at
the Advanced Computing and Data Centre of the Institute of Information and
Communication Technologies of the Bulgarian Academy of Sciences.

The computer system Avitohol is constructed with HP Cluster Platform
SL250S GEN8. It has 150 servers, and two 8-core Intel Xeon E5-2650 v2 8 C
processors and two Intel Xeon Phi 7120P coprocessors per node. Each processor
runs at 2.6 GHz. Processors within each node share 64 GB of memory. Each Intel
Xeon Phi has 61 cores, runs at 1.238 GHz, and has 16 GB of memory. Nodes
are interconnected with a high-speed InfiniBand FDR network (see also http://
www.hpc.acad.bg/). We used the Intel C compiler, and compiled the code using
the following options: “-O3 -qopenmp” for the processors and “-O3 -qopenmp
-mmic” for the coprocessors. Intel MPI was used to execute the code on the
Avitohol computer system.

3 Experimental Results

Tables 1 and 2 present times collected on the Avitohol using only Intel Xeon pro-
cessors. Table 1 shows that using only processors on one node the best results are
obtained using 32 OpenMP threads. We gain from the effect of hyper-threading
for all image sizes used in this set of experiments.

http://www.hpc.acad.bg/
http://www.hpc.acad.bg/
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Table 2. Execution time (in seconds) for 100000 iterations of the algorithm using only
processors on many nodes of the Avitohol.

M N Nodes

2 3 4 5 6 8

k=16

723 920 384.70 233.90 151.42 117.97 99.86 77.60

1446 1840 1764.39 1162.12 864.54 699.46 550.16 397.40

1840 1446 1785.73 1160.34 862.35 688.89 546.60 393.59

k=32

723 920 246.15 207.84 184.13 174.62 192.41 191.02

1446 1840 1248.47 1137.24 815.63 671.48 523.21 330.31

1840 1446 1619.59 1139.02 851.25 733.85 594.25 431.20

The execution time on up to eight nodes (again using only processors) is
presented in Table 2. Here, a slightly different results are observed. We used
bold numbers to mark the better performance varying the number of OpenMP
threads for the same number of nodes. The results show that for up to three
nodes we gain from the effect of hyper-threading for all image sizes. For images
with size 1446 × 1840 the same holds true also for the number of nodes up to
eight. For images with size 723 × 920 and 1840 × 1446 increasing the number of
nodes the better performance is obtained using 16 OpenMP threads per node.

To provide an insight into performance of the parallel algorithm using only
processors of the Avitohol, the obtained speed-up is reported in Table 3. It can
be seen that for small images the obtained parallel efficiency is slightly better.

Table 3. Speed-up using only processors.

M N Cores

2 4 8 16 32 48 64 80 96 128

723 920 1.26 2.41 4.29 9.91 22.45 26.59 36.49 46.81 55.33 71.23

1446 1840 1.19 2.29 4.07 7.06 17.28 18.97 26.69 32.13 41.18 65.31

1840 1446 1.17 2.25 3.97 8.34 13.03 18.53 24.74 30.63 38.60 53.61

Tables 4 and 5 present times collected on the Avitohol using only Intel Xeon
Phi coprocessors. As it was expected, the best performance on one coprocessor
is obtained using the maximal available number of threads (k = 244). The same
is true also for big images on up to 16 coprocessors. For small images there are
exceptions—the execution of the code on four and eight nodes. In this cases the
performance using 200 or 240 OpenMP threads is better. Comparing the results
in Tables 1, 2, and 5 one can see that for big images the algorithm run faster
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Table 4. Execution time (in seconds) for 100000 iterations of the algorithm using only
one coprocessor of the Avitohol.

M N k

1 8 60 120 240 244

723 920 45176.10 8863.91 1340.72 822.56 550.51 549.88

1446 1840 205412.67 37072.82 6219.42 3818.24 2614.77 2599.64

1840 1446 208701.67 69456.75 9654.39 5043.79 2754.97 2719.17

Table 5. Execution time (in seconds) for 100000 iterations of the algorithm using only
coprocessors of the Avitohol (k = 244).

M N Nodes

1 2 3 4 5 6 8

k=200

723 920 357.33 224.31 179.89 159.44 148.92 138.12 126.95

1446 1840 1516.01 765.40 541.50 436.50 379.98 340.17 291.88

1840 1446 1608.39 759.03 532.22 434.51 373.03 347.94 286.84

k=240

723 920 325.86 208.04 169.10 153.52 145.89 137.04 128.17

1446 1840 1350.51 681.63 493.32 405.82 355.23 320.43 277.93

1840 1446 1363.66 667.78 479.42 386.42 335.38 314.51 256.52

k=244

723 920 321.86 207.80 168.87 153.55 145.73 137.03 128.13

1446 1840 1336.17 674.21 488.44 402.27 352.23 317.99 277.76

1840 1446 1338.11 664.77 479.10 384.34 335.10 311.14 257.27

Table 6. Speed-up using only coprocessors.

M N p

8 60 120 240 244 488

723 920 5.10 33.70 54.92 82.19 82.27 140.50

1446 1840 5.54 33.03 53.80 78.56 79.02 153.73

1840 1446 3.00 21.62 41.38 75.75 76.75 155.97

976 1464 1952 2440 2928 3904

723 920 215.37 263.83 294.13 305.02 328.53 352.59

1446 1840 305.00 420.93 511.25 583.50 646.32 739.54

1840 1446 313.95 436.77 543.02 622.81 670.76 811.22
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using only coprocessors on the same number of nodes. For small images this is
true only on up to three nodes.

Table 6 shows the obtained speed-up of the parallel algorithm using only
coprocessors of the Avitohol. Here, one can see that the obtained parallel effi-
ciency is better for “transposed” images.

Table 7 shows the average execution time collected on the Avitohol using
Intel Xeon processors as well as Intel Xeon Phi coprocessors. Comparing results
in Tables 1, 2, and 7 it can be seen that for the small images there is an improve-
ment in the performance only using one to four nodes. For the large images the
algorithm has from two to three times better performance using both processors
and coprocessors compared to the performance using only processors on up to
eight nodes.

Table 7. Execution time (in seconds) for 100000 iterations of the algorithm using
processors and coprocessors of the Avitohol.

M N Nodes

1 2 3 4 5 6 8

723 920 260.04 167.25 137.54 123.14 118.85 121.29 110.98

1446 1840 1110.95 554.87 394.63 318.25 273.65 267.12 215.83

1840 1446 1091.79 561.22 409.55 310.96 254.32 264.09 201.53

Table 8. The number of threads used to obtain the execution time in Table 7. We use
the following notation: mc × kc + mϕ × kϕ means mc MPI processes on processors,
kc OpenMP threads on processors, mϕ MPI processes on coprocessors, kϕ OpenMP
threads on coprocessors.

M N Nodes

1 2 3 4 5 6 8

723 920 1× 16 +

2× 244

2× 16 +

4× 240

6× 8 +

6× 240

8× 8 +

8× 240

10× 8 +

10× 244

12× 8 +

12× 244

16× 8 +

16× 244

1446 1840 1× 32 +

2× 244

2× 16 +

4× 240

3× 16 +

6× 244

4× 16 +

8× 244

5× 16 +

10× 244

6× 16 +

12× 244

16× 8 +

16× 240

1840 1446 1× 32 +

2× 244

2× 16 +

4× 240

3× 16 +

6× 244

4× 16 +

8× 244

5× 16 +

10× 244

6× 16 +

12× 240

16× 8 +

16× 240

Table 8 presents the number of threads used to obtain the execution time in
Table 7. The last Table shows that for all image sizes and number of nodes the
better results are obtained using 240 or 244 threads on Intel Xeon Phi. In general,
for all images the best performance is observed using 16 OpenMP threads on
processors.

Finally, we compare the performance of the parallel algorithm using only
processors, only coprocessors, and using both processors and coprocessors. The
average time obtained on up to eight nodes for different image sizes is shown in
Fig. 1.
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Fig. 1. Execution time for various image sizes.

4 Concluding Remarks and Future Work

We have studied the efficiency of the parallel implementation of an image restora-
tion algorithm based on Least Squares techniques. Numerical experiments are
conducted on a supercomputer using Intel Xeon processors as well as Intel Xeon
Phi coprocessors. As it was expected, for big images the best results using only
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processors are obtained using the maximal available number of threads. Also,
for both sizes of the images, the best results on coprocessors are obtained using
the maximal available number of threads. Finally, the experimental results show
an essential improvement when running experiments using processors as well as
coprocessors for a variety of image sizes and number of threads.

In the current version of our parallel implementation, the image is divided
into strips. The sizes of all strips are almost the same. During the experiments it
was seen that for small images on number of nodes larger than three our parallel
algorithm runs faster using only processors compared to the results using only
coprocessors. In order to tune the implementation and to have good performance
we tested the algorithm running various number of MPI processes on processors
while using one MPI process per coprocessor. As a next step, in order to achieve
better load balance on the hybrid architecture, we have to make further changes
in the MPI code. In this way we can avoid or at least minimize the delay caused
by different load in the Intel Xeon processors and Intel Xeon Phi coprocessors.
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Abstract. K-means algorithm is one of the most widely used methods
in data mining and statistical data analysis to partition several objects
in K distinct groups, called clusters, on the basis of their similarities. The
main problem of this algorithm is that it requires the number of clusters
as an input data, but in the real life it is very difficult to fix in advance
such value. For such reason, several modified K-means algorithms are
proposed where the number of clusters is defined at run time, increasing it
in a iterative procedure until a given cluster quality metric is satisfied. In
order to face the high computational cost of this approach we propose an
adaptive procedure, where at each iteration two new clusters are created,
splitting only the one with the worst value of the quality metric.

Keywords: Modified k-means clustering · Adaptive algorithm ·
Unsupervised learning · Data mining

1 Introduction

The data clustering problem has been addressed by researchers in many dis-
ciplines, and it has several different applications in the scientific world, from
biological research, to finance, marketing, logistic, robotics, mathematical and
statistical analysis, image processing, identifying patterns, and the classifications
of medical tests (e.g. [2,27]).

Thus, we can say that clustering algorithms are today one of the most impor-
tant tools in exploratory data analysis and one the most important data mining
methodology. They can be seen as unsupervised classification approaches whose
main goal is to group similar data with in the same cluster according to precise
metrics.

There are several surveys, reviews and comparative study about clustering
applications and techniques, written in the last twenty years, that one can refer
to get an overall picture of the clustering approaches in their evolution to the
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current state of art (e.g. [14,20,26,27]). Different surveys give often different tax-
onomies, but all of them name the K-means as one the most popular clustering
algorithm. K-means algorithms is the best known Squared Error-based cluster-
ing approach [27] because of its simplicity, ability to deal with large number of
attributes, and providing good quality clusters with the N ∗ K ∗ d computa-
tional complexity where N is the number of elements in data space, K is count
of clusters to be identified, and d is the number of attributes/dimensions [11].
Results of K-Means clustering depends on cluster center initialization and it is
not able to provide globally optimum results. For different data sets, diverse
versions of K-Means clustering must be chosen, and many modified version of
the K-means algorithm has been proposed in the last years [1,13,14] to decrease
the complexity or increase the solution quality [23,25].

The present work joins this research trend. More precisely it describes an
adaptive K-means algorithm for dynamic clustering where the number of clusters
K is unknown in advance and it is aimed to realize a trade-off between the
algorithm performance and a global quality index for the clusters.

The rest of the paper is organized as follow: in Sect. 2 we introduce an adap-
tive K-means algorithm, in Sect. 3 we report some implementation details, in
Sect. 4 we show the results obtained from several experiments we have done to
validate the new algorithm, and in Sect. 4 we summarize the work.

2 An Adaptive K-Means Algorithm

The K-means algorithm is a procedure aimed to define K clusters where each of
them contains at least one element and each element belong to one cluster only.
A formal description of the procedure follows.

Given a set of N vectors S = {sn : sn ∈ Rd n = 1, .., N} in the d-
dimensional space, and an integer K, the K-means algorithm collects the items
of S in the K subgroups of a partition PK = {Ck : Ck ⊂ S k = 1, ..,K} of
S, such that

⋃
Ck = S and Ck1

⋂
Ck2 = ∅ with k1 �= k2, on the basis of their

similarity. Usually the similarity between two objects is measured by means the
Euclidean norm or some other metric. Its traditional description is then based
on the following steps:

Step 1. Assign randomly the N elements sn ∈ S to K arbitrary subgroups Ck

each of them with Nk items
Step 2. Compute the centers ck of the Ck with the following vector operation:

ck =
1

Nk

∑

sn∈Ck

sn k = 1, ..,K (1)

Step 3. ∀sn ∈ S find the cluster Ck minimizing the Euclidean distance from
the center of the cluster, that is:

sn ∈ Ck ⇔ ||sn − ck||2 = min
k=1,..,K

||sn − ck||2 (2)
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Step 4. Reassign sn to the new cluster Ck

Step 5. Repeat steps 2 – 4 until there is no change.

One of the major flaws of this algorithm is the need to fix the number of
clusters K before the execution. Mainly with large dimensions d and number of
elements N is almost impossible to define a suitable K. If it is too large similar
items will be put in different clusters. On the other hand, if K is too small, there
is the risk that dissimilar items will be grouped in the same cluster.

Furthermore, several studies have shown that the previous algorithm does
not produce an analytic solution, and the result strongly depends on the initial
assignment of the elements to the clusters [24]. For such reasons the algorithm is
executed several times with different vale of K, and some quality index is used
to choose a “good solution”. To this aim several indices have been introduced in
the literature (see for example [11]).

As an example consider the root-mean-square standard deviation (RMSSTD)
index:

RRMSSTD =

[∑K
k=1

∑
sn∈Ck

||sn − ck||22
d(N − K)

]1/2

(3)

that measures the homogeneity of the clusters quality. The RMSSTD quality
index decreases when the number of clusters K increases, until a fair homogeneity
is reached, so that the optimal number of clusters is then the value of K at which
the RMSSTD starts to grow. On the basis of these considerations we can design
the iterative procedure described in the Algorithm 1 that increases the number
of clusters at each step.

This strategy repeatedly tests several partitioning configurations with differ-
ent values of K and it is possible to implement it only if the Computational Cost
(CC) of the kernels is not too large.

Algorithm 1. iterative K-means algorithm
1) Set the number of clusters K = 0
2) repeat

2.1) Increase the number of clusters K = K + 1
2.2) Assign randomly the N elements sn ∈ S to arbitrary

K clusters Ck, each of them with Nk items
2.3) repeat

2.3.1) Compute the centers ck of the Ck as in (1)
2.3.2) For each sn ∈ S find the cluster Ck minimizing the

Euclidean distance from ck as in (2)
2.3.3) Reassign the elements sn to the new clusters

until (no change in the reassignment)
2.4) update RMSSTD as in (3)

until (RMSSTD starts to grow or its reduction is smaller
than a given threshold)
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In order to analyze the computational cost of this procedure, we concentrate
our attention on the most expensive steps in the inner iterative structure 2.3.
At this regard we observe that the computation of the centers ck of the clusters
(step 2.3.1) based on the (1), requires

CC2.3.1 =
K∑

k=1

dNk = Nd f.p. operations

whereas the search of the cluster for each element sn (step 2.3.2) based on the
(2) requires

CC2.3.2 = NKd f.p. operations

The cost of the step 2.3.3 is strongly dependent on how the elements are dis-
tributed in the K clusters Ck at the step 2.2. An unsuitable initial assignment
can result in a huge number of movement of the elements sn among the clusters
Ck, in order to satisfy the stopping criterion of the iterative structure 2.3.

Our method is then designed to reduce the movements of the elements among
the clusters, with the aim of achieving a trade-off between a good distribution
with a reasonable computational cost.

The main idea of the proposed method is to use the partition PK−1 of the
elements already defined in the previous iteration, working only on the clusters
with the more dissimilar elements and avoiding to starting over with a random
distribution in step 2.2. To this aim, let consider the standard deviation of the
elements sk in the cluster Ck:

σk =

√
√
√
√ 1

Nk − 1

Nk∑

n=1

(sn − ck)2

The value of σk can be used to measure the similarity of the elements in Ck.
Smaller the value σk is, closer to the center ck are the elements of Ck, and the
cluster is composed by similar elements. For a such reason our strategy, in the
step 2.2, defines the new partition PK by splitting in two subset Cλ and Cμ only
the cluster C∗

K−1 with the largest standard deviation in the previous iteration.
When K = 1 the partition P1 is defined by only 1 cluster C1 ≡ S. More precisely:

K = 1 P1 = {C1} where C1 ≡ S
K > 1 PK = PK−1 − {C∗

K−1} ∪ {Cλ, Cμ} (4)

This strategy is based on the assumption that, at a given iteration K, very
similar items have been already grouped in compact clusters with small values
for σk at the previous iteration K − 1, which therefore does not require an
assignment to a new cluster. At this regard, it is interesting to note that the
idea of reorganizing the elements of a partition, according the value of a given
quality index computed at run time, is quite common in many procedures called
adaptive algorithms. For example, with regard to the iterative algorithms for
the numerical integration, many strategies are known for the refinement of the
integration domain only where a large discretization error is estimated [7,15–19].
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From what has been said, we propose an adaptive modified K-mean algo-
rithm as follow:

Algorithm 2. adaptive K-means algorithm
1) Set the number of clusters K = 0
2) repeat

2.1) Increase the number of clusters K = K + 1
2.2) find the cluster C∗

K−1 with the largest standard deviation
2.3) define the new partition of clusters PK as in (3)
2.4) repeat

2.4.1) Compute the centers ck of the Ck as in (1)
2.4.2) For each sn ∈ S find the cluster Ck minimizing the

Euclidean distance from ck as in (2)
2.4.3) Reassign the elements sn to the new clusters

until (no change in the reassignment)
2.5) update RMSSTD as in (3)

until (RMSSTD starts to grow or its reduction is smaller
than a given threshold)

3 Implementation Details

Following there are some implementation details regarding our adaptive K-
means algorithm (see also Fig. 1).

All the elements sn ∈ S are stored, row by row, in a N × d array. In order to
improve the computational cost, our method does not change the order of the
rows of the array, when the elements must be moved from a cluster to another
one, in the step 2.4.3. In such step, the composition of each cluster is then
defined by means of contiguous items in a array PT , pointing to the rows of
S representing the elements of the cluster. All the displacements of elements
among clusters required in the step 2.4.3, are then implemented by exchanging
only the pointers in the array PT .

In order to identify the contiguous items of the array PT pointing to a given
cluster Ck, a suitable data structure is defined: a Cluster Descriptor (CDk) that
contains

– the cluster identifier (k)
– the pointer to the first elements of the cluster in the array PT (Fk)
– the number of elements of the cluster (Nk)
– the center of the cluster (ck)
– the standard deviation of the elements of the cluster (σk)

Finally, the access to cluster descriptors CDk is provided by a Cluster Table
(CT ), that is a pointers array whose k-th element refers to the cluster descriptor
CDk of the cluster Ck.

This data organization allows quick and efficient access to all clusters infor-
mation required in Algorithm 2.
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Fig. 1. Data structures organization for the K-means adaptive algorithm

4 Experimental Results

To test our method, from the accuracy and the efficiency points of view, several
experiments have been conducted on a system equipped with a quad-core Intel
i5-4460S (Haswell) CPU running a 2.9 Ghz and 16 Gbytes of main memory. The
algorithms have been implemented in C language under Linux operating system.

First of all we report the results on the Iris data set [9] from the UCI Machine
Learning Repository [8]. This is probably the earliest and the most commonly
used data set in the literature of pattern recognition. It is a quite small set
containing only N = 150 instances of iris flowers, divided into K = 3 classes
of the same dimension Nk = 50 elements. The items are described on the basis
of d = 4 attributes: petal’s and sepal’s width and length. Our experiments are
aimed to measure the ability of Algorithm 2 to separate the items in three
distinct sets and to compare the results with those obtained from Algorithm 1.

Figure 2 shows the scatter plots of each couple of features of the data set
produced by Algorithm 2 setting 3 iterations as an input. The different marks
represent the elements of the three clusters. An identical figure has been obtained
with Algorithm 1, so that the two algorithms produce the same classification of
the items. This is confirmed also by Table 1 reporting the number of elements
Nk and the standard deviation σk of each cluster.

A more meaningful experiment was conducted using the Letter Recognition
data set [10] from the UCI Machine Learning Repository. This is a large data
set based on N = 20, 000 unique items, each of them representing the black
and withe image of an uppercase letter. The character images are based on 20
different fonts where each letter have been randomly distorted to produce an
item of the data set. Each item was converted into d = 16 numerical attributes
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Fig. 2. Scatter plots of each couple of features of the data set produced by Algorithm 1
and Algorithm 2.

(statistical moments and edge counts) which were then scaled to fit into a range
of integer values from 0 through 15. The classification task for this data set
is considered especially challenging because of the wide diversity among the
different fonts and because of the primitive nature of the attributes.

Table 1. Results comparison between Algorithm 1 and Algorithm 2 on the Iris dataset.

Algorithm 1 Algorithm 2

Nk σk Nk σk

C1 50 0.26 50 0.26

C2 61 0.30 61 0.30

C3 39 0.34 39 0.34

The first set of experiment is aimed to compare the performance of our
proposed Algorithm 2 with the basic Algorithm 1. In Table 2 we report the
number of items sn displaced from a cluster to another one in step 2.4.3 (disp)
and the total elapsed time in second (time) for the generation of K = 26 clusters,
i.e. one for each letter of the English alphabet. As expected, Algorithm 2 shows
better performance than Algorithm 1, as its does not move items already grouped
in compact clusters with a smaller standard deviation.
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Table 2. Performance comparison between Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm 2

disp time disp time

1001349 55.9 130801 23.8

Fig. 3. Values of RMSSTD (vertical axis) versus the number of iterations (horizontal
axis) for Algorithm 1 (solid line) and Algorithm 2 (dashed line).

A second set of experiments is aimed to measure the quality of the solution
computed by Algorithm 2. To this aim we use the value of root-mean-square
standard deviation RMSSTD, given by (3), as a measure of the global quality
index of the generated clusters. Figure 3 shows the value of RRMSSTD versus the
number of generated clusters K for both Algorithm 1 and Algorithm 2. These
values differ by less 1%, confirming that Algorithm 2 generates a partition very
similar to the one computed by the traditional K-means algorithm.

5 Conclusions

In this paper we introduced an adaptive approach to improve the efficiency of
dynamic data clustering with the K-means algorithm. The main drawback of
this well known algorithm is that the number of clusters K should be fixed as
input data, but in several real cases it is very difficult to define such a value
in advance. Several algorithms attempts to overcame this problem by finding
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the optimal value at run time by increasing the number of clusters until some
stopping criterion is satisfied, but the computational cost can be very expensive,
because the need to reallocate the node of the set at each iteration. Our work
addresses this aspect, avoiding the displacement of similar items already grouped
into compact clusters, characterized by small values of the standard deviation.
The achieved results are very promising, with accuracy similar to traditional
approaches that redistribute all the items of the set at each step, and with a
much lower computational cost. Future work can focus on the implementation
of Algorithm 2 on advanced computing environment such as parallel/distributed
computers, GPU based systems or low power devices [4,5,12,21,22] with special
attention to the issues regarding the fault tolerance and the performance [3,6].
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Abstract. Sensors and actuators became first class citizens in techno-
logically pervasive urban environments. However, the full potential of
data crowdsourcing is still unexploited in marine coastal areas, due to
the challenging operational conditions, extremely unstable network con-
nectivity and security issues in data movement. In this paper, we present
the latest specification of our DYNAMO Transfer Protocol (DTP), a
platform-independent data mover framework specifically designed for the
Internet of Floating Things applications, where data collected on board
of professional or leisure vessels are stored locally and then moved from
the edge to the cloud. We evaluate the performance achieved by the DTP
in data movement in a controlled environment.

Keywords: Internet of Floating Things · Data crowdsourcing · Data
movement · Security · Cloud database

1 Introduction

The rise of the Internet of Things and the computational resource elasticity pro-
vided by the Cloud [6,33] are changing the human lifestyle [9]. The crowdsourcing
paradigm [14] has been widely adopted in diverse contexts to solve large prob-
lems by engaging many human workers to solve manageable sub-problems [12].
When the problem involves data acquisition, management and analysis, it is
referred to as data crowdsourcing [12]. Nowadays, data crowdsourcing is one of
the most impacting technology raised as first-class citizen in the data science
landscape [32], thanks to the flywheel effect generated by the availability of
distributed human-carried sensor network – commonly referred as mobile com-
puting, the reliable connection infrastructure provided by cellular and Wi-Fi
c© Springer Nature Switzerland AG 2020
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networks, and the elastic computing and storage resources. Nevertheless, data
crowdsourcing potentially gains more importance in environments where the
use of conventional data acquisition methodologies [2,17,20,27] are expansive or
unfeasible and the satellite data do not reach the adequate resolution and qual-
ity, mostly when approaching the coast [3,4]. The coastal areas host most part of
human population, are fundamental for the global economy, and, above all, are
one of the most sensitive environments to climate changes [26]: extreme weather
events could impact negatively on human activities in a dramatic way [7,30].

Although the embryo of a distributed data collecting has been already
designed at the early stage of the grid computing epic [10,34], unfortunately,
data crowdsourcing marine applications are limited by the availability of stable,
reliable, and cheap data connections. On the other hand, the measurement of
seafloor bottom depth (bathymetry) via data crowdsourcing is common in both
scientific [29] and business projects. The application of this technique to the
measurement of weather and sea state parameters has previously been limited
to ferries, freight carriers, professional vessels, and cruise ships. In a previous
work, we developed FairWind, a smart, cloud-enabled, multi-functional naviga-
tion system for leisure and professional vessels [22,25]. In this paper, we introduce
DYNAMO, an infrastructure for collecting marine environmental data from a
distributed sensor network carried by leisure vessels [21,24]. DYNAMO could be
considered as an improvement and evolution of FairWind, strongly leveraging on
SignalK (http://signalk.org) as a common interchange format for marine data,
but more focused on data logging and management.

The rest of this paper is organized as follows: Sect. 2 contains a synthetic
description of similar solutions focusing on diverse and different data transfer
protocols. Section 3 contains the most of the novel contribution of this paper
with a detailed description of the DYNAMO Transfer Protocol, detailing on
the security and storage issues. Section 4 describes the preliminary evaluation in
an experimental controlled environment. Finally, Sect. 5 concludes and outlines
future directions.

2 Related Work

The Bundle Protocol (BP) [28] has been proposed by the Delay Tolerant Net-
working Research Group (DTNRG) of the Internet Research Task Force (IRTF).
The idea of this protocol is to group data in bundles in order to store and for-
ward them when the networking is available. The main capabilities of the BP
include: (i) custody-based re-transmission; (ii) ability to cope with intermittent
connectivity; (iii) ability to take advantage of scheduled, predicted, and oppor-
tunistic connectivity; (iv) late binding of overlay network endpoint identifiers to
constituent internet addresses. Even though BP is the only acknowledged data
transfer protocol for DTNs as of today, and the best reference point for new pro-
posals in this field, it is not designed for IoT devices and for their communication
with cloud infrastructures.

The two widely used IoT application protocols that represent the current
state of the art, are Message Queuing Telemetry Transport (MQTT) [15] and

http://signalk.org
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Constrained Application Protocol (CoAP) [5]. MQTT is an internet application
protocol for extreme environments. MQTT today is an OASIS standard, widely
used for every kind of IoT application, including cloud data transfer. It is a
publish/subscribe model working on top of TCP, ensuring the reliability of its
approach also thanks to its small bandwidth footprint and a low loss rate in
unstable networking.

CoAP is a modern standard specialized application protocol for constrained
devices. It leverages on a REST model: servers allow resources access under a
URL and clients use them through GET, POST, PUT, and DELETE methods.
This makes CoAP integration with already different software straightforward,
but working on UDP in order to maximize the efficiency.

A common middleware supporting both MQTT and CoAP and providing a
common programming interface has been also implemented [31].

Nevertheless, MQTT and CoAP are both not resilient, since they are not able
to elastically change the transmission rate in dependence of the bandwidth, and
although both have a lightweight footprint, they do not compress the payload.
The security is guaranteed by the transport layer not ensuring the firewall and
proxy friendship.

3 Design

3.1 Vessel Side and Cloud Side Security

In [25], we already described the idea of a data transfer framework designed for
vessel data logging and transferring to the cloud with an adaptive algorithm
devoted to the maximization of the bandwidth usage leveraging on concurrent
requests. In this work, we completely redesigned the vessel side in order to match
a higher level of security avoiding any form of key exchange. The behaviour of
the SignalK data logger on the vessel side is conceptually described by the block
diagram shown in the Fig. 1.

Fig. 1. The DYNAMO SignalK logger on the vessel side.
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The SignalK data updates are grouped in parcels, as described in [21], and
stored as text files in a temporary outbound folder. Each time a new parcel
is available, the signature is extracted using the RSA-SHA 256 bit algorithm,
encrypted using the vessel 1024 bit private key and finally encoded in base64 [11].
A 32 byte long symmetric encryption key is generated randomly. This key is
encrypted with the cloud-side public key using the RSA PLCS1 OAEP padding.
The encrypted symmetric key is finally encoded in base 64. A cipher key is gen-
erated using the SHA256 hash algorithm applied to the previously generated
symmetric key. A secure pseudo random initialization vector is generated and
then used to encrypt the compressed data parcel. Finally, the initialization vector
and the encrypted symmetric key are prepended and the encrypted data parcel
is stored in an upload folder. The DYNAMO data transfer framework mediates
the vessel and the cloud sides in order to maximize the bandwidth usage. A
NodeJS working implementation of a SignalK DYNAMO logger is available as
open source (Apache 2.0 license) (https://github.com/OpenFairWind/signalk-
dynamo-logger).

Fig. 2. Cloud storage side (consumer) data pipeline. The symmetric key is decrypted
with the consumer’s private key, and then is used to decrypt the data. The data are
then uncompressed, the signature is verified, and the data are stored in a SQL database.

The cloud storage side is described in Fig. 2. Each time an encrypted and
compressed data parcel is received, it is stored in an upload basket and enqueued
to a message queue manager. The behavior of this component drastically affects
the overall storage performance, which makes it a critical point on this kind
of near-realtime applications. In order to be as much as possible independent
from the practical implementation choices, we used a plug-in approach enabling
the DYNAMO cloud storage administrator to change the message queue man-
ager and its policies in order to match the specific application and, above all,
the available storage and computational resources. For production scenarios the
use of enterprise level components as RabbitMQ (https://www.rabbitmq.com)
and Redis (https://redis.io) are recommended, but for performance evaluation
we implemented our own message queue manager in order to make the metric

https://github.com/OpenFairWind/signalk-dynamo-logger
https://github.com/OpenFairWind/signalk-dynamo-logger
https://www.rabbitmq.com
https://redis.io
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measurements and the control over the used resources more effective [16]. The
message queue manager dispatches the encrypted and compressed data parcels
on available computational resources. Here the encoded encrypted symmetric
key is extracted and decrypted using the cloud side private key in order to
enforce the non repudiability of the data. Each data parcel contains a list of
SignalK updates. The symmetric key is used to decrypt the compressed data
parcel using the initialization vector leveraging on the AES algorithm using the
CBC mode. Then, the data parcel is unzipped and the encrypted digital signa-
ture extracted and decrypted using the vessel public key. Finally, the decrypted
digital signature is used for verification in order to enforce the integrity, then the
updates are added to the update list. Once the update list is fully consistent,
the storage in database process begins. A Python working implementation of a
SignalK DYNAMO cloud storage is available as open source (Apache 2.0 license
- https://github.com/OpenFairWind/dynamo-storage).

3.2 Cloud Side Storage

At the cost of a time-consuming, careful and proper data schematization, the
relational solution offers many advantages over the plain NoSQL one, namely: (i)
a highly expressive manipulation language (SQL); (ii) minimal redundancy; (iii)
the possibility to enforce sophisticated integrity constraints; (iv) indexing, mate-
rialization, partitioning and all the arsenal of physical optimization to improve
performance. In this case, the main challenge for designing an E/R diagram is
the unknown schema of the received data, that concern different aspects of the
vessel navigation gathered in real time and in a semi-structured form. Further-
more, all the measured quantities evolve over time and are sampled at irregular
intervals, due to the possibly harsh environmental conditions and the consequent
loss of signals.

The proposed solution is a star schema, with a strong entity at the cen-
ter representing the vessel (the transmitters) and a variable number of weak
entities at its side that hold the data relative to each variable to be stored,
arranged time-wise (the timestamp of the measurements is the weak key for all
the weak entities). For example, a variable like “position” is measured and trans-
mitted ideally with a 5 to 10 Hz frequency and stored in a table named position
whose primary key is the combination of vessel-id and timestamp and whose
attributes are latitude and longitude; a variable like “destination” is mea-
sured and transmitted with a given frequency and stored in a table named des-
tination whose primary key is the combination of vessel-id and timestamp
and whose attributes are characteristics of the destination, like destination-
common-name. In both tables, the vessel-id is also a foreign key connecting
the weak entity to the strong entity (the vessel table). Once data relative to
position (or to destination) arrive with attached the timestamp of the mea-
surements, they are stored in the corresponding tables. This schema naturally
partitions the load on the tables, allowing parallel inserts.

The schema is built incrementally and dynamically as new variables arrive
from the floating things, becoming new tables. After a boot period during which

https://github.com/OpenFairWind/dynamo-storage
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many new tables (one for each unknown variable) are created, the schema sta-
bilizes itself and variable addition becomes very rare. All consecutive measure-
ments of the same variable are stored in the corresponding table sorted by time
of measurement (timestamp). This schema does not require the a priori defi-
nition of the number or type of required variables, allows enforcing of integrity
constraints, holds the time series of each variable and can be indexed and tuned
via standard SQL to improve the access time.

Fig. 3. SQL data encoder.

In the Internet of Floating Things, all transmitters use the GPS time, hence
they are all synchronized, however, depending on the application, a time quantiza-
tion is normally necessary to have a meaningful match of the tuples representing
the measurements of the variables on the various tables. If we define ε the mini-
mum time interval considered relevant for the application (for example ε = 1s), all
values of a given variable in the same time windows (1 s) should be averaged and
only their average value (or a more robust index [18]) should be considered, with
a timestamp truncated to the second. Quantization can be performed adding to
each table a column quant representing the time as the number of ε unit of times
(seconds) passed since a reference date and then grouping.

In general, there are two possible choices: (a) storing the raw data at maxi-
mum time resolution and performing the quantization after inserting the data in
the database, querying and joining them with group by clauses on the quant
column, eventually saved in a materialized view; (b) using the group by clauses
on the quant column to quantize and join the data before inserting them in the
database, averaging their values.

The advantage of solution (a) is that the granularity can be changed at the
application level, while in solution (b) the raw data are lost and the data can only
be rolled up. On the other hand, solution (a) requires more space and more write
operations with respect to solution (b), that is lighter and may give a sufficient
precision in most real use cases. In the following we adopted solution (a).
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4 Evaluation

In order to produce a preliminary evaluation of the implemented DYNAMO
cloud storage, we set up an experiment using the HPC cluster PurpleJeans avail-
able at the Department of Science and Technologies of the University of Naples
Parthenope as controlled environment. The cluster is devoted to Machine Learn-
ing and Data Science researches. Although the cluster is provided by a 16 NVidia
V100 CUDA enabled GPGPU devices partition, we used the multicore intensive
computing partition powered by 4 computing nodes equipped by 2 Intel Xeon
16-Core 5218 2,3 Ghz CPUs providing 32 computing cores per node and sup-
ported by 192 Giga Bytes of RAM. The computing nodes are connected to the
front-end with an Infiniband Mellanox CX4 VPI SinglePort FDR IB 56 Gb/s
×16. The file system is shared using the Ethernet over the Infiniband protocol.
The cluster supports Docker on both front-end and computing nodes. The total
amount of storage is about 65 Terabytes. We configured the DYNAMO Cloud
Storage using a custom message queue manager, dispatching the execution of
the decryption and decompressing tasks on Docker-deployed DYNAMO cloud
storage compute instances on the computing nodes. Using Docker, we deployed
a single instance of PostgreSQL/PostGIS SQL database server on the front-
end (Fig. 4). We simulated a workload with 5182 encrypted and compressed
data parcels acquired during a real vessel navigation sequentially enqueued to
the message queue manager. The used dataset produces 21 tables in the SQL
database. We performed the overall wall clock measurement varying the num-
ber of deployed DYNAMO cloud storage compute instances on the computing
nodes. All containers share the same Docker volume and they can interact with
the SQL database server instance. The preliminary results obtained performing

Fig. 4. The experiment setup (left) and the preliminary results (right) of the DYNAMO
cloud storage.
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100 times the described experiments are shown in the right side of the Fig. 4.
Under the described experiment setup, the proposed methodology scales almost
linearly up to 16 DYNAMO cloud storage instances as expected. This is also
supported by the number of SQL tables automatically generated that is less or
almost equal to the number of the compute instances. In this way, the SQL server
lock is at the table level and multiple insert queries could be executed concur-
rently on the single SQL database server instance. As the number of instances
increases, the performance gains no benefits from the concurrent inserts.

5 Conclusion and Future Directions

In this paper, we presented the latest implementation of the DYNAMO Transfer
Protocol, which enforces a complete end to end encryption methodology with
data signature in order to ensure data integrity, non repudiability and, above all,
privacy, since the data in this context are related to people and goods and contain
position and time references. The DYNAMO ecosystem could contribute to the
search and rescue system: in designing the proposed framework, we considered
the IoT security aspects [34] in order to avoid disruptive situations that could
affect the safety at sea. All these elements lead us to believe that the DYNAMO
ecosystem will gain robustness and effectiveness using the proposed data transfer
approach.

Leveraging on a more sophisticated parallelization techniques [8], the final
goal is building a progressively improving dataset about coastal marine envi-
ronmental data [19] with a twofold utilization (i) training the next generation
of deep learning models in order to carry out useful information for strategi-
cal resources management and providing assimilation data for predicting and
simulating models [1,13] and workflows [23].
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Abstract. In the paper we present an approach and results from appli-
cation of the modern power capping mechanism available for NVIDIA
GPUs to the benchmarks such as NAS Parallel Benchmarks BT, SP
and LU as well as cublasgemm-benchmark which are widely used for
assessment of high performance computing systems’ performance. Specif-
ically, depending on the benchmarks, various power cap configurations
are best for desired trade-off of performance and energy consumption. We
present two: both energy savings and performance drops for same power
caps as well as a normalized performance-energy consumption product.
It is important that optimal configurations are often non-trivial i.e. are
obtained for power caps smaller than default and larger than minimal
allowed limits. Tests have been performed for two modern GPUs of Pas-
cal and Turing generations i.e. NVIDIA GTX 1070 and NVIDIA RTX
2080 respectively and thus results can be useful for many applications
with profiles similar to the benchmarks executed on modern GPU based
systems.

Keywords: Performance/energy optimization · Power capping ·
GPU · NAS Parallel Benchmarks

1 Introduction

In the paper, we present results of research on performance and energy aware
optimization of parallel applications run on modern GPUs under power capping.
Power capping has been introduced as a feature available for modern server,
desktop and mobile CPUs as well as GPUs through tools such as Intel’s RAPL,
AMD’s APM, IBM’s Energyscale for CPUs and NVIDIA’s NVML/nvidia-smi
for NVIDIA GPUs [6,8].

We provide a follow-up to our previous research [12,14] for CPU-based sys-
tems aimed at finding interesting performance/energy configurations obtained
by setting various power caps. Within this paper, we provide results of running
selected and widely considered benchmarks such as: NPB-CUDA which is an
implementation of the NAS Parallel Benchmarks (NPB) for Nvidia GPUs in
c© Springer Nature Switzerland AG 2020
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CUDA [7] as well as cublasgemm-benchmark [18]. We show that it is possible
to obtain visible savings in energy consumption at the cost of reasonable per-
formance drop, in some cases the performance drop being smaller than energy
saving gains, percentage wise. Following work [3], we could also observe grad-
ual and reasonably slow drop of power consumption on a GPU right after an
application has finished.

2 Related Work

Our recent review [6] of energy-aware high performance computing surveys and
reveals open areas that still need to be addressed in the field of energy-aware
high performance computing. While there have been several works addressing
performance and energy awareness of CPU-based systems, the number of papers
related to finding optimal energy-aware configurations using GPUs is still rela-
tively limited. For instance, paper [10] looks into finding an optimal GPU con-
figuration in terms of the number of threads per block and the number of blocks.
Paper [16] finds best GPU architectures in terms of performance/energy usage.

In paper [15] authors presented a power model for GPUs and showed aver-
aged absolute error of 9.9% for NVIDIA GTX 480 card as well as 13.4% for
NVIDIA Quadro FX5600, using RODINIA and ISPASS benchmarks. Further-
more, they presented that coarse-grained DVFS could achieve energy savings of
13.2% while fine-grained DVFS 14.4% at only 3% loss of performance for work-
loads with phase behavior, exploiting period of memory operations. Streaming
multiprocessor (SM) cluster-level DVFS allowed to decrease energy consumption
by 7% for the HRTWL workload – some SMs become idle at a certain point due
to load imbalance.

Similarly, in [1] authors showed that by proper management of voltage and
frequency levels of GPUs they were able to reduce energy by up to 28% at the cost
of only 1% performance drop for the hotspot Rodinia benchmark, by a proper
selection of memory, GPU and CPU clocks, with varying performance-energy
trade-offs for other applications.

In [9], authors proposed a GPU power model and show that they can save
on average approximately 10% of runtime energy consumption of memory band-
width limited applications by using a smaller number of cores. Another model
– MEMPower for detailed empirical GPU power memory access modeling is
presented in [17].

There are also some survey type works on GPU power-aware computations.
Paper [2] presents a survey of modeling and profiling methods for GPU power.

Paper [19] discusses techniques that can potentially improve energy efficiency
of GPUs, including DVFS, division of workloads among CPUs and GPUs, archi-
tectural components of GPUs, exploiting workload variation and application
level techniques.

Paper [20] explores trade-off between accuracy of computations and energy
consumption that was reduced up to 36% for MPDATA computations using
GPU clusters.
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There are relatively few works on power capping in CPU-GPU environments.
Selected works on load partitioning among CPUs and GPUs are discussed in [19].
Device frequencies and task mapping are used for CPU-GPU environments in
[11]. In paper [21], desired frequencies for CPUs and GPUs are obtained with
dynamic adjustment for a GPU at application runtime are used for controlling
power consumption.

3 Proposed Approach

In our previous works [12,14] we investigated the impact on performance and
energy consumption while using power capping in modern Intel CPUs. We have
used an Intel Running Average Power Limit (RAPL) driver which allows for
monitoring CPU energy consumption and controlling CPU power limits through
Model-Specific Registers (MSR). Based on RAPL we have implemented an auto-
matic tool called EnergyProfiler that allows for finding the energy characteristic
of a device-application pair in a function of power limit. We evaluated our pro-
totype tool on several Intel CPUs and presented that when we consider some
performance impact and accept its drops power capping might result in sig-
nificant (up to 35% of) energy savings. We were also able to determine such
configurations of power caps that energy consumption is minimal for a particu-
lar workload and also configurations where energy consumption and execution
time product is minimal. The latter metrics allow to find such power limits for
which the energy savings are greater than performance loss.

In this paper we adapt our approach to Nvidia GPUs. We use power limiting
and power monitoring features available in modern Nvidia graphic cards and
extend EnergyProfiler to work on a new device type. Using the extended Ener-
gyProfiler we can investigate the impact of limiting the power on performance
and energy consumption on GPUs running HPC workloads.

3.1 Power Capping API

The power management API available on Nvidia GPUs is included in Nvidia
Management Library (NVML). It is a C-based programmatic interface for mon-
itoring and controlling various states within NVIDIA GPUs. Nvidia also shared
a command line utility nvidia-smi which is a user friendly wrapper for the
features available in NVML.

We based our prototype extension of EnergyProfiler on nvidia-smi. For con-
trolling the power limit there is command nvidia-smi -pl <limit> available.
The limit that we can set must fit into the range between minimal and maximal
power limit which are specific for the GPU model. Monitoring and reporting the
total energy consumption had to use quite a different approach than in our previ-
ous work as the NVML allows for reading the current power consumption while
Intel RAPL lets the user to read the counters representing energy consumed.
That caused that for evaluating the energy consumption of GPU running our
testbed workload we needed to integrate the current power readings gathered
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while test run. Therefore, we estimated the total energy consumption as a sum
of current power readings and sampling period products.

To monitor the power the nvidia-smi dmon -s p -o T -f <filename>
was used. The parameter -s p specifies that we observe power and temperature,
the parameter -o T adds the time point to each entry reported and the parame-
ter -f <filename> stores the output of dmon to a file specified by <filename>.

The prototype extension of the EnergyProfiler tool runs a given application
in parallel with the dmon, when the testbed application finishes, the tool anal-
yses the log file and reports the energy consumption and the average power.
Unfortunately, the minimal value of a sampling period in nvidia-smi dmon is
1 s, which means that the measurements might be inaccurate for the last sample
which is taken always after the testbed application has finished.

For the testbed workloads with a really short execution time such an error
would be unacceptable. In our experiments we have used workloads for which
execution time varies from 20 to 200 s which means that the maximal error
of energy consumption readings is less than 5% and the minimal error for
the longest test runs is less than 0.5%. The execution time reported is based
on precise measurements using std::chrono::high resolution clock C++11
library.

3.2 Methodology of Tests

The methodology of our research is similar to the one in [14]. We run the testbed
application automatically for different values of power limit and read the exe-
cution time, the total energy consumption and the average power for the run.
For each power limit we execute a series of five test runs and average the result.
We observed that when Nvidia GPU temperature raises the energy consumption
and average power for the same power limit settings is higher. To eliminate the
impact of that phenomenon on our test runs firstly we execute a series of dummy
tests which warm the GPU up. This ensures the same conditions for all test runs
regardless of the position in a sequence.

In contrast to CPU, where the default settings is no power cap, on the GPU
the default power limit is lower than the maximal available power limit. Another
difference is that on Intel CPUs it is possible to force the power cap which is lower
than the idle processor power request while on Nvidia GPU has the minimal
power limit defined relatively high. Therefore, we run a series of tests starting
from the maximum power limit with a 5 W step until we reach the minimal
possible power limit. We refer the results of energy consumption for each result
to the values obtained for the power limit set to the default value. For instance,
for the Nvidia GeForce RTX 2080 the maximal power limit is 240 W, the minimal
power limit is 125 W and the default power limit is 215 W.
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4 Experiments

4.1 Testbed GPUs and Systems

The experiments have been performed on two testbed systems with modern
Nvidia GPUs based on Pascal and Turing architecture. The first tested GPU
is Nvidia GeForce GTX 1070 (Pascal architecture) with 1920 Nvidia CUDA
cores with 1506 MHz base Core frequency, 8 GB of GDDR5 memory and Power
Limit range between 95 W and 200 W. The other system is equipped with Nvidia
GeForce RTX 2080 (Turing) with 2944 Nvidia CUDA cores with 1515 MHz base
Core frequency, 8 GB of GDDR6 memory and Power Limit Range between 125 W
and 240 W. Table 1 collects all details including CPU models and CUDA version
used in both testbed systems.

Table 1. Testbed environments used in the experiments

System CPU model GPU model RAM CUDA
version

GPU Default
Power Limit

GPU Power
Limit range

GTX IntelR© CoreR©

i7-7700
(Kaby Lake)

Nvidia GeForce
GTX 1070
(Pascal)

16GB 10.0 190W 95 W–200 W

RTX IntelR©

XeonR© Gold
6130
(Skylake-X)

Nvidia GeForce
RTX 2080
(Turing)

32GB 10.1 215W 125 W–
240 W

4.2 Testbed Applications and Benchmarks

For the experiments we have selected four representative computational work-
loads with different computation intensity. Three of the testbed applications
were selected from the well known NAS Parallel Benchmark (NPB) collection
implemented in CUDA to be used on GPU [7].

The kernels that were used for the tests included: Block Tri-diagonal solver
(BT), Scalar Penta-diagonal solver (SP) and Lower-Upper Gauss-Seidel solver
(LU). By default kernel BT executes 200 iterations, kernel SP executes 400
iterations and kernel LU runs for 250 iterations. Similarly to the CPU version,
GPU NPB may also be run for various input data sizes represented by classes
A, B, C, D, E, S and W. The aforementioned classes represent the sizes of input
data which are equal to 643, 1023, 1623, 4083, 123 and 333 elements respectively.
Classes A, B, W and S were not preferred in our experiments as the execution
times of the kernels with such input data sizes were too short and – as it was
mentioned in the previous section, we could not accept the measurement error
caused by minimal sampling resolution equal to 1s. On the other hand, classes
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D and E were not able to allocate enough data space due to GPU memory
limitations. We decided to use all of three kernels with the same input data size
– class C.

The fourth application used in the experiments was cublasgemm-benchmark
[18] implementing General Matrix Multiplication (GEMM) kernel. We have mod-
ified the benchmark application to execute a series of 10 matrix multiplication
(MM) operations with given square matrix size. To fulfill our requirement regard-
ing long enough testbed application execution times we decided to use the input
square matrix sizes of at least 16384 × 16384. Due to GPU memory limitations
for the system with the GTX card the maximal matrix size we were able to run
was only 24576 × 24576. For the RTX system we could run 32768 × 32768.

The total execution times (t) as well as total energy (E) and average power
(P) consumed by each of aforementioned applications run on both testbed sys-
tems (GTX and RTX) in the default configuration of Power Limit were collected
in Table 2. These values were our baseline for the relative energy savings and per-
formance drop calculations.

Table 2. Baseline values of total execution time, total energy and average power
consumption for the default Power Limit settings.

System GTX RTX

App t [s] E [J] P [W] t [s] E [J] P [W]

BT 150,1 13493 87,6 73,9 14851 198,0

LU 44,4 3756 87,4 27,35 4972 184,2

SP 24,2 2518 109,5 17,24 3345 196,8

GEMM 16k 34,3 3030 91,8 26,3 3213 123,6

24k 94,9 8696 89,7 69,2 8767 125,2

32k – – – 194,7 27295 135,8

4.3 Tests Results

The test results presented in the figures are organized in columns which repre-
sent the testbed workload type (GEMM for various matrix size on the left and
NPB kernels on the right) and in rows which represent the observed physical
magnitudes in the order as follows: relative Energy savings evaluated in percent,
relative performance drop evaluated in percent, normalized energy-time product
and the total average power consumption. Each figure in one column has the
same horizontal axis which is the Power Limit level evaluated in Watts. All rel-
ative results are compared to the results obtained for the default Power Limit
which is 190 W for GTX and 215 W for the RTX system. It is important to
note that GEMM and NPB kernels present different power usage profiles. While
NPB kernels begin the computation right after the application started, GEMM
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execution has two clear phases differing in power consumption level. The ini-
tial phase is a data preparation phase and the latter is actual MM computation
phase. Both phases significantly differ in power consumption which is illustrated
in Fig. 1 where sample series of test runs with different Power Limit have been
presented. The sample we present was collected on the RTX system for GEMM
size 16384 and NPB BT kernel.

Fig. 1. Sample series of test runs with different Power Limit on RTX system.

Figure 2 presents results obtained for the first testbed system with the
GTX 1070 GPU. For GEMM we observed the impact of limiting for the val-
ues below 150 W. Above 150 W the limit is neutral for the computations as the
maximum spike power consumed by GEMM on GTX was around 148 W. For
the lower Power Limit levels we can observe a linear falloff in power consump-
tion. The energy consumption is also decreasing and the maximal energy saving
that we could reach for that application-device pair was 15%. That value corre-
sponded with less than 10% of performance drop and was obtained for the power
limit value of 110 W. Below that value the energy savings are also observable
but the benefits of limiting the power consumption are worse as the performance
drops even more (up to 20%) while only 10% of energy can be saved.

While the clear energy consumption minimum seem to be found at 110 W,
the other target metric suggests that a better configuration would be to set the
limit between 115 W and 120 W. With such a scenario we are able to save almost
13% of energy while sacrificing only 5–6% of performance.

The results for NPB kernels obtained on the GTX system are less impressive
mostly because the power consumption values while executing these testbed
workloads were close or even below the minimum Power Limit level possible to
be set on GTX 1070. Only for the SP kernel we can observe some interesting
level of energy savings up to 17% for the lowest value of limit. What is more
interesting is that the energy was saved with no cost as the performance has not
dropped. This might mean that the Base Core frequency which is lowered while
limiting the power has no meaningful impact on the SP execution time so the
boundary in that case was memory speed.

Figure 3 presents results obtained for the testbed system with RTX 2080
GPU. With the same testbed workload RTX system present different energy
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Fig. 2. Results of tests for GTX 1070 for three different problem sizes of GEMM kernel
(left charts) and for three NAS Parallel Benchmarks applications run with problem size
class C (right charts).

characteristics than the GTX system. Firstly what we observed is that none
of the testbed workloads’ average power consumption with default settings is
below the minimal Power Limit available one RTX system (125 W). This implies
having more abilities to adjust the power and energy consumption level.

For GEMM we observe a linear falloff in power consumption in the whole
available power limit range. For the same matrix sizes as was used in the GTX
system we observe similar energy characteristics with clear energy minimum
(up to 15% of energy saved) for the limits in range 140 W–160 W and corre-
sponding performance drop less than 10%. On the other hand, the other target
metric which is energy-time product suggests its minimum for the Power Limit
in range 160 W–170 W where we save up to 10% of energy loosing only 5% of
performance. More interesting results were observed for the matrix size that
was possible to run only on the RTX system which is 32786 × 32786. When
the input data size was increased the energy savings are reaching 25% while
the corresponding performance drop is only 10%. We see that the performance
characteristics slope is less than for the smaller matrices so the energy savings
are more profitable. This may suggest that for big input data when the memory
is a bottleneck lowering the power using Power Limits available on the Nvidia
GPUs is a really good way to lower the costs of computations.

For all three NPB kernels we observed similar energy characteristics which
shows that below the 200W Power Limit we obtain stable reduction of energy
consumption with the maximum 30% of energy savings. The performance drop
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Fig. 3. Results of tests for RTX 2080 for four different problem sizes of GEMM kernel
(left charts) and for three NAS Parallel Benchmarks applications run with problem
size class C (right charts).

for that type of testbed workloads seem to encourage for limiting the power as
its maximal value is only 12% and was observed only for the BT kernel. We see
that for SP and LU kernels the performance drops are much smaller, even close
to 0%. This confirms the observations from the GTX system which may suggest
that the NPB kernels are more memory than computation bound.

5 Conclusions and Future Work

Our research presented in this paper showed that it is possible and even worth
to lower the energy consumption by using software power caps in modern HPC
systems. After our first research focused on Intel CPUs [12,14] we tested another
popular in HPC manufacturer and devices: Nvidia’s GPUs. Using various testbed
workloads with different input data size, different computation intensity and also
non trivial power consumption profile we tested two modern Nvidia’s GPUs.

Our research showed that:

1. depending on the workload type it is possible to reach up to 30% of energy
savings using Power Limits available on Nvidia’s GPUs while corresponding
performance drop evaluated in percent is usually smaller than benefits of
lowering the costs,

2. power limiting in order to minimize the costs is a non-trivial task as the Power
Limits for which we observed the maximum of energy savings was specific to the
application-device pair and was not the minimal possible Power Limit value,
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3. the second target metric we used – energy-time product, allows for finding
even more profitable configurations of Power Limits as the energy savings are
close to maximal possible but the performance drop is significantly lower.

In the future we plan to extend our research by exploring other types of
workloads specific to GPU like Deep Learning benchmarks or trainings and com-
pare power capping approach proposed in this paper between presented desktop
GPUs and popular server GPUs. Additionally, we plan to extend the analysis
of workload types beyond characterization of whether applications are memory
or computation bound using the Roofline Model of energy [4]. We also aim at a
hybrid power capping approach (RAPL + NVML) for hybrid applications such
as parallelization of large vector similarity computations [5] run on hybrid (Intel
CPU + Nvidia GPU) systems. Finally, we plan to explore the impact of power
capping on scalability [13] of parallel computations run in representative modern,
homogeneous and heterogeneous, HPC systems.
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Abstract. To reach the new milestone in High Performance Comput-
ing, energy and power constraints have to be considered. Optimal work-
load distributions are necessary in heterogeneous architectures to avoid
inefficient usage of computational resources. Static load balancing tech-
niques are not able to provide optimal workload distributions for prob-
lems of irregular nature. On the other hand, dynamic load balancing
algorithms are coerced by energy metrics that are usually slow and diffi-
cult to obtain. We present a methodology based on Machine Learning to
perform dynamic load balancing in iterative problems. Machine Learning
models are trained using data acquired during previous executions. We
compare this new approach to two dynamic workload balancing tech-
niques already proven in the literature. Inference times for the Machine
Learning models are fast enough to be applied in this environment. These
new predictive models further improve the workload distribution, reduc-
ing the energy consumption of iterative problems.

Keywords: Machine Learning · Dynamic load balancing · Energy
efficiency · Iterative algorithms

1 Introduction

In the last decades, High Performance Computing (HPC) architectures have
evolved to systems highly heterogeneous. Most powerful supercomputers, cur-
rently listed in the TOP500 list, increase their performance by using co–
processors units, mainly Nvidia Graphic Processing Units (GPUs). Accelerator
based architectures intend to maximize de energy efficiency of high performance
computers, while the trend may change in the future, scientists will use this sys-
tems in the years to come, and existing codes have to be flexible and portable
to adapt to the changes in the future.

Traditionally, due to the nature of the underlying problem, many scientific
applications have been implemented as an iterative method. Examples of the
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variety of these methods are the dynamic programming approach to the Longest
Common Subsequence problem, the Jacobi method, signal processing and image
processing codes. In the structure of the iterative methods, data is partitioned
among the parallel processors, a series of independent calculations are performed
over each partition and then, a synchronization phase takes place. Load balancing
techniques were designed in order to minimize waiting times in the synchroniza-
tion phase. Dynamic load balancing techniques are of special interest due to the
flexibility they provide, as all the information they require is acquired during
the execution of previous stages of the iterative algorithm.

In this paper, we propose to incorporate Machine Learning techniques to
improve existing dynamic load balancing algorithms. We propose to extract
knowledge from the dynamic load balancing implementations to train Machine
Learning models in order to adapt better to heterogeneous systems. Once
trained, the information provided to our models is able to predict future behav-
iors during the execution of different applications. This is specially beneficial
for energy consumption, as metrics are difficult to obtain in our context, require
specific code design for acquiring data and introduce overhead to the application.
Following are the main contributions of our paper:

– We propose a methodology to incorporate Machine Learning models to
improve dynamic load balancing in iterative problems.

– We perform an extensive evaluation of the methodology with a use–case
where we train, test and validate three Machine Learning models with accept-
able overhead, and improve the results obtained using a previously validated
dynamic workload balancing library from the literature.

– We introduce the hardware and software energetic behavior as part of the
Machine Learning model to avoid the difficulties associated to energy mea-
surement during the execution of an algorithm.

Our contributions have been validated over several dynamic programming algo-
rithms originally designed for homogeneous systems, where the energy efficiency
and the execution time is non–optimal when distributing the workload equally
among multiple GPUs. The problems are representative of the many procedures
used in scientific computing. By incorporating Machine Learning, the improve-
ment of the workload distribution notably reduces energy consumption in the
majority of the presented cases and demonstrates the usefulness of the proposed
methodology, with the minimal overhead introduced by model inference.

The rest of the paper is organized as follows. In Sect. 2 we discuss the load bal-
ancing techniques presented in the literature. In Sect. 3 we present the specifics of
load balancing in iterative problems. Section 4 illustrates our Machine Learning
approach for dynamic load balancing. In Section 5 we discuss our methodol-
ogy and present a series of experiments that validate our proposals, and finally
conclude in Sect. 6.
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2 Related Work

Load balancing techniques are of special interest in distributed systems, due
to the heterogeneity of each system and the requirement for a minimum qual-
ity of service. Multiple approaches of both static and dynamic load balancing
techniques [17], have been developed to address different levels of reliability,
complexity, performance, stability and resource utilization. In cloud computing,
algorithms have been designed for highly heterogeneous environments due to the
available hardware, as is the case of dynamic load balancing for cloud services [6]
or energy–aware scheduling algorithms for virtual machines deployments [12].

In High Performance Computing, extensive work has been done in the field
of dynamic load balancing and adaptive workloads. ALEPH [15] solves a bi–
objective optimization problem for both performance and energy by doing a
load unbalancing technique in manycore architectures. Specifically for iterative
problems, E-ADITHE [10] was introduced to obtain the optimal process alloca-
tion and workload distribution for integrated CPU-GPUs. To improve the usage
of computational resources, malleable jobs have been proposed to significantly
improve resource usage in parallel systems. A job resize mechanism was also pre-
sented using Charm++ to prove the benefits in performance of having malleable
processes [11]. In Flex–MPI, an energy–aware module was implemented to mod-
ify at runtime the number of MPI processes in a parallel application through
monitorization and a computational prediction model [16]. While our approach
is also energy–aware, the application of the proposed methodology is not specif-
ically designed for any metric, and could be translated to minimize execution
time. In previous work, we introduced a library, Ull Calibrate Lib [1] to redis-
tribute workload based on the current performance of the parallel processes to
reduce the waiting times that occur in the synchronization phases of iterative
problems, and a Generic Resource Optimization Heuristic [4], to redistribute
workload to optimize a user–defined resource, which in our case was energy
consumption. Both techniques estimate the performance and the user–defined
resource with data obtained during the execution of an iterative algorithm. In
this paper, we use the knowledge obtained at previous iterations, to improve the
decision making from the load balancing using Machine Learning techniques.

The potential of Machine Learning to improve load balancing has also been
introduced previously in HPC environments. Learning everywhere was proposed
as the paradigm generated by the interaction between traditional HPC and
Machine Learning, and an analysis of how both fields can interact has been
presented in [8]. One example of this interaction between HPC and Machine
Learning is an energy–aware allocation and workload redistribution approach
introduced to incorporate techniques to learn the behavior of complex infras-
tructures [3]. Machine Learning predictive models have also been proposed to
design a static load balancing technique in climate modeling codes, specifically
the sea–ice module in the Community Earth System Model [2]. Our approach
is similar to this last proposal, however we outline a generic methodology to
then apply it to a wide variety of problems where the load balancing problem is
present, instead of proposing an ad–hoc solution. We apply our methodology as
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part of a dynamic load balancing technique for iterative problems, and models
are trained from the data extracted in previous executions without perform-
ing an extensive study of the specific problem. As iterative algorithms appear
very frequently in scientific applications, our technique could be easily applied
to many other classes of problems as those appearing in image processing or in
stencil codes.

3 Dynamic Load Balancing

Load balancing is a technique usually applied to improve the performance in par-
allel applications when heterogeneity is present, be it in the hardware or in the
application itself. We address the dynamic load balancing problem for iterative
algorithms in heterogeneous environments. Usually, applying an homogeneous
distribution over an heterogeneous architecture yields to a bad performance for
both execution time and energy consumption, as each computing element has a
different computing capability. In iterative problems this effect is augmented, as
these kind of problems usually have a synchronization phase where partial results
are shared between processes. To gather these results, the fastest processes will
have to wait for the slower ones, heavily affecting the overall performance of the
application. Redistributing the workload appropriately between all the comput-
ing elements of the application minimizes inefficient resource usage and improves
the overall performance and energy consumption of a given application.

Both static and dynamic load balancing techniques try to minimize the
impact of the synchronization phase in the iterative problems. When hetero-
geneity is present in the algorithm, a different amount of effort is needed to
solve each workload unit of the iterative problem. In these irregular applica-
tions, the optimal workload distribution varies as iterations are solved. A static
workload distribution, by definition, is not able to optimize properly every iter-
ation in these specific algorithms, thus, a dynamic load balancing technique is
necessary to achieve the optimal solution.

As examples of iterative algorithms, we have chosen four different cases imple-
mented using dynamic programming techniques. These algorithms are the Knap-
sack Problem (KP), the Resource Allocation Problem (RAP), the Cutting Stock
Problem (CSP) and the Triangulation of Convex Polygons (TCP) [7]. These
algorithms have been chosen to represent different iterative problem properties,
depending on the memory requirements, the computational granularity and the
workload regularity. The KP is a regular, memory bound problem, and each state
of the problem requires little computation and most of the performance is lost in
data movements. The RAP, CSP and TCP are compute intensive problems, and
each of them introduce irregularity in the workload distribution. Although these
are algorithms with a fixed number of iterations, the ideas and concepts man-
aged along the paper according to load balancing can be applied without loss of
generality to problems with different convergence criteria as those appearing in
linear algebra.
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4 Machine Learning Based Workload Distribution

Dynamic load balancing algorithms are usually designed to redistribute workload
using knowledge acquired during the execution of an application. Specifically,
in iterative problems, metrics obtained in previous iterations help to estimate
the outcome of the subsequent operations. Statistical procedures can be applied
using the data gathered during the experimentation to construct predictive mod-
els that anticipate the outcome of future events with limited information. Using
these techniques, we propose a three step methodology to train machine learning
models with the knowledge acquired during the execution of specific applications.
In a first step, the target application has to be executed using any dynamic work-
load balancing technique to build the input data set for our predictive models.
Each record in the data set has to contain the workload, execution time and
energy consumption for each process in our parallel application. Once the input
data set is gathered, it can be used to train a Machine Learning model. Finally,
the dynamic workload balancing technique will use the trained model as a bet-
ter mechanism to redistribute the workload of our target application, minimizing
data movement and bad decision making due to the lack of knowledge.

As a use–case, we will implement our proposal to improve the workload dis-
tribution of a series of iterative problems. In the past, we presented an heuristic
dynamic load balancing algorithm that was agnostic to both the specific iterative
problem and the resource to optimize, which we will refer as Generic Resource
Optimization Heuristic, GROH. This heuristic is implemented following the prin-
ciples of skeleton programming where only the specifics of a given metric have
to be defined in order to be optimized, which in our case would be execution
time or energy consumption. We will apply our new proposal and will compare
it to GROH, as Machine Learning models incorporate knowledge to perform the
minimum data movements.

Fig. 1. Dynamic load balancing workload algorithm comparative.
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Figure 1 illustrates three different workloads in an specific instance of the
Cutting Stock Problem (CSP) of size 3000. The energy consumption in the CSP
problem space is represented through a heatmap, where the bottom of the plot is
the starting point of the problem execution and the top represents the last itera-
tions of the algorithm. The X axis represents the workload distribution between
two different GPU processes. Moving to the left of the axis would increment
the workload given to process 0, executed in a Tesla K20c, and moving in the
opposite direction would give more workload to a Tesla M2090.

In this Figure, we illustrate the optimal workload distribution obtained doing
a brute force analysis of this CSP instance through the execution of high number
enumerated workload distributions of the solution space. It is represented using
a series of dots. Our Machine Learning proposal, using a Random Forest model,
and GROH are plotted using two lines in the problem space to directly com-
pare the workload distributions obtained through the execution of the iterative
problem. In this problem space, the irregularity of the CSP problem is visible,
specially between iterations 1000 and 4000. There is more total workload during
these iterations, thus the increased energy consumption. This section is critical
as bad decision making in this segment involves high losses in energy and per-
formance. We observe how the workload distribution of the Random Forest is
very close to the optimal workload, while GROH performs more data movements
due to the lack of problem knowledge. The crucial difference between both cases
is the objective function used to redistribute the workload between the parallel
processes. GROH uses tries to minimize the energy consumption without knowl-
edge of the problem, and data movements are calculated based on the current
efficiency for each process. The data movement overhead is, however, negligible,
as it takes advantage of the synchronization phase of the iterative algorithm.
As workload varies at each iteration, we observe how GROH redistributes con-
tinuously the workload, and despite staying very close to the optimal solution
in the critical section, it is unable to reach the optimal workload. The Random
Forest however, performs better compared to the previous method, as, in prac-
tice, acts as a function that incorporates knowledge from the algorithm and the
architecture. In both cases, at the beginning and at the end of the execution,
both dynamic load balancing techniques differ from the optimal as iterations are
really fast with negligible execution time and energy consumption.

5 Computational Experience

Supervised Machine Learning algorithms are specially designed to find functions
to connect our input and our problem data, the energy consumption through the
execution of the application. Using data gathered during the execution of itera-
tive problems, we will train, test, predict and validate an alternative methodology
to incorporate knowledge to improve the workload distributions of the dynamic
load balancing technique. We have chosen the R software package caret [14] to
build and train our predictive models. This package provides more than 200 sta-
tistical models from which we have evaluated only three to present an example
methodology. The selected models and the reasoning behind their selection are:
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Table 1. GPU cluster and Machine Learning algorithm details.

(a)Heterogeneous Cluster

Nodes CPUs (Xeon) GPU Memory

Verode16 2x E5-2660 M2090 64 GB
Verode17 2x E5-2660 K20c 64 GB
Verode18 2x E5-2660 K40m 64 GB
Verode20 2x E5-2698 v3 M2090 128 GB

GPU Type M2090 K20c K40m

# Cores 512 2496 2880
RAM 6GB 5GB 12GB

Mem BW 177.6 GB/s 208 GB/s 288 GB/s
Power 225 W 225 W 235 W

(b) Machine Learning Algorithms

Algorithm Type R name

Linear Model Regression lm
MARS Regression earth

Random Forest Ensemble method rf

Algorithm Training Time R2

Linear Model 1 min. [0.13, 0.17]
MARS 10 min. [0.51, 0.55]

Random Forest 30 min. [0.83, 0.92]

– Linear Model, LM, the simplest statistical regression approach. In R, it is
referred as the lm model.

– Multivariate Adaptive Regression Splines [9], (MARS ), a more flexible regres-
sion modeling for high dimensional data. In R, it is referred as earth.

– Random Forest [13], RF, one of the most widely used ensemble method in
the Machine Learning literature. Again, it is referred as rf in R.

The specific model details, training times and R2 values are shown in
Table 1b. It contains the information related to the models, including the type
of Machine Learning Model, the corresponding name for the model in R (lm,
earth and rf), their training times and a statistical measure to represent the
variance of the model respecting our data, in our case R2. The R2 is presented
as an interval since there is one value of R2 associated with each problem, yield-
ing a total of 4 values per Machine Learning Model. The Linear Model R2 also
require further clarification, as the low value is not indicative of the fitness of the
model. We will present later in our computational results how we obtain very
good workload distributions using this model for a specific set of the presented
iterative problems despite these values. Each model was trained specifically for
each problem, yielding a total of 12 different Machine Learning models and the
input data set used in the training phase was obtained using data from our pre-
vious experiments. Specifically, a maximum of 25 executions from each problem
was used, a relatively small dataset in Machine Learning environments.

Our experimentation was performed in a heterogeneous cluster composed
by 4 different nodes. Each node has a unique pair of CPU and GPU installed,
detailed in Table 1a. To obtain energy measurements, we accessed the Nvidia
GPUs provided data using the Nvidia Management Library (NVML) the mea-
surement interface, EML [5]. These nodes have installed a Debian 9 with a kernel
version 4.9.0-2-amd64. Our build and execution environments have GCC version
4.8.5, using −O2 as the only optimization flag, OpenMPI 3.0.0, CUDA 7.5.

Table 2 illustrates the average energy measurements for our target problems,
to compare multiple problem sizes to the homogeneous distribution, two already
implemented dynamic load balancing methods, GROH and Ull Calibrate Lib,
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Table 2. Dynamic load balancing techniques energy consumption comparison.

(a) Regular Algorithms

KP Energy (J)

Size ref calib GROH RF LM

2000 137.3 95.2 124.5 115.2 110.0
3000 272.8 210.5 221.5 187.0 211.0
4000 468.1 322.8 387.9 312.8 309.8

5000 709.3 502.6 603.7 442.9 463.4

RAP Energy (J)

Size ref calib GROH RF LM

1500 483.3 180.3 119.2 134.5 119.2

2000 993.6 359.6 266.7 268.4 237.8

2500 1746.1 622.3 456.0 407.9 352.0

3000 2904.8 963.6 610.4 598.2 521.6

(b) Irregular Algorithms

CSP Energy (J)

Size ref calib GROH RF LM

1000 1359.5 1325.2 1360.8 1177.7 1171.6

1500 4503.3 4094.2 4363.4 3902.2 3996.1
2000 10660 9762.6 9446.5 8855.3 9186.6
2500 21015 18620 18089 16710 17230

TCP Energy (J)

Size ref calib GROH RF LM

1500 1824.0 1307.0 1496.4 1291.1 1527.7
2000 4315.8 2952.9 3869.0 2915.5 3653.1
2500 8142.9 5681.1 6206.2 5650.3 7910.9
3000 14139.3 9924.5 11218.7 9899.3 15312.1

and the best Machine Learning Models that adapted better to our needs. The
standard deviation is lower than 3.4% for every presented case.

The Ull Calibrate Lib method does the dynamic load balancing by calcu-
lating a performance for each parallel process at a given iteration, and propor-
tionally redistributing the workload based on this value. On the other hand, the
energy consumption heuristic is the specific implementation of the GROH, that
uses energy measurements to redistribute the workload in the iterative problem.
The problems are grouped by the nature of the algorithm, where Table 2a con-
tains data of the regular cases and Table 2b the data of the irregular ones. In
each table, we will present the homogeneous distribution as the reference, which
is labeled ref, Ull Calibrate Lib is labeled calib and the energy consumption
heuristic labeled as GROH. Finally, the Machine learning models selected will
be the Random Forest (RF ) and the Linear Model (LM ). The results for the
Multivariate Adaptive Regression Splines (MARS ) model were discarded, as the
model performed better than the reference, but worse than every other case pre-
sented in these Tables. None of the Machine Learning experiments include the
energy consumption of the training phase, as Table 2 contains only the measure-
ments gathered during the execution of each algorithm.

In all the presented cases, we are able to reduce the energy consumption
of the algorithms using any dynamic load balancing technique. Execution time
is highly correlated for these architectures and, in all cases, the best energy
consumption is achieved by the fastest execution. For the KP, in Table 2a, data
indicates that for the smallest presented size the best results are achieved by
Ull Calibrate Lib. However, for every other case, the best energy consumption
is achieved by the Machine Learning models. A similar situation is observed in
the RAP, also in Table 2a. The best results are obtained using the trained Linear
Model. This is a very interesting result, as the linear model proposes only one
workload distribution for the whole execution. While we could be criticize with
our methodology stating that a dynamic workload balancing technique is worse
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in comparison, the focus of this work is to illustrate that a Machine Learning
approach allows us to reach this conclusion with the data acquired using the
dynamic workload balancing techniques. Additionally, it is expected that a static
workload distribution is the best option for iterative problems where the total
workload is invariable through the execution. In the irregular cases CSP and
TCP, in Table 2b, we observe a different outcome. Except for size 1000 in the
CSP, the best results are obtained using the Random Forest models. In these
cases, dynamic workload techniques adapt better as they are able to dynamically
change the total workload during the execution of the algorithm. These results
would vary if different models were selected for training or if input data was
different. However, the methodology presented is still justified and applicable for
any iterative problem, where we improve the obtained workload distributions for
the majority of the presented cases.

6 Conclusion

In this paper, we present a technique to apply traditional Machine Learning
models in dynamic load balancing techniques in iterative problems. We show that
these models achieve good workload distributions in both regular and irregular
problems, with very little training extracted from previous executions of the
algorithm. In particular, we have studied a very small set of supervised models
that have been proven to improve the workload distribution obtained using two
dynamic load balancing algorithms from the literature. Our proposal improves
the best workload distribution in the majority of the presented cases, reducing
the overall energy consumption of the executed applications. As the next logical
step due to the low inference cost, we intend to study the use of deep learning
techniques and consider the viability of training a neural network taking into
account the cost of their training. Long short-term memory (LSTM) networks
seem to be suitable for predictions based on time series data, since there can
be lags of unknown duration between important events in these series related to
the energy measurement difficulties and Machine Learning for Streams, through
monitoring energy consumption or execution times.
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Grégoire Danoy1,2(B), and Pascal Bouvry1,2(B)

1 Department of Computer Science (DCS), University of Luxembourg,
Luxembourg City, Luxembourg

{sebastien.varrette,frederic.pinel,emmanuel.kieffer
gregoire.danoy,pascal.bouvry}@uni.lu

2 Interdisciplinary Centre for Security Reliability and Trust (SnT),
University of Luxembourg, Luxembourg City, Luxembourg

Abstract. For large scale systems, such as data centers, energy effi-
ciency has proven to be key for reducing capital, operational expenses
and environmental impact. Power drainage of a system is closely related
to the type and characteristics of workload that the device is running.
For this reason, this paper presents an automatic software tuning method
for parallel program generation able to adapt and exploit the hardware
features available on a target computing system such as an HPC facil-
ity or a cloud system in a better way than traditional compiler infras-
tructures. We propose a search based approach combining both exact
methods and approximated heuristics evolving programs in order to find
optimized configurations relying on an ever-increasing number of tunable
knobs i.e., code transformation and execution options (such as the num-
ber of OpenMP threads and/or the CPU frequency settings). The main
objective is to outperform the configurations generated by traditional
compiling infrastructures for selected KPIs i.e., performance, energy and
power usage (for both for the CPU and DRAM), as well as the runtime.
First experimental results tied to the local optimization phase of the
proposed framework are encouraging, demonstrating between 8% and
41% improvement for all considered metrics on a reference benchmark-
ing application (i.e., Linpack). This brings novel perspectives for the
global optimization step currently under investigation within the pre-
sented framework, with the ambition to pave the way toward automatic
tuning of energy-aware applications beyond the performance of the cur-
rent state-of-the-art compiler infrastructures.

Keywords: HPC · Performance evaluation · Energy efficiency ·
Compiler infrastructure · Automatic tuning · MOEA ·
Hyper-parameter optimization

1 Introduction

With the advent of the Cloud Computing (CC) paradigm, the last decade has
seen massive investments in large-scale High Performance Computing (HPC) and
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storage systems aiming at hosting the surging demand for processing and data-
analytic capabilities. The integration of these systems in our daily life has never
been so tied, with native access enabled within our laptops, mobile phones or
smart Artificial Intelligence (AI) voice assistants. Outside the continuous expan-
sion of the supporting infrastructures performed in the private sector to sus-
tain their economic development, HPC is established as a strategic priority in
the public sector for most countries and governments. For large scale systems,
energy efficiency has proven to be key for reducing all kinds of costs related
to capital, operational expenses and environmental impact. A brief overview of
the latest Top 500 list (Nov. 2019) provides a concrete indication of the current
power consumption in such large-scale systems and projections for the Exaflop
machines foreseen by 2021 with a revised power envelop of 40 MW. Reaching this
target involves combined solutions mixing hardware, middleware and software
improvements, when power drainage of a system is closely related to the type
and characteristics of the workload. While many computing systems remain het-
erogeneous with the increased availability of accelerated systems in HPC centers
and the renewed global interest for AI methods, the energy efficiency challenge
is rendered more complex by the fact that pure performance and resource usage
optimization are also Key Performance Indicators (KPIs). In this context, this
paper aims at extending HPC middleware into a framework able to transpar-
ently address the runtime adaptation of execution optimizing priority KPIs i.e.,
performance, energy and power usage (for both the CPU and DRAM), as well
as the runtime in an attempt to solve the following question: Can we produce
energy-aware HPC workloads through source code evolution on heterogeneous
HPC resources? To that end, we propose EvoCode, an automatic software
tuning method for parallel program generation able to better exploit hardware
features available on a target computing system such as an HPC facility or a
cloud system.

This paper is organized as follows: Sect. 2 details the background of this
work and reviews related works. Then, the EvoCode framework is presented
in Sect. 3. Implementation details of the framework, as well as the first exper-
imental results validating the approach, are expounded in Sect. 4. Based on a
reference benchmarking application (i.e., Linpack, measuring a system’s floating
point computing power), the initial hyper-parameter optimization phase already
demonstrate concrete KPIs improvements with 8% performance and runtime
gains, up to 19% energy and power savings and even 41% of energy and power
usage decrease at the DRAM level. Finally, Sect. 5 concludes the article and
provides future directions and perspectives.

2 Context and Motivations

Recent hardware developments support energy management at various levels
and allow for the dynamic scaling of the power (or frequency) for both the CPU
and Memory through integrated techniques such as Dynamic Voltage and Fre-
quency Scaling (DVFS) able also to handle idle states. These embedded sensors
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permit recent hardware to measure energy and performance metrics at a fine
grain, aggregating instruction-level measurements to offer an accurate report
of code region or process-level contributions. This can be done through low-
level power measurement interfaces such as Intel’s Running Average Power
Limit (RAPL) interface. Introduced in 2011 as part of the SandyBridge micro-
architecture, RAPL is an advanced power-capping infrastructure which allows
the users (or the operating system) to specify maximum power limits on pro-
cessor packages and DRAM. This allows a monitoring and control program to
dynamically limit the maximum average power, such that the processor can
run at the highest possible speed while automatically throttling back to stay
within the expected power and cooling budget. To respect these power limits,
the awareness of the current power usage is required. Direct measures being
often unfeasible at the processor level, power estimates are performed within a
model exploiting performance counters and temperature sensors, among others.
These estimations are made available to the user via a Model Specific Register
(MSR) or specific daemons which can be used when characterizing workloads.
Thus RAPL energy results provide a convenient interface to collect feedback
when optimizing code for a diverse range of modern computing systems. This
allows for unprecedented easy access to energy information when designing and
optimizing energy-aware code. Moreover, on the most recent hardware archi-
tectures and DRAMs, it was demonstrated that RAPL readings are providing
accurate results with negligible performance overhead [4,7]. Finally, it is also
worth to note that non-Intel processors such as the recent AMD architectures
(Ryzen, Epyc) also expose RAPL interfaces which can be used via the AMD
μProf performance analysis tool.

At the NVIDIA GPU accelerator level, A C-based API called NVidia Man-
agement Library (NVML) permits to monitor and manage various states of
GPU cards. The runtime version of NVML is embedded with the NVIDIA dis-
play driver, and direct access to the queries and commands are exposed via
nvidia-smi.

In all cases, these fine-grained interfaces (i.e., RAPL, NVML...) are used
in general-purpose tools able to collect low level performance metrics. Table 1
reviews the main performance analysis tools embedding Hardware counter mea-
surement able to report fine-grain power measurements, as well as global profiling
suites that eventually build on top of these low-level hardware counter interfaces.

Optimization and Auto-Tuning of Parallel Programs. Optimizing parallel pro-
grams becomes increasingly difficult with the rising complexity of modern parallel
architectures. On the one hand, parallel algorithmic improvement requires a deep
understanding of performance bottleneck to tune the code application with the
objective to run optimally on high-end machines. This assumes a complete work-
flow of performance engineering of effective scientific applications (based on stan-
dard MPI, OpenMP, an hybrid combination of both or accelerators frameworks),
including instrumentation, measurement (i.e., profiling and tracing, timing and
hardware counters), data storage, analysis, and visualization. Table 1 presents the
main performance and profiling analysis tools sustaining this complete workflow.
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Table 1. Main performance analysis tools embedding hardware counter measurement
for fine-grained power monitoring.

Name Version Description

Low-level performance analysis tools

Perf 4.10 Main interface in the Linux kernel and
a corresponding user-space tool to
measure hardware counters

PAPI 5.7.0 Performance Application Programming
Interface

LikWid 5.0.1 CLI applications & API to measure
hardware events

Generic performance and profiling analysis tools

ARM Forge/Perf. Report 20.0 Profiling and Debugging for C, C++,
and Fortran High Performance code

TAU 2.29 Tuning & Analysis Utilities to
instrument code

Score-P 6.0 A Scalable Perf. Measurement Infra. for
Parallel Codes

HPC-Toolkit 2018.09 Integrated suite of tools/performance
analysis of optimized parallel programs

However, none of these tools embed automatic software tuning solutions. To that
end, Auto-tuning [10] arose as an attempt to better exploit hardware features by
automatically tuning applications to run optimally on a given high-end machine.
An auto-tuner tries to find promising configurations for a given program execut-
ing on a given target platform to influence the non-functional behavior of this
program such as runtime, energy consumption or resource usage. A configuration
can be created by applying code changes to a program, also called static tunable
knobs or code transformations. Alternatively, runtime tuning knobs such as the
number of threads, the affinity or mapping of threads onto physical processors,
or the frequency at which the cores are clocked can be adapted. The literature
offers numerous studies dedicated to the optimization of the runtime knobs, much
less on the code transformation exploration since this requires the use of advanced
compiler infrastructures such as LLVM [9]. Furthermore, optimization is often lim-
ited to a single criteria such as runtime, while it is desirable to improve multiple
objectives simultaneously which is more difficult as criteria may be conflicting. For
instance, optimizing for performance may reduce energy efficiency and vice versa.
In all cases, the ever-increasing number of tunable knobs (both static or runtime),
coupled with the rise and complexity escalation of HPC applications, lead to an
intractable and prohibitively large search space since the order of the code trans-
formations applied matters. This explains why a wider adoption of auto-tuning
systems to optimize real world applications is still far from reality and all mod-
ern compilers such as GCC or LLVM rely on static heuristics known to produce

https://perf.wiki.kernel.org/
https://icl.utk.edu/papi
https://hpc.fau.de/research/tools/likwid/
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge
http://tau.uoregon.edu
https://www.vi-hps.org/projects/score-p/
http://hpctoolkit.org
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good results on average but may even impede performances in some cases. The
huge search space induced by the quest of optimal sequences of tunable knobs for
each region composing a given source code represents a severe challenge for intelli-
gent systems. Two approaches are traditionally considered: (1) Machine Learning
(ML) [1], recognized to speed up the time required to tune applications but is too
dependent on rare training data and thus fail to guarantee the finding (local and
global) of optimal solutions. (2) Iterative search-based methods, relying on exact
or approximated (i.e., Evolutionary Algorithm (EA) inspired) heuristics. Identi-
fied as computationally expensive [6], this approach mainly targets performance
or execution time optimization. Moreover, their suitability for a specific applica-
tion depends on the shape of its associated search space of possible configurations.
Nevertheless, search-based approaches remain the most promising and effective
ones despite their identified concerns. To optimize simultaneously multiple objec-
tives i.e., performance, runtime, energy and power usage (for both the CPU and
DRAM), while minimising the time consuming evaluations of the objective vec-
tor on the target computing system, we propose EvoCode, a search-based frame-
work for automatic tuning of parallel programs which permits to evolve a given
source code to produce optimized energy-aware versions. Combining both exact
and approximated heuristics in a two-stage Multi-Objective Evolutionary Algo-
rithm (MOEA) optimization phase relying on the LLVM Compiler Infrastructure,
the proposed approach is detailed in the next section.

3 Toward Automatic Software Tuning of Parallel
Programs for Energy-Aware Executions

An overview of the EvoCode framework is proposed in Fig. 1 and is now
depicted. It aims at tuning an input program denoted as Pref for an opti-
mized execution on a target computing system such as an HPC facility or a
cloud system. “Optimized” in this context means the generation of semantically
equivalent programs P1,P2, ... demonstrating improvement for selected KPIs i.e.,
performance, energy and power usage (both for the CPU and DRAM), as well
as runtime. In practice, we assume that Pref is composed of multiple regions
{R1, ..., Rr}, where each region delimits a single-entry single-exit section of the
source code subjected to tuning. For instance, an OpenMP section, an outermost
loop within a loop nest, or a function definition associated to a function call (i.e.,
at least the main() function). The identification and analysis of these regions
in Pref (eventually to isolate code portions that can be ignored) corresponds to
the Step A and B in EvoCode. Note that some regions may exist as CUDA
kernels for hybrid (CPU+GPU) runs. Then in Step C, EvoCode will operate a
two-stage MOEA optimization phase aiming at the automatic evolution of Pref

as follows: (1) a local optimization is achieved aiming at the best configuration
selection for each region Ri,j . Typically, a categorical hyper-parameter optimiza-
tion for the foreseen tunable knobs is performed for the selected KPIs leading to
different versions of these regions. (2) A global MOEA combines the regions to
measure the effect on the entire program instead of considering the effect only
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for individual region executions. In this way, we optimize the whole program exe-
cution instead of focusing on specific regions, to provide semantically equivalent
programs P1,P2, ... based on approximated Pareto-optimal solutions. In practice,
new multi-objective surrogate-based approaches [8] hybridizing multi-objective
meta-heuristics (e.g., NSGA-III [3]) and Machine Learning models based on
Gaussian Processes are proposed to minimize the time consuming evaluations of
the objective vector on the target computing system. More precisely, configura-
tions are evaluated using surrogate versions of the objectives functions handled
by an oracle. If the prediction error ε is smaller than a predefined threshold,
the oracle will consider that evaluations are accurate (and thus do not need to
be executed in the target system), else it will update the surrogate models with
the true objectives values, obtained from the running evaluation of the selected
configurations. After the Pareto set for the whole program is computed, a set
of code configurations for the entire program can be selected from the Pareto
set, either manually or automatically to allow for the Step D of EvoCode, to
help for the decision making phase. For the initial developments of EvoCode,
preferences rankings provided from the decision-maker (i.e., to avoid providing
specific weight values between the objective functions) will be used as proposed
in [2], where the pruning method restricts the considered solutions within the

Fig. 1. Overview of the EvoCode framework.
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Pareto set using threshold boundaries (e.g., afford for 10% performance penal-
ties while reducing by at least 25% of the energy). Other heuristics relying on
clustering methods i.e., grouping solutions with similar characteristics, will be
then considered to improve the decision making process.

4 Validation and First Experimental Results

This section presents the first experimental results obtained by the EvoCode
framework implemented as a dedicated Python module. The technical details
of the environment supporting this implementation are provided in the Table 2.
The experiments detailed in the sequel were conducted on the HPC facility of
the University of Luxembourg [11], more precisely on the “regular” computing
nodes of the iris cluster, each featuring 2 Intel Skylake Xeon Gold 6132 pro-
cessors (totalling 28 cores, 2.6 GHz per node). For this reason, it was important
to favor libraries able to scale and exploit effectively these parallel resources.
For instance, the choice of DEAP was motivated by the fact that this framework
works in perfect harmony with parallelisation mechanism such as multiprocessing
and SCOOP. Then the application of the static tunable knobs (the only ones
considered at this early stage of developments) was done through the LLVM
compiler infrastructure. In practice, EvoCode exploits the flexibility offered
by this suite to represent each program and source code from its LLVM byte-
code or Internal Representation (IR) obtained using the appropriate front-end
i.e., Clang for programs written in the C language family (mainly C, C++,
OpenCL and CUDA). In particular, EvoCode takes as input the reference IR
representation Iref of the program Pref to optimize, and the target computing
system expected to run the derived programs (for instance the Skylake nodes
of the iris cluster in this section). The static tunable knobs are sequences of
codes transformations i.e., LLVM transformation passes. 54 such passes exist

Table 2. Libraries and components details part of EvoCode implementation.

Component Version Description

Python 3.7.4 n/a

NumPy 1.17.4 Fundamental package for scientific computing in Python

DEAP 1.3.0 Distributed Evolutionary Algorithms in Python

Optuna 0.19.0 Define-by-Run Hyperparameter Optimization
Framework

Pandas 0.25.3 Python Data Analysis Library

plotly 4.4.1 Data Analytic Visualization Framework

LLVM/ Clang 8.0.0 LLVM Compiler Infrastructure and its front-end for the
C language family (C, C++, OpenCL, CUDA...)

LikWid 5.0.0 Performance monitoring suite for RAPL hardware
counter

https://deap.readthedocs.io/
https://github.com/soravux/scoop
http://llvm.org/
http://clang.llvm.org/
http://llvm.org/
https://numpy.org/
https://deap.readthedocs.io/
https://optuna.org/
https://pandas.pydata.org/
https://plot.ly/
http://llvm.org/
http://clang.llvm.org/
https://hpc.fau.de/research/tools/likwid/
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Table 3. LikWid-based objective values reported on EvoCode individuals evaluation.

Metric name Counter Event Description

perf [MFlops] n/a n/a Program result (Ex: Linpack)

runtime [s] n/a n/a time: Runtime (RDTSC)

energy [J] PWR0 PWR PKG ENERGY RAPL Energy contribution

power [W] PWR0 PWR PKG ENERGY/time RAPL Power contribution

dram energy [J] PWR3 PWR DRAM ENERGY DRAM Energy contribution

dram power [W] PWR3 PWR DRAM ENERGY/time DRAM Power contribution

on the considered version, and examples of such transformations include dce
(Dead Code Elimination), dse (Dead Store Elimination), loop-reduce (Loop
Strength Reduction), loop-unroll (Unroll loops) or sroa (Scalar Replacement
of Aggregates). It follows that an individual Ii in EvoCode corresponds to
the ordered sequence of applied transformations and the resulting LLVM byte-
code obtained using the LLVM optimizer opt to apply the transforms on the
reference IR code Iref or sub-part of it i.e., the identified code regions. The
generation of the individuals, either in the local or the global phase, consists
then in aggregating the regions, compiling the LLVM bytecode into an assembly
language specific to the target computing architecture using the LLVM static
compiler llc, before producing the final binary from the linking phase using the
LLVM front-end i.e., clang. The program Pi is normally semantically equiva-
lent to Pref since built from, and validated against, the reference Iref . Checking
this equivalence is left outside the scope of EvoCode which only validates the
viability of the generated individuals from the fact that (1) the generation is suc-
cessful, (2) the produced binary executes successfully on the target platform and
(3) the outputs of the execution on a pre-defined set of random inputs (common
to all individuals and initiated in the Step A) are equal to the ones produced
upon invocation of the reference program. Then the time consuming evalua-
tion of an individual consists in running and monitoring the hardware counters
attached to the generated binary execution on the target platform. The energy
metrics are collected from the ENERGY performance group of LikWid which sup-
ports the PWR {PKG,PP0,PP1,DRAM,PLATFORM} ENERGY energy counter from the
RAPL interface on the Intel Skylake and Broadwell micro-architecture present
on the considered computing platform. In particular, the reported fitness values
are composed by a vector of the metrics presented in the Table 3, more precisely
on the mean values obtained from at least 20 runs. The validation proposed in
this section was performed against a set of reference benchmarking applications
i.e., the C version of Linpack [5], STREAM (the industry standard for measur-
ing node-level sustained memory bandwidth) or FFT. For the sake of simplicity
and space savings, only the results tied to the reference Linpack benchmarks
are now presented. The focus of this study was not to maximize the bench-
mark results, but to set a common input parameter set enabling fast evaluations
for all individuals. The Linpack source code (in its C version) is structured in

https://hpc.fau.de/research/tools/likwid/
https://hpc.fau.de/research/tools/likwid/
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13 functions, used as regions R1, . . . , R13 optimized by the local optimization
phase of EvoCode. An hyperparameter optimization is performed for each of
these regions, and the complete program is for the moment rebuilt from the
best configurations obtained for each region when it is planned for EvoCode
to perform the global MOEA-based optimization phase to rebuilt the program.
Thus the results presented in this paper focus on the sole local optimization
phase. The Fig. 2 presents the optimization history of all trials in the EvoCode
Hyper-parameter study for the perf,runtime,energy,power,dram energy and
dram power metrics upon reconstruction of the full program from the individ-
ual region evolution. The Table 4 summarizes the best results obtained from the
EvoCode auto-tuning, demonstrating improvement obtained for all criteria i.e.,
performance, runtime, energy, power, DRAM energy and DRAM power metrics.
The improvement obtained at the DRAM level are quite astonishing (demon-
strating up to 41% of energy and power savings), but the associated contribution
in the energy and power dissipation is relatively small. For more classical metrics,
the auto-tuning performed by EvoCode still exhibits 8% performance and run-
time improvement, and up to 19% energy and power savings. This demonstrates
quite significant gains, especially when considering that these results have been
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obtained against the program compiled with the highest level of optimization
flags known by the compiler infrastructure (i.e., -O3).
The Fig. 3 reports the slice parameter relationships obtained for the sole energy
optimization over the reconstructed program (thus considered in this case as a
single region). Other similar figures were generated for the other fitness metrics,
i.e., performance, runtime, power, DRAM energy and DRAM power, yet could
not be presented for obvious space reasons. The objective of these analyses is to
identify during the local optimization phase of EvoCode and for each optimized
region the most sensitive code transformations to prune at an early stage of
the global optimization unpromising configurations. Of course, it is crucial to
correctly size the window for this local search strategy to avoid a premature
convergence toward a local optima that may result in a non-diversity of the
population. This type of evaluation is at the heart of the NSGA-III [3] heuristic
currently under investigation within EvoCode.

Table 4. Best results obtained by EvoCode on the Linpack benchmark.

Metric Pref (-O3 optimized) Best EvoCode

perf (MFlops) 1109.39 1194.43 85,04 +8%

runtime (s) 0.70 0,65 −0,05 −8%

energy (J) 40.20 33.08 −7,11 −18%

power (W) 57.27 46.24 −11,03 −19%

dram energy (J) 3.28 1.93 −1,35 −41%

dram power (W) 4.68 2.85 −1,83 −39%

Fig. 3. Slice parameter relationships for the energy optimization tied to a single region
(the full Linpack program).
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5 Conclusion and Perspectives

This position paper presented the EvoCode framework aiming at the auto-
matic software tuning of parallel programs for energy-aware executions. A refer-
ence source code is evolved using a two-stage MOEA heuristic (local and global)
exploiting a compiler infrastructure (LLVM in this case) to apply static tunable
knobs or code transformations to generate individuals1. The objective remains
to address simultaneously multiple KPIs optimization i.e., performance, energy
and power usage (for both for the CPU and DRAM) and the runtime, bringing a
set of optimized binaries derived (and a priori semantically equivalent) from the
reference program used as input of the EvoCode framework together with the
target computing system. Our framework will also integrate a decision making
process through post-Pareto-front analysis to suggest the best trade-off between
the obtained solutions. EvoCode has been implemented and validated over a
set of reference benchmarking applications being auto-tuned. The preliminary
experimental results presented in this article (restricted to the most well-known
benchmark i.e., Linpack) are quite promising. While illustrating and validat-
ing the local optimization strategy performed within EvoCode, they already
demonstrate improvement for all considered metrics (ranging from 8% to 41%)
when compared to the most optimized configuration set by the compiler on the
reference program. The validation of the global MOEA phase within EvoCode
through NSGA-III is under investigation and is bringing further improvements
which will be presented in an extension of this work.

Acknowledgments. The experiments presented in this paper were carried out using
the HPC facilities of the University of Luxembourg [11] – see hpc.uni.lu.
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Abstract. Profiling and tuning of parallel applications is an essential
part of HPC. Analysis and improvement of the hot spots of an application
can be done using one of many available tools, that provides measure-
ment of resources consumption for each instrumented part of the code.
Since complex applications show different behavior in each part of the
code, it is desired to insert instrumentation to separate these parts.

Besides manual instrumentation, some profiling libraries provide dif-
ferent ways of instrumentation. Out of these, the binary patching is the
most universal mechanism, that highly improves user-friendliness and
robustness of the tool. We provide an overview of the most often used
binary patching tools and show a workflow of how to use them to imple-
ment a binary instrumentation tool for any profiler or autotuner. We
have also evaluated the minimum overhead of the manual and binary
instrumentation.

Keywords: Binary instrumentation · Performance analysis · Code
optimization · High performance computing

1 Introduction

Developers of HPC applications are forced to optimize their applications to reach
maximum possible performance and scalability. This request makes the perfor-
mance analysis tools very important elements of the HPC systems, that have
a goal in the identification of the hot spots of the code that provides space
for improvement. Except basic, single-purpose applications every region of an
application may have different requirements on the underlying hardware. In gen-
eral, we may speak about several application kernels, that are bounded due to
different (micro-)architectural components (e.g. compute, memory bandwidth,
communication or I/O kernels) presented in [1] and evaluated in [13,29].

An application performance analysis tool provides profiling of the applica-
tion - stores current time, hardware performance counters et cetera, to provide
information about the program status at the given time. In general there are
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 159–168, 2020.
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several ways how to connect the profiling library with the target application to
select when the application’s state should be captured, (1) insert the profiling
library API functions into the code of the profiled application, or (2) the profil-
ing library implements a middleware for a specific functions (e.g. memory access,
I/O or MPI etc). Another option could be monitoring or simulating the appli-
cation process, however these approaches may have a problem to profile exactly
the application performance. The advantage of the monitoring is that it does not
require to instrument the application, which means that identification of exact
location in such code is ambiguous. Instrumentation can be inserted manually
to the source code, by a compiler at the compilation time or the application’s
binary can be patched using dynamic or static instrumentation tools.

1.1 Motivation

The list of the HPC applications profiling tools is quite long, and despite many
features are shared among them, every tool brings something extra to provide
slightly different insight into the application’s behavior. New HPC machines
come with new challenges that require different ways how to optimize the code.
With the upcoming HPC exascale era, there is pressure to reduce energy con-
sumption of the system and the applications too. Several projects develop auto-
tuning tools for energy savings based on CPU frequencies scaling or using Intel
RAPL power capping [9], e.g. GEOPM [6], COUNTDOW [5], Adagio [22] or
READEX [20,23].

One of the READEX tools is MERIC [14,29] library, that has been devel-
oped, to provide application behavior analysis and information about its energy
consumption when different application or system parameters are tuned. MERIC
dynamically changes the tuned parameters and searches for the configuration in
which each part of the application fully utilizes the system, not to waste the
resources and bring energy or time savings. This way user can detect that some
parts of the target application when uses just one of two sockets is as fast as
when using them both due to strong NUMA (Non-Uniform Memory Access)
effect, or that the frequency of the CPU cores can be significantly reduced, due
to inefficient memory access pattern. MERIC supports manual instrumentation
only, which we have identified as a weak spot on a way to reach maximum
possible savings. First of all process of localization where to insert the manual
instrumentation to the source code is time consuming, which may lead to the
situation that some parts of the code will not be sufficiently covered, and due
to that the code analysis may miss identification some of the code’s dynamicity
and result configuration will be sub-optimal.

It is barely possible to specify a single rule for all autotuning frameworks that
decides which parts of a code should be instrumented, but the most universal
way is specification of a minimum region size. Under the READEX project has
been specified that the minimum size of an instrumented function is 100 ms to
the tuning framework be able to change the system settings of the contempo-
rary Intel x86 processors and provide reliable energy measurement for all the
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instrumented regions (Intel RAPL counters [12] and HDEEM [11], 1 kHz power-
sampling energy measurement systems have been used in the project).

To reach maximum possible savings, the application should contain the max-
imum possible amount of regions, that may show different behavior. It results
in search for all regions that last more than the selected threshold and instru-
ment them, nevertheless the threshold can be extended if the instrumentation is
too heavy. In general, too detailed instrumentation can be handled also at the
tuning framework side, that may ignore some of the regions, but anyway even
this solution will lead to some minimal overhead depending on the framework’s
implementation (e.g. minimal time between regions’ starts, maximum level of
nesting). For purpose of identification regions with runtime longer than a speci-
fied threshold a Timeprof library [14] has been developed. The library does time
measurement of the application’s functions and provides a list of functions that
fulfill the condition.

2 Performance Analysis Tools

List of HPC tools for application performance analysis is very long so we decided
to focus on open-source tools that are selected by OpenHPC [19] project whose
mission is to provide a reference collection of open-source HPC software compo-
nents and best practices, lowering barriers to deployment, advancement, and use
of modern HPC methods and tools. The project mentions the following tools:1

LIKWID [27] is one of the performance monitoring and benchmarking suite
of command-line applications. Extrae [24] is a multi-platform trace-file generator
to monitor the application’s performance. Score-P is a library for profiling and
tracing, that provides core measurement services for other libraries - Scalasca [7],
TAU [25], Vampir [17] and Periscope Tuning Framework (PTF) [8]. Scalasca and
TAU are very similar profiling and tracing tools that can also cooperate - e.g.
Scalasca’s trace-files can be visualized using TAU’s profile visualizer. Vampir
framework provides event tracing and focuses mainly on the visualization part
of the analysis process. On the other hand, PTF is an autotuning framework, pro-
viding many plugins to tune the application from various perspectives. GEOPM
is an autotuning tool focused on x86 systems, that dynamically coordinating
hardware settings across all compute nodes used by an application according to
the application’s behavior and requests from the resource manager. The last tool
from our list is the mpiP [21], which is a lightweight profiling library for MPI
applications, based on middleware of the MPI functions, despite that it also has
a limited list of C API functions to manually instrument the application, as well
as all the mentioned tools.

Besides splitting the application into different parts of the code, some tools
also provide an opportunity to instrument the most time consuming loops of
the target application (e.g. in case of Score-P we speak about a Phase region,
GEOPM terminology uses word Epoch, etc.). This kind of annotation is useful
1 OpenHPC project list of performance analysis tools besides mentioned libraries con-

tain tools without API (e.g. visualization libraries) and also PAPI [26].
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especially in case of tools that do not only analyze the application but also
provide the opportunity to tune the application performance using some kind of
optimization.

3 Manual and Compiler Inserted Instrumentation

Manual instrumentation usually wraps a function, block of functions (with the
similar behavior) or is inserted inside a loop body, to detect different behavior
within the iterations, or in case of autotuning tools to identify optimal configu-
ration by switching the configuration in each iteration.

Manual source code instrumentation requires access to the source code to
insert the API functions and at least a basic knowledge of the application behav-
ior, to instrument the most significant regions. The application must be recom-
piled for each change in the instrumentation. Due to these requirements, manual
instrumentation is time-consuming and inconvenient.

Despite some of the performance analysis tools provides options how to ana-
lyze the application without doing changes in the source code, using the mid-
dleware (mpiP), compiler instrumentation (Score-P) or binary instrumentation
(extrae, TAU), anyway all of the mentioned tools have their own API to let the
application user/developer extend the instrumentation about specific parts of
the application.

Compiler instrumentation is provided by the Score-P or by the GNU pro-
filer gprof [10], it provides a possibility to wrap applications’ functions with the
instrumentation at the compilation time. In comparing to the manual instru-
mentation it removes the requirement to browse the source code to locate the
requested functions, however, the handicap of accessing the source code persists.
In default settings compiler instruments all the application’s functions, without
any limit on the function size, which in many cases may cause high overhead
of the profiling, when measuring performance of the shortest regions too. Due
to that, the compiler provides an option on how to select/filter a subset of the
functions to instrument. Unfortunately, it leads to repeated compilation of the
target application, which is usually slower than plain compilation (e.g. Score-P
does not support parallel compilation).

4 Binary Patching

Binary patching means a modification of an application execution without
recompilation of the source code. The modifications can be done dynamically
during the application run or statically rewrite the binary with all the necessary
changes and store the edited binary into a new file.

Dynamic Binary Instrumentation (DBI) tools [4,16,18] interrupt the ana-
lyzed application process and switch context to the tool at a certain point that
should be instrumented, and execute a required action. This approach causes
an overhead that is usually not acceptable for autotuning or performance anal-
ysis. On the other hand, a binary generated by a Static Binary Instrumentation
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(SBI) tool should not cause any extra overhead in comparison to manually instru-
mented code, which confirms our measurements presented later in this section.

SBI tools not only insert functions calls at certain positions in the instru-
mented binary, but also add all the necessary dependencies to the shared
libraries, so it is not required to recompile the application for its analysis. Also,
SBI tools can access both mangled and demangled names of the functions even
though the application has been compiled without debug information. SBI tools
are provided by TAU (using Dyninst [3] or Pebil [15] or MAQAO [2]) and extrae
(using Dyninst) and Score-P uses Dyninst to instrument the code by its compiler.

PEBIL is a binary rewriting tool allowing to patch ELF files for the x86-
64 architecture. Unfortunately, PEBIL project is closed since 2017, so support
for new platforms is not guaranteed. Due to that, we will focus on Dyninst
and MAQAO only, from which MAQAO-2.7.0 supports the IA-64 and Xeon Phi
architectures only, on the other hand, Dyninst-10.0.0 InstructionAPI implemen-
tation supports the IA-32, IA-64, AMD-64, SPARC, POWER, and PowerPC
instruction sets and ARMv8 is in experimental status.

We have evaluated overhead of instrumentation when inserted manually with
statically inserted instrumentation by MAQAO and Dyninst. We have used
MERIC library for this measurement, that reads requested system information
and store the value in memory. A single thread application (to remove the influ-
ence of an MPI/OpenMP barriers on the measurement) contained one region,
that had been performed thousand times. We have not seen any difference in the
overhead of manual instrumentation and SBI. Overhead of one instrumentation
call on an Intel Xeon E5-2697v4 is:

– 175µs – when reading timestamp
– 375µs – when reading energy consumption using Intel RAPL (read four hard-

ware counters and timestamp)

In the case of binary patching of a complex application, the time that is
required to insert the instrumentation should not exceed the time needed for
the application compilation. According Valensi MAQAO is able to insert 18 000
function calls in less than a minute [28].

4.1 A Binary Parsing

Dyninst as well as MAQAO holds the executable in a structure of components
as the application was decomposed by a compiler. The components and their
relations are illustrated in the Fig. 1. A binary base element is one or several
images, which is a handle to the executable file associated with this binary.
Each image contains a list of functions and global variables. A function can be
also inspected for local variables and basic blocks (BBs), which is a sequence
of the instructions with a single entry point and single exit point. The BBs are
organized in a control-flow graph (CFG), that represents the branches of the
code. From a basic block, it is also possible to access its instructions.
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Fig. 1. Components of an application binary produced by a compiler.

When using Dyninst to browse through an application binary for its analysis
or patching all the components on higher levels must be accessed first, on the
other hand, MAQAO interface allows a user to access them directly. Anyway,
we are primarily interested in the insertion of a function call before and after
selected functions, we may stay at the level of functions.

4.2 Workflow

In this section, we will present a process of an SBI using MAQAO or Dyninst,
with a goal insert a profiler function call before and after a select application
function. The patching libraries provide much more functionality than presented
(e.g. static binary analysis or insertion of a function call at more general loca-
tions), however for most of the profilers and autotuners wrapping a function
with its instrumentation should be sufficient.

BPatch bpatch;
BPatch_binaryEdit *appBin = bpatch.openBinary("a.out", false);
BPatch_image *appImage = appBin->getImage();
// prepare function printf with its paramters to be inserted
std::vector<BPatch_function*> insertFunc;
appImage->findFunction("printf", insertFunc, true, true, true);
std::vector<BPatch_snippet*> args;
BPatch_snippet* param1 = new BPatch_constExpr("FUNC %s\n");
BPatch_snippet* param2 = new BPatch_constExpr("main");
args.push_back(param1);
args.push_back(param2);
// identify target location for insertion
std::vector<BPatch_function*> functions;
std::vector<BPatch_point *> *points;
appImage->findFunction("main", functions);
points = functions[0]->findPoint(BPatch_entry);
// function call insertion and store the new binary to a file
BPatch_funcCallExpr insertCall(*(insertFunc[0]), args);
appBin->insertSnippet(insertCall, *points);
appBin->writeFile ("b.out");

Listing 1: Dyninst code to instrument main function in a.out binary.

Both Dyninst and MAQAO open the binary and starts with its decomposition
into the components as it was previously presented. We can select a function to
insert from the dependent shared libraries of the application. If the application
has been compiled without the profiling library, the first step should be adding
all the necessary dependencies, which is a single function call.

With all the necessary dependencies, it is possible to find the function we
want to insert under the application image, as well as the functions we want
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to wrap into the profiler instrumentation. To find the function that should be
instrumented, the binary (modules in case Dyninst) must be browsed for this
function. The function may have several code locations that could be instru-
mented, from which we are interested in its entry and exit points (addresses).
With this point, it is possible to associate a function call with the requested list
of arguments (be aware that there is no argument type control). This change
must be committed to the binary. The edited binary is then stored and is ready
to be executed to analyze its performance.

Listings present a code snapshots that insert printf call, that will print
“FUNC main” at the beginning of execution main function of a C applica-
tion a.out and stores the binary as b.out using Dyninst (Listing 1) or MAQAO
(Listing 2) libraries. The examples assume that printf function is available to
be added, otherwise relevant shared library dependency must be added too, also
return codes are ignored to reduce size of the Listings.

project_t* proj = project_new("instrument_proj");
asmfile_t* asmf = project_load_file(proj, "a.out", NULL);
elfdis_t* elf = madras_load_parsed (asmf);
madras_modifs_init (elf, STACK_KEEP, 0);
fct_t* func = hashtable_lookup(asmf->ht_functions, "main");
if (func != NULL) //if main function has been found in the binary
{ //search for entry instructions of the main function

queue_t * instructions = fct_get_entry_insns(func);
list_t* iter = queue_iterator(instructions);
while (iter != NULL)
{ //insert printf function call and its parameters

insn_t * inst = iter->data;
modif_t* ifct = madras_fctcall_new(elf, "printf", NULL, inst->address, 0, NULL, 0);
madras_fctcall_addparam_fromglobvar(elf,ifct,NULL,"FUNC %s\n",'a');
madras_fctcall_addparam_fromglobvar(elf,ifct,NULL,"main",'a');
iter = iter->next;

}
madras_modifs_commit(elf, "b.out"); //store the edited binary to a file

}
project_free(proj);
madras_terminate(elf);

Listing 2: MAQAO code to instrument main function in a.out binary.

5 Conclusion

Compiler and binary instrumentation are solution for a fully automatized appli-
cation analysis and following optimized run of the application, but only in the
case that such instrumentation does not lead to significantly higher overhead
than in case of the manual instrumentation. Our measurements have not seen
any measurable difference in manual and static binary instrumentation provided
by MAQAO or Dyninst. We consider SBI as simple and the most powerful solu-
tion and based on this conclusion when writing a tool for an application behavior
analysis we recommend to provide also an SBI support and present samples of
code using both Dyninst and MAQAO to show how simple a basic SBI tool is.
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The problem of the ideal instrumentation (amount and location of the
probes) has a massive impact on the effectiveness of every auto-tuning frame-
work. Autoinstrumentation tool can be written to instrument the analyzed appli-
cation according to the requirements of the autotuner and its way of tuning the
application. Timeprof library helps to identify the significant regions of the appli-
cation to analyze their behavior. We can easily measure the runtime of all the
functions of the application with Timeprof, which will provide us a selection of
the regions. Afterward, the identified regions are instrumented with the selected
library.
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Abstract. Energy-efficiency is already of paramount importance for
High Performance Computing (HPC) systems operation, and tools to
monitor power usage and tune relevant hardware parameters are already
available and in use at major supercomputing centres. On the other
hand, HPC application developers and users still usually focus just on
performance, even if they will probably be soon required to look also
at the energy-efficiency of their jobs. Only few software tools allow to
energy-profile a generic application, and even less are able to tune energy-
related hardware parameters from the application itself. In this work we
use the MERIC library and the RADAR analyzer, developed within the
EU READEX project, to profile and tune for efficiency the execution
parameters of a real-life Lattice Boltzmann code. Profiling methodology
and details are described, and results are presented and compared with
the ones measured in a previous work using different methodologies and
tools.

Keywords: MERIC · Optimization · Lattice Boltzmann · Energy ·
Efficiency

1 Introduction and Related Works

The performances of current HPC systems are increasingly bounded by their
energy consumption and ownership costs for large computing facilities are
increasingly shaped by the electricity bill. For several years, computing cen-
ters have considered the option to charge users not only for core/hours, but also
for the energy dissipation of their compute jobs, in the hope to encourage users
to optimize their applications also from the energy-efficiency point of view.

This approach could not be easily applied in the past since several tools were
still missing, both from the data center side, such as tools for a fine grained
energy accounting [1,3], and also from the user side, such us tools to energy-
profile applications [18] and to tune hardware parameters [12,28].

There are different approaches to reduce the energy cost of a given application
on a given hardware architecture. In general, the main idea is to try to match the
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available hardware resources with the application requirements. To accomplish
this, most tools rely on Dynamic Voltage and Frequency Scaling (DVFS) [29],
making it possible to tune the clock frequencies of the processor [13] and in some
cases even of memory [11].

DVFS has an immediate impact on power drain, but a power reduction does
not automatically translate to energy saving, since the average power drain of
the system has to be integrated over the execution time (or time-to-solution, TS)
to obtain the consumed energy (or energy-to-solution, ES). As can be seen in
Eq. 1, in some cases an increase in TS may actually increase ES , in spite of a
lower average power drain Pavg.

Es = Ts × Pavg (1)

On a specific architecture, the optimal frequencies for a given application, or
a given function inside an application, is defined by several factors. At a first
approximation, a generic Von Neumann architecture can be seen as two differ-
ent sub-systems, a compute module, characterized by a maximum instruction
throughput and a memory module, characterized by a maximum bandwidth.
The ratio between the two (Instructions/s and Byte/s), specific of each hard-
ware architecture, is known as the machine-balance [20]. The clock frequency of
the processor directly impacts the compute sub-system performance, while the
clock frequency of the memory impacts memory bandwidth. Whenever one of
the two sub-systems is underutilized (e.g.a memory-bound function which do
not fully exploit the computing sub-system), there is an opportunity to lower its
clock frequency to decrease power drain without impacting the execution time,
and thus to increase the overall energy-efficiency.

Several attempts were made in the past in order to predict the best DVFS
clock frequencies for a given application, but the large number of software
and hardware parameters involved has not allowed yet to have general and
widely used solutions. Despite of this, the interest towards the use of DVFS to
increase the energy-efficiency of HPC applications is still vivid [15]. The Euro-
pean READEX project (Run-Time Exploitation of Application Dynamism for
Energy-Efficient Exascale Computing) [21,24] is one of the latest efforts in this
direction; it has developed several tools to support users in improving the energy-
efficiency of their HPC applications [17]. In this work, we evaluate two tools,
MERIC and RADAR [28], which allow users to profile their applications and
help them identify the best performing configurations. These tools are not meant
to directly model and predict the application behavior to perform auto-tuning of
hardware parameters, but allow to easily explore the whole configuration space
through an exhaustive search. This could also help to draw general models, but
in the meanwhile it gives an opportunity to application developers to empirically
find the most energy-efficient configuration.

In previous works we have developed similar tools to study the energy
behaviour of our applications [14], but MERIC and RADAR have integrated
these in a more general, complete and rich tool set. In [11] we have analyzed
the trade-off between computing performance and energy-efficiency, for an HPC
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application on low-power systems using an exhaustive search, using a custom
hardware and software infrastructure to monitor power consumption. In [9] we
have performed a similar analysis on high-end systems, taking into account
both CPUs and GPUs. Also in this case we have developed a custom software
library [6] to instrument the code; it is based on PAPI APIs [14], and allows
to collect power/energy related metrics from hardware registers using architec-
ture specific interfaces, such as the Running Average Power Limit (RAPL) for
Intel CPUs. Our custom library [6] allows to use also the NVIDIA Management
Library (NVML) to acquire metrics from NVIDIA GPUs, which is still not pos-
sible with MERIC. However, the major drawback of our library is that, in order
to change the clock frequency, one needs to modify the application code; more-
over, only the clock frequencies of the processor cores could be handled. MERIC
offers similar options but its use is far less invasive and allows to tune different
hardware parameters, as we show in later sections.

2 The Lattice Boltzmann Application

In this work, we consider the same Lattice Boltzmann simulation code that we
have analyzed in [9] using our custom library [6], for a more direct comparison
with previous results. This application is a real-life example of a typical HPC
workload, so it is a good candidate to elucidate the trade-off available between
performance and energy-efficiency when using DVFS techniques on modern pro-
cessors. Choosing the same application, with the same problem size and simu-
lation parameters, running on the same hardware, we are able to directly com-
pare the results obtained. This application has been used for convective turbu-
lence studies [4,5], and it has been deeply optimized and extensively used as a
benchmarking code for several programming models and HPC hardware archi-
tectures [7,8]. In this work we use an implementation specifically developed for
Intel CPUs [19], highly optimized with intrinsics functions and fully exploiting
the AVX2 vector instruction set available on recent Intel Haswell CPUs.

Lattice Boltzmann methods (LB) are widely used in computational fluid
dynamics, to describe flows in two and three dimensions. LB methods [27] – dis-
crete in position and momentum spaces – are based on the synthetic dynamics
of populations sitting at the sites of a discrete lattice. At each time step, popu-
lations propagate from lattice-site to lattice-site and then incoming populations
collide among each other. The collision step mixes the populations updating the
physical parameters defining each population. LB models in n dimensions with p
populations are labeled as DnQp and in this work we consider a state-of-the-art
D2Q37 model that correctly reproduces the thermo-hydrodynamical evolution
of a fluid in two dimensions, and enforces the equation of state of a perfect gas
(p = ρT ) [22,23].

For the purpose of this paper it is enough to remember that in a Lattice
Boltzmann simulation, after an initial assignment of the populations values, the
application iterates for each lattice site, and for as many time-steps as requested,
two critical kernel functions:
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– the propagate function, moves populations across lattice sites collecting at
each site all populations that will interact at the next phase;

– the collide function, performs double precision floating-point operations local
to each lattice site to compute the physics variables defining the state of the
population after the collision. Input data for this phase are the populations
gathered by the previous propagate phase.

These two functions take most of the execution time of any LB simulation
and in particular, it has to be noticed that: propagate, is strongly memory-bound
and performs a large number of sparse memory accesses; while collide, is strongly
compute-bound (on most architectures), having an arithmetic intensity of ≈13
FLOP/Byte [9].

To fully exploit the high level of parallelism made available by modern
HPC architectures, this implementation uses MPI (Message Passing Interface)
to divide the lattice data domain across several processes, OpenMP to further
divide each process chunk of lattice across multiple threads, and AVX2 intrinsics
to control SIMD vector units. Whenever available, Fused Multiply-Add instruc-
tions (FMA) are used as well.

In all tests presented in this work, we analyze a simulation involving a 2-
dimensional fluid described by a lattice of Lx × Ly sites. We run with one Np

MPI process binding it to one CPU socket. The only process we use handles the
whole lattice which is further divided across Nt OpenMP threads, each of them
handling a sub-lattice of size: Lx/Np

Nt
× Ly.

3 The MERIC Library and the RADAR Generator

MERIC [28] is a lightweight C/C++ library developed within the READEX
project [21,24], with the goal of reducing energy consumption of HPC applica-
tions. The library is originally developed for x86 systems, and tested on Intel
Haswell, Broadwell and KNL Xeon Phi. Then has been added support also for
IBM OpenPOWER8+ and some Arm based systems.

MERIC allows to monitor the whole application or part of it, acquiring rele-
vant metrics from hardware counters and other available hardware sensors while
running the code. In fact, it runs application codes with different parameters
(e.g. processor clock frequencies), and automatically measures performance and
energy consumption, in order to identify optimal settings for a specific metric
and/or the available pareto-front in a multi-objective optimization.

Different hardware architectures and specific HPC installations, provide dif-
ferent ways to monitor energy consumption and to tune the corresponding hard-
ware parameters. MERIC support several different hardware-specific monitoring
systems; in our case MERIC interfaces to the RAPL energy counters that mon-
itor Intel CPUs energy consumption, and to the libmsr1 and msr-safe2 libraries
to change processors clock frequencies. RAPL counters are available on modern
1 https://github.com/LLNL/libmsr.
2 https://github.com/LLNL/msr-safe.

https://github.com/LLNL/libmsr
https://github.com/LLNL/msr-safe
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Listing 1.1. LBM application instrumentation to define the selected regions to profile.
Various parts of the code are omitted to highlight just the instrumentation lines and
the two main functions.

MPI_Init_thread(NULL, NULL, request, &provided);

READEX_INIT();

READEX_REGION_DEFINE(LBM);
READEX_REGION_DEFINE(iteration);
READEX_REGION_DEFINE(PROPAGATE);
READEX_REGION_DEFINE(COLLIDE);

READEX_REGION_START(LBM, "LBM", SCOREP_USER_REGION_TYPE_COMMON);

for ( i = 1; i <= NITER; i++ ) {
READEX_REGION_START(iteration, "iteration", SCOREP_...);

READEX_REGION_START(PROPAGATE, "PROPAGATE", SCOREP_...);
propagate();

READEX_REGION_STOP(PROPAGATE);

READEX_REGION_START(COLLIDE, "COLLIDE", SCOREP_...);
collide();

READEX_REGION_STOP(COLLIDE);

READEX_REGION_STOP(iteration);
}

READEX_REGION_STOP(LBM);
READEX_CLOSE();
MPI_Finalize();

Intel processors, allowing to measure consumed energy with a sampling frequency
of 1 kHz, both for Package and DRAM sub-systems of each CPU Socket.

In addition to what we have done in [9], using MERIC, libmsr and msr-safe,
we have been able to tune the core frequency and also the uncore frequency ; the
latter refers to the clock of subsystems in the physical processor package shared
by all cores, such as the Last Level Cache (LLC). This allows a much wider
search space in the hardware parameters.

MERIC APIs allow to easily mark code regions of a generic application.
Then, the same application is executed multiple times, changing the values of
several hardware parameters, specified via environment variables. In particular,
we have chose as parameters the processor core and uncore frequencies, and the
number of OpenMP threads. For each run, with a different set of parameters,
MERIC saves a log file with relevant metrics (e.g.execution time, Package and
DRAM energy, PAPI counters, etc.) for each instrumented code region.
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Analyzing with the RADAR tool the output files produced by MERIC, a
pdf file can be automatically generated containing a report allowing the user to
identify optimal parameters for the whole application or for each instrumented
code region. This enable the user to easily obtain all the required information
to apply both static tuning (i.e.use a single set of parameters for the whole
application execution), and dynamic tuning (i.e.a different set of parameters for
each code region) while running the application.

We show in Listing 1.1 all the instrumentation lines that we have added to our
application to profile separately the two functions of interest, namely propagate
and collide, which are applied in sequence inside each iteration loop over the
time-steps of a simulation.

4 Performed Experiments

All tests have been run on a single node of the COKA (COmputing on Kepler
Architecture) Cluster at the University of Ferrara. Each node has 2 × Intel
Haswell E5-2630v3 CPUs and 8 × dual GPU NVIDIA K80 Boards, but in this
work we use CPUs only.

The LBM application described in Sect. 2 has been instrumented using the
MERIC library, as described in Sect. 3, in order to profile the whole application
and specifically propagate and collide functions. MERIC has been configured in
order to read RAPL energy counters available on the Intel Haswell CPUs [14,16],
while changing the OpenMP threads between 4 and 8, and sweeping all the core
and uncore frequencies available on the Intel E5-2630v3 CPU.

In our first test, we have run the same simulation described in [9], running
our LBM code on a lattice of 1024 × 8192 sites, on a single socket of one COKA
node. This allows us to directly compare the overall performance and energy
consumption with the results obtained in our previous work, where we were able
to tune only the core frequency.

In a second test, we have run the same analysis on a larger lattice, of
4096 × 8192 points, to increase the execution time. In this case, a larger num-
ber of samples of hardware counters can be collected, allowing a more accurate
measure to differentiate between the two main functions of this application. In
this case we cannot compare directly with the results of [9], but we can study
with finer details the origin of the energy-saving, inspecting separately the two
main kernels. Optimal frequencies are anyhow independent wrt the input data
sizes for this kind of simulation, since for each lattice point are applied exactly
the same instructions.

5 Results

In our previous work [9], we have run our LBM code on a 1024 × 8192 lattice,
on a COKA CPU, and we have measured from RAPL counters that one full
iteration (i.e.execution of propagate followed by collide), requires ≈0.67 s and
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Fig. 1. Energy consumption for one iteration over a 1024×8192 lattice. The bar on the
left correspond to the use of default frequency governors (i.e.performance, conservative
or ondemand), the bar in the middle correspond to the manual tuning of core frequen-
cies performed in [9], while the bar on the right show the result obtained using MERIC.
Energy optimal frequencies are reported on top of the bars for propagate (P [ ]) and
collide (C[ ]), for core (xc) and uncore (yUc).

≈71 J (CPU Package, plus DRAM contribution), using the default frequency
governors with Intel Turbo Boost enabled.

On the Intel Haswell CPU adopted, the cores frequencies could be manu-
ally set in a range between 1.2 and 2.4 GHz, in 100 Mhz steps, thus we swept
all of them and monitored the effects on the energy consumption and execu-
tion time. We have found that the optimal frequencies giving the lowest energy
consumption were: 1.2 GHz for the propagate function and 2.3 GHz for the col-
lide. Performing dynamic tuning of the CPU core frequency (i.e.setting the best
frequency independently for each of the two functions) allowed to lower each
iteration energy requirement to ≈66 J, giving ≈7% energy saving comparing to
the default frequency governors, while increasing the execution time by ≈8%.

In this work we have performed the same test using MERIC. In this case mod-
ifications to the application code are less and easier, requiring to just instrument
the original code inserting function calls as shown in Listing 1.1. Furthermore, in
this case, custom data analysis scripts are not required, since the RADAR tool
is provided with MERIC, in order to analyze experimental result files.

For the first experiment, we have run our application with the same simula-
tion parameters used in [9], obtaining comparable results. Using MERIC, thanks
to the wider search space including uncore frequencies (ranging between 1.2 GHz
and 3.0 GHz on this CPU), we have found an energy-optimal configuration which
further lower the energy consumption for a single full iteration to ≈54 J. This
translate to ≈24% energy-saving with respect to the default frequency governors
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Table 1. One view of the report produced by the RADAR tool. Synthesis of the overall
application savings, optimizing for Package and DRAM energy consumption, using
static and dynamic tuning. The application performed 10 iterations over a 4096×8192
lattice.

Default
settings

Default
values

Best static
config.

Static
savings

Dynamic
savings

RAPL PCKG 0 [J] 8 Thr., 2015.00 J 8Thr., 189.00 J
(9.38%)

64.0 J of
1826.00 J
(3.5%)

3.0Uc GHz, 1.8Uc GHz,

2.4c GHz 2.2c GHz

RAPL RAM 0 [J] 8 Thr., 499.00 J 8Thr., 0.00 J
(0.00%)

1.0 J of
499.00 J
(0.2%)

3.0Uc GHz, 3.0Uc GHz

2.4c GHz 2.4c GHz

and to ≈18% with respect to the energy-optimal configuration in our previous
work, as summarized in Fig. 1. Moreover, the energy-optimal configuration in our
previous work had the drawback of an increased execution time of ≈8% while
the penalty of the energy-optimal configuration tuned with MERIC is now just
≈2%.

In the second experiment, we have run the same simulation on a 4096×8192
lattice and we report the overall application results, as presented by the RADAR
tool in Table 1. In this table, the static tuning savings are reported with respect
to the default settings which have been set to the maximum frequency values,
both for core and uncore (not with respect to the default frequency governors).
The dynamic tuning savings are reported with respect to the static tuning ones,
and thus they have to be interpreted as a further optimization. Each of the two
row of Table 1 present optimal static tuning and dynamic tuning values, when
optimizing respectively for Package and DRAM energy.

In summary, we can see that adopting static tuning (i.e.8 threads, 1.8 GHz
uncore and 2.2 GHz core frequencies) for the whole application we can save more
than 9% of the CPU Package energy. This can be increased by an additional 3.5%
adopting dynamic tuning (i.e.switching to 2.3 GHz uncore and 1.2 GHz core
while running propagate). Interestingly, with the energy optimal configuration,
the performance is lowered by less than 3%.

As one can expect, the DRAM energy consumption is not affected by core
and uncore frequency changes, while the best performance is obtained having
both core and uncore frequencies close to the maximum values.

To have better insights on the energy optimal configurations for each of the
two main functions of our application, we report in Table 2 another view provided
by RADAR. Here we see the contribution of each of the two functions to the



Energy-Efficiency Tuning of a Lattice Boltzmann Simulation Using MERIC 177

Table 2. One view of the report produced by the RADAR tool. Optimal settings for
each function, in terms of Package energy. The application performed 10 iterations over
a 4096 × 8192 lattice. All the reported values concern a single iteration.

COUNTERS - RAPL: RAPL PCKG 0 [J]

Region Phase % Best static Value Best Dyn. Value Dynamic
savings

COLLIDE 80.43 8 Thr., 145.5 J 8 Thr., 145.5 J 0.00 J
(0.00%)

1.8Uc GHz, 1.8Uc GHz,

2.2c GHz 2.2c GHz

PROPAGATE 19.57 8 Thr., 35.4 J 8 Thr., 29.0 J 6.4 J
(18.08%)

1.8Uc GHz, 2.3Uc GHz,

2.2c GHz 1.2c GHz

Total value for static tuning 145.5 + 35.4 = 180.9 J

Total savings for dynamic tuning 0.0 + 6.4 = 6.4 J of 180.9 J (3.54%)

overall Package energy-saving when applying dynamic tuning, with respect to
the static one. Since collide takes most of the execution time (i.e. 80.43%), the
best overall static parameters are exactly the collide optimal ones. Anyhow, we
also see that enabling dynamic tuning we achieve an impressive reduction of 18%
in the energy consumption of the propagate function. This is given by increasing
the uncore frequency, while lowering the core frequency when running propagate.
This is clearly due to the characteristic of this kernel which is strongly memory-
bound and heavily use the L3 cache [10].

6 Conclusions

In this work we have used the MERIC library and the RADAR analyzer, to
energy profile a Lattice Boltzmann HPC application, running on an Intel Haswell
CPU hosted in the COKA cluster. We have easily instrumented our application,
and run it scanning all available core and uncore clock frequencies of the pro-
cessor, with 4 and 8 threads. This analysis has identified an energy optimal set
of parameters for the whole application, exploitable for static tuning, and also a
set for each single function, exploitable for dynamic tuning. Interestingly, once
collected optimal parameters, the same annotated code, linked to the MERIC
library, can be run for production automatically performing static or dynamic
tuning of the core and uncore frequencies.

Comparing with results in our previous work [9], we see that tuning uncore
clock frequency allows to more than double the benefits with respect to acting
only on the core frequency. In particular, acting on both we have identified a
setting of clock frequencies that allow an energy saving of 24% compared to the
default frequency governors, improving our previous result by a further 18%.
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In a future work we plan to perform a similar analysis involving more than
one CPU, and also more than one node, in order to estimate the energy-saving
potential, not only in terms of a single CPU, but also at a cluster level. We also
plan to test other tools which allows an automatic tuning of optimal parame-
ters [2,25,26], not requiring a pre-characterization of the application, with the
aim of comparing the obtainable energy-savings and performance.
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12. Cesarini, D., Bartolini, A., Bonfà, P., Cavazzoni, C., Benini, L.: COUNTDOWN:
a run-time library for application-agnostic energy saving in MPI communication
primitives. In: Proceedings of the 2nd Workshop on AutotuniNg and aDaptivity
AppRoaches for Energy-efficient HPC Systems. ANDARE 2018, pp. 2:1–2:6 (2018).
https://doi.org/10.1145/3295816.3295818

13. Dick, B., Vogel, A., Khabi, D., Rupp, M., Küster, U., Wittum, G.: Utilization of
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Abstract. Power consumption is an essential factor that worsens the
performance and costs of today and future supercomputer installations.
In state-of-the-art works, some approaches have been proposed to reduce
the energy consumption of scientific applications by reducing the operat-
ing frequency of the computational elements during MPI communication
regions. State-of-the-art algorithms rely on the capability of predicting at
execution time the duration of these communication regions before their
execution. The COUNTDOWN approach tries to do the same by mean
of a purely reactive timer based policy. In this paper, we compare the
COUNTDOWN algorithm with state-of-the-art predictive-based algo-
rithm, showing that timer based policies are more effective in extract
power saving opportunities and reducing energy waste with a lower over-
head. When running in a Tier1 system, COUNTDOWN achieves 5%
more energy saving with lower overhead than state-of-the-art proactive
policy. This suggests that reactive policies are more suited then proactive
approaches for communication-aware power management algorithms.

Keywords: HPC · MPI · Power management · Reactive policy ·
DVFS · NPB · Energy efficiency · Parallel programming

1 Introduction

Due to the end of Dennard’s scaling, in the last decade, digital electronics have
faced a progressive increase of the power density at which each new processor
generation operates when at its maximum performance. Today, it results that
the total power consumption of high-performance computing systems and super-
computers limit the practical, achievable performance. Besides, higher power
density generates more heat to be dissipated and increases cooling costs. These
altogether worsen the total costs of ownership (TCO) and operational costs: lim-
iting de facto the budget for the supercomputer computational capacity [6,8].

Low power design strategies enable computing resources to trade-off their
performance for power consumption by mean of low power modes of opera-
tion. These states obtained by Dynamic and Voltage Frequency Scaling (DVFS)
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(P-states [1]), clock gating or throttling states (T-states), and idle states which
switch off unused resources (C-states [1]). Power states transitions are controlled
by hardware policies [16,22], operating system (OS) policies, and with an increas-
ing emphasis in recent years, at user-space by the final users [2,13,15,17] and at
execution time [19,24].

The first family of approaches aims to trade-off power consumption and per-
formance to gain energy efficiency [2,14,15,17]. These approaches explore the
use of HW power management knobs and application parameters to study the
execution time (Time-to-Solution, TtS), average power, and energy (energy-to-
solution, EtS) dependency with respect to these knobs and parameters. While
these approaches can be used in combination with autotuners and resource man-
agement frameworks to explore the EtS-TtS Pareto curve, these have a limited
potential in the current supercomputing scenario: slowing down applications is
almost always detrimental to the total cost of ownership (TCO) due to the large
contribution related to the depreciation cost of the IT equipment [8].

The second family of approaches focuses on improving application perfor-
mance under a power cap [7,13,18]. These approaches target power limited
systems, computing nodes, and processing elements. They rely on the runtime
capability of tracking the critical task in the application; then, the power budget
of the node/socket/core running the critical task is dynamically relaxed while
tightening the power budget of the non-critical resources. This not only involves
software approaches [7] but also HW power management solutions, like Intel
R©Turbo mode, and RAPL [11]. These approaches are tailored to power capped
supercomputing systems that still belong to a niche [21].

The third and last family of approaches aim at cutting the IT energy waste by
reducing the performance of the processing elements when the application is in a
region with communication slack available [5,9,10,20,23–25]. These approaches
try to isolate at runtime regions of the application execution flow which can
be executed at a reduced P-state without impacting the application perfor-
mance (not in the critical task). While the hardware power management logic
in today processing elements is effective in reducing the power consumption of
idle resources, in large-scale MPI parallel applications that fully utilize all the
assigned processing elements workload unbalance, synchronization, and commu-
nication slack can be exploited to save energy. These approaches depend on the
capability of predicting critical tasks.

Rountree et al. [23] analyze the energy savings which can be achieved on
MPI parallel applications by slowing down the frequencies of processors that are
not in the critical path. The authors of the paper define tasks as the region of
code between two MPI communication calls. The critical path is defined as the
chain of the tasks which bounds the application execution time. Indeed, cores
executing tasks in the critical path will be the latest ones to reach the MPI
synchronization points, forcing the other cores to wait.

A later work of the same authors [24], implements an online algorithm to
identify the task and the minimum frequency at which it can be executed without
worsening the critical path. In addition, if after this policy some slack remain, a
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slack reclamation policy (namely Fermata) which is based on the measurement
of the previous blocking time duration is used to lower the frequency to the
minimum value. If the previous blocking time duration was at least twice longer
than an empirical time threshold (100 ms) when the same task is executed again,
a timer is set to the empirical threshold. If the MPI phase expires before the timer
ends, nothing happens. Otherwise, when the timer expires, the core’s frequency
is set to the minimum one. This implements a last-value prediction logic to
determine if there will be enough blocking time which could be exploited to save
energy.

Authors of [9,10] COUNTDOWN uses a timeout policy as well, but propose
to apply it for each MPI phase without trying to predict its duration. This is a
significant difference w.r.t to the [24] which makes it robust to miss-predictions
[4]. However previous works do not compare the COUNTDOWN logic with the
slack reclamation logic in [24].

In this work, we study the communication slack available in widely adopted
applications from the NAS parallel benchmark suite [3] in a tier1 HPC pro-
duction environment. We evaluate the difference between COUNTDOWN and
Fermata in extracting the available communication slack. Our study demon-
strates that the reactive logic in COUNTDOWN is more effective in isolating
the communication slack than the task-based last-value prediction logic of Fer-
mata with a gap which can be up to the 20% for some NAS benchmark. We
then implemented Fermata in the COUNTDOWN framework, and we evaluate
the overheads and power saving that the two algorithms achieve for the NAS
benchmarks. In average COUNTDOWN achieves a lower application overhead
than Fermata while saving an additional 5% of energy.

The paper is organized as follows. Section 2 introduces the COUNTDOWN
framework and Sect. 3 the experimental results.

2 Framework

COUNTDOWN is a simple run-time library for profiling and fine-grain power
management written in C language. COUNTDOWN implements profiler capa-
bilities, and it can inject run-time code in the application to inspect and react to
the MPI primitives. Every time an application calls an MPI primitive, COUNT-
DOWN profiles the call and uses a timeout strategy [4] to avoid changing the
power state of the cores during too fast application and MPI context switches,
where doing so may result only in an increment of the overhead without signifi-
cant energy and power reduction. As we will see later in this Section, each time
the MPI library asks to enter in low power mode, COUNTDOWN defers the
decision for a defined amount of time. If the MPI phase terminates within this
amount of time COUNTDOWN does not enter in the low power states, filtering
out too short MPI phases to enter in a low power state and save energy, but
costly in terms of overheads.

COUNTDOWN exposes the same interface of a standard MPI library, and it
can intercept all MPI calls from the application. COUNTDOWN implements two
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wrappers to intercept MPI calls: (i) the first wrapper is used for C/C++ MPI
libraries, (ii) the second one is used for FORTRAN MPI libraries. This is manda-
tory due to C/C++, and FORTRAN MPI libraries produce assembly symbols
that are not application binary (ABI) compatible. The FORTRAN wrapper
implements a marshaling and unmarshalling interface to bind MPI FORTRAN
handlers incompatible MPI C/C++ handlers. This allows COUNTDOWN to
interact with MPI libraries in FORTRAN applications. When COUNTDOWN
is injected in the application, every MPI call is enclosed in a corresponding wrap-
per routine that implements the same signature. The wrapper routine leverage
on the profiling interface of MPI called PMPI to intercept MPI primitives. The
wrapper implement a prologue and a epilogue routine for each call. Both rou-
tines are used to inject profiling capabilities and power management strategies in
the application. COUNTDOWN interacts with the HW power manager through
specific events of the library. The events can also be triggered by system signals
registered as callbacks for timing purposes. COUNTDOWN can be configured
using environment variables where is possible to specify the verbosity of logging,
the type of HW performance counters to monitor, and so on.

The library targets the instrumentation of applications through dynamic link-
ing without user intervention. When dynamic linking is not possible COUNT-
DOWN has also a fall-back, a static-linking library, which can be used in the
toolchain of the application to inject COUNTDOWN at compilation time. The
advantage of using the dynamic linking is the possibility to instrument every
MPI-based application without any modifications of the source code nor the
toolchain. Linking COUNTDOWN to the application is straightforward: it is
enough to configure the environment variable LD PRELOAD with the path of
COUNTDOWN library and start the application as usual.

COUNTDOWN is endowed with profiler capabilities which allow a detailed
analysis of the application which relies on the raw HW performance counter of
Intel CPU. The profiler uses the Intel Running Average Power Limit (RAPL)
registers to monitor the energy/power consumed by the CPU. The energy mea-
surements presented in the rest of this work always refer to both CPU package
and DRAM consumption.

3 Experimental Results

For all the experiments we use a Tier-1 HPC system based on an IBM NeXtScale
cluster which is currently ranked in the Top500 supercomputer list [12]. The
compute nodes of the HPC system, are equipped with 2 Intel Broadwell E5-
2697 v4 CPUs, with 18 cores at 2.3 GHz nominal clock frequency and 145W
TDP and 128 GB of DDR4. Each node runs the Centos 7 OS and Linux kernel
3.10.0., nodes are interconnected with an Intel QDR (40 Gb/s) Infiniband high-
performance network.

We compile all our benchmarks using the Intel ICC/IFORT 18.0 as our
toolchain, coupled with Intel MPI Library 5.1 as the communication library. We
chose the Intel software stack because it is the default production environment



Evaluating the Advantage of Reactive MPI-aware Power Control Policies 185

of our target systems as well as being supported in most HPC machines based
on Intel architectures.

The default configuration for the power management in the target system is
with the Linux cpufreq driver at the maximum P-state with turbo mode enabled.
This is the baseline for our experimental results and we refer to this configuration
lately as Default.

The NAS Parallel Benchmark suite (NPB) is a set of popular HPC bench-
marks developed by the NASA Advanced Supercomputing division. The NPB
consist of benchmarks and kernel widely used in different scientific areas such
as spectral transform, fast Fourier transform, fluid dynamics and soon. We use
the NPB version 3.3.1, and we tested different configurations, trying to balance
the duration of all benchmarks at around 10 min of execution time. For CG, FT,
and LU we ran on 29 nodes using 1024 cores with data set E. While for EP,
MG and IS we use four nodes and 128 cores. For EP and MG we use data set
E, while for IS we use data set D because it is the largest available one for that
benchmark.

3.1 Fermata

We introduce Fermata [23,24] for comparison with COUNTDOWN . Fermata
implements a simple algorithm to reduce the cores’ P-state in communication
regions (Tcomm). Fermata uses a prediction algorithm to decide when scaling
down the P-state; the prediction is determined by the amount of time spent
in communication during the previous call. If the duration is greater than or
equal to twice the switching threshold, Fermata sets a timeout to expire at
the threshold time. The threshold time is empirically set to 100 ms. Calls are
identified as specific MPI primitives in the application code through the hash
of the pointer that makes up the stack trace. The hash is generated when the
application encounters an MPI primitive; hence, each MPI primitive in the code
is uniquely identified. The information about the last call is stored in a look-up
table used to choose if to set the timer in the next call.

In COUNTDOWN we implemented two versions of the Fermata policy, one
with the original empirical switching threshold value of 100 ms [24], and one with
an empirical switching threshold tuned for the target system of 500µs [16].

3.2 Results

In this subsection, we analyze the capability of COUNTDOWN in comparisons
with state-of-the-art Fermata approaches in taking advantage of the communica-
tion time to reduce energy consumption while discarding shorter communication
regions.

For this purpose we analyzed with COUNTDOWN Event Profiler the NPB
benchmarks in the default configuration (Default). For each benchmark, we
extract information about the MPI primitives. These information recorded by
COUNTDOWN Event Profiler during the execution of the test applications have
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Fig. 1. Communication (MPI) time [%] which can be exploited by the power saving
algorithms for the NPB.

been taken under default node power management settings (Default configura-
tion). On these information, we evaluated the impact on Fermata and COUNT-
DOWN as described in Sects. 2, 3.1. For the Fermata algorithm we report both
two versions with the empirical switching threshold set at 100 ms (as described
in the [24]) and at 500µs (adapted to the following the characteristics of the
target HW [10,16]).

Figure 1 shows the results of this test. On the x-axis, we report the different
applications, and on the y-axis, we report the percentage of MPI time. The bars
report the communication (MPI) time of each benchmark (Tcomm) and the
time that each algorithm is able to intercept to apply its power strategy. Each
set of bars show the benchmark name, the dataset used, and the number of MPI
processes/core involved (e.g. CG benchmark running dataset E with 1024 MPI
processes/cores).

From the same Figure, we can observe that the different applications are
characterized by significant communication time, which can be up to 60% of the
entire application execution time. We can notice that as expected [23] 500µs
outperforms [23] 100 ms for all the benchmarks as the authors of [24] extracted
the 100 ms empirical switching threshold on an older cluster machine with dif-
ferent power management characteristics than the one used in this study. We
also highlight that in moving from 100 ms to 500µs, the potential energy saving
increases drastically for CG, LU, IS and MG.

When comparing Fermata 500µs with COUNTDOWN we can notice that
the reactive timeout policy of COUNTDOWN is always more effective than the
proactive timeout policy of Fermata. While MG, LU, and CG Fermata achieve
similarly to COUNTDOWN , for EP, IS and FT COUNTDOWN is capable of
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Fig. 2. COUNTDOWN and Fermata execution time overhead (a), power saving (b),
and energy saving (c) for NAS benchmarks
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exploiting larger communication time than Fermata, reaching more than the
60% of potential savings for IS and FT.

COUNTDOWN outperforms Fermata 500µs differently in the benchmarks
due the number of MPI primitive iterations in the application workflow.
COUNTDOWN , which implements a reactive policy, is able to intercept and
to apply its power strategy in all MPI primitives while Fermata need to profile
at least one time each MPI primitives before to apply its power strategy.

To validate these findings we applied the COUNTDOWN and Fermata algo-
rithm in the real Tier1 HPC nodes, and we measured the execution time over-
head, the power saving, and the energy saving achieved by the two algorithms
for the different NPB applications. These values are normalized with respect to
the Default case.

Figure 2a reports the measured overheads for the two approaches. We can
notice that on average COUNTDOWN has a lower overhead than Fermata.
From Fig. 2b, we can see that this average lower overhead does not mean lower
power savings which are on average higher for COUNTDOWN than Fermata.
The combination of these two results is visible in Fig. 2c when we can see that
COUNTDOWN achieves on average the 5% more energy saving than Fermata.

COUNTDOWN overcomes Fermata in all benchmarks except EP E 1024,
this happens because EP is an embarrassing parallel application where commu-
nication is not significant, as shown in Fig. 1. While the computation of EP is
embarrassing parallel the initial distribution of the workload and the reduction
phase of the application conclusion are MPI-bound regions. But due the short
communications on these regions, COUNTDOWN is not able to have an effec-
tive energy impact instead the short time spent in the low frequency cause up to
5% of performance overhead.

4 Conclusions

In this paper, we have studied the effectiveness of power management run times
targeting the energy reduction in scientific computing applications employing
hardware DVFS (P-states). Parallel scientific applications are characterized by
significant synchronization and communication time, which can be exploited for
reducing the power consumption of HPC systems with a lower impact on the
application execution time. State-of-the-art approaches use a combination of
last-value prediction and region of code knowledge to predict the duration of the
upcoming communication COUNTDOWN and accordingly to that deciding if it
is worth to enter in a low power state. A recently proposed approach, COUNT-
DOWN uses a reactive timeout approach applied to each communication prim-
itive to decide if it is worth to enter a low power state. In this manuscript, we
compare COUNTDOWN with the state-of-the-art Fermata approach in a Tier1
HPC system running the NAS parallel benchmarks. We demonstrated that the
COUNTDOWN logic is capable of extracting more power saving opportunities
and reducing the application overheads introduced by the power management
policies. Overall, COUNTDOWN can save up to 25% of energy with an improve-
ment of the 5% with respect to a proactive approach like Fermata.
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Abstract. Power consumption of IT infrastructure is a major concern
for data centre operators. Since data centres power supply is usually
dimensioned for an average-case scenario, uncorrelated and simultane-
ous power spikes in multiple servers could lead to catastrophic effects
such as power outages. To avoid such situations, power capping solu-
tions are usually put in place by data centre operators, to control power
consumption of individual server and to avoid the datacenter exceeding
safe operational limits. However, most power capping solutions rely on
Dynamic Voltage and Frequency Scaling (DVFS), which is not always
able to guarantee the power cap specified by the user, especially for low
power budget values. In this work, we propose a power-capping algorithm
that uses a combination of DVFS and Thread Packing. We implement
this algorithm in the Nornir framework and we validate it on some real
applications by comparing it to the Intel RAPL power capping algorithm
and another state of the art power capping algorithm.

Keywords: Power capping · RAPL · Self-aware computing · Green
computing

1 Introduction

Power consumption management is becoming a critical factor in designing appli-
cations and computing systems. In data centres, the energy cost is quickly going
to overcome the cost of the physical system itself [4]. Moreover, besides economic
considerations, power consumption has a considerable impact on the environ-
ment, since during 2010 the CO2 emissions of U.S. data centres were on par
with those of an entire country like Argentina or Netherlands [19].

Traditionally, to avoid possible electric surges, data centre operators have
over-provisioned data centre power, considering a worst-case power consump-
tion [15]. Albeit this ensures reliability with high confidence, it is wasteful
in terms of power infrastructure utilization. To improve efficiency, researchers
are investigating the possibility to over-subscribe data centre power [15,16,20].
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Namely, the data centre power demand could intentionally be allowed to exceed
the power supply, under the assumption that correlated spikes in servers’ power
consumption are infrequent. However, this exposes data centers to the risk of
power outages, caused by unpredictable power spikes (e.g. due to an increase in
the power consumption of more servers at the same time). Such an event would
have catastrophic effects since it would lead to degradation in the final user
experience or service outages. For these reasons, to achieve power safety and to
avoid having under-utilized power provisioning, power capping techniques have
been recently proposed [11,18,21,22]. These techniques monitor the data centre
power consumption and, when it gets close to the available capacity, request
the servers to reduce their power consumption, usually by applying Dynamic
Voltage and Frequency Scaling (DVFS) [6].

One of the most commonly used techniques is Intel RAPL power capping [23].
However, it can only operate in a predefined range according to the processor
specifications, and any value outside this range will be ignored. However, by
extending the range of values enforceable by a power capping mechanism it
would be possible to better distribute the power budget on the available servers,
for example by setting low budgets for servers running non-critical applications
and by letting the computing nodes running important applications run without
any power cap. In this work, we address this issue by proposing a power capping
algorithm which combines DVFS and Thread Packing. Thread packing [8] is a
technique which forces N threads to run on a number of cores C, with C ≤ N ,
thus allowing the operating system to put some cores in sleep states. Moreover,
we provide a working implementation of this algorithm by adding it to the
Nornir framework, which would allow us to apply power capping to a specific
application without any need to change the application code.

The main contributions of this work may be summarized as follows:

– We propose a power capping algorithm which, given a power cap, can find the
most performing configuration in terms of clock frequency and the number of
cores used.

– We implement this algorithm inside the Nornir framework.
– We validate the algorithm by comparing it against Intel RAPL power cap-

ping [11] and another state of the art algorithm [13], showing improvement
in the performance of the selected configuration up to 2X.

The rest of the paper is organized as follows. Section 2 describes some related
works, highlighting the strengths and weaknesses of each of them. Then, in Sect. 3
we provide some background by describing the Nornir framework. The design
and implementation of the algorithm are described in Sect. 4 and it is then
evaluated in Sect. 5. Eventually, Sect. 6 concludes and outlines some possible
future directions for this work.

2 Related Work

Several works proposed different power capping algorithms and techniques. The
most commonly used solution is Intel RAPL power capping [11], which is provided
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as a tool on Intel architectures. The tool dynamically scales the clock frequency
and the voltage of the cores in order to enforce the power budget required by the
user. However, as shown in the motivating example in Sect. 1, by only using DVFS
it is not possible to decrease the power consumption below a certain threshold.

However, some works propose solutions using DVFS in conjunction with other
techniques. For example, Conoci et al. [9] propose a power capping algorithm
that uses DVFS and concurrency throttling (i.e. dynamically changing the num-
ber of threads at runtime). However, threads can be dynamically removed and
added only for applications based on the thread pool model, thus limiting the
applicability of the approach. On the contrary, our approach does not assume
any particular application structure, since it relies on thread packing.

Other works also use thread packing [8]. However, differently from our app-
roach, they require a training phase to be performed offline, before running the
application. During the training phase, data about different applications will be
collected to build a model to predict the performance and power consumption of
the application in different configurations. Our algorithm relies on the opposite
approach, by not requiring any training and by taking decisions only based on
what is observed during application execution.

Some existing solutions do not require an offline training phase and use DVFS
together with thread packing or concurrency throttling [2,13], similarly to what
is done in this paper. However, such solutions either require to modify the source
code of the application or are tied to some specific programming model such as
OpenMP. On the contrary, our approach does not make any assumption on the
application and does not require any modification to existing applications.

Eventually, some works propose techniques to coordinate power capping at
the datacenter level [22]. However, since they rely on Intel RAPL for power
capping, such solutions are still affected by the problem outlined in Sect. 1.

3 The Nornir Framework

Nornir [12] is a customizable framework which can be used to add power-aware
capabilities to applications. On one side, Nornir can be used to enforce power
consumption and performance requirements to applications. For example, users
could ask Nornir to dynamically change the number of resources used by a
video processing application so that the application will consume no more than
60 W but, at the same time, it will process at least 20 frames per second. On
the other side, it can be customized by researchers by adding new algorithms for
selecting the proper amount of resources given the user constraints.

To monitor the application and to apply some decisions (e.g. dynamically
remove threads from the application), Nornir needs to be interfaced with the
application. This can be done in different ways:

1. The user could implement a parallel application from scratch, by using the
programming API provided by Nornir
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2. Nornir can natively interact with some parallel runtimes (OpenMP and
FastFlow [1] are currently supported). If the application uses one of these
runtimes, Nornir can interact with the application with minimal modifica-
tion to the application code.

3. Otherwise (e.g. for applications using pthreads), the user could insert a cou-
ple of instrumentation calls in the application. These calls will monitor the
performance of the application and will send these data to Nornir, which
will use it to decide how many resources to allocate to the application.

4. Eventually, if the user can not modify the application, Nornir can still mon-
itor it by relying on hardware performance counters (e.g. number of instruc-
tions executed per time unit). Despite this solution have been previously
described [12] (denoted as black-box ), its efficacy has never been evaluated.
It is worth mentioning that in this case, because Nornir doesn’t explicitly
interact with the application, performance requirements can only be expressed
in terms of instructions executed per time unit.

Fig. 1. Nornir architecture.

Nornir architecture is depicted in Fig. 1. Since in this work we would like to
provide a solution which could be better than Intel RAPL power capping while
not being worst in terms of user effort, we will focus on the case where the user
can not modify the application, forcing Nornir to monitor the application only
through hardware performance counters.

Nornir works by following a classical Monitor-Analyze-Plan-Execute
(MAPE) autonomic loop where, at fixed timesteps, it monitors the current per-
formance and power consumption of the application in its current configura-
tion. Based on this knowledge it decides if and how to change the number of
resources allocated to the application, by using DVFS to scale the clock fre-
quency and thread packing to change the number of used cores. In the Monitor
phase, instructions per second and power consumption are collected by using
Mammut library [14]. Among others, this library is also used by Nornir in the
Execute phase to apply DVFS and thread packing.
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To set a specific power cap, it is sufficient to use an executable file provided
by Nornir, which takes as arguments the process identifier (pid) of the process
we would like to control and the value of the power cap we would like to set. Note
that at the moment it is only possible to control one application at a time. In the
future, we will extend this approach to control multiple concurrent applications.

4 Algorithm Design

At each timestep, when Nornir executes the Analyze and Plan phases, our
algorithm is invoked. Based on the information gathered in the Monitor phase,
we must decide which frequency f and how many cores n we would like our
application to use. Since both f and n have an impact on both the performance
and the power consumption, our algorithm must estimate how performance and
power consumption change when f and n are increased or decreased.

Concerning the performance modeling, since we are monitoring the appli-
cation by using hardware performance counters, performance in our case are
represented by the number of instructions executed per time unit. We denote
with I(n, f) the number of instruction executed for a given number of cores
and clock frequency, with n the number of cores currently used and with f the
clock frequency currently used. Taking inspiration from the performance model
presented in [10], we assume I(n, f) to scale linearly with both n and f , i.e.

I(n, f) = I(n, f) · n · f

n · f
(1)

Accordingly, given the current measurement I(n, f) we can estimate the per-
formance of any other configuration by assuming that the performance will
change proportionally to the changes in the number of used cores n and the
clock frequency f . It is worth noting that we are assuming that the applica-
tion linearly scales, i.e. by doubling the number of cores we would double the
instructions executed per time unit. Of course, this is not always the case and
this approximation is more severe as larger is the distance between the current
configuration and the predicted one. However, as we will see in Sect. 5, this is not
an issue in practice since, even if the algorithm selects a wrong configuration,
another decision will be taken in the following time step. As a consequence, after
a small number of steps, the algorithm will get closer to the correct configuration.

Concerning the power consumption P (n, f), it is composed by a static quan-
tity (which does not depend on n and f) and a dynamic quantity [3,7,17]1. Since
the dynamic power is also dependent on the supply voltage v, we must include
it into our equation, i.e.:

P (n, f, v) = Pstatic + Pdyn(n, f, v) = Pstatic + α · C · n · v2 · f (2)

1 Actually, static power could change when changing the frequency f . However, this is
a common approximation and, as we will see in Sect. 5, it does not alter the accuracy
of our algorithm.
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C and α represent the capacitance of the circuit and the activity factor (i.e.
the fraction of the gates which are active, on average). However, the voltage v
usually depends on the frequency f and the number of cores n. Accordingly, we
can rewrite the equation as:

P (n, f) = Pstatic + Pdyn = Pstatic + α · C · n · V (n, f)2 · f (3)

where V (n, f) is a function which returns the voltage associated to a specific
n and f . This function, in tabular form, is computed and stored by Nornir
when it is first installed on the system by using Mammut [14]. On our system,
Mammut computes the voltage by accessing the PERF STATUS[47:32] MSR reg-
ister. Pstatic is constant, and it is computed and stored by Nornir when it is
installed on the system, by measuring the average idle power consumption on
a one minute interval. Accordingly, we only need to estimate Pdynamic. Because
n, f and V (n, f) are known for all the configurations, we only need to estimate
α · C. This can be done starting from Eq. 3 by considering the power consump-
tion in the current configuration:

α · C =
P (n, f) − Pstatic

n · V (n, f)2 · f
(4)

Because all the needed quantities are known, we can estimate the power
consumption in any configuration as:

P (n, f) = Pstatic + (P (n, f) − Pstatic) · n · V (n, f)2 · f

n · V (n, f)2 · f
(5)

It is worth noting that this approach does not require any application charac-
terization. Nornir will monitor the application throughout its execution, select-
ing the optimal number of cores and frequency according to the predictions made
by the performance and the power consumption models.

5 Experimental Evaluation

We validate our algorithm by comparing it against two algorithms: (i) Intel
RAPL power capping, which applies DVFS and clock modulation to control the
power consumption of the system; (ii) Online Learning [13], which uses an online
learning approach where a part of the application execution is used to collect
data about different configuration and to build a prediction model, which will be
used to select the optimal configuration. This algorithm is one of those already
provided by Nornir.

We selected the blackscholes, bodytrack and streamcluster benchmarks from
the PARSEC benchmark suite [5]. All the experiments have been executed on
a Dual-socket NUMA machine with two Intel Xeon E5-2695 Ivy Bridge CPUs
running at 2.40 GHz featuring 24 hyper-threaded cores (12 per socket). Each
hyper-threaded core has 32 KB private L1, 256 KB private L2 and 30 MB of L3
shared with the cores on the same socket. The machine has 64 GB of DDR3
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RAM and a Thermal Design Power (TDP) of 230 W. We did not use the hyper-
threading, and the applications used at most 24 cores in our experiments. Due
to hardware limitations, on this machine, it is not possible to set the frequency
of each core individually. However, this is not a problem since our prediction
models assume that the frequency of all the cores will be the same. The software
environment consists of Linux 3.14.49 × 86 64 shipped with CentOS 7.1 and gcc
version 4.8.5. When using Intel RAPL power capping, we split the power budget
evenly among the two packages (CPU). For example, when setting a 100 W power
cap, we will set a 50 W power cap on each CPU. We express the power budget
as a percentage of the TDP. For example, a power budget of 10% represents a
23 W power budget. We consider up to a 50% power budget because we did not
observe any significant difference above that level. For all the approaches, we
enforce the power cap on a window of one second. The static power was ∼37 W
on the machine we used for our experiments. All the power consumption data
presented include static power. According to the specifications of this processor,
power capping values cannot be lower than ∼64 W for each package. However,
we experimentally found that the actual limit which can be reached by Intel
RAPL power capping is around ∼30 W for each package.

We evaluated each algorithm over each application for different power bud-
gets, by analyzing the following two metrics:

Violation. Let us suppose that the application runs for s seconds, that the
power cap required by the user was c Watts and that the measured power
consumption at a given time t is P (t). We also define with V the set of
samples t such that P (t) > c, i.e. the set of samples where the power cap
was violated. Then, this metric is defined as:

∑
t∈V (P (t) − c)

s

This metric includes both the number and the amplitude of the power budget
violations and represents the average violation of the power cap. A lower
value implies a better algorithm.

Execution Time. The performance of the application, expressed as the exe-
cution time normalized to the execution time when using Intel RAPL power
capping. A lower value implies a better algorithm. This metric will be shown
only for experiments where RAPL correctly enforce the power cap. Indeed,
when the power budget is exceeded performance would be higher than the
performance achieved by solutions which properly enforce the power cap,
and the comparison in such cases would not be fair.

For each of the following plots we show on the x-axis the maximum power
budget we set for the application and on the y-axis the value for the metric. On
the x-axis label we have on the three lines:

1. The power budget expressed as a percentage of the TDP.
2. The average number of cores set by our algorithm.
3. The clock frequency set by our algorithm.
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(a) Budget violations (higher = better).

(b) Execution time (lower = better).

Fig. 2. Analysis of different algorithms on the blackscholes application.

The black vertical bar on the top of the histograms represents the 95% confidence
interval from the mean.

We report in Fig. 2 the analysis for the blackscholes application. By analyzing
the plots, we see how RAPL fails in enforcing power caps with a budget lower
or equal than 20%. Whereas no algorithms can reach the 10% power budget,
our algorithm correctly enforces the 20% power budget, because it reduces the
number of cores allocated to the application to one, while with RAPL all the
available cores are used. By observing the performance results, our algorithm is
always characterized by the best performance, except for the 10% and 20% cases,
because RAPL and Online Learning violate more often the available power bud-
get, using more resources and obtaining higher performance. For the 30% case
our algorithm outperforms the online learning and RAPL algorithms, finding
configurations that, while still satisfying the required power cap, are character-
ized by a higher performance (up to 2x). The reason why our algorithm per-
forms better than the online learning one is that the latter needs more time
to find a suitable configuration, due to the training phase it needs to perform
to gather data about different configurations. Since during the training phase
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(a) Budget violations (higher = better).

(b) Execution time (lower = better).

Fig. 3. Analysis of different algorithms on the bodytrack application.

some low-performing configurations may be visited, this increases the execution
time. Moreover, the algorithm needs to be trained again for different application
phases, introducing additional overhead. For power budgets higher than 30% all
the algorithm can properly enforce the power cap.

Similar results have been obtained for bodytrack, as shown in Fig. 3. In this
case, the performance gap between our algorithm and the online learning one
are even more evident, with a speedup higher than ∼2X when the power cap
is set to 30%. Moreover, our solution can find configurations which are more
performing than those selected by RAPL, even for higher power budgets (40%
and 50%). This happens for the same reason why RAPL fails in enforcing low
power budgets, i.e. since it only uses DVFS, the set of choices it can make are
much more limited compared to our algorithm.

Eventually, Fig. 4 reports the results for the streamcluster application. Even
in this case, the results reflect what we observed for the other two applications,
with our algorithm being able to enforce 20% power caps, and providing more
than ∼2X performance improvement on higher power caps compared to RAPL.
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(a) Budget violations (higher = better).

(b) Execution time (lower = better).

Fig. 4. Analysis of different algorithms on the streamcluster application.

6 Conclusions and Future Work

In this work, we presented a power capping algorithm which used DVFS and
thread packing to extend the range of reachable power caps compared to RAPL.
We implemented this algorithm in the Nornir framework, and we used its ability
to control applications to test our algorithm. We then compared our algorithm
with RAPL and with another state of the art approach, showing that it can
satisfy the required power cap even when RAPL is not able to do so. Moreover,
even when both algorithms correctly enforce the power budget required, there
are cases where our algorithm can find configurations characterized by better
performance, in some cases more than ∼2X more performing than those found
by the other two algorithms.

In the future, we would like to extend this work for controlling multiple
concurrent applications, possibly by having different power budgets for different
applications according to their importance/priority. Moreover, we would like to
extend the algorithm to also consider other control mechanisms such as Dynamic
Clock Modulation (DCM) or DVFS for memory and uncore components.
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1 CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
oscar.garcia@usc.es

2 Quartz Research Lab - EISTI, Pau, France

Abstract. Multicore NUMA systems present on-board memory hier-
archies and communication networks that influence performance when
executing shared memory parallel codes. Characterising this influence
is complex, and understanding the effect of particular hardware config-
urations on different codes is of paramount importance. In this paper,
monitoring information extracted from hardware counters at runtime is
used to characterise the behaviour of each thread in the processes run-
ning in the system. This characterisation is given in terms of number
of instructions per second, operational intensity, and latency of memory
access. We propose to use all this information to guide a thread migra-
tion strategy that improves execution efficiency by increasing locality
and affinity. Different configurations of NAS Parallel OpenMP bench-
marks running concurrently on multicore systems were used to validate
the benefits of the proposed thread migration strategy. Our proposal pro-
duces up to 25% improvement over the OS for heterogeneous workloads,
under different and realistic locality and affinity scenarios.

Keywords: Roofline model · Hardware counters · Performance ·
Thread migration

1 Introduction

Current multicores feature a diverse set of compute units and on-board mem-
ory hierarchies connected by increasingly complex communication networks and
protocols. For a parallel code to be correctly and efficiently executed in a multi-
core system, it must be carefully programmed, and memory sharing stands out
as a sine qua non for general purpose programming. The behaviour of the code
depends also on the status of the processes currently executed in the system.
A programming challenge for these systems is to partition application tasks,
mapping them to one of many possible thread-to-core configuration to achieve a
desired performance in terms of throughput, delay, power, and resource consump-
tion, among others [11]. The behaviour of the system can dynamically change
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when multiple processes are running with several threads each. The number of
mapping choices increases as the number of cores and threads do. Note that, in
general purpose systems, the number of multithreaded processes can be large
and change dynamically. Concerning architectural features, particularly those
that determine the behaviour of memory accesses, it is critical to improve local-
ity and affinity among threads, data, and cores. Performance issues that are
impacted by this information are, among others, data locality, thread affinity,
and load balancing. Therefore, addressing these issues is important to improve
performance.

A number of performance models have been proposed to understand the per-
formance of a code running on a particular system [1,4,6,17]. In particular, the
roofline model (RM) [18] offers a balance between simplicity and descriptiveness
based on the number of FLOPS (Floating Point Operations per Second) and the
operational intensity, defined as the number of FLOPS per byte of DRAM traffic
(flopsB). The original RM presented drawbacks that were taken into account by
the 3DyRM model [14], which extends the RM model with an additional param-
eter, the memory access latency, measured in number of cycles. Also, 3DyRM
shows the dynamic evolution of these parameters. This model uses the informa-
tion provided by Precise Event Based Sampling (PEBS) [8,9] on Intel processors
to obtain its defining parameters (flopsB, GFLOPS, and latency). These parame-
ters identify three important factors that influence performance of parallel codes
when executed in a shared memory system, and in particular, in non-uniform
memory access (NUMA) systems. In a NUMA system, distance and connection
to memory cells from different cores may induce variations in memory latency,
and so the same code may perform differently depending on where it was sched-
uled, which may not be detectable in terms of the traditional RM.

Moving threads close to where their data reside can help alleviate memory
related performance issues, especially in NUMA systems. Note that when threads
migrate, the corresponding data usually stays in the original memory module,
and they are accessed remotely by the migrated thread [3]. In this paper, we use
the 3DyRM model to implement strategies for migrating threads in shared mem-
ory systems and, in particular, multicore NUMA servers, possible with multiple
concurrent users. The concept is to use the defining parameters of 3DyRM as
objective functions to be optimised. Thus, the problem can be defined in terms
of a multiobjective optimisation problem. The proposed technique is an itera-
tive method inspired from evolutionary optimisation algorithms. To this end, an
individual utility function to represent the relative importance of the 3DyRM
parameters is defined. This function uses the number of instructions executed,
operational intensity, and average memory latency values, for providing a char-
acterisation of the performance of each parallel thread in terms of locality and
affinity.

2 Characterisation of the Performance of Threads

The main bottleneck in shared memory codes is often the connection between
the processors and memory. 3DyRM relates processor performance to off-chip
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memory traffic. The Operational Intensity (OI) is the floating operations per
byte of DRAM traffic (measured in flopsB). OI measures traffic between the
caches and main memory rather than between the processor and caches. Thus,
OI incorporates the DRAM bandwidth required by a processor in a particular
computer, and the cache hierarchy, since better use of cache memories would
mean less use of main memory. Note that OI is insufficient to fully characterise
memory performance, particularly in NUMA systems. Extending RM with the
mean latency of memory access provides a better model of performance. Thus,
we employ the 3DyRM model, which provides a three dimensional representation
of thread performance on a particular placement.

PEBS is an advanced sampling feature of Intel Core based processors, where
the processor directly records samples from specific hardware counters into a
designated memory region. The use of PEBS as a tool to monitor a program
execution was already implemented in [15], providing runtime dynamic informa-
tion about the behaviour of the code with low overhead [2], as well as an initial
version of a thread migration tool tested with a toy examples. The migration tool
presented in this work continuously gathers performance information in terms of
the 3DyRM, i.e. GFLOPS, flopsB, and latency, for each core and thread. How-
ever, the information about floating point operations provided by PEBS may
sometimes be inaccurate [9] or difficult to obtain. In addition, accurate informa-
tion about retired instructions can be easily obtained, so giga instructions per
second (GIPS) and instructions retired per byte (instB) may be used rather than
GFLOPS and flopsB, respectively. For this reason, GIPS and instB are used in
this work.

3 A New Thread Migration Strategy

We introduce a new strategy for guiding thread migration in NUMA systems.
The proposed algorithm is executed every T milliseconds to eventually perform
threads migrations. The idea is to consider the 3DyRM parameters as objective
functions to be optimised, so increasing GFLOPS (or GIPS) and flopsB (or
instB), and decreasing latency in each thread improve performance in the parallel
code. There is a close relation between this and multiobjective optimisation
(MOO) problems, which have been extensively studied [5]. The aim of many
MOO solutions is to obtain the Pareto optimality numerically. However, this
task is usually computationally intensive, and consequently a number of heuristic
approaches have been proposed.

In our case, there are no specific functions to be optimised. Rather, we have
a set of values that are continuously measured in the system. Our proposal is
to apply MOO methods to address the problem using the 3DyRM parameters.
Thread migration is then used to modify the state of each thread to simultane-
ously optimise the parameters. Therefore, we propose to characterise each thread
using an aggregate objective function, P , that combines these three parameters.

Consider a system with N computational nodes or cores in which, at certain
time, multiple multithreaded processes are running. Let Pijk be the performance
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for the i-th thread of the j-th process when executed on the k-th computational
node. We define the aggregate function as

Pijk =
GIPSijk · intsBijk

latencyijk

, (1)

where GIPSijk is the GIPS of the thread, and instBijk and latencyijk are the
instB and average latency values, respectively. Note that, larger values of Pijk

imply better performance.
Initially, no values of Pijk are available for any thread on any node. On each

time interval, Pijk is computed for every thread on the system according to the
values read by the hardware counters. In every interval some values of Pijk are
updated, for those nodes k where each thread was executed, while others store
the performance information of each thread when it was executed in a different
node (if available). Thus, the algorithm adapts to possible behaviour changes
for the threads. As threads migrate and are executed on different nodes, more
values of Pijk are progressively filled up.

To compare threads from different processes, each individual Pijk is divided
by the mean Pijk of all threads of the same process, i.e. the j-th process,

̂Pijk =
Pijk

∑nj

m=1 Pmjh/nj

, (2)

where nj is the number of threads of process j, and h is, for each thread m of
the j-th process, the last node where it was running.

Every T milliseconds, once the new values of Pijk are computed, the thread
with the worst current performance, in terms of Pijk, is selected to be migrated.
Thus, for each process, those threads with ̂Pijk < 1 are currently performing
worse than the mean of the threads in the same process, and the worst performing
thread in the system is considered to be the one with the lowest ̂Pijk, i.e., the
thread performing worse when compared to the other threads of its process. This
is identified as the migration thread, and denoted by Θm.

Note that the migration can be to any core in a node other than the current
node in which Θm resides. A weighted random process is used to choose the
destination core, based on the stored performance values. In order to consider
all possible migrations, all Pijk values have to be taken into account. Therefore,
it is important to fill as many entries of Pijk as possible.

A lottery strategy is proposed in such a way that every possible destination
is granted a number of tickets defined by the user, some examples are shown in
Table 1, according to the likelihood of that migration improving performance.
The destination with the larger likelihood has a greater chance of being chosen.
Migration may take place to an empty core, where no other thread is currently
being executed, or to a core occupied with other threads. If there are already
threads in the core, one would have to be exchanged with Θm. The swap thread
is denoted as Θg, and all threads are candidates to be Θg. Note that, although
not all threads may be selected to be Θm (e.g. a process with a single thread
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Table 1. List of tickets.

Ticket Description Default value

MEM CELL WORSE Previous data show worst performance in a
given node

1

MEM CELL NO DATA No previous data in a given memory node 2

MEM CELL BETTER Previous data show better performance in a
given node

4

FREE CORE It is possible to migrate a thread to a free
core

2

PREF NODE It is possible to migrate a thread to a core
located in the node in which it makes most
of its memory accesses

4

THREAD UNDER PERF It is possible to interchange a thread with
another whose relative performance in
under a determined threshold

3

would always have ̂Pijk = 1 and so never be selected), they may still be consid-
ered to be Θg to ensure the best performance for the whole system. When all
tickets have been assigned, a final destination core is randomly selected based
on the awarded tickets. If the destination core is free, a simple migration will be
performed. Otherwise, an interchanging thread, Θg, is chosen from those cur-
rently being executed on that core. Once the threads to be migrated are selected,
the migrations are actually performed.

Migrations may affect not only the involved threads, Θm and Θg, but all
threads in the system due to synchronisation or other collateral relations among
threads. The total performance for each iteration can be calculated as the sum
of all Pijk for all threads. Thus, the current total performance, Ptcurrent, char-
acterises a thread configuration, independently of the processes being executed.
The total performance of the previous iteration is stored as Ptlast. On any inter-
val, Ptcurrent may increase or decrease relatively to Ptlast. Depending on this
variation, decisions are made regarding the next step of the algorithm.

Our algorithm dynamically adjusts the number of migrations per unit of
time by changing T between a given minimum, Tmin, and maximum, Tmax, dou-
bling or halving the previous value. To do that, a ratio, 0 ≤ ω ≤ 1 is defined
for Ptcurrent/Ptlast, to limit an acceptable decrement in performance. So, if a
thread placement has a lower total performance, more migrations should be
performed to try to get a better thread placement, because they are likely to
increase performance (Ptcurrent ≥ ωPtlast). This way, T is decreased to perform
migrations more often and reach optimal placement quicker. However, if current
thread placement has high total performance, migrations have a greater chance
of being detrimental. In this case, if Ptcurrent < ωPtlast, T is increased. Addi-
tionally, a rollback mechanism is implemented, to undo migrations if they result
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in a significant loss of performance, returning migrated threads to their former
locations. Summarising, the rules guiding our algorithm are:

– If Ptcurrent ≥ ωPtlast then the total performance improves, so, migrations
are considered productive, T is halved (T → T/2), and a new migration is
performed according to the rules indicated previously.

– If Ptcurrent < ωPtlast then the total performance decreases more than a given
threshold ω, so, migrations are considered counter-productive, T is doubled
(T → 2 × T ), and the last migration is rolled back.

This algorithm is named Interchange and Migration Algorithm with Performance
Record and Rollback (IMAR2). To simplify notation, IMAR2 and its parameters
are denoted as IMAR2[Tmin, Tmax;ω].

4 Experimental Results

NPB-OMP benchmarks [10] were used to study the effect of the memory alloca-
tion. They are broadly used and their diverse behaviour when executed is well
known. These benchmarks are well suited for multicore processors, although
they do not greatly stress the memory of large servers. To study the effects of
NUMA memory allocation, different memory stress situations were considered
using the numactl tool [12], which allows the memory cell to store specific data,
and threads to be pinned to specific cores or processors. Two servers were used
to test NUMA effects. Both processors have one memory controller with four
memory channels for connecting DIMM memory chips. In both systems node 0
has greater affinity with cell 0, node 1 with cell 1, and so on. Also, a NUMA
aware Linux kernel was used. More specifically:

– Server A: An Ubuntu 14, with Linux kernel 3.10, NUMA server with four
nodes, each has one octo-core Xeon E5-4620 (32 physical cores in total),
Sandy Bridge architecture, 16 MB L3 cache, 2.2 GHz–2.6 GHz, and 512 GB
of RAM. This server has memory chips connected in all four memory channels
and may use all the available memory bandwidth.

– Server B: A Debian GNU/Linux 9, kernel version 5.1.15 composed by four
nodes with Intel Xeon E5-4620 v4 with 10 cores each (40 in total), Broadwell-
EP architecture, 25 MB L3 cache, 2.1 GHz–2.6 GHz, and 128 GB of RAM.
Only one memory channel is used in this server, increasing the chances of
memory congestion in remote accesses and increasing NUMA effects.

We designed experiments in which four instances of the NPB-OMP bench-
marks are executed concurrently, and the placement of each can be controlled.
Each benchmark instance was executed as a multi-threaded process with just
enough threads to fill one node. We tested a representative set of memory and
thread placements. The memory placements are:

– Free: No specific memory placement is selected, the OS decides where to
place the data of each benchmark. This is the most common case for regular
users.
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– Direct: Each benchmark have its preferred memory set to a different cell.
In the case of four benchmarks, each one have one memory cell for its data,
as long as its memory is large enough. This is a common option used by
experienced users who know the limits of their applications [13,16].

– Interleaved: Each benchmark have its memory set to interleaved, with
each consecutive memory page set to a different memory cell in a round robin
fashion. This is a common option used by experienced users who do not know
the specific characteristics of their programs or want to use all the available
bandwidth.

and the thread one’s:

– OS: The OS decides where to place the threads, as well as their possible
migrations. Note that the four benchmarks can not be initiated at exactly
the same time, but only one at a time. This fact influences the initial thread
placement. This is the most common case for regular users.

– Pinned: Each benchmark had its threads pinned to one node. When com-
bined with the direct memory placement the same node is used for one
benchmark. This is a common option used by experienced users [7].

– IMAR2: The IMAR2 algorithm is used to place and migrate the threads.

Different combinations of these memory and thread placements were tested.
Results of four class C NPB-OMP codes were selected to be shown in this paper:
lu.C, sp.C, bt.C and ua.C. Benchmarks were compiled with gcc and O2 opti-
misation. This selection was made according to three following criteria: First,
these are codes with different memory access patterns and different computing
requirements. The DyRM model was used to select two benchmarks with low
flopsB (lu.C and sp.C) and two with high flopsB (bt.C and ua.C). Second,
since the execution times of these codes are similar, they remain in concurrent
execution most of the time. This helps studying the effect of thread migrations.
Third, they are representative to understand the behaviour of our proposal.

Each test was executed on the four nodes, combined as four processes of the
same code that produced four combinations, named 4 lu.C, 4 sp.C, 4 bt.C, and
4 ua.C, and four processes of different codes, that produced one combination
named (lu.C/sp.C/bt.C/ua.C). Tables 2 and 3 show the results for servers A
and B, respectively. The times for all benchmarks of lu.C/sp.C/bt.C/ua.C
are shown, whereas only the times of the slowest instances are shown for the
four equal benchmarks. A graphical comparison is shown in Fig. 1, where times
of each test are normalised to the time of a normal OS execution, the free
memory placement with OS thread placement, with times in the first column of
Tables 2 and 3 are shown as a percentage. A percentage greater that 100 means
a worse execution time, while a result under 100 shows a better execution time.
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Table 2. Times for four NAS benchmarks in server A. When all benchmarks are of the
same kind only the time of the slowest is shown. Best time on each row is remarked in
bold. Best time for each memory policy is shown in italics.

Test Time (s)

Benchmarks Free Direct Interleaved

OS IMAR2 OS Pinned IMAR2 OS Pinned IMAR2

lu 220.24 245.05 344.82 210.00 223.33 300.55 428.41 310.68

lu.C/sp.C
bt.C/ua.C

sp 235.53 238.39 544.63 267.89 267.86 350.73 557.39 367.57

bt 201.69 214.50 321.39 180.77 217.15 271.34 260.46 270.52

ua 197.03 222.02 409.35 190.26 212.27 307.57 316.26 299.89

4 lu.C 215.84 313.24 428.85 212.20 258.43 401.49 452.15 392.84

4 sp.C 287.49 324.00 1397.28 267.71 323.59 616.40 763.88 610.91

4 bt.C 185.37 200.70 395.95 182.29 207.21 241.76 246.90 223.57

4 ua.C 203.54 211.21 545.63 190.46 220.65 319.67 313.59 297.92

Table 3. Times for four NAS benchmarks in server B. When all benchmarks are of the
same kind only the time of the slowest is shown. Best time on each row is remarked in
bold. Best time for each memory policy is shown in italics.

Test Time (s)

Benchmarks Free Direct Interleaved

OS IMAR2 OS Pinned IMAR2 OS Pinned IMAR2

lu 305.00 187.00 177.08 176.37 217.99 417.75 355.42 194.01

lu.C/sp.C
bt.C/ua.C

sp 476.00 354.95 474.79 453.60 412.59 494.71 469.10 402.60

bt 276.75 281.97 241.27 229.83 289.74 417.75 222.39 310.07

ua 371.87 326.74 319.47 298.33 335.64 376.74 430.46 363.81

4 lu.C 263.26 341.69 199.27 259.40 326.85 293.02 317.60 449.19

4 sp.C 758.59 592.73 619.26 642.74 569.48 780.20 762.14 627.22

4 bt.C 322.58 291.79 225.72 232.30 267.85 305.67 299.00 280.73

4 ua.C 316.93 378.06 297.95 348.99 364.65 400.66 409.65 358.03

4.1 Server A

Note that the direct memory placement with pinned threads gets the best exe-
cution time (it is below 100), while interleaved memory and pinned threads
is not a good solution in this case. In Fig. 1(a) the results of using IMAR2 with
free memory placement are also shown and, in this case, the migrations do not
improve, but actually decrease performance. This is due to the fact that IMAR2

does not move memory, it depends on the OS for that, so it cannot reach as
good results as the direct memory with pinned threads. Note that in this case
the sp.C benchmark takes a longer time to execute, so it is favoured in the end
by having the whole system for itself; both IMAR2 and OS are able to take
it into account and reach a similar end time. In Fig. 1(c), results with direct
memory are shown. In this case the OS does not migrate threads or memory
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(a) Free memory - A (b) Free memory - B

(c) Direct memory - A (d) Direct memory - B

(e) Interleaved memory - A (f) Interleaved memory - B

Fig. 1. Normalised execution times (in seconds, Y axis) against free - OS for all tests

taking into account that the benchmarks have their memory on just one node,
so it results in worse performance; meanwhile the IMAR2 migrations are able to
move the threads to their correct location and performance does not suffer much.
In Fig. 1(e), the results with interleaved memory are shown. Neither in this
case is the OS able to fix the memory or thread placement, and results are not
worse that leaving the OS alone; IMAR2 migrations are able to improve the OS
somewhat, but, since they cannot move the memory, the margin for improve-
ment is low. In conclusion, in this system, while migrations may improve the
OS in certain cases, the OS does a good work and there is little margin for
improvement.

4.2 Server B

Figure 1(b) shows that global performance is greatly improved when different
benchmarks run concurrently compared to the OS scheduling when memory
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policy is free. Improvements reach up to 38% the individual execution times,
and up to 25% in total execution time. Note that, a migration strategy has
more chances for improving performance when different processes are executed,
as they may have different memory requirements. When a set of instances of
the same benchmark is executed, results depend heavily on the behaviour of
the code. As mentioned before, the influence of migrations is huge in 4 sp.C,
since memory latency is critical. The case for 4 bt.C is similar, which improves
too. For 4 lu.C and 4 ua.C, memory saturation makes almost impossible to
improve the results, and even migrations cause a performance slowdown. When
the memory is directly mapped to a node, see Fig. 1(d), OS outperforms the
pinned scheduling in many of the cases. Due to the work balance, OS mitigates
the possible memory congestion caused when all the data is placed in a single
memory node. Is must be noted that in this situation IMAR2 improves the
execution times of sp.C, the most memory intensive benchmark. Finally, when
the Interleaved strategy for memory is used, Fig. 1(f), IMAR2 succeeds in
achieving the best performance in the memory intensive benchmarks, thanks to
a better thread placement through the cores of the server.

5 Conclusions

Thread and data allocation significantly influence the performance of modern
computers, being this fact particularly true in NUMA systems. When the dis-
tribution of threads and data is far from being the optimum, the OS by itself
is not able to optimise it. In this paper, a dynamic thread migration algorithm
to deal with this issue is proposed. It is based on the optimisation of the opera-
tional intensity, the GIPS, and the memory latency, parameters that define the
3DyRM model. The proposed technique improves execution times when thread
locality is poor and the OS is unable to improve thread placement in runtime.

In this paper, we define a product that combines the three 3DyRM parame-
ters in a single value, which can be considered a fair representation of the whole
performance of the system in terms of locality and affinity. To optimise this value,
we propose a migration algorithm, named IMAR2, based on a weighted lottery
strategy. Hardware counters allow us to obtain information about the perfor-
mance of each thread in the system in runtime with low overhead. IMAR2 uses
this information to quantify the 3DyRM parameters and then performs thread
migration and allocation in runtime. Using benchmarks from the NPB-OMP,
we evaluate IMAR2 in a variety of scenarios. Results show that our algorithm
improves execution time by up to 25% in realistic scenarios in terms of local-
ity and affinity. Besides, only small performance losses were obtained in cases
where the thread configuration was initially good. Rollbacks and changes in the
time between migrations are mechanisms to adapt dynamically to the current
behaviour of the system as a whole. These provide better results in cases where
migrations are unnecessary, while still improving the performance in cases with
low initial performance.
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Several improvements might be considered as future work, like a precise mea-
surement of FLOPS, including vector extensions, that could improve both per-
formance estimation and migration decisions. Also, some modifications of the
current objective function might be explored, like weighing its parameters or
even testing different functions. Finally, other migration algorithms could be
considered, maybe based on stochastic scheduling, optimisation techniques, or
other state of the art approaches.
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Abstract. Using large computer systems such as HPC clusters up to
their full potential can be hard. Many problems and inefficiencies relate
to the interactions of user workloads and system-level policies. These
policies enable various setup choices of the resource management system
(RMS) as well as the applied scheduling policy. While expert’s assess-
ment and well known best practices do their job when tuning the perfor-
mance, there is usually plenty of room for further improvements, e.g., by
considering more efficient system setups or even radically new scheduling
policies. For such potentially damaging modifications it is very suitable to
use some form of a simulator first, which allows for repeated evaluations
of various setups in a fully controlled manner. This paper presents the
latest improvements and advanced simulation capabilities of the Alea job
scheduling simulator that has been actively developed for over 10 years
now. We present both recently added advanced simulation capabilities
as well as a set of real-life based case studies where Alea has been used
to evaluate major modifications of real HPC and HTC systems.

Keywords: Alea · Simulation · Scheduling · HPC · HTC

1 Introduction

The actual performance of a real RMS depends on many variables that include
the type (mix) of users’ workloads (e.g., parallel vs. sequential jobs, short vs.
long jobs), applied job scheduler and its scheduling algorithm (e.g., trivial First
Come First Served (FCFS) or backfilling [14]) and also additional system con-
figuration that typically defines job mapping to queues and their priorities and
various operational limits (e.g., max. number of CPUs available to a given user).
Therefore, designing a proper configuration is the most important, yet truly
daunting process. Due to the complexity of the whole system even straightfor-
ward (conservative) changes in the configuration of the production system can
have highly unexpected and often counterintuitive side effects that emerge from
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the mutual interplay of various policies and components of the RMS and sched-
uler [10]. Therefore, simulators that can emulate a particular production system
and its configuration represent highly useful tools for both resource owners, sys-
tem administrators and researchers in general.

Alea jobs scheduling simulator has been first introduced in 2007 as a basic
simulator and underwent a major upgrade in 2010 [9] that mainly focused on
improving the rather slow simulation speed and also introduced some visualiza-
tion capabilities. In 2016, Alea was the first mainstream open source simulator
to enable the use of so called dynamically adapted workloads, where the perfor-
mance of the simulated scheduler directly influences the submission rates (arrival
times) of jobs from the workload [22], providing an important step to mimic the
natural user feedback to the system performance [12].

Since then, many new features have been implemented and the simulator
has been successfully used for various purposes, both as a purely research tool as
well as when testing new setups and new scheduling policies for production HPC
and HTC systems. The main contribution of this paper is that (1) we describe
recent improvements in the simulator, that allow for truly complex simulations
that involve several detailed setups that correspond to typical real-life based
scenarios, (2) we describe the recent speedup of the simulator that enables us
to run truly large-scale simulations involving millions of jobs and thousands of
nodes that complete in just a few hours, (3) we compare the performance of Alea
with existing simulators, and (4) we provide several real-life based case studies
where Alea has been used to develop and evaluate effects of major modifications
of real HPC and HTC systems.

In Sect. 2 we provide a brief overview of existing related work. Next, Sect. 3
shows the current design of Alea and its major features and simulation capabil-
ities. Section 4 presents several real-life examples demonstrating how Alea has
been used in practice in order to improve the performance of production systems.
Finally, we conclude the paper in Sect. 5.

2 Related Work

Throughout the years, there have been many grid, HPC and cloud simulators.
In most cases, each such simulator falls into one of three main groups. The
first group represents ad hoc simulators that are built from scratch. Those
include, e.g., the recent AccaSim or Qsim. AccaSim is freely available library
for Python, thus compatible with any major operating system, and executable
on a wide range of computers thanks to its lightweight installation and light
memory footprint [5]. Qsim is an event-driven scheduling simulator for Cobalt,
which is an HPC job management suite supporting compute clusters of the IBM
BlueGene series [21]. It is using exactly the same scheduling and job allocation
schemes used (or proposed) for Cobalt and replays the job scheduling behav-
ior using historic workloads analyzing how a new scheduling policy can affect
system performance. Still, both simulators are somehow limited. Qsim is aiming
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primarily on BlueGene-like architectures, while AccaSim’s capabilities (e.g., sup-
ported scheduling policies) are still rather limited as of late 20191.

Second group of simulators is typically using some underlying simulation
toolkit, e.g., SimGrid, GridSim or CloudSim. This group is represented, e.g., by
the recent Batsim, Simbatch or GSSIM [3]. Batsim is built on top of SimGrid [4].
It is made such that any event-based scheduling algorithm can be plugged to
it and tested. Thus, it allows to compare various scheduling algorithms from
different domains. Such schedulers must follow a text-based protocol to commu-
nicate with Batsim properly. In the paper on Batsim [4], this is demonstrated
by using OAR resource manager’s scheduler with the Batsim simulator [4]. This
is certainly a very interesting feature adding to the realism of the simulations.
Still, it is not very straightforward to use existing schedulers in this way as they
are typically tightly coupled with the remaining parts of a given resource man-
ager and cannot be easily used in a standalone fashion. Simbatch and GSSIM [3]
were using SimGrid and Gridsim respectively, but their development is currently
discontinued for many years.

Finally, the last group typically uses some real-life RMS executed in a sim-
ulation mode. For example, the ScSF simulator [16] emulates a real system by
using Slurm Workload Manager inside its core to realistically mimic the real
RMS. ScSF extends an existing Slurm Simulator [18], improving its internal
synchronization to speed up its execution. Also, it adds the capability to gen-
erate synthetic workloads. Similar “simulation mode” was supported in Moab
in the past2 but has been discontinued in the recent versions. In all cases, sim-
ulators using a real RMS cannot process workload as quickly as the simulators
from the first two groups. This is caused by the fact that these simulators must
follow the complex timing model of a real RMS (see Sect. 3.4).

Alea simulator, which will be thoroughly described in the next section, rep-
resents the second group of simulators using an underlying simulation toolkit.
The major weakness of Alea is that it cannot use an existing scheduler and/or
RMS. Instead, the RMS/scheduler must be simulated using Alea and GridSim.
While this fact can be somehow limiting in certain cases, Alea offers a large set
of features that mimic the functionality of real schedulers (see Sect. 3). At the
same time, it allows to simulate large workloads and big systems in a very com-
petitive time (see Sect. 3.4) while remaining fully deterministic. This is not the
case for simulators using real RMS that are subject to varying “system jitter”
from the used RMS [18]. The aforementioned list of existing simulators is not
exhaustive and more details can be found in [5,9].

3 Architecture and Major Functionality

Alea is platform-independent event-driven discrete time simulator written in
Java. It is built on the top of the GridSim simulation toolkit [20]. GridSim pro-
vides the basic functionality to model various entities in a simulated computing
1 https://accasim.readthedocs.io/.
2 http://docs.adaptivecomputing.com/mwm/archive/6-0/2.5initialtesting.php.

https://accasim.readthedocs.io/
http://docs.adaptivecomputing.com/mwm/archive/6-0/2.5initialtesting.php
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system, as well as methods to handle the simulation events. The behavior of
the simulator is driven by an event-passing protocol. For each simulated event—
such as job arrival or completion—one message defining this event is created. It
contains the identifier of the message recipient, the type of the event, the time
when the event will occur and the message data. Alea extends this basic Grid-
Sim’s functionality and provides a model allowing for detailed simulation of the
whole scheduling process in a typical HPC/HTC system. To do that, Alea either
extends existing GridSim classes (e.g., GridResource or AllocationPolicy)
or it provides new classes on its own, especially the core Scheduler class and
classes responsible for data parsing and collection/visualization of simulation
results. Figure 1 shows the overall scheme of Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator. The blue color denotes recently added or heavily upgraded
components of the simulator.

Fig. 1. Main parts of the Alea simulator (blue color denotes new functionality). (Color
figure online)

The main part of the simulator is the centralized job scheduler. The scheduler
manages the communication with other parts of the simulator. Also, it main-
tains important data structures such as job queue(s). Job scheduling decisions
are performed by scheduling algorithms that can be easily added using existing
simple interfaces. Furthermore, scheduling process can be further influenced by
using additional system policies, e.g., the fair-sharing policy which dynamically
prioritizes job queue(s). Also, various limits that further refine how various job
classes are handled are supported by Alea. Additional parts simulate the actual
computing infrastructure, including the emulation of machine failures/restarts.
Workload readers are used to feed the simulator with input data about jobs being
executed and the simulator also provides means for visualization and generation
of simulation outputs. Alea is freely available at GitHub [1].

The primary goal of our job scheduling simulator is to allow for realistic
evaluation of new scheduling policies or new setups of computing systems. For
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this purpose, it is necessary to model all important features that have significant
impact on the performance of the system. Our own “hands on” experience from
operating production systems have taught us that many promising “theoretical”
works based on simulations are not usable in practice, due to the overly simplified
nature of performed simulations. Often, researchers focus solely on particular
scheduling algorithm while ignoring additional system-related constraints and
policies. However, production systems use literally dozens of additional parame-
ters, rules and policies that significantly influence the scheduler’s decisions and
thus the performance of the system [10,17]. Therefore, following subsections pro-
vide an overview of the advanced simulation capabilities that make Alea a very
useful tool for detailed simulations of actual systems.

3.1 Detailed System Simulation Capabilities

As we have observed in practice, system performance can be largely affected
by the interactions of various components and parameters of an actual RMS.
While their nature or scope can be basic and limited, they can easily turn a well
functioning system into a troublesome one. Therefore, the simulator should be
able to mimic these features within the simulation. These features include:

– queues and their priorities, constraints and various limits
– quotas limiting user CPU usage
– mechanisms to calculate job priorities such as fair-share
– common scheduling algorithms aware of aforementioned features

Queues, Limits and Quotas. First of all, Alea allows to specify the number
of job queues, their names, priorities and queue-related constraints such as the
maximum number of CPUs that can be used by jobs from that queue at any given
moment. Multiple queues are common in systems with heterogeneous workloads.
Here, system resources are usually partitioned into several (sometimes overlap-
ping) pools, where each pool has a corresponding queue. Users’ workloads (jobs)
are then mapped to these queues. Queue limits then avoid potentially dangerous
situations such as saturation of the whole system—either with jobs from a single
user, or with a single class of jobs [7]. For example, it would be very unwise to
fill the whole system with long running jobs as this would cause huge wait times
for shorter jobs. Also users and/or groups are often subject to a upper bound
on the amount of resources they can use simultaneously. For this purpose, Alea
now provides CPU quotas, that guarantee that a user/group will not exceed the
corresponding maximum allowed share of resources [2].

Fair-Sharing. Production systems—instead of default job arrival order—often
use some priority mechanism to dynamically prioritize system users. This is
typically done by fair-sharing. We provide several variants of fair-sharing mech-
anisms that are used to prioritize jobs (users) within queue(s) in order to guar-
antee user-to-user fairness. Fair-share mechanism dynamically adjusts job/user
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priorities such that the use of system resources is fairly balanced among the
users [7]. We support both basic fair-sharing mechanisms that only reflect CPU
usage as well as more complex multi-resource implementations3 which also reflect
memory consumption.

Scheduling Algorithms. Scheduling algorithms play a critical role in RMS.
Alea supports all mainstream algorithms that can be typically observed in prac-
tice, starting with trivial FCFS, Shortest Job First and Earliest Deadline First
and continuing to more efficient solutions such as EASY backfilling or Conser-
vative backfilling [14]. Alea also supports schedule optimization methods, that
can be used to further improve initial job schedules as prepared by, e.g., the
Conservative backfilling policy. Our optimization methods are based on meta-
heuristics and can use various objective functions to guide the metaheuristic
toward improved schedule [8]. Importantly, in the recent release we provide sev-
eral job walltime predictors, that can automatically refine (inaccurate) user-
provided walltime estimates in order to improve the precision of scheduling deci-
sions.

3.2 Dynamic Workloads

There is one more part which plays a significant role in job scheduling—the work-
load being processed by the system or the simulator. Alea supports two ways
how workload can be fed into the simulator. First, it uses traditional “workload
replay” mode, where jobs are submitted based on a historic workload description
file (log) and their arrival times are based on the original timestamps as recorded
in the log. Alternatively, Alea allows to use so called dynamic workload adapta-
tion, where job arrival times are not fixed but can change throughout the course
of the simulation, depending on the scheduler’s performance. For this purpose,
Alea provides a feedback loop that communicates with the workload reader and
informs it upon each job completion. Using this data, the workload reader can
either speed up or postpone job submissions for simulated users. This complex
behavior mimics real world experience, where users react to the performance of
the scheduler. In other words, real-life job arrival times are always correlated to
the “user experience”, thus it is unrealistic to use plain “workload replay” mode,
because the results will be somehow skewed by the “embedded” influence of the
original scheduler that is captured in the historic workload log, i.e., in the job
arrival time pattern. Alea’s implementation is based on the work of Zakay and
Feitelson [22], but it also allows to write your own workload adaptation engine,
having different job submission adaptation logic.

3.3 Simulation Speed

Since the start of Alea project, simulation speed was our second most impor-
tant goal right after the capabilities of our simulator. During the years, Alea
3 For example, we support Dominant Resource Fairness (DRF) inspired fair-share [6].
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Fig. 2. Number of completed jobs (log. scale) during 1 hour-long simulation using dif-
ferent implementations of SpaceShared policy and (un)optimized queue handling.

has introduced several improvements into the GridSim’s event-driven simulation
model that significantly speed up the simulation. Most changes relate to the way
job execution is modeled in the classes that implement job allocation policy on a
modeled physical system (see, e.g., GridSim’s SpaceShared class). As originally
designed, this model was not very time-efficient. Upon each start of a job j,
an internal event was generated that was scheduled to be delivered at the time
Tcompl(j), which is the time when such job would complete4. Although this event
at Tcompl(j) only corresponds to that job j, GridSim would always scan all cur-
rently executed jobs to check whether those are completed or not. Obviously, this
was not very time efficient way how to proceed with a simulation. Moreover, with
each such check GridSim would also generate one additional internal event to
trigger a similar check (delayed by a predefined time constant) to further assure
that no jobs are “forgotten” by the engine. However, this additional event gen-
erator was producing exponential-like increase of events that the GridSim core
had to handle, slowing down the simulation extremely. While these inefficiencies
are tolerable when dealing with small systems (hundreds of CPUs and few thou-
sands of jobs), they became a real show-stopper for large simulations involving
tens of thousands of CPUs and millions of jobs.

Therefore, in this new edition of Alea we have simplified the whole job pro-
cessing model such that each job now only needs one internal event to be pro-
cessed correctly. This did not change the behavior of the SpaceShared policy, but
it introduced a huge speedup of the whole simulator. Also, we have improved the
speed of scheduling algorithms. Simulations that struggle with large job queue
sizes (plenty of waiting jobs) are often slowed down by the scheduling algorithm
which repeatedly traverses long job queues, trying to schedule a new job. With
long queues, this may slow down the simulation significantly, especially when the
algorithm itself is not a trivial one. Therefore, we have introduced a more efficient
queue handling mechanism which—based on user specified parameters—limits

4 Tcompl(j) = Tcurrent + Truntime(j).
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the number of jobs that are checked at each scheduling run. This modification
brought another huge improvement.

Figure 2 shows an example of the speedup obtained by our techniques. It
shows the number of completed jobs (in log. scale) that were simulated during
one hour. This experiment involved large system with over 33K CPU cores and
many peaks in the job queue that reached up to 5 K of waiting jobs. The results
of our optimized event-processing mechanism and the queue handling mechanism
are compared to the original GridSim’s implementation, with the “exponential”
event generator either turned on (denoted as “Gridsim + additional events”)
or off (“no additional events”). Clearly, there is a huge difference when the
optimized event-processing mechanism is introduced (denoted as “Alea”). Even
bigger improvement is reached once the more efficient queue handling mechanism
is used (“Alea + improved queue handling”). This effect is amplified by the fact
that this experiment often experienced very long queue of waiting jobs.

3.4 Simulation Throughput and Speedup Comparison

To give the speed of our simulator into a context, we have studied the reported
speeds of different simulators and created a simple comparison of their perfor-
mance. We have used the recent published data about Slurm Simulator [18],
Batsim [13] and ScSF [16]. If possible, we show both the achieved speedup as
well as the throughput of the simulator. The speedup is the ratio of the origi-
nal makespan5 to the wall-clock time requested by the simulator to finish the
experiment. Throughput is measured as the average number of jobs simulated
(completed) in one minute. Since the speedup and throughput also depends on
the “size” of the experiment [18], we report the total number of CPU cores and
jobs being simulated (if available). The results are shown in Table 1 and show
the impressive speed and throughput of Alea. While Batsim reports a very nice
speedup, it must be noted that this result was achieved on a very small problem
instance (800 jobs and 32 cores) while Alea’s results were achieved in a truly
large setup (2,7M jobs and 33 K cores). Further comparisons (featuring Alea,
AccaSim and Batsim) can be found in the AccaSim report [5].

Table 1. Throughput and speedup of various simulators.

Jobs Cores Makespan (h) Runtime (s) Speedup Throughput (jobs/min)

Slurm Sim 65,000 7,912 571 15,866 130 246

ScSF N/A 322 168 43,200 14 N/A

Batsim 800 32 4 30 400 1,600

Alea 2,669,401 33,456 744 10,800 248 14,830

5 Makespan denotes the time needed to process the workload in a real system.
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3.5 Visualization

Alea offers Visualizator class that provides crucial methods to display graph-
ical outputs during a simulation. Several metrics and outputs that are generally
useful, e.g., for debugging purposes are available by default, including the visu-
alization of created job schedule and several popular objectives. An example of
such graphical output is captured in Fig. 3, which shows the average system uti-
lization, number of waiting and running jobs, average cluster utilization and the
number of used, requested and available CPUs.

Fig. 3. Alea’s visualization output showing various metrics.

Figure 4 shows the newly available visual representation of a job schedule as
constructed by the scheduler. This feature is very useful especially for debugging
purposes or when tuning a new algorithm. However, for larger systems the sched-
ule cannot be reasonably displayed due to the screen resolution limitation. In
this (cropped) example the vertical y-axis shows 112 CPUs of two clusters, and
the x-axis denotes the planned start/completion times. The time is not to scale
(linear) in order to save space. Instead, the horizontal axis uses fixed lengths
between two consecutive events. An event represents either planned job start or
job completion. Using this trick, the schedule can typically display rather long
schedules (several days) while fitting within the limits of one screen6.

4 Notable Usages

In this section we present four examples where Alea has been used to model an
existing system and analyze the impact of new scheduling approaches. Notably,
the two latter examples (Sects. 4.3 and 4.4) were achieved with the recently
upgraded Alea described in this paper.
6 In this case the schedule shows job-to-CPU mapping covering ∼3 days.
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Fig. 4. Alea’s new visualization feature showing constructed job schedule.

4.1 MetaCentrum Queue Reconfiguration

The first example is a major queue reconfiguration that took place in MetaCen-
trum, which is the largest Czech provider of distributed computing facilities for
academic and scientific purposes. In this case, Alea has been used to evaluate the
impact of new queue setup, where the goal has been to increase fairness, system
utilization and wait times across different classes of jobs. Existing conservative
setup with 3 major queues (short, normal and long jobs) and rather constrain-
ing limits concerning the maximum allowed number of simultaneously running
long jobs has been replaced with an improved design introducing new, more
fine-grained queues with more generous limits. The promising effect observed in
the simulations was then also validated in practice. With the new setup being
introduced in January 2014, the overall CPU utilization has increased by 43.2%
while the average wait time has decreased by 17.9% (4.4 vs. 3.6 h) [11].

4.2 Plan-Based Scheduler with Metaheuristic Optimization

In July 2014, CERIT Scientific Cloud started to use a unique Torque-compatible
scheduler that—instead of queuing—used planning and metaheuristics to build
and optimize job schedules. This new planning-based scheduler has been first
thoroughly modeled and refined in Alea and then remained in operation until
2017. It was a successful scheduler as it increased the avg. CPU utilization by
9.3% while decreasing the avg. wait time and the avg. bounded slowdown by
36.7% and 79.4%, respectively [8].
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4.3 Scheduling with Advance Data Staging

The I/O subsystem is an increasing storage bottleneck on HPC Systems. The
ADA-FS project [15] tries to close the bottleneck with deploying an on-demand
file system and staging the data in advance to the allocated nodes. In a recent
paper [19], Alea has been used to study the suitability of current mainstream
scheduling algorithms such as FCFS and backfilling to accurately predict target
nodes where a waiting job will be executed. Such a prediction is crucial when data
is staged in advance or private file system is deployed prior to actual computation
(while a job is still waiting). In this paper, we have demonstrated that current
schedulers relying on inaccurate user-provided runtime estimates are unable to
make reliable long-term predictions and even short-term predictions (less than
10 min ahead) are not possible for large fractions of jobs (∼50% of jobs).

4.4 Improving Fairness in Large HTC System

In 2019, Alea has been used to model and then reconfigure queue and quota
setup in a large HTC system. This system is shared by two different workloads—
a local user workload and a grid workload that comes from LHC experiments.
The motivation was to increase the fairness toward local users who often have
to wait much longer than those grid-originating jobs (roughly twice as long, on
average). In this work, the recently improved simulation speed of Alea was mostly
important, since the HTC system is rather large (33,456 cores), processing lots of
jobs each month (∼2.7 millions). Using Alea, we were able to model the system
and evaluate new setups for the system’s queues and the per-group CPU quotas.
This new setup allowed for improved fairness for local users, by better balancing
their wait times with the wait times of grid-originating jobs [2].

5 Conclusion and Future Work

This paper has presented the recently upgraded complex job scheduling simu-
lator Alea. We have demonstrated its capabilities and usefulness using real-life
examples. Importantly, we have shown that the simulator is capable to simulate
large systems and execute large workloads in an acceptable time frame. Alea can
be freely obtained at GitHub [1] under the LGPL license.
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12. Klusáček, D., Tóth, Š., Podolńıková, G.: Complex job scheduling simulations with
Alea 4. In: Ninth EAI International Conference on Simulation Tools and Techniques
(SimuTools 2016), pp. 124–129. ACM (2016)

13. Mercier, M.: Batsim JSSPP presentation (2016). https://gitlab.inria.fr/batsim/
batsim/blob/master/publications/Batsim JSSPP 2016.pdf

14. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

15. Oeste, S., Kluge, M., Soysal, M., Streit, A., Vef, M.-A., Brinkmann, A.: Exploring
opportunities for job-temporal file systems with ADA-FS. In: 1st Joint Interna-
tional Workshop on Parallel Data Storage and Data Intensive Scalable Computing
Systems (2016)

https://github.com/aleasimulator
https://doi.org/10.1007/978-3-030-29400-7_10
https://doi.org/10.1007/978-3-030-29400-7_10
https://doi.org/10.1007/978-3-319-61756-5_10
http://arxiv.org/abs/1806.06728
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
https://gitlab.inria.fr/batsim/batsim/blob/master/publications/Batsim_JSSPP_2016.pdf
https://gitlab.inria.fr/batsim/batsim/blob/master/publications/Batsim_JSSPP_2016.pdf


Alea – Complex Job Scheduling Simulator 229

16. Rodrigo, G.P., Elmroth, E., Östberg, P.-O., Ramakrishnan, L.: ScSF: a scheduling
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Joanna.Berlinska@amu.edu.pl

Abstract. In this work, we analyze scheduling in a star data gathering
network. Each worker node produces a dataset of known size at a possibly
different time. The datasets have to be passed to the base station for
further processing. A dataset can be transferred in many separate pieces,
but each sent message incurs additional time overhead. The scheduling
problem is to organize the communication in the network so that the total
time of data gathering and processing is as short as possible. We show
that this problem is strongly NP-hard, and propose a polynomial-time
2-approximation algorithm for solving it. Computational experiments
show that the algorithm delivers high quality solutions.

Keywords: Scheduling · Data gathering networks · Release times ·
Flow shop · Preemption penalties

1 Introduction

Gathering data is an important stage of many applications. Complex computa-
tions are often executed in distributed systems, and the scattered results have to
be collected and merged. Measurement data acquired by wireless sensor networks
usually cannot be processed by the sensors, due to their limited resources. There-
fore, they have to be passed to a base station, which has sufficient computing
power, energy etc. Thus, efficient scheduling of the data gathering process may
be an important factor influencing the performance of the whole application.

Scheduling in data gathering wireless sensor networks was analyzed on the
grounds of divisible load theory in [8,17]. The studied problem was to assign the
amounts of measurements to the workers, and organize the data transfers, so
as to minimize the total application running time. Maximizing the lifetime of a
network whose worker nodes have limited memory was studied in [1]. Scheduling
algorithms for networks with limited base station memory were proposed in [5].
Data gathering networks whose nodes can compress data before transferring
them were analyzed in [2,15,16]. Minimizing the maximum dataset lateness in
networks with dataset release times was considered in [3,4].
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In this paper, we analyze gathering the results of computations running in
parallel in a star network. Each of the worker nodes releases a dataset containing
the obtained results at a given time. The datasets have to be transferred to the
base station for further processing. Communication preemptions are allowed, but
starting each message requires a startup time. Thus, transferring a dataset in
many separate pieces takes longer than sending it in a single message. At most
one worker can communicate with the base station at a time. Therefore, the
communication network can be seen as a single machine. For each dataset, two
operations have to be executed: first, the dataset has to be transferred over the
communication network, and then it has to be processed by the base station.
Hence, the network works in a two-machine flow shop mode. Our goal is to
minimize the total data gathering and processing time.

Makespan minimization in a two-machine flow shop with job release times
is known to be strongly NP-hard both in the non-preemptive [12] and in the
preemptive [7] scenario. Algorithms for the non-preemptive version of the prob-
lem were proposed, e.g., in [11,18,20]. However, the preemptive variant has not
received much attention so far. Scheduling with preemption penalties was stud-
ied in the context of a single machine in [13,14], parallel machines in [19], and
data gathering networks in [3].

The rest of this paper is organized as follows. In Sect. 2 we present the net-
work model and formulate the scheduling problem. We analyze its complexity
in Sect. 3. In Sect. 4 we propose an algorithm for solving our problem, and prove
that it delivers a 2-approximation of the optimum. The average performance of
the algorithm is tested by means of computational experiments in Sect. 5. The
last section is dedicated to conclusions.

2 Problem Formulation

We study a data gathering network consisting of m worker nodes P1, . . . , Pm,
and a single base station. Node Pj generates dataset Dj of size αj at time rj ,
where r1 ≤ r2 ≤ · · · ≤ rm. Each dataset has to be sent to the base station for
processing, and at most one dataset can be transferred at a time. The commu-
nication capabilities of node Pj are described by communication startup Sj and
unit communication cost Cj . Thus, a message of size x from worker node Pj

to the base station is sent in time Sj + Cjx. Hence, although communication
preemptions are allowed, each additional message used for sending dataset Dj

increases its total transfer time by Sj . After the whole dataset arrives at the
base station, it has to be processed, which takes time Aαj . At most one dataset
can be processed at a time, but the base station can simultaneously process one
dataset and receive another one. Our goal is to organize the dataset transfers
so as to minimize the total time T of gathering and processing the data. To the
best of our knowledge, this problem was not studied in the earlier literature.

For a fixed communication schedule, the order of processing the datasets and
possible processing preemptions do not affect the makespan T , as long as no unnec-
essary idle times appear. Therefore, we assume without loss of generality that the
datasets are processed in the order in which they were received by the base station.
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3 Computational Complexity

In this section, we argue that the analyzed scheduling problem is strongly
NP-hard, and indicate its special cases solvable in polynomial time.

Proposition 1. Makespan minimization in data gathering networks with
dataset release times is strongly NP-hard, even if there are no preemption penal-
ties, i.e. Sj = 0 for j = 1, . . . ,m.

Sketch of Proof. Let us analyze the proof of strong NP-hardness of problem
F2|pmtn, rj |Cmax given in [7]. The proof is achieved by a reduction from the
3-Partition problem. The constructed instance of problem F2|pmtn, rj |Cmax

contains exactly one job i whose second operation takes time p2i = 0. The
release time of job i is ri = T −p1i, where T is the required schedule length, and
p1i is the execution time of the first operation of job i. Thus, in order to obtain a
feasible schedule, job i has to be scheduled as the last job on the first machine, in
time interval [ri, ri+p1i). Note that if we set p2i to an arbitrary positive number,
and increase the schedule length to T ′ = T +p2i, then job i has to be executed in
interval [ri, ri +p1i) on the first machine, and in interval [ri +p1i, T

′) on the sec-
ond machine. Moreover, it has to be the last job executed on the first machine,
because all other jobs have non-zero second operation execution times. Thus,
all the considerations in the proof remain valid, and in consequence, problem
F2|pmtn, rj , p2j �= 0|Cmax is strongly NP-hard.

For any instance of problem F2|pmtn, rj , p2j �= 0|Cmax, we can construct an
equivalent instance of our problem by taking A = 1, αj = p2j , Sj = 0, Cj = p1j

p2j

for j = 1, . . . , m. Hence, our scheduling problem is also strongly NP-hard. ��
If A = 0 or if Sj = Cj = 0 for j = 1, . . . ,m, our problem reduces to a single-

machine scheduling problem 1|rj |Cmax. Therefore, it can be solved in O(m log m)
time by sending and processing the datasets in the order of nondecreasing release
times. If rj = r for j = 1, . . . ,m, then communication preemptions are not
necessary, and our problem becomes equivalent to F2|pmtn|Cmax, which can
be solved in O(m log m) time by Johnson’s algorithm [10]. Finally, if Sj = 0
and Cj ≤ A for j = 1, . . . , m, then our problem becomes a special case of
problem F2|1-min, pmtn, rj |Cmax, and can be solved in O(m log m) time by the
preemptive shortest remaining transfer time rule [6].

4 Algorithm

Before proposing an algorithm for solving our problem, we will show that there
exist instances such that in each optimum solution, a communication is pre-
empted at a time when no dataset is released.

Proposition 2. An optimum schedule for the analyzed data gathering prob-
lem may require preempting a communication at a moment when no dataset
is released.
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a)

b)

Fig. 1. Schedule structures for the proof of Proposition 2. Dark gray fields depict com-
munication startup time, light gray fields depict data transfer and processing. (a) The
shortest possible schedule under the assumption that communication preemptions take
place only at dataset release times, (b) the optimum schedule.

Proof. Let m = 3, A = 1, (α1, r1, S1, C1) = (1, 0, 1, 6), (α2, r2, S2, C2) =
(3, 2, 1, 1

3 ) and (α3, r3, S3, C3) = (4, 6, 1, 1
2 ). It is easy to check that if com-

munication preemptions are allowed only at dataset release times, the mini-
mum possible schedule length is 15. Still, the optimum makespan 14 can be
achieved by preempting the transfer of D1 at time 4, when no dataset is released
(see Fig. 1). ��

Proposition 2 shows the main difficulty in constructing an exact algorithm for
our problem. Contrarily to the case of similar problems with zero startup times,
we cannot limit ourselves to generating schedules with preemptions taking place
only at dataset release times. Moreover, it is not known what additional time
points should be taken into account. Therefore, we propose an approximation
algorithm, which only preempts transfers at dataset release times.

For each j = 1, . . . , m, and any t > 0, we define a job Kj(t) = (p1j(t), p2j(t))
corresponding to dataset Dj at time t in a given (partial) schedule. If dataset Dj

is not being transferred at time t, and the part of Dj which has not yet been sent
has size α′

j > 0, then p1j(t) = Sj + Cjα
′
j . If α′

j = 0, then p1j(t) = 0. If dataset
Dj is being sent at time t, then p1j(t) is the time left to complete the transfer.
Moreover, p2j(t) = Aα′′

j , where α′′
j is the size of the part of dataset Dj which has

not been processed by time t. Thus, p1j(t) and p2j(t) are the minimum times
necessary to complete the transfer and processing of Dj , respectively.

The idea of our algorithm is based on Johnson’s algorithm for problem
F2||Cmax [10], which, given a set of jobs Kj = (p1j , p2j), arranges first the
jobs with p1j ≤ p2j in non-decreasing order of p1j , and then the remaining jobs
in non-increasing order of p2j . Every time a dataset Dj is released during the
transfer of another dataset Di, we consider a possible preemption if Kj(rj) pre-
cedes Ki(rj) in Johnson’s order. Since each preemption of Di transfer extends
the total communication time by Si, we allow it only if this cost is small in com-
parison to the time until completing the transfer of Di. The maximum acceptable
cost is controlled by parameter γ ∈ [0,∞]. Precisely, our algorithm, which will
be called J(γ), consists in the following scheduling rules.
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1. If the communication network is idle at time t and some datasets are available
(i.e. already released but not fully transferred), we start sending an available
dataset Dj corresponding to job Kj(t) chosen by Johnson’s rule.

2. If dataset Di is being sent at time rj , then Di is preempted by Dj , if Kj(rj)
precedes Ki(rj) according to Johnson’s rule, and Si < γp1i(rj).

Note that for γ = 0, no preemptions are allowed in our algorithm. On the
contrary, if γ = ∞, then our algorithm always follows the preemptive Johnson’s
rule. Since algorithm J(γ) can preempt communications only at dataset release
times, the maximum number of preemptions is m − 1, and the total number
of sent messages does not exceed 2m − 1. Hence, using a priority queue, the
algorithm can be implemented to run in O(m log m) time.

In the remainder of this section, we analyze theoretical performance guar-
antees of our algorithm. The optimum schedule length is denoted by T ∗. For a
given set of jobs A, we denote by TJ(A) the makespan obtained by scheduling
them using Johnson’s algorithm, assuming that they are all available at time 0.
Note that for any t ≥ 0, and any A ⊂ {Kj(t) : 1 ≤ j ≤ m}, we have

TJ(A) ≤ T ∗. (1)

Proposition 3. For any γ ∈ [0,∞], J(γ) is a 2-approximation algorithm for
the analyzed scheduling problem.

Proof. Let T be the makespan obtained by algorithm J(γ). We will analyze the
following two cases.
Case 1: There exists a dataset Di whose transfer starts at time rm. Hence,
the set of jobs A = {Kj(rm) : Dj is not yet fully processed at time rm} will be
scheduled without preemptions, according to Johnson’s rule, starting at time
rm. Thus, T − rm = TJ(A), and since rm ≤ T ∗, we obtain by (1) that

T = rm + TJ(A) ≤ 2T ∗. (2)

Case 2: No dataset transfer starts at time rm. In other words, there exists
a dataset Di whose last part starts being sent at time t0 < rm, and arrives
at the base station at time ti > rm. We divide the set of jobs {Kj(t0) : j �=
i, Dj has not yet been sent by time t0} into two subsets. Subset A contains the
jobs which would precede job Ki(t0) according to Johnson’s rule, and subset B
contains the remaining jobs. Note that for any Kj(t0) ∈ A, we have rj > t0,
as otherwise the transfer of Dj would precede sending Di. Let C = {Kj(t0) :
Dj has been sent but not processed by time t0}. Algorithm J(γ) schedules jobs
in sets A and B according to Johnson’s rule. In consequence, the jobs from A
precede the jobs from B. Datasets corresponding to set C are processed before
Di (see Fig. 2a). As we explained in Sect. 2, the order of processing the data
does not affect the makespan unless unnecessary idle times occur. Thus, without
changing T , we can reorder the processing intervals as follows. First, we schedule
processing datasets corresponding to jobs from A and B, starting at time ti and
using Johnson’s rule. Then, we schedule processing dataset Di in consecutive
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idle intervals starting at time ti. Finally, processing datasets corresponding to
jobs from set C is scheduled in idle intervals starting at time t0. The resulting
schedule is presented in Fig. 2b. If the last dataset to be processed corresponds
to a job from set C, then data are processed in the whole interval [t0, T ) without
idle times. Hence,

T ≤ t0 + A

m∑

j=1

αj ≤ rm + T ∗ ≤ 2T ∗. (3)

It remains to analyze the case when processing of datasets corresponding to C
finishes before T . Without loss of generality, we can assume that C = ∅ (Fig. 2c).

a) b)

c) d)

Fig. 2. Schedule modifications for the proof of Proposition 3. (a) The original schedule
(from time t0), (b) schedule after reordering processing intervals, (c) schedule under
the assumption that C = ∅, (d) schedule after deleting interval [ti, tA).

Let tA be the time when processing datasets corresponding to set A fin-
ishes. Since all these datasets are released after time t0, and they are optimally
scheduled by Johnson’s algorithm in interval [ti, tA), we have

t0 + tA − ti ≤ T ∗. (4)

Let us now remove the intervals [0, t0) and [ti, tA) from the schedule (see Fig. 2d).
The length of the remaining schedule part is T − tA + ti − t0, and is not greater
than the minimum time necessary to execute the jobs in set {Ki(t0)}∪ B. Indeed,
the jobs are ordered by Johnson’s rule, and moreover, some processing intervals
of Di and communication intervals of B may be deleted. Hence, by (1),

T − tA + ti − t0 ≤ TJ({Ki(t0)} ∪ B) ≤ T ∗. (5)

Combining (5) with (4), we obtain

T = (t0 + tA − ti) + (T − tA + ti − t0) ≤ 2T ∗. (6)

Thus, algorithm J(γ) delivers a 2-approximation of the optimum solution. ��
Proposition 4. Approximation ratio 2 is tight for algorithm J(0).
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Proof. Consider the following instance: A = 1, m = 2, (α1, r1, S1, C1) =
(1, 0, 0, k), (α2, r2, S2, C2) = (k, 1

2 , 0, 1
k ). Algorithm J(0) transfers dataset D1 in

interval [0, k) and processes it in [k, k+1). Dataset D2 is sent in interval [k, k+1)
and processed in [k + 1, 2k + 1). The resulting schedule length is T = 2k + 1. In
the optimum schedule, the transfer of D1 is preempted at time r2 = 1

2 . Dataset
D2 is transferred in interval [12 , 3

2 ) and processed in [32 , k+ 3
2 ). Sending D1 is com-

pleted in interval [32 , k+1), and this dataset is processed in interval [k+ 3
2 , k+ 5

2 ).
Thus, T ∗ = k + 5

2 . Hence,

lim
k→∞

T

T ∗ = lim
k→∞

2k + 1
k + 5

2

= 2, (7)

which ends the proof. ��
Proposition 5. Approximation ratio 2 is tight for algorithm J(∞).

Proof. Let A = 2, m = 2, (α1, r1, S1, C1) = (1, 0, k, 3), (α2, r2, S2, C2) =
(1, k, 0, 1). At time r2 = k, we have jobs K1(k) = (3, 2), and K2(k) = (1, 2).
Hence, Johnson’s rule chooses job K2(k), and a preemption is made. In conse-
quence, dataset D2 is sent in interval [k, k + 1) and processed in [k + 1, k + 3).
The transfer of D1 is completed in [k+1, 2k+4), because another startup time is
required. Then, D2 is processed in interval [2k+4, 2k+6), which yields schedule
of length T = 2k + 6. Still, in the optimum schedule there is no preemption, D1

is transferred in [0, k + 3) and processed in [k + 3, k + 5), while D2 is sent in
[k + 3, k + 4) and processed in [k + 5, k + 7). Hence, T ∗ = k + 7 and

lim
k→∞

T

T ∗ = lim
k→∞

2k + 6
k + 7

= 2. (8)

The claim follows. ��
To finish this section, let us note that a very simple algorithm, which sched-

ules all jobs corresponding to datasets using Johnson’s algorithm, starting at
time rm, also achieves approximation ratio 2. This can be proved using the argu-
ment given in Case 1 of the proof of Proposition 3. However, it can be expected
that J(γ) will deliver much better approximations than such an algorithm for
most instances. The quality of the results obtained by J(γ) for random test cases
will be the subject of the next section.

5 Computational Experiments

In this section, we analyze the performance of our algorithm for different val-
ues of γ and instance parameters. The algorithm was implemented in C++ in
Microsoft Visual Studio. We constructed instances with m ∈ {10, 20, . . . , 100}
worker nodes. The unit processing time was A = 1. Dataset sizes αj were selected
randomly from interval [1, 100]. Preliminary experiments showed that if unit
communication times Cj are not very diversified, or if all of them are signif-
icantly smaller (or greater) than A, then it is easy to obtain good schedules.
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Therefore, in order to construct demanding instances, we selected basic dataset
transfer times tj randomly from [1, 100], and then set Cj = tj/αj . For a given
value Smax ∈ {0, 1, . . . , 10}, the startup times Sj where selected randomly from
[0, Smax]. Note that if the largest release time rm is very big, then it determines
to a large degree the schedule length. Moreover, if rm is small, then the instance
is easy, because a big number of jobs which are not completed at time rm, are
afterwards scheduled optimally by Johnson’s rule. Therefore, we computed the
minimum possible transfer time tC =

∑m
j=1(Sj + Cjαj) and generated release

times rj as follows. Dataset D1 was released at time r1 = 0, and each next
release time was computed as rj = rj−1 + δj

tC
m , with δj selected randomly from

[0.5, 1.5]. For each combination of m and Smax, 100 instances were constructed.
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Fig. 3. Solution quality vs. m. (a) Smax = 3, (b) Smax = 8.

In order to assess the quality of the obtained schedules, we computed
lower bounds on the optimum makespans as follows (cf. [20]). First, we take
into account the lower bounds on the times necessary to transfer and pro-
cess datasets released not earlier than rk, for k = 1, . . . ,m. Thus, we set
LB1 = maxm

k=1{rk + TJ({Kj(rk) : j ≥ k})}. Then, we consider scheduling
in a network with parallel communications allowed. The resulting problem is
1|rj |Cmax with updated job release times r′

j = rj + Sj + Cjαj and processing
times pj = Aαj . The optimum makespan LB2 is computed by sorting the jobs
according to non-decreasing release times r′

j . The last lower bound is obtained
by considering parallel processing of datasets. We also assume here that the
total job transfer time is Sj + Cjαj , and no additional preemption penalties are
incurred. Thus, we obtain a preemptive single-machine problem with delivery
times Aαj , which can be solved by the extended Jackson’s rule: at any time we
schedule an available job with the longest delivery time [9]. The resulting opti-
mum makespan is denoted by LB3. Finally, we set LB = max{LB1, LB2, LB3},
and measure schedule quality by the ratio T/LB. Thus, a smaller number means
better quality.
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In the first set of experiments, we analyze the influence of the number of nodes
m on the quality of produced schedules. We present here the results obtained for
Smax = 3 and Smax = 8 (see Fig. 3). All the analyzed algorithm variants deliver
very good results. The average relative errors do not exceed 3.5%. When Smax is
small, the differences between algorithms J(∞) and J(0.2) are negligible. Hence,
the corresponding lines overlap in Fig. 3a. For small m, the algorithms allowing
many preemptions return significantly better results than J(0). However, when
m increases, the instances become easier to solve, and the differences between the
algorithms get smaller. For larger numbers of nodes, preempting a big fraction of
communications results in a big total startup time overhead. Hence, J(0) is now
closer to the other algorithms, and for m ≥ 60 the average results of algorithm
J(0.05) are slightly better than those obtained for γ ≥ 0.1.
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Fig. 4. Solution quality vs. Smax. (a) m = 40, (b) m = 100.

Figure 3b shows the quality of solutions obtained for Smax = 8. The differ-
ences between the algorithms are now larger than for Smax = 3. We can see
again that the makespans obtained for small m are further from LB than for
larger m. For m = 10, the more preemptions we allow, the better results we
get. However, with growing m, the total cost of preemptions for a given γ > 0
gradually increases, and at some point it becomes larger than what we can gain
by switching to sending datasets which Johnson’s algorithm would prefer. Thus,
for m = 100, a larger γ results in a longer schedule. The value of γ which gives
the best solutions changes from ∞ through all the intermediate values to 0 when
m increases from 10 to 100.

We also analyzed the dispersion of the results delivered by our algorithms.
Let us note that a symmetric measure of dispersion may not be a good tool in our
case, since the average solution quality is often close to its lower bound equal to
1. In such a situation, it can be expected that the upside dispersion is larger than
the downside dispersion. Therefore, for each test setting and each algorithm, we
computed the upside and downside semi-deviations of the obtained results. In
most cases, the upside semi-deviation was about twice larger than the downside
semi-deviation. It turned out that the dispersion of the results delivered by all
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algorithms decreases with growing m. The largest semi-deviations were obtained
by algorithm J(0). In tests with Smax = 3 and m = 10, its upside semi-deviation
was 0.042, and its downside semi-deviation was 0.026. However, the maximum
value of the upside semi-deviation in tests with Smax = 3 and m = 20 (also
reached by J(0)) was already 0.02, and it further decreased with growing m.
Thus, we can say that the performance of our algorithm is rather stable.

Figure 4 presents the results obtained for changing Smax and m ∈ {40, 100}.
When Smax is small, the differences between algorithm variants with γ > 0 are
insignificant. All these algorithms obtain better results than the non-preemptive
algorithm J(0). However, when Smax grows, the cost of each preemption becomes
larger, and introducing too many preemptions makes the schedule long. Thus,
the algorithms with γ > 0 lose quality, while J(0) performs better. The value
of m determines the threshold values of Smax at which certain algorithms start
performing better than the others. For example, J(∞) is outperformed by J(0)
for Smax ≥ 8 when m = 40, but already for Smax ≥ 4 when m = 100. The range
of solution quality changes is greater when m is bigger. It is interesting that for
m = 100, the results returned by J(0.05) first get worse as Smax increases to 6,
but then become better again when Smax grows further. Indeed, when startup
times get larger in comparison to data transfer times, it is less probable that a
preemption will be allowed if γ < ∞. Thus, for very big Smax, the performance
of the algorithms with 0 < γ < ∞ becomes similar to that of J(0).

Table 1. Average solution quality vs. Smax.

Smax J(0) J(0.05) J(0.1) J(0.2) J(∞)

0 1.0124 1.0053 1.0053 1.0053 1.0053

1 1.0120 1.0056 1.0056 1.0056 1.0056

2 1.0119 1.0062 1.0061 1.0061 1.0061

3 1.0118 1.0069 1.0066 1.0067 1.0067

4 1.0121 1.0081 1.0078 1.0080 1.0081

5 1.0124 1.0092 1.0085 1.0091 1.0093

6 1.0116 1.0091 1.0084 1.0094 1.0099

7 1.0107 1.0089 1.0091 1.0101 1.0111

8 1.0109 1.0095 1.0092 1.0112 1.0127

9 1.0107 1.0093 1.0087 1.0107 1.0131

10 1.0100 1.0090 1.0092 1.0125 1.0158

All 1.0115 1.0079 1.0077 1.0086 1.0094

The average results obtained for all analyzed values of Smax are presented in
Table 1. Here we take into account instances with all values of m ∈ {10, . . . , 100}.
The best average results for all combinations of Smax and m were obtained by
algorithm J(0.1). Moreover, the only values of Smax for which this algorithm
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did not have the best average over all m, were Smax = 7 and Smax = 10, when
J(0.05) was slightly better. Thus, we conclude that γ = 0.1 is the best choice if
we have no prior knowledge about the instance parameters.

6 Conclusions

In this paper, we analyzed makespan minimization in data gathering networks
with dataset release times and communication preemption penalties. We showed
that this problem is strongly NP-hard, and proposed a 2-approximation algo-
rithm J(γ). Its average performance was tested experimentally. It turned out
that for large random instances, the algorithm performs very well for all ana-
lyzed values of γ. The obtained solutions are at most several percent away from
the lower bound. On average, the best results are achieved when γ = 0.1. As
the schedules obtained for big m are much better than what is guaranteed by
our algorithm’s approximation ratio, an interesting direction for future research
is to investigate its asymptotic performance guarantee. Future work can also
include determining whether approximation ratio 2 is tight for algorithm J(γ)
when γ ∈ (0,∞), as well as searching for polynomially solvable cases of our
scheduling problem, other than the ones discussed in Sect. 3.
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4. Berlińska, J.: Scheduling in a data gathering network to minimize maximum late-
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Abstract. In this paper, a domain decomposition parallel precondi-
tioner for the 4th order multiscale elliptic problem in 2D with highly het-
erogeneous coefficients is constructed. The problem is discretized by the
conforming C1 reduced Hsieh-Tough-Tocher (HCT) macro element. The
proposed preconditioner is based on the classical overlapping Schwarz
method and is constructed using an abstract framework of the Additive
Schwarz Method. The coarse space consists of multiscale finite element
functions associated with the edges and is enriched with functions based
on solving carefully constructed generalized eigenvalue problems locally
on each edge. The convergence rate of the Preconditioned Conjugate
Method of our method is independent of the variations in the coefficients
for a sufficient number of eigenfunctions in the coarse space.

Keywords: Fourth order problem · Finite element method · Domain
Decomposition Method · Additive Schwarz Method · Abstract coarse
space

1 Introduction

When modeling physical or engineering phenomena one has to numerically solve
partial differential equations with highly heterogeneous contrast. The hetero-
geneity of the media makes many standard numerical methods to work very
slowly. Domain Decomposition Methods (DDM), in particular, Schwarz meth-
ods, form a class of parallel highly efficient methods for solving a system of
equations arising from the standard discretizations of elliptic partial differential
equations, e.g., cf. [14] and references therein. In classical overlapping Schwarz
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method the domain is decomposed into the overlapping subdomains where the
local subproblems are solved in the application of the preconditioner. We also
usually add a global coarse problem obtaining proper scalability, e.g., cf. [14].
Recently, the research of DDM and in particular Schwarz method extended into
to problems with highly heterogeneous coefficients, e.g., cf. [3,5,6,9–11,13]. It is
common that the coarse space is built by enriching a small standard coarse
space with eigenfunctions of some generalized eigenvalue problems, e.g., cf.
[3–5,13]. The resulting methods are robust with respect to the heterogeneity
of the coefficients, and quite often are adaptive in a sense that we can construct
it automatically by adding those eigenfunctions which are associated with all
respective eigenvalues below a preset threshold. The condition bounds of the
obtained preconditioned problem depend only on the threshold and are inde-
pendent of the coefficients.

The goal of this paper is to construct an adaptive coarse space for the
standard overlapping Schwarz method with the minimal overlap for the macro
finite element reduced Hsieh-Clough-Tocher (RHCT) discretization of the fourth
order elliptic problem with highly heterogeneous highly varying coefficients in
two dimensions. Then, the preconditioned problem is solved by the Precondi-
tioned Conjugate Gradient Method (PCG), e.g., cf. [7]. The method is based
on the abstract Schwarz framework. The coarse space is an algebraic sum of a
specially constructed multiscale global space associated with the edges of the
subdomains and local edge subspaces formed by eigenfunctions of generalized
eigenvalue problems. This work is an extension of the recent results of [5] for
the second order elliptic problem to the fourth order problem discretized by the
RHCT method.

The obtained estimates are independent of the geometries of the subdomains,
and the heterogeneities in the coefficients. The bounds are depended only on the
parameters chosen in the eigenvalue problems, i.e. a user has to decide in a pre-
computational step how many eigenvectors have to be computed and included
in our coarse space construction. It can be done adaptively, i.e., including the
eigenfunctions for which the respective eigenvalues are below a preset threshold.

The remainder of this paper is organized as follows, in Sect. 2 we present
the RHCT macro finite element discretization. In Sect. 3 our coarse space is
constructed. Section 4 contains a description of the overlapping additive Schwarz
preconditioner, and in Sect. 5 we briefly discuss some implementation issues.

2 Finite Element Discretization

In this section, we present our model problem and its RHCT macro element
discretization.

Let Ω be a convex and polygonal domain in the plane. The differential prob-
lem is to find u∗ ∈ H2

0 (Ω) such that

a(u∗, v) =
∫

Ω

fv dx ∀v ∈ H2
0 (Ω), (1)
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where
f ∈ L2(Ω),

H2
0 (Ω) = {u ∈ H2(Ω) : u = ∂nu = 0 on ∂Ω},

and
a(u, v) =

∫
Ω

β(x)[ux1x1vx1x1 + 2 ux1x2vx1x2 + ux2x2vx2x2 ] dx. (2)

Here β is a strictly positive bounded function, and ∂n is a normal unit deriva-
tive. Hence, we can always scale β by its minimal value.

We introduce a quasiuniform triangulation Th = Th(Ω) of Ω consisting of
triangles, h = maxτ∈Th

diam(τ) be the parameter of the triangulation, e.g., cf.
[1]. Let Ωh, Ωh, ∂Ωh be the sets of vertices or the nodes of Th(Ω), belonging to
Ωh, Ωh, ∂Ωh, respectively.

For a two-dimensional multi-index α = (α1, α2), where α1, α2 are nonnegative
integers, we define

|α| = α1 + α2, ∂α =
∂|α|

∂xα1
1 ∂xα2

2

.

Further, we assume that β is piecewise constant over Th, it may have jumps
across the 1D common edges of two neighboring elements in Th.

The reduced Hsieh-Clough-Tocher (RHCT) macro element space Vh is
defined as follows, e.g., cf. Chap. 7, Sect. 46, p. 285 in [2], (also cf. Fig. 1):

Vh = {u ∈ C1(Ω) : u ∈ P3(τi), τi ∈ Th(Ω), for triangles τi,
i = 1, 2, 3, formed by connecting the vertices of

any τ ∈ Th(Ωk) to its centroid, ∂nu|e ∈ P1(e) for
e an edge of τ and u = ∂nu = 0 on ∂Ω}.

(3)

Fig. 1. The reduced Hsieh-Clough-Tocher macro element. There are three degrees of
freedom at each vertex.
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The degrees of freedom of the RHCT element are given by

{v(p), vx1(p), vx2(p)},

where p is a vertex of an element, cf. Fig. 1.
The discrete RHCT element problem will then be formulated as follows: find

uh ∈ Vh such that

a(uh, v) =
∫

Ω

fv dx ∀v ∈ Vh. (4)

The problem has a unique solution by the Lax-Milgram lemma. By formulating
the discrete problem in the standard RHCT nodal basis {φα

i }xi∈Ωh,|α|≤1, we get
the following system of algebraic equations

Ahuh = fh (5)

where Ah = (a(φα1
i , φα2

j ))i,j
α1,α2

, fh = (fα
j )xj∈Ωh

|α|≤1

with fj =
∫

Ω
f(x)φα

i dx, and

uh = (uα
i )i,α with uα

i = ∂αuh(xi). Here uh =
∑

xi∈Ωh

∑
|α|≤1 uα

i φi. The result-
ing system is symmetric which is in general very ill-conditioned; any standard
iterative method may perform badly due to the ill-conditioning of the system.

In this paper, we present a method for solving such systems using the precon-
ditioned conjugate method (cf. [7]) and propose an overlapping additive Schwarz
preconditioner (e.g., cf. [14]). Let assume that there exists a partition of Ω into a
collection of disjoint open and connected polygonal substructures Ωk, such that

Ω =
N⋃

k=1

Ωk.

We need another assumption, namely, let the triangulation Th be aligned with
the subdomains Ωk, i.e. let any triangle of Th be contained in a substructure Ωk.
Hence, each subdomain Ωk inherits the local triangulation Th(Ωk) = {τ ∈ Th :
τ ⊂ Ωk}. We make an additional assumption that the number of subdomains
which share a vertex or an edge of an element of Th is bounded by a constant.
An important role plays an interface Γ =

∑N
k=1(∂Ωk \ ∂Ω).

The non-empty intersection of two subdomains ∂Ωi ∩ ∂Ωj not on ∂Ω is
either an 1D edge E ij = ∂Ωi ∩ ∂Ωj , or it is a vertex of Th. A common vertex of
substructures that is NOT on ∂Ω is called a crosspoint. The sum of closed edges
of substructures, which are not on ∂Ω equals Γ the interface of this partition.
We define local sets of nodal points, Ωk,h, Ekl,h, Ωk,h, Ekl,h etc., as the sets of
vertices of elements of Th, which are in Ωk, Ekl, Ωk, Ekl etc., respectively.

3 Coarse Space

In this section, we present an adaptive coarse space, which is a space of discrete
biharmonic functions, cf. Sect. 3.1 below, consisting of two space components: the
multiscale coarse space component and the generalized edge based eigenfunction
space component.
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3.1 Discrete Biharmonic Extensions

In this section, we define the discrete biharmonic functions. We define the local
subspace Vh(Ωk) as the space of restrictions to Ωk, of the space Vh, i.e.,

Vh(Ωk) = {u|Ωk
: u ∈ Vh},

and we let introduce its subspace of functions with zero boundary conditions (in
H2

0 sense), i.e.,

Vh,0(Ωk) = Vh(Ωk) ∩ H2
0 (Ωk).

We also need a local bilinear form

ak(u, v) =
∫

Ωk

β(x)[ux1x1vx1x1 + 2 ux1x2vx1x2 + ux2x2vx2x2 ] dx.

Let Pku ∈ Vh,0(Ωk) for any u ∈ Vh(Ωk) be the ak orthogonal projection onto
Vh,0(Ωk), i.e.,

ak(Pku, v) = ak(u, v) ∀v ∈ Vh,0(Ωk). (6)

Then, let the local discrete biharmonic extension operator

Hk : Vh(Ωk) → Vh(Ωk)

be defined as
Hku = u − Pku, (7)

or equivalently Hku is the unique solution to the following local problem:
{

ak(Hku, v) = 0 ∀v ∈ Vh,0(Ωk)
Tr Hku = Tr u on ∂Ωk

, (8)

where Tr uk = (uk|∂Ωk
,∇uk|∂Ωk

) for uk ∈ Vh(Ωk), e.g., cf. [8]. Since it is a
discrete case, the boundary conditions are equivalently to the discrete boundary
conditions: Tr Hku(x) = Tr u(x) for all x ∈ ∂Ωk,h. A function u ∈ Vh(Ωk) is
discrete biharmonic in Ωk if u|Ωk

= Hku ∈ Vh(Ωk). If for u ∈ Vh all its restric-
tion to local subdomains are discrete biharmonic, then u is piecewise discrete
biharmonic in our partition. Please note, that a discrete biharmonic function
in Vh(Ωk) is uniquely defined by its values of degrees of freedom at the nodal
points of ∂Ωk,h and has the following minimizing property:

ak(Hku,Hku) = min{ak(u, u) :
u ∈ Vh(Ωk) : Tr u(x) = Tr Hku(x) x ∈ ∂Ωk}. (9)

3.2 Multiscale Coarse Space Component

Our coarse space comprises two parts, in this section, we define the multiscale
component. We need a definition of a patch around an edge Ekl, namely let the
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E kl Ekl

δ,k

Ekl

δ, l

Ω l

Ω k

Fig. 2. The patch Eδ
kl and its two subpatches related to Ekl the common edge to sub-

domains Ωk and Ωl.

patch Eδ
kl an open domain which closure is the closed union of all fine triangles

of Th(Ωk) and Th(Ωl) such that either one of its open edges or vertices are
contained in Ekl. We can naturally split the patch into two disjoint parts:

Eδ

kl = Eδ,k

kl ∪ Eδ,l

kl ,

where Eδ,s
kl = Eδ

kl ∩ Ωs, s = k, l., cf. Fig. 2.
The sum of all patches contained in Ωk form a boundary layer interior to Ω

defined as

Ω
δ

k =
⋃

Γkl⊂∂Ωk\∂Ω

Eδ,k

kl .

For simplicity of presentation we assume that all patches Eδ,k
kl for a substructure

Ωk, are disjoint.
Let Vh(Eδ

kl) be the space of restrictions of functions from Vh to Eδ
kl

Vh(Eδ
kl) = {u|Eδ

kl
: u ∈ Vh}

and its subspace Vh,0(Eδ
kl) with zero boundary condition, i.e.,

Vh,0(Eδ
kl) = Vh(Eδ

kl) ∩ H2
0 (Eδ

kl). (10)

A function in this space is uniquely defined by the values of three degrees of
freedom at all nodes in Ekl,h.

Note that Tr u onto each fine edge of Ekl can be represented as (u, ∂su, ∂nu),
where u is a C1 piecewise cubic function on the inherited 1D triangulation of
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this edge, ∂su is its derivative, and ∂nu is a continuous piecewise linear function.
We also define two bilinear forms related to an edge Ekl, the first one being the
restriction of the form a(u, v), cf. (2), to the patch, namely,

akl(u, v) =
∫

Ekl

β[∂ssu ∂ssv + ∂nsu ∂nsv ds] (11)

where ∂ssu is the weak second order tangential derivative of the trace of u onto
the edge Ekl, and ∂nsu is the weak tangential derivative of the trace of the normal
derivative on this edge. Here β is constant over each fine edge e ⊂ Ekl being the
common edge of fine 2D triangles τ+ ∈ Th(Ωk) and τ− ∈ Th(Ωl). Let it be
defined as max(β|τ+ , β|τ−).

The second patch bilinear form is the scaled weighted L2 over the patch, i.e.,

bkl(u, v) = h−3

∫
Eδ

kl

βuv dx. (12)

We have a simple proposition.

Proposition 1. The both forms akl(u, v) and bkl(u, v) are symmetric and pos-
itive definite over Vh,0(Eδ

kl).

We now introduce the multiscale coarse space.
Let a subspace Vms ⊂ Vh be formed by all discrete biharmonic functions in the

sense of (8), which satisfies the following variational equality on each patch Eδ
kl:

akl(ûkl, v) = 0 ∀v ∈ Vh,0(Eδ
kl), (13)

where ûkl ∈ Vh,0(Eδ
kl) satisfies ∂αû(x) = ∂αu(x) x ∈ Ekl,h.

We have a straightforward proposition.

Proposition 2. A function u ∈ Vms is uniquely defined by its dofs at all cross-
points.

Proof. Since u ∈ Vms is discrete biharmonic, it is defined by the values of its dofs
at interface i.e., at crosspoints and in Ekl,h for all interfaces. Thus, it is enough
to show that all dofs of u are uniquely defined on all interfaces Ekl. Let define
the function ûkl ∈ Vh(Ekl) such that it satisfies ∂αûkl(x) = ∂αu(x) for |α| ≤ 1
and x ∈ ∂Ekl, ∂αûkl(x) = 0 for all remaining fine vertices on the boundary of
the patch Ekl and:

akl(ûkl, v) = 0 ∀v ∈ Vh,0(Eδ
kl).

We can represent ûkl = w1 + w0 with w0 ∈ Vh,0(Eδ
kl). E.g., we can take w1 with

the DOFs equal to DOFs of ûkl on the boundary of the patch, and with zero
valued remaining DOFs. Then, the last variational equation is equivalent to: find
w0 ∈ Vh,0(Eδ

kl) such that

akl(w0, v) = −akl(w1, v) ∀v ∈ Vh,0(Eδ
kl).

It follows from Proposition 1, that w0, and thus ûkl, is uniquely defined. It is
clear that all DOFs of ûkl and u have the same values at Ekl,h, so u is unique.
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The values of its DOFs at the nodal points of each face can be computed by
solving (13), and then the values of DOFs at the nodal points of each subdomain
can be computed by solving (8).

3.3 Generalized Edge Based Eigenfunction Space Component

First we define a generalized eigenproblem of the form: find (λkl
j , φkl

j ) ∈ R ×
Vh,0(Eδ

kl) such that

akl(φkl
j , v) = λkl

j bkl(φ, v) ∀v ∈ Vh,0(Eδ
kl). (14)

Proposition 1 yields, that there are real and positive eigenvalues and their respec-
tive bkl - orthonormal eigenvectors satisfying (14), such that

0 < λkl
1 ≤ λkl

2 ≤ . . . ≤ λkl
M ,

where M is the dimension of Vh,0(Eδ
kl).

For any 1 ≤ n = n(Ekl) ≤ M we can define the orthogonal projection:
πkl

n : Vh,0(Eδ
kl) → span{φkl

j }n
j=1 ⊂ Vh,0(Eδ

kl) as

πkl
n v =

n∑
j=1

bkl(v, φkl
j )φkl

j . (15)

Then for each eigenvector φkl
j , 1 ≤ j ≤ n(Ekl) we define Φkl

j ∈ Vh which
has DOFs equal to the ones of φkl

j at all nodes on the edge Ekl, zero DOFs on
the remaining edges and at all crosspoints, and finally discrete biharmonic inside
each subdomain, in the sense of (8), what defines uniquely the values of its DOFs
at all interior nodes of the subdomain. Then, the edge terms of the coarse space
are introduced as:

V kl
h,n = span{Φkl

j }n(Ekl)
j=1 , ∀Ekl ⊂ Γ.

The coarse space is defined as

V0 := Vms +
∑

Ekl⊂Γ

V kl
h,n. (16)

4 Additive Schwarz Method (ASM) Preconditioner

Our preconditioner is based on the abstract framework of ASM, i.e. is based
on a decomposition of the global space Vh into local subspaces and one global
coarse space, equipped into respective symmetric positive definite bilinear forms,
e.g., cf. [14]. Here we take only the original form a(u, v), i.e. (2), as the local
forms Each local subspace Vk related to Ωk, is defined as the space formed by
all functions u ∈ Vh whose DOFs take the value zero at all nodal points that lie
outside Ωk.
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The coarse space V0 was introduced in the previous section, cf. (16). We get

Vh = V0 +
N∑

k=1

Vk.

Then, we introduce the additive Schwarz operator T : Vh → Vh as

T = T0 +
N∑

k=1

Tk,

where the coarse space projection operator, T0 : Vh → V0, is defined by

a(T0u, v) = a(u, v) ∀v ∈ V0,

and the local subspace projection operators, Tk : Vh → Vk, are determined by

a(Tku, v) = a(u, v) ∀v ∈ Vk, k = 1, . . . , N.

The problem (1) is then replaced as the equivalent preconditioned system,

Tuh = g, (17)

where

g = g0 +
N∑

k=1

gk

with g0 = T0u
∗
h, gk = Tku∗

h, k = 1, . . . , N , and u∗
h the discrete solution, cf. (4).

Note, that the right hand side vectors, gk, k = 0 · · · , N, can be calculated
without explicitly knowing the discrete solution, e.g., cf. [12,14].

4.1 An Estimate of the Condition Number

We present the main result of this paper, namely an estimate of the condition
number of the preconditioned system (1).

We have the following theorem:

Theorem 1. There exist positive constants c, C independent of h, β, and num-
ber of subdomains, such that

c(min
kl

λkl
n+1) a(u, u) ≤ a(Tu, u) ≤ C a(u, u) ∀u ∈ Vh,

where λkl
n+1 and n = n(Ekl) are defined in Sect. 3.3.

The theorem proof uses the abstract ASM framework, e.g., cf. [14], we check the
three key assumptions of this framework. The key component is to define a so
called stable decomposition which is done with the help of the operators πkl

n , cf.
(15), and then to utilize its properties.

The number of eigenfunctions needed for the robustness of our method usu-
ally corresponds to the number of channels crossing a subdomain interface. This
number can be predefined from experience or chosen adaptively by looking at the
smallest eigenvalues. Note that the lower bounds in Theorem 1 is dependent on
how many eigenvectors of the local face generalized eigenproblem are included
in our coarse grid.
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5 Implementation Issues

In this section, we briefly discuss the implementation of our ASM precondi-
tioner. For the simplicity of presentation, we use our preconditioner with the
Richardson’s iteration. In practice, one uses the preconditioned conjugate gra-
dient iteration (e.g., cf. [7]) for the system (17).

– Precomputation step. Computing the coarse grid basis.
Constructing the coarse space requires the solution of the generalized eigen-
value problem (14) on each subdomain face (interface), the first few eigen-
functions corresponding to the smallest eigenvalues are then included in the
coarse space. Prescribing a threshold λ0, and then computing the eigenpairs
with eigenvalues smaller than λ0, we can get an automatic way to enrich
the coarse space. The simplest way would be to compute a fixed number of
eigenpairs, e.g. n = 5 or so, this may however not guarantee robustness as
the number of channels crossing a face may be much larger.

– Richardson iteration.
The Richardson iteration with the parameter τ is defined as follows: starting
with any u(0), iterate until convergence:

u(i+1) = u(i) + τ (g − T (u(i))) = u(i) + τ T (u∗
h − u(i))

= u(i) − τ r(i)
, i ≥ 0.

Computing of r(i) = g − T (u(i)) requires solving the following problems:
� Local subdomain problems:

Compute rk ∈ Vk k = 1, . . . , N by solving the following local problems

a(rk, v) = a(Tk(u∗
h − u(i)), v) = f(v) − a(u(i), v) ∀v ∈ Vk.

� Coarse problem:

Compute r0 ∈ V0 such that

a(r0, v) = a(T0(u∗
h − u(i)), v) = f(v) − a(u(i), v) ∀v ∈ V0,

Then

r(i) = r0 +
N∑

k=1

rk.

All these problems are independent and can be solved in parallel.

The local subdomain problems are solved locally on their respective subdomains.
The coarse problem is global, and its dimension equals the number of the cross-
points times three plus the number of local eigenfunctions.
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Pod vodárenskou věž́ı 4, 18208 Praha 8, Czech Republic

jan.valdman@utia.cas.cz

Abstract. Rahman and Valdman (2013) introduced a new vectorized
way to assemble finite element matrices. We utilize underlying vectoriza-
tion concepts and extend MATLAB codes to implementation of Bogner-
Fox-Schmit C1 rectangular elements in 2D. Our focus is on the detailed
construction of elements and simple computer demonstrations including
energies evaluations and their visualizations.

Keywords: MATLAB vectorization · Finite elements · Energy
evaluation

1 Introduction

Boundary problems with fourth order elliptic operators [3] appear in many appli-
cations including thin beams and plates and strain gradient elasticity [5]. Weak
formulations and implementations of these problems require H2-conforming
finite elements, leading to C1 continuity (of functions as well as of their gradients)
of approximations over elements edges. This continuity condition is generally
technical to achieve and few types of finite elements are known to guarantee it.
We consider probably the simplest of them, the well known Bogner-Fox-Schmit
rectangle [2], i.e., a rectangular C1 element in two space dimensions.

We are primarily interested in explaining the construction of BFS elements,
their practical visualization and evalutions. Our MATLAB implementation is
based on codes from [1,6,9]. The main focus of these papers were assemblies
of finite element matrices and local element matrices were computed all at
once by array operations and stored in multi-dimentional arrays (matrices).
Here, we utilize underlying vectorization concepts without the particular inter-
est in corresponding FEM matrices. More details on our recent implementa-
tions of C1 models in nonlinear elastic models of solids can be found in [4,7,8].
The complementary software to this paper is available at https://www.
mathworks.com/matlabcentral/fileexchange/71346 for download and testing.
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Fig. 1. Reference basis functions Ĥi, i = 1, . . . , 4 on [0, 1] (left) and example of actual
basis functions Hi, i = 1, . . . , 4 on [a, b] = [2, 5] (right).

2 Construction of C1 Finite Elements

2.1 Hermite Elements in 1D

We define four cubic polynomials

Ĥ1(x̂) := 2x̂3 − 3x̂2 + 1,

Ĥ2(x̂) := −2x̂3 + 3x̂2,

Ĥ3(x̂) := x̂3 − 2x̂2 + x̂,

Ĥ4(x̂) := x̂3 − x̂2

(1)

over a reference interval Î := [0, 1] and can easily check the conditions:

Ĥ1(0) = 1, Ĥ1(1) = 0, Ĥ ′
1(0) = 0, Ĥ ′

1(0) = 0,

Ĥ2(0) = 0, Ĥ2(1) = 1, Ĥ ′
2(0) = 0, Ĥ ′

2(0) = 0,

Ĥ3(0) = 0, Ĥ3(1) = 0, Ĥ ′
3(0) = 1, Ĥ ′

3(0) = 0,

Ĥ4(0) = 0, Ĥ4(1) = 0, Ĥ ′
4(0) = 0, Ĥ ′

4(0) = 1,

(2)
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so only one value or derivative is equal to 1 and all other three values are equal
to 0. These cubic functions create a finite element basis on Î. More generally, we
define

H1(x) := Ĥ1(x̂(x)),

H2(x) := Ĥ2(x̂(x)),

H3(x̂) := h Ĥ3(x̂(x)),

H4(x̂) := h Ĥ4(x̂(x))

(3)

for x ∈ I := [a, b], where x̂(x) := (x − a)/h is an affine mapping from I to Î and
h denotes the interval I size

h := b − a.

These functions are also cubic polynomials and satisfy again the conditions (2)
with function arguments 0, 1 replaced by a, b. They create actual finite element
basis which ensures C1 continuity of finite element approximations. The chain
rule provides higher order derivatives:

H ′
1(x) = Ĥ ′

1(x̂) /h, H ′′
1 (x) = Ĥ ′′

1 (x̂) /h2,

H ′
2(x) = Ĥ ′

2(x̂) /h, H ′′
2 (x) = Ĥ ′′

2 (x̂) /h2,

H ′
3(x) = Ĥ ′

3(x̂), H ′′
3 (x) = Ĥ ′′

3 (x̂) /h,

H ′
4(x) = Ĥ ′

4(x̂), H ′′
4 (x) = Ĥ ′′

4 (x̂) /h.

(4)

Example 1. Example of basis functions defined on reference and actual intervals
are shown in Fig. 1 and pictures can be reproduced by

draw_C1basis_1D

script located in the main folder.

2.2 Bogner-Fox-Schmit Rectangular Element in 2D

Products of functions

ϕ̃j,k(x̂, ŷ) := Ĥj(x̂) Ĥk(ŷ), j, k = 1, . . . , 4

define 16 Bogner-Fox-Schmit (BFS) basis functions on a reference rectangle R̂ :=
[0, 1] × [0, 1]. For practical implementations, we reorder them as

ϕ̂i(x̂, ŷ) := ϕ̃ji,ki
(x̂, ŷ), i = 1, . . . , 16, (5)

where sub-indices are ordered in a sequence

(ji, ki)16i=1 =

{(1, 1), (2, 1), (2, 2), (1, 2),
(3, 1), (4, 1), (4, 2), (3, 2),
(1, 3), (2, 3), (2, 4), (1, 4),
(3, 3), (4, 3), (4, 4), (3, 4)}.

(6)
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Fig. 2. Bogner-Fox-Schmit basis functions ϕ̂i(x̂, ŷ) for i = 2 (top left), i = 6 (top
right), i = 8 (bottom left), i = 13 (bottom right) defined over a reference rectangle
R̂ = [0, 1] × [0, 1].

With this ordering, a finite element approximation v ∈ C1(R̂) rewrites as a linear
combination

v(x̂, ŷ) =
16∑

i=1

vi ϕ̂i(x̂, ŷ),

where:

– coefficients v1, . . . , v4 specify values of v,
– coefficients v5, . . . , v8 specify values of ∂v

∂x ,
– coefficients v9, . . . , v12 specify values of ∂v

∂y ,

– coefficients v13, . . . , v16 specify values of ∂2v
∂x∂y

at nodes
N̂1 := [0, 0], N̂2 := [1, 0], N̂3 := [1, 1], N̂4 := [0, 1].

Example 2. Four (out of 16) reference basis functions corresponding to the node
N̂2 are shown in Fig. 2 and pictures can be reproduced by

draw_C1basis_2D

script located in the main folder.
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Fig. 3. Examples of a triangulation in rectangles: of a square domain (left) and of
a pincers domain (right) taken from [7] and used for nonlinear elasticity simulations
satisfying a non-selfpenetration condition.

More Implementation Details on Functions Evaluations. For a general
rectangle R := [a, b] × [c, d], we define an affine mapping

(x̂, ŷ)(x, y) := ((x − a)/hx, (y − c)/hy),

from R to R̂, where the rectangular lengths are

hx := b − a, hy := d − c.

It enables us to define BFS basis functions on R as

ϕi(x, y) := Ĥji

(
x − a

hx

)
Ĥki

(
y − c

hy

)
, i = 1, . . . , 16, (7)

Based on (4), higher order derivatives up to the second order,

∂ϕi

∂x
,

∂ϕi

∂y
,

∂2ϕi

∂x2
,

∂2ϕi

∂y2
,

∂2ϕi

∂x∂y
, i = 1, . . . , 16 (8)

can be derived as well. All basis functions (7) are evaluated by the function

shapefun(points’,etype,h)

and their derivatives (8) by the function

shapeder(points’,etype,h)

For BFS elements, we have to set etype=’C1’ and a vector of rectangular lengths
h=[hx,hy]. The matrix points then contains a set of points x̂ ∈ R̂ in a reference
element at which functions are evaluated. Both functions are vectorized and their
outputs are stored as vectors, matrices or three-dimensional arrays.
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Example 3. The command

[shape]=shapefun([0.5 0.5]’,’C1’,[1 1])

returns a (column) vector shape ∈ R
16×1 of all BFS basis function defined on

R̂ := [0, 1] × [0, 1] and evaluated in the rectangular midpoint [0.5, 0.5] ∈ R̂. The
command

[dshape]=shapeder([0.5 0.5]’,’C1’,[2 3])

returns a three-dimensional array dshape ∈ R
16×1×5 of all derivatives up to the

second order of all BFS basis function defined on a general rectangle with lengths
hx = 2 and hy = 3 and evaluated in the rectangular midpoint [0.5, 0.5] ∈ R̂.

For instance, if R := [1, 3] × [2, 5], values of all derivatives are evaluated in
the rectangular midpoint [2, 3.5] ∈ R.

More generally, if points ∈ R
np×2 consists of np > 1 points, then shapefun

return a matrix of size R
16×np and shapeder returns a three-dimensional array

of size R
16×np×5.

2.3 Representation and Visualization of C1 Functions

Let us assume a triangulation T (Ω) into rectangles of a domain Ω. In corre-
spondence with our implementation, we additionally assume that all rectangles
are of the same size, i.e., with lengths hx, hy > 0. Examples of T (Ω) are given
in Fig. 3.

Let N denotes the set of all rectangular nodes and |N | := n the number of
them. A C1 function v ∈ T (Ω) is represented in BSF basis by a matrix

V C1 =

⎛

⎜⎜⎝

v(N1), ∂v
∂x (N1), ∂v

∂y (N1), ∂2v
∂x∂y (N1)

...
...

...
...

v(Nn), ∂v
∂x (Nn), ∂v

∂y (Nn), ∂2v
∂x∂y (Nn)

⎞

⎟⎟⎠

containing values of v, ∂v
∂x , ∂v

∂y , ∂2v
∂x∂y in all nodes of T (Ω). In the spirit of the

finite element method, values of v on each rectangle T ∈ T (Ω) are obtained by
an affine mapping to the reference element R̂. Our implementations allows to
evaluate and visualize continuous fields

v,
∂v

∂x
,

∂v

∂y
,

∂2v

∂x∂y

and also two additional (generally discontinuous) fields

∂2v

∂x2
,

∂2v

∂y2
.

It is easy to evaluate a C1 function in a particular element point for all elements
(rectangles) at once. A simple matrix-matrix MATLAB multiplication

Vfun=VC1_elems*shape
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Fig. 4. A function v(x, y) = (1−x2)2(1−y2)2 on Ω = (−1, 1)2 represented in terms of

BSF elements. Separate pictures show: v (top left), ∂2v
∂x∂y

(top right), ∂v
∂x

(middle left),
∂v
∂y

(middle right), ∂2v
∂x2 (bottom left), ∂2v

∂y2 (bottom right).

where a matrix VC1_elems ∈ R
ne×16 contains in each row all 16 coefficients

(taken from VC1) corresponding to each element (ne denotes a number of ele-
ments) returns a matrix Vfun ∈ R

ne×np containing all function values in all
elements and all points. Alternate multiplications

V1=VC1_elems*squeeze(dshape(:,1,:)); % Dx
V2=VC1_elems*squeeze(dshape(:,2,:)); % Dy

V11=VC1_elems*squeeze(dshape(:,3,:)); % Dxx
V22=VC1_elems*squeeze(dshape(:,4,:)); % Dyy
V12=VC1_elems*squeeze(dshape(:,5,:)); % Dxy

return matrices V1, V2, V11, V22, V12 ∈ R
ne×np containing values of all deriva-

tives up to the second order in all elements and all points. A modification for
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evaluation of function values at particular edges points is also available and
essential for instance for models with energies formulated on boundary edges [8].
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Fig. 5. A function v(x, y) = (1 − x2)2(1 − y2)2 on Ω = (−1, 1)2 and its values in
elements midpoints (left) and edges midpoints (right).

Example 4. We consider a function

v(x, y) = (1 − x2)2(1 − y2)2 (9)

on the domain Ω = (−1, 1)2. This function was also used in [4] as an initial
vertical displacement in a time-dependent simulation of viscous von Kármán
plates.

To represent v in terms of BFS elements, we additionally need to know
values of

∂v

∂x
(x, y) = −4x(1 − x2)(1 − y2)2 (10)

∂v

∂x
(x, y) = −4y(1 − x2)2(1 − y2) (11)

∂2v

∂x∂y
(x, y) = 16xy(1 − x2)(1 − y2) (12)

in nodes of a rectangular mesh T (Ω). The function and its derivatives up to the
second order are shown in Fig. 4 and its values in elements and edges midpoints
in Fig. 5.

All pictures can be reproduced by

draw_C1example_2D

script located in the main folder.



264 J. Valdman

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

Fig. 6. 1, 4 and 9 Gauss points shown on actual rectangles of a square domain with 4
rectangles.

2.4 Evaluation and Numerical Integration of C1 Function

Various energy formulations include evaluations of integrals of the types

||v||2 : =
∫

Ω

|v(x, y)|2 dxdy, (13)

||∇v||2 : =
∫

Ω

|∇v(x, y)|2 dxdy, (14)

||∇2v||2 : =
∫

Ω

|∇2v(x, y)|2 dxdy, (15)

(f, v) : =
∫

Ω

f v dxdy, (16)

where v ∈ H2(Ω) and f ∈ L2(Ω) is given. The expression

(||v||2 + ||∇v||2 + ||∇2v||2)1/2

then defines the full norm in the Sobolev space H2(Ω). For v represented in the
BFS basis we can evaluate above mentioned integrals numerically by quadrature
rules. Our implementation provides three different rules with 1, 4 or 9 Gauss
points. Each quadrature rule is defined by coordinates of all Gauss points and
their weights.

Example 5. Gauss points are displayed in Fig. 6 and all pictures can be repro-
duced by

draw_ips

script located in the main folder.

Example 6. An analytical integration for the function v from (9) and f = x2y2

reveals that

||v||2 = 65536/99225 ≈ 0.660478710002520,
||∇v||2 = 131072/33075 ≈ 3.962872260015117,

||∇2v||2 = 65536/1225 ≈ 53.498775510204084,
(f, v) = 256/11025 ≈ 0.023219954648526

for a domain Ω = (−1, 1)2. We consider a sequence of uniformly refined meshes
with levels 1–10:
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Fig. 7. Values of integrals (the left column) and their absolute error (the right column)
for levels 1–10 of uniform refinements using three different quadrature rules: 1 Gauss
point - blue lines with diamonds, 4 Gauss points - yellow lines with circles, 9 Gauss
points - red lines with squares. (Color figure online)

– the coarsest (level = 1) mesh with 9 nodes and 4 elements is shown in Fig. 6,
– a finer (level = 4) mesh with 289 nodes and 256 elements is shown in Fig. 3

(left),
– the finest (level = 10) mesh consists of 1.050.625 nodes and 1.048.576 ele-

ments, not shown here.
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Figure 7 the depicts the convergence of numerical quadratures to the exact val-
ues above. We notice that all three quadrature rules provide the same rates of
convergence. The only exception is the evaluation of the second gradient integral
||∇2v||2, where the numerical quadrature using 1 Gauss point deteriorates the
convergence.

All pictures can be reproduced by

start_integrate

script located in the main folder.
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Simple Preconditioner for a Thin
Membrane Diffusion Problem
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Abstract. A diffusion through a thin membrane problem discussed
in [13] is discretized with a variant of the composite h-p discontinu-
ous Galerkin method. A preconditioner based on the additive Schwarz
method is introduced, and its convergence properties are investigated in
numerical experiments.

Keywords: Preconditioner · Thin membrane · Additive Schwarz
method · Discontinuous Galerkin

1 Introduction

In various models one has to deal with a situation when two different materi-
als are connected through a permeable interface. One example of such situation
comes from the biology of the cell, whose nucleus is surrounded by a thin mem-
brane. Chemicals inside the cell diffuse not only inside both the nucleus and
in the cytoplasm, but they also pass through the membrane as well. A math-
ematical model of such phenomenon has been considered in [13], leading to a
system of several nonlinear, time dependent PDEs, additionally coupled by spe-
cific boundary conditions posed on the inner interface. In this paper we will
investigate a simplified problem, hoping our approach can later be applied in
more complicated models.

Let us denote by Ω the space occupied by the cell. It naturally decomposes
into the nucleus (or nuclei), denoted here Ω1 and the surrounding cytoplasm Ω2,
so that Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅ (see Fig. 1 for a bit more complicated
example). The interface between the nucleus and the outer cell will be denoted
Γ = ∂Ω1 ∩ ∂Ω2.

The essence of the thin interface model in [13] can be expressed as a sys-
tem of two PDEs of the following form, where u1, u2 stand for the (unknown)
concentration of certain substance in Ω1, Ω2, respectively:

−div(�1∇u1) + K1u1 = F1 in Ω1

−div(�2∇u2) + K2u2 = F2 in Ω2

(1)

This research has been partially supported by the Polish National Science Centre grant
2016/21/B/ST1/00350.
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with interface conditions

−�1∇u1 · n1 = G · (u1 − u2) on Γ,

−�2∇u2 · n2 = G · (u2 − u1) on Γ,
(2)

completed with non-permeability outer boundary condition,

− �2∇u2 · n = 0 on ∂Ω. (3)

Here, �1, �2, G > 0 and K1,K2 ≥ 0 are prescribed constants, while for the
source terms we assume Fi ∈ L2(Ωi), i = 1, 2. Let us observe that the interface
condition (2) is different from standard transmission conditions,

u1 = u2, −�1∇u1 · n1 = �2∇u2 · n2,

which guarantee the continuity of the solution (and its flux) across Γ . Our for-
mulation implicitly assumes that for x ∈ Γ the values of u1(x) may differ from
u2(x), a feature we have to address in the finite element approximation.

Positive and constant diffusion coefficients �1, �2 can differ one from another,
and so the positive reaction coefficients K1,K2 as well. If the thickness of mod-
eled interface is H, then the permeability constant G ∼ 1/H; therefore for thin
domains, when H 	 1, one expects G 
 1.

Another approach to modelling a thin interface would be to introduce it
explicitly in the model, as another part of Ω, with specific material properties.
Note however that such approach would usually lead to a multiscale problem,
because the thickness of the interface layer would be orders of magnitude smaller
than the diameter of the domain.

Choosing to model the interface by means of (2) instead introducing it as a
part of the domain has even more appeal when it comes to h-p finite element
approximation: one is then free to keep the mesh size h relatively large and only
increase the polynomial degree p where necessary to improve the quality of the
approximate solution.

In what follows we will analyze a preconditioner for a system of algebraic
equations arising from a discretization of the system (1)—(3) with composite dis-
continuous Galerkin (cG-dG) h-p finite element method [6]. The corresponding
spaces and the discrete problem are introduced below.

1.1 Variational Formulation

The interface condition (2) makes the solution discontinuous across Γ , therefore
we discretize (1) by a cG–dG finite element method. Inside regions where �
is constant, we will use continuous h-p discretization. In order to address the
boundary conditions (2), we incorporate them directly into the bilinear form.

Multiplying (1) in Ωi by a smooth enough function φ and integrating over
Ωi we obtain ∫

Ωi

−div(�i∇ui)φ + Kiuiφ dx =
∫

Ωi

Fiφ dx.
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By integration by parts formula, we have
∫

Ωi

−div(�i∇ui)φ dx =
∫

Ωi

�i∇ui · ∇φ dx −
∫

∂Ωi

�i∇ui · niφ ds

where ni denotes the outer normal unit vector to Ωi. Taking into account bound-
ary conditions, we have

−
∫

∂Ω1

�1∇u1 · n1φ ds = −
∫

Γ

�1∇u1 · n1φ ds =
∫

Γ

G(u1 − u2)φ ds

and analogously,

−
∫

∂Ω2

�2∇u2 · n2φ ds =
∫

Γ

G(u2 − u1)φ ds.

Thus, the weak formulation reads as follows: Find (u1, u2) ∈ H1(Ω1) × H1(Ω2)
such that
∑

i=1,2

∫
Ωi

�i∇ui ·∇φi +Kiuiφi dx +
∫

Γ

G(u2 −u1)(φ2 −φ1) ds =
∑

i=1,2

∫
Ωi

Fiφi dx

for all (φ1, φ2) ∈ H1(Ω1) × H1(Ω2).
Using simplifying notation:

〈f, g〉Γ =
∫

Γ

f(x) g(x) ds and (f, g)Ωi
=

∫
Ωi

f(x) g(x) dx

and [u] = u|Ω1
− u|Ω2

on Γ , the variational formulation of (1) reads:

Problem 1. Find (u1, u2) ∈ H1(Ω1) × H1(Ω2) such that

∑
i=1,2

(
�i (∇ui,∇φi)Ωi

+ Ki (ui, φi)Ωi

)
+ G〈[u], [φ]〉Γ =

∑
i=1,2

(Fi, φi)Ωi

for all (φ1, φ2) ∈ H1(Ω1) × H1(Ω2).

With G > 0, the bilinear form appearing in Problem 1 is symmetric and
positive definite.

1.2 Finite Element Discretization

In order not to complicate the exposition of the finite element method, we will
assume from now on that Ω1 and Ω2 are composed of polyhedrons (and, in
consequence, Ω is a polyhedron as well). Of course, in biological applications,
actual domains have smooth boundaries, so we may regard polyhedral Ω1 and
Ω2 as approximations to accurate shapes.

In each Ωi, i = 1, 2, we introduce an affine, shape regular, quasi-uniform
and matching simplicial triangulation Thi

(Ωi), where hi is the mesh parameter,
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Fig. 1. Example domain and its decomposition to 15 small, circular “nuclei” (marked
with light color and denoted Ω1 in the text) surrounded with the outer cell (filled with
dark color, denoted Ω2 in the text).

i.e. hi = max{diam(K) : K ∈ Thi
(Ωi)}. We will refer to Thi

(Ωi) as the local
triangulation of subdomain Ωi. With pi ≥ 1 we define the corresponding local
(continuous) finite element spaces as

V pi

hi
(Ωi) = {v ∈ C(Ωi) : v|K ∈ Ppi(K) ∀K ∈ Thi

(Ωi)},

where Ppi is the space of polynomials of degree at most pi. This choice leads to
so-called cG–dG method.

Another possibility would be to choose the space of discontinuous elementwise
polynomials

V pi

hi
(Ωi)DG = {v ∈ L2(Ωi) : v|K ∈ Ppi(K) ∀K ∈ Thi

(Ωi)},

(and then to replace the volume parts of the bilinear form in Problem2 with
the corresponding symmetric interior penalty form; we refer the reader to [5]
for details). Such choice, however, would lead to unnecessarily larger number of
unknowns as compared to the previous choice but at the same time it may be
easier to deal with inside a finite element library, such as FEniCS [1].

Let h = (h1, h2) and p = (p1, p2) collect the parameters of local meshes and
finite element spaces. We define the global fine mesh on Ω,

Th = {K ∈ Thi
(Ωi) : i = 1, 2}

and assume (for simplicity only) that this mesh is conforming. Finally we define
the finite element space in which we will approximate the solution of Problem1,

V p
h = {v ∈ L2(Ω) : v|Ωi

∈ V pi

hi
(Ωi), i = 1, 2}. (4)

It consists of piecewise polynomial functions, which may be discontinuous across
the interface Γ .
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The finite element approximation of Problem1 then reads:

Problem 2. Find u ∈ V p
h such that

A(u, v) ≡
∑

i=1,2

(
�i (∇u,∇φ)Ωi

+Ki (u, φ)Ωi

)
+

∑
e⊂Γ

G·〈[u], [φ]〉e =
∑

i=1,2

(Fi, φ)Ωi

for all φ ∈ V p
h .

In this paper we address the practical problem of how to cope with ill con-
ditioning of a system of algebraic equations which represent Problem2, leaving
aside theoretical questions regarding e.g. a priori error bounds of the discrete
solution.

Remark 1. Note that this form resembles the bilinear form appearing in the
Symmetric Interior Penalty discontinuous Galerkin method [6], where on the
interelement boundaries e = K+ ∩ K− one adds jump penalizing terms being a
multiple of

max{p+, p−}2
min{h+, h−} · 〈[u], [φ]〉e,

where f± denotes the value of f attained on K±. In our formulation, the penal-
izing coefficient is independent of h and pi, but for very thin interfaces can be
large.

Our goal in this paper is to analyze a preconditioner based on the additive
Schwarz method (ASM), see e.g. [14], which introduces in a natural way a coarse
grain parallelism and improves the convergence rate of an iterative solver. Such
problem has already been considered by Dryja in [6] for linear finite elements
in 2D, where a multilevel ASM was designed and analyzed. For pure diffusion
problems involving coefficient jumps discretized with now standard symmetric
weighted interior penalty discontinuous Galerkin method [8], an optimal pre-
conditioner was developed and analyzed in [3]. A less complex version, yet still
robust with respect to diffusion coefficient jumps and with a high level of paral-
lelism, was considered in [7] and [9]. Here, we introduce a preconditioner which
simplifies the approach of [3] while retaining some of the ingredients of [10], and
provide tests of the performance of the proposed method.

The rest of paper is organized as follows. In Sect. 2, a preconditioner based
on the additive Schwarz method for solving the discrete problem is designed.
We report on its performance in a series of numerical experiments in Sect. 3. We
conclude with final remarks in Sect. 4.

2 An Additive Schwarz Preconditioner for Problem2

It is well known—and easy to verify by simple numerical experiment—that the
condition number of Problem 2 can be prohibitively large, affected by the degree
of the polynomials used, the fine mesh size, the interface thickness G and by the
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magnitude of jumps in � or K. Thus, for an iterative solution of Problem 2, some
preconditioning is necessary. In this section we consider a preconditioner based
on the nonoverlapping additive Schwarz method, first proposed, in a slightly
different setting, in [2].

Let us introduce a decomposition of V p
h :

V p
h = V0 +

∑
i=1,2

Vi, (5)

where for i = 1, 2 the local spaces are

Vi = {v ∈ V p
h : v|Ωj

= 0 for all j �= i}, (6)

so that Vi is a zero–extension of functions from V pi

hi
(Ωi). Note that V p

h is a direct
sum of these local spaces.

The coarse space is

V0 = {v ∈ C(Ω) : v|K ∈ Pq(K) for all K ∈ Th}

with q = min{p1, p2}. Observe that functions from V0 are continuous, also across
Γ . The choice of the coarse space is inspired by Antonietti et al. [3] and notably
leads to a problem whose number of unknowns is smaller than the original only
by a small fraction.

Using decomposition (5) we define local operators Ti : V p
h → Vi, i = 1, 2, by

“inexact” solvers
A(Tiu, v) = A(u, v) ∀v ∈ Vi,

so that on each subdomain one has to solve approximately a system of linear
equations for degrees of freedom restricted only to V pi

hi
(Ωi); for j �= i we set

(Tiu)|Ωj
= 0.

The coarse solve operator is T0 : V p
h → V0 defined analogously as

A0(T0u, v0) = A(u, v0) ∀v0 ∈ V0.

Note that on V0, A(·, ·) simplifies to a discontinuous coefficient problem in the
continuous finite element space,

A(u0, v0) =
∑

i=1,2

(
�i (∇u,∇φ)Ωi

+ Ki (u, φ)Ωi

)
∀u0, v0 ∈ V0.

We will assume that A(·, ·) (resp. A0(·, ·)) induces a linear operator which is
spectrally equivalent to the operator induced by A(·, ·) on V pi

hi
(Ωi) (resp. V0).

Finally, the preconditioned operator is

T = ω1T0 + ω2

2∑
i=1

Ti, (7)

where ω1, ω2 ∈ {0, 1} are prescribed relaxation parameters used to “switch
on/off” parts of the preconditioned operator.



Preconditioner for a Thin Membrane Diffusion 273

2.1 The Choice of Subspace Solvers

Let us remind here that all Ti, i = 0, . . . , 2, can be applied in parallel. The
performance of the preconditioner is therefore affected by the specific choice of
subspace solvers A0(·, ·) and A(·, ·) and, to a smaller extent, by the choice of
relaxation parameters.

For the coarse solver A0(·, ·) we take a preconditioner for a continuous
Galerkin finite element approximation of a discontinuous coefficient diffusion
problem, div �∇u = f . For example, a domain decomposition based, highly
parallel preconditioner was investigated in [12]. Another possibility is to use an
(algebraic) multigrid solver, which can also be parallelized.

For the local solvers, defined by the form A(·, ·), we choose any good precon-
ditioner for a constant coefficient diffusion problem, or—possibly after decom-
posing both Ω1 and Ω2 into smaller subdomains if this improves load balancing
and does not require a too large coarse problem—use another domain decompo-
sition preconditioner; see [14] or [11] for a collection of such preconditioners.

3 Numerical Experiments

As the number of problem parameters is large, for the numerical tests we restrict
ourselves to the case when p1 = p2 =: p and K1 = K2 =: K. In this section we
investigate, in a series of preliminary numerical experiments, how the condition
number of T is affected by p, G, K and �i, i = 1, 2. Our implementation will use
FEniCS software [1] with PETSc [4] as the linear algebra backend. As the inexact
solvers A0(·, ·) and A(·, ·) we will always choose a BoomerAMG preconditioner
from the HYPRE library, with default parameters. The preconditioned system T
is solved by the GMRES iterative method, with the restart parameter set to 30.

We report the number of iterations required to reduce the initial residual,
measured in (unpreconditioned) �2 norm, by a factor 108. If the convergence
does not occur in 60 iterations, we declare non-convergence, marked by a dash
in the tables. The initial guess for the iteration is always equal to zero.

We consider two specific cases, depending on the choice of constants ω1, ω2

in (7),
T Std = T0 + T1 + T2, TLoc = T1 + T2,

so that TLoc uses local solvers only. For simplicity of the implementation we
exclusively deal with local spaces V pi

hi
(Ωi)DG, because composite discretizations

involving continuous functions are quite difficult to work with in FEniCS. It can
be expected that this choice can potentially adversely affect the performance of
our preconditioners, as fully DG formulation adds another level of nonconformity
to the finite element solution.

Our example domain is depicted in Fig. 1. If not specified otherwise, Ω was
triangulated with unstructured, quasi-uniform mesh consisting of roughly 16,500
triangles, while the finite element functions were elementwise discontinuous poly-
nomials of degree p = 2.
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The default values of constants defining Problem 2 were �1 = �2 = K =
G = 1. In subsequent experiments, we tested how the number of iterations was
influenced by changing some of these values.

Table 1. Dependence of the number of iterations on p

p 1 2 4

T Std 19 24 46

TLoc 18 19 23

Table 2. Dependence of the number of iterations on �1, with fixed �2 = 1

�1 100 102 104 108

T Std 19 26 27 27

TLoc 18 18 18 18

It follows from Table 1 that both investigated preconditioners are robust with
respect to changes in the degree of the polynomial used in h-p approximation,
with TLoc showing almost no dependence on p.

Table 2 confirms that the number of iterations remains independent of the
jump in the diffusion coefficient, provided G is not too large. It however is quite
surprising that TLoc performs better that T Std.

Table 3. Dependence of the number of iterations on G and �1

G 100 102 104

�1 = 100 T Std 24 29 —

TLoc 19 — —

�1 = 104 T Std 27 32 33

TLoc 18 — —

�1 = 108 T Std 27 43 42

TLoc 18 — —

On the other hand, Table 3 indicates the limitations of both preconditioners
when G is relatively large. As expected, T Std is the only version capable of
dealing with large G, because it essentially captures the most of the accurate
solution (which for large G is almost continuous). Interestingly, it seems its range
of applicability is limited by the condition G ≤ �1. Another set of experiments,
with �2 increasing (not provided here), seems to support this conjecture.
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Table 4. Dependence of the number of iterations on G and K

G 100 102 104

K = 100 T Std 24 29 —

TLoc 19 — —

K = 104 T Std 12 14 —

TLoc 7 13 57

K = 108 T Std 10 6 —

TLoc 6 6 41

From the point of view of discretizations of the evolutionary variant of the
system (1)–(3) it is also important how the preconditioner works for large values
of K. Indeed, after discretizing in time, one ends up with reaction terms Ki ∼
1/τ , where τ 	 1 is the time step. It follows from Table 4 that then TLoc has an
edge over T Std, working for a larger range of G, while being at the same time
much cheaper.

4 Conclusions

An h-p finite element discretization method for a thin membrane diffusion prob-
lem has been presented, based on the composite or fully discontinuous Galerkin
method. A family of relatively simple, additive Schwarz, inherently parallel pre-
conditioners was proposed for the iterative solution of the discrete problem.

Numerical experiments for discretizations using fully discontinuous Galerkin
formulation show that none of these preconditioners is perfectly robust with
respect to all parameters of the discrete problem, they proved applicable in a wide
range of their values, especially for very thin membranes. The case of composite
discretization needs further experiments which will be presented elsewhere.

Acknowledgement. The author would like to thank two anonymous referees whose
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supported by the Polish National Science Centre grant 2016/21/B/ST1/00350.
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1 Faculty of Mathematics and Natural Sciences - School of Exact Sciences,
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Abstract. We give a stability condition for a semi–implicit numerical
scheme and prove unconditional stability for an implicit scheme for a
nonlinear advection – diffusion equation, meant as a model of crowd
dynamics. Numerical stability is given for a wider class of equations and
schemes.

Keywords: Finite elements method · CFL condition · Stability

1 Introduction

We consider a macroscopic description of how pedestrians exit a space, typically
a room. We identify the crowd through the pedestrians’ density, say ρ = ρ(t, x),
and assume that the crowd behavior is well described by

∂tρ + ∇ ·
(
ρ

−→
V

)
− κ Δρ = 0 in R

+ × Ω , (1)

which is a regularization (κ > 0) of the continuity equation

∂tρ + div
(
ρ

−→
V

)
= 0 , in R

+ × Ω , (2)

where Ω ⊂ R
2 is the environment available to pedestrians,

−→
V =

−→
V (x, ρ) ∈ R

2

is the velocity of the individual at x, given the presence of the density ρ. The
(small) parameter κ > 0 describes the diffusion part, allowing people to spread
independently of the direction they are given so as to reach the exit.

The velocity vector should be given as a function of x, possibly also of ρ(x)
or even some nonlocal average of ρ. Several choices for the velocity function
are available in the literature, see for instance [1,4–6] for velocities depending
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nonlocally on the density, and [7, Sect. 4.1], [2,10] for velocities depending locally
on the density. In this last case, the following assumption is usually made:

−→
V =

−→
V (x, ρ) = v(ρ) −→w (x), where −→w is a vector field in Ω,

and v : R → [0, vmax) is a scalar function, smooth and non-increasing.
(3)

So, −→w (x), often normalized, is here the direction given for an individual at x, and
v(ρ) its velocity value, translating the common attitude of moving faster when
the density is lower. In this case, the velocity value depends on the density, but
not on its direction. The correction proposed in (1) allows a direction change by
spreading, and seems to be a realistic model of the crowd behaviour.

We assume that the boundary ∂Ω of Ω is a union of three disjoint parts: the
walls Γw, the exit Γ and the corners Γc. The set of corners is finite; Γw and Γ
possess a field of exterior normal vectors −→n . Their natural functions translate
into the following conditions on

−→
V =

−→
V (x, ρ(x)):

∂Ω = Γ ∪ Γw ∪ Γc; (4)
−→
V · −→n = 0 on Γw, (5)
−→
V · −→n > 0 on Γ. (6)

As for the boundary conditions on ρ, there are again several choices for these.
A natural one seems to be a homogeneous Dirichlet or Neumann boundary con-
dition on the walls Γw. As for the condition on the exit, it can be of Dirchlet or
Neummann.

The main point of interest in this particular phenomenon is the widely known
now Braess paradox. It consists in the fact that what seems to improve the
traffic can make it slower and, on the contrary, an obstacle to the traffic may
accelerate it. In evacuation, this mean that an obstacle placed in front of the
exit may shorten the evacuation time. Our aim is to check this paradox on some
examples, so as to be able, later on, to compare diverse obstacles and their
respective effect on evacuation.

In this paper, we propose several finite elements (FE) numerical schemes to
solve our problem, in particular a semi-implicit scheme, and discuss its stability.
Such a scheme has been proposed in [8] for the case inspired by hydrodynamics,
where

−→
V is a function of x only, and additionally

−→
V is divergence free. The

advection term is then linear. We treat here the fully nonlinear case
−→
V =

−→
V (ρ, x),

and we relax the zero divergence condition to:

div
−→
V = div

−→
V (x, ρ(x)) ≥ 0. (7)

We also assume the existence of a weak solution, in a sense that we define in
Sect. 2. This weak formulation is formulated in more abstract terms, so as the
numerical schemes that we give in Sect. 3. We prove there, in Theorem 2, stability
of the semi–implicit scheme, which is the main result of this paper. The CFL
condition required in Theorem 2 is given in a general abstract form, we give also
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its special forms in the following corollaries. In Sect. 4, we show an important
example of

−→
V coming from the eikonal equation, for which the condition (7)

seems to be satisfied in the numerical tests.
In the forthcoming [3] we will show the well posedeness of (1) and perform

the simulations of its dynamics using the numerical schemes that we present
here.

2 Weak Formulation

In what follows, we assume that our problem has a unique solution. For the well–
posedeness of the problem (1), we refer to the forthcoming paper [3]. Clearly,
we will be dealing with its weak solution in order to build a FE approximation.
As far as weak solutions are considered, it is clear that the finite set Γc has no
importance and we can restrict our attention to the Γw ∪ Γ part of the boundary.
More regularity for the solution can be easily obtained if the boundary and the
boundary conditions are regular enough.

In order to build a numerical scheme, we adapt the main ideas of [8], where
such a scheme is built for the linear divergence free case (which is the case (3)
with v ≡ const and div−→w = 0). These assumptions are clearly too much restric-
tive for our case.

Let us define H = L2(Ω), with (·, ·) the scalar product in H and ‖·‖ the
norm in H. Let V ⊂ H1(Ω) be a Hilbert space, being our working space. The
choice of V shall depend on the boundary conditions imposed on our problem,
e.g. it is H1(Ω) if we impose a homogeneous Neumann boundary condition on
∂Ω, and V = {u ∈ H1(Ω) : u = 0 on Γ} if a homogeneous Dirichlet condition
is imposed on Γ . We call W the space containing the traces of functions from V
and of their normal derivatives. This flexibility in the boundary condition will
be allowed by our abstract approach. We observe the following fact relating the
situation we are modeling and the boundary condition on the exit.

Lemma 1. Consider (1) with the boundary assumptions (4)–(6); assume addi-
tionally that a homogeneous boundary condition ∇ρ · −→n is imposed on Γw. At

time t ≥ 0, evacuation happens, i.e.
d

dt

∫

Ω

ρ(t, x) dx < 0, if and only if

∫

Γ

{
κ ∇ ρ(t, ξ) − ρ(t, ξ)

−→
V (ρ(t, ξ))

}
· −→n (ξ) dξ < 0. (8)

Proof. Integrate (1) on Ω by parts.

This lemma says that a homogeneous Neumann boundary condition on ρ on the
walls as well as on the exits ensures the evacuation process.

Our aim is now to write the Eq. (1) in the abstract form as:

(ρt, η) + A0(ρ)(ρ, η) + A1(ρ)(ρ, η) − A2(ρ)(ρ, η) = 0, ∀η ∈ V, (9)

where, for i = 0, 1, 2, Ai(ϕ)(·, ·) are bilinear forms.
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Definition 1. Let α > 0 be an arbitrary constant. Define the operator (nonlin-
ear in the first, linear in the second variable),

B : W × W → W, B(ϕ)ρ =
(

κ ∇ρ − 1
2
ρ

−→
V (ϕ)

)
· −→n

and the following functionals (nonlinear in the first, linear in the other variables)

A0 : V × V 2 → R, A1, A2 : W × W 2 → R,

A0(ϕ)(ρ, η) =
∫

Ω

{
−ρ

−→
V (ϕ) · ∇η + 2κ ∇ρ · ∇η + κ ρΔη

}
,

A1(ϕ)(ρ, η) ≡ Aα
1 (ϕ)(ρ, η) =

1
2α

∫

∂Ω

[B(ϕ)ρ − αρ] [B(ϕ)η − αη] ,

A2(ϕ)(ρ, η) ≡ Aα
2 (ϕ)(ρ, η) =

1
2α

∫

∂Ω

[B(ϕ)ρ + αρ] [B(ϕ)η + αη] .

We will in general omit the dependence on α in the functionals A1, A2. Note
that A1, A2 are by definition positive and symmetric and that

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) =
∫

∂Ω

{ρB(ϕ)η + ηB(ϕ)ρ} (10)

Lemma 2. With the forms A0, A1, A2 given in Definition 1, the weak form of
(1) can be written as (9).

Proof. Multiply (1) by η, integrate on Ω and apply integration by parts (twice
on the diffusive term), use the definition of A0 and B and (10).

Lemma 3. Assume (5), (6), (7). The forms A0, A1, A2 given in Definition 1
satisfy, for any ϕ, ρ ∈ V

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) ≤ 2A0(ϕ)(ρ, ρ). (11)

Assume also a homogenous (Neumann or Dirichlet) boundary condition for ρ
on Γ . Then for any ϕ, ρ ∈ V

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) ≤ 0. (12)

Proof. By integration by parts and noting that

2
∫

Ω

ρ∇ρ · −→V = −
∫

Ω

ρ2 div
−→
V +

∫

∂Ω

ρ2
−→
V · −→n ,

the inequality (11) writes, by virtue of (10), (5),

1
2

∫

Ω

ρ2 div
−→
V (ϕ) + κ

∫

Ω

|∇ρ|2 ≥ 0,

which is satisfied by (7). This proves (11). Now, by virtue of (10),

A2(ϕ)(ρ, ρ) − A1(ϕ)(ρ, ρ) = 2
∫

∂Ω

ρB(ϕ)ρ = 2κ

∫

Γ

ρ∇ρ · −→n −
∫

Γ

ρ2
−→
V (ϕ) · −→n .

This is clearly negative by (6) and the homogeneous boundary condition on Γ .
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Remark 1. We may also assume here ∇ρ · −→n ≤ 0 on Γ .

Corollary 1. As A1(ϕ), A2(ϕ) are symmetric and positive, (12) implies

A2(ϕ)(u, v) ≤ 1
2

[A1(ϕ)(u, u) + A2(ϕ)(v, v)] . (13)

Proof. By positivity, symmetry and bilinearity of A2 we have

0 ≤ A2(ϕ)(u − v, u − v) = A2(ϕ)(u, u) − 2A2(ϕ)(u, v) + A2(ϕ)(v, v)

which together with (12) gives the desired conclusion.

Remark 2. Corollary 1 implies that conditions (11)–(12), together with the addi-
tional assumption that the bilinear form A2(ϕ) is positive, imply a condition of
the form of (2.2) of [8] for Ai = Ai(ϕ). Take A3 = A2(ϕ).

3 Numerical Scheme and Its Stability

Lemma 4. Let Ai : V × V 2 → R for i = 0, 1, 2 be such that Ai(ϕ)(·, ·) are
bilinear symmetric forms satisfying (11), (12) for any ϕ, ρ ∈ V . Let ρ be the
solution to (9). Then t �→ (ρ, ρ)(t) decreases, i.e. the solution ρ is L2 stable.

Proof. Note that (11)–(12) imply

A0(ρ)(ρ, ρ) + A1(ρ)(ρ, ρ) − A2(ρ)(ρ, ρ) ≥ 0. (14)

From (9) one gets directly the desired conclusion.

We will now consider a family of finite element spaces Vh ⊂ V , where H is, as
usual, the mesh parameter and consider approximated solutions in these spaces.

Preserving the important solution’s property given by Lemma 4 is not obvi-
ous when dealing with a numerical approximation, especially with schemes that
are not fully implicit. Any disturbance of this property, however, may cause a
geometrically growing error. Schemes preserving it will be called stable.

Definition 2. Let Vh ⊂ V be a finite-dimensional vectorial subspace of V .
Denote the unknown at time step n by ρn

h ∈ Vh. Denote the test function as
ηh ∈ Vh. The fully implicit first order scheme for (9) reads: find a sequence
ρn

h ∈ Vh, n = 0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0

(
ρn+1

h

) (
ρn+1

h , ηh

)
+ A1

(
ρn+1

h

) (
ρn+1

h , ηh

)

−A2

(
ρn+1

h

) (
ρn+1

h , ηh

)
= 0. (15)

The semi–implicit first order scheme for (9) reads: find a sequence ρn
h ∈ Vh,

n = 0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0 (ρn

h)
(
ρn+1

h , ηh

)
+ A1 (ρn

h) (ρn
h, ηh) − A2 (ρn

h) (ρn
h, ηh) = 0.

(16)
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The explicit first order scheme for (9) reads: find a sequence ρn
h ∈ Vh, n =

0, 1, . . . such that for any test function ηh ∈ Vh

(
ρn+1

h − ρn
h

Δt
, ηh

)
+ A0 (ρn

h) (ρn
h, ηh) + A1 (ρn

h) (ρn
h, ηh) − A2 (ρn

h) (ρn
h, ηh) = 0.

(17)
We say that a scheme is stable if (ρn+1

h , ρn+1
h ) ≤ (ρn

h, ρn
h) for any n.

Theorem 1 (Unconditional stability). Assume that Ai(ϕ)(·, ·), i = 0, 1, 2,
are bilinear forms satisfying (11)–(12). Then the fully implicit scheme (15) is
unconditionally stable. If (12) is replaced by a stronger condition

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) ≤ 0 ∀ρ, η ∈ V, (18)

the semi–implicit scheme (16) is also unconditionally stable. If, additionally,
(11) is replaced by a stronger condition

A2(ϕ)(ρ, η) − A1(ϕ)(ρ, η) ≤ 2A0(ϕ)(ρ, η) ∀ρ, η ∈ V, (19)

the explicit scheme (17) is also unconditionally stable.

Proof. Take ηh = ρn+1
h . For the implicit scheme, use (14) and the Schwarz

inequality. For the semi–implicit scheme,

(
ρn+1
h , ρn+1

h

) ≤ (
ρn
h, ρn+1

h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1
h , ρn+1

h

) − Δt

2
A2 (ρn

h)
(
ρn+1
h , ρn+1

h

)

−Δt A1 (ρn
h)

(
ρn
h, ρn+1

h

)
+ Δt A2 (ρn

h)
(
ρn
h, ρn+1

h

)
(by (11))

≤ (
ρn
h, ρn+1

h

) − Δt

2
A1 (ρn

h)
(
ρn
h − ρn+1

h , ρn+1
h

)
+

Δt

2
A2 (ρn

h)
(
ρn
h − ρn+1

h , ρn+1
h

)

−Δt

2
A1 (ρn

h)
(
ρn
h, ρn+1

h

)
+

Δt

2
A2 (ρn

h)
(
ρn
h, ρn+1

h

)
(by linearity)

≤ (
ρn
h, ρn+1

h

)
(by (18)).

We conclude by the Schwarz inequality. For the explicit scheme, we have

(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h

) − Δt

2
A2 (ρn

h)
(
ρn

h, ρn+1
h

)

−Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)
+ ΔtA2 (ρn

h)
(
ρn

h, ρn+1
h

)
(by (19))

≤ (
ρn

h, ρn+1
h

)
(by (18)).

The conclusion comes again by the Schwarz inequality.

Remark 3. As in Theorem 1 the fully implicit scheme does not require symmetry
of the forms A1, A2, it can also be applied for a stronger variational formulation,
where the diffusive term is integrated by part just once.
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Theorem 2 (CFL condition for stability). Assume that Ai(ϕ), for i ∈
{0, 1, 2}, are bilinear forms such that A1(ϕ), A2(ϕ) are symmetric and posi-
tive, and the conditions (11), (12) are satisfied. The semi–implicit scheme (16)
is stable under the abstract CFL condition

Δt A1(ρh)(uh, uh) ≤ (uh, uh) ∀ρh, uh ∈ Vh. (20)

The explicit scheme is stable under the above condition and (18)–(19).

Proof. Take again ηh = ρn+1
h . We have

(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

)

−Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)
+ ΔtA2 (ρn

h)
(
ρn

h, ρn+1
h

)

≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

) − Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (13))

≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn+1

h , ρn+1
h

)

+
Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h,

)

−Δt

2
A1 (ρn

h)
(
ρn+1

h , ρn+1
h

)
+

Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)
(by (11)),

which gives
(
ρn+1

h , ρn+1
h

) ≤ (ρn
h, ρn

h) by (20). For the explicit scheme,
(
ρn+1

h , ρn+1
h

) ≤ (
ρn

h, ρn+1
h

) − Δt A0 (ρn
h)

(
ρn

h, ρn+1
h

) − Δt A1 (ρn
h)

(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (13))

≤ (
ρn

h, ρn+1
h

) − Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h

) − Δt

2
A2 (ρn

h)
(
ρn

h, ρn+1
h

)

+
Δt

2
A1 (ρn

h) (ρn
h, ρn

h) +
Δt

2
A2 (ρn

h)
(
ρn+1

h , ρn+1
h

)
(by (19))

≤ (
ρn

h, ρn+1
h

) − Δt

2
A1 (ρn

h)
(
ρn

h, ρn+1
h − ρn

h

)
+

Δt

2
A2(ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)

−Δt

2
A1 (ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)
+

Δt

2
A2(ρn

h)
(
ρn+1

h , ρn+1
h − ρn

h

)

≤ (
ρn

h, ρn+1
h

)
+

Δt

2
A1 (ρn

h)
(
ρn+1

h − ρn
h, ρn+1

h − ρn
h

)
(by (18)).

This gives again stability by (20).

Theorem 2 and Lemma 3 imply immediately the following.
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Corollary 2. Assume (5), (6), (7) and a homogenous Neumann boundary con-
dition ∇ρ · −→n = 0 on Γw ∪ Γ . If α, h and Δt are positive constants such that
for any ρh, uh ∈ Vh the CFL condition

Δt

∫

Γ

u2
h

(−→
V (ρh) · −→n − 2α

)2

8α

∫

Ωh

u2
h

≤ 1 (21)

is satisfied, the semi–implicit scheme is stable.

Corollary 3. Assume (5), (6), (7), a homogenous Neumann boundary condition
∇ρ · −→n = 0 on Γw and a homogenous Dirichlet boundary condition ρ = 0 on
Γ . If α, h and Δt are positive constants such that for any uh ∈ Vh the CFL
condition

Δt

∫

Γ

(κ ∇uh · −→n − α uh)2

2α

∫

Ωh

u2
h

≤ 1 (22)

is satisfied, the semi–implicit scheme is stable.

Remark 4. The CFL condition giving stability of the semi–implicit scheme can
also be written for the case when ∇ρ · −→n ≤ 0 on Γ .

4 Example

An interesting example that seems, by a numerical evidence, to satisfy (7), is−→
V = −∇Φ where Φ is a solution to the regularized eikonal equation

⎧
⎨
⎩

‖∇ Φ‖2 − δ ΔΦ = 1 x ∈ Ω
∇ Φ(ξ) · −→n (ξ) = 0 ξ ∈ Γw

Φ(ξ) = 0 ξ ∈ Γ ,

If δ = 0, this equation is known as the eikonal equation it comes from optics.
−∇Φ gives the shortest path to Γ followed by a light ray. With the regularization
(δ > 0), the vector field −∇Φ can be seen as giving an approximation to the
shortest way to Γ , having the advantage that different paths do not cross; see
Fig. 1. We show in [2] that −∇ Φ satisfies conditions (5), (6).

By integration by parts, it clearly follows that
∫

Ω

−ΔΦ =
∫

Ω

div(−∇Φ) =
∫

Ω

div
−→
V > 0.

Although we have not got a formal proof yet, the numerical simulations suggest
that the same inequality is satisfied pointwise: ‖∇ Φ‖ ≤ 1, which would mean
−ΔΦ = div

−→
V ≥ 0.

The density–dependent case
−→
V = −v(ρ)∇Φ is to be considered. More simu-

lations are given in [9].
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Fig. 1. Some examples for −∇Φ, a vector field giving approximately the shortest path
to the exit. The legend gives the values of ‖∇ Φ‖.
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Abstract. We propose an additive average Schwarz preconditioner with
two adaptively enriched coarse space for the nonconforming Morley finite
element method for fourth order biharmonic equation with highly vary-
ing and discontinuous coefficients. In this paper, we extend the work of
[9,10]: (additive average Schwarz with adaptive coarse spaces: scalable
algorithms for multiscale problems). Our analysis shows that the condi-
tion number of the preconditioned problem is bounded independent of
the jump of the coefficient, and it depends only on the ratio of the coarse
to the fine mesh.

Keywords: Additive average Schwarz · Nonconforming finite
element · Domain decomposition methods · Fourth order problems
with highly varying coefficients

1 Introduction

Most of the physical problems are mathematically described in two or three
dimensions. Solving these problems leads to solving large linear systems of equa-
tions that require a highly expensive computational cost. Several attempts have
been made to find efficient methods to solve these linear systems. One of the most
efficient techniques is the Additive Schwarz methods, which itself is considered
the most effective preconditioning method, cf. [12].

In this paper, we consider variable coefficient fourth-order elliptic problems
with Dirichlet boundary conditions. The coefficient of the problem is highly
heterogeneous.

Schwarz type solvers were used for different finite elements discretazations
in 2nd order elliptic problem with highly varying coefficients [1,6] and [10]. For
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a fourth order problems, only with constan coefficient problems were developed
and analyzed, e.g. cf. [3,4,7,14], and references therein.

In this paper, we develop an additive Schwarz method, cf. [2], for solving
fourth order ellipitc problems with highly varying coefficients. The differential
problem is discretized by the nonconforming Morley element method, cf. e.g.
[5,11]. We propose a new coarse space which is constructed by adding local
adaptive eigenspaces defined over subdomains, cf. [10]. The outline of the paper
is given as follows: in Sect. 2, the continuous problem and its approximation
using Morley finite element are presented. Additive average Schwarz methods
and the equivalent decomposed problem of our problems are given in Sect. 3. In
Sect. 4, we show condition number and theoretically prove its bounds. In Sect. 5,
we give some numerical experiments to verify our theory as well as to show the
scalability and efficiency of our algorithm.

2 Discrete Problem

We consider a thin plate occupying a polygonal domain Ω ∈ R
2 with a clamped

boundary ∂Ω under a distributed load f ∈ L2(Ω). The deflection u is governed
by the following biharmonic equation,

Δ(α(x)Δu) = f, in Ω, (1)

u =
∂u

∂ν
= 0, on ∂Ω, (2)

where α ∈ L∞(Ω) is a positive elementwise constant coefficient function. We
assume that there exists an α0 > 0 such that α(x) ≥ α0 in Ω. (cf. [8]). The
operator Δ is defined as

Δ =
∂2

∂x2
1

+ 2
∂2

∂x1∂x2
+

∂2

∂x2
2

(3)

To derive the weak form of the plate bending problem (1) and (2), we first
define the Hilbert space

H2
0 (Ω) = {v ∈ H2(Ω) : v|∂Ω = n · ∇v|∂Ω = 0}. (4)

We are seeking u ∈ H2
0 (Ω) such that

a(u, v) =
∫

Ω

fv dx, v ∈ H2
0 (Ω), (5)

where

a(u, v) =
∫

Ω

α(x)
(

∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+ 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dx (6)
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For the sake of simplicity in the practical computations, we choose the non-
conforming Morley element that has much smaller number of degrees for freedom
than conforming C1 plate elements. Therefore, We define the Morely finite ele-
ment space Vh as

Vh = {v ∈ L2 : v|K ∈ P 2(K) ∀K ∈ Th,
v continuous at the vertices,
∂v
∂ν continuous at the edge mid-points
v(x) = ∂v

∂ν (m) = 0, x,m ∈ ∂Ω; x vertex, m midpoint}.

(7)

where Th is the quasi-uniform triangulation of Ω with the mesh size h. It is
worth mentioning that the Morley element are neither C1 nor C0 and the space
Vh �⊂ C0(Ω).

Hence, the finite element approximation of the weak form (5) is given as
follows; find uh ∈ Vh such that

a(uh, v) = F (v), ∀v ∈ Vh, (8)

where

a(uh, v) =
∑

K∈Th(Ω)

∫
K

α(x)
(

∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+ 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dx (9)

and
F (v) =

∑
K∈Th

∫
K

fvdx. (10)

Lemma 1. There exists two positive constants c1 and c2 such that

c1||v||2h,2,Ω ≤ a(v, v) ≤ c2||v||2h,2,Ω , ∀v ∈ Vh, (11)

where the norm ||v||h,2,Ω on Vh is defined as

||v||h,2,Ω =

( ∑
K∈Th,K⊂Ω

|v|2H2(K)

) 1
2

, (12)

The proof of this lemma is straightforward in [5]. The requirements of Lax-
Milgram theorem are satisfied which yields us the existence and uniqueness of
the weak solution (cf. e.g., [5,8]).

For any u ∈ Vh, it can be written as a linear combination of the nodal basis
for the space Vh. Thus, the bilinear form (8) can be written as a system of
algebraic equations,

Au = b, (13)

where A is the stiffness matrix whose components are Ai,j = a(ψi, ψj), where
ψi and ψj are the Morley basis functions. The vector of unknowns is denoted
by u, which contains the values of the solution at the vertices and the values of
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the normal derivatives at the midpoints, respectively. The vector b is the load
vector containing F (ψi). The system (13) is generally very large, which makes
the computational cost using the direct solver so expensive. An alternative way
to solve this kind of large systems is to use iterative methods. The condition
number of the matrix A in Eq. (13) determines whether the system is well or ill-
conditioned. Therefore, choosing a particular iterative method to solve the linear
system depends on the condition number. It is well known that the condition
number of of the matrix of coefficient A is of order O(maxα

minα h−4). Therefore, if the
mesh size is small, or α is strongly varying, then the linear system becomes ill-
conditioned and thus the usual iterative methods such as the Conjugate Gradient
(CG) method or the Generalized Minimal Residual (GMRS) method may not
be a good choice, cf. [7,12]. Thus, we propose an additive Schwarz method as a
way of constructing a parallel preconditioner for our system and then solved the
resulting preconditioned system by, e.g., a Preconditioned Conjugate Gradient
method (PCG).

3 Additive Average Schwarz Method

Let the domain Ω be divided into N nonoverlapping subdomains triangles of
{Ωi}i i.e Ω =

⋃N
i Ωi and the intersection between two subdomains Ωi ∩ Ωj

is empty for all i �= j. Let Ωih and ∂Ωih denote the set of interior and in the
boundary nodes of the domain Ωi respectively. Similarly, Ω∗

ih and ∂Ω∗
ihi denote

the set of interior and in the boundary edge midpoints of Ωi, respectively.
We define the subspace Vhi corresponding to the subdomain Ωi, for all i =
1, 2, . . . , N, such that

Vhi = {v ∈ Vh : v(x) = 0 ∀x ∈ ∂Ωih
∂v(x)

∂ν = 0. ∀x ∈ ∂Ω∗
ih

v = 0, outside Ωi}.

(14)

We assume that each subdomain has its own triangulation Th(Ωi) inherited from
Th. We then define the local maximums and minimums values of coefficients over
a subdomain, as following

αi := minx∈Ωi
α(x), αi := maxx∈Ωi

α(x). (15)

We also need to define projections from the the finite element space to the
subspaces, i.e define Pi : Vh → Vhi, and P enriching

0 : Vh → V enriched
0 corresponding to

the spaces Vhi and V enriched
0 respectively as

a(Piu, v) = a(u, v), v ∈ Vhi, i = 1, . . . , N, (16)

a(P enriching
0 u, v) = a(u, v), v ∈ V enriched

0 , (17)

where V enriched
0 is the coarse space which will be defined later. Now the additive

Schwarz operator P enriching : V h → V h considering the Schwarz scheme can be
written as

P enrichingu = P enriching
0 u +

N∑
i=1

Piu. (18)
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Thus the original problem (5) can be replaced with the following problem:

P enrichinguh = genriching, (19)

where genriching = genriching
0 +

∑
i gi with genriching

0 = P enriching
0 uh and gi = Piuh.

The Standard Additive Average Coarse Space: Following [2,7,10], we
define the standard additive average coarse space as the image of the interpola-
tion like operator Ia : Vh → Vh, where Ia is defined as

Iav =
{

v(x) x ∈ ∂Ωih,
vi x ∈ Ωih,

(20)

and

∂Iav

∂ν
=

⎧⎨
⎩

∂v(x)
∂ν x ∈ ∂Ω∗

ih,

∂v(x)
∂ν x ∈ Ω∗

ih,

(21)

where vi = 1
ni

∑
x∈∂Ωih

v(x), and ni is the total number of nodal points in ∂Ωih.
For the sake of clarity, the sum is over all the nodes on ∂Ωih and i corresponds
to the subdomain index not to the index of the summation.

Enriched Additive Average Coarse Space: We enrich the standard coarse
space using functions that are adaptively selected from the following generalized
eigenvalue problem:

Remark 1. We were supposed to define two different enriched coarse spaces.
However, we could not analytically prove the convergence of the condition num-
ber for case 2 i.e. (index = 2) in spite of the successful computational proof.
Therefore, in this paper, we only consider one coarse space denoted by V enriched

0

and defined as in (23).

Find all eigen pairs: (λi
j , φ

i
j) ∈ R × Vh0(Ωi), such that

ai(φi
j , v) = λi

jbi(φi
j , v), v ∈ Vh0(Ωi),

bi(φi
j , φ

i
j) = 1, (22)

where the bilinear forms are defined as

ai(u, v) :=
∑

K∈Th(Ωi)

∫
K

α(x)
(

∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+ 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dx,

bi(u, v) :=
∑

K∈Th(Ωi)

∫
K

αi

(
∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+ 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2

)
dx,

and the local space Vh0(Ωi) is defined as follows

Vh0(Ωi) = {u|Ωi
: u ∈ Vh, u(x) = ∂νu(m) = 0 ∀x ∈ ∂Ωih, ∀m ∈ ∂Ω∗

ih}.
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It should be noted that the corresponding eigenspaces and eigenfunctions of
two different eigenvalues are both orthogonal to each other. If the multiplicity
of an eigenvalue is larger than one, we consider all its eigenfunctions as one. We
need to order the eigenvalues in the decreasing form as λi

1 ≥ λi
2 ≥ . . . , λi

Ni
> 0,

where Ni is the dimension of Vh0(Ωi). We observe that all the eigenvalues are
bounded by above the ratio of the maximum to the minimum of the element-wise
function α, i.e 1 ≤ λi

j ≤ αi

αi
. Therefore, the eigenvalues of the eigenvalue problem

(22) are all ones in case if the function α is constant in each subdomain, Ωi.
Since the solution-space of the eigenvalue problem (22) is defined locally, we

extend it by zero to the rest of the domain Ω and keep the same symbol to the
extended function. Now, we define the enriched coarse spaces as follows

V enriched
0 = IaVh +

N∑
i=1

Wi, (23)

where
Wi := Span(φi

j)
Mi
j=1, (24)

when 0 ≤ Mi < Ni is a number either preset by the user or chosen adaptively.
We assume that if an eigenvalue which has been selected to be included has
multiplicity larger than one, then all its eigenfunctions will be included in the
Wi. Consequently, λMi+1 < λMi

. Thus Mi = 0 means enrichment is not required
in the subdomain Ωi.

For the sake of the analysis, we need to define the following two operators.
Let

Π enriching
i : Vh0(Ωk) → Vh0(Ωk),

be bi-orthogonal projection defined as

Π enriching
i uh =

Mi∑
j=1

bi(uh, ψi
j)ψ

i
j , (25)

where (ψi
j)j is the bi(·, ·)-orthonormal eigenbasis of Vh0(Ωi).

Since Π enriching
i (uh − Iauh)∂Ωih

= 0, the projection can be extended to the rest
of domain to obtain a function in Wi, and the same symbol will denote it.

The second operator is denoted by I enriching
a : Vh → V enriching

0 which is defined as

I enriching
a uh = Iauh +

N∑
i=1

Π enriching
i (uh − Iauh). (26)

4 Condition Number Bound

Our main theoretical result is given in this section and is mainly the condition
number bound (see Theorem (1)). In order to prove this theorem, we need first
to show some estimates. From now on, for the sake for clarity we give ||u||ai

=
ai(u, u) and ||u||bi = bi(u, u).
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Lemma 2. For uh ∈ Vh, the following inequality holds

||uh − Π enriching
i uh||ai

≤ λMi+1||uh||bi ,

Proof. The proof follows the lines of the proof given in [10].

We still need to estimate the coarse interpolation operator Ia; then we will
be ready to prove the condition number bounds.

Lemma 3. For uh ∈ Vh, the following inequality holds

||uh − I enriching
a uh||a ≤ max

i
λMi+1

(
H

h

)3

||uh||a, (27)

where H = maxi=1,...,N diam(Ωi).

Proof. Following [10] we define w = uh − Iauh Clearly, w = 0 on the interface
Γ. Note that

uh − Iauh =
∑

i

(I − Π enriching
i )w, (28)

which is also equal to zero on the interface Γ. Then

||uh − I enriching
a uh||a =

∑
i

||(I − Π enriching
i )w||ai

,

≤
∑

i

λMi+1||w||bi , (29)

The last inequality is obtained from Lemma 2.
We still need to bound the bilinear ||w||bi for each i as follows:

||w||bi = bi(w,w) = αiaiC (w,w) = αi||w||aiC
, (30)

where ||w||aiC
= || 1√

α
w||ai

, i.e it is the same bilinear form defined in (23) except
the function α = 1 over all the triangles. This bilinear form is exactly the bilinear
form in defined in [7] where it was proved the following

Following [7] and using Lemma (1)

||w||aiK
= ||uh − Iauh||aiK

≤
(

H

h

)3

||uh||aiC
, (31)

Finally, from Eqs. (29)–(31), and summing over all subdomains, the proof ends.

We have just estimated all the required operators throughout all the above
lemmas. So, we are ready to prove the condition number in the following theorem.

Theorem 1. Let P enriching be the additive Schwarz operator, Then for all uh ∈ Vh

(
min

i

1
λMi+1

)(
h

H

)3

a(uh, uh) ≤ a(P enrichinguh, uh) ≤ a(uh, uh),

where H = maxi=1,...,N diam(Ωi) and λMi+1 is the (Mi + 1)-th eigenvalue of
(22) (cf. also (24)).
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Proof. We use the framework of general Schwarz (see chapter 5, [13]) to prove
this theorem. Based on the framework, we have to define a decomposition of
each

uh = u0 +
N∑

i=1

ui

where uh ∈ Vh, ui ∈ Vhi and u0 = I enriching
a uh ∈ V enriched

0 .
We need to satisfy three assumption. First, since we defined local bilinears

by the exact bilinear form a(uh, v), the stability constant ω = 1 assumption is
satisfied. For assumption two, since the local subspaces are orthogonal to each
other, the spectral radius of the matrix of constants of the strengthened Cauchy-
Schwarz inequalities ρ(E) = 1 which satisfy the Cauchy-Schwarz relationship
between the local subspaces’ assumption. What remains to prove is the first
assumption, i.e.,

N∑
i=0

||ui||ai
≤ max

i
λMi+1

(
H

h

)3

||uh||a, (32)

where uh ∈ Vh and ui ∈ Vhi. It can easily be proved that uh = u0 +
∑N

i=1 ui

where ui ∈ Vhi and u0 = I enriching
a uh ∈ V enriched

0 . Using the triangle inequality, we get

||u0||a ≤ ||uh||a + ||uh − I enriching
a uh||a, (33)

also
||ui||a = ||ui||ai

= ||uh − I enriching
a uh||ai

, i = 1, 2, ...N, (34)

Summing over all i = 1, 2, ..., N, we get

N∑
i=1

||ui||a =
N∑

i=1

||uh − I enriching
a uh||ai

= ‖uh − I enriching
a uh||a. (35)

Combining Eqs. (33) and (35) and using Lemma (3), we conclude the proof.

5 Numerical Experiments

In this section, we shall present some results using the proposed method to
validate our theory. All experiments are testing our fourth-order elliptic problem
(1) using the Morley finite element for discretization. In our experiment, we
consider the domain as the unite square [0, 1] × [0, 1], and the right hand side
in the problem (1) is set so that the exact solution u = x2

1x
2
2(x1 − 1)2(x2 − 1)2.

The overall domain is divided into nonoverlapping rectangular subdomains, each
of which contains an equal number of blocks. We use the conjugate gradient
method to solve the linear system in (19) and stop iterating when the -norm of
the residual is reduced by the factor 5e − 6.
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We define the distribution of the coefficient α over the whole domain as
follows

α =
{

2 + sin(100πx1) sin(100πx2) x ∈ Db,
αj

(
2 + sin(100πx1) sin(100πx2)

)
x ∈ Dj ,

(36)

where αj is a parameter describing the contrast of discontinuities in the distri-
bution of the coefficient, Dj is the region of the channel colored in red and Db

is the background region (see Fig. 1).

Fig. 1. Geometry with 18×18 fine mesh and 3×3 coarse mesh showing three different
distributions of α for the three examples. The distributions from left to right are
considered for the 1st, the 2nd and the 3rd examples respectively. (Color figure online)

In order to numerically test our theory, we divide our experiments into two
parts. In the first part, we show that the efficiency of the preconditioner is
independent of both distributions of the coefficient α as well as its contrast. In
order to do that, we test the algorithm by three examples (cf. Fig. 1). In the
first example, we consider the distribution of α consisting of channels in the
interior of the subdomains, i.e., in these channels, the contrast of α is highly
jumping (cf. Fig. 1 (left)). In the second example, the jumps of α occur along
subdomain interfaces (cf. Fig. 1 (middle). In example 3, we consider the case
where α has jumps over subdomain layers as well as the interior of the subdomain
(cf. Fig. 1 (right)). For each of the three examples, we divide the overall domain
Ω into 3×3 subdomains and test our preconditioner for different value of αj (cf.
Table 1). The rows in Table 1 show that the condition number is independent of
the distributions of α. Whereas, the columns show no dependency also on the
contrast of α.

The second part of this section is devoted to the show how the condition
number estimates depend on the parameters h and H separately. Furthermore,
we present the exact minimum number of eigenfunctions (corresponding to the
bad eigenvalues) required in the enrichment for the method to be robust with
respect to the contrast. In the experiments in this part, we consider distribution
of α as in Example 3. (cf. Fig. 1), and its contrast αj = 1e4.

For the first experiment in this part, we set H = 1
3 and h = 1

36 and run
our algorithm. We run several tests and fix the number of added eigenfunctions
(non-adaptive) for each subdomain in each test. See Table 2.
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Table 1. Number of iterations and condition numbers (in parentheses) required until
the convergence for the solution of (1). For the enrichment, we include only those
eigenvalues that are greater than a given threshold Tri = 100.

αj Example 1:iter Example 2:iter Example 3: iter

1e1 23(1.21e1) 96(4.78e2) 55(4.16e2)

1e3 21(1.1e1) 40(3.51e1) 27(1.87e1)

1e4 21(1.11e1) 40(3.51e1) 27(1.87e1)

1e5 21(1.11e1) 40(3.51e1) 38(3.38e1)

Table 2. Number of iterations and a condition number estimates (in parentheses) for
fixed number of eigenfunctions for enrichment. Here H = 1/3, h = 1/36 and α = 1e4.

Numb. eigenvalue 0 5 10 15 16

Iter(cond. numb.) 354(1.91e+6) 303(1.15e+6) 304(9.29e+5) 66(2.20e+2) 66 (2.20e+2)

In Table 2, we can see from the condition number is getting smaller and
smaller as the number of eigenfunctions is added more and more. However, at a
certain number of the added eigenfunctions, the condition number stops decreas-
ing even if we added more eigenfunctions beyond that specific number. So the
minimum number of eigenfunctions, in this case, is fifteen. Even if we use adap-
tive enrichment, only fifteen eigenfunctions will be added.

Our final experiment is to show how the condition number depends on H
h .

We run several tests to show the dependency of h and H separately, and the
result has been shown in Table 3.

Table 3. Number of iterations and a condition number estimates (in parentheses) for
varying H and h.

Subdomains Blocks Iteration Condition number

3 × 3 18 × 18 25 1.79e1

36 × 36 49 1.17e2

72 × 72 108 9.82e2

3 × 3 48 × 48 95 5.61e2

6 × 6 61 6.74e1

12 × 12 14 4.5e0

The results in Table 3 support our theory. i.e, as we move downwards along
the table, the condition number estimates grow by a factor of about 8, i.e,
proportional to the factor 1/h3. In the last three rows, the condition number
estimates also depends on H3. Our numerical results thus support the theory in
this paper.
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Abstract. We have employed a multiscale modeling approach that com-
bines ab-initio electronic structure calculations with atomic and meso-
scopic scale modeling to describe the magnetic behavior of assemblies
of magnetic nano-particles (MNPs) with core/surface morphology. Our
modeling is based on the calculated atomistic parameters and we rescale
them after the reduction of the simulated number of the NPs atomic spins
to the minimum necessary to represent their magnetic structure in the
assemblies. Monte Carlo simulations are them performed to study their
macroscopic magnetic behavior. We apply our model to (a) CoFe2O4

NPs coated with two different surfactants and (b) bovine serum albumin-
coated MnFe2O4 MNPs’ clusters. Our approach overcomes current com-
putational limitations. The numerical results produced are in excel-
lent agreement with the experimental findings illustrating the poten-
tials of our strategy to simulate the magnetic behavior of complex mag-
netic nanoparticle systems and to optimize their magnetic properties for
advanced energy and biotechnology nanomaterial applications.

Keywords: Multiscale modeling · Magnetic nanoparticles · DFT
calculations · Monte Carlo simulations

1 Introduction

Magnetic nanoparticles (MNPs) have received large attention because of their
remarkable physical properties which are different from those of the bulk mate-
rials [1]. Their intriguing properties have motivated nanomaterials engineering
(e.g. cluster-like morphology, surface engineering) and innovative applications
ranging from nanotechnology to biomedicine [2,3]. One of the main challenges
in MNPs research field is to develop nanomaterials consisted of MNPs covered
with organic ligands to achieve fluid stability and without toxicity [4].

From a theoretical point of view there are many challenges in the modeling
and the calculation of the magnetic properties of these types of nanomaterials.
It is a very complicated issue to study simultaneously the intra-particle inter-
actions in the core and at the coated nanoparticle surface and the long range
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inter-particle interactions for the MNPs assemblies. Notably, the nano-assemblies
involve different length scales extending from the atomic dimensions to nanopar-
ticles and aggregates dimensions. The particle size effects, the morphology and
the surface-coating of these MNPs in addition to the inter-particle interactions
play a key role to their magnetic behavior [5]. On the other hand, extensive
first-principles studies for nanoparticles of few to a few tens nanometers in sizes
produced in most experiments, are beyond computational capability in most
researchers’ laboratories. Hence, atomic scale techniques are not enough to fully
describe the magnetic properties of nano-assemblies, and multiscale modeling is
fundamental to link the atomistic length-scale with the macroscopic properties
of real materials given the computational time limitations.

In this study we present our multiscale strategy to study the effect of the sur-
factant on the magnetic behavior of assemblies of nanoparticle ferrites. We focus
on spinel ferrite nanoparticles coated with a surfactant since they are essen-
tially complicated atomic systems and gather a lot of scientific attention for
energy and biotechnology applications [3]. We apply our model to different com-
plex magnetic particle systems: (a) CoFe2O4 nanoparticles (∼5 nm) coated with
diethylene glycol (DEG) and oleic acid (OA) surfactants [6], which are common
covering materials for several NPs applications and modify the cationic distri-
butions of the nanoparticles, and (b) MnFe2O4 uncoated nanoparticles (∼2 nm)
(MFO) [7] and MnFe2O4 nanoparticle clusters coated with bovine serum albu-
min (MFO BSA) [8]. Covering procedure of albumin induces some further par-
ticle aggregation leading to the formation of clusters of nanoparticles. In this
case the nanoparticles interact not only via dipolar interactions but also with
exchange interactions when they are in contact. We study the magnetic proper-
ties of these NPs via Density Functional Theory electronic structure calculations
related to their structure and surface properties and their magnetic behavior via
Monte Carlo simulations in a mesoscopic scale calculating the field and tem-
perature dependence of their magnetization. We compare our results with the
experimental results to elucidate the role of the surfactant on their magnetic
behavior.

2 Multiscale Modeling of Magnetic Nanoparticles

2.1 Electronic Structure Calculation of the Single Magnetic
Nanoparticle Parameters

CoFe2O4 Nanoparticles - Effect of OA and DEG Surfactant. We per-
formed first principles calculations, based on spin-polarized density functional
theory using MPI parallelization in the Vienna Ab Initio calculations package
[9,10] on ARIS high performance system for a cluster of atoms (nanoparticle
∼2 nm) of Co ferrite structure, with the two coatings (DEG and OA). The elec-
tronic charge density and the local potential were expressed in plane wave basis
sets. Geometries are fully optimized (electronic relaxation: 10−4 eV; ionic relax-
ation: 10−3 eV). The exchange correlation functional chosen is the one proposed
by Perdew-Burke-Ernzerhof. The interactions between the electrons and ions



Multiscale Modeling for the Study of Magnetic Nanoparticle Systems 303

were described using the projector-augmented-wave method. A cutoff energy of
550eV was used.

First we performed the bulk CoFe2O4 structure calculations in order to tune
the on-site Coulomb strength U and exchange coupling J parameters. In the
Duradev’s [11] scheme the effective parameter Ueff = U −J is taken as input. For
the effective parameter Ueff a value of 4.5 eV for Fe and 4eV for Co atoms repro-
duces the cell dimension of the bulk unit cell of CoFe2O4, i.e. a = b = c= 8.35 Å.
Fe atoms have magnetic moment of 4.0µB in A sites and 4.2µB in B sites of
the inverse spinel structure. The Co atoms have magnetic moments 2.6µB in B
sites. The lowest energy was found when the O atoms are placed in the (x, x, x)
crystal coordinates, where x= 0.386). As these Ueff parameters properly define
bulk values they were used as input data to the finite system calculations.

Then, our calculations on ∼2 nm spherical nanoparticles were performed with
ionic distributions of the ferrite structure (Fe0.78)[Co1.00Fe1.22]O4 in DEG case
and (Co0.14Fe0.86)[Co0.86Fe1.14]O4 in OA case, obtained from the Mössbauer
spectra of the coated MNPs [6]. Starting from these cationic distributions elec-
tronic structure calculations have been performed for the two surfactants. To
avoid interaction between the periodic images, we have taken 1.5 nm of empty
space along all the directions.

Figure 1 shows the relaxed structures produced by DFT (VASP) electronic
calculations of the spherical particles [6]. In both samples tetrahedral Fe pos-
sesses a 10% smaller magnetic moment than octahedral Fe. The mean magnetic
moment per Fe Ion is found 4.02µB for the DEG coated sample and 3.98µB for
the OA coated sample and per Co Ion 2.65µB and 2.15µB respectively. Some Co
atoms initially placed in pseudo octahedral sites show a reduced moment. This
is attributed to the fact that due to the spatial distortion of the nanoparticles
atomic configurations in comparison with the bulk structure, the O atoms are
found at different distances here leading to a reduction of the d orbital moment.
This affects a larger number of magnetic ions in the Oleic acid coated sample
reducing the mean magnetic moment per Co ion. After performing the ionic
relaxation, we calculated the magnetic anisotropy energy (MAE) taking into
account the Spin-Orbit Coupling, non-self-consistently, for several spin orienta-
tions, by rotating all spins along different directions. We calculated the energy
variation as a function of the squared cosine of the polar angle that represents
the magnetic moment rotation. We obtained a linear dependence that indicates
a uniaxial response in both cases. From the slope of the curve we extracted the
MAE energy that equals to KV , where K is the anisotropy constant and V is the
volume of the cell. Our calculations show that the DEG sample has a net mag-
netic moment 163.1µB approximately 1.3 times larger than that of the OA sam-
ple, whereas the OA sample has magnetic anisotropy energy MAE = 9.68 meV
approximately 1.5 times larger than that of the DEG sample (MAE = 6.31 meV).

We have also calculated the exchange coupling parameters for the two
nanoparticles mapping different magnetic configurations on a Heisenberg model.
The mapping was performed in such a way that we had the interaction in each
sublattice and between sublattices. In the DEG case JAA, JBB, JAB are 0.8, 1.3,
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Fig. 1. Calculated relaxed structures for the (a) DEG, (b) OA coated CoFe2O4 particle
(Co: blue circles, Fe: yellow circles, O: red circles) [6,12]. (Color figure online)

−1.4 meV/µ2
B respectively while for OA case they are 0.9, 1.2, −1.51 meV/µ2

B.
We observe that the exchange coupling parameters have no big variation between
the two samples but they give the proper signs for the sublattices in agreement
with the literature for bulk Co ferrites [13].

MnFe2O4 Nanoparticles - Effect of Albumin Surfactant. In this case
starting from the bulk MnFe2O4 structure calculations - as in the previous case
- to tune the on-site Coulomb strength U and exchange coupling J parameters,
the effective parameter Ueff was taken as 4.5 eV for Fe atoms and 3.7 eV for Mn
atoms. These values properly predict the dimensions of a = b = c = 8.511 Å of a
bulk unit cell. The magnetic moments were 4.2µB for Fe atoms and 4.1µB for
Mn atoms.

In our model, the particle was covered partially by sections of the albumin
protein at the top and bottom face as shown in Fig. 2. The modeled parti-
cle consisted of four atomic layers of MnFe2O4 (inverse spinel), covered by the
BSA protein. The relaxed structures produced by DFT (VASP) electronic cal-
culations are shown in Fig. 2 [8]. The size of the obtained relaxed structure
was 1.6 nm × 0.7 nm× 0.6 nm. Mn ions were found to create bonds only with O
atoms, whereas Fe ions created bonds with O, C and N atoms. The mean value
of the magnetic moment of the bonded atoms is increased by 1.8% with respect
to the uncoated case (see Table 1).

Table 1. Mean magnetic moment per atom type and the total magnetic moment for
the coated and uncoated Mn Ferrite particle.

Mean moment
per Fe (µB)

Mean moment
per Mn (µB)

Saturated
mag. moment
(µB)

MAE energy
(meV)

Uncoated 4.03 4.27 197.555 2.1

Coated 3.99 4.02 192.475 1.94
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Due to the general expansion and distortion of the cell, neighboring magnetic
atoms are found at larger distances and displaced positions with respect to the
uncoated case. The general distortion affects also the environment of inner atoms
leading to a reduction of the mean moment close to 0.17µB with respect to
the uncoated case. In Table 1, we observe that the coated particle has smaller
magnetic moment per atom for each type of atoms resulting in 3% reduced total
magnetic moment. This reduction is further enhanced with increasing number of
bonded atoms at the NP surface according to our calculations. DFT results also
indicate that in the uncoated MnFe2O4 the coordination symmetry is greatly
reduced for the metal cations at the surface due to missing of some coordination
oxygen atoms. In the coated with albumin NPs, the adsorbed ligands take the
positions of the missing oxygen atoms. Even though the surface is spatially
distorted in terms of number of neighbors, the surrounding environment tends
to recover the bulk phase. This makes the crystal field of the surface metal ion
to resemble closer that of the bulk material. Importantly, these changes account
for the 7.6% reduction in the anisotropy of the coated sample.

Fig. 2. Calculated relaxed structures for the (a) uncoated and (b) albumin coated
MnFe2O4 particle (Mn: purple circles, Fe: yellow circles, O: red circles, C: brown circles,
N: cyan circles) [8,12]. (Color figure online)

2.2 Mesoscopic Modeling of Magnetic Behavior of the Nanoparticles
Assemblies

Assemblies of CoFe2O4 Nanoparticles Coated with OA and DEG
Ligands. We have developed a simple mesoscopic model of 3-spins to sim-
ulate the magnetic properties of assemblies of CoFe2O4 nanoparticles with
core/surface morphology, since the surface contribution of small sized MNPs
is very important to their magnetic behavior. Our mesoscopic model [14] was
based on the reduction of the amount of simulated spins to the minimum num-
ber necessary to describe the magnetic structure of the core/surface particles
and on the introduction of the adequate exchange and anisotropy parameters
between the different spin regions inside the nanoparticle. The latter were calcu-
lated starting from our DFT results, properly rescaled, to take into account the
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number of the spins in the core and at the surface regions based on an atomic
scale model of a spinel ferrite particle of 5 nm. In this way we estimated the core
and surface anisotropies, the intra-particle exchange coupling constants and the
magnetic moments. In all the calculations, we took explicitly into account the
coating thickness.

An assembly of N spherical ferrimagnetic nanoparticles of diameter d was
considered with core/surface morphology, located randomly on the nodes of a
cubic lattice inside a box of 10α × 10α × 10α where α is the smallest inter-
particle distance.

The total energy of the system for the N nanoparticles is:

E = − 1
2

N∑

i=1
[Jc1 (s1i · s2i) + Jc2 (s1i · s3i) + Jsrf (s2i · s3i)] −

N∑

i=1
KCV1(s1i · ê1i)2

−
N∑

i=1
KsrfV2(s2i · ê2i)2 −

N∑

i=1
KsrfV3(s3i · ê3i)2 −

N∑

i=1

3∑

n=1
µ0Hmni (sni · êh)

− 1
2

μ0(MSV )2

4πd3

N∑

i,j=1

{
(m1is1i+m2is2i+m3is3i)·(m1js1j+m2js2j+m3js3j)

|r ij|3
−3

[(m1is1i+m2is2i+m3is3i)·r ij][(m1js1j+m2js2j+m3js3j)·r ij]
|r ij|5

}

(1)
Each nanoparticle is located at a lattice site (x, y, z) and it is described

by a set of three classical spin vectors, one for the core s1i and two s2i s3i

for the surface where i = 1, . . . ,N (total number of particles) with magnetic
moment mn = Mn Vn /MSV , n = 1 stands for the core and n = 2, 3 for the
“up” and “down” surface sublattices of the nanoparticle, respectively. V is the
particle volume (equivalent to the number of the spins) and MS its saturation
magnetization. The first, second and third energy term in the square brackets
describe the Heisenberg exchange interaction between the core spin and the
two surface spins (interface coupling Jc1 and Jc2), and the exchange interaction
between the surface spins (surface coupling Jsrf), respectively. The fourth, the
fifth and the sixth terms give the anisotropy energy for the core and the surface
spins assumed uniaxial with ê1i, ê2i, ê3i being the anisotropy random easy-axes
direction. The next term is the Zeeman energy (êh is the direction of the magnetic
field). The last term gives the interparticle dipolar interactions including all the
spins in the nanoparticles where the magnetic moments of the three macrospins
of each particle are defined as m1 = M1 V1 /MSV , m2 = M2 V2 /MSV , and
m3 = M3 V3 /MSV . The vector r ij = r i − r j corresponds to the particle
position in a simulated box L × L × L centered at (0, 0, 0).

Starting from the bulk anisotropy values and taking into account our DFT
calculations on surface anisotropies we estimated KC and Ksrf . The normalized
volume of the three spin domains to the total volume was calculated, using an
atomic scale model of an inverse spinel structured sphere where V1 = 0.3, V2 =
0.21, V3 = 0.49, assuming the surface thickness 0.835 nm. In the normalization,
we also took into account the fact that the surface layer volume of the DEG
sample is smaller than that of the OA sample due to the thinner (∼40%) DEG
surface layer [6]. The magnetic moments for the three macrospins have been
extracted from our DFT calculations taking into account also the volume in the
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OA case. We normalized the energy parameters of Eq. 1 by the factor KV that
is the core volume anisotropy of the nanoparticle, so they are dimensionless (see
Table 2). The dipolar strength is g = μ0(MSV )2/(4πd3KCV1). The effective
exchange coupling constants were estimated by taking into account our DFT
calculations and the difference in the magnetic moments of the two sublattices
at the surface due to the number of the uncompensated spins [14]. The external
magnetic field is denoted as H and the thermal energy as kBT (temperature T ).

Table 2. Energy parameters for OA and DEG coated CoFe2O4 NPs.

OA coated jc1 = 1.3, jc2 = 1.2,
jsrf = −1.2

kc = 1,
ksrf = 3.0

g = 1 m1 = 0.198,
m2 = 0.76, m3 = 0.23

DEG
coated

jc1 = 1.3, jc2 = 1.2,
jsrf = −1.2

kc = 1,
ksrf = 2.0

g = 1 m1 = 0.198,
m2 = 1.07, m3 = 0.26

We use the Monte Carlo (MC) simulation technique with the implementa-
tion of the Metropolis algorithm [15]. The MC simulations results for a given
temperature and applied field were averaged over 80 samples with various spin
configurations, easy-axes distribution and spatial configurations for the nanopar-
ticles. For every field and temperature value, the first 500 steps per spin are used
for equilibration, and the subsequent 5000 MC steps are used to obtain thermal
averages. The number of 5000MC steps is the optimum value to have the mini-
mum statistical error in the calculation of the magnetization value, and to obtain
consistency with the experimental results. For the calculation of the hysteresis
loops at 5K and ZFC curves the standard experimental protocol is followed [6].

Cluster Assemblies of MnFe2O4 Nanoparticles Coated with Albumin
Protein. We model the assembly of MnFe2O4 nanoparticles coated with albu-
min as a group of well separated small clusters of nanoparticles. The clusters are
surrounded by the long albumin molecules so they are not touching each other
while the nanoparticles in the clusters can be in physical contact. We employ our
3-spin mesoscopic model. The clusters of nanoparticles are created by dividing
the box into eight regions with size 5α × 5α × 5α each and variable particle
concentration for each cluster, but under the constraint that the total concen-
tration is p = 50% the same as in the case of the simulated uncoated assembly
as described in ref. [7] (see Fig. 3). The total energy of the system is given by Eq.
(1) adding the term of the interparticle exchange interactions between touching
nanoparticles in the cluster: Einter = − 1

2JinterΣ〈i,j〉 [(s2i · s3j) + (s3i · s2j)] [6].
The energy parameters have been normalized by the factor 20×KCV1 where V1

is the core volume of the nanoparticle, so they are dimensionless.
In Table 3 the energy parameters of the model are presented. The Jsrf for the

albumin coated clusters of nanoparticles is decreased, because our DFT calcula-
tions showed that the bonding with the albumin causes expansion of the neigh-
boring magnetic atoms at the surface of the MNPs and consequently reduction
of the effective exchange coupling strength. There is not exact microscopic model



308 M. Vasilakaki et al.

Fig. 3. Modeling of the uncoated (left) and the albumin-coated clusters (middle) ultra-
small MnFe2O4 nanoparticles, (right) Enlarged schematic representation of two selected
dipolarly interacting pairs of nanoparticles core (s1)/surface (s2, s3) that belong to
two neighboring clusters in each pair the exchange intraparticle (Jc1, Jc2, Jsrf) and the
exchange interparticle interactions (Jinter) between macrospins are depicted [8].

for the calculation of the Jinter so it is treated it as free parameters. We set
Jinter = −0.80 between the nanoparticles in contact in the cluster larger than
that of the uncoated case, since the presence of albumin brings closer the trapped
nanoparticles in the clusters and enhances the fraction of the shell that comes
into contact with the neighboring shells of these nanoparticles. The effective sur-
face anisotropy constant in albumin case is taken 20% reduced compared to the
uncoated case based on DFT results [7]. The saturation magnetization ratios have
been extracted from atomic scale calculations for the spinel structure of a 2 nm
diameter MnFe2O4 nanoparticle [7] and based on our DFT calculations where the
surface magnetic moments are 10% reduced due to the existence of albumin.

3 Results and Discussion

We first examine and compare the effect of the two different ligands: the diethy-
lene glycol (DEG) and the Oleic Acid (OA), bonded at the surface of 5 nm in
size CoFe2O4 nanoparticles, on their magnetic behavior. In Fig. 4a,b the Monte
Carlo simulated Field dependence magnetization (hysteresis loops at 5K) and
temperature dependence of magnetization (Zero Field Cooled/Field Cooled Mag-
netization) curves of an assembly of CoFe2O4 nanoparticles coated with DEG
(circles) and OA (squares) surfactant are presented.

Table 3. Energy parameters for uncoated and albumin coated MnFe2O4 NPs.

Uncoated jc1 = 0.5, jc2 = 0.45,
jsrf = −1.0,
jinter = −0.50

kC = 0.05,
ksrf = 1.0

g = 3 m1 = 0.1, m2 = 0.5,
m3 = 0.4

Coated jc1 = 0.5, jc2 = 0.45,
jsrf = −0.8,
jinter = −0.80

kC = 0.05,
ksrf = 0.8

g = 3 m1 = 0.1, m2 = 0.45,
m3 = 0.4
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Fig. 4. Monte Carlo simulation results for the hysteresis loops at 5K (a) and the
ZFC/FC curves (b) for an assembly of interacting CoFe2O4 NPs coated with DEG
(circles) and OA (squares) surfactants [6].

We observe that the DFT calculated increase of the magnetic moments of
the surface sublattices and the decrease of the surface anisotropy as an effect of
the DEG coating, results to an increase of the saturation magnetization and a
decrease of the coercivity of the system in comparison with the saturation mag-
netization and the coercivity values of the OA coated nanoparticles. In addition,
the ZFC curves exhibit a maximum at a temperature (Tmax) and the magnetic
behavior becomes irreversible below a given temperature (Tirr) that we attribute
to the blocking of the biggest particles. Notably, FC flattens out below Tmax,
which is typical feature of strong interparticle interactions inducing a collective
state with high anisotropy. Tirr and Tmax are higher for DEG comparing to OA
samples. The increase in the saturation magnetization in the case of DEG sample
results to the increase in the dipolar strength and consequently the increase of
Tmax. MC simulation results are in very good agreement with the experimental
findings [6].

Figure 5 shows the Monte Carlo simulation results of the hysteresis loops (a)
and ZFC/FC magnetization curves of the MFO sample (b) of ref. [7] together
with those of the MFO BSA sample (c) [8]. Our calculations show that the exis-
tence of ex-change coupled nanoparticles in the albumin coated clusters and the
reduction of the surface anisotropy in the nanoparticles, due to the presence of
albumin, causes the reduction of the coercive field HC compared to the uncoated
sample. In addition, the MC calculated ZFC magnetization curves (Fig. 5b,c)
show maxima at almost the same temperature value Tmax ∼0.6 in agreement
with the experimental results signaling the collective freezing of particles below
Tmax and that the albumin coating has a minor effect with respect to the dipolar
interactions. On the other hand, the MFO BSA system shows irreversible tem-
perature ∼2 times higher than that of the uncoated sample. This temperature
difference indicates the existence of a large cluster size distribution, unlike in
the uncoated system, providing also a qualitative measure of the width of the
cluster size distribution. The simulated hysteresis curves and ZFC/FC curves
reproduce very well the experimental results of ref. [8].
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Fig. 5. Monte Carlo results of the hysteresis loops at T = 0.01 (a) and ZFC/FC magne-
tization curves for the uncoated nanoparticles (MFO sample) (b) ZFC/FC magnetiza-
tion for the albumin-coated particles (MFO BSA sample) (c) curves at Happ = 0.03 [8].

4 Conclusion and Outlook

We have developed a multiscale numerical approach to study the magnetic
behavior of MNP assemblies in all length scales starting from electronic to atomic
and mesoscopic scale interactions on ARIS HPC system. The good agreement
of our results with the experimental findings on the study of organic coated
CoFe2O4 and MnFe2O4 nanoparticles demonstrates that our multiscale strategy
is efficient to describe phenomena at the nanoscale and contributes to the inter-
pretation and optimization of the magnetic properties of new high-performance
magnetic nanomaterials for energy and biotechnological applications.
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Abstract. A powerful program for modelling the molecular nanomag-
nets is presented. The exact diagonalization method is used, which gives
numerically accurate results. Its main bottleneck is the diagonalization
time of large matrices, however it is removed by exploiting the symmetry
of the compounds and implementing the method in the parallel com-
puting environment. The diagonalization scheduling algorithm is imple-
mented to increase the balance of the parallel processes workload. The
running times of two different diagonalization procedures are compared.

Keywords: Molecular nanomagnets · Exact diagonalization · High
performance computing

1 Introduction

Molecular nanomagnets based on transition metal ions have been very inten-
sively investigated [14]. Their popularity is mostly due to the fact that quan-
tum phenomena characteristic for a single molecule (like, e.g., quantum tun-
nelling or step like field dependence of magnetisation) can be observed in bulk
samples. It is possible because nanomolecules are magnetically shielded from
each other by organic ligands and the dominant interactions are those within
the molecule. There are also expectations that this kind of materials may find
application in quantum computing [6,7,15,23,24,29,35] and information storage
[26]. A large family of molecular nanomagnets comprises ring-shaped molecules.
Most of them contain even number of antiferromagnetically interacting ions.
Only recently the first odd membered antiferromagnetic molecules have been
reported [1,8,9,13,17,31]. They are especially interesting because of magnetic
frustration which is expected to appear in this kind of materials.

Precise determination of the energy structure of molecular nanomagnets is
necessary to allow the calculations of the state dependent properties such as local
magnetisations or correlations [3,4,12,19,21]. An ideal tool for fulfilling this task
is the exact diagonalization (ED) of Hamiltonian matrix [5,22]. In this paper we
present the clique, a powerful new program for the simulation and modelling of
the molecular nanomagnets.
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2 Exact Diagonalization Technique

The general form of the Hamiltonian which can be used for the molecular nano-
magnets modelling is as follows:

H = −
∑

〈ij〉
JijSi · Sj + µB

n∑

i=1

B · gi · Si +
n∑

i=1

Di(Sz
i )2, (1)

where i, j denotes the positions of magnetic ions within a system, Jij are the
exchange integrals between sites i and j, Si is the spin operator of the spin S of
site i, Di is the single-ion anisotropy of site i, B is the external magnetic field,
gi is the corresponding Landé factor and µB stands for the Bohr magneton.

The exact diagonalization technique allows to obtain the values of energy
levels with accuracy only limited by machine arithmetic, thanks to which it is
possible to obtain interesting thermodynamic quantities in a simple way. Unfor-
tunately, the size of the Hamiltonian matrix for larger spin systems causes that
numerical diagonalization becomes impossible in a realistic time, and is also dif-
ficult due to the limitation of operating memory. However, using the symmetry
of the system relative to the reflection operation, the Hamiltonian matrix (1)
can be divided into two smaller submatrices, and in the case of magnetic field
application only in the direction of z—to 2

∑n
i=1 si + 1 sub-matrices, where si

is the spin value on i—th node, and n—the number of nodes. After considering
both properties, the Hamiltonian matrix gains the form of 4

∑n
i=1 si diagonally

placed submatrices in the basis created from possible projection of the total
spin Sz =

∑n
i=1 s

z
i on z axis. Each submatrix defined by the quantum number

M =
∑n

i=1 s
z
i and symmetry with respect to the reflection can be diagonalized

separately.
Because the Hamiltonian matrix for the more complex systems is too large

to first create it in a simple vector basis, and then to convert it to a quasi-
diagonal form, we decided to develop an algorithm that allows direct creation
of independent submatrices. For this purpose, we create a simple vectors basis,
transform it into a symmetrized one and sort the elements according to the
value of M and symmetry. In this way we get a basis divided into segments with
the same value of M and symmetry, which allows us to independently create
individual submatrices of Hamiltonian.

In order to show the operation of the algorithm we present its course on the
example of a simple system of three spins s = 1

2 . The number of states of the
system under consideration is 23 = 8. The spin Hamiltonian (1) including the
exchange anisotropy and the field along the z axis is then:

H =
3∑

i=1

(
1
2
J⊥

(
s+i s

−
i+1 + s−

i s
+
i+1

)
+ J‖szi s

z
i+1 + gµBBzs

z
i

)
. (2)
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The simple vectors basis is as follows:

|A〉 =
∣∣ 1
2 ; 1

2 ; 1
2

〉
=

∣∣M = 3
2

〉
,

|B〉 =
∣∣ 1
2 ; 1

2 ;− 1
2

〉
=

∣∣M = 1
2

〉
,

|C〉 =
∣∣ 1
2 ;− 1

2 ; 1
2

〉
=

∣∣M = 1
2

〉
,

|D〉 =
∣∣ 1
2 ;− 1

2 ;− 1
2

〉
=

∣∣M = − 1
2

〉
,

|E〉 =
∣∣− 1

2 ; 1
2 ; 1

2

〉
=

∣∣M = 1
2

〉
,

|F 〉 =
∣∣− 1

2 ; 1
2 ;− 1

2

〉
=

∣∣M = − 1
2

〉
,

|G〉 =
∣∣− 1

2 ;− 1
2 ; 1

2

〉
=

∣∣M = − 1
2

〉
,

|H〉 =
∣∣− 1

2 ;− 1
2 ;− 1

2

〉
=

∣∣M = − 3
2

〉
.

(3)

Then we transform the basis into symmetrized one and sort its elements by M
and symmetry (related to the exchange of the equivalent ions 1 and 3):

|1〉 = |A〉 =
∣∣ 1
2 ; 1

2 ; 1
2

〉
=

∣∣M = 3
2

〉
s
,

|2〉 = |C〉 =
∣∣ 1
2 ;− 1

2 ; 1
2

〉
=

∣∣M = 1
2

〉
s
,

|3〉 = 1√
2
(|B〉 + |E〉) = 1√

2
(
∣∣ 1
2 ; 1

2 ;− 1
2

〉
+

∣∣− 1
2 ; 1

2 ; 1
2

〉
) =

∣∣M = 1
2

〉
s
,

|4〉 = 1√
2
(|B〉 − |E〉) = 1√

2
(
∣∣ 1
2 ; 1

2 ;− 1
2

〉 − ∣∣− 1
2 ; 1

2 ; 1
2

〉
) =

∣∣M = 1
2

〉
a
,

|5〉 = |F 〉 =
∣∣− 1

2 ; 1
2 ;− 1

2

〉
=

∣∣M = − 1
2

〉
s
,

|6〉 = 1√
2
(|D〉 + |G〉) = 1√

2
(
∣∣ 1
2 ;− 1

2 ;− 1
2

〉
+

∣∣− 1
2 ;− 1

2 ; 1
2

〉
) =

∣∣M = − 1
2

〉
s
,

|7〉 = 1√
2
(|D〉 − |G〉) = 1√

2
(
∣∣ 1
2 ;− 1

2 ;− 1
2

〉 − ∣∣− 1
2 ;− 1

2 ; 1
2

〉
) =

∣∣M = − 1
2

〉
a
,

|8〉 = |H〉 =
∣∣− 1

2 ;− 1
2 ;− 1

2

〉
=

∣∣M = − 3
2

〉
s
.

(4)

The modified basis of vectors allows the calculation of non-zero Hamiltonian
matrix elements:

H1,1 = 〈1| H |1〉 = 3
4J‖ + 3

2gµBBz ,

H2,2 = 〈2| H |2〉 = − 1
4J‖ + 1

2gµBBz ,

H3,2 = H2,3 = 〈2| H |3〉 = 〈3| H |2〉 = 1√
2
J⊥ ,

H3,3 = 〈3| H |3〉 = 1
2J⊥ − 1

4J‖ + 1
2gµBBz ,

H4,4 = 〈4| H |4〉 = − 1
2J⊥ − 1

2J‖ + 1
4gµBBz ,

H5,5 = 〈5| H |5〉 = − 1
4J‖ − 1

2gµBBz ,

H6,5 = H5,6 = 〈5| H |6〉 = 〈6| H |5〉 = 1√
2
J⊥ ,

H6,6 = 〈6| H |6〉 = 1
2J⊥ − 1

4J‖ + 1
4gµBBz ,

H7,7 = 〈7| H |7〉 = − 1
2J⊥ − 1

4J‖ − 1
4gµBBz ,

H8,8 = 〈8| H |8〉 = 3
4J‖ − 3

2gµBBz .

(5)

The sizes of the Hamiltonian matrix, number of submatrices which can be
formed using above approach, size and memory use of the largest amongst those
submatrices are presented in Table 1 for chosen systems.
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3 Implementation of the ED Technique in the Parallel
Environment

The first system for which we have used the ED method is the Cr8 molecule [20]
containing eight spins s = 3

2 . The number of states in this case is 48 = 65536,
and the Hamiltonian matrix in the simple vectors basis has a size (48 ×48). This
gives 416 matrix elements that will take up 32 GB of memory in double precision.
However, after applying the method described in the previous section, we obtain
a matrix divided into 48 blocks, the sizes of which range from 4068 × 4068 to
1 × 1.

The first version of clique was written in C++. Diagonalization procedures
were taken from Numerical Recipes [27]. After creating a given submatrix, the
program first reduces it to a tridiagonal form using the tred2 procedure, and then
calculates its eigenvalues (and eigenvectors if needed) using the tqli procedure.
The main part of the calculation in terms of time is carried out by the first of
the mentioned procedures. It is worth noting that in the case of calculating the
eigenvectors, the calculation time increases by almost an order of magnitude.

Because the diagonalization of individual submatrices proceeds indepen-
dently, we decided to use the MPI [34] library to parallelize diagonalization
processes and prepare an application operating in a parallel environment. The
main process of the program (master) plays only a management role, assigning
tasks for diagonalization to the remaining processes (slave) and collecting the
eigenvalues calculated by them. Due to differences in the diagonalization time of
individual blocks, it was important to properly separate the tasks into individual
processes. In order to make the most efficient use of the time of all processes, we
used the Longest Processing Time (LPT) algorithm [16], which involves sorting
tasks according to the size of submatrices and assigning the largest ones in the
first place. The process that is the first to finish its task, receives the next largest
from the list of the remaining tasks.

The clique allows the calculation of any molecular compound. In the input
file you can specify the number of nodes n, the value of spin sj for each node,
the integrals of exchange between all spins, symmetry, anisotropy, value and
angle of the magnetic field in the plane x − z. Using this data, the application
creates a simple vectors basis, symmetrizes it and divides it into nb = 4

∑n
j=1 sj

blocks according to the values of the quantum number M and the symmetry of
the states a. The number a is 1 for symmetric states and 0 for antisymmetrical
states. The number of blocks and sizes of the largest blocks for the exemplary
systems is shown in Table 1.

The master process distributes the model and simulation parameters to all
slave processes using the MPI Bcast function and allocates the first p blocks,
one for each of the slave processes, sending the appropriate fragment of the
vectors basis using the MPI Send function. Then it performs nb loop iterations,
in which it receives the results and passes subsequent tasks for the calculation.
When receiving results using MPI Recv function in the first call in the given
iteration, the MPI ANY SOURCE parameter is used, so that it always receives
the calculation results from the process that completed the calculation first.
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Table 1. Space complexity for systems of n spins s. Consecutive rows for each n
comprise: size of the Hamiltonian matrix, number of submatrices, size of the largest
submatrix, memory use of the largest submatrix in double precision.
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Each slave process creates a given Hamiltonian matrix block, diagonalizes it,
and sends its eigenvalues to the master process. When the entire task queue is
emptied, the master process sends the MPI BOTTOM signal to the processes
that have already completed the calculation. Thus, the communication is char-
acterized by the asymmetric star topology—the processes responsible for diago-
nalization of the largest systems communicate the least with the master process.
The master process only has the role of managing the remaining processes, which
implement over 99% of calculations.

To determine the scalability of the program, we calculate the speedup S
defined as the ratio of the clock run time of the sequential tseq and parallel tpar
versions of the program.

S =
tseq
tpar

, (6)

and the efficiency of parallelization E parallelism resulting from dividing the
speedup of S by the number of processes p [30]:

E =
S

p
=

tseq
tparp

. (7)

Statistics for each p value were obtained from several program starts for different
values of the number of computing cores used per node.

Fig. 1. The dependence of the speedup S on the number of parallel processes p for Cr8
compound (n = 8, s = 3

2
). The ideal speedup is shown with a dotted line, the error

bars mark standard deviation.

The graph of speedup shown in Fig. 1 indicate good scalability of our problem
only to some limit p = pmax, which for the system Cr8 is 10 if only eigenvalues are
calculated or 9 if also eigenvectors are needed. The efficiency limitation is due to
the fact that only a small number of Hamiltonian matrix blocks has a relatively
large size, therefore for larger values of p program execution time is equal to the
time of diagonalization of the largest submatrix, while other processes end up
counting their share of tasks in a much shorter time. Therefore, for the case of
p > pmax, you can observe stabilization of speedup (see Fig. 1).
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The value of pmax increases slightly for systems larger than Cr8, however,
the diagonalization time increases with the third power of the matrix size. In
the case of the Cr9 system, for which the number of states is 49 = 262144, the
diagonalization time (calculation of eigenvalues only) of the largest submatrix
size 15180 × 15180 was about seven hours and scalability increased slightly to
pmax = 12. It was technically possible to carry out a simulation of this system,
but it absorbed quite a lot of resources. Therefore, it was necessary to change
the diagonalization algorithm to an even more efficient one.

In the next version of clique we have replaced the procedures from the
Numerical Recipes with the dsyev procedure from the LAPACK [32] library.
This allowed for several times faster calculations and a reduction in the use of
resources. However, the use of the ScaLAPACK [33] library turned out to be
crucial, thanks to which the diagonalization of the single submatrix could addi-
tionally be effectively parallelized within computing cores located in one node
with shared operational memory.

Fig. 2. The dependence of the diagonalization time on the matrix size. Yellow line
shows the time of diagonalization obtained using Numerical Recipes procedures while
the others—using ScaLAPACK library for different number of threads. (Color figure
online)

Tests of a more advanced clique program were carried out on the VIP super-
computer located in the computing center in Garching. Each node of this com-
puter has 32 cores built in. In Fig. 2, we compare the diagonalization times of
matrices with different sizes and using different number of threads for the dsyev
procedure from the ScaLAPACK library and procedures developed in Numerical
Recipes. By thread, we mean a part of the program executed concurrently within
one process; there may be multiple threads in one process. In order to test the
program in a wider range of matrix sizes, we launched it with parameters of Cr9
and additionally Ni12 molecules (only for 16 and 32 threads), which consists of
12 spins s = 1. Its Hilbert space contains a number of states equal to 312 =
511441, and the largest Hamiltonian submatrix reaches a size of 36965 × 36965.
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The calculation time (Fig. 2) performed using procedures with Numerical
Recipes significantly deviates from time for the ScaLAPACK library, even if
only one thread is used, i.e. without additional parallelization. The use of many
threads does not give the ideal speedup, but the efficiency of 63% with 32 threads
allows for a significant acceleration of calculations and diagonalization of much
larger matrices.

In order to further increase the scalability of the clique program in the next
version, we enabled simultaneous calculations for many different systems and
their parameters. The program accepts data from any number of input files and
creates vectors for each of them. The calculations are carried out in accordance
with the LPT algorithm, however, the scalability increases with the increase in
the number of blocks coming from all those given for the simulation of the sys-
tems. The program allows simultaneous simulation of systems of different sizes,
however, in a typical production run, there are usually the same systems differing
only in parameters. Thanks to this, the set of blocks contains a correspondingly
larger number of submatrices of the same size.

We have also eliminated the limitation of the main process to the role of
managing other processes. In the latest version of the program, all processes
take part in the calculation, and the results are collected at the very end of
the program. Each process creates a vector basis itself, and the information
about the last block taken for diagonalization is saved in a shared file, to which
simultaneous access is secured by the flock function. This allows for even more
efficient use of computing resources.

Fig. 3. The magnetization profiles of Ni6Cr calculated using isotropic model and with
added anisotropy.

4 Conclusions

Using the clique we were able to perform the modelling of different compounds by
fitting the thermodynamic quantities obtained in the experiment. This resulted
in a very good fits of the CoII3 LaIII3 [25], MnII

3 MnIII and MnII
2 MnIII

2 [28] molecules.
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Our program was also used to calculate the energy spectra of the wide range of
theoretical systems including frustrated antiferromagnetic rings with odd num-
ber of local spins characterized by a single bond defect or by arbitrary uniform
couplings to an additional spin located at the center [2,10,11,18]. Fitting the
magnetization of the Ni6Cr we were able to justify the use of anisotropic mod-
elling of the compound (see Fig. 3).

Precise determination of the energy structure of the simulated compound
is crucial to allow the calculations of thermodynamic quantities for the whole
temperature range available in the experiment. An ideal tool for fulfilling this
task is the exact diagonalization of Hamiltonian matrix. The results obtained
by this method are numerically accurate, but a major constraint and challenge
is the exponential increase of the size of the matrix defined by (2S + 1)n, where
n stands for the size of the system. It is very helpful to exploit fully symmetry
of a given compound. If the magnetic field is directed along the z axis, the
Hamiltonian takes a quasi-diagonal form in the basis formed by eigenvectors of
the total spin projection Sz and can be divided into a number of submatrices
labeled by quantum number M and the symmetry of the eigenstates.

Implementation of the exact diagonalization method in the parallel comput-
ing environment made the simulations possible for more complex molecules in
the reasonable time. Running our optimized software on largest European super-
computers we were able to calculate the exact energy structure even for such big
molecules like Ni12, which has 531441 states. With clique we can perform the cal-
culation for a molecular compounds with any number of ions, value of the spin of
each ion, exchange interaction between all the spins, anisotropy, value and angle
of magnetic field in the x-z plane. We used the MPI [34] library to parallelize the
processes of the diagonalization of separate submatrices. For the most efficient
use of computing time of all processes we implemented the Longest Processing
Time algorithm [16]. In the final version of our code we applied ScaLAPACK
library [33] which not only accelerates the diagonalization process, but also allows
to parallelize the diagonalization of a single submatrix over all computational
cores localized at a single node with shared memory. The simulations may be
performed for a number of different parameter sets simultaneously, resulting in
the increased scalability and better balance of the use of time by processes.
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Abstract. Polymer solar cells are considered as very promising candi-
dates for the development of photovoltaics of the future. They are cheap
and easy to fabricate, however, up to now, they possess a fundamental
drawback: low effectiveness. One ask the question how fundamental this
limitation is. We propose the simple model which examines the limita-
tions of efficiency by analysis of geometrical aspects of the bulk hetero-
junction (BHJ) architecture. We calculate the effective area of the donor-
acceptor border in the random mixture of the donor and the acceptor
nanocrystals and further compare it with an ideal “brush architecture”.
It turns out that in the BHJ architecture, this effective areas are very
close to the value obtained in the “brush” one. Implications of this fact
are discussed: we consider some other factors, which could limit the effi-
ciency of the BHJ architecture, try to estimate its scale and speculate on
possibilities of realization of another architectures and materials in the
construction of solar cells.

Keywords: Photovoltaics · Organic solar cells · Bulk heterojunction
architecture · Photovoltaic efficiency

1 Introduction

Organic photovoltaics is considered as one of the most perspective investigational
trends in the entire topic of new types of solar cells design. Main advantages of the
organic photovoltaic cells are: low cost, flexibility and small weight. Regrettably,
the price we have to pay so far is low effectiveness: for few years the efficiency
record has been fixed on level of 12% [1].

To gain an isight into various aspects of the problem, let us first remind
the basic mechanism of action of solar cell. The conversion of light into electric
current in organic cell is a complex, multistage process. One can recognize the
following main stages of it [2,3].

The basic elements of the active layer of a cell are: the electron donor and
the acceptor. In most cases, the donor is an organic polymer or oligomer. For the
second component, i.e. the acceptor, fullerenes or their chemical derivatives are
used in most cases. In the first stage of photovoltaic action, the donor absorbs
c© Springer Nature Switzerland AG 2020
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photons of solar light. After absorption, an exciton is formed (i.e. a bound state
of an excited electron and a hole). It diffuses to the border between the donor
and the acceptor. On the border, the exciton dissociates into an electron and
a hole. The hole remains confined in the donor, whereas the electron moves
to the acceptor. In the last stage, the carriers of electric charge wander to the
electrodes, where they accumulate. As a result, we observe a voltage between
the electrodes.

An opportunity, which must be taken into account in the course of solar cells
designing is a short diffusion length of an exciton. In most cases, it is on the
order of few nanometers, rarely exceeding this value to about 20–30 nm [4]. Cur-
rently the most popular is the architecture called the BHJ (Bulk HeteroJunction)
[5–8] (Fig. 1a). In a typical case, the active layer is composed of the grains of the
donor and the acceptor. The characteristic grain size is on the order of tens of
nanometers. This makes the area of D-A contact large and the generated exciton
can get the border with the acceptor with high probability. It’s a great opportu-
nity of the BHJ architecture. Another opportunity is it’s simplicity: to prepare
an active BHJ blend, it suffices to mix the donor and the acceptor solutions and
after evaporating the solvent, the blend is ready.

Fig. 1. (a) Very schematic view of the BHJ architecture; (b)—the brush architecture

However, the BHJ architecture has also certain drawbacks. One of them is
the creation of the “islands” of the donor and the acceptor i.e. the attendance
of the grains, which have no connection with the electrodes. In such a situation,
even if the charge is generated on an “island”, it can’t go to the proper electrode.
This means a loss of the cell’s effectiveness. An analogical loss is caused by the
attendance of the “bad peninsulas”, i.e. the donor’s grains against the cathode
and the acceptor’s grains against the anode. These negative factors were recog-
nized very long ago, but surprisingly we could not find the estimates of the scale
of these effects in the literature.

The architecture which is well-fitted to the exciton’s features is so-called
“brush architecture” (“comb” in the two-dimensional version) (Fig. 1b) [9].
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The size of the donor/acceptor “teeths” should fit the exciton’s diffusion length,
i.e. their characteristic width should be on the order of 10–20 nm. A compari-
son of effectivenesses of the optimal “brush” architecture with that of the BHJ
architecture seems very interesting. To express the effectiveness in a more quan-
titative manner: we compute the “geometric factor” Q, being the quotient of
the average of the area of an active contact between the donor and the acceptor
ABHJ and analogous area in the “brush” architecture B:

Q = ABHJ/B (1)

The general setup of the model is as follows. We treat the donor’s and the
acceptor’s nanograins as cubes in a simple cubic lattice. We consider also the
second version of the model where the grains are the hexagonal prisms occupying
the cells of a three-dimensional hexagonal lattice. In both versions, we assume
that the donor’s and the acceptor’s grains are distributed randomly. For every
distribution of the grains, we have computed the area of the border between
the regions occupied by the donor and the acceptor. We allow the “parasitic”
effects attendance, i.e. the fact that the “islands” and the “bad peninsulas”
borders contribute nothing to the production of electricity. This way, the so-
called “effective” area of the D-A border was calculated. In the next step, we
compared it with the area of the border in the brush architecture. And last, we
averaged over the random configurations of the donor and the acceptor grains.

Remark. The model we consider can be viewed as belonging to the broad class of
models describing percolation. There are many kinds of this phenomenon; there
exists large literature devoted to this, see for instance the textbook [10] for basic
background in the subject. However, we couldn’t find the information needed by
us (i.e. the concrete values of the probability of the “plaquette” percolation in
the systems of specific geometry) and this motivated us to undertake our own
simulations.

2 The Model and the Computational Algorithm

2.1 Kinds of Blends Which We Simulate

Experimental probing of the BHJ blend structure was performed in numer-
ous papers; an exhaustive review is [13]. Numerous methods, for instance TEM
(Transmission Electron Microscopy) suggest that regions occupied by the donor
and the acceptor could form irregular shapes, and borders between them could
be sharp or fuzzy. Our modeling refers to such structures, where regions occu-
pied by the donor and the acceptor have similar size and shape, and the boundary
between them is not fuzzy. Examples of such structures are presented for instance
in [12]. They are encountered in the case where both the donor and the acceptor
are relatively small molecules (containing up to a few hundred atoms). On the
other hand, polymers—as a rule—have a very small tendency to crystallization,
and our model is less adequate for them.
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2.2 Basic Technical Assumptions

– We consider two variants, defined on lattices: the cubic one (version 1) and
the three-dimensional hexagonal one (version 2). We assume that in version
1 the model of the BHJ layer consists of randomly colored white (donor)
and red (acceptor) cubes (Fig. 2a). In version 2, the model of the BHJ layer
consists of randomly colored hexagon prisms.

– We considered subsets of lattices with sizes ranging between 10×30×30 and
20 × 200 × 200 lattice units. The length of the shorter side corresponds to
the thickness of the BHJ layer, i.e. the distance between the electrodes. We
adopted it as 10, 15 and 20 grains; this way cells with the thickness of the
BHJ layer of 100–200 nm were simulated. The longer side of the BHJ layer
corresponds to the characteristic size of an electrode; in a real cell it is way
bigger than the thickness of the BHJ layer.

– In a lattice we can have various ratios of the white and the red cells. We
adopted the ratios: 1:1, 2:3, 1:2 and 1:4.

– The border between the donor and the acceptor may be active, i.e. such that
the charge created after exciton’s decay can reach the proper electrode by
flowing a sequence of connected donor/acceptor grains. A border can be also
disactive when charges don’t have such a possibility (i.e. they are trapped in
an island without contact with an electrode). Figure 2 illustrates examples of
active borders (marked in green) and an example of a disactive border (blue)
in a blend section.

– The area of an active border is measured and compared with the area of the
border in the “brush architecture”.

2.3 Basic Technical Assumptions

Algorithm for the Cube Lattice. The parameters of the program are: the
vertical size V (the thickness of the layer); the length, Hx and the width, Hy, of
the layer, respectively; the probability P of filling a given cell by a donor grain.
The P value corresponds to the ratio of the donor and the acceptor.

We start from declaring a three-dimensional array indexed with non-negative
integers (i, j, k). Every individual cell stores a variable that can assume two val-
ues corresponding to the cell being occupied either by the donor or the acceptor.
For illustrative purposes, every individual cell of the declared array is coloured
in one of two colours: white means that a given cell is filled by a donor grain
and red—by an acceptor grain. The main steps of the procedure are as follows.

Step 1. Sampling of configurations. For each cell, a random number from the
interval [0, 1] is generated. If this number is less than P, then the cell is marked
red. Otherwise it is marked white. After step 1, the occupation of the lattice
cells by the donor and the acceptor are determined.

Step 2. Local connectedness between cells. Examining the charge flow
between the sequence of cubes, touching each other and containing the same
content (i.e. the donor or acceptor), we are facing with the following problem.
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Fig. 2. A horizontal section of the model of the BHJ layer; (a) the BHJ blend is formed
as a random mixture of cubic grains of the donor and the acceptor; (b) the BHJ blend is
formed as a random mixture of hexagonal prisms. The blue line indicates the non-active
borders, whereas the green line concerns the active borders. (Color figure online)

When two touching cubes possess the common wall, it is clear that the charge
can flow from one cube to their neighbor. The situation is however different in
the case where two touching cubes possess common edge only, or vertex only.
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In such situations, we have to settle the query: are two touching cubes connected
or not? We could assume that charge just has no possibility to flow between the
cells via edges or vertexes – this case we will take into consideration in future. In
this paper we adjudicate randomly if two cubes with common edge containing
the acceptor are connected and two other containing the donor are disconnected,
or vice versa. When coloring of cells of the array is finished, the programme again
checks all the table to settle the quest of connection between the “grains” of the
donor and the “grains” of the acceptor in cases when cells filled by this same
colour contact only by edges or only by corners; for each cell programme checks
it’s colour and colours of neighbouring cells. In case when cells filled by this
same colour, for example white, contact only by edge, a random number from
interval [0, 1] is generated. If it is greater than 0.5 than this white cells are con-
nected and a pair of red cells is not connected. Information about connection
or less of connection is scored up. Analogically, in case when cells filled by this
same colour are contact only by a corner, quest of connection between them is
arbitrated by generating a random number from interval [0, 1] and comparing it
with probability 0.25.

Step 3. When the quest of edge and corner connections between cells is
resolved, the programme enters into searching cells filled with red colour, which
are connected with the “red” electrode (i.e. with an edge of the BHJ layer which
– as assumed – collects the electrons) by a coherent path composed with the red
cells. Analogically are searched the coherent paths composed by the white cells
reaching a “white” electrode (i.e. an edge of the BHJ layer which collects holes).

Step 4. In this stage, there are determined these regions from which the
charges can flow into an adequate electrode. In step 4. the area of a border
between these regions is calculated. After this last step, the total area of the
active border is known and an algorithm is finishing one simulation. Every four-
step simulation is repeated N times (we took N = 100). After that, standard
statistical analysis of active border length is performed: We calculate the max-
imum, minimum, average, variance and standard deviation. Next, a quotient of
the average and the length of border between the donor and the acceptor in
‘brush architecture’ is appointed (in percent).

Algorithm for the Hexagon Prism Lattice. The algorithm for the hexagon
prism lattice (Fig. 2b) is very similar to this for the cube lattice, so we only stress
the differences: donor and the acceptor grains can touch only by walls and edges
but not by vertices, what facilitates the step 2. – we must to arbitrate only edges
connections quest.

Remark. We began our simulations from the simpler two-dimensional situation
[14]. We treated the two-dimensional model as a “warm-up” towards the three-
dimensional one, which is certainly much closer to the reality. For this reason, we
will neither discuss nor compare results coming from two and three dimensions.
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2.4 Results

Results for Cubic Lattice. We performed simulations of blends for propor-
tions of the donor and the acceptor: 1:1, 2:3, 1:2 and 1:4. In experiments, an
arbitrary proportion of the donor and the acceptor can be taken. We took values
close to the most popular values taken in the literature devoted to the experi-
ments. A sample of obtained values of Q is presented on Fig. 3. It is seen that
the largest value of Q are significantly higher than 100%, but in proportion 1:1
case it is less than 90%. High stability of quotient Q with growing horizontal
sizes is observed too. The largest values of Q were observed for smallest values
of V .

Fig. 3. Q values for the cube lattice. Results for various horizontal and vertical sizes
as well as various proportions of the donor and the acceptor are presented.

For the D/A proportion being 1:1, the largest value of Q was 86%; for D/A
proportion equal to 2:3, the largest value of Q was 106%; for D/A proportion
1:2, the largest value of Q was 121% and for D/A proportion 1:4 the largest
value of Q was 119%.

Results for the Honeycomb Lattice. Here simulations are under develop-
ment. Preliminary results (to be confirmed) give Q values much higher than
in cube lattice case: the Q(H) functions tend to certain limit value (depending
of D/A proportion and vertical size) which ranges from 140% to 200%. Again,
quotient Q appeared smallest for proportion 1:1. For instance, for proportion 1:1
and width 10, the maximal value of Q was 143% (86% for squares); for propor-
tion 2:3 and width 10, the maximal value of Q was 175% (106% for squares); for
proportion 1:2 and width 10, maximal value of Q was 196% (121% for squares)
and for proportion 1:4 and width 10, maximal value of Q was 200% (119% for
squares). For other widths we observe similar interrelations.
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Summary of Simulations. The ultimate goal of our simulations was to find
an answer to the question: Which is the area of the border between the donor
and the Acceptor in the BHJ architecture ABHJ, compared with the area of the
border in the “brush” architecture Abrush. The answer we have obtained is that
the border area in the BHJ architecture is approximately the same or even bigger
than in the “brush” architecture. In a more quantitative manner, the quotient
Q = ABHJ/Abrush took the value between 0.74 and 2.0. The value of Q depend
of the thickness of the active layer, proportion of the Donor and the acceptor
and the shape of their grains. An immediate consequence of this opportunity is
that the efficiency of the photovoltaic device in the BHJ architecture should be
similar or even significantly higher than in the “brush” architecture.

2.5 Summary and Conclusions

In the paper, we have examined the “geometric” factor which can influence the
efficiency of photovoltaic cells built in the BHJ architecture. More precisely, we
have calculated the effective area of the donor-acceptor border in the random
mixture of the donor and the acceptor nanocrystals and compared it with an
ideal “brush” architecture. As a result, it turned out that the areas in these two
kinds architectures are approximately the same. In the other words, influence of
the geometrical factor is of small importance.

We have also looked for other factors which make the efficiency of organic
cells is far less than predicted by certain theoretical considerations, according to
which the efficiency of the organic cells—even in one-junction simplest version—
can achieve 20–24% [3,15]. In our opinion, lower efficiency can be caused by the
presence of the regions occupied by the mixture of the donor and the acceptor,
mixed in a molecular scale (Fig. 4). It is so because the blend emerges by evap-
oration of the solution, in which the donor and the acceptor are present. The
faster evaporation is, the more fuzzy the boundary between the grains of the
donor and the acceptor forms. On the other hand, the evaporation cannot be
too slow, as the donor and the acceptor crystals would be too large.

Fig. 4. Fuzzy boundary between grains of the donor and the acceptor
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If the thickness of the fuzzy region is 5% of a cell’s edge, then area of the
sharp donor-acceptor boundary decays to approximately 80% and if 10%—to
64%. This simple calculus leads to supposition that if in region occupied by the
mixture of the donor and the acceptor occurs some disadvantageous phenomena
(e.g. the excitons have problem with dissociation into the electrons and the
holes), this could have large impact on effectiveness.

Another potential direction of research aimed to enlarge the efficiency of pho-
tovoltaic devices could be to return to layer architecture. Devices constructed in
a layer architecture exhibit lower (however not drastically) efficiency compared
with those in BHJ architecture [11]. To improve efficiency of “layer” devices, one
has to solve the main problem: To find the substance(s), where the exciton diffu-
sion length is comparable to the optical penetration length. In more quantitative
manner, typical value of optical penetration length is on the order of 100 nm
[11], so one should find the substance where the exciton diffusion length is on
the order of 100 nm. It is very difficult task, as in the most of donors or acceptors
used in photovoltaic devices the exciton diffusion length is on the order of 10 nm
[11]. But it seems that it is not hopeless, as there are known certain compounds
(for instance, the anthracene) where the exciton diffusion length is about 100 nm!
[11]. Unfortunately, the anthracene does not absorb the light in the visible range.
To find the compound(s) absorbing the light in visible range and possessing the
large exciton length is great challenge for the material research.
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Abstract. Solutions of multiblock copolymer chains in implicit selective
solvents are studied by Monte Carlo off-lattice method which employs a
parallel tempering algorithm. The aggregation of block copolymers into
micellar structures of spherical and cylindrical shapes is observed. The
parallel tempering Monte Carlo method with feedback-optimized parallel
tempering method is used.

Keywords: Block copolymer · Vesicles · Feedback-optimized parallel
tempering · Monte Carlo method · Micelles

1 Introduction

Block copolymers have the property of aggregating into various structures [1–5].
When placed in a selective solvent, they can form micelles. In particular, they
can be placed in water. At low concentrations, the amphiphiles are present in
the solution as monomers, whereas in high concentrations they aggregate and
self-assemble into micelles. The transition between low and high concentration
regimes occurs at a concentration, which is referred to as critical micelle concen-
tration (CMC). When CMC is surpassed, monomers in the solution are propelled
by their hydrophobic “tails”, which aggregate into micellar cores mostly via van
der Waals interactions. The hydrophobic polymer blocks have low solubility in
polar solvents and therefore they form the micellar core. Its corona, on the other
hand, also known as the micellar outer shell, is built from hydrophilic blocks.
Micelles can be formed in many different shapes, such as spheres, rods, tubes,
lamellae or vesicles. The shape depends chiefly on the solvent quality, the block
lengths and temperature.

Amphiphilic block copolymer micellar carriers are a popular choice for
drug delivery vehicles. Their usefulness stems from their unique nanostructure.
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Hydrophobic drug molecules can be inserted into the micelle core and trans-
ported to the target with better solubility than normally in the bloodstream,
due to the hydrophilic properties of the shell. The process is easiest to execute
when the micelle is vesicle-shaped [6,7].

Vesicles are microscopic pockets enclosed by a thin molecular membrane. The
membranes are usually aggregates of amphiphilic molecules. Vesicles formed by
biological amphiphilic substances are essential for proper cell functioning. They
are mostly lipids of molecular mass lower than 1 kDa. Block copolymers, which
imitate lipids, can also self-assemble into vesicles in a diluted solution. Their
molecular mass is often an order of magnitude larger than the mass of lipids, and
their structural properties, as well as properties pertaining to stability, fluidity
and intermembrane dynamics, are largely dependent on the properties of the
polymers. This type of structure is engineered to trap substances within the
space enclosed by the micellar core [8].

In this study we show the aggregation of block copolymers into micelles using
off-lattice Monte Carlo simulations. The observed nanostructures are spherical
and cylindrical. Since vesicles can be formed from these shapes, we expect that
the cylindrical structures will evolve into vesicles given enough time, volume and
proper conditions in the solution.

The aim is to use the parallel tempering Monte Carlo method with feedback-
optimized parallel tempering method. This technique is known to improve the
sampling of the phase space by reducing the average circulation time of replicas
diffusing in temperature space. Because of the nature of parallel algorithm we
use extensively the HPC environment (we employ a PC Linux-based cluster with
192 threads using the MPI protocol).

2 Methods

2.1 Simulation Methods

We use the Metropolis [9] acceptance criteria for the Monte Carlo (MC) moves.
The MC moves are chain rotations, translations, crankshaft rotations, and slith-
ering snake moves. A Monte Carlo step (MCS) is defined as an attempt to move
once each monomer of the chain.

Moreover, we use parallel tempering (replica exchange) Monte Carlo [10,11]
(PT) with feedback-optimized parallel tempering method [12,13] (FOPT). In the
PT method M replicas of system are simulated in parallel, each at a different
temperature T ∗

i , with i ranging from 1 to M . After a number of MCS (in this
work it is 100 MCS) we try to exchange replicas with neighboring T ∗

i in random
order with probability:

p(T ∗
i ↔ T ∗

i+1) = min[1, exp(−(βi − βi+1)(Ui+1 − Ui))], (1)

where βi = 1/kBT ∗
i and Ui is potential energy of replica at T ∗

i .
Correctly adjusted PT method allows a better probing of the phase space

of the system and prevents trapping in energy minima at low temperatures.
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Thus it allows us to obtain better statistics in simulation and after a single
simulation we obtain results for the selected range of temperatures. We use
M = 24, 32, and 40 replicas.

2.2 Models

Simulation Box and Environment. Simulation is performed in a cubic box
and the usual periodic boundary conditions are imposed. The simulation box
size is sufficiently large for a chain to fit in, and not to interact with itself across
boundary conditions. We simulate a single polymer chain and polymer-solvent
interactions are included in an implicit manner in polymer-polymer interaction
potential [14]. This can be considered a dilute polymer solution.

Polymer Model. We use a coarse-grained model for the polymer chain with
monomers of diameter σ, taken also as the length unit [15]. In this work,
by “monomer” we mean the basic building unit of the coarse-grained chain.
Monomers are of two types: A and B. Neighboring monomers along the chain
are connected via the bond potential:

UBonded(r) =

⎧
⎨

⎩

∞, for r < σ,
0, for σ ≤ r ≤ σ + η,
∞, for r > σ + η,

(2)

where σ + η is the maximum bond length, and σ + 1
2η is considered to be the

average bond length.
Monomers that are not adjacent along the chain (nonbonded monomers),

interact via the following square well potential:

UNon−bonded(r) =

⎧
⎨

⎩

∞, for r < σ,
εij , for σ ≤ r ≤ σ + μ,
0, for r > σ + μ,

(3)

where σ+μ is range of the interaction potential, εij is interaction energy between
monomers of types i and j. We assume that μ = 1

4σ, and η = 1
4σ [16].

Chain bonds are not allowed to be broken, however they are allowed to be
stretched. Interaction parameter εij is defined for the selective solvent as:

εAA = −ε,
εBB = εAB = 0.

(4)

The ε parameter, which is positive, serves as an energy unit to define the reduced
energy per monomer E∗/N , and the reduced temperature T ∗ as:

E∗/N =
(

E
ε

)
/N,

T ∗ = kBT/ε,
(5)

where N is the number of chain monomers, and kB is Boltzmann constant.
Negative εij ’s indicate that there is an attraction between monomers, and the
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presence of the solvent is taken into account in an implicit manner [14]. By
controlling the relative strength of this attraction, via T ∗, we effectively vary
solvent quality, from good to bad, which causes a collapse of the polymer chain,
from a swollen state to a globular state [16–18]. The swollen and collapsed states
are separated by the Θ solvent state, where the chain is Gaussian. This state
is characterized by a temperature T ∗

Θ, which is of the order of unity T ∗
Θ ∼ 1

for this model. Since we are interested in intra-globular structures, we mostly
concentrate on temperatures below the Θ-temperature.

3 Results

The behavior of A-B diblock copolymers in a solvent is here reported. At high
temperatures, the chains remain unfolded. We anticipate the A-type segments
to collapse as upon cooling, which should lead to the forming of micelles. The
A-type blocks will aggregate, forming micellar cores. The B-type blocks will
remain outside of the core, forming the corona. Repulsive interactions between
individual B-type blocks will cause them to spread out, forming 180◦ angles
between each copolymer’s A and B blocks.

The systems considered were comprised of a constant number n = 100
of symmetric Am–Bm type copolymer chains, with varying block length m =
2, 3, ... , 10. By symmetric copolymer we mean the chain with the same number
of A and B monomers. Micellization can be reached either by changing concen-
tration or temperature. We fixed the concentration and vary T ∗

i which is more
efficient than varying concentration.

Fig. 1. Simulation snapshots of a system with n = 100 A10–B10 copolymers at tem-
peratures: (a) T ∗ = 0.84, (b) T ∗ = 0.78, (c) T ∗ = 0.78, (d) T ∗ = 0.71, (e) T ∗ = 0.6,
(f) T ∗ = 0.6, (g) T ∗ = 0.3, (h) T ∗ = 0.3.
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Starting with the longest blocks, m = 10, snapshots of the simulation box
have been taken for different temperatures and are shown in Fig. 1. At T ∗ = 0.84,
the polymers formed a disordered phase which means that no aggregation occurs.
As temperature is lowered, the average distance between A-blocks decreases,
whereas B-blocks stay at the coronas of the micelles, as expected. At T ∗ = 0.78,
micelle-like aggregates begin to form. At T ∗ = 0.71 we observe free chains and
four distinct micelles. At lower temperatures, T ∗ = 0.6 and T ∗ = 0.3, no free
chains are observed - all copolymers have aggregated into 2, 3 or 4 distinct

Fig. 2. Snapshots taken during a simulation of a system of A-B symmetric copolymers
at temperatures T ∗ = 0.2 (a, c, e, g, i, k, m, o) and T ∗ = 0.3 (b, d, f, k, j, l, n, p) for
chain lengths: (a) A2–B2, (b) A2–B2, (c) A3–B3, (d) A3–B3, (e) A4–B4, (f) A4–B4,
(g) A5–B5, (h) A5-B5, (i) A6–B6, (j) A6–B6, (k) A7–B7, (l) A7–B7, (m) A8–B8, (n)
A8–B8, (o) A9–B9, (p) A9–B9.
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larger structures. It has to be stressed that both spherical and cylindrical micelles
can be observed here. This process can be seen in the lower row of Fig. 1, as well
as in another set of simulation snapshots, shown in Fig. 2, performed this time
for smaller block lengths and exclusively at low temperatures. It is evident that
the longer the copolymer chains, the easier it is to observe cylindrical structures
in simulations. However, as seen in Fig. 2, the cylindrical micelles are formed in
chains consisting of shorter blocks as well.

The chain’s total size is shown in Fig. 3 as a function of temperature, for
all considered block sizes m. As temperature is lowered, the chain size also
decreases. At critical temperature a sudden increase of R2

g, much higher than
the individual increase of A- and B-type blocks, is observed. This is an effect
of relative orientation of various blocks. The average size of the A-type blocks
decreases similarly to that of the homopolymer chain, while the size of the B-
type blocks remains roughly the same, and slightly increases below the cloud
point temperature TCP , as they spread out to accommodate more copolymer
chains within the micellar structure.

Various numbers (from 1 to 5) of both spherical and cylindrical micellar struc-
tures can be found in Fig. 2 (however, at some conditions even more structures
as shown in Fig. 2o). We think that the cylindrical micelles are stable because
the crowns of spherical micelles are sufficiently thin for the two micelle cores to
come close enough for the Van der Waals interaction to pull them together into
a larger, cylindrical structure. It is well established that as the volume of sample
is increased (at constant concentration), cylindrical micelles can aggregate into
vesicular forms. Therefore, we also conjecture that for larger systems we can
obtain vesicles in the same computational setup but this is beyond the scope of
this paper. We intend to show this in a future study.
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Fig. 3. Mean square of the radius of gyration R2
g of the whole chain for n = 100

symmetric A–B copolymers in temperature range T ∗ ∈ (0.2; 2).
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4 Conclusions

By simulating polymeric structures in a range of temperatures, we found that at
fairly high temperatures the micellization cannot be observed; the polymers are
in a disordered state. As temperature is lowered, around the micellization tem-
perature T ∗ = 0.78, the micelle-like aggregates begin to form, with some fraction
of free chains. Upon lowering the temperature further we observe more spherical
micelles. Moreover, we also can see cylindrical nanostructures, consisting of a
larger number of block chains.

The average number of clusters (spatially separate aggregates) in systems of
A10–B10 copolymers is about 3. For larger systems and at the same copolymer
chain concentration, this number will be appropriately higher. Some of these
aggregates will be spherical micelles; others - short cylinders. As for the radius
of gyration, we found that as T ∗ is lowered, the mean chain length also decreases.
At micellization temperature, a rapid increase of R2

g can be observed. It is then
much larger than the average size of individual blocks. We conclude that the
longer the copolymer chain length, the higher the micellization temperature is.
This also means that dissolving micelles requires higher temperatures for longer
chains.

One of the reasons that cylindrical micelles occur is the fact that the crowns of
spherical micelles are thin enough that two micelle cores can come close enough
to be pulled together into a larger, cylindrical structure. The next possible step,
which is beyond the scope of this study, is the aggregation of micelles into vesic-
ular forms.

Acknowledgments. We gratefully acknowledge the Polish National Science Centre
(NCN) Grant No. UMO-2017/25/B/ST5/01970 and the computational grant from the
Poznan Supercomputing and Networking Center (PCSS).

References

1. Hamersky, M.W., Smith, S.D., Gozen, A.O., Spontak, R.J.: Phase behavior of
triblock copolymers varying in molecular asymmetry. Phys. Rev. Lett. 95(16),
168306 (2005). https://doi.org/10.1103/PhysRevLett.95.168306

2. Bates, F.S., Fredrickson, G.H.: Block copolymers-designer soft materials. Phys.
Today 52(2), 32–38 (1999). https://doi.org/10.1063/1.882522

3. Lazzari, M., Liu, G., Lecommandoux, S.: Block Copolymers in Nanoscience, pp.
1–428. Wiley-VCH, Weinheim (2008)

4. Abetz, V., Simon, P.F.W.: Phase behaviour and morphologies of block copolymers.
In: Abetz, V. (ed.) Block Copolymers I. Advances in Polymer Science, vol. 189,
pp. 125–212. Springer, Heidelberg (2005). https://doi.org/10.1007/12 004

5. Semenov, A.N.: Contribution to the theory of microphase layering in block-
copolymer melts. Sov. Phys. JETP 61, 733–742 (1985)

6. Discher, D., Eisenberg, A.: Polymer vesicles. Science 297, 967–973 (2002). https://
doi.org/10.1126/science.1074972

7. Lewandowski, K.: Polimerowe struktury globularne i micelarne badane matodami
symulacji komputerowych, p. 85. Ph.D. thesis (2012)

https://doi.org/10.1103/PhysRevLett.95.168306
https://doi.org/10.1063/1.882522
https://doi.org/10.1007/12_004
https://doi.org/10.1126/science.1074972
https://doi.org/10.1126/science.1074972


340 K. Lewandowski et al.

8. Hanafy, N., El-Kemary, M., Leporatti, S.: Micelles structure development as a
strategy to improve smart cancer therapy. Cancers 10, 238 (2018). https://doi.
org/10.3390/cancers10070238

9. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation
of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092
(1953). https://doi.org/10.1063/1.1699114

10. Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and new perspec-
tives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005). https://doi.org/10.1039/
B509983H

11. Sikorski, A.: Properties of star-branched polymer chains, Application of the replica
exchange Monte Carlo method. Macromolecules 35, 7132–7137 (2002). https://doi.
org/10.1021/ma020013s

12. Katzgraber, H., Trebst, S., Huse, D., Troyer, M.: Feedback-optimized parallel tem-
pering Monte Carlo. J. Stat. Mech.: Theory Exp. 3, P03018 (2006). https://doi.
org/10.1088/1742-5468/2006/03/P03018

13. Lewandowski, K., Knycha�la, P., Banaszak, M.: Parallel-tempering Monte-Carlo
simulation with feedback-optimized algorithm applied to a coil-to-globule transi-
tion of a lattice homopolymer. CMST 16, 29–35 (2010). https://doi.org/10.12921/
cmst.2010.16.01.29-35

14. Zhou, Y., Hall, C., Karplus, M.: First-order disorder-to-order transition in an iso-
lated homopolymer model. Phys. Rev. Lett. 77, 2822 (1996). https://doi.org/10.
1088/1742-5468/2006/03/P03018

15. Lewandowski, K., Banaszak, M.: Intraglobular structures in multiblock copolymer
chains from a monte carlo simulation. Phys. Rev. E 84, 011806 (2011). https://
doi.org/10.1103/PhysRevE.84.011806

16. Lewandowski, K., Knycha�la, P., Banaszak, M.: Protein-like behavior of multiblock
copolymer chains in a selective solvent by a variety of lattice and off-lattice monte
carlo simulations. Phys. Status Solidi B 245(11), 2524–2532 (2008). https://doi.
org/10.1002/pssb.200880252

17. Wo�loszczuk, S., Banaszak, M., Knycha�la, P., Lewandowski, K., Radosz, M.: Alter-
nating multiblock copolymers exhibiting protein-like transitions in selective sol-
vents: a Monte Carlo study. J. Non-Cryst. Solids 354(35–39), 4138–4142 (2008).
https://doi.org/10.1016/j.jnoncrysol.2008.06.022

18. Lewandowski, K., Banaszak, M.: Collapse-driven self-assembly of multiblock
chains: a monte carlo off-latice study. J. Non-Cryst. Solids 355, 1289–1294 (2009).
https://doi.org/10.1016/j.jnoncrysol.2009.05.037

https://doi.org/10.3390/cancers10070238
https://doi.org/10.3390/cancers10070238
https://doi.org/10.1063/1.1699114
https://doi.org/10.1039/B509983H
https://doi.org/10.1039/B509983H
https://doi.org/10.1021/ma020013s
https://doi.org/10.1021/ma020013s
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.12921/cmst.2010.16.01.29-35
https://doi.org/10.12921/cmst.2010.16.01.29-35
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1103/PhysRevE.84.011806
https://doi.org/10.1103/PhysRevE.84.011806
https://doi.org/10.1002/pssb.200880252
https://doi.org/10.1002/pssb.200880252
https://doi.org/10.1016/j.jnoncrysol.2008.06.022
https://doi.org/10.1016/j.jnoncrysol.2009.05.037


Electronic and Optical Properties
of Carbon Nanotubes Directed

to Their Applications in Solar Cells

Jacek Wojtkiewicz1(B) , Bartosz Brzostowski2 , and Marek Pilch1

1 Faculty of Physics, University of Warsaw,
Pasteura 5, 02-093 Warsaw, Poland
{wjacek,Marek.Pilch}@fuw.edu.pl

2 Institute of Physics, University of Zielona Góra,
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Abstract. We calculate electronic and optical properties of a series of
finite carbon nanotubes. Where available, our calculations exhibit good
consistency with experimental data. Our study is directed towards poten-
tial application of carbon nanotubes in solar cells, constructed in a layer
architecture.

Keywords: Carbon nanotubes · Photovoltaics · DFT calculations

1 Introduction

Organic photovoltaics is considered as one of the most perspective investigational
trends in entire topic of new types of solar cells design. Main advantages of the
organic photovoltaic cells are: low cost, flexibility and small weight. Regrettably,
the price we have to pay so far is low effectiveness: for a few years the efficiency
record has been fixed on the level of 12% [1]. One can ask what are perspectives
to improve this effectiveness in order to achieve the performance on the level
of commercial silicon-based cells (18–24% [1]). This problem has been raised in
numerous papers, see for instance [2,3].

In order to recognize various aspects of the problem, let us first remind the
basic mechanism of the action of solar cell. The conversion of light into electric
current in organic cell is a complex, multistage process. One can recognize the
following main stages of it [2,4].

Basic elements of active layer of a cell are: the electron donor and the accep-
tor. In most cases, the donor is an organic polymer or oligomer. For the second
component, i.e. an acceptor, fullerenes or their chemical derivatives are used
in most cases. In the first stage of photovoltaic action, the donor absorbs pho-
tons of solar light. After absorption, an exciton is formed (i.e. a bound state of
excited electron and a hole). It diffuses to the border between donor and accep-
tor. On the border, the exciton dissociates onto an electron and a hole. The hole
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remains confined in the donor, whereas the electron moves to the acceptor. In
the last stage, the carriers of electric charge diffuse to the electrodes, where they
accumulate. As a result, we observe the voltage between the electrodes.

An opportunity, which must be taken into account in the course of solar cells
designing is a short diffusion length of an exciton. In most cases, it is of the order
of 10 nm, rarely exceeding this value [5]. Historically, the first organic solar cells
have been built in a simple layer architecture [6]. Thickness of the layers should
be comparable to the optical penetration depth, so they were of the order of 50–
100 nm [6–9]. It turns out that solar cells built in the layer architecture exhibit
rather limited efficiency (up to 5%). The most important factor which limits
their efficiency is that majority of the excitons decays without dissociation into
an electron and a hole before they achieve the donor – acceptor border.

Partial solution of this problem is given by the most popular now architec-
ture called BHJ (Bulk HeteroJunction) [10–14]. They overcome the layer cells,
however, they suffer from another (not fully recognized) limitations. For more
than 5 years the top efficiency has not exceed 12% [1].

One of possible directions of research aimed to enlarge the efficiency of pho-
tovoltaic devices is return to layer architecture. But to improve efficiency of
‘layer’ devices, one has to solve the main problem: Find the substance(s), where
the exciton diffusion length is comparable to the optical penetration length. In a
more quantitative manner, typical value of optical penetration length is of the
order 100 nm [5], so one should find the substance where the exciton diffusion
length is of the same order. Unfortunately, in most of donors or acceptors used
in photovoltaic devices the exciton diffusion length is of the order 10 nm [5].
Among rare exceptions, there is a remarkable one: for carbon nanotubes (CNTs),
reported exciton diffusion length exceeds 200 nm [15,16].

The idea of using CNTs in solar cells is not new and motivations of such
applications are quite diverse [17–25]. However, we haven’t seen the scheme
which we propose now:

The cell is constructed in the layer architecture. Nanotubes serve as a donor,
and fullerenes as an acceptor.

To achieve good efficiency, the donor layer should absorb the light in the
substantial part of visible and infrared regions. It is known, however, that –
as a rule – absorption lines of CNTs are sharp and cover very narrow region
of wavelength [18]. But there are many kinds of CNTs. They are classified by
two natural numbers (n,m) (the n number is related to CNT circumference,
and m ≤ n is a chirality parameter [18]. One can hope that using sufficiently
many different CNTs, it will be possible to cover substantial region of solar
light spectrum. Some rather crude and partial informations, based on the simple
calculations of energy gaps in CNTs, show that could be in fact possible [18,19].
We are aware of some more precise calculations, but they concern only few CNTs
[26,27]. To make our idea convincing, it is necessary to perform more systematic
calculations.
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We formulate our goal as follows:
Calculate: energies and amplitudes of optical transitions as well as HOMO

and LUMO energies in a series of CNTs with growing n and m. Examine whether
whole visible and IR regions of solar light could be covered by energies of optical
transition of CNTs.

To realize this programme, it is necessary to compute energies and ampli-
tudes of optical transitions for a few tens (perhaps about hundred) CNTs. We
estimate that this is a large programme. Our present paper is aimed as a first
step towards this direction: we present some results of calculations for a few
CNTs and compare it with existing experimental data. It turns out that results
of our calculations agree well with experiment. So we claim that our programme
is worth further continuation.

2 Methodology of Computations

We performed our calculations mainly for finite systems. Such approach was
motivated by the following opportunities.

Most of calculations concerning CNT’s is performed within framework of
computational scheme for periodic structures. It is reasonable point of view
as the CNTs are very long in most cases (i.e. the ratio of their length and
circumference is large). Such computations have been performed within quite a
few approaches: non-interacting particles [18], DFT formalism with the use of
various functionals, Green functions [26]. However, in most cases, calculations
were performed without optimalization of geometry, assuming some given data,
usually coming from experiment. But it is well known that geometry can have
substantial influence on value of energies. In our computations for finite systems,
we always used the geometry optimalization.

The second aspect is a choice of computational scheme. The most of con-
temporary material calculations is performed within DFT formalism. However,
there is a problem of choice: There are numerous DFT functionals, differing by
quality of theoretical justification, computational complexity, universality etc.
Here we decided to employ the Gaussian 09 package [28], widely used in quan-
tum chemistry, and the functional B3LYP, which proved its effectiveness in a
large class od chemical molecules [29].

We realize that our approach, based on considerations of CNTs of finite
lengths, has both positive and negative aspects. The positive aspects are: good
quality of computations (use of hybrid functionals, better developed in quan-
tum chemistry packages than in the case of solid state ones) and possibility of
calculations of transition amplitudes using TDDFT formalism. Calculations for
finite systems constitute also the first step into the finite-size study and extrap-
olation. The price paid is however that at present time we are able to calculate
relatively small systems – up to about 200 atoms, which means that calculated
CNTs are not too long. We believe that calculated quantities saturate quickly
with increasing length (we have checked this for selected systems). More pro-
found calculations: for larger systems and using extrapolation to infinite length
we plan to realize in the future.
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3 Results

We performed the calculations primarily for these CNTs for which we could
find experimental results. They are: (9,1), (8,3) and (7,5) CNTs. We have also
calculated CNTs (8,0) and (6,0). (See Figs. 1, 2 and 3). The calculated CNTs
were finite systems; so there appeared a problem how to ‘end’ it, in order to
avoid artefacts coming from unpaired bonds. We decided to make the simplest
solution, i.e. to saturate the unpaired bonds by the hydrogen atoms. We have
calculated as large systems as we could with the use of computational capabilities
in our disposal. The largest system calculated by us was C144H12.

Fig. 1. The finite CNT (9,1)

Fig. 2. The finite CNT (6,0)

Calculations were performed with the use of Gaussian 09 package [28]. We
have optimized the geometry of every molecule. After that, we calculated one-
electron energies and among them, the HOMO and LUMO energies. The most
important quantities we calculated were energies and amplitudes of infrared and
optical transitions; we calculated them with the use of TDDFT.

We encountered the problem of choice of the DFT functional. There exist 50
(or more) DFT functionals. We decided to use some as universal as possible in
our preliminary study, and we choose the B3LYP functional, which has proved
to give reliable results in many kinds of chemical molecules. The second aspect
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Fig. 3. Fragment of the infinite CNT (9,1)

is that the quality of calculations depend of the size of basis [29]. Again, we
have chosen such a basis which guarantee reasonable accuracy and is not too
time-consuming. We used the 6-31G(d) basis.

We have detected many optical transitions. But most of them possess negligi-
ble amplitude. For this reason, we present only the first (in the order of increas-
ing transition energy) most intense one. All remaining ones (we calculated 30
transitions) possess the amplitude being 10 (or more) times lower.

For the sake of comparison, we have also calculated infinite variants of CNTs
using SIESTA [30] package. At present, we were able to calculate only one-
electron energies. It is known that, for CNTs, they give unsatisfacory results
with respect to reproduction energies of optical transitions [26]. In general, one
cannot expect that difference of HOMO and LUMO energies will precisely cor-
respond to energy of lowest optical transition. Our results (coming for SIESTA
and Gaussian) well illustrate this opportunity. In the future, we plan to extend
studies of infinite systems by departing from one-particle approach.

The results of calculations for finite CNTs are collected in the Table 1, and
for infinite CNTs in the Table 2. Moreover, plots of densities of states for CNTs
are plotted on Fig. 4

One of absorption energies detected by us takes place within visible region
(the second transition in (8,0) CNT) and another are in the infrared region. Due
to limited computational capabilities, we couldn’t calculate transitions of larger
energy (within visible region), but we think that there are also such transitions.
Which was confirmed in the (8,0) CNT [27].

It is also apparent that our results agree well with experimental ones [18]
for CNTs: (7,5), (8,3) and (9,1). However, there is a point here: Our results
concern an absorption, whereas data in [18] refer to the emission. Differences
between these two values can be significant, so we couldn’d definitely settle
the consistency of these two sets of data. We are aware also about results for
CNT (8,0) [27] where values 1.60 eV (experimental) and 1.55 (theoretical) are
reported. Our value is 1.64 eV – very close to these results. We also detected
additional transition at 0.828 eV, absent in [27]. We don’t know the reason
for this discrepancy. Perhaps there is a finite-size effect, absent for long CNTs,
considered in [27].

There is also another important aspect of construction of organic solar cells.
Namely, the energies of HOMO and LUMO of the donor have to be higher
than their corresponding values for the acceptor. The fullerene is a most nat-
ural choice for the acceptor. However, in such a case, not all CNTs give the
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Table 1. Results of DFT and TDDFT calculations for selected finite CNTs with the use
of Gaussian 09 package. Results for the first intense transitions are presented; for the
CNTs (8,0) and (6,0), also the second transition is presented. Available experimental
results are also placed for comparison. For the sake of comparison, energies of HOMO
and LUMO of the fullerene C60 are presented. All energies are in eV.

Compound Formula EHOMO ELUMO ΔEDFT Eopt
TDDFT Eopt

exp f

CNT (7,5) C120H24 −4.22 −2.83 1.39 1.188 1.212 [18] 0.140

CNT (8,3) C110H22 −4.06 −2.98 1.08 1.256 1.298 [18] 0.417

CNT (9,1) C114H20 −3.71 −3.46 0.25 1.266 1.355 [18] 0.494

CNT (8,0) C128H16 −3.70 −3.48 0.22 0.828 0.381

CNT (8,0) C128H16 −3.70 −3.48 0.22 1.64 1.60 [27] 0.205

CNT (6,0) C144H12 −3.84 −3.29 0.55 1.09 0.069

CNT (6,0) C144H12 −3.84 −3.29 0.55 1.14 0.269

Fullerene C60 −5.99 −3.23

Table 2. One-electron energies for infinite CNTs with the use of SIESTA package. All
energies are in eV.

CNT EHOMO ELUMO ΔEDFT

6-0 −4.24 −3.91 0.33

7-5 −3.91 −3.01 0.90

8-0 −4.39 −3.82 0.57

8-3 −3.86 −2.96 0.90

9-1 −3.81 −2.94 0.87

correct ordering of energy levels, see Table 1. But one can hope that by chemi-
cal modification (‘functionalization’) of CNTs or fullerenes it will be possible to
manipulate locations of HOMO and LUMO orbitals, and to achieve the correct
ordering of energy levels. We plan to examine modified CNTs and fullerenes in
further studies.

4 Summary, Perspectives of Future Research

We have presented results for optical absorption for selected CNTs. For these
cases where we could find a comparison, we observed good consistency of our
research with GW-BSE approach as well as experimental results [18,26,27].
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Fig. 4. Densities of states for infinite CNTs. The Fermi energy is at 0.

Some of our further goals are as follows:

(i) Continue systematic calculations for another CNTs. An access to high-
performance machines will be crucial in this aspect.

(ii) Perform computations for longer CNTs and perform systematic study of
finite-size effects.

(iii) Study infinite-length CNTs using formalism developed for periodic struc-
tures and compare it with results for finite systems.
And – we estimate it as more demanding –

(iv) Develop theoretical and computational tools towards prediction of exciton
diffusion length in CNTs.

Our present study is meant as first steps towards the realization of the pro-
gramme sketched in the Introduction: Examine whether most of visible and IR
regions of solar light could be covered by energies of optical transitions of CNTs.
One can hope that the answer is positive, due to the following simple experi-
mental fact: the person who saw the standard CNT sample, knows that they are
black and absorb all visible light. Our calculations shows that absorption lines
of specific CNT are sharp and hold at some concrete wavelengths. However,
in a standard sample, very diverse kinds of nanotubes are present (differing
by length, circumference, chirality, etc). Such a mixture gives the absorption
spectrum being an average of absorption lines of every individual nanotube.
(Example of such situation is in the book by Fox [18], Fig. 8.26). One of our
goals is to identify which CNT absorb in a given wavelength, and how averaging
of absorption lines of many different kinds of nanotubes holds.



348 J. Wojtkiewicz et al.

In our opinion, the results obtained are quite satisfactory and encouraging,
and we would like to continue this programme. Our calculations might serve as
a road-map towards construction of light and cheap photovoltaic cells with high
efficiency.

Acknowledgment. We are grateful to anonymous referee for questions, remarks and
constructive criticism.
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Abstract. The IEEE 1788–2015 has standardized interval arithmetic.
However, few libraries for interval arithmetic are compliant with this
standard. In the first part of this paper, the main features of the IEEE
1788–2015 standard are detailed, namely the structure into 4 levels, the
possibility to accomodate a new mathematical theory of interval arith-
metic through the notion of flavor, and the mechanism of decoration for
handling exceptions. These features were not present in the libraries
developed prior to the elaboration of the standard. MPFI is such a
library: it is a C library, based on MPFR, for arbitrary precision interval
arithmetic. MPFI is not (yet) compliant with the IEEE 1788–2015 stan-
dard for interval arithmetic: the planned modifications are presented.
Some considerations about performance and HPC on interval computa-
tions based on this standard, or on MPFI, conclude the paper.

Keywords: Interval arithmetic · IEEE 1788–2015 standard · MPFI
library · Compliance

1 Introduction and Context

Interval arithmetic has been defined even before the 1960s [15,27] and has con-
tinuously evolved and improved since then, with the development of algorithms
to solve larger classes of problems through the 1970s and 1980s [1,16,20], then
with a focus on the implementation [26] and more recently with its introduction
in master courses [17,29]. However, in 2008, it was noticed and strongly resented
that there were no definitions common to all authors and that it made it diffi-
cult to compare results. Under the auspices of IEEE where the standardization
of floating-point arithmetic took place, leading to IEEE 754–1985 [8] and IEEE
754–2008 [9], a standardization effort was launched. It led to the IEEE 1788–
2015 standard for interval arithmetic [10]. Its development phases and its main
features are explained in [14,21,25].

Nevertheless, only few libraries of interval arithmetic are compliant with the
IEEE 1788–2015 standard. Most libraries were developed before the standard.
Regarding the libraries developed since then and compliant with the standard,
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R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 353–363, 2020.
https://doi.org/10.1007/978-3-030-43222-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_31&domain=pdf
http://orcid.org/0000-0002-2503-2274
https://doi.org/10.1007/978-3-030-43222-5_31


354 N. Revol

let us mention libieee1788 [19], which was developed along with the stan-
dard as a proof-of-concept. However, its author has left academia and this C++
library is no longer maintained: it does not compile any more with recent ver-
sions of g++. JInterval [18] is a Java library that was more used to test the
compliance of interval arithmetic libraries with the standard, than used as an
interval arithmetic library per se. Unfortunately, this library has also untimely
lost its main developer, D. Nadezhin. The interval package for Octave [7] is
the only library that is still maintained and for public use, even if its author
has also left academia. MPDI [5] is another library for interval arithmetic that is
compliant with the standard, but it is not (yet?) distributed.

This lack of libraries compliant with the IEEE 1788–2015 standard led us
to consider the adaptation of our MPFI library for arbitrary precision interval
arithmetic into a compliant library. We will detail the required modifications in
Sect. 4, but we first detail the main features of the IEEE 1788–2015 standard
in Sect. 2, and we introduce MPFI and explain how far it is from being IEEE
1788–2015 compliant in Sect. 3. We conclude with some personal considerations
about the relevance of interval arithmetic computations in HPC.

2 IEEE 1788–2015 Standard for Interval Arithmetic

2.1 Structure in Four Levels

The IEEE 1788–2015 standard for interval arithmetic is structured in 4 lev-
els, similarly to the IEEE 754–1985 standard for floating-point arithmetic. This
structure clearly separates the mathematical notions from implementation issues,
all the way to bit encoding.

The first level is the mathematical level: this level is about intervals of real
numbers, such as [0, π]. Reasoning about intervals of real numbers, establishing
and proving mathematical theorems about such intervals, are done at Level 1.
No representation issue interferes with this level.

The second level addresses discretization issues: it deals with the fact that an
implementation on a computer will have a discrete, finite set of numbers at its
disposal for the representation of intervals, in particular for the representation
of the endpoints. It specifies the existence of directed rounding modes, because
it is required that every interval at Level 2 encloses the mathematical, Level 1,
interval it represents. For instance, the interval [0, π] is represented by an interval
of the form [rd(0), ru(π)] where rd stands for rounding downwards and ru stands
for rounding upwards. This second level remains quite abstract and does not
specify the set of numbers, it – only but completely – explicitly specifies how to
go from the real numbers at mathematical Level 1 to a finite and discrete set of
numbers at Level 2.

At Level 3, this finite and discrete set of numbers is specified: for instance it
can be the set of binary64 floating-point numbers given by the IEEE 754–2008
standard. Level 4 gives the binary encoding of the representation. Actually, the
bulk of the work has been done at the floating-point (or any other numbers
representation) level and the standard specifies only decorations, see Sect. 2.4.
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2.2 Definitions: Intervals and Operations

Notation: following [13], intervals are denoted using boldface symbols, as in x.
Now that the structure of the standard is clear, let us detail the definitions

adopted in the standard. Regarding intervals: everybody agreed that [0, π] and
[1, 3] are intervals. Discussions were hot regarding whether ∅, [5,∞) or [3, 1]
should be considered as legal intervals. Thus, at Level 1, the definition for which
there was a consensus, a common agreement, is that an interval is a non-empty
bounded closed connected subset of R: x = [x, x̄] with x ∈ R, x̄ ∈ R and x ≤ x̄.

At Level 1, operations are defined in such a way that the FTIA holds.

Theorem 1 (FTIA: Fundamental Theorem of Interval Arithmetic).
Any operation ϕ evaluated on interval arguments x1,x2, . . . ,xk within its domain
returns its range on these arguments ϕ(x1,x2, . . . ,xk).

Implementation issues relax the FTIA to the requirement that the result
encloses the range of ϕ on x1,x2, . . . ,xk. The application of this principle yields
the well-known formulas for arithmetic operations such as +, −, ∗ or √ :

[x, x̄] + [y, ȳ] = [x + y, x̄ + ȳ],
[x, x̄] − [y, ȳ] = [x − ȳ, x̄ − y],
[x, x̄] ∗ [y, ȳ] = [min(x ∗ y, x ∗ ȳ, x̄ ∗ y, x̄ ∗ ȳ),max(x ∗ y, x ∗ ȳ, x̄ ∗ y, x̄ ∗ ȳ)],√

[x, x̄] = [
√

x,
√

x̄] if x ≥ 0,

and is used to evaluate mathematical functions, e.g. sin([3, 5]) ⊂ [−1,+0.14113].
Other operations are also specified by the IEEE 1788–2015 standard. Some

operations are specific to sets, such as the intersection or the convex hull of the
union, for instance [2, 4]∩[3, 7] = [3, 4] and [−2,−1]∪[3, 7] = [−2, 7]. In the latter
example, the closed convex hull of the result of the union must be returned, oth-
erwise the result has a “gap” and is not an interval. Some operations are specific
to intervals, such as the endpoints (infimum and supremum): inf([−1, 3]) = −1,
sup([−1, 3]) = 3; the width and the radius: wid([−1, 3]) = 4, rad([−1, 3]) = 2;
the magnitude and the mignitude1: mag([−1, 3]) = 3, mig([−1, 3]) = 0.

Some operations have been added to ease constraint solving: it is known
that the addition and subtraction defined above are not the reciprocal of each
other. The standard specifies two operations that are respectively the reciprocal
of addition, namely cancelMinus, and of subtraction, namely cancelPlus. The
formulas for cancelMinus and cancelPlus are as follows

cancelMinus(x,y) = z such that y + z = x
⇒ cancelMinus([x, x̄], [y, ȳ]) = [x − y, x̄ − ȳ], if wid(x) ≥ wid(y),

cancelPlus(x,y) = cancelMinus(x,−y) = z such that z − y = x,
⇒ cancelPlus([x, x̄], [y, ȳ]) = [x + ȳ, x̄ + y], if wid(x) ≥ wid(y).

For example, cancelMinus([2, 5], [1, 3]) = [1, 2] and cancelPlus([2, 5], [1, 3]) =
[5, 6]. Such reciprocal operations are called reverse operations.
1 The definition of the mignitude is mig([a, b]) = min(|x| : x ∈ [a, b]) = min(|a|, |b|) if

0 /∈ [a, b] and 0 otherwise.
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2.3 Flavors

This definition of an interval and the specification of these operations are the
common ground of the IEEE 1788–2015 standard for interval arithmetic. How-
ever, this common ground was felt as too restrictive by many users of interval
arithmetic, who are accustomed to manipulate a larger set of intervals in their
daily practice. Still, it was impossible to extend the definition of an interval to
simultaneously encompass all varieties of intervals and still keep a consistent
theory. For instance, both ∅ and [5,+∞) are meaningful within the set-based
approach of interval arithmetic, but not [3, 1]. Conversely, [3, 1] is a valid interval
in Kaucher [12] or modal arithmetic, but neither ∅ nor unbounded intervals.

The standard is thus designed to accomodate “variants” of interval arith-
metic, called flavors in IEEE 1788–2015. After many discussions, including a
clear definition of modal arithmetic [3,4], the partisans of modal arithmetic
did not pursue their standardization effort. Currently, only the set-based flavor,
derived from set theory, is specified by the IEEE 1788–2015 standard.

Let us highlight the set-based flavor. First, the set-based flavor removes some
limitations on the allowed intervals: the empty set as well as unbounded intervals
are legal intervals for this flavor. An interval is a closed connected subset of R.
As the empty set is a valid interval, the definition of operations and functions
can be extended outside their domain, and

√
[−1, 2] now has a meaning. More

generally, the meaning of ϕ(x1,x2, . . . ,xk) is

ϕ(x1, . . . ,xk) = Hull {ϕ(x1, . . . , xk) : (x1, . . . , xk) ∈ (x1, . . . ,xk) ∩ Dom(ϕ)} .

Let us go back to the example given above:
√

[−1, 2] =
√

[ − 1, 2] ∩ Dom√ =
√

[0, 2] = [0,
√

2]. Similarly, [2, 3]/[−1, 2] is permitted and [2, 3]/[−1, 2] = R,
whereas [2, 3]/[0, 2] = Hull([2, 3]/(0, 2]) = [1,+∞).

Another extension defined by the set-based flavor is the set of available oper-
ations, in particular of reverse operations. For instance, the reverse operation of
the square operation is sqrRev, examplified here:

sqrRev([1, 4]) = Hull
{
x : x2 ∈ [1, 4]

}
= Hull ([−2,−1] ∪ [1, 2]) = [−2, 2].

Another important reverse operation is mulRevToPair, that corresponds
to the extended division defined in [22]. This operation is rather pecu-
liar, as it returns 0, 1 or 2 interval(s), as in mulRevToPair([2, 3], [−1, 2]) =
((−∞,−2], [1,+∞)). It does not return the convex hull of the result, instead it
preserves the gap. This is particularly useful in Newton’s method for the deter-
mination of the zeroes of a function: as this gap corresponds to a region that
does not contain any zero and that can be eliminated for further exploration, it
also separates zeros. Newton’s method can subsequently be applied successfully
to each of the two results.
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2.4 Decorations

Let us have a closer look at Newton’s method. A particularly useful side result
is the proof of existence, and sometimes uniqueness, of a zero in the computed
interval. This proof is obtained by applying Brouwer’s theorem.

Theorem 2 (Brouwer’s Theorem). If the image of a compact set K by a
continuous function f is enclosed in K, then f has a fixed point in K: if f(K) ⊂
K, then ∃x0 ∈ K such that f(x0) = x0.

Another way of stating this result is to say that the function g : x �→ x − f(x)
has a zero in K.

In particular, if K is a non-empty bounded interval, and if the result of
the evaluation of f on K returns an interval K ′ ⊂ K, then the existence of a
fixed-point of f on K is established.

Let us consider the following example: the function

f : x �→ √
x − 2,

has no real fixed point. We leave it to the reader, hint: x − √
x + 2 has no real

zero, or equivalently the polynomial y2 − y + 2 has no real root. The evaluation
of f on [−4, 9] using the set-based flavor of interval arithmetic yields:

√
[−4, 9] − 2 =

√
[0, 9] − 2 = [0, 3] − 2 = [−2, 1] ⊂ [−4, 9],

and a hasty application of Brouwer’s theorem falsely establishes that f has a fixed
point in [−4, 9]. The mistake here is to omit checking whether f is continuous over
[−4, 9]. Actually f is not even defined everywhere on [−4, 9]. As the assumption
of Brouwer’s theorem is not satisfied, no conclusion can be derived.

The IEEE 1788–2015 standard must offer a mechanism to handle exceptions
and to prohibit such erroneous conclusions from being drawn. After hot and
long debates, the chosen mechanism is called decoration; it consists in a piece of
information, a tag attached to or “decorating” each interval. Decorations have
been deemed as the best way (or, should we say, “the least worse”) to deal with
the abovementioned problem:

– they avoid the inappropriate application of Brouwer’s theorem: Brouwer’s
theorem can be used only when the tag indicates that it is valid to do so;

– they avoid the storage of any global information for exceptions, contrary to
the global flags defined in the IEEE 754–1985 standard for floating-point
arithmetic: such global flags are difficult to implement in a parallel context
(that is, SIMD, multithreaded, or distributed).

The meaning of a decoration, in the set-based flavor, is a piece of information
about the history of the computations that led to the considered interval. In
particular, it indicates whether every operation involved a defined and continu-
ous function applied to arguments within its domain or not. The user must thus
consult this decoration before applying Brouwer’s theorem for instance.
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For the set-based flavor, the chosen decorations are listed below:
– com for common,
– dac for defined and

continuous,
– def for defined,

– trv for trivial (no information),
– ill for ill-formed (nowhere defined).

As a decoration results from the computation of the interval it is attached
to, this computation must also incorporate the determination of the decoration.
The set-based flavor specifies the propagation rules for decorations.

Last, every flavor must provide a FTDIA (Fundamental Theorem of Deco-
rated Interval Arithmetic), that accounts for decorations.

Theorem 3 (FTDIA for the Set-Based Flavor). Let f be an arithmetic
expression denoting a real function f . Let f be evaluated, possibly in finite pre-
cision, on a validly initialized decorated box X = xdx, to give result Y = ydy.
If some component of X is decorated ill, then the decoration dy = ill. If no
component of X is decorated ill, and none of the operations ϕ of f is an every-
where undefined function, then dy �= ill and y ⊃ Rangef(x) and the decoration
dy of y correctly (i.e., pessimistically) accounts for the properties of f over x.

By pessimistically, it is expected that a decoration never raises false hopes.
For instance, a function can be defined and continuous while the computed
decoration only states def, but the converse cannot happen.

2.5 Exact Dot Product

As the IEEE 1788–2015 standard addresses the quality of numerical compu-
tations, it also incorporates a recommendation regarding the accuracy of spe-
cific floating-point computations. Namely, it recommends that for each sup-
ported IEEE 754–1985 floating-point type, an implementation shall provide a
correctly rounded version of the four reduction operations sum, dot, sumSquare
and sumAbs, that take a variable number of arguments.

3 The MPFI Library

After this introduction to the IEEE 1788–2015 standard for interval arithmetic,
let us now concentrate on its implementation. As already stated, the libraries
that are compliant with the standard are rather rare. This section focuses on
the MPFI library, developed since 2000 and thus prior to the standard by large,
and on its transformation into an IEEE 1788–2015 compliant library.

MPFI stands for Multiple Precision Floating-point reliable Interval library.
It is a library written in C that implements arbitrary (rather than multiple)
precision interval arithmetic. More precisely, intervals are represented by their
endpoints and these endpoints are floating-point numbers of arbitrary precision:
for each endpoint, the significand can be arbitrarily precise, the only limit being
the memory of the computer. The MPFI library is based on MPFR [2] for arbi-
trary precision floating-point arithmetic. Its development started in 2000 with
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Revol and Rouillier [24], it has evolved and improved since then thanks to the
contributions of S. Chevillard, C. Lauter, H. D. Nguyen and Ph. Théveny. The
library is freely available at https://gforge.inria.fr/projects/mpfi/.

Before digging in the functionalities and specificities of MPFI, let us recall
some justification for its development, as given by Kahan in [11]. In “How Futile
are Mindless Assessments of Roundoff in Floating-Point Computation?”, Kahan
lists tools for assessing the numerical quality of a computed result, in the presence
of roundoff errors. He exhibits examples that defeat these tools, when applied
mindlessly. A typical example of mindless use of a tool such as interval arithmetic
is the replacement of every floating-point datatype in the code by an interval
datatype that is not more precise, before running the code again, on data of
interval type(s). It is well known that, most of the time, such a mindless use
of interval arithmetic produces results with widths too large to be of any help.
However, if running time is not an issue, using interval arithmetic with arbitrary
precision, and increasing the precision as needed, is a mindless (as opposed to
artful, or expert) but cheap (in development time) and effective way to assess
the numerical quality of a code. As Kahan puts it [11], “For that price (slow
execution compared to the execution of the purely floating-point version) we may
be served better by almost foolproof extendable-precision Interval Arithmetic.”.
MPFI offers the required arbitrary precision interval arithmetic.

Let us go back to MPFI and detail the definitions it uses and the functionali-
ties it offers. MPFI is based on MPFR and thus on GMP, for accuracy, efficiency
and portability. As GMP and MPFR, MPFI is developed in the C language.
MPFR provides arbitrary precision floating-point arithmetic, that is compliant
with the IEEE 754–1985 philosophy. In particular, for every function, MPFR
guarantees that the returned result is equal to the exact result (that is, as if
it were computed with infinite precision), rounded using the required rounding
mode. This correct rounding is guaranteed not only for basic arithmetic opera-
tions but for every function of the mathematical library. In MPFI, an interval
is any closed connected subset of R whose endpoints are numbers representable
using MPFR. Thus the empty set and unbounded intervals are valid intervals,
However, this definition corresponds to Level 2 of the IEEE 1788–2015 standard.

Regarding the functionalities offered by MPFI, they correspond to most of
the requirements of IEEE 1788–2015, with some exceptions. On the one hand,
MPFI offers a richer set of mathematical constants (π, Euler constant, etc.) and
functions. On the other hand, there is (yet) no implementation of the reverse
functions, except mulRevToPair. MPFI offers most of the lengthy list of conver-
sions mandated by the standard: to and from integer, double precision floating-
point numbers, exact integers and rationals (through GMP), arbitrary preci-
sion floating-point numbers (through MPFR) and text strings. MPFI also acco-
modates intervals with any floating-point endpoints, including infinities, signed
zeroes and NaNs: again, MPFI has been designed at Level 2 of IEEE 1788–2015.

However, MPFI accounts for neither flavors nor decorations. Thus, oper-
ations are not defined according to any flavor and do not propagate decora-
tions. Still, MPFI has a mechanism for handling exceptions, which is a “Level 2”

https://gforge.inria.fr/projects/mpfi/
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mechanism in the sense that it is based on the floating-point, IEEE 754–1985-like,
mechanism for handling exceptions. Let us illustrate this mechanism through an
example: when MPFI is given

√
[−1, 2], as [−1, 2] contains −1 and as

√−1 is
an invalid result denoted as NaN in floating-point arithmetic, MPFI considers
this computation as an invalid one and returns NaI: Not an Interval. In IEEE
1788–2015, the only NaIs are produced by meaningless inputs such as [“bla”, 1].

To sum up, MPFI has to be reworked in several directions to be compliant
with the IEEE 1788–2015 standard.

4 Towards Compliance of MPFI with IEEE 1788–2015

In order to incorporate the new concepts present in the standard, the data struc-
ture of a MPFI interval must be modified. First, a field flavor will be added
to each interval, even if this was not the original intent of IEEE 1788–2015: the
principle of flavors was that either a whole computation, or at least significant
portions of it, would be performed using a single flavor; thus a flavor would be
attached to a computation rather than to a data.

Second, parameterized by the flavor, a field decoration will be added and
its possible values will be the ones defined by the corresponding flavor. The
technicalities of “bare” intervals and “compressed” intervals will be handled in
an ad hoc way (by adding a boolean indicating whether the interval is bare or
not) or not implemented (in the case of compressed intervals). As these notions
were not detailed in Sect. 2, they will not be discussed further here.

Then, the code for each existing operation needs to be updated. When enter-
ing the code of an operation, a preliminary test on the flavors of the arguments
and on their compatibility will be performed, and the computation will then
be branched to the corresponding part of the code. Before quitting the code,
a postprocessing will be performed to determine and set the decoration of the
result. Code for the missing reverse operations must be developed.

Another issue is backward compatibility for users of MPFI who want to pre-
serve the existing behavior of their MPFI computations. This will be achieved
by adding a new “flavor” – even if it is not really one: no clear specification at
Level 1 – called MPFIoriginal, so that every computation behaves the same old
way. When this flavor is encountered, each operation will branch to the existing
and unmodified code to perform it.

5 Concluding Remarks Regarding Performance and HPC

The previous section is written in future tense, because most of the modifications
are still waiting to be implemented. Indeed, a major update of MPFI is ongoing,
but still not finished. This update consists not only in turning MPFI into a
IEEE 1788–2015 compliant library, but also in incorporating all mathematical
functions provided by MPFR, such as erf or Bernoulli. Another direction of
future developments concerns the ease of use of MPFI, through a Julia interface.
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Let us now conclude with a few remarks regarding performance and HPC.
The author worked on the parallelization [23] of Hansen’s algorithm for global
optimization using interval arithmetic [6]. This algorithm is of branch-and-bound
type and the original idea to parallelize it was to explore simultaneously several
branches of the tree corresponding to the branch-and-bound exploration. How-
ever, it was rapidly obvious that brute force (that is, bisection of the candidate
box and evaluation of the objective function over each sub-box) was not the best
way to obtain speed-ups. A smarter, sequential processing of the candidate box
was more efficient, either to reduce it or to prune it. The simplest solution was,
as mentioned in [11], to use larger or arbitrary precision interval arithmetic. This
led to the development of MPFI.

Let us go back to parallel computations, with “parallel” covering a large
spectrum of possibilities, all the way from SIMD to multithreaded to multicore to
distributed to heterogeneous computations. The IEEE 1788–2015 standard has
tried to avoid some pitfalls, such as the use of global flags for handling exceptions.
However, the mechanism of decorations has also been heavily criticized. On the
one hand, adding this piece of information to each interval destroys padding
efforts and other memory optimizations. On the other hand, the computation and
propagation of decorations does not integrate gracefully with pipelined or SIMD
operations such as AVX, SSE or SSE2. Similarly, MPFI computations do no seem
suited for parallel execution. The MPFI library cannot benefit from hardware
accelerators. It is also not well suited to cache optimizations strategies, as its data
have irregular sizes, as opposed to fixed and constant sizes such as binary32 or
binary64 floating-point datatypes. Furthermore, each operation in MPFI takes
a large computing time, compared to the time of the same operation (such
as addition, multiplication or exponential) applied to binary64 operands. In
practice, a slowdown larger than 50, for one operation, has often been observed.

However, IEEE 1788–2015 and MPFI computations are not comparable with
binary32 or binary64 computations. First, the results they provide are guar-
anteed, in the sense that they contain the sought results, even in the presence
of roundoff errors. Second, they are well suited for multithreaded or distributed
computations: for such computations, it is well known that the communication
time needed to bring the data to the computational device is much larger, by
typically 3 orders of magnitude, than the computational time, that is, the time
required to perform the arithmetic operations on these data. It means that there
is plenty of time to apply numerical computations to the data. With interval
computations and, in particular, with arbitrary precision interval computations,
the computational time is much larger and becomes closer to the communica-
tion time. In other words, with interval computations, the numeric intensity
is increased, as already observed in [28, Chapter 8] for the product of interval
matrices with binary64 coefficients. HPC computations leave time for inter-
val computations and high-precision interval computations: the execution time
is better balanced between communication time and computation time, with a
better final accuracy and a guarantee on the results.
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Abstract. One of the important parts of deep learning is the use of the
softmax formula, that enables us to select one of the alternatives with a
probability depending on its expected gain. A similar formula describes
human decision making: somewhat surprisingly, when presented with
several choices with different expected equivalent monetary gain, we do
not just select the alternative with the largest gain; instead, we make a
random choice, with probability decreasing with the gain – so that it is
possible that we will select second highest and even third highest value.
Both formulas assume that we know the exact value of the expected gain
for each alternative. In practice, we usually know this gain only with some
certainty. For example, often, we only know the lower bound f and the

upper bound f on the expected gain, i.e., we only know that the actual
gain f is somewhere in the interval

[
f, f

]
. In this paper, we show how

to extend softmax and discrete choice formulas to interval uncertainty.

Keywords: Deep learning · Softmax · Discrete choice · Interval
uncertainty

1 Formulation of the Problem

Deep Learning: A Brief Reminder. At present, the most efficient machine
learning technique is deep learning (see, e.g., [2,7]), in particular, reinforcement
deep learning [12], where, in addition to processing available information, the
system also (if needed) automatically decides which additional information to
request – and if an experimental setup is automated, to produce.

For selecting the appropriate piece of information, the system estimates, for
each possible alternative, how much information this particular alternative will
bring.
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It is Important to Add Randomness. And here comes an interesting part. A
reader who is not familiar with details of deep learning algorithms may expect
that the system selects the alternative with the largest estimate of expected
information gain. This idea was indeed tried – but it did not work well: instead of
finding the model that best fits the training data, the algorithm would sometimes
get stuck in a local minimum of the corresponding objective function.

In numerical analysis, a usual way to get out of a local minimum is to perform
some random change. This is, e.g., the main idea behind simulated annealing.
Crudely speaking, it means that we do not always follow the smallest – or the
largest – value of the corresponding objective function, we can follow the next
smallest (largest), next next smallest, etc. – with some probability.

Softmax: How Randomness is Currently Added. Of course, the actual
maximum should be selected with the highest probability, the next value with
lower probability, etc. In other words, if we want to maximize some objective
function f(a), and we have alternatives a1, . . . , an for which this function has
values f1

def= f(a1), . . . , fn
def= f(an), then the probability pi of selecting the i-th

alternative should be increasing with fi, i.e., we should have pi ∼ F (fi) for some
increasing function F (z), i.e., pi = c · F (fi), for some constant c.

We should always select one of the alternatives, so these probabilities should

add up to 1:
n∑

j=1

pj = 1. From this condition, we conclude that c ·
n∑

j=1

F (fj) = 1.

Thus, c = 1

/(
n∑

j=1

F (fj)

)

and so,

pi =
F (fi)

n∑

j=1

F (fj)
. (1)

Which function F (z) should we choose? In deep learning – a technique that
requires so many computations that it cannot exist without high performance
computing – computation speed is a must. Thus, the function F (z) should be
fast to compute – which means, in practice, that it should be one of the basic
functions for which we have already gained an experience of how to compute it
fast. There are a few such functions: arithmetic functions, the power function,
trigonometric functions, logarithm, exponential function, etc.

The selected function should be increasing, and it should return non-negative
results for all real values z (positive or negative) – otherwise, we will end up with
meaningless negative probability. Among basic functions, only one function has
this property – the exponential function F (z) = exp(k · z) for some k > 0. For
this function, the probability pi takes the form

pi =
exp(k · fi)

n∑

j=1

exp(k · fj)
. (2)

This expression is known as the softmax formula.



366 B. J. Kubica et al.

It is Desirable to Further Improve Deep Learning. Deep learning has
lead to many interesting results, but it is not a panacea. There are still many
challenging problems where the existing deep learning algorithms has not yet led
to fully successful learning. It is therefore desirable to look at all the stages of
deep leaning and see if we can modify them so as to improve the overall learning
performance.

Need to Generalize Softmax to the Case of Interval Uncertainty. One
of the aspects of deep learning computations in which there is a potential for
improvement is the use of the softmax formulas. Indeed, when we apply the soft-
max formula, we only take into account the corresponding estimates f1, . . . , fn.
However, in practice, we do not just have these estimates, we often have some
idea of how accurate is each estimate. Some estimates may be more accurate,
some may be less accurate. It is desirable to take this information about uncer-
tainty into account.

For example, we may know the upper bound Δi on the absolute value

|fi − fact
i | (3)

of the difference between the estimate fi and the (unknown) actual value fact
i of

the objective function. In this case, the only information that we have about the
actual value fact

i is that this value is located in the interval [fi − Δi, fi + Δi].
How to take this interval information into account when computing the cor-

responding probabilities pi? This is the problem that we study in this paper –
and for which we provide a reasonable solution.

Another Important Case Where a Softmax-Type Formula is Used.
There is another application area where a similar formula is used: the analysis of
human choice. If a person needs to select between several alternatives a1, . . . , an,
and this person knows the exact monetary values f1, . . . , fn associated with each
alternative, then we expect this person to always select the alternative with the
largest possible monetary value – actual or equivalent. We also expect that if
we present the person with the exact same set of alternatives several times in
a row, this person will always make the same decision – of selecting the best
alternative.

Interestingly, this is not how most people make decisions. It turns out that we
make decisions probabilistically: instead of always selecting the best alternative,
we select each alternative ai with probability pi described exactly by the softmax-
like formula (2), for some k > 0.

In other words, in most cases, we usually indeed select the alternative with
the higher monetary value, but with some probability, we will also select the
next highest, with some smaller probability, the next next highest, etc.

This fact was discovered by an economist D. McFadden – who received a
Nobel Prize in Economics for this discovery; see, e.g., [10,11,13].
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But Why? At first glance, such a probabilistic behavior sounds irrational –
why not select the alternative with the largest possible monetary value?

A probabilistic choice would indeed be irrational if this was a stand-alone
choice. In reality, however, no choice is stand-alone, it is a part of a sequence
of choices, some of which involve conflict – and it is known that in conflict
situations, a probabilistic choice makes sense; see, e.g., [9].

In Practice, We Usually only Know Gain with Some Certainty. McFad-
den’s formula describes people’s behavior in an idealized situation when the deci-
sion maker knows the exact monetary consequences fi of each alternative ai. In
practice, this is rarely the case. At best, we know a lower bound f

i
and an upper

bound f i of the actual (unknown) value fi. In such situations, all we know is that
the unknown value fi is somewhere within the interval

[
f

i
, f i

]
. It is therefore

desirable to extend McFadden’s formula to the case of interval uncertainty.

2 Formulating the Problem in Precise Terms

Discussion. Let A denote the class of all possible alternatives. We would like,
given any finite set of alternatives A ⊆ A and a specific alternative a ∈ A, to
describe the probability p(a |A) that out of all the alternatives from the set A,
the alternative a will be selected.

Once we know these probabilities, we can then compute, for each set B ⊆ A,
the probability p(B |A) that one of the alternatives from the set B will be
selected as p(B |A) =

∑

b∈B

p(b |A). In particular, we have p(a |A) = p({a} |A).

A natural requirement related to these conditional probabilities is that if we
have A ⊆ B ⊆ C, then we can view the selection of A from C as either a direct
selection, or as first selecting B, and then selecting A out of B. The resulting
probability should be the same, so we must have p(A |C) = p(A |B) · p(B |C).
Thus, we arrive at the following definition.

Definition 1. Let A be a set. Its elements will be called alternatives. By a choice
function, we mean a function p(a |A) that assigns to each pair 〈A, a〉 of a finite
set A ⊆ A and an element a ∈ A a number from the interval (0, 1] in such a way
that the following two conditions are satisfied:

– for every set A, we have
∑

a∈A

p(a |A) = 1, and

– whenever A ⊆ B ⊆ C, we have p(A |C) = p(A |B) · p(B |C), where

p(B |A) def=
∑

b∈B

p(b |A). (4)

Proposition 1. For each set A, the following two conditions are equivalent to
each other:

– the function p(a |A) is a choice function, and
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– there exists a function v : A → IR+ that assigns a positive number to each
alternative a ∈ A such that

p(a |A) =
v(a)

∑

b∈A

v(b)
. (5)

Proof. It is easy to check that for every function v, the expression (5) indeed
defines a choice function. So, to complete the proof, it is sufficient to prove that
every choice function has the form (5).

Indeed, let p(a |A) be a choice function. Let us pick any a0 ∈ A, and let us
define a function v as

v(a) def=
p(a | {a, a0})
p(a0 | {a, a0})

. (6)

In particular, for a = a0, both probabilities p(a | {a, a0}) and p(a0 | {a, a0}) are
equal to 1, so the ratio v(a0) is also equal to 1. Let us show that the choice
function has the form (5) for this function v.

By definition of v(a), for each a, we have p(a | {a, a0}) = v(a) · p(a0 | {a, a0}).
By definition of a choice function, for each set A containing a0, we have

p(a |A)= p(a | {a, a0}) ·p({a, a0} |A) and p(a0 |A)= p(a0 | {a, a0}) ·p({a, a0} |A).
Dividing the first equality by the second one, we get

p(a |A)
p(a0 |A)

=
p(a | {a, a0})
p(a0 | {a, a0})

. (7)

By definition of v(a), this means that

p(a |A)
p(a0 |A)

= v(a). (8)

Similarly, for each b ∈ A, we have

p(b |A)
p(a0 |A)

= v(b). (9)

Dividing (8) by (9), we conclude that for each set A containing a0, we have

p(a |A)
p(b |A)

=
v(a)
v(b)

. (10)

Let us now consider a set B that contains a and b but that does not necessarily
contain a0. Then, by definition of a choice function, we have

p(a |B) = p(a | {a, b}) · p({a, b} |B) (11)

and
p(b |B) = p(b | {a, b}) · p({a, b} |B). (12)

Dividing (11) by (12), we conclude that

p(a |B)
p(b |B)

=
p(a | {a, b})
p(b | {a, b})

. (13)
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The right-hand side of this equality does not depend on the set B. So the left-
hand side, i.e., the ratio

p(a |B)
p(b |B)

(14)

also does not depend on the set B. In particular, for the sets B that contain a0,
this ratio – according to the formula (10) – is equal to v(a)/v(b). Thus, the same
equality (10) holds for all sets A – not necessarily containing the element a0.

From the formula (10), we conclude that

p(a |A)
v(a)

=
p(b |A)

v(b)
. (15)

In other words, for all elements a ∈ A, the ratio

p(a |A)
v(a)

(16)

is the same. Let us denote this ratio by cA; then, for each a ∈ A, we have:

p(a |A) = cA · v(a). (17)

From
∑

b∈A

p(b |A) = 1, we can now conclude that: cA · ∑

b∈A

v(b) = 1, thus

cA =
1

∑

b∈A

v(b)
. (18)

Substituting this expression (18) into the formula (17), we get the desired expres-
sion (5).

The proposition is proven.

Comment. This proof is similar to the proofs from [4,8].

Discussion. As we have mentioned earlier, a choice is rarely a stand-alone event.
Usually, we make several choices – and often, at the same time. Let us consider
a simple situation. Suppose that we need to make two independent choices:

– in the first choice, we must select one the alternatives a1, . . . , an, and
– in the second choice, we must select one of the alternatives b1, . . . , bm.

We can view this as two separate selection processes. In this case, in the

first process, we select each alternative ai with probability v(ai)
/(

n∑

k=1

v(ak)
)

and, in the second process, we select each alternative bj with probability

v(bj)
/(

m∑

�=1

v(b�)
)

. Since the two processes are independent, for each pair

〈ai, bj〉, the probability of selecting this pair is equal to the product of the cor-
responding probabilities:

v(ai)
n∑

k=1

v(ak)
· v(bj)

m∑

�=1

v(b�)
. (19)
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Alternatively, we can view the whole two-stage selection as a single selection
process, in which we select a pair 〈ai, bj〉 of alternatives out of all n · m possible
pairs. In this case, the probability of selecting a pair is equal to

v(〈ai, bj〉)
n∑

k=1

m∑

�=1

v(〈ak, b�〉)
. (20)

The probability of selecting a pair should be the same in both cases, so the
values (19) and (20) must be equal to each other. This equality limits possible
functions v(a).

Indeed, if all we know about each alternative a is the interval
[
f(a), f(a)

]
of

possible values of the equivalent monetary gain, then the value v should depend
only on this information, i.e., we should have v(a) = V

(
f(a), f(a)

)
for some

function V (x, y). Which functions V (x, y) guarantee the above equality?
To answer this question, let us analyze how the gain corresponding to select-

ing a pair 〈ai, bj〉 is related to the gains corresponding to individual selections of

ai and bj . Suppose that for the alternative ai, our gain fi
def= f(ai) can take any

value from the interval
[
f

i
, f i

]
def=

[
f(ai), f(ai)

]
, and for the alternative bj , our

gain gj
def= f(bj) can take any value from the interval

[
g

j
, gj

]
def=

[
f(bj), f(bj)

]
.

These selections are assumed to be independent. This means that we can have
all possible combinations of values fi ∈

[
f

i
, f i

]
and gj ∈

[
g

j
, gj

]
.

The smallest possible value of the overall gain fi + gj is when both gains are
the smallest. In this case, the overall gain is f

i
+ g

j
. The largest possible value

of the overall gain fi + gj is when both gains are the largest. In this case, the
overall gain is f i + gj . Thus, the interval of possible values of the overall gain is

[
f(〈ai, bj〉), f(〈ai, bj〉)

]
=

[
f

i
+ g

j
, f i + gj

]
. (21)

In these terms, the requirement that the expressions (19) and (20) coincide takes
the following form:

Definition 2. We say that a function V : IR×IR → IR+ is consistent if for every
two sequences of intervals

[
f
1
, f1

]
, . . . ,

[
f

n
, fn

]
, and

[
g
1
, g1

]
, . . . ,

[
g

m
, gm

]
,

for every i and j, we have

V
(
f

i
, f i

)

n∑

k=1

V
(
f

k
, fk

) ·
V

(
g

j
, gj

)

m∑

�=1

V
(
g

�
, g�

) =
V

(
f

i
+ g

j
, f i + gj

)

n∑

k=1

m∑

�=1

V
(
f

k
+ g

�
, fk + g�

) . (22)

Monotonicity. Another reasonable requirement is that the larger the expected
gain, the more probable that the corresponding alternative is selected.

The notion of “larger” is easy when gains are exact, but for intervals, we can
provide the following definition.
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Definition 3. We say that an interval A is smaller than or equal to an interval
B (and denote it by A ≤ B) if the following two conditions hold:

– for every element a ∈ A, there is an element b ∈ B for which a ≤ b, and
– for every element b ∈ B, there is an element a ∈ A for which a ≤ b.

Proposition 2. [a, a] ≤ [
b, b

] ⇔ (a ≤ b & a ≤ b).

Proof is straightforward.

Definition 4. We say that a function V : IR × IR → IR+ is monotonic if for
every two intervals [a, a] and

[
b, b

]
, if [a, a] ≤ [

b, b
]
then V (a, a) ≤ V

(
b, b

)
.

Proposition 3. For each function V : IR × IR → IR+, the following two condi-
tions are equivalent to each other:

– the function V is consistent and monotonic;
– the function V

(
f, f

)
has the form

V
(
f, f

)
= C · exp

(
k · (

αH · f + (1 − αH) · f
))

(23)

for some values C > 0, k > 0, and αH ∈ [0, 1].

Conclusion. Thus, if we have n alternatives a1, . . . , an, and for each alternative
ai, we know the interval

[
f

i
, f i

]
of possible values of the gain, we should select

each alternative i with the probability

pi =
exp

(
k ·

(
αH · f i + (1 − αH) · f

i

))

n∑

j=1

exp
(
k ·

(
αH · f j + (1 − αH) · f

j

)) . (24)

So, we have extended the softmax/McFadden’s discrete choice formula to the case
of interval uncertainty.

Comment 1. Proposition 2 justifies the formula (24). It should be mentioned that
the formula (24) coincides with what we would have obtained from the original
McFadden’s formula if, instead of the exact gain fi, we substitute into this
original formula, the expression fi = αH · f i + (1 −αH) · f

i
for some αH ∈ [0, 1].

This expression was first proposed by a future Nobelist Leo Hurwicz and is thus
known as Hurwicz optimism-pessimism criterion [3,5,6,9].

Comment 2. For the case when we know the exact values of the gain, i.e., when
we have a degenerate interval [f, f ], we get a new justification for the original
McFadden’s formula.

Comment 3. Similar ideas can be used to extend softmax and McFadden’s for-
mula to other types of uncertainty. As one can see from the proof, by taking
logarithm of V , we reduce the consistency condition to additivity, and additive
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functions are known; see, e.g., [6]. For example, for probabilities, the equiva-
lent gain is the expected value – since, due to large numbers theorem, the sum
of many independent copies of a random variable is practically a deterministic
number. Similarly, a class of probability distributions is equivalent to the inter-
val of mean values corresponding to different distributions, and specific formulas
are known for the fuzzy case.

Proof of Proposition 3. It is easy to check that the function (24) is consistent
and monotonic. So, to complete the proof, it is sufficient to prove that every
consistent monotonic function has the desired form.

Indeed, let us assume that the function V is consistent and monotonic.
Then, due to consistency, it satisfies the formula (22). Taking logarithm of
both sides of the formula (22), we conclude that for the auxiliary function
u(a, a) def= ln(V (a, a)), for every two intervals [a, a] and

[
b, b

]
, we have

u(a, a) + u
(
b, b

)
= u

(
a + b, a + b

)
+ c (25)

for an appropriate constant c. Thus, for U(a, a) def= u(a, a) − c, substituting
u(a, a) = U(a, a) + c into the formula (25), we conclude that

U(a, a) + U
(
b, b

)
= U

(
a + b, a + b

)
, (26)

i.e., that the function U is additive. Similarly to [6], we can use the general clas-
sification of additive locally bounded functions (and every monotonic function is
locally bounded) from [1] to conclude that U(a, a) = k1 ·a+k2 ·a. Monotonicity
with respect to changes in a and a imply that k1 ≥ 0 and k2 ≥ 0. Thus, for

V (a, a) = exp(u(a, a)) = exp(U(a, a) + c) = exp(c) · exp(U(a, a)), (27)

we get the desired formula, with C = exp(c), k = k1+k2 and αH = k1/(k1+k2).
The proposition is proven.

3 Conclusion

Currently, one of the most promising Artificial Intelligence techniques is deep
learning. The successes of using deep learning are spectacular – from winning
over human champions in Go (a very complex game that until recently resisted
computer efforts) to efficient algorithms for self-driving cars. All these successes
require a large amount of computations on high performance computers.

While deep learning has been very successful, there is a lot of room for
improvement. For example, the existing deep learning algorithms implicitly
assume that all the input data are exact, while in reality, data comes from
measurements and measurement are never absolutely accurate. The simplest
situation is when we know the upper bound Δ on the measurement error.
In this case, based on the measurement result x̃, the only thing that we can
conclude about the actual value x is that x is in the interval [x̃ − Δ, x̃ + Δ].
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In this paper, we have shown how computing softmax – one of the important
steps in deep learning algorithms – can be naturally extended to the case of such
interval uncertainty. The resulting formulas are almost as simple as the original
ones, so their implementation will take about the same time on the same high
performance computers.
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Abstract. Recently, we have proposed several improvements of the
standard monotonicity approach to solving parametric interval linear
systems. The obtained results turned out to be very promising; i.e., we
have achieved narrower bounds, while generally preserving the computa-
tional time. In this paper we propose another improvements, which aim
to further decrease the widths of the interval bounds.

Keywords: Parametric linear systems · Monotonicity approach ·
Revised affine forms · Matrix equation

1 Introduction

Let us start by introducing some interval notation and preliminary theory of
revised affine forms1 (RAF). An interval is a closed and connected (in a topo-
logical sense) subset of the real number line, i.e.,

x = {x ∈ R | x � x � x}, (1)

where x, x ∈ R, x ≤ x, are given. The midpoint of an interval x is denoted
by xc := 1

2 (x + x), and its radius by xΔ := 1
2 (x − x). The set of all closed

and connected intervals is denoted by IR. The set of n × m interval matrices
is denoted by IR

n×m. Vectors are considered as single-column matrices, and
a matrix can be represented as a set of column vectors A = (A∗1, . . . , A∗m). The
smallest (w.r.t. inclusion) interval vector containing S ⊆ R

n is called the interval
hull of S and is denoted by �S.

A revised affine form (cf. [9,15,16,20]) of length n is defined as a sum of
a standard affine form (see, e.g., [1]) and a term that represents all errors intro-
duced during a computation (including rounding errors), i.e.,

x̂ = x0 + eT x + xr[−1, 1], (2)

1 All the methods used in the computation are based on revised affine forms.
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where e = (ε1, . . . , εn)T and x = (x1, . . . , xn)T . The central value x0 and the
partial deviations xi are finite floating-point numbers, the noise symbols εi,
i = 1, . . . , n, are unknown, but assumed to vary within the interval [−1, 1],
and xr � 0 is the radius of the accumulative error xr[−1, 1]. Notice that the
interval domain [−1, 1] for εi is without loss of generality and can be obtained
by a suitable scaling and shifting.

Remark. A revised affine form x̂ is an interval-affine function of the noise sym-
bols, so it can be written as x(e) = eT x + x, where x = x0 + xr[−1, 1].

One of the basic problems of interval computation is the problem of solv-
ing interval parametric linear systems (see, e.g., [3,15]), i.e., linear systems with
coefficients being functions of parameters varying within prescribed intervals.
Such systems are encountered, e.g., in structural mechanics, electrical engineer-
ing and various optimization problems. An interval parametric linear system is
defined as the following family of real parametric linear systems

A(p)x = b(p), p ∈ p ∈ IR
K , (3)

and is often denoted as
A(p)x = b(p). (4)

The coefficients of the system are, in the general case, some nonlinear real-valued
functions Aij , bi : RK → R of variables p1, . . . , pK , usually described by closed-
form expressions.

The (so-called united) solution set Σ of (4) is defined as the set of all solutions
that can be obtained by solving systems from the family (3), i.e.,

Σ = {x ∈ R
n | ∃p ∈ p : A(p)x = b(p)}. (5)

The solution set (5) is difficult to characterize (cf. [4,8]) and handling it is
computationally very hard. Many questions, such as nonemptiness, boundedness
or approximation, are NP-hard to answer, even for very special subclasses of
problems; see, e.g., [5]. In, particular, the problem of computing the hull �Σ is
NP-hard. One of the possible approaches to approximate the hull in a polynomial
time is the so-called monotonicity approach (MA).

2 Monotonicity Approach

In this section we briefly outline the main idea of the standard monotonicity
approach (cf. [11,13,14,17]) and we present some improvements of this approach.

If A(p) is non-singular for every p ∈ p, then the solution of the system
A(p)x = b(p) has the form of x = A(p)−1b(p). That is, each xi, i = 1, . . . , n, is
a real valued function of p, i.e., xi = xi(p). If xi(p) is monotonic on p with respect
to all parameters, then the lowest and largest values of xi(p) on p (i.e., minimum
and maximum of Σ in ith coordinate) are attained at the respective endpoints
of p. If xi(p) is monotonic with respect to some parameters only, then we can fix
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these parameters at the respective endpoints and then bound the range of xi(p)
on a box of a lower dimension. Since the overestimation increases along with the
number of parameters, we can expect that MA will produce narrower bounds.
Suppose that

– xi(p) is nondecreasing on p in variables pk, k ∈ K1,
– xi(p) is nonincreasing on p in variables pk, k ∈ K2,
– xi(p) is non-monotonic on p in variables pk, k ∈ K3.

Define the restricted set of parameters p1 and p2 as follows

p1
k =

⎧
⎪⎨

⎪⎩

p
k

if k ∈ K1,

pk if k ∈ K2,

pk if k ∈ K3,

p2
k =

⎧
⎪⎨

⎪⎩

pk if k ∈ K1,

p
k

if k ∈ K2,

pk if k ∈ K3,

k = 1, . . . ,K. Then

(�Σ)
i
= min{xi | x ∈ Σ} = min{xi | ∃p ∈ p1 : A(p)x = b(p)},

(�Σ)i = max{xi | x ∈ Σ} = max{xi | ∃p ∈ p2 : A(p)x = b(p)}.

In this way, the computation reduces to two problems of smaller dimension.
Now, what remains is to check whether xi(p) is monotonic on p in a parameter

pk. The standard way is to determine the bounds of partial derivative ∂xi(p)
∂pk

on

p. We can compute ∂xi(p)
∂pk

for i = 1, . . . , n by solving the parametric system

A(p)
∂x(p)
∂pk

=
∂b(p)
∂pk

− ∂A(p)
∂pk

x(p), p ∈ p. (6)

The problem is that the vector x(p) is not known a priori. Therefore, it is usually
estimated by an outer enclosure. That is, let x ⊇ Σ, and consider the interval
parametric linear system

A(p)
∂x(p)
∂pk

=
∂b(p)
∂pk

− ∂A(p)
∂pk

x, x ∈ x, p ∈ p, (7)

with K + n interval parameters.
Let d be an enclosure of the solution set of this system. If di � 0, then xi(p)

is nondecreasing in pk, and similarly if di � 0, then xi(p) is nonincreasing in pk.
By solving (7) for each k = 1, . . . ,K, we get interval vectors d1, . . . ,dK .

Provided that 0 �∈ dk
i for every k = 1, . . . ,K and i = 1, . . . , n, we can compute

the exact range of the solution set Σ as follows. For every k = 1, . . . ,K and
i = 1, . . . , n define

p1,i
k =

{
p

k
, if dk

i � 0,

pk, if d
k

i � 0,
p2,i

k =

{
pk, if dk

i � 0,

p
k
, if d

k

i � 0.
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By solving a pair of real-valued linear systems

A(p1,i)x1 = b(p1,i), (8a)

A(p2,i)x2 = b(p2,i), (8b)

we obtain
�Σi = [x1

i , x
2
i ].

Obviously, by solving n pairs of real-valued linear systems (8), we obtain the
range of the solution set in all coordinates, that is, �Σ. The number of equations
to be solved can be decreased by removing redundant vectors from the list

L = {p1,1, . . . , p1,n, p2,1, . . . , p2,n}.

If only some of the partial derivatives have constant sign on p, then, in the worst
case, instead of 2n real-valued systems, we must solve 2n interval parametric
linear systems with a smaller number of interval parameters.

The main deficiency of the approach described above follows from replacing
x for x(p) in (7). In [19], we have proposed the following two approaches to
overcome this shortcoming.

Double System. For each k = 1, . . . , K, we create the following 2n × 2n interval
parametric linear system

(
A(p) 0
∂A(p)
∂pk

A(p)

) (
x
∂x
∂pk

)

=

(
b(p)
∂b(p)
∂pk

)

, p ∈ p, (9)

and solve it in order to obtain bounds for ∂x
∂pk

(p) over p. This approach eliminates
the problem of the “loss of information”, but instead is more expensive than the
standard approach.

p-Solution. For each k = 1, . . . ,K, we solve the following interval parametric
linear system

A(p)
∂x

∂pk
=

∂b(p)
∂pk

− ∂A(p)
∂pk

x(p), p ∈ p, (10)

where unknown x(p) is replaced by the so-called p-solution form of an enclosure
x(p) = Lp + a (see, e.g., [6,15,18]). In our approach, the p-solution is repre-
sented by a vector of revised affine forms2. Since x(p) partially preserves linear
dependencies between x(p) and p, the solutions of the systems (10) are usually
narrower than the solution of the system (7), and hence we have better bounds
for partial derivatives.

2 We first substitute interval parameters by respective revised affine forms and then
we performs computation of them.
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Novel Approaches. Another variant of the MA that we consider in this paper is
based on solving interval parametric linear system with multiple right-hand side
(cf. [2,12]). The solution set of such system is defined as

Σ′ = {X ∈ R
n×K | (∀k ∈ K)(∃p ∈ p) : A(p)X∗k = B(p)∗k}. (11)

Now, consider the following interval parametric matrix equation

A(p)
(

∂x

∂p1
, . . . ,

∂x

∂pK

)

= B(p), p ∈ p, (12)

where B(p)∗k = ∂b(p)
∂pk

− ∂A(p)
∂pk

X(p), k = 1, . . . , K. The solution set of the system
(12) is defined as

Σ′′ = {X ∈ R
n×K | ∃p ∈ p : A(p)X = B(p)}. (13)

The system (12) can be solved by an arbitrary, however accordingly modified,
method for solving interval parametric linear systems. In our experiments we
use modified Interval-affine Gauss-Seidel iteration3.

As pointed in [2], it holds that Σ′′ ⊆ Σ′, however, we have that �Σ′′ = �Σ′.

Proposition 1. It holds that

�Σ′′ = �Σ′.

Proof. If A(p) is nonsingular for each p ∈ p then �Σ′ and �Σ′′ are bounded and
the respective bounds of the hull can be computed by solving 2nK optimization
problems: i = 1, . . . , n, k = 1, . . . ,K

�Σ′
ik = min{X(p)ik | p ∈ p} = �Σ′′

ik,

�Σ
′
ik = max{X(p)ik | p ∈ p} = �Σ

′′
ik,

where X(p)ik is the ith component of X(p)∗k = A(p)−1B(p)∗k. 
�
Due to the inclusion Σ′′ ⊆ Σ′, focusing on enclosing the solution set Σ′′ may

provide tighter results.
Another possibility is to put together all the systems (9) in one and solve the

following interval parametric linear system:
⎛

⎜
⎜
⎜
⎜
⎝

A(p) 0 . . . 0
∂A(p)
∂p1

A(p) 0 0
...

. . .
∂A(p)
∂pK

0 0 A(p)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

x(p)
∂x
∂p1
...

∂x
∂pK

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b(p)
∂b(p)
∂p1
...

∂b(p)
∂pK

⎞

⎟
⎟
⎟
⎟
⎠

, p ∈ p. (14)

3 For details on Interval-affine Gauss-Seidel iteration see [18].
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3 Numerical Experiments

We use the following abbreviations for the discussed monotonicity based meth-
ods: MA1 for the standard MA, MA2 for the p-solution based MA, MA3 for the
doubled system based MA, MA4 for the matrix equation based approach, and
MA5 for the MA based on the formula (14).

Example 1. Consider the following interval parametric linear system with affine-
linear dependencies

⎛

⎝
1 + p1 + p2 p1 p2

0 p1 + p2 p2
0.1 0 3p1 + p2

⎞

⎠ x =

⎛

⎝
p1 + 5p2

2 + p1 + 3p2
1 + 2p1 + p2,

⎞

⎠ ,

where p1 ∈ [0.4 − 2δ, 0.5 + 2δ], p2 ∈ [0.2 − δ, 0.3 + δ]. We solve the system with
δ = 0.05 and δ = 0.1. The overestimation of the monotonicity based methods
over the hull is presented in Table 1. The overestimation is computed using the
following formula:

Oω(a, b) =
(

1 − aΔ

bΔ

)

· 100%, (15)

where a, b ∈ IR, a ⊆ b, and aΔ (bΔ) is the radius of a (b).

Table 1. Results for Example 1: overestimation of monotonicity based bounds over
interval hull

MA1 MA2 MA3 MA4 MA5

δ = 0.05

x1 3% 3% 3% 3% 3%

x2 15% 1% 1% 0% 0%

x3 14% 0% 0% 0% 0%

Time[s] 0.005 0.006 0.009 0.004 0.008

δ = 0.1

x1 36% 36% 4% 4% 4%

x2 22% 22% 22% 22% 22%

x3 19% 19% 19% 19% 19%

Time[s] 0.006 0.006 0.11 0.005 0.008

As can be seen from Table 1, for δ = 0.05, the MA4 and MA5 methods
produced the best results; whereas for δ = 0.1 the best results were produced by
the MA3, MA4 and MA5 methods. However, MA4 turned out to be less time
consuming than MA3 and MA5.
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Fig. 1. 3-bay 1-floor truss structure

Example 2. Consider the 3-bay 1-floor (statically indeterminate) planar truss
structure depicted in Fig. 1.

The nominal values of the truss parameters are as follows: Young modulus
E = 200 [GPa], cross-sectional area A = 0.01 [m2]. The length of the horizontal
bars L = 10 [m], and the length of the vertical bars H = 5 [m]. The truss is
subjected to external downward load P = 10 [kN] at node 2 and 3. The loads and
the stiffness of each bar are assumed to be uncertain. The uncertainty considered
is 10% corresponding to a variation of ±5% about the nominal values. In order
to find the displacements of the truss nodes, we must solve the following interval
parametric linear system

K(p)d = F (p), p ∈ p, (16)

where K(p) is the stiffness matrix, F (p) is the external loads vector and p
is a vector of interval parameters. We compare the results of the considered

Table 2. Results for Example 2: overestimation of monotonicity based bounds by NeP
bounds

Displ. MA1 MA2 MA3 MA4 MA5

dx
2 −6% 3% 11% 3% 3%

dy
2 1% 4% 6% 5% 6%

dx
3 −6% 3% 11% 3% 2%

dy
3 1% 4% 6% 4% 6%

dx
5 3% 4% 9% 4% −13%

dy
5 4% 6% 10% 6% 11%

dx
6 7% 7% 9% 7% −6%

dy
6 4% 5% 6% 5% 6%

dx
7 7% 7% 9% 7% 8%

dy
7 4% 5% 6% 5% 6%

dx
8 3% 4% 9% 4% 8%

dy
8 4% 6% 10% 6% 7%

Time[s] 0.15 0.14 0.32 0.11 0.48
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methods with the result of the iterative method (for the comparison purposes we
will refer to this method as the NeP method) proposed in [10], which is considered
as one of the best methods for solving interval parametric linear systems having
the specific form (see [10]) (the truss system (16) can be transformed to this
form, therefore the NeP is applicable). The comparison of the results of the
MAs and NeP is presented in Table 2.

As we can see from the table, the MA2, MA3 and MA4 improved the NeP
bounds for all the displacements. The best results were produced by the MA3
method, and the MA4 method was slightly better than the MA2 method. The
results of the MA5 method are not straightforward. The method produced the
best bounds for the vertical displacement of the node 5, for some displacements
it produced better bounds than MA1, MA2 and MA4 methods, however, it
produced the worst bounds for the horizontal displacements of the nodes 5 and 6.
Similarly as in Example 1, the MA4 was computationally the most efficient.

4 Conclusions

We proposed some improvements of the monotonicity approach. In general, the
monotonicity approach based on solving interval parametric matrix equation
is a very promising approach, and our improvements can in certain situations
further decrease the overestimation caused by the solving method. Nevertheless,
the monotonicity approach is an expensive technique which is the main obstacle
in broader exploitation of this method in solving practical problems.

Therefore, in the future we will try to decrease the computational time of
the monotonicity approach by using parallelization4. Indeed, the monotonicity
approach for solving interval parametric systems is suitable for parallelization
in general. Particularly the systems (9) and (10) can be solved independently
for each k = 1, . . . ,K. For systems (12) and (14) there is no direct way for
parallelization, and its utilization heavily depends on the particular method
chosen to solve the systems.
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Abstract. The paper concerns the first approach to interval general-
ized finite differences. The conventional generalized finite differences are
of special interest due to the fact that they can be applied to irreg-
ular grids (clouds) of points. Based on these finite differences we can
compute approximate values of some derivatives (ordinary or partial).
Furthermore, one can formulate the generalized finite difference method
for solving some boundary value problems with a complicated boundary
of a domain. The aim of this paper is to propose the interval counter-
parts of generalized finite differences. Under the appropriate assumptions
the exact values of the derivatives are included in the interval values
obtained.

Keywords: Conventional and interval generalized finite differences ·
Interval arithmetic · Interval enclosure of derivatives

1 Introduction

The development of interval methods for solving initial-boundary value problems
for ordinary and partial differential equations can be made on the basis of finite
difference methods. Such methods utilize the so called finite differences that are
used to approximate a value of some derivative at a given point. As a result the
finite difference method provides an approximate solution of the initial-boundary
value problem in the points of a region.

In the area of conventional finite differences we can indicate two main classes
that differ, in particular, in the way the points of a grid are located in the domain
of interest. In the case of well-known classical finite differences (FD) we generate
a regular grid of points such that the distances between two neighbouring points
in a given direction (e.g., horizontal and/or vertical) are equal. Such an approach
is very useful and efficient when we formulate some finite difference method
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(FDM) in the area of a rectangular/square region. Otherwise, when an irregular
boundary occurs, these finite differences can be also applied, but we have to
modify their main formula for the points located near the boundary to take into
account different values of mesh increments in some direction. In such a case we
have to apply different formulas of finite differences depending on the location
of points in the domain. To another class of finite differences we include the so
called generalized finite differences (GFD) [1,6,9]. In the case of this approach
we generate a grid (cloud) of points with an arbitrary (irregular) arrangement
in the region, although the regular distribution can be also applied. Similarly as
in the classical case the technique is based on the local Taylor series expansion.
The concept of the generation of finite difference formulas at irregular grid of
points leads to a complete set of derivatives up to the order n. This feature differs
the FDs from the GFDs, as in the first approach only an approximation of one
particular derivative at a given point was obtained at one time.

A number of interval finite difference methods based on their conventional
counterparts was recently formulated in the literature [3,5,7] and applied to
some initial-boundary value problems defined in regions of regular shapes. To
the best knowledge of the authors, neither the interval generalized finite differ-
ences (IGFD) nor the appropriate interval generalized finite difference methods
(IGFDM) have been proposed yet. Hence, as a first step towards this task, we
focus on the interval counterparts of the GFDs. The construction of some inter-
val generalized finite difference methods is not considered in the paper. We plan
to take it into account in our future research.

The paper is organized in the following way. After a short introduction to the
conventional GFDs presented in Sect. 2, we formulate the concept of their inter-
val counterparts in Sect. 3. The interval approach has many significant advan-
tages. First of all, the remainder term of the Taylor series is included in the final
solution obtained. Hence, the use of interval methods in the floating-point inter-
val arithmetic allows to perform computations such that the interval solution
contains an exact solution of the problem (see Sect. 4). If the endpoints of the
error term intervals are approximated, then the guaranteed nature of results is
lost. However, the numerical experiments show that values of derivatives are still
contained in the intervals obtained. We compute interval values of derivatives
up to the second order for four example functions and regular/irregular grids of
points. A short result discussion is given Sect. 5.

2 Conventional Generalized Finite Differences

Consider the following derivatives of a function u = u(x, y)

∂u

∂x
(p0) ,

∂u

∂y
(p0) ,

∂2u

∂x2
(p0) ,

∂2u

∂y2
(p0) ,

∂2u

∂x∂y
(p0) . (1)

The approximate values of these derivatives at some point p0 can be com-
puted with generalized finite differences described in detail in, e.g., [1,6,9,10].
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We assume that the function u has continuous derivatives up to the third order
with respect to x and y in a region Ω ⊂ R

2.
First we generate a grid (cloud) of points such that the point p0 = (x0, y0)

is the central node and the points pi = (xi, yi), i = 1, 2, . . . n (located in the
surroundings of p0) are the ith nodes of the star obtained. We also have hi =
xi − x0, ki = yi − y0. We expand the function u in the Taylor series about the
point p0 and evaluate it at the points pi, i = 1, 2, . . . n. For each point pi we
have

u (pi) = u (p0) + hi
∂u

∂x
(p0) + ki

∂u

∂y
(p0)

+
1
2!

(
h2
i

∂2u

∂x2
(p0) + k2

i

∂2u

∂y2
(p0) + 2hiki

∂2u

∂x∂y
(p0)

)

+
1
3!

(
h3
i

∂3u

∂x3
(qi) + k3

i

∂3u

∂y3
(qi) + 3h2

i ki
∂3u

∂x2∂y
(qi) + 3hik

2
i

∂3u

∂x∂y2
(qi)

)
.

(2)

Note that qi = (ξi, ηi) is an intermediate point of the remainder term such that
ξi ∈ (

ξmin
i , ξmax

i

)
, ηi ∈ (

ηmin
i , ηmax

i

)
. Furthermore, we have ξmin

i = min {xi, x0},
ξmax
i = max {xi, x0} and ηmin

i = min {yi, y0}, ηmax
i = max {yi, y0}. If we add the

expressions (2), we obtain

N∑
i=1

(u (pi) − u (p0)) =
N∑
i=1

hi
∂u

∂x
(p0) +

N∑
i=1

ki
∂u

∂y
(p0) +

1
2

(
N∑
i=1

h2
i

∂2u

∂x2
(p0)

+
N∑
i=1

k2
i

∂2u

∂y2
(p0) + 2

N∑
i=1

hiki
∂2u

∂x∂y
(p0)

)
+

1
6

N∑
i=1

r (qi) ,

(3)

where

r (qi) = h3
i

∂3u

∂x3
(qi) + k3

i

∂3u

∂y3
(qi) + 3h2

i ki
∂3u

∂x2∂y
(qi) + 3hik

2
i

∂3u

∂x∂y2
(qi) . (4)

We further define the function F as follows

F (u) =
N∑
i=1

{[
u (p0) − u (pi) + hi

∂u

∂x
(p0) + ki

∂u

∂y
(p0) +

1
2
h2
i

∂2u

∂x2
(p0)

+
1
2
k2
i

∂2u

∂y2
(p0) + hiki

∂2u

∂x∂y
(p0) +

1
6
r (qi)

]
w (hi, ki)

}2

,

(5)

where w = w (hi, ki) are the weight functions simply denoted by wi. We minimize
F with respect to the values of the derivatives at the point p0 (1). We have

∂F (u)
∂A =

∂F (u)
∂B =

∂F (u)
∂C =

∂F (u)
∂D =

∂F (u)
∂E = 0, (6)

where

A =
∂u

∂x
(p0) , B =

∂u

∂y
(p0) , C =

∂2u

∂x2
(p0) , D =

∂2u

∂y2
(p0) , E =

∂2u

∂x∂y
(p0) .

(7)



The First Approach to the Interval Generalized Finite Differences 387

Finally, we obtain a linear system of equations of the form

ÂD̂ = B̂ + Ê, (8)

where

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

h2
iw

2
i

N∑
i=1

hikiw
2
i

N∑
i=1

1
2
h3
iw

2
i

N∑
i=1

1
2
hik

2
i w

2
i

N∑
i=1

h2
i kiw

2
i

N∑
i=1

hikiw
2
i

N∑
i=1

k2
i w

2
i

N∑
i=1

1
2
h2
i kiw

2
i

N∑
i=1

1
2
k3
i w

2
i

N∑
i=1

hik
2
i w

2
i

N∑
i=1

1
2
h3
iw

2
i

N∑
i=1

1
2
h2
i kiw

2
i

N∑
i=1

1
4
h4
iw

2
i

N∑
i=1

1
4
h2
i k

2
i w

2
i

N∑
i=1

1
2
h3
i kiw

2
i

N∑
i=1

1
2
hik

2
i w

2
i

N∑
i=1

1
2
k3
i w

2
i

N∑
i=1

1
4
h2
i k

2
i w

2
i

N∑
i=1

1
4
k4
i w

2
i

N∑
i=1

1
2
hik

3
i w

2
i

N∑
i=1

h2
i kiw

2
i

N∑
i=1

hik
2
i w

2
i

N∑
i=1

1
2
h3
i kiw

2
i

N∑
i=1

1
2
hik

3
i w

2
i

N∑
i=1

h2
i k

2
i w

2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

D̂ =
[
∂u

∂x
(p0) ,

∂u

∂y
(p0) ,

∂2u

∂x2
(p0) ,

∂2u

∂y2
(p0) ,

∂2u

∂x∂y
(p0)

]T

, (10)

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

(−u (p0) + u (pi)) hiw
2
i

N∑
i=1

(−u (p0) + u (pi)) kiw
2
i

N∑
i=1

(−u (p0) + u (pi))
1
2
h2
iw

2
i

N∑
i=1

(−u (p0) + u (pi))
1
2
k2
i w

2
i

N∑
i=1

(−u (p0) + u (pi)) kihiw
2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ê =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N∑
i=1

r (qi) hiw
2
i

−
N∑
i=1

r (qi) kiw
2
i

−
N∑
i=1

r (qi)
1
2
h2
iw

2
i

−
N∑
i=1

r (qi)
1
2
k2
i w

2
i

−
N∑
i=1

r (qi) kihiw
2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Note that as the weight functions wi we choose (see, e.g., [1,10]) w (hi, ki) =
1/d3i , where di = ((x0 − xi)2 + (y0 − yi)2)1/2 = (h2

i + k2
i )

1/2.

Remark 1. Let u0, ui, i = 1, 2, . . . n approximate the exact values u(p0), u(pi)
of the function u at the central and surrounding nodes. If we also ignore the
remaining terms of the Taylor series expansion given in the components of a
vector Ê, we obtain the linear system of equations whose solution provides
approximate values of a complete set of the first and second order derivatives
of u at the central node p0. Such an approach utilizes the conventional general-
ized finite differences considered. The matrix Â of the linear system of equations
(8) is symmetrical. As proposed in, e.g., [1,10], this system of equations can be
efficiently solved with the Cholesky method.
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3 Interval Generalized Finite Differences

Let us denote by Xi, Yi, i = 0, 1, . . . , n, the intervals such that xi ∈ Xi, yi ∈ Yi

and by U = U(X,Y ) the interval extension of u = u(x, y). Hence, we have
Hi = Xi −X0, Ki = Yi −Y0 and W (Hi,Ki) = 1/D3

i , where Di = (H2
i +K2

i )1/2.
Finally, we make the following assumptions about values in the midpoints of

the derivatives included in the remainder term of the Taylor series. We denote
by D(3,1) = D(3,1)(X,Y ), D(3,2) = D(3,2)(X,Y ), D(3,3) = D(3,3)(X,Y ), D(3,4) =
D(3,4)(X,Y ) the interval extensions of the appropriate derivatives of u, i.e.,
d(3,1) = ∂3u/∂x3(x, y), d(3,2) = ∂3u/∂y3(x, y), d(3,3) = ∂3u/∂x2∂y(x, y), d(3,4) =
∂3u/∂x∂y2(x, y), respectively. Then, for the midpoints ξi, ηi, we assume that
there exist the intervals such that ξi ∈ Ξi, ηi ∈ Hi, i = 1, 2, . . . , n. Based on that
we can define the interval extension R = R(X,Y ) of the error term function
r = r(x, y) (4) and compute its value at the point (Ξi,Hi). We have

Ri = H3
i D

(3,1)
i + K3

i D
(3,2)
i + 3H2

i KiD
(3,3)
i + 3HiK

2
i D

(3,4)
i , (12)

where Ri = R(Ξi,Hi), D
(3,j)
i = D(3,j)(Ξi,Hi), i = 1, 2, . . . , n, j = 1, 2, 3, 4.

Based on the above notations and assumptions if we replace all real values
used in (8)–(11) by the appropriate intervals and all functions by their interval
extensions, then we obtain an interval linear system of equations of the form

AD = B + E, (13)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

D =
[
D

(X)
0 , D

(Y )
0 , D

(XX)
0 , D

(Y Y )
0 , D

(XY )
0

]T
, (15)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

(−U0 + Ui) HiW
2
i

N∑
i=1

(−U0 + Ui) KiW
2
i

N∑
i=1

(−U0 + Ui)
1
2
H2

i W 2
i

N∑
i=1

(−U0 + Ui)
1
2
K2

i W 2
i

N∑
i=1

(−U0 + Ui) KiHiW
2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N∑
i=1

RiHiW
2
i

−
N∑
i=1

RiKiW
2
i

−
N∑
i=1

Ri
1
2
H2

i W 2
i

−
N∑
i=1

Ri
1
2
K2

i W 2
i

−
N∑
i=1

RiKiHiW
2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)
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Note that we can solve the interval linear system of equations (13) with the
interval Cholesky method (similarly as in the case of the linear system of equa-
tions (8) when the conventional Cholesky method is proposed). Such a choice
has an important consequence that can be easily noticed when we follow the
assumptions and the theorem provided by Moore, Kearfott and Cloud in [8].

Consider a finite system of linear algebraic equations of the form Ax = b,
where A is an n-by-n matrix, b is an n-dimensional vector and the coefficients
of A and b are real or interval values. The existence of the solution to Ax = b
is provided by the following theorem (see [8]).

Theorem 1 (Moore et al. [8]). If we can carry out all the steps of a direct
method for solving Ax = b in the interval arithmetic (if no attempted division
by an interval containing zero occurs, nor any overflow or underflow), then the
system has a unique solution for every real matrix in A and every real matrix in
b, and the solution is contained in the resulting interval vector X.

Remark 2. In the interval approach proposed, all real value coefficients of the
matrix Â and the vectors B̂, Ê of the linear system of equations (8) are included
in the interval value coefficients of the matrix A and the vectors B, E of the
interval linear system of equations (13). Hence, based on Theorem 1 we can
conclude the following. If we solve the interval linear system of equations (13)
with the interval Cholesky method (i.e., the interval counterpart of the direct
Cholesky method), then the exact values of the derivatives given in D̂ (10) at
the node p0 are included in the interval values of the vector D (15) and we have

∂u

∂x
(p0) ∈ D

(X)
0 ,

∂u

∂y
(p0) ∈ D

(Y )
0 ,

∂2u

∂x2
(p0) ∈ D

(XX)
0 ,

∂2u

∂y2
(p0) ∈ D

(Y Y )
0 ,

∂2u

∂x∂y
(p0) ∈ D

(XY )
0 .

(17)

4 Numerical Examples

We consider the following functions

u1(x, y) = exp (xy) , u2(x, y) =
(
x2 + y2 + 0.5

)2
exp (xy) ,

u3(x, y) = cos (x) cos (y) , u4(x, y) = ua(x, y) + ub(x, y),
(18)

where the functions ua, ub are defined in [2] and given in the form

ua(x, y) =
3

4
exp

(
− (9x − 2)2

4
− (9y − 2)2

4

)
+

3

4
exp

(
− (9x + 1)2

49
− (9y + 1)2

10

)
,

ub(x, y) =
1

2
exp

(
− (9x − 7)2

4
− (9y − 3)2

4

)
− 1

5
exp

(− (9x − 4)2 − (9y − 7)2
)
.

We use the approach proposed in the above section to compute the interval
enclosures of the second order derivatives (1) of the functions u1, u2, u3, u4 at
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the point p0(0.5, 0.5). We assume that we know a set of points pi = (xi, yi) and
our task is to compute a value of the derivative of some function u at a given
point p0 = (x0, y0). We take into account the regular and irregular grids of 9,
17 and 25 points (see Fig. 1). To examine the influence of the distances between
the points in the cloud, we define the distances ρx, ρy that are further used to
determine the position of the points p0, pi, i = 1, 2, . . . , n.

We performed two kinds of numerical tests. In Example 1 we assume that the
analytical formula of u is known. In such a case we can compute the analytical
formula of all the derivatives of u given in (4) and then their interval extensions
required in (12). Under this assumption the exact values of all derivatives at the
point p0 are included in the interval enclosures obtained. Note that in general, the
analytical formula of u is unknown. Hence, in Example 2, we propose some kind
of method that shows how we can approximate values of the endpoints of the
error term intervals in the formula (12). Note that we performed computations
with the C++ libraries for the floating-point conversions and the floating-point
interval arithmetic dedicated for the Intel C++ compiler [4].

(a) regular 9-point grid (b) regular 17-point grid (c) regular 25-point grid

(d) irregular 9-point grid (e) irregular 17-point grid (f) irregular 25-point grid

Fig. 1. Examples of regular and irregular grids of n-nodes.

Example 1. Consider the derivatives (1) of the functions u1, u3, u4 at the point
p0(0.5, 0.5). We computed the exact values of these derivatives and then their
interval enclosures for all regular/irregular clouds of 9, 17 and 25 points, and
a sequence of the grid parameters ρx = ρy equal to 1E−12, 5E−12, . . . , 5E−2.
We found the results such that the widths of the interval enclosures were the
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(a) ∂u1(p0)/∂x (b) ∂2u1(p0)/∂x2

(c) ∂u3(p0)/∂x (d) ∂2u3(p0)/∂x2

(e) ∂u4(p0)/∂x (f) ∂2u4(p0)/∂x2

Fig. 2. Widths of interval enclosures of the derivatives ∂u(p0)/∂x and ∂2u(p0)/∂x2 of
the functions u1, u3, u4 for different values of the grid parameter ρx = ρy.

smallest in the case of regular and irregular grids. These widths occurred to be
of the same order. The comparison in the case of the first and second order
derivatives with respect to the x coordinate is shown in Fig. 2.

Example 2. Let us compute the derivatives (1) of the function u2 at the point
p0(0.5, 0.5) using a method of approximation of the error term intervals. In the
formula (12), we assume that we know the interval enclosures of the third order
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Table 1. Exact values of the derivatives, their interval enclosures obtained with the
approximation of the endpoints of the error term intervals and the widths of intervals

Deriv. Interval enclosure of the derivative Width

∂u/∂x [3.21006354171910379E+0000, 3.21006354171960945E+0000]
exact ≈ 3.21006354171935371E+0000

5.0565E−13

∂u/∂y [3.21006354171910369E+0000, 3.21006354171960958E+0000]
exact ≈ 3.21006354171935371E+0000

5.0587E−13

∂2u/∂x2 [1.05932096499612316E+0001, 1.05932097153302133E+0001]

exact ≈ 1.05932096876738672E+0001

6.5368E−08

∂2u/∂y2 [1.05932096499385176E+0001, 1.05932097153178944E+0001]
exact ≈ 1.05932096876738672E+0001

6.5379E−08

∂2u/∂x∂y [6.74113340305148239E+0000, 6.74113345648631275E+0000]
exact ≈ 6.74113343761064279E+0000

5.3434E−08

derivatives such that for a given point qi the following relations hold

∂3u

∂x3
(qi) ∈ D

(3,1)
i =

[
D

(3,1)
i ,D

(3,1)

i

]
,

∂3u

∂y3
(qi) ∈ D

(3,2)
i =

[
D

(3,2)
i ,D

(3,2)

i

]
,

∂3u

∂x2∂y
(qi) ∈ D

(3,3)
i =

[
D

(3,3)
i ,D

(3,3)

i

]
,

∂3u

∂x∂y2
(qi) ∈ D

(3,4)
i =

[
D

(3,4)
i ,D

(3,4)

i

]
.

If the analytical formulas of the third order derivatives are not known, we have
to approximate the endpoints of the error term intervals. One approach assumes
that we compute the derivatives up to the third order using the conventional
generalized finite differences of higher order (see, e.g., [10]) and then we use the
results obtained to approximate the endpoints considered in the way similar to
the one proposed in, e.g., [5]. For k = 1, 2, 3, 4, we choose

D
(3,k)
i ≈ min

{
D

(3,k)∗
i ,D

(3,k)∗
0

}
, D

(3,k)
i ≈ max

{
D

(3,k)∗
i ,D

(3,k)∗
0

}
, (19)

where, for s = i and s = 0, we take

D(3,1)∗
s =

∂3u (ps)
∂x3

, D(3,2)∗
s =

∂3u (ps)
∂y3

, D(3,3)∗
s =

∂3u (ps)
∂x2∂y

, D(3,4)∗
s =

∂3u (ps)
∂x∂y2

.

We chose the regular 25-grid of points with ρx = ρy = 5E−6. We computed
the second order derivatives of u2 at the point p0(0.5, 0.5) with the approximated
values of the endpoints of the error term intervals. As we can see in Table 1, the
exact values of the derivatives are included in the corresponding interval results.
The similar situation was observed also in the case of other examples considered.
Nevertheless, in this approach, we cannot formally guarantee the inclusion of the
truncation error in the resultant interval solutions.
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5 Results Discussion and Final Conclusions

The results obtained with the IGFDs lead to the following general conclusions.

• The interval solution includes the exact value of the derivative in the case
of all functions and each numerical experiment. For each example function
u and each number of grid points 9, 17, 25, we can find the grid parameter
ρx = ρy such that the widths of interval solutions are the smallest. Their
further decrease does not improve the results or even makes them worse.

• The smallest widths of interval solutions are usually obtained with the 9-point
grid of points. The larger number of the grid points improves the results when
we take ρx = ρy much smaller than the optimal one. Hence, it seems that
there is no reason to perform computations with 17 or even 25 points.

• The widths of interval solutions are smaller in the case of the regular arrange-
ment of points than the irregular one (in the case of each example function
such a difference is equal to about one order of accuracy). Nevertheless, the
regular distribution is rarely possible near irregular and complicated bound-
ary. In such a case the interval GFDs are very useful.

The results seem to be a promising starting point towards development of interval
generalized finite difference methods for solving the boundary value problems.

Acknowledgments. The paper was supported by the Poznan University of Technol-
ogy (Poland) through Grants No. 02/21/DSPB/3544, 09/91/DSPB/1649.
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An Interval Calculus Based Approach
to Determining the Area of Integration

of the Entropy Density Function
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Abstract. This paper considers the problem of numerical computation
of a definite integral of the entropy density function over a wide, poten-
tially unbounded, domain. Despite there are efficient approaches to com-
pute the quadrature over a finite (hyper)rectangle, it may be challenging
to bound the whole domain, out of which the function is negligible. An
approach based on the interval analysis is proposed in this paper. Pre-
liminary numerical results are also discussed.

Keywords: Interval computations · Entropy · Integration · Numerical
quadrature · Heuristics

1 Introduction

Several integrals, found in various branches of science and engineering, cannot
be computed exactly, but only approximated using some numerical procedures.
Numerical integration is a well-known problem and several approaches exist to
solving it.

In many applications, the area of integration is unbounded. To perform any
kind of numerical algorithm, we need to provide some bounds or other kind
of enclosure for the support of the function. In particular, this is the case for
applications, where entropy density functions have to be integrated.

The paper is organized as follows. Problems of integrating the entropy func-
tion are briefly presented in Sect. 2. In Sect. 3, the numerical procedure for this
purpose is discussed. In Sect. 4, basics of the interval calculus are introduced.
Also operations on unbounded intervals are presented there. In Sect. 5, an inter-
val branch-and-bound type algorithm to enclose the approximate support of the
integrated function is proposed. Its implementation is considered in Sect. 6. Many
issues, including the use of algorithmic differentiation, are given there. Section 7
presents and discusses the preliminary numerical results and the conclusions are
given in Sect. 8.
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2 Integrating the Entropy Density Function

Majority of interesting and nontrivial problems in physics cannot be solved ana-
lytically. It is necessary to use some kind of numerical procedures. Even comput-
ing definite integrals can be a challenging problem, especially in multidimensional
cases with nontrivial boundary conditions. In this paper we focus our attention
on computation of the values of phase-space entropy functions

S = −
∫∫

A

dμ(x1, x2)f(x1, x2) ln f(x1, x2) , (1)

where f(x1, x2) is a probability distribution defined over a phase-space of the
physical system under consideration, μ(x1, x2) is a proper integration measure,
and A – integration area.

As an example, let us consider so-called Husimi function or Glauber rep-
resentation of a quantum state of the one-dimensional harmonic oscillator. In
contrast to its more famous cousin, the Wigner function, the Husimi function is
always non-negative and can be used as an argument of the logarithm. As both
entropy and harmonic oscillator are ubiquitous concepts in so many different
physical contexts (cf., e.g., [8,15–17]), we find this example particularly enlight-
ening and valuable. Let us consider the Husimi function of the nth excited state
of harmonic oscillator, which in proper units reads

fn(x1, x2) =
1
n!

(x2
1 + x2

2)
n exp(−x2

1 − x2
2) . (2)

In the following we concentrate on three different quantum states, presenting
both fn(x1, x2) and gn(x1, x2) = −fn(x1, x2) ln fn(x1, x2) for the first, second,
and third excited state. We take dμ(x1, x2) = 1

π dx1dx2 for convenience.
Graphs of these functions are presented in Fig. 1 and their corresponding

entropy densities – in Fig. 2.

Fig. 1. Graphs of functions (2), for n = 1, 2, 3.
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Fig. 2. Graphs of entropy densities of functions from Fig. 1.

3 Numerical Integration

Various approaches to numerically approximating the definite integral exist, and
their various efficient and well-tuned implementations are commonly used. In
particular, in the Python library numpy for numerical computations, we have
functions quad(), dblquad(), tplquad() and nquad() for numerical integration
over domains of various dimensionalities [1].

These functions are very efficient. They have not been implemented in
Python, but they are Python wrappers for functions written in C or Fortran,
basing on highly-tuned numerical libraries. Nevertheless, they require explicitly
giving bounds of integration.

It may seem a sane approach to simply provide wide approximate bounds.
Yet this can cause two kinds of problems:

– we can miss a non-negligible region of the function’s support,
– we can make our procedure perform superfluous computations on relatively

wide regions, where the function is negligible.

Yet, to determine where the function has non-negligible values we need either to
compute its values in an outstanding number of points or determine ranges of
its values on some regions. The latter can be achieved using interval analysis.

4 The Interval Calculus

The idea of interval analysis is to perform computations using intervals, instead
of specific numbers. It can be found in several textbooks; e.g., [4,7,9,13,14,19].

We define the (closed) interval [x, x] as a set {x ∈ R | x ≤ x ≤ x}. It
is assumed that all considered interval are closed (why such an assumption is
made has been discussed, i.a., in Sect. 2.8 of [11]).

Following [10], we use boldface lowercase letters to denote interval variables,
e.g., x, y, z, and IR denotes the set of all real intervals.

4.1 Basics

We design arithmetic (and other) operations on intervals so that the following
condition was fulfilled:

� ∈ {+,−, ·, /}, a ∈ a, b ∈ b implies a � b ∈ a � b . (3)
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The actual formulae for arithmetic operations are as follows:

[a, a] + [b, b] = [a + b, a + b] ,

[a, a] − [b, b] = [a − b, a − b] ,

[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ,

[a, a] / [b, b] = [a, a] · [1 / b, 1 / b
]

, 0 /∈ [b, b].

(4)

Other operations can be defined in a similar manner. For instance, we have a
formula for the power of an interval:

[a, a]n =

⎧⎨
⎩

[an, an] for odd n
[min{an, an},max{an, an}] for even n and 0 /∈ [a, a]

[0,max{an, an}] for even n and 0 ∈ [a, a]
. (5)

and for other transcendental functions. For instance:

exp
(
[a, a

)
= [exp(a), exp(a)],

log
(
[a, a

)
= [log(a), log(a)], for a > 0 .

Links between real and interval functions are set by the notion of an inclusion
function: see; e.g., [7]; also called an interval extension; e.g., [9].

Definition 1. A function f : IR → IR is an inclusion function of f : R → R, if
for each interval x within the domain of f the following condition is satisfied:

{f(x) | x ∈ x} ⊆ f(x) .

The definition is analogous for functions f : Rn → R
m.

For each interval, we can define its midpoint:

midx =
x + x

2
. (6)

This operation is of particular importance, as it allows us to subdivide inter-
vals into subintervals. This is a crucial operation for all branch-and-bound type
methods [11].

4.2 Unbounded Intervals

Formulae (4), although well-known, are less universal than they would seem. If
the endpoints are represented using the IEEE 754 Standard for floating-point
numbers [5], these endpoints can have infinite values. So what would be the
result of the following multiplication: [0, 2] · [2,+∞]? According to Formulae (4),
we obtain a NaN (Not a Number) for the right endpoint, but we can simply
bound the set:

{z = x · y | x ∈ [0, 2], y ∈ [2,+∞]} ;
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its bounds are obviously: [0,+∞]. Various interval libraries and packages imple-
ment such operations in different manners; some unification has been provided
by the IEEE Standard 1788-2015 [6].

Subdivision of an unbounded interval is another issue. According to (6), for
unbounded intervals we would obtain:

mid [a,+∞] = +∞ ,
mid [−∞, a] = −∞ ,

mid [−∞,+∞] = NaN,

which would not be very useful.
In [18], Ratschek and Voller present another approach. A global parameter λ

is chosen, such that solutions are supposed to lie in the range [−λ,+λ]. For inter-
vals contained in this range, the midpoint and width are defined in a traditional
manner.

For intervals exceeding this range, we have:

mid [a,+∞] =
{

λ for a < λ,
2 · a for a ≥ λ,

. (7)

Obviously, mid [−∞, a] = −mid [−a,+∞].
Please note that a in formula (7) can be both finite or infinite. Also, it is

worth noting that, according to the above equation:

mid [−∞,+∞] = +λ ,

so the interval [−λ,+λ] will not get subdivided too early; we shall start with
“amputating” the regions from its outside.

Ratschek and Voller have proposed alternative formulae for the diameter of
an unbounded interval, as well. These formulae seem more controversial and we
shall not use them. Fortunately, we do not need to distinguish, which of the
unbounded intervals is “wider” – as long, as we can subdivide any of them, and
formula (7) is sufficient for that.

5 Proposed Algorithms

We need to find the approximate support of the non-negative function g (the
entropy of f) over its domain: R

2, in our current implementation or R
n, in

general. This is equivalent to seeking solutions of the inequality:

g(x) ≥ δ, x ∈ R
n . (8)

According to the general approach presented in [11], and making use of the
operations defined in Sect. 4.2, solution to (8) can be done by simple procedure,
presented in Algorithm 1.
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Fig. 3. Entropy of function f , for f ∈ [0, 1]

Yet solving (8) directly, would not be the optimal approach. Please note that
we know the structure of g: g(x) = −f(x) · ln f(x). So, we can reduce solving the
inequality on g to solving an equivalent inequality (or inequalities system) on f .

Please not that we know the relation between f and g – it is the function
g = −f · ln f and it is shown on Fig. 3.

Consequently, g(x) ≥ δ is equivalent to:

f(x) ≥ fl and f(x) ≤ fh , (9)

for fl and fh being the two solutions to the equation −f · ln f = δ.
These values can easily be computed by any interval or non-interval proce-

dure. Even as simple linear procedure, checking subsequent values of 0 + k · ε
and 1 − k · ε for k = 0, 1, 2, . . . is efficient enough.

Actually, in the considered application, we could neglect the distinction
between verified and possible solutions, as all of them are going to be treated in
the same manner: fed as regions of the domain to the integration algorithm.

Also, in contrast to other typical applications of the branch-and-bound type
methods, ε in Algorithm 1 does not have to be small. The algorithms is supposed
to produce the set of boxes that will enclose the support of some function, but
the overestimation of this region is not dangerous.

A parameter that should have a smaller value is δ. Actually, using any δ > 0
value thwarts us from computing the verified enclosure of the integral, as some
parts of the support region will not be taken into account. Possibly, for some
problems, it could be repaired by adding some additional margin [−ρ,+ρ] to the
computed integral. In our current implementation, we simply accept that the
computed integral will not be verified; actually, non-interval algorithms are used
for its computation.

An even more serious issue is to verify the conditions in lines 9 and 11.

5.1 The Initial Box

What initial box x(0) should we consider? The optimal approach would be to
use the whole real plane: x(0) = R

n.
While techniques from Subsect. 4.2 make it technically possible, such an app-

roach might be cumbersome for several forms of the function f .
Let us consider a simple example. For the function f1(x) = exp(−x), we

can easily get finite bounds, on any unbounded interval x = [x,+∞]. But for a
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Algorithm 1. Interval branch-and-bound type algorithm for Problem (8)
Require: x(0), f, δ, ε
1: {x(0) is the initial box (cf. Subsection 5.1)}
2: {f(·) is the interval extension of the function f : Rn → R}
3: {Lver – verified solution boxes, Lpos – possible solution boxes}
4: Lver = Lpos = ∅
5: find fl and fh, as the two solutions of −f · ln f = δ for f ∈ [0, 1]
6: x = x(0)

7: loop
8: compute [y, y] = f(x)
9: if (y < fl or y > fh) then

10: discard x
11: else if (y ≥ fl and y ≤ fh) then
12: push (Lver, x)
13: else if (widx < ε) then
14: push (Lpos, x) {The box x is too small for bisection}
15: if (x was discarded or x was stored) then
16: if (L == ∅) then
17: return Lver, Lpos {All boxes have been considered}
18: x = pop (L)
19: else
20: bisect (x), obtaining x(1) and x(2)

21: x = x(1)

22: push (L, x(2))

pretty similar function f2(x) = x · exp(−x), on a similar interval, the interval
evaluation will result in:

f2
(
[x,+∞]

)
= [x,+∞] · exp

(
[−∞,−x]

)
= [x,+∞] · [0, exp(−x)] = [0,+∞] ,

regardless of the value of x!
Another version of f2:

f2a(x) = exp
(
ln(x) − x

)
,

is of little help, as it results in:

f2a

(
[x,+∞]

)
= exp

(
ln

(
[x,+∞]

) − [x,+∞]
)

= exp
(
[ln x,+∞] − [x,+∞]

)
= exp[−∞,+∞] = [0,+∞] ,

Obtaining a more useful form is not easy. Using derivatives will be of some help,
as we shall see in next subsection.

Also, please note that for any of the forms, bounding the function is of no
problem for a bounded interval, even for a wide one.
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5.2 How to Verify that f(x) ≥ fl and f(x) ≤ fh

The very objective of the interval calculus is to bound various quantities. Con-
sequently, it is a proper tool to bound f(x) and allow checking conditions of
type (9). For bounded intervals, it works perfectly. But what about unbounded
domains?

For some functions, their interval extensions allow checking (9) even over
unbounded domains. Assume, we have x = (x1, x2) and f(x) = exp(−x2

1 − x2
2).

Now, for large enough arguments, the condition that f(x) ≥ fl can easily be
falsified.

But checking it will be much more tedious for a more sophisticated function.
A function described by an infinite series, that has to be truncated at some
point, seems particularly challenging.

What can we do in such a case?
We know that f is non-negative. So, we can make use of its derivatives to

make sure it is non-increasing over (or non-decreasing under) some threshold
value.

Derivatives can be computed using algorithmic differentiation, as we shall
see below.

Hence, we can formulate three conditions to discard a box x:

1. It is verified that f(x) ⊆] − ∞,+fl[.
2. It is verified that f(x) ⊆] − ∞,+fl[ and ∇f(x) ∈] − ∞, 0] (i.e., the function is

decreasing).
3. It is verified that f(x) ⊆] − ∞,+fl[ and ∇f(x) ∈]0,+∞] (the function is

increasing).

Unfortunately, none of the above conditions turned out to be easy to verify on
unbounded intervals – at least for functions we have considered in this paper.
Consequently, in our current implementation we do not use derivatives, but
natural interval extensions over (wide but) finite intervals only.

We are going to test other conditions in the future. In particular, conditions
basing on the 2nd (or even higher) derivative can be formulated. Possibly, they
will be considered in our further research.

6 Implementation

The program computing numerical integrals is currently implemented in Python
3. The quadrature uses function dblquad() from module numpy.integrate.

The implementation has been parallelized using processes. Today Python
translators do not allow threads to run in parallel, because of the presence
of the so-called Global Interpreter Lock (GIL), that allows executing only one
Python instruction at a time. So, several processes are applied instead, to per-
form parallel computations. Specifically, the class ProcessPoolExecutor from
module concurrent.futures is used. This class represents a scheduler that
allows assigning tasks to a process pool.
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Parallelization is straightforward as we already have the domain subdivided
into several boxes. Simply the tasks of computing dblquad() on many of them
are submitted to the ProcessPoolExecutor scheduler, it assigns them to various
processes and the main program waits for the completion and adds up the results.

As for bounding the support of f , it has been implemented in C++ and
not Python, as some libraries have to be used for interval computations (C-
XSC [2]) and algorithmic differentiation (ADHC [3]). Communication between
the two components is performed using a file; an unnamed pipe or another IPC
mechanism would be equally appropriate.

Algorithmic differentiation is based on the following observation: each func-
tion evaluated by a computer is described by a computer program, that consists
of several elementary operations (arithmetic operations, transcendental func-
tions, etc.). And it is known, how to compute derivatives of such elementary
operations. So, we can enhance this program, to compute derivative(s) together
with the original function.

This can be done in a few manners, but the ADHC library, described below,
overloads the basic arithmetic operations to compute the derivative(s) together
with basic values.

For instance, for basic arithmetic operations, we have:

〈u,u′〉 + 〈v,v′〉 = 〈u + v, u′ + v′〉 ,
〈u,u′〉 − 〈v,v′〉 = 〈u − v, u′ − v′〉 ,
〈u,u′〉 · 〈v,v′〉 = 〈u · v, u · v′ + u′ · v〉 ,
〈u,u′〉 / 〈v,v′〉 = 〈u/v, (u′ · v − u · v′)/v2〉 .

Transcendental functions, can be extended in an analogous manner.
The library, called above ADHC (Algorithmic Differentiation and Hull Con-

sistency enforcing), has been developed by the first author [3]. It has been
described, i.a., in [12] and in Chapter 3 of [11].

Version 1.0 has been used in our experiments. This version has all neces-
sary operations, including the exp function and division of terms (that was not
implemented in earlier versions of the package).

7 Numerical Results

In our current implementation, the initial box x(0) = [−2000, 2000] × [−2000,
2000] has been used.

All solutions get found so quickly that parallelization of the algorithms has
not been considered, yet. In Fig. 4 we can see results for various values of δ and
relatively large ε = 1, for function f(x1, x2) = exp(−x2

1 − x2
2).

The numbers of verified and possible solution boxes are: 16 and 32, 20 and
32, and 28 and 40, respectively.

In Fig. 5, an analogous result is presented for ε = 0.1. For these parameters,
the numbers of boxes are: 216 and 288.

But a large ε is sufficient in most applications.
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Fig. 4. Approximated support of entropy density of function f(x) = exp(−x2
1 − x2

2),
for ε = 1 and δ = 10−2, 10−3, 10−4

Fig. 5. Approximated support of entropy density of function f(x) = exp(−x2
1 − x2

2),
for ε = 0.1 and δ = 10−4

For the family (2) of functions, we present results for n = 1, 2, 3 in Fig. 6.
Parameters ε = 1.0 and δ = 10−4 have been used there.

The numbers of verified and possible solution boxes have been: 20 and 52,
16 and 92, and 32 and 92, respectively.

Computation times have been negligible, in all above cases.

Fig. 6. Approximated support of entropy densities of functions (2), for ε = 1, δ = 10−4,
and n = 1, 2, 3

8 Summary

We have provided a simple interval algorithm to compute a relatively narrow
enclosure for the support of a function. The algorithm is used for numerical
integration of the entropy density function, in some physical applications.

The approach described in this paper, while pretty simple, seems interesting,
at least because of two reasons. Firstly, it has a useful practical application in
quantum physics. Secondly, it shows a non-obvious manner of using the interval
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calculus, which has been applied not for validated computations, resulting in a
verified enclosure of some solution, but to provide a heuristic for a non-interval
procedure.

Further development of the obtained program is planned. In particular, some
symbolic transformations will hopefully allow us to use unbounded domains for
non trivial functions. Also, we are going to test it on more serious test problems.

An interesting side observation is that operations on unbounded intervals
turn out to be less useful than they may seem. Using wide but bounded intervals
is much more likely to provide meaningful results.
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Abstract. In the article we present an interval difference scheme for
solving a general elliptic boundary value problem with Dirichlet’ bound-
ary conditions. The obtained interval enclosure of the solution contains
all possible numerical errors. A numerical example we present confirms
that the exact solution belongs to the resulting interval enclosure.

Keywords: Interval difference methods · Elliptic boundary value
problem · Floating-point interval arithmetic

1 Introduction

It is well-known that floating-point arithmetic causes rounding errors, both for
the representation of real numbers and for the result of operations. Applying
approximate methods to solve problems on a computer we introduce also the
error of methods (usually called the truncation errors). Using interval methods
realized in interval floating-point arithmetic we can obtain interval enclosures of
solutions which are guaranteed to contain the actual solution.

The first monograph on interval arithmetic has been written by Moore in
1966 [13]. Other researchers has been extended this arithmetic in the following
years (see, e.g., [1–3,14,16]). In the so called proper interval arithmetic we have
four rules for four basic operations, and the realization of them on computers is
based on a simple rule, where left and right end-points of intervals are calculated
by using downward and upward roundings (see, e.g., [2])1.
1 There is also known directed interval arithmetic in which the left-ends of intervals

may be greater than the right-end of ones. But it is not the case of our paper – we
use only proper intervals.
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In this paper we consider more general elliptic equations with Dirichlet’s
boundary conditions than in our previous papers [4–8,12]. The generalization
consists in taking into account some continuous functions about the second order
partial derivatives and in adding a term c(x, y) · u(x, y) into equation, where
c(x, y) denotes also such a function.

The paper is divided into four sections. In Sect. 2 we recall shortly the well-
known elliptic equation with Dirichlet’s boundary conditions which is of our
interest. In Sect. 3 (the main section of this paper) we present an interval differ-
ence scheme of second order for solving a special problem of this kind. Finally,
in Sect. 4, a numerical example is presented. This example is only one of the
numerous examples we have solved; in every case the exact solution belongs to
the interval enclosure obtained by the method. Since, in our opinion, it is rather
impossible to obtain a theoretical proof of this fact, the paper can be treated as
an experimental one.

2 Boundary Value Problem for Elliptic Equations

The well-known general form of elliptic partial differential equation is as follows:

a (x, y)
∂2u

∂x2
+ 2g (x, y)

∂2u

∂x∂y
+ b (x, y)

∂2u

∂y2

+ 2d (x, y)
∂u

∂x
+ 2e (x, y)

∂u

∂y
+ c (x, y) u = f(x, y),

(1)

where u = u(x, y), 0 ≤ x ≤ α, 0 ≤ y ≤ β. The functions a = a(x, y), b = b(x, y),
c = c(x, y), d = d(x, y), e = e(x, y), f = f(x, y) and g = g(x, y) are arbitrary con-
tinuous functions determined in the rectangle Ω = (x, y) : 0 ≤ x ≤ α, 0 ≤ y ≤ β
fulfilling in the interior of Ω the condition

a (x, y) b (x, y) − g2 (x, y) > 0.

For (1) we can consider the Dirichlet boundary conditions of the form

u|Γ = ϕ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1 (y) , for x = 0,
ϕ2 (x) , for y = 0,
ϕ3 (y) , for x = α,
ϕ4 (x) , for y = β,

(2)

where

ϕ1 (0) = ϕ2 (0) , ϕ2 (α) = ϕ3 (0) , ϕ3 (β) = ϕ4 (α) , ϕ4 (0) = ϕ1 (β) .

and Γ = {(x, y) : x = 0, α and 0 ≤ y ≤ β or 0 ≤ x ≤ α and y = 0, β}.
If in (1) we take a(x, y) = b(x, y) = 1, c(x, y) = d(x, y) = e(x, y) = g(x, y) =

0, then we have the following well-known Poisson equation:

∂2u

∂x2
+

∂2u

∂y2
= f (x, y) .
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Interval difference methods for solving this equation with boundary conditions
(2) we have presented in [4–8,12].

The equation
∂2u

∂x2
+

∂2u

∂y2
+ c(x, y)u = f (x, y)

is another special kind of elliptic equation of the form (1). In [11] we have
constructed interval difference scheme for solving this equation with conditions
(2) and compared with Nakao’s method [15] based on Galerkin’s approximation.
As we have shown in [11], our method gives better interval enclosures of the exact
solution than the method proposed by Nakao. Note that the Nakao method is
not applicable to the Poisson equation (see [11] for details).

In this paper we consider the elliptic differential equation of the form

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂y2
+ c(x, y)u = f (x, y) , (3)

in which
a(x, y)b(x, y) > 0

in the interior of rectangle Ω.

3 An Interval Difference Scheme

Partitioning the interval [0, α] into n equal parts of width h and interval [0, β]
into m equal parts of width k provides a mean of placing a grid on the rectangle
[0, α] × [0, β] with mesh points (xi, yj), where h = α/n, k = β/m. Assuming
that the fourth order partial derivatives of u exist and using Taylor series in the
variable x about xi and in the variable y about yj , we can express the Eq. (3)
at the points (xi, yj) as

aij

[

δ2
xuij − h2

12
∂4u

∂x4
(ξi, yj)

]

+ bij

[

δ2
yuij − k2

12
∂4u

∂y4
(xi, ηj)

]

+ cijuij = fij , (4)

where

δ2
xuij =

ui+1,j − 2uij + ui−1,j

h2
, δ2

yuij =
ui,j+1 − 2uij + ui,j−1

k2
,

i = 1, 2, . . . , n − 1; j = 1, 2, ...,m − 1, vij = v(xi, yj) for v ∈ {u, a, b, c, f},
and where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1) are intermediate points, and the
boundary conditions (2) as

u (0, yj) = ϕ1 (yj) , for j = 0, 1, . . . ,m,

u (xi, 0) = ϕ2 (xi) , for i = 1, 2, . . . , n − 1,

u (α, yj) = ϕ3 (yj) , for j = 0, 1, . . . ,m,

u (xi, β) = ϕ4 (xi) , for i = 1, 2, . . . , n − 1.

(5)
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Differentiating (3) with respect to x and y, we have

a
∂3u

∂x3
=

∂f

∂x
− ∂a

∂x

∂2u

∂x2
− ∂b

∂x

∂2u

∂y2
− b

∂3u

∂x∂y2
− ∂c

∂x
u − c

∂u

∂x
,

b
∂3u

∂y3
=

∂f

∂y
− ∂a

∂y

∂2u

∂x2
− a

∂3u

∂x2∂y
− ∂b

∂y

∂2u

∂x2
− ∂c

∂y
u − c

∂u

∂y
,

(6)

and differentiating again with respect to x and y, we get

a
∂4u

∂x4
=

∂2f

∂x2
− ∂2a

∂x2

∂2u

∂x2
− 2

∂a

∂x

∂3u

∂x3
− ∂2b

∂x2

∂2u

∂y2
− 2

∂b

∂x

∂3u

∂x∂y2
− b

∂4u

∂x2∂y2

− ∂2c

∂x2
u − 2

∂c

∂x

∂u

∂x
− c

∂2u

∂x2
,

b
∂4u

∂y4
=

∂2f

∂y2
− ∂2a

∂y2

∂2u

∂x2
− 2

∂a

∂y

∂3u

∂x2∂y
− a

∂4u

∂x2∂y2
− ∂2b

∂y2

∂2u

∂y2
− 2

∂b

∂y

∂3u

∂y3

− ∂2c

∂y2
u − 2

∂c

∂y

∂u

∂y
− c

∂2u

∂y2
,

(7)

Taking into account in (7) the relations (6), we obtain

a
∂4u

∂x4
=

∂2f

∂x2
− 2

a

∂a

∂x

∂f

∂x

−
[

∂2a

∂x2
− 2

a

(
∂a

∂x

)2

+ c

]
∂2u

∂x2
−

(
∂2b

∂x2
− 2

a

∂a

∂x

∂b

∂x

)
∂2u

∂y2

− 2
(

∂b

∂x
− b

a

∂a

∂x

)
∂3u

∂x∂y2
− b

∂4u

∂x2∂y2

−
(

∂2c

∂x2
− 2

a

∂a

∂x

∂c

∂x

)

u − 2
(

∂c

∂x
− c

a

∂a

∂x

)
∂u

∂x

(8)

and

b
∂4u

∂y4
=

∂2f

∂y2
− 2

b

∂a

∂y

∂f

∂y

−
[

∂2b

∂y2
− 2

b

(
∂b

∂y

)2

+ c

]
∂2u

∂y2
−

(
∂2a

∂y2
− 2

b

∂a

∂y

∂b

∂y

)
∂2u

∂x2

− 2
(

∂a

∂y
− a

b

∂b

∂y

)
∂3u

∂x2∂y
− a

∂4u

∂x2∂y2

−
(

∂2c

∂y2
− 2

b

∂b

∂y

∂c

∂y

)

u − 2
(

∂c

∂y
− c

b

∂b

∂y

)
∂u

∂y

(9)

The Eq. (8) should be considered at (ξi, yj) and the Eq. (9) – at (xi, ηj).
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It is obvious that

b (ξi, yj) = bij + O (h) , c (ξi, yj) = cij + O (h) ,
1

a (ξi, yj)
=

1
aij

+ O (h) ,

∂pv

∂xp
(ξi, yj) =

∂pv

∂xp
(xi, yj) + O (h) =

∂pvij
∂xp

+ O (h) ,

a (xi, ηj) = aij + O (k) , c (xi, ηj) = cij + O (k) ,
1

b (xi, ηj)
=

1
bij

+ O (k) ,

∂pv

∂yp
(xi, ηj) =

∂pv

∂yp
(xi, yj) + O (k) =

∂pvij
∂yp

+ O (k)

(10)

for p = 1, 2 and v = a, b, c. Moreover, we have

∂u

∂x
(ξi, yj) =

∂u

∂x
(xi, yj) + O (h) = δxuij + O (h) ,

∂2u

∂x2
(ξi, yj) =

∂2u

∂x2
(xi, yj) + O (h) = δ2

xuij + O (h) ,

∂2u

∂y2
(ξi, yj) =

∂2u

∂y2
(xi, yj) + O (h) = δ2

yuij + O
(
k2

)
+ O (h) ,

∂u

∂y
(xi, ηj) =

∂u

∂y
(xi, yj) + O (k) = δyuij + O (k) ,

∂2u

∂y2
(xi, ηj) =

∂2u

∂y2
(xi, yj) + O (k) = δ2

yuij + O (k) ,

∂2u

∂x2
(xi, ηj) =

∂2u

∂x2
(xi, yj) + O (k) = δ2

xuij + O
(
h2

)
+ O (k) ,

(11)

where
δxuij =

ui+1,j − ui−1,j

2h
, δyuij =

ui,j+1 − ui,j−1

2k
.

Substituting (10) and (11) into (8) and (9), and then substituting the result-
ing formulas into (4), after some transformations we finally obtain

(w1ij

h2
− w3ij

2h

)
ui−1,j +

(w2ij

k2
− w4ij

2k

)
ui,j−1

−
(
2
w1ij

h2
+ 2

w2ij

k2
− w5ij − w6ij − cij

)
uij

+
(w2ij

k2
+

w4ij

2k

)
ui,j+1 +

(w1ij

h2
+

w3ij

2h

)
ui+1,j

= fij + w7ij + O
(
h3

)
+ O

(
k3

)
+ O

(
h2k2

)
,

(12)
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where

w1ij = aij +
h2

12

[
∂2aij

∂x2
− 2

aij

(
∂aij

∂x

)2

+ cij

]

+
k2

12

(
∂2aij

∂y2
− 2

bij

∂aij

∂y

∂bij
∂y

)

,

w2ij = bij +
h2

12

(
∂2bij
∂x2

− 2
aij

∂aij

∂x

∂bij
∂x

)

+
k2

12

[
∂2bij
∂y2

− 2
bij

(
∂bij
∂y

)2

+ cij

]

,

w3ij =
h2

6

(
∂cij
∂x

− cij
aij

∂aij

∂x

)

, w4ij =
k2

6

(
∂cij
∂y

− cij
bij

∂bij
∂y

)

,

w5ij =
h2

12

(
∂2cij
∂x2

− 2
aij

∂aij

∂x

∂cij
∂x

)

, w6ij =
k2

12

(
∂2cij
∂y2

− 2
bij

∂bij
∂y

∂cij
∂y

)

,

w7ij =
h2

12

[
∂2f

∂x2
(ξi, yj) − 2

aij

∂aij

∂x

∂f

∂x
(ξi, yj)

−2
(

∂bij
∂x

− bij
aij

∂aij

∂x

)
∂3u

∂x∂y2
(ξi, yj) − bij

∂4u

∂x2∂y2
(ξi, yj)

]

+
k2

12

[
∂2f

∂x2
(xi, ηj) − 2

bij

∂bij
∂y

∂f

∂y
(xi, ηj)

−2
(

∂aij

∂y
− aij

bij

∂bij
∂y

)
∂3u

∂x2∂y
(xi, ηj) − aij

∂4u

∂x2∂y2
(xi, ηj)

]

.

From (12) we can obtain an interval method. Let us assume that
∣
∣
∣
∣

∂4u

∂x2∂y2
(x, y)

∣
∣
∣
∣ ≤ M,

∣
∣
∣
∣

∂3u

∂x2∂y
(x, y)

∣
∣
∣
∣ ≤ P,

∣
∣
∣
∣

∂3u

∂x∂y2
(x, y)

∣
∣
∣
∣ ≤ Q

for all (x, y) in Ω, and let Ψ1 (X,Y ), Ψ2 (X,Y ), Ξ1 (X,Y ), Ξ2 (X,Y ) denote
interval extensions of ∂f/∂x (x, y), ∂2f/∂x2 (x, y), ∂f/∂y (x, y), ∂2f/∂y2 (x, y),
respectively. Then,

∂4u

∂x2∂y2
(x, y) ∈ [−M,M ] ,

∂3u

∂x2∂y
(x, y) ∈ [−P, P ] ,

∂3u

∂x∂y2
(x, y) ∈ [−Q,Q]

for each (x, y), and

∂f

∂x
(ξi, yj) ∈ Ψ1 (Xi + [−h, h] , Yj) ,

∂2f

∂x2
(ξi, yj) ∈ Ψ2 (Xi + [−h, h] , Yj) ,

∂f

∂y
(xi, ηj) ∈ Ξ1 (Xi, Yj + [−k, k]) ,

∂2f

∂y2
(xi, ηj) ∈ Ξ2 (Xi, Yj + [−k, k]) ,

since ξi ∈ (xi − h, xi + h) and ηj ∈ (yj − k, yj + k). Thus, we have w7ij ∈ W7ij ,
where
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W7ij =
h2

12

{

Ψ2 (Xi + [−h, h] , Yj) − 2
Aij

DxAijΨ1 (Xi + [−h, h] , Yj)

−2
(

DxBij − Bij

Aij
DxAij

)

[−Q,Q] − Bij [−M,M ]
}

+
k2

12

{

Ξ2 (Xi, Yj + [−k, k]) − 2
Bij

DyBij Ξ1 (Xi, Yj + [−k, k])

−2
(

DyAij − Aij

Bij
DyBij

)

[−P, P ] − Aij [−M,M ]
}

,

(13)

where Vij and DzVij for V ∈ {A,B} and z ∈ {x, y} denote interval extensions
of vij and ∂vij/∂z for v ∈ {a, b}, respectively. If we denote interval extensions of
fij , cij and wpij by Fij , Cij and Wpij , respectively (p = 1, 2, . . . , 6), then from
the above considerations and (12) it follows an interval method of the form

(
W1ij

h2
− W3ij

2h

)

Ui−1,j +
(

W2ij

k2
− W4ij

2k

)

Ui,j−1

−
(

2
W1ij

h2
+ 2

W2ij

k2
− W5ij − W6ij − Cij

)

Uij

+
(

W2ij

k2
+

W4ij

2k

)

Ui,j+1 +
(

W1ij

h2
+

W3ij

2h

)

Ui+1,j

= Fij + W7ij + [−δ, δ] , i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m − 1,

(14)

where the interval [−δ, δ], called the δ–extension, represents O
(
h3

)
+ O

(
k3

)

+O
(
h2k2

)
, and where

U0j = Φ1 (Yj) , Ui0 = Φ2 (Xi) , Unj = Φ3 (Yj) , Uim = Φ4 (Xi) ,

j = 0, 1, . . . ,m, i = 1, 2, . . . , n − 1.
(15)

Here, Φ1 (Y ), Φ2 (X), Φ3 (Y ) and Φ4 (X) denote interval extensions of ϕ1 (y),
ϕ2 (x), ϕ3 (y) and ϕ4 (x), respectively. The system of linear interval Eq. (14) with
(15), with unknowns Uij can be solved in conventional (proper) floating-point
interval arithmetic, because all intervals are proper.

It should be added a remark concerning the constants M, P and Q occurring
in (13). If nothing can be concluded about M, P and Q from physical or technical
properties or characteristics of the problem considered, we proposed to find these
constants taking into account that
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∂4u

∂x2∂y2
(xi, yj) = lim

h→∞
lim
k→∞

(
ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

h2k2

+
4uij − 2 (ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)

h2k2

)

,

∂3u

∂x2∂y
(xi, yj) = lim

h→∞
lim
k→∞

(
ui−1,j+1 − ui−1,j−1 − 2 (ui,j+1 − ui,j−1)

2h2k

+
ui+1,j+1 − ui+1,j−1

2h2k

)

,

∂3u

∂x∂y2
(xi, yj) = lim

h→∞
lim
k→∞

(
ui+1,j−1 − ui−1,j−1 − 2 (ui+1,j − ui−1,j)

2hk2

+
ui+1,j+1 − ui−1,j+1

2hk2

)

.

We can calculate

Mnm =
1

h2k2
max

i=1,2,...,n−1
j=1,2,...,m−1

|ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1

+ 4uij − 2 (ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)| ,

Pnm =
1

2h2k
max

i=1,2,...,n−1
j=1,2,...,m−1

|ui−1,j+1 − ui−1,j−1 − 2 (ui,j+1 − ui,j−1)

+ ui+1,j+1 − ui+1,j−1| ,
Qnm =

1
2hk2

max
i=1,2,...,n−1
j=1,2,...,m−1

|ui+1,j−1 − ui−1,j−1 − 2 (ui+1,j − ui−1,j)

+ ui+1,j+1 − ui−1,j+1| ,
where uij are obtained by a conventional method for a variety of n and m. Then
we can plot Mnm, Pnm and Qnm against different n and m. The constants M,
P and Q can be easy determined from the obtained graphs, since

lim
h→∞
k→∞

Mnm ≤ M, lim
h→∞
k→∞

Pnm ≤ P, lim
h→∞
k→∞

Qnm ≤ Q.

4 A Numerical Example

In the example presented we have used our own implementation of floating-
point interval arithmetic written in Delphi Pascal. This implementation has been
written as a unit called IntervalArithmetic32and64, which current version may
be found in [9]. The program written in Delphi Pascal for the example considered
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one can find in [10]. We have run this program on Lenovo R© Z51 computer with
Intel R© Core i7 2.4 GHz processor.

Let Ω = [0, 1] × [0, 1] and consider the following problem:

x2 sinπy
∂2u

∂x2
+ y2 sin πx

∂2u

∂y2
− xyu

= xy exp (xy)
[

2xy sin
π (x + y)

2
cos

π (x + y)
2

− 1
]

,

ϕ1 (y) = 1, ϕ2 (x) = 1, ϕ3 (y) = exp (y) , ϕ4 (x) = exp (x) .

This problem has the exact solution u (x, y) = exp (xy). Since the exact
solution is known, we can calculate the constants M, P and Q and take M =
19.03, P = Q = 8.16. These constants can be also estimates from the graphs
presented in Fig. 1 (the method still succeeds for less accurate bounds). For
h = k = 0.01, i.e., n = m = 100, and δ = 10−6, using an interval version
of LU decomposition, after 6 min we have obtained by our program [10] the
results presented in Table 1. Note that using the interval version of full Gauss
elimination (with pivoting) we need about 200 days (!) of CPU time to obtain
such results.

One can observe that for each (xi, yj) the exact solution is within the interval
enclosures obtained. It should be added that CPU time grows significantly for
greater values of n and m.

The restricted size of this paper does not allow to present other numerical
experiments carried out by us. But all these experiments confirm the fact that
exact solutions are within interval enclosures obtained by the method (14)–(15).

(a) M (b) P and Q

Fig. 1. Estimations of the constants M, P and Q.
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Table 1. Enclosures of the exact solution obtained by the method (14)–(15)

(i, j) Uij Width

(0.1, 0.5) [1.0509815441511615E+0000, 1.0515636639134466E+0000] ≈5.82 · 10−4

exact ≈1.0512710963760240E+0000

(0.3, 0.5) [1.1616066450304161E+0000, 1.1620625933013910E+0000] ≈4.56 · 10−4

exact ≈1.1618342427282831E+0000

(0.5, 0.1) [1.0509815441511614E+0000, 1.0515636639134467E+0000] ≈5.82 · 10−4

exact ≈1.0512710963760240E+0000

(0.5, 0.3) [1.1616066450304160E+0000, 1.1620625933013911E+0000] ≈4.56 · 10−4

exact ≈1.1618342427282831E+0000

(0.5, 0.5) [1.2838256641451216E+0000, 1.2842221958365290E+0000] ≈3.97 · 10−4

exact ≈1.2840254166877415E+0000

(0.5, 0.7) [1.4189191705563123E+0000, 1.4192105027251595E+0000] ≈2.91 · 10−4

exact ≈1.4190675485932573E+0000

(0.5, 0.9) [1.5682528588111690E+0000, 1.5683682637095705E+0000] ≈1.15 · 10−4

exact ≈1.5683121854901688E+0000

(0.7, 0.5) [1.4189191705563122E+0000, 1.4192105027251595E+0000] ≈2.91 · 10−4

exact ≈1.4190675485932573E+0000

(0.9, 0.5) [1.5682528588111689E+0000, 1.5683682637095705E+0000] ≈1.15 · 10−4

exact ≈1.5683121854901688E+0000
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Abstract. The paper describes a new algorithm for verifying solutions
of nonlinear systems of equations. Interval methods provide us a few tools
for such verification. Some of them are based on topological theorems.
Also our new test is based on checking the extendability of the function
from a subspace of the boundary of the box to its interior. For a system
of two equations, we can provide an efficient implementation. General-
ization to a higher number of equations is also theoretically possible, yet
cumbersome. Some numerical results are presented.

Keywords: Interval computations · Nonlinear systems · Verification ·
Algebraic topology · Extendability · Multithreading

1 Introduction

Let us consider the problem of solving the nonlinear system of equations f(x) =
0, i.e., finding zeros of the function:

f : X → R
m, where X ⊆ R

n and n ≥ m. (1)

Such problems are hard, in general. We can apply Monte Carlo-type methods to
seek solutions (e.g., various kinds of genetic algorithms, evolutionary algorithms,
evolutionary strategies, differential evolution, etc.). All of them can find the
solution (or solutions) with some probability, but are not bound to be successful.

Interval methods (see, e.g., [8,10,19]) are an alternative approach. Unlike
randomized methods, they are robust, guaranteed to enclose all solutions, even
if they are computationally intensive and memory demanding. Their important
advantage is allowing not only to locate solutions of well-determined and under-
determined systems, but also to verify them, i.e., prove that in a given box there
is a solution point (resp. a segment of the solution manifold).

2 Generic Algorithm

There are several interval solvers; let us focus on HIBA USNE [2], developed by
the first author. The name HIBA USNE stands for Heuristical Interval Branch-
and-prune Algorithm for Underdetermined and well-determined Systems of Non-
linear Equations and it has been described in a series of papers (including [12–16]
and [17]; cf. Chapter 5 of [18] and the references therein).
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 418–430, 2020.
https://doi.org/10.1007/978-3-030-43222-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43222-5_37&domain=pdf
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Let us present it (the standard interval notation, described in [11], will be
used). The solver is based on the branch-and-prune (B&P) schema that can be
expressed by pseudocode presented in Algorithm 1.

Algorithm 1. Interval branch-and-prune algorithm
Require: L, f, ε
1: {L – the list of initial boxes, often containing a single box x(0)}
2: {Lver – verified solution boxes, Lpos – possible solution boxes}
3: Lver = Lpos = ∅
4: x = pop (L)
5: loop
6: process the box x, using the rejection/reduction tests
7: if (x does not contain solutions) then
8: discard x
9: else if (x is verified to contain a segment of the solution manifold) then

10: push (Lver, x)
11: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
12: x = x(1)

13: push (L, x(2))
14: cycle loop
15: else if (widx < ε) then
16: push (Lpos, x) {The box x is too small for bisection}
17: if (x was discarded or x was stored) then
18: if (L == ∅) then
19: return Lver, Lpos {All boxes have been considered}
20: x = pop (L)
21: else
22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L, x(2))

3 Verification Tools

Interval methods allow Algorithm 1 not only to enclose the solutions, but also
to verify them, under proper conditions.

Where are these verification tools used in the solver? They belong to the
“rejection/reduction tests” in line 6. Some of such tests can only narrow a box
(possibly discarding it completely), but other ones can verify it to contain a
solution (or solutions). The interval Newton operator is the most famous of
such verification tools, but other ones – like the quadratic approximation test
[14] – can be used as well. Other tests are applied in line 16, before putting
the box to the list of possible (yet non-verified) solutions. So, line 16 takes the
form:
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if (x gets verified by one of the advanced tests) then
push (Ladv ver, x)

else
push (Lpos, x)

We use a third list, different from Lver, to store boxes verified by these new
tests (other than the Newton and quadratic tests). Now, let us describe the
verification tests.

The most celebrated tool allowing such verification is the aforementioned
interval Newton operator; we omit its description as it has already been done in
several textbooks (including [10] and [18]).

3.1 Miranda Test

This test, presented, e.g., in [10] is one of the simplest. Consider a continuous
function f : X → R. Assume, we have found two points a, b ∈ X such that
f(a) > 0 and f(b) < 0. It is well known (from Bolzano’s intermediate value
theorem), that any curve connecting a and b and lying inside X, on which f is
continuous, will contain a point x such that f(x) = 0.

Miranda’s theorem generalizes this result to a function f : Rn → R
n.

Another similar test is also presented in [7].

3.2 Using Quadratic Approximation

This test has been proposed by the author in [14]. As Newton test is based on
the linear approximation of f , a quadratic approximation can also be used. Yet,
unlike in the Newton case, we do not approximate the whole f = (f1, . . . , fm),
but only one of its components fi. We obtain a representation in the form of
a quadratic function; the resulting quadratic equation is used as a constraint.
Experiments show that this test can dramatically improve the performance on
some problems, but is rather inefficient on other ones. An adequate heuristic
for choosing when to use the test is proposed in [14]. Many other details are
described there, as well.

3.3 Borsuk Test

This tool, proposed in [6] is based on one of the theorems of Karol Borsuk. The
theorem states (slightly simplifying) that the function f(·) must have a zero on
the box x, if:

f(midx+ r) �= λ · f(midx− r), for all λ > 0 and r such that midx+ r ∈ ∂x.
(2)

For each pair of faces xi+, xi− of x, we have to compute the intersection of
interval expressions:

]0,+∞[∩
(

∩m
j=1

fj(xi+)
fj(xi−)

)
. (3)
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If the intersection is empty for at least m pairs of faces, then there is no λ for
which the inequality (2) becomes an equality; hence, according to the theorem,
f has a zero in x.

In its original formulation [6], the test is used for well-determined problems
(n = m). Hence, the intersection (3) must be nonempty for all i = 1, . . . , n. In
the underdetermined case, it suffices that the intersection is nonempty for m
arbitrary values of i. We get back to this topic later in the paper.

3.4 Computing Topological Degree

Topological degree is one of the most general tools to verify existence of zeros of
equations.

Let us consider the quantity deg(f, y,B), where f : Rn → R
n is a function,

y a value from its co-domain (in all our considerations we shall take y = 0) and
B is a closed connected n-dimensional subset of the f ’s domain.

Due to the lack of space, we shall not present definition of the degree; it
is relatively complicated, but a few algorithms have been developed to com-
pute the topological degree: [4,5,9]. An important property of the degree is
its composability: if we have two sets B1, B2 such that B1 ∩ B2 = ∅ or even
intB1 ∩ intB2 = ∅, then:

deg(f, y,B1 ∪ B2) = deg(f, y,B1) + deg(f, y,B2). (4)

The algorithm of Franek and Ratschan [5] is based on this feature. It subdivides
the set under consideration to obtain sets for which the degrees can be computed
more easily.

Why would we want to compute this degree, anyway? Because of its most
important property:

If deg(f, y,B) �= 0, then ∃x0 ∈ B f(x0) = 0. (5)

So, by computing the deg for a specific box, we can obtain the information about
the possibility of a solution lying in it.

4 How to Deal with Underdetermined Problems?

All tests considered so far were aimed at verifying zeros of well-determined sys-
tems, i.e., such that f : Rn → R

n. Such systems have discrete solution sets, con-
sisting of isolated points (unless they are ill-posed, e.g., there is a dependency
between some equations).

What about underdetermined systems? If f : Rn → R
m, where m < n, then

the solution set is typically a manifold, consisting of uncountably many points.
Enclosing such a manifold with a collection of boxes is a natural operation and
hence interval methods are well-suited to solving such problems.

Hence, we can enclose the solution set, but what about its verification?
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In [12], the author described how the interval Newton operator can be used
to verify an underdetermined system of equations. Succinctly, if we have m
equations in n > m variables, we need to choose a square submatrix of the
Jacobi matrix. Treating the chosen m variables normally and the remaining
(n − m) ones as parameters, we can perform an normal Newton iteration to
narrow, discard or verify the existence of solution for all values of the (n − m)
“parameters”.

A similar procedure can be performed for other above tests, but preliminary
experiments of the author have not proved it very useful.

In any case, due to the nature of interval calculus, such an approach can verify
boxes where the solution exists for all values of the other (n − m) variables. For
instance, when we verify a single equation in two variables, such methods can
verify a solution segment on the left in Fig. 1, but not the one on the right.
For the Borsuk test, as we already have indicated, we can compute (3) for all n
variables and check if the condition is fulfilled for at least m of them. This seems
a much better approach than choosing m variables in advance.

What about other approaches?

Fig. 1. Left: a solution segment relatively easy to verify using interval tests, right: a
harder one

4.1 Obstruction Theory Test

In a series of papers (see, e.g., [4,5] and the references therein), Franek et al.
propose a fascinating family of methods targeted specifically at underdetermined
systems.

Assume, we have f : Rn → R
m, where m < n and we want to verify that a

box x contains a segment of the solution manifold. Assume the boundary region
of x does not contain zeros: ∀x ∈ ∂x f(x) �= 0.

The question is, whether f can be extended from ∂x to the whole x without
containing a zero.

Let us formulate it differently. As the boundary region of x does not contain
zeros, we can consider the image of f on the boundary as a space homeomorphic
to a subset of the (m−1)-dimensional sphere Sm−1. The boundary ∂x of x ⊂ R

n

itself, is obviously homeomorphic to Sn−1.
So, the problem boils down to checking the extendability of some function

f : Sn−1 → Sm−1 from Sn−1 to the whole disk Dn. Abusing the notation, we do
not distinguish between the original f and f : Sn−1 → Sm−1. This should not
lead to any confusion.

To be succinct, the methods of Franek et al. try to approximate the boundary
∂x as a cell complex or a simplicial set and they construct a so-called Postnikov
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complex, built of Eilenberg-MacLane spaces [4]. Basing on this representation,
we can check possible extendability of a function for subsequent skeletons of the
complex.

This test seems a pretty general tool, suitable for underdetermined problems
as well as well-determined ones (in the latter case it is equivalent to using the
topological degree). Unfortunately, it is not only based on complicated mathe-
matical notions, but also it seems extremely cumbersome to implement and usu-
ally requiring high computational effort. Eilenberg-MacLane spaces have often
infinite dimensionality and thus they can only be represented implicitly. And
they are only a building block of the algorithm!

No full implementation of this approach is known, at the moment.
Ironically, though the algorithm is so hard (or impossible) to implement, its

parallelization should be natural; operations on various simplices (or cells) of the
complex can be performed concurrently.

4.2 A New Idea

Instead of proving non-extendability of a function from the whole boundary ∂x
of a box, we can apply another approach. Let us find a subspace C ⊂ ∂x of
dimension (m − 1) such that f cannot be extended from C to Dn.

What does it simplify? Let us consider the restriction of f to C. Now, we
have the domain C and the co-domain homeomorphic to Sm−1 of f , having the
same dimension. So, the problem boils down to checking if the degree of some
mapping is nonzero.

For instance if C ∼= Sm−1, we just need to check if f : Sm−1 → Sm−1 is
homotopic to the identity mapping.

Obviously, checking this condition is still non-trivial, but we have a few
important special cases.

The Case of a Single Equation. Actually, the case of a single equation f(x) = 0
is trivial. S0 = ∂D1 is a discrete set of two disjoint points {a, b}. If f(a) and f(b)
have different signs, we cannot extend f to [a, b] without having some x0 ∈ [a, b]
such that f(x0) = 0. This is a direct consequence of the intermediate value
theorem.

So, if we find on ∂x two points xa and xb such that f(xa) · f(xb) < 0, any
connected line containing these points contains a solution; hence, the box x is
guaranteed to contain it.

The Case of Two Equations. Let us consider the case of m = 2 and n ≥ 2. Now,
∂x ∼= Sn−1 and range(f, ∂x) ∼= S1.

We need to find C, a closed non-self-intersecting path in ∂x, such that when
moving around this path, we revolve around the center making a different number
of circles in one than in the opposite direction. Again, this is equivalent to saying
that the degree of the mapping (which can also be called the winding number,
in this case) is different from zero.



424 B. J. Kubica and J. Kurek

How to check this condition? Actually, we can make use of the toolset pretty
similar to the one of Franek et al. [5], but we arrange these tools in a quite
different manner.

Firstly, let us assume that we have a sign covering, i.e., a subdivision of ∂x
such that for each box t of this subdivision, we have a vector s of two (m in
general) elements such that:

– si = 1, if ∀t ∈ t fi(t) > 0,
– si = −1, if ∀t ∈ t fi(t) < 0,
– si = 0, otherwise (i.e., when we cannot determine the unique sign of fi in ti).

Such a sign covering can be obtained by a simple branch-and-bound type proce-
dure. To seek paths, it will be useful to have the information about adjacency of
various subboxes of ∂x. Thus, we construct a graph representing the covering.
This can be done by Algorithm 2.

Algorithm 2. Create box graph
Require: X = X[1, . . . , N ] – vector of boxes t
1: for (i = 1 to N) do
2: for (j = i + 1 to N) do
3: if (X[i] ∩ X[j] �= ∅) then
4: add to the graph an edge between nodes X[i] and X[j]

Assume we have found in the function’s domain, a cubical complex C that is
homotopically equivalent to a one-dimensional circle S1 (other words: a closed
path in the boundary). Assume the image of C is homotopically equivalent to
S1 ⊂ R

2, also; other words: it does not contain (0, 0) and it winds around this
point (its winding number aka topological degree is different from zero). We
can find such C, by seeking cycles in a graph derived from the cubical complex
representing the subdivision of ∂x and checking the sign vector of adjacent boxes.
Please note that segments of C can belong to arbitrary faces of the considered
box, e.g., Fig. 2.

Fig. 2. Representation of C

Traversing the graph can be done in the DFS (depth-first-search), BFS
(breadth-first-search) or any other manner.
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In our implementation, the DFS approach has been adopted. In each step,
we seek a neighboring subbox with the sign covering of the next phase of the
cycle or of the same phase. If we have returned to the initial box, changing the
phase at least once, it means we have done the whole cycle. Subsequent phases
are presented on Fig. 3. Sign coverings in brackets are optional.

Fig. 3. Subsequent values of sign vectors for elements of C

The procedure for finding the cycle from a given node, is recursive and it can
be expressed as Algorithm 3. This procedure is called by another one, named
find cycle with nonzero degree(nd, graph). It marks all nodes in the graph as
unread and than calls find cycle with nonzero degree recur(nd, nd, graph). This
procedure can be called directly for the graph generated by Algorithm 2. Yet,
there is a preprocessing procedure that can dramatically improve its perfor-
mance: adjacent boxes with identical sign coverings can be merged. After this
operation, nodes of the considered graph are no longer boxes; they are unions of
boxes, potentially quite irregular. But the important information is whether the
areas with various sign vectors are direct neighbors and not their precise shape.

The overall 2D-cycle test can be described by Algorithm 4.
Several parts of the above procedures have been implemented in a multi-

threaded manner. Details will be given in Sect. 5.

The Case of More than Two Equations. Algorithm from the previous paragraph
can (probably) be generalized to m > 2, but such extension would be difficult
and it might not be efficient. If C ∼= Sk for k > 1, we cannot move around it
as around the path (because there is more than one dimension). Also, we would
have to compute Betti numbers, to check if C does not have “holes”. It could
probably be possible to implement, but the total complexity and difficulty of the
algorithm seems high.
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Algorithm 3. Function find cycle with nonzero degree recur
Require: nd, first, graph
1: mark nd
2: for all (neighbor of nd) do
3: if not is next element of cycle(neighbor, nd) and not

is same element of cycle(neighbor, nd) and neighbor != first then
4: {We shall not consider the path going through the “neighbor” node.}
5: cycle loop
6: if (neighbor == first) then
7: return true
8: if (neighbor is marked) then
9: {The “neighbor” already in the path.}

10: cycle loop
11: result = find cycle with nonzero degree recur(neighbor, first, graph)
12: if (result == true) then
13: return true
14: else
15: {No cycle going through the “neighbor” has been found. We need to consider

another path.}
16: unmark neighbor
17: {No cycle going through the “nd” has been found.}
18: return false

Algorithm 4. The 2D-cycle test
Require: x, f, ε
1: perform a branch-and-bound algorithm on ∂x to obtain boxes t with the sign

covering not containing zeros; store these boxes in a vector X
2: create the graph for the set of nodes X, using Algorithm 2
3: merge neighboring nodes with identical s vectors
4: res = false
5: for all (node in graph) do
6: if (find cycle with nonzero degree(node, graph)) then
7: res = true
8: return res

5 Parallelization

Both implemented tests have been parallelized. Obviously, the HIBA USNE
solver is parallel itself, i.e., the B&P process is multithreaded, but paralleliz-
ing tools processing a single box, becomes more and more important with the
development of multi- and many-core architectures (cf., e.g., [16]).

For the Borsuk test, the parallelization is obvious: formulae (3) for various
variables i are computed concurrently, then the results are combined using the
tbb::reduce procedure [3], performing the reduction operation – in this case,
intersection of boxes.

Parallelizing the procedure for seeking 2D-cycle on the boundary of a box,
we have more options: we can parallelize the construction process of the sign
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covering, we can seek cycles starting from several nodes, in parallel, and we can
parallelize the cycle-seeking algorithm itself.

In our current implementation, we do not parallelize the cycle-seeking proce-
dure itself: serial DFS method is used. Yet we seek them from several nodes, in
parallel. Also, the sign covering is created by a parallelized branch-and-bound
type algorithm [18].

Multithreaded Implementation of Algorithm 2 Checking if two boxes are adjacent
(and if there should be an edge between them in the graph) is performed in
parallel. The loop in line 1 has been parallelized (TBB allows us to use the
tbb::parallel_for concept [3]).

There has to be some synchronization so that various threads do not main-
tain the same nodes at the same time. This is realized by adding a dedicated
lock (tbb::spin_mutex) to each of the nodes. The lock associated with X[i] is
acquired as the first one and then the lock of X[j]. There is no deadlock, as j > i
(please cf. the construction of the loop in line 2 of the considered algorithm) and
the locks are always acquired in the same order.

Multithreaded Implementation of Algorithm 4. The loop in line 5 is split between
threads. It is worth noting, how marking of threads is realized: many threads
perform the DFS search in parallel and each of them must have its own markings
of already considered nodes. Indeed, the marking of the node is implemented as
thread-specific; we use the tbb::enumerable_thread_specific<bool> class [3].

6 Numerical Experiments

Numerical experiments have been performed on a machine with two Intel Xeon
E5-2695 v2 processors (2.4 GHz). Each of them has 12 cores and on each core two
hyper-threads (HT) can run. So, 2×12×2 = 48 HT can be executed in parallel.
The machine runs under control of a 64-bit GNU/Linux operating system, with
the kernel 3.10.0-123.e17.x86 64 and glibc 2.17. They have non-uniform turbo
frequencies from range 2.9–3.2 GHz.

As there have been other users performing their computations also, we limited
ourselves to using 24 threads only.

The Intel C++ compiler ICC 15.0.2 has been used.
The solver has been written in C++, using the C++11 standard. The C-XSC

library (version 2.5.4) [1] was used for interval computations. The parallelization
was done with the packaged version of TBB 4.3 [3].

The author’s HIBA USNE solver has been used in version Beta2.5. The addi-
tional procedures for the Borsuk test and the 2D-cycle-detecting procedure have
been incorporated to the body of the solver, in additional source files.

We have performed experiments with three versions of the algorithm: “No
additional test”, “Borsuk test”, and “2D-cycle test”. Hopefully, these names are
self-explanatory.

Two underdetermined test problems have been considered. Both have already
been considered, i.a., in [15] (see the references therein for their sources’ descrip-
tion). The first of the underdetermined ones is a set of two equations – a quadratic
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Table 1. Computational results

Quantity No additional test Borsuk test 2D-cycle test

Academic problem

Time (sec.) 4 12 175

Possible boxes 915,934 915,934 32,996

Newton verif. boxes 721 721 721

Adv. verif. boxes — 0 882,938

Hippopede problem

Time (sec.) 1 1 3

Possible boxes 170,411 165,084 78

Newton verif. boxes 20,494 20,494 20,494

Adv. verif. boxes — 5,327 170,333

one and a linear one – in five variables. It is called the Academic problem (accu-
racy ε = 0.05 has been used). The second one is called the Hippopede problem
– two equations in three variables (accuracy ε = 10−7) (Table 1).

6.1 Analysis of the Results

The Borsuk test did not manage to verify any boxes (out of 915934) for the
Academic problem, while verifying 5327 boxes (out of 170411) for the Hippopede
problem. The 2D-cycle test turned out to be much more successful, but at a very
high computational cost. It verified 882938 boxes for the Academic problem and
170333 for the Hippopede one. Unfortunately, performing this procedure turned
out to be very intensive: the overall computational time increases from three to
175 seconds for the Academic problem.

The obtained results suggest that the Borsuk test is not very useful, at least
for underdetermiend problems. And both tests are very time-consuming, so they
should not be considered for execution, unless verifying as many of the possible
solutions as we can, is really meaningful.

7 Conclusions

We have investigated a new test for checking if an underdetermined system
of two nonlinear equations has a solution in a given box. The test has been
incorporated to the HIBA USNE interval solver. It occurred that the test is able
to verify dramatically more boxes than alternative tests based on the Borsuk’s
theorem or the interval Newton operator. Unfortunately, the computational cost
is also significantly higher for the developed test. It can be very useful, when we
actually need to verify the solutions, but would not be worthwhile, if it suffices
to enclose all possible solutions, without their verification.

Some effort on parallelizing graph algorithms is an interesting side effect of
the research.
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czewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 467–476.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31500-8 48

14. Kubica, B.J.: Using quadratic approximations in an interval method for solv-
ing underdetermined and well-determined nonlinear systems. In: Wyrzykowski,
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Abstract. We present a theoretical framework and an experimental tool
to study behavior of heterogeneous multi-agent systems composed of
the two classes of automata-based agents: Cellular Automata (CA) and
Learning Automata (LA). Our general aim is to use this framework to
solve global optimization problems in a distributed way using the col-
lective behavior of agents. The common feature of CA and LA systems
is the ability to show a collective behavior which, however, is under-
stood differently. It is natural for LA-based agents that are able to learn
and adapt, but for CA-based agents, extra features have to be used like
the second–order CA. We create a theoretical framework of the system
based on a spatial Prisoner’s Dilemma (PD) game in which both classes
of players may participate. We introduce to the game some mechanisms
like local profit sharing, mutation, and competition which stimulate the
evolutionary process of developing collective behavior among players. We
present some results of an experimental study showing the emergence of
collective behavior in such systems.

Keywords: Collective behavior · Learning Automata · Multi-agent
systems · Spatial Prisoner’s Dilemma game · Second order cellular
automata

1 Introduction

Fast development of sensor technology and massive appearance of the Internet–
of–Things (IoT) devices generating big data volumes which need to be processed
in real-time applications have resulted in setting new distributed computing
paradigms. The concept of Fog Computing as an extension of Cloud Computing
(CC) appeared a few years ago and edge computing becomes today a natural
extension of Fog Computing [1]. Both these new computing paradigms assume
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an increasing degree of computational intelligence of a huge number of small het-
erogeneous IoT devices and their ability to perform collectively control, analytic
and machine–learning tasks.

Very often solving these tasks can be reduced to an optimization problem.
Solving optimization problems in a centralized way with a request of full infor-
mation about the system resources and users’ demands is intractable for realistic
problems. One can rely rather on a distributed problem solving by several inde-
pendent entities that can use only some local information but may face a conflict
of local goals. Therefore, we propose a large scale multi-agent system approach,
where agents are capable to solve optimization problems by local interaction
to achieve, on one side, some compromise between their local goals but at the
same time to show a certain ability of global collective behavior. Because of the
simplicity and non-trivial computational possibilities of automata models they
are good candidates to be applied in the context of these problems.

The purpose of this work is to develop a system to study phenomena of
global collective behavior of heterogeneous systems composed of both Cellular
Automata (CA) [2] and Learning Automata (LA) [3,4] based agents, where they
act in an environment described in terms of non–cooperative game theory [5] with
the use of Prisoner’s Dilemma (PD) type game. These two classes of automata
have different origins, features, and applications. In contrast to LA, classical
CA does not have adaptability features and the notion of collective behavior is
differently understood.

In recent years a new term –the second–order CA–has appeared [6] to express
an attempt to design CA with adaptability features. We will be using this class of
CA and it gives us an opportunity to interpret the notion of the global collective
behavior in a unified way measured by the number of cooperating agent–players
participating in a game or by the value of the average total payoff of all agents.

The structure of the paper is the following. In the next section works related
to the subject of our study are discussed. Section 3 contains a description of a
theoretical framework of the proposed heterogeneous multi-agent system includ-
ing a Spatial Prisoner’s Dilemma (SPD) game, CA and LA–based agents, and
rules of interaction between them. Section 4 contains some results of the exper-
imental study of the model from the point of view of the ability of collective
behavior. Finally, the last section concludes the paper.

2 Related Work

The literature related to multi-agent collective behavior recognizes [7–9] three
classes of systems with specific characteristic of behavior: (a) spatially-organizing
behaviors, where agents interact a little with an environment but they coordi-
nate themselves to achieve a desired spatial formation, (b) collective exploration,
where agents interact a little between themselves but interact mainly with an
environment to achieve some goal, and (c) cooperative decision making, where
agents both coordinate their actions and interact with an environment to accom-
plish some complex tasks.
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While CA belong to the first class according to this classification, LA belong
to the second class. Achieving by CA a desired spatial formation that serves as
a solution of a given problem is obtained by a collective behavior of CA cells
which are governed by predefined rules assigned to each cell.

Classical CA are not adaptive systems. Rules used to obtain a desired spatial
formation are either proposed by humans or found by optimization techniques
like e.g., Genetic Algorithms (GA). The issue of self-optimization of CA has been
recognized recently in the literature [6,10] and CA with such features are called
the “second–order” CA.

In contrast to CA, LA are adaptive systems that interact with an environment
and demonstrate an ability of a global collective behavior by finding actions
enabling to achieve a global goal. The distinctive feature of this paper is that we
combine these two approaches in such a way that we use a SPD game defined
on 2D discrete space as a multi-agent framework, where we set both CA and LA
types of agents, and we intend to study conditions of emerging a global collective
behavior of agents, measured by the total number of cooperating players, i.e. an
ability to maximize the average total payoff of all agents of the system like it is
expected in LA–based systems.

PD game [5] is one of the most accepted game-theoretical models, where both
cooperation (C ) and defection (D) of rational players can be observed and it was
a subject of study both for CA and LA models. Tucker formalized the game as
the 2–person game and in the 1980’s Axelrod organized the first tournament
[11] to recognize competitive strategies in this game. The winner was a strategy
Tit-For-Tat (TFT) which assumes cooperation of a player on the first move
and subsequent repeating actions of the opponent player used in the previous
move. Next, Axelrod proposed [12] to apply GA to discover strategies enabling
cooperation in the 2-person PD game. Genetic Algorithms (GAs) were able to
discover the TFT strategy and several interesting strategies specific for humans.

Discovering strategies of cooperation in N–person PD games (N > 2) is
a more complex problem. Therefore, Yao and Darwen proposed in [13] another
approach where GAs are still applied but the payoff function was simplified. The
main idea was that a payoff of a given player depends on a number of cooperating
players among the remaining N −1 participants. Under these assumptions, GAs
were able to find strategies enabling global cooperation for up to 10 players.
For more players, such strategies were not discovered by GA. One of the main
reasons for that is the form of the payoff function which assumes participation
of a player with a “crowd” – a large number of anonymous players.

A concept of spatial games with a neighbor relation between players helps to
solve the crowd problem. Among the first concepts related to SPD game was the
game on the ring considered by Tsetlin [4] in the context of LA games, where
a payoff of a given player depends on its action and actions of two immediate
neighbors. Later such a game in the context of homogeneous LA and GA–based
models was studied in [14].

A number of SPD games on 2D grids have been studied recently. Nowak and
May proposed [15–17] an original SPD game on a 2D grid with only two types



436 F. Seredyński et al.

of players – players who always cooperate (all–C ) and players who always defect
(all–D). Players occupy cells of 2D space and each of them plays the PD game
with all neighbors, and depending on the total score it is replaced by the best
performing player in the neighborhood. The study was oriented on the first class
of the behavior and it has shown that both types of players persist indefinitely
in chaotically changing local structures.

Ishibuchi and Namikawa [18] studied a variant of SPD game with two neigh-
borhoods: one for playing locally defined PD game with randomly selected neigh-
bors, and the second one for matching strategies of the game by a locally defined
GA. Howley and O’Riordan [19] considered a N–person PD game with all–to–all
interactions between players and the existence of a tagging mechanism in sub-
groups of players. Katsumata and Ishida [6] extended the model of SPD game
proposed in [15] by considering 2D space as the 2D CA and introducing an
additional strategy called k–D, which tolerates at most k defections in a local
neighborhood in the case of cooperation.

The study [6] was oriented on the first class of the system behavior and
it has shown a possibility of the emergence of specific spatial structures called
membranes created by players using k–D strategies, which separate cooperating
and defecting players. The interesting issue in these works was an attempt to
extend classical CA to a new class called the second–order CA, where rules
assigned to CA cells could be changed during the evolution of cells in time. It
opens the possibility to study the issue of collective system behavior from this
novel point of view and our recent study [20] confirms it.

3 An Environment of Heterogenous Multi-agent System

3.1 Iterated Spatial Prisoner’s Dilemma Game

We consider a 2D spatial array of size n × m. We assume that a cell (i, j) will
be alive with a probability palive

i,j . Each alive cell will be considered as an agent–
player participating in the SPD game [6,15]. We assume that a neighborhood
of a given player is defined in some way. Players from this neighborhood will be
considered as his opponents in the game. At a given discrete moment, each cell
can be in one of two states: C or D. The state of a given cell will be considered
as an action C (cooperate) or D (defect) of its player against an opponent player
from his neighborhood. Payoff function of the game is given in Table 1.

Table 1. Payoff function of a row player participating in SPD game.

Player’s action Opponent’s action

Cooperate (C) Defect (D)

Cooperate (C) R = 1 S = 0

Defect (D) T = b P = a
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Each player playing a game with an opponent in a single round (iteration)
receives a payoff equal to R, T , S or P , where T > R > P > S. We will assume
that R = 1, S = 0, T = b and P = a, and the values of a and b can vary
depending on the purpose of an experiment.

If a player takes the action C and the opponent also takes the action C then
the player receives payoff R = 1. If a player takes the action D and the opponent
player still keeps the action C, the defecting player receives payoff T = b. If a
player takes the action C while the opponent takes the action D, the cooperating
player receives payoff S = 0. When both players use the action D then both of
them receive payoff P = a.

It is worth to notice that choosing by all players the action D corresponds to
the Nash equilibrium point [5] and it is considered as a solution of the one–shot
game. Indeed, if all players select the action D each of them receives a payoff
equal to a and there is no reason for any of them to change the action to C
while the others keep their actions unchanged, what would result in decreasing
his payoff to value 0.

The average total payoff of all players in the Nash equilibrium point is also
equal to a. Looking from the point of view of global collective behavior of players
this average total payoff of all players is low. We would rather expect choosing
by all players the action C which provides the value of the average total payoff
of all players equal to 1. For this instance of the game, it is the maximal value
of a possible average total payoff of all players and we are interested in studying
conditions when such a behavior of players in iterated games is possible.

3.2 CA–Based Players

We will be using two classes of players in the game: CA–based and LA–based
players. CA are spatially and temporally discrete computational systems (see,
e.g. [2]) originally proposed by Ulam and von Neumann and today they are a
powerful tool used in computer science, mathematics and natural science to solve
problems and model different phenomena.

When a given alive cell (i, j) is considered as a CA–based player it will be
assumed that it is a part of the 2D array and at a given discrete moment of
time t, each cell is either in state D or in state C. The value of the state is
used by CA–based player as an action with an opponent player. For each cell, a
local 2D neighborhood of a radius r is defined. Because we employ a 2D finite
space a cyclic boundary condition is applied. We will assume that the Moore
neighborhood is used, with 8 immediate neighbors. A neighbor of a given CA
or LA–based player will be either another CA or LA–based player and each of
them is considered as his opponent in the game.

In discrete moments, CA–based players will select new actions according to
local rules (called also strategies or transition functions) assigned to them, which
will change the states of the corresponding cells. We will be using some number
of rules among which one of them will be randomly assigned to each CA cell, so
we deal with a non–uniform CA.
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We will consider two types of CA–based players. To cells of the first type, one
of the following rules: all–C, all–D, and k–D will be assigned. The k–D strategy
is a generalized TFT strategy, and when k = 0 it is exactly the TFT strategy.
The second type of CA–based player uses probabilistic CA. To cells of this type,
the following rule will be assigned: cooperate with probability pcoop or defect
with probability 1 − pcoop, where pcoop is some predefined value.

One can see that CA–based player does not interact with an external envi-
ronment represented by the payoff function, it does not have a memory and it
is not supported by a learning algorithm. The first type of the CA–based player
acts reactively on the basis of local information about the number of cooperat-
ing players when it uses k-D strategy or it does not pay any attention to the
behavior of the neighbors when it uses strategies all–C or all–D. The second
type of CA–based player uses probabilistic CA.

3.3 LA–Based Players

We will use a deterministic ε–LA [14,21] as LA–based players; ε–LA has d = 2
actions and acts in a deterministic environment c = (c1, c2, ..., c2∗d), where ck

stands for a reward defined by the payoff function from Table 1 obtained for its
action and action of his opponent (CA or LA–based player) from the Moore
neighborhood. It also has a memory of length h and a reinforcement learning
algorithm which selects a new action. In our case, C and D are actions of an
automaton and they are associated with states of the array cells occupied by
LA–based players.

Whenever ε–LA generates an action, and its opponent from a neighborhood
selects an action, the local environment (payoff function) sends it a payoff in
a deterministic way. The objective of a reinforcement learning algorithm repre-
sented by ε–LA is to maximize its payoff in an environment where it operates.

The automaton remembers its last h actions and corresponding payoffs from
the last h moments. As the next action ε–LA chooses its best action from the
last h games (rounds) with the probability 1 − ε (0 < ε ≤ 1), and with the
probability ε/d any of its d actions.

3.4 Sharing, Mutation and Competition Mechanisms in the Game

To study a possibility of emergence of a global collective behavior of players in
the sense of the second class of the collective behavior classification [7,9] we will
introduce some local mechanisms of interaction between players, which can be
potentially spread or dismissed during the evolution.

The first mechanism is the possibility of sharing locally profits obtained by
players. Some kind of hard local sharing was successfully used [14] in the context
of LA games. Here we will be using a soft version of sharing, where a player
decides to use it or not. It is assumed that each player has a tag indicating
whether he wishes (on) or not (off ) to share his payoff with players from the
neighborhood who also wish to share. The sharing works in such a way that if
two players both wish to share, each of them receives half of the payoff from
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the sum. Before starting the iterated game each player turns on its tag with a
predefined probability psharing.

The second mechanism which will be used is a mutation of a number of system
parameters. With some predefined value of probability, a CA–based agent of the
first type can change the currently assigned strategy (rule) to one of the two other
strategies. Similarly, a CA–based agent of the second type can increase/decrease
its probability of cooperation. Also, parameters h and ε of LA–based agents can
be a subject of mutation.

The third mechanism which can be used is a competition which is a gener-
alization of the idea proposed in [15]. Each player associated with a given cell
plays in a single round a game with each of his neighbors and this way collects
some total score. If the competition mechanism is turned on, after a q number
of rounds (iterations) each agent compares its total payoff with the total payoffs
of its neighbors. If a more successful player exists in the neighborhood of a given
player, this player is replaced by the most successful one.

In the case when both players are CA–based players, a rule of a given player is
replaced by a rule of the most successful players and also the value of the sharing
tag is copied. If both players are LA–based players, then replacing happens only
if the best player differs in at least one value of such parameters like h, ε or
sharing tag. If one player is a CA–based player and the other one is a LA–based
player, then a player of the most successful class replaces a given player.

4 Experimental Study

4.1 Graphical Interface

Monitoring the changes of some system parameters during an iterated game is
possible with the use of visualization tools. Figure 1 presents snapshots in a 2D
window of size 5 × 5. One can observe which cell is occupied at a given timestep
by CA or LA–based player (a), what is a state of a cell (b), which strategies are
assigned to players (c) or what are the specific k–D strategies of players (d).

4.2 Parameter Settings

Presented experimental tool has a wide variety of possibilities to study the
phenomenon of collective behavior under different values parameters. Below we
present some experimental results illustrating potentials of the system. We used
the following system parameters: a 2D array of size 50 × 50 was used, with an
initial state C or D (player action) set with probability 0.5. Initially, the rule
k–D was assigned (if applied) to CA cells with probability 0.7, and the remaining
three rules (all–C, all–D, probabilistic CA) with probability 0.1. When k–D was
applied, k was considered randomly selected from the range {0,7}. When the
competition mechanism was turned on, updating the array cells (by a winner
in a local neighborhood) was conducted after each iteration. Parameters of the
payoff function were set to a = 0.3 and b = 1.4.
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Fig. 1. Visualization (5 × 5 window): (a) CA players (in orange) and LA players (in
green), (b) players’ states: C (in red), D (in blue), (c) agents’ strategies: all–C (in red),
all–D (in blue), k–D (in green), cooperate with predefined probability (in yellow), LA
algorithm (in pink), (d) k–D strategies: 0–D (in yellow), 1–D (in orange), not k–D (in
black). (Color figure online)

Fig. 2. Experiment #1—average global payoffs for runs of the game with classical CA
vs LA–based players. (Color figure online)

4.3 Experimental Results

Experiment #1—Classical CA vs LA–based Players. Figure 2 shows
typical runs of the system when either only classical CA–based players (in red)
participate or only LA–based players are used. In the case of the game with
CA–based players the average total payoff does not change in time, is low and
equal to around 0.4. It is a result of that classical CA–based players are not
aware of the payoff function, they do not have learning abilities and the value of
the average payoff is a result of the initial settings. In contrast to CA, LA–based
players are aware of their payoffs, they can learn, and the average total payoff
depends upon a given memory size (h = 8) and the ε–value.

Experiment #2—CA–Based Players with Competition Mechanism.
Figure 3 shows five typical runs of the system when only CA–based players par-
ticipate but the mechanism of competition is turned on. In three over five runs,
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Fig. 3. Experiment #2—average global payoffs for five runs of the game with CA–based
players and competition mechanism.

players reach the Nash equilibrium point providing the average total payoff equal
to 0.3. In two other runs, the system is able to escape from the Nash equilibrium
point what provides a higher average total payoff.

Fig. 4. Experiment #3—five runs of the game with CA–based players with competition
and sharing mechanisms.

Experiment #3—CA–Based Players with Competition and Payoff
Sharing Mechanism. Figure 4 shows five typical runs when only CA–based
players participate, the mechanism of competition between players is turned on,
and additionally, a possibility of local sharing exists. At this set of experiments,
it was assumed that initially, each player set his flag of “wish to share payoff ”
with probability 0.7. During the game, the players could turn off or turn on this
flag depending on their payoff and competition mechanism. One can see that in
four over five runs, players reached the maximal level of cooperation provided
the maximal value of the average total payoff is equal or close to 1.
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Fig. 5. Experiment #4—number of CA–based players compete with LA–based players.
(Color figure online)

Experiment #4—CA and LA–Based Competing Players. Figure 5 shows
a typical run when both CA and LA–based players participate, the mechanism
of competition between players is turned on, but now without local sharing.
Initially, CA–based players were assigned with probability 0.9. LA–based play-
ers were used with parameters h = 8 and ε = 0.4. Due to the competition
mechanism, the type of player occupying cells could change in time. In this
competition, LA–based players (in blue), despite their initial low number, fully
replace CA–based players (in red). This is accompanied by an increasing num-
ber of LA–based players who wish to cooperate (in orange) but this cooperation
phenomenon has a highly oscillating character.

5 Conclusions

We have presented a theoretical framework and an experimental software tool
to study the behavior of heterogeneous multi-agent systems composed of two
classes of automata-based agents: CA and LA agents operating in an environ-
ment described in terms of a spatial PD game. This framework was defined to
solve global optimization tasks in a distributed way by the collective behavior
of agents.

The essential from this point of view was to use the concept of the second–
order CA and some specific mechanisms of interaction between agents were intro-
duced. A set of conducted experiments have shown that these proposed solutions
are promising building blocks enabling emergence of global collective behavior in
such heterogeneous multi-agent systems. Conditions of emerging a global behav-
ior of such systems may depend on a number of parameters and these issues
will be a subject of our future work. Recently published papers show how the
concept of collective behavior of automata can be used in solving some problems
related to cloud computing [22] and IoT [23].
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Abstract. At the airports, everything must work with remarkable preci-
sion and coordination, especially since their operational processes involve
managing a large number of moving human groups in order to minimize
waiting and service times of individuals, as well as to eliminate phenom-
ena resulting from the interaction of large crowds, such as crowding and
congestion around points of interest. The aim of the study is the develop-
ment of an integrated automated simulation model for human behavior
and traffic in the spaces of an airport. Thus, the model simulates the
behavior of the human crowds in different operational areas of an air-
port. The area of the airport is divided into levels that are characterized
by differences in the way that people move within. A fully analytical
model based on the computational tool of the Cellular Automata (CA)
was realised as well as an obstacle avoidance algorithm that is based
on the A star (A*) algorithm. According to its structure, the model is
microscopic and discrete in space and time while inherent parallelism
boosts its performance. Its prominent feature is that the crowd consists
of separate, autonomous or non-autonomous entities rather than a mass.
During the simulation, each entity is assigned unique features that affect
the person’s behavior in the different areas of the airport terminal.

Keywords: Crowd modelling · Cellular Automata · Airport · A*
algorithm · Obstacles · Simulation

1 Introduction

Almost recent studies on the full assessment of airports have shown that there is
an imbalance between passenger terminal design and airspace planning even at
major airports [1]. This stems from the fact that traditionally greater emphasis
is put on the development and analysis of the airspace of the airport than on the
design of the spaces used by the passengers. An immediate consequence of this
potential design deficiency is the congestion problems encountered at passenger
terminals in many airports around the world, a problem that is growing as the
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number of people using airports continues to grow at a skyrocketing rate [1].
An airport consists of three areas: (a) airspace, (b) the runway and (c) the
passenger terminal(s), whereas each of these sectors is characterized by different
types of flow. Airspace is the part of the airport used by different types of aircraft,
the airfield is characterized by different aircraft movements in the ground and
includes both landing and take-off, while the passenger terminal is the part of
the airport that is occupied by flows of people, passengers and non-passengers,
but also luggage. Passenger terminals are an important element of the airport
structure. They are designed to serve passengers and usually consist of complex
and often expensive buildings. Large airports are built to serve tens of millions
of people per year [1]. Naturally, an airport’s capacity is directly related to
demand characteristics, operational parts, and service specifications set by the
airport managing authority. Passengers travelling at the airport terminal are
often forced to wait and therefore delays due to overcrowding and queues arise,
usually resulting from reduced service capacity and inadequate design of the
terminal facilities or terminal terminals of the airport’s passengers.

An indicator of the efficiency of an airport terminal is the number of pas-
sengers served daily [2,3]. Overcrowding and congestion are major problems for
hundreds of thousands of passengers. This problem has worsened over the last
few years due to increased security measures at airports [2]. Therefore, capac-
ity planning in the airport terminal planning process is more important than
ever, which suggests the need for more accurate analysis methods. However, the
uncertainty associated with future levels of passenger demand and the complex-
ity of airport terminals makes this work particularly difficult. The problem of
designing the service capacity of an airport terminal is concerned with identi-
fying optimal design and capacity expansion of different terminal areas, given
the uncertainty regarding both future demands and expansion costs. Analyti-
cal modeling of passenger flows at airport terminals under transitory demand is
difficult due to the complex structure of the terminal. To the best of our knowl-
edge, the airport terminal passenger capacity planning problem has not been
studied holistically, meaning that the studies usually either do not take account
of scalability or focus only on a specific area of the terminal [5].

One of the first models of passengers’ behavior within an airport is presented
in [4]. This study refers to the behavior of passengers at the airport terminal
as well as to their needs. Other studies are focusing on the passengers process-
ing times and the importance of dealing with that problem [5–7]. Studies that
focus on continuously variable states indicate that such states can hardly be
solved due to the complexity of the flow at an airport terminal [1]. Thus, most
of them include simulations to model these random and complex flows. In these
studies, simulation results are used to estimate the capacities required to make
various processes more efficient [8]. In [9] the aim is to understand the dynamics
of the discretionary activities of passengers. Focusing on microscopic modeling,
very efficient models have been proposed that describe agents’ behavioral char-
acteristics [10–12]. A very effective model that is able to simulate the passenger
behavior in situations of congestion is Cellular Automata (CA). CA describe the
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behavior of each person as an individual and the result of the overall system is
emerging from the interactions between people that are close one to each other.
CA models are widely used in crowd control [13–17], or more specifically, in
controlling the disembarking or emergency evacuation of people in an airplane
[18].

The main contribution of this study can be summarized as the development
of a multi-parameterized, topological oriented simulation model for describing
human moving behavior and traffic in the areas of an airport. The model is
based on CA that combines low computational cost of a macroscopic simulation
model with the focused use of separate individual microscopic features for all
operational elements of the model, similar to an Agent-Based model (ABM).
Moreover, an A* (A-star) based obstacle avoidance algorithm has been incorpo-
rated to the model aiming at the realistic representation of the travellers’ moving
tendencies. During the simulation, each entity is assigned with unique features
that affect the person’s behavior in the different areas of the airport terminal. It
should be mentioned though that due to the fact that the density is restricted by
the cell size, movement artifacts may arise because of the fixed footstep size. In
Sect. 2, the proposed model is described providing all the parameters taken into
consideration during the design and realisation process as well as the innovative
elements that it incorporates. Section 3 presents the results of the simulation
and a comparative listing of these for the various demand scenarios that may
arise in the terminal of an airport during its operation. Finally, in Sect. 4 the
conclusions are drawn, as well as the future perspectives of the model.

2 Model Description

This study presents a general simulation model for the final design of the air-
port passenger terminal using the computerized model of Cellular Automata
(CA). The main and final objective is to develop an airport terminal design
tool. This tool will allow the management of the terminal as well as the plan-
ning of either different designs or improvements for both existing and proposed
terminals before construction. Simulation of a system of such a scale involves
many complicated processes such as data collection, space modeling, experimen-
tation, presentation and analysis of results, and proposals to be implemented
according to these results. The model of an airport departure area was imple-
mented, which is used both by passengers traveling on domestic flights and by
passengers on international flights. Passengers enter the terminal after they have
passed the corresponding check-in windows, depending on whether their flight
is domestic or international. Then, passengers departing are characterized by
freedom of movement among a number of options.

Initially, it is worth mentioning some basic principles governing the simula-
tion model that has been developed with the usage of the MATLAB program-
ming platform. In particular, the physical space represents the ground plan of
an airport passenger terminal and is simulated by a cellular discrete mesh, each
cell of which has a physical dimension of 60 × 60 cm, greater than 40 × 40 cm,
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which studies have shown to be the typical area occupied by an adult stand-
ing in crowded conditions [19], as the passenger terminal does not experience
severe crowding and congestion. In addition, passengers may have to carry hand
luggage, which increases the space they occupy in total.

Also, the neighborhood selected to realize the evolution rule is the Moore
neighborhood. This means that the state Ct

i,j of the cell (i, j) at time t + 1 is
affected by the states of its nine neighboring cells, including the cell i, j itself,
at this time t according to the following equation. Therefore, the evolution rule
that is applied is provided by Eq. (1):

Ct+1
i,j = Ct

i,j + Ct
i−1,j + Ct

i+,j + Ct
i,j−1 + Ct

i,j+1 + Ct
i−1,j+1

+Ct
i−1,j−1 + Ct

i+1,j−1 + Ct
i+1,j+1

(1)

In this way, the diagonal movement in the grid is also allowed, which repre-
sents the human movement in a more realistic way [20,21]. Consequently, each
agent can move no more than one cell within its neighborhood at each time step
of the simulation. Moreover, it was assumed that all agents entering, leaving and
moving within the airport terminal are characterized by the same speed, which is
the average walking speed of an adult, calculated at 1.3 m/s [19], corresponding
to 4.68 km/h. An initial description of the transition rule of the CA-based model
M can take place according to the following relationship:

M = [S, t, L,D, T ] (2)

S = [F,G, P, d(F, t)] (3)

where S stands for the schedule of the flights that is created separately and it
is defined itself, by Eq. (3), with F describing the unique flight code, G(F ) the
corresponding gate, P (F ) the total number of passengers of flight F , and d(F )
the departure time of flight F . Continuing the description of Eq. (2), t stands for
the current time step and is the metric of time in the model. Since each agent has
to cover an average distance of approximately 1

2 × (0.6+
√

2 × (0.6)2) ∼= 0.725 m
at every simulation time step and the average speed of movement of persons
within the terminal equals 1.3 m/s, each of the time steps will be approximately
0.56 s [19]. Binary parameter L clarifies whether an individual is part of a group
of passengers (0), such as a family, or travels alone (1). Parameter D corresponds
to a finite set of k potential destinations that each agent can move towards,
such as gates of terminals, duty-free shops, restaurants and cafes, resting seats,
information benches, automatic cash dispensers, toilets. It can also describe the
states of an individual that wanders in the terminal area without a specific
destination, as well as the absence of movement. Finally, T describes the topology
of the terminal station that is the exact location of all possible destinations
within the terminal area.

According to the adopted modeling strategy, the services that are provided to
the agents can be divided into different levels based on certain features in order
to be more effective in managing them. In the context of this study, the first
level refers to the check-in process and includes both the check-in windows and
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the queues that the passengers form when trying to approach the corresponding
serving points. The generation of waiting queues in public places is a problem
of great research concern [22]. In the case of airport checkpoints, it is more com-
mon to use a queue for multiple service windows, known as “snake-type” queue
coupled with the so-called “fork-type” queue, where separate shorter queues are
formed in front of each service window. The use of this type of queue is pre-
ferred when waiting at airports, because it allows longer queue lengths to take
advantage of the space provided more effectively, and because people waiting in
the queue maintain eye contact with the service windows, and thus the feeling of
impatience is not increased as long as people wait [23]. Based on the airport sce-
nario studied, the ticket control area is simulated coupling “snake-” and “fork-”
type queues, ending in multiple ticket control windows [23].

In addition, the probability q of a new person to appear in the queue is
adjusted by taking into account the S flight schedule. Specifically, it is inversely
proportional to the time remaining until a flight departs (Eq. (4)):

q ∝ 1
∏n

i=1[d(i, t) − t]
(4)

where n is the maximum number of flights that can be served at the same time,
with nmax = |G|, since n could not exceed the number of gates at the airport
terminal. The model incorporates the options of increasing and/or decreasing
the length of the queue, adding additional service windows, and changing the
service times of each window.

As soon as the agents leave the check-points, they enter the second level. It
represents the main area of the terminal and includes all the available points that
an agent can visit until she/he is directed to the gate of boarding. As soon as
an agent enters the main terminal area, she/he decides to move in one direction,
according to the model description factors discussed previously. The factor being
considered first is that of the remaining time until the departure of the flight, and
whether or not it exceeds a predetermined limit. This, at a real airport terminal,
is equivalent to whether the gate that corresponds to the flight to which each
agent is going to fly is disclosed or not. In the event that the gateway has not
yet been announced, the agent will move inside the 2nd level, choosing a certain
point among all available options that are expressed by parameter D in Eq. (2).
The instantaneous density pAoI,t of the passengers in the individual areas of the
main terminal depends on the flight schedule since the total number of persons
using the terminal at the airport varies not only from season to season but also
during the day, and it is calculated on the basis of the following relationship:

pAoI,t =
NAoI,t

AoI
(5)

where AoI is the area of interest and N the number of people within the AoI. The
model allows the topological parameterization of the main area of the terminal
station that is the topological re-location of all available visiting points within
the second level. Though, it should be pointed out that the measurement area
does not always coincide with the topological area.
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The space around the gates, although located within the terminal, should be
considered as a separate level, since individuals behave completely differently in
terms of their movement when they approach the gates in order to board. Once
the boarding gateway is announced, the majority of the passengers is considered
to be heading towards it. The proposed system provides the potentiality for the
automated calling of passengers to the gate (call for flight), which is triggered
when the following relationship is verified:

Remainingtime(F, t) = d(f, T ) − t < P (F ) × (GateDelay(t) + 0.5) + α (6)

where α = 100 an additional time parameter for security reasons and
GateDelay(t), the parameterized gate delay, i.e. the average number of time
steps that each agent remains at the gate from the moment she/he arrives at the
gate until she/he leaves it in order to board the airplane. In case that the board-
ing pass check takes place automatically then the minimum GateDelay(t) = 1 is
considered, otherwise, GateDelay(t) > 1. Algorithmically, the gate opens when
the following relationship is satisfied:

Remainingtime(F, t) = d(f, T ) − t < P (F ) × (GateDelay(t) + 0.5) (7)

Then the corresponding agent tries to leave the gate as soon as possible.
At these points, there are phenomena of dislocation, which are absent in both
the first and second level of the terminal. Naturally, these phenomena are not
particularly intense, since there are no emergency conditions under normal cir-
cumstances. Thus, there is no reason for a rapid abandonment of the site through
the gate. It is worth mentioning that the model description factors are reviewed
for each individual, at each time step. Therefore, the desired destination for each
agent can change at any time. In the case of obstacles, agents should have the
ability to avoid obstacles that may be in their route while keeping their direc-
tion to the point they want to reach. In the context of this study, an obstacle
avoidance algorithm, based on the optimal path finder algorithm A* (A-star)
has been developed [24] in a CA environment. The algorithm takes into account
the starting position of a person, the desired destination, and the topology of
the obstacles as defined by the ground plan of the airport terminal. Then it is
repeatedly trying to find the optimum path to the desired point, where the opti-
mum term is the closest route, that is, the shortest path. Taking into account
that variable x represents the agent’s position at time t then the fact that the
distance to the destination is minimized is represented mathematically by the
following equation:

xt+1 = xt + [a, b] with a, b ∈ −1, 0, 1 (8)

where a and b are calculated so that Euclidean distance equals to:

d =
√

(ig − 1 + a)2 + (jg − 1 + a)2 (9)
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with (ig, jg) referring to the coordinates of the desired destination, to be min-
imised. Potential paths to the desired position are then calculated by the cells-
to-extend method [24]. In case that the optimal path that each person has to
follow is found, then it is stored and the person moves according to it for each
next step until it reaches the desired position. The algorithm is evolved that
way provided that no other obstacle appears in the calculated optimal route
and there is no need or desire for the agent to move to a place other than that
originally considered as desirable; for example, in the case that an agent who is
moving to a vacant seat and suddenly decides to use an automatic teller machine,
or another that is wandering in the terminal’s premises and she/he is informed
that she/he has to move to the gate of her/his flight. In the event that one of
the above conditions is not met, the algorithm is called to re-calculate either
the optimal path to the same desired position taking into consideration the new
obstacle that has appeared or the shortest path to the new desired position. In
such a manner the computational complexity of the algorithm is lowered by the
implementation of the proposed method.

3 Simulation Results

The cellular grid that simulates the physical space of the airport terminal equals
150 × 130 cells. Therefore, the total area of the physical system is described by
Eq. (10), whereas the main area of the terminal is described by Eq. (11). Then
taking into account walls and set places, the space left for agents to move is
given by Eq. (12). Finally, the area of interest around each gate is provided by
Eq. (13).

Atotal = 150 × 130 (cells) × 0.6 (m) × 0.6 (m)
cell

= 7, 020m2 (10)

Aterminal = 150 × 100 (cells) × 0.6 (m) × 0.6 (m)
cell

= 5, 400m2 (11)

Applterm = Aterminal − seats − walls =

[148 × 98 − 448 (cells) × 0.6 (m) × 0.6 (m)
cell

] ∼= 5, 060m2
(12)

Agate = 10 × 10 (cells) × 0.6 (m) × 0.6 (m)
cell

= 36m2 (13)

The scenario that is presented in the framework of this study is described by
Table 1.

It is clear that the flight schedule determines how the airport terminal will
operate, and any changes to it may result in various different scenarios of simula-
tion. Figure 1 shows the evolution of the experiment based on the flight schedule
of Table 1. Regarding Fig. 1(a), it is worth making two comments on that pro-
cess. The first one refers to the queue that is formed before the boarding control
windows; the density of people in the queue is relatively small. This is because
a flight does not depart soon, thus as derived from Eq. (4), the probability q of
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Table 1. The flights’ schedule of the adopted scenario.

Number of flight
(F )

Gate
(G(F ))

Number of agents
(Passengers) (P (F ))

Departure time
(d(F, t))

100 1 37 1,000

101 2 78 1,500

102 3 48 2,000

500

(a)

900

(b)

Fig. 1. Top view of the terminal as simulated by the electronic system with an emphasis
on some of its separated venue; the boarding pass control windows (left), the recreation
and waiting areas (centre), as well as three terminal gates that the passengers leave to
board the plane (down). (a) Time step 500; no boarding (b) Time step 900; boarding
from Gate 1 has commenced.

a new person to appear in the queue is relatively small. The second comment
refers to the groups that form some of the agents, with a size that varies. These
groups remain inseparable throughout the wandering in the terminal area until
the people leave the gate. In Fig. 1(b) we can observe that the density of agents
has increased significantly (900-time step) since more flights are expected. Fur-
thermore, the process of boarding from Gate 1 has started. Besides, this fact
derives from the implementation of Eq. (6), when replacing the corresponding
parameters of the equation with their current values of the time step, the num-
ber of agents expected to travel on the flight served by Gate 1 and the time step
that corresponds to the departure of that flight. Figure 2 shows the graphs of
crowd density in relation to the time resulting from conducting this experiment.
We can observe that the densities in the area around each gate initially increase,
then they form a maximum and finally decrease (Fig. 2(a)). The maximum den-
sity differs for the area around each gate and it is proportional to the number
of agents that will be served by the corresponding gate. The time periods that
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0 500 1000 1500 2000 2500
0

0.5
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Overall Density

(b)

Fig. 2. (a) Recorded densities in the area around the gates as a function of time; Gate
1 (left - red), Gate 2 (center - green) and Gate 3 (right - blue). (b) The density in
the terminal area (straight line with a small inclination at the bottom of the graph –
red) compared to the crowd density around the gates (blue) depending on time. (Color
figure online)



454 M. Mitsopoulou et al.

the density increases around the gates are identical to the periods before the
scheduled departure of the flight. Finally, the moment that the density reaches
its maximum value, it is the one that satisfies Eq. (6). Density is expressed in
1/m2 and it is obtained by multiplying Eq. (5) with pmax

∼= 2.77778 persons
m2 ,

which is the maximum density for this electronic system, as the length of the
side of each cell equals to 0.6 m. In Fig. 2(b), the comparisons of the densities
around the gates with the densities that are observed at the rest of the terminal
station take place. It is obvious that the densities reached around the gates, when
agents approach them to board the planes, are much larger than those observed
at the rest of the areas of the terminal station. Figure 2 highlights that the over-
all density has fluctuations that are strongly dependent on the flight schedule
and what is happening at the terminal’s gates. Initially, the total density is zero,
as the first few people have not yet passed boarding documents checking. Sub-
sequently, the density increases almost linearly with time, except for the time
periods where one of the gates is evacuated, where it exhibits a downward trend.

4 Conclusions

An electronic system for the study and optimization of crowd behavior in the
airport is proposed in this study. It is based on the computational tool of Cellu-
lar Automata (CA). Concerning the problem under study, CA present a number
of extremely interesting features, such as local interactions, mass parallelism
through the application of the rule, the flexibility of boundary conditions selec-
tion, the number of possible situations, the CA cells that form a simple structural
element. Simulated experimental scenarios proved that the density of the crowd
and its variations in time are directly related to the flight schedule according to
which an airport operates for a given period of time. In order to avoid crowding
and dissatisfaction of agents, the flight schedule must be appropriately designed
so that the density does not increase beyond certain safety levels since it has
a major impact on the speed at which people move of the terminal but also in
the operation of the airport in general. In a physical system, both behavior and
movement of people are affected by innumerable social and psychological factors.
Thus, this feature could also be incorporated in the parameterization process of
the proposed model. Finally, the model can be validated with the use of real
data that could further enforce its efficiency.
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Abstract. This article is focused on dynamics of the computer sim-
ulation module SigmaEva in connection with an unidirectional flow
under periodic boundary conditions. The module SigmaEva realizes the
discrete-continuous stochastic pedestrian dynamics model that is shortly
presented here. A fundamental diagram (speed-density dependance) is an
input for the model. Simulated specific flow rates are considered versus
input ones for different diagrams. A sensitivity of the model to input
diagrams is shown and discussed.

Keywords: Fundamental diagrams · Flow rate · Pedestrian dynamics
model · Transition probabilities · Evacuation simulation

1 Introduction

A simulation of pedestrian dynamics is used in many fields, from entertainment
(e.g., cinema and computer games) to fire safety of buildings, ships, and air-
crafts. The most attractive for application is so called microscopic models, when
each person is considered separately and a model determines coordinates of each
person. In a model every person can have individual properties, including a free
movement speed, an evacuation start time, a size of a projection, an evacuation
way. These give the wider opportunities to state a simulation task and repro-
duce a real phenomena. Different approaches [1] from mathematically continuous
models (the social force model based on differential equations [2–4]) to pure dis-
crete models (cellular automation (CA), e.g., [5–8]) are developed already. A
discrete-continuous approach combines advantages of both approaches: people
move in a continuous space, but there are only fixed number of directions where
a person can move. Discrete and continuous approaches are combined in mod-
els [9–11].

In the article one discrete-continuous model is considered. It was implemented
in a software, and here a validation of the SigmaEva evacuation module is given
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with respect to a very important case study – fundamental diagrams (flow-
density dependance) under periodic boundary conditions.

The model considered is designed in a way that a fundamental diagram is an
input for the model. A fundamental diagram is used to calculate speed according
to local density for each person. This property of the model is very convenient
for practical applications because we omit a step to tune parameters to corre-
spond desired flow-density dependance. Due to inner properties of the model,
a numerical presentation of the model, restrictions which are admitted by the
model (for example, constant square of projection, shape of the body) input fun-
damental diagram may be transformed. It means that output flow-density curve
may diverge from desired (input) curve. The aim of this study is to investigate a
sensitivity of the model to the input fundamental diagram and identify different
manifestations of the output speed-density dependence of the model in steady
movement regime.

In the next section the main concept of the model is presented. Section 3
contains the description of the case study and the results obtained. We conclude
with the summary.

2 Description of the Model

2.1 Space and Initial Conditions

A continuous modeling space Ω ∈ R2 and an infrastructure (obstacles) are
known1. People may move to (and on) free space only. To orient in the space
particles use the static floor field S [12]. Without loss of generality a target point
of each pedestrian is the nearest exit.

A shape of each particle is a disk with diameter di, initial positions of particles
are given by coordinates of disks’ centers xi(0) = (x1

i (0), x2
i (0)), i = 1, N , N –

number of particles (it is assumed that these are coordinates of body’s mass
center projection). Each particle is assigned with the free movement speed2 v0

i ,
square of projection, mobility group. It is also assumed that while moving the
speed of any particular person does not exceed the maximal value (free movement
speed), and a speed of each person is controlled in accordance with a local density.

Each time step t each particle i may move in one of the predetermined direc-
tions −→ei (t) ∈ {−→eα(t), α = 1, q}, q – the number of directions, model parameter
(for example, a set of directions uniformly distributed around the circle will be
considered here {−→eα(t), α = 1, q} = {(cos 2π

q α, sin 2π
q α), α = i = 1, q}). Particles

that cross target line leave the modeling space.
The goal is to model an individual persons movement to the target point

taking into account interaction with the environment.

1 Here and below under “obstacle” we mean only nonmovable obstacles (walls, furni-
ture). People are never called “obstacle”. There is unified coordinate system, and all
data are given in this system.

2 We assume that free movement speed is random normal distributed value with some
mathematical expectation and dispersion [13].
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2.2 Preliminary Calculations

To model directed movement a “map” that stores the information on the shortest
distance to the nearest exit is used. The unit of this distance is meters, [m]. Such
map is saved in static floor field S. This field increases radially from the exit; and
it is zero in the exit(s) line(s). It does not change with time and is independent
of the presence of the particles. The idea of the field S is imported from the floor
field (FF) CA model [7].

2.3 Movement Equation

A person movement equation is derived from the finite-difference expression
v(t)−→e (t) ≈ −→x (t)−−→x (t−Δt)

Δt that is given by a velocity definition. This expression
allows us to present new position of the particle as a function of a previous
position and local particle’s velocity. Thus for each time t coordinates of each
particle i are given by the following formula:

−→x i(t) = −→x i(t − Δt) + vi(t)−→e i(t)Δt, i = 1, N, (1)

where −→x i(t − Δt) – the coordinate in previous time moment; vi(t), [m/s] – the
particle’s current speed; −→e i(t) – the unit direction vector, Δt, [s] – a length of
time step that is 0,25 s.

Unknown values in (1) for each time step for each particle are speed vi(t) and
direction −→e i(t). A probability approach is used to find a direction for the next
step. A procedure to calculate probabilities to move in each direction is adopted
from a previously presented stochastic cellular automata floor field model [8]. To
get speed vi(t) a local density is estimated and substituted to some speed-density
dependance.

In this case, in contrast with force-based models [2,3], the task of finding the
velocity vector is divided in two parts. At first, the new direction is determined;
then, speed is calculated according to local density in the direction chosen. By
this trick we omit the step of describing forces that act on persons in direct way,
a numerical solution of N differential equations. Thereby (comparing with force-
based models) computational capacity of the model is reduced and relaxation
parameter Δt is allowed to be at least 10 times larger. At the same time, the
modeling space is considered to be continuous which is valuable in terms of
practical applications.

2.4 Choosing the Movement Direction

In this discrete-continuous model we took inspiration from our previously pre-
sented stochastic CA FF model [8]. All predetermined directions for each particle
for each time step are assigned with some probabilities to move, and direction
is chosen according to the probability distribution obtained.

Probabilities in the model are not static and vary dynamically and issued on
the basis of the following facts. Pedestrians keep themselves at a certain distance
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from other people and obstacles. The tighter the people flow and the more in a
hurry a pedestrian is, the smaller this distance. During movement, people follow
at least two strategies: the shortest path and the shortest time.

Thus, the personal probabilities to move in each direction each time step
depends on: (a) the main driven force (given by a destination point), (b) an
interaction with other pedestrians, (c) an interaction with an infrastructure (non
movable obstacles). The highest probability3 is given to a direction that has most
preferable conditions for movement considering other particles and obstacles and
a strategy of the peoples’ movement (the shortest path and/or the shortest time).

We omit here exact formulas to calculate probability for particle i to move
from this position to directions {−−→

e1i (t), ...,
−−→
eq
i (t)}, decision rules to choose direction−→

eα̂
i (t), and the final conflict resolution procedure. They are presented in [14].

Fig. 1. Left: Movement scheme. Right: visibility area.

2.5 Speed Calculation

Person’s speed is density dependent [1,13,15]. We assume that only conditions
in front of the person influence on speed. It is motivated by the front line effect
(that is well pronounced while flow moves in open boundary conditions) in a
dense people mass, when front line people move with free movement velocity,
while middle part is waiting for a free space available for movement. It results in
the diffusion of the flow. Ignoring this effect leads to a simulation being slower
than the real process. Thus, only density Fi(α̂) in direction chosen −→ei (t) =

−→
eα̂
i (t)

is required to determine speed.

3 Mainly with value >0,9.
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To calculate current speed of the particle, one of the known velocity-density
dependence can be used. In the next section we present a conjunction of the
model and some fundamental diagrams.

Numerical procedures which is used to estimate a local density is presented
in [14]. An area where density is determined is reduced by chosen direction and
visibility area which is presented in Fig. 1.

3 Numerical Experiments: Sensitivity of the Model to
Input Fundamental Diagrams

3.1 Steady-State Regime, Fundamental Diagrams Considered

Manifestation of the density dependence of the velocity is implemented in the
steady-state regime, when the time-spatial density is assumed to be constant
and there are no conditions for transformations of the flow. People are assumed
to be uniformly distributed over the entire area (e.g., in an extended corridor
without narrowing) and move in one direction. Under these limitations, the speed
decreases with increasing density. In terms of a specific flow, the fundamental
diagram looks as follows. As the density increases, the specific flow grows, attains
its maximum, and then decreases. There exist various fundamental diagrams
determined by many factors, including demographics [16], which have the same
basic feature.

Fig. 2. Specific flows for (3)–(5), v0 = 1.66 [m/s].

For example, the velocity-density dependence can be presented in the ana-
lytical form [13]:

vKhS(ρ) =
{

v0(1 − al ln ρ
ρ0 ), ρ > ρ0;

v0, ρ ≤ ρ0,
(2)

where ρ0 is the limit people density until which people can move with a free
movement speed (it means that the local density does not influence the people’s
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speed); al is the parameter of adaptation of people to the current density during
their movement in different ways: ρ0 = 0.51 [1/m2] and a1 = 0.295 for the
horizontal way, ρ0 = 0.8 [1/m2] and a2 = 0.4, for movement downstairs and
ρ0 = 0.64 [1/m2] and a3 = 0.305 for movement upstairs; v0 is the unimpeded
(free movement) speed of a person; and ρ is the local density for a person.

In (2) vKhS(ρ) goes to zero under maximum density ρmax, resolution of the
equation vKhS(ρ) = 0 gives al = 1

ln ρmax
ρ0

. As a result we can introduce ρmax as

a parameter to the formula (2):

vKhS(ρ) =

{
v0(1 − ln ρ/ρ0

ln ρmax/ρ0 ), ρ > ρ0;
v0, ρ ≤ ρ0,

(3)

In [17,18] speed versus density are given in the following way:

vWM (ρ) =

⎧⎪⎨
⎪⎩

v0, ρ = 0;
v0 (1 − e−1.913 ( 1

ρ − 1
ρmax

)), ρ < ρmax;
0, ρ ≥ ρmax.

(4)

vSFPE(ρ) =

{
v0 (1 − ρ

ρmax
), 0 ≤ ρ < ρmax;

0, ρ ≥ ρmax,
(5)

In (3)–(5), ρmax is the acceptable maximum density. The original forms of
the velocity-density dependencies from [17,18] were transformed to input ρmax

in an explicit way and to make ρmax a parameter. It was done in a way presented
for (2).

In Fig. 2 it was assumed that ρmax = 15 [1/m2] (curve KhS) and ρmax =
6.25 [1/m2] (curve KhS 6.25) in (3), ρmax = 5.4 [1/m2] in (4) and ρmax =
3.8 [1/m2] in (5). Figure 2 shows the specific flows Ĵs = ρ v(ρ) [1/(ms)], for (3)–
(5) (curves KhS, WM , SFPE, and KhS 6.25 respectively; v0 = 1.66 [m/s]).

3.2 Case Study

To see the influence of the input fundamental diagram to the model, we consider
the simulation experiment under the so-called periodic boundary conditions. A
straight corridor 50 × 2 m2 in size with the control line in the right-hand side is
the modeling area, Fig. 3. People uniformly fill the entire area.

To reproduce the steady regime (periodic boundary conditions), initial num-
ber of people N should be maintained [19].

Time T required for M = 1000 people to cross the control line at the end of
the corridor at given N is a quantity to be measured. In the stochastic model, the
time should be averaged over a set of K runs under the same initial conditions.

To estimate the flow rate, the formula J = M/T , [1/s] for each density

ρ = N/100 is used, where T =
K∑

j=1

Tj/K is the average time over K runs

required for M people to cross the control line. The corresponding specific flow is
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Fig. 3. Geometry set up. Corridor 50×2 m2 in size, initial position of people (modelling
area), and control line.

Js = M/T/2 [1/(ms)]. This way of estimating the flow is similar to the method
used in natural experiments to obtain real data.

The density ρ = N/100 is used to estimate the distribution of people over
the modeling area (100 m2 gray area in Fig. 3) in the simulation experiment.

When comparing the simulation and reference data and interpreting the
results, it is very important to pay attention to the acceptable ρmax value in
the mathematical model and reference data. For example, if a square of the
person’s projection in the model is assumed to be 0.125 m2, the projection has
the form of a circle with a radius of 0.2 m; then, we can put closed circles with
ρmax = 6.25, [1/m2]. Thus, it is most correct to compare the simulation and
reference data with similar ρmax values.

3.3 SigmaEva Simulation Results

We considered a set of numbers of people Ni, i = 1,m involved in the simulation.
The corresponding densities are estimated as ρi = Ni/100, i = 1,m, [1/m2]. Each
person was assigned with a free movement speed of v0 = 1.66 m/s. All persons
were assigned with the same square of projection, specifically, 0.125 m2.

As far as the shape of person’s projection is a solid disc, the maximum number
that can be placed in an area of 100 m2 is 625, and the maximum density is
ρmax = 6.25 1/m2. In accordance with the reference data, it was reduced (see
below).

A set of 500 runs for each Ni, i = 1,m was performed and the average times

were calculated: T (ρi) =
500∑
j=1

Tj(ρi)/500, i = 1,m, where Tj(ρi) is the time

required for M = 1000 people to cross the control line in one run at given ρi.
Figures 4 and 5 show the specific flows as a function of density ρ =

Ni/100, i = 1,m. The simulation data were obtained with (3)–(5) as a formulas
to calculate speed for each person each time step4. The simulation data are com-
pared with the Weidmann, SFPE, and Kholshevnikov & Samoshin fundamental
diagrams correspondingly.

4 All the other initial data were the same for all simulation experiments, including
the model parameters. Here we do not discus them and only present values kP = 9,
kW = 2, kS = 40.
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Fig. 4. (a) Original Weidmann data (“WM”) with ρmax = 5.4 [1/m2] and simulation
data (“model”) with (4) as an input data, Nmax = 540 persons; (b) Original SFPE
data with ρmax = 3.8 [1/m2] and simulation data (“model”) with (5) as an input data
and Nmax = 380 persons.

It can be seen that the data in the three figures are very similar. In all
cases, ρmodel

max ≥ ρdata
max: 6.25 [1/m2] versus 5.4 [1/m2] in Fig. 4(a), 6.25 [1/m2]

versus 3.8 [1/m2] in Fig. 4(b), 6.25 [1/m2] versus 6.25 [1/m2] in Fig. 5(b). The
other important factor is that the conditions of reference data ensure the same
body size at all densities. This is consistent with the model statement that the
projections of persons are solid discs with a constant radius.

Fig. 5. (a) Kholshevnikov & Samoshin data (“KhS”) with ρmax = 15 [1/m2] and
simulation data (“model”) with (3) as an input data; Nmax = 600 persons; (b)
Kholshevnikov & Samoshin data (“KhS 6.25”) with ρmax = 6.25 [1/m2] and simu-
lation data (“model”) with (3) as an input data; Nmax = 600 persons

The Kholshevnikov & Samoshin curve with ρmax ≈ 15 [1/m2] (Fig. 5(a))
gives the considerably higher flow at middle and high densities. Such maximum
density can be obtained at smaller body sizes (square of projection) only. How-
ever, there is a lack of data on the ways of body size reduction. In Fig. 5(a),
the model reproduces the expected behaviour of the specific flow under density
variation: the flow Js increases until a density of ≈ 2.5 − 3 [1/m2], attains a
value of 1.7–1.8 [1/(ms)], and then decreases. At the low and middle densities,
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the model flows agree excellently with the reference data. At the high densities,
the model flow is much slower than the Kholshevnikov & Samoshin flow. This
is apparently related to the strong impact of the constant square of person’s
projection.

Table 1. Quantitative measures for results presented in Figs. 4 and 5.

Relative difference Cosine Projection coefficient

KhS 0.570195 0.852454 1.364238

WM 0.067695 0.998818 0.954949

SFPE 0.142952 0.992588 0.929509

KhS 6.25 0.068341 0.97618 0.946935

To compare curves quantitatively one can use a methods from [20]. There are
three measures: Relative difference, Cosine, Projection coefficient (Table 1). The
first norm provides a measure of the difference in the overall magnitude for the
two curves normalized to the reference data. The norm approaches zero when
the two curves are identical in magnitude. Cosine: the angle between the two
vectors represents a measure of how well the shape of the two vectors match. As
the cosine of the angle approaches unity, the two curves represented by the two
vectors differ only by a constant multiplier. The projection coefficient provides a
measure of the best possible fit of the two curves. When the projection coefficient
approaches unity, remaining differences between the two curves is either due to
random noise in the experimental measurements or physical effects not included
in the model.

4 Conclusion

From a user point of view it is very convenient when a velocity-density depen-
dence is input parameter of a model, and a model does not need a special tun-
ing of model parameters to reproduce a desired velocity-density dependence as
an output of the simulation. This paper shows that this is possible. The way
which is used to design the presented discrete-continuous model gives such an
opportunity. Of course some conditions should be taken into account. The best
convergence of input and output curves is obtained if physical conditions of a
simulation experiment and a reference data are close, and the main of them is
condition on maximum density ρmodel

max ≥ ρdata
max.
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Abstract. A model created by Helbing, Molnar, Farkas and Vicsek [1]
in the beginning of 21st century considers each agent in pedestrian move-
ment as separate individual who obeys Newton’s laws. The model has
been implemented and simulated by numbers of different authors who
proved its reliability through realism of agents’ behaviour. To describe
the motion as accurately as possible, many of them modified it by pre-
senting their own approach of used formulas and parameters. In this
work, authors consider combination of various model modifications as
well as present adequate factors values, which allows to observe cor-
rect, consistent simulation of different evacuation scenarios and to track
changes of Crowd Pressure in subsequent stages of visualization, depend-
ing on used exit design.

Keywords: Crowd Pressure · Social Force Model · Pedestrian
dynamics

1 Introduction

Modelling and analyzing crowd motion is a crucial factor in constructing build-
ings, planning roads and paths locations as well as designing convenient areas
for concerts, parades and many various events. Despite individual preferences of
each pedestrian, which may be caused by their personality, environment, cultural
background [5] or simply by their destination, we can predict crowd movement
surprisingly well and accurately by making appropriate assumptions [3]. To do
that, we decided to base our simulation on the Social Force Model, which was
presented for the first time by Dirk Helbing and Peter Molnar in the 1990’s [2].
Since then it was modified by researchers from all over the world to improve
results by including new significant factors describing behaviour in specific situ-
ations (such as belonging to a group of friends or attraction to store exposition),
calibrating values of model’s constants and variables, or by presenting alternative
ways of formula derivation.

In spite of wide acceptance of Social Force Model among researchers and
within other communities that benefit from its implementation, many express
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 467–477, 2020.
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the criticism towards models’ ‘Molecular Dynamics’, due to the substantial sim-
plification of the real world’s principles. Furthermore, results of the model were
not explained in consistency with psychological findings, which leads to misun-
derstanding it by psychologists [9]. However, modification made by Vicsek and
Farkas in 2000 [1] justifies the usage of MD by aiming to create a simple but
consistent mathematical model, which describes physical interactions within the
crowd. Moreover, in their work, they present a universal formula for both panic
and stress-free situations. This particular model was the one that we adapted
the most and considered to be precise enough to become a starting point for our
modifications.

The rest of this paper is organised as follows. Section 2 gives an overview
of the social force model presented by Helbing et al. [1]. This is also where we
introduce differences between panic and normal situations. Section 3 is where we
describe our model in detail and show modifications of HMFV’s model, that are
visible in our approach. Section 4 shows important elements of the implementa-
tion and lists used technologies. We also focused on comparison of scenarios and
pedestrians’ behaviour analysis. Section 5 concludes the results of our simulation
and compares it with work of other researchers.

2 Overview of Social Force Model

2.1 Panic and Normal Situations

As the model is accurate for both normal and panic situations, we present the dif-
ferences between them. In normal situations pedestrians keep distances between
neighbours, as well as obstacles [8]. Their movement speeds are different accord-
ing to many factors like age, gender, situational context and so on. Often people
do not look for the fastest route, but for the most comfortable and classical rules
of proxemics are visible [10].

In competitive or panic situations the level of nervousness and stress rises.
People try to move at higher speeds, often one can observe physical interactions
between pedestrians and growing jams in front of bottlenecks. As a consequence,
the “faster-is-slower” effect is often observed, when physical interactions and
increasing pressure decrease the speed of pedestrians.

A dangerous development of this effect is the effect called “freezing-by-
heating”, when motion of pedestrians is completely reduced due to growing
pressure of crowd. The effect can be significantly reduced by introducing appro-
priate obstacles in the area of accumulation of pressure and forces in front of a
bottleneck.

2.2 HMFV’s Approach

To simulate different evacuation scenarios and compare their results, we chose
a model presented by Helbing, Molnar, Farkas and Vicsek as a starting point
[1]. In the article ‘Simulation of pedestrian crowds in normal and evacuation
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situations’ authors proved that dynamics of pedestrians can be described with
one consistent way regardless of the fact whether it is normal or panic situation.
Since understanding mechanisms which explain people’s motion is a crucial part
of planing correct exit design, we decided to follow HMFV’s approach which
shows the similarities between pedestrians and their movement as well as points
out distinctions that may be caused by environment status.

The HMFV’s model for panic-free situations consists of sum of five main
components, presented below [1]:

– Acceleration Term responsible for adaptation of current velocity vector
into desired velocity vector;

– Repulsive Social Force fsoc
ij (t) which describes ‘territorial effect’ and the

tendency to keep certain distance to other pedestrians;
– Attractive Social Force fatt

ij (t) which corresponds with joining behaviour
of families or friends;

– Boundary Force fib(t) which shows interaction with boundaries;
– Attractive Force toward items fatt

ik (t) such as window displays, adver-
tisements or other distractions.

To describe phenomenon of pedestrian movement in panic and evacuation sit-
uations, we need to simply include an additional force – Physical Interaction
Force fph

ib (t), which represents behaviour, when neighbours are so close to each
other that they have physical contact. To do that, we have to consider Body
Force counteracting forces that neighbours act on certain pedestrian as well as
Sliding Friction Force. Analogically we can describe physical interaction force
with boundaries.

Similar distribution of forces could be found in many studies [5,6]. However
they were published years after HMFV model was presented, hence roots of
solutions shown in them usually derive from articles already accepted by scientist
community.

3 Presented Model

In this report, we focus our attention on the Helbing-Molnár-Farkas-Vicsek
(HMFV) model [1]. Hence, the force model of pedestrian motion is represented
by the equation below:

fi(t) = facc
i (t) +

∑

j( �=i)

(fsoc
ij (t) + fatt

ij (t) + fph
ij ) +

∑

b

fib(t) +
∑

k

fatt
ik (t) (1)

Herein, facc
i (t) represents the acceleration term. In our model it is described

as [1]:

facc
i (t) =

v0
i (t)e0i (t) − vi(t)

τi
mi (2)

Here, vi(t) denotes the actual velocity, v0
i (t) - desired speed and e0i (t) is

direction within a certain “relaxation time” τi.
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fsoc
ij (t) denotes repulsive social force. We use the formula from HMFV report

[1], which is implemented as follows:

fsoc
ij (t) = Aiexp(

rij − dij

Bi
)nij

(
λi + (1 − λi)

1 + cos(ϕij)
2

)
(3)

Here, Ai is the interaction strength and Bi is the range of the repulsive
interactions. Both are individual and culture-dependent parameters. Distance
between the pedestrians i and j is denoted by dij , whereas rij is the sum of their
radii ri and rj . Symbol nij stands for normalized vector pointing from pedestrian
j to i. The angle ϕij is the angle between e0i (t) and nij . Assuming that λi < 1
can add an anisotropy to pedestrian’s interaction. It means that with the help
of this parameter we can model that the situation in front of the pedestrian has
a bigger impact on his behavior than the situation behind him. In our model,
we assume λi = 0. In this case the interaction forces are isotropic and complies
with the Newton’s 3rd law [1].

fatt
ij (t) denotes the attractive social force. It reflects how people behave when

they are surrounded by family members or friends. In this report, we use sim-
plified version of the model and assume fatt

ij (t) = 0. Even though the attractive
social force influences on people’s behaviour, the main focus of the research is
the evacuation time, not the pedestrian’s trajectory of movement.

In this report, fatt
ik (t) is the attractive force toward items. We assume fatt

ik (t)
= 0, as during the evacuation the attraction toward window displays, advertise-
ments or other distractions may be considered irrelevant.

Physical interaction forces fph
ij represent the interaction of an actor and his

neighbours. They start to play a role when pedestrians are so close to each
other that they have the physical contact. As they added up, the pedestrians’
movements become unintentional. The forces are described as [1,7]:

fph
ij = f body

ij + fslidingfriction
ij (4)

Here, f body
ij stands for the body force. It represents the force that counteracts

body compression.
f body

ij = kg(rij − dij)nij (5)

fslidingfriction
ij represents the “sliding friction” between pedestrian bodies.

fslidingfriction
ij = κg(rij − dij)Δvt

jitij (6)

Herein, k and κ denotes large constants. g(x) is the function, that returns
x, if x ≥ 0, otherwise 0. In this report, tij = (−n2

ij , n
1
ij) means the tangential

direction to nij and Δvt
ji = (vj − vi) · tij is the tangential velocity difference.

The interaction with walls and other obstacles is treated analogously [5]:

fib(t) = f body
ib + fslidingfriction

ib (7)
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f body
ib = (Aiexp(

ri − dib

Bi
) + kg(ri − dib))nib (8)

fslidingfriction
ib = κkg(ri − dib)tib (9)

Here, Ai, Bi, κ and k denote constant parameters of our model. dib stands for
the distance between the boundary of the obstacle and the pedestrian’s center.
nib, tib denote the vector normal and tangential to the obstacle’s boundary at
the point where the pedestrian comes in interaction with it.

Symbol Value Description

A −mv0/τ Attraction to an exit

B {1, 5} Fall-off length of social repulsive force

k 2400 kg/s2 Spring constant

κ 1 Coefficient of sliding friction

m 60 kg Mass

r 0.35 m Radius

τ 0.5 s Relaxation time

v0 1.34 m/s Desired speed

vmax 1.7 m/s Maximum speed

Values of parameters used in our simulation are presented in the table above.
They were chosen and calibrated basing on solutions published in many other
articles [1,5,7] as well as basing on calibration done by authors. For imple-
mentation and scene rendering purposes we needed to scale those values using
proportionality factor equals to 25.

4 Simulation

We consider various scenarios of evacuation situations, where we present dif-
ferent ‘obstructions’ located in front of the exit. According to Kirchner [4] and
Yanagisawa [12], such items (including barriers and tunnels) reduce both time
needed for evacuation and pressure on the clogging point. To check efficiency of
such solution, we compared results from three main scenarios presented on the
Fig. 1.

Apart from that, the simulation allows us to compare a variety of factors
which are significant for analyzing model efficiency such as actors’ velocity, local
density or crowd pressure, which is represented by the color-change of each
pedestrian. These statistics enable us not only to plot the results but also to
validate applied parameters and formulas.
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Fig. 1. Frames from simulation. From left to right: no additional obstruction added to
simulation; vertical barrier; tunnel.

4.1 Implementation

The simulation is fully implemented with the use of object-oriented programming
language Java. Its support for OOP paradigm let us treat pedestrians, bound-
aries and obstacles as instances of previously declared classes, so it allows us to
focus on general behaviour of all actors. To render each frame, we have to update
the state of each pedestrian basing on their current position and environment.
Below, we present a simple and schematic Algorithm 1 to achieve it.

Algorithm 1. Updating pedestrians’ positions in order to render next frame
1: function updatePedestrainsPositions(listOfPedestrians)
2: for pedestrian ∈ listOfPedestrians do

3: if pedestrian.reachedTarget is true then

4: continue

5: end if

6: accelarationForm ← pedestrian.calculateAccelarationForm

7: neighboursInteraction ← 0
8: wallsInteraction ← 0
9: for neighbours ∈ listOfPedestrians do

10: if neighbour �= pedestrian then

11: neighboursInteraction ← neighboursInteraction∪ pedes-
trian.calculateNeighbourInteraction(neighbour)

12: end if

13: end for

14: for wall ∈ listOfWalls do

15: wallsInteraction ← wallsInteraction∪ pedes-
trian.calculateWallInteraction(wall)

16: end for

17: forcesSum ← accelarationFrom ∪ neighboursInteraction ∪ wallsInteraction

18: pedestrian.newV elocity ← pedestrian.setNewV elocity(forcesSum)
19: pedestrian.newPosition ← pedestrian.setNewPosition(pedestrian.newV elocity)
20: pedestrian.crowdPressure ← pedestrian.setCrowdPressure(forcesSum)
21: end for

22: end function
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4.2 Comparison of Scenarios

Fig. 2. Top: Comparing evacuation time for 5 groups of the same size, but different
starting points. Bottom: Comparing evacuation time for 5 groups of different size. No
obstruction is marked with blue colour, vertical barrier with red and tunnel with yellow.
(Color figure online)

To avoid queues, clogging, ‘freezing by heating’ situations and crowd dis-
asters, it is crucial to minimize the time of crowd evacuation. As mentioned
before 4, locating certain obstructions next to the exit reduces pressure, which
results in faster evacuation. We analyze three scenarios (see Fig. 1) and differ-
ent default starting points for groups of various sizes. In the Table 1, we present
results of five simulations, which describe behaviour of different groups. Duration
is represented by the amount of simulation frames that were needed to evacuate
the whole group. Rows marked by green colour points to the evacuation with
the minimal duration.
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Table 1. Comparison of evacuation times for different groups and various scenarios.

Analyzing groups of various sizes and different starting point of every pedes-
trian, we can easily spot an improvement in evacuation time, when a vertical
barrier is added (Fig. 2). However, as far as a tunnel is concerned, we cannot
determine whether its presence decreases simulation duration. In most of the
cases, the time needed to exit a room is slightly shorter than in a scenario where
no obstruction is involved. Nevertheless, in some of the considered situations,
the tunnel increases the time of evacuation, which is truly undesirable.

4.3 Behaviour Analysis

Apart from the comparison of different scenarios and results analysis, we can
observe various crowd dynamics phenomena only by plotting the statistics.
Accuracy of them shows that presented model is correct, therefore allows us
to describe remarked behaviours.

As far as evacuation situations are concerned, we can assume that all pedes-
trians move towards one specific direction – the exit. This causes accumulation of
actors in one spot as well as an increase of local density d for each of pedestrians in
the surrounding crowds. The density is measured in pedestrian/m2 and according
to Weidmann [5,11], its maximum value is reported to equal 5.4 ped/m2 due to
high probability of being trampled by other people when d exceeds this constant.

In the Fig. 3 we present diagrams, which are based on the data collected from
the simulation. They showcase local density change for certain pedestrian ran-
domly chosen from the simulation. The left one demonstrates safe evacuation –
density value increases, because of pedestrian’s approach to the exit, and reaches
its maximum value (which is lower than Weidmann’s dmax) [11]. This maximum
value represents the moment when an actor gets through the exit, hence density
around them decreases afterwards. To collect data for the diagram on the right
Fig. 3, we increased significantly the number of pedestrians in the scenario. It
presents a highly unsafe situation, when global maximum exceeds dmax even by
30%. We decided to do that to observe ‘stop-and-go flow’ phenomenon [13]. The
combination of extremely high density and pedestrian body collisions generates
crowd turbulence as well as break down of smooth pedestrian flow, which results
in ‘stop-and-go’ waves presented in Fig. 4. Such behaviour was observed during
many crowd disasters [7].
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Fig. 3. Local density change in time for panic situations in a scenario with a vertical
barrier. On the top, maximum value is lower than dmax = 5.4 ped/m2, while on the
bottom global maximum exceeds dmax.

Fig. 4. Change of velocity in time in a scenario with a vertical barrier. Representation
of the ‘stop-and-go flow’ phenomenon.
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5 Conclusion

Presented model is a combination of well known and widely accepted approaches
with our minor modifications and calibration. The assumption which indicates
that both attraction forces equal 0, lets us simplify the model and treat actors as
goal-oriented individuals, who are neither distracted by ‘time-dependent attrac-
tive interactions’ (fatt

ik (t)) or by joining any specific group of people (fatt
ij (t)).

This solution allows us to test different exit designs as well as analyze motion
and interaction of strangers, at the same time imitating events from the real
world such as ‘stop-and go’ flow, ‘freezing by heating’ phenomenon, or pressure
vs local density correlation. We believe that interesting behaviour noticed in this
model implementation and various, potential exit designs can be an entry point
for numbers of researches and modifications, mostly because of attraction forces
omission, which decreases computational and time complexity of the algorithm.
Testing a solution on simplified, reliable model might be a crucial part of find-
ing the correct consisted design for perfect exit. Mostly because some of them
might be proven inefficient beforehand (see the results of tunnel obstruction in
Table 1) and save a significant amount of researcher’s time.
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Abstract. In this study the authors present a model for traffic flow
prediction based on Nagel-Schreckenberg Cellular Automata model. The
basic model was expanded to allow simulation of multi-lane roads along
with representing different types of cars and drivers’ psychological pro-
files found in urban traffic. Real traffic data from sensors in Darmstadt
city (Germany) were used to perform a set of simulations on presented
model.

Keywords: Traffic prediction · Cellular Automata · Nagel -
Schreckenberg model

1 Introduction

Traffic draws attention of numerous scientists as traffic jams become one of the
biggest problems of urban areas. Increasing number of vehicles passing through
urban streets on a daily basis in connection with unadapted to its requirements
infrastructure causes inconvenience not only for drivers, but also for all citizens.
It should be stressed that the results of computer simulations are increasingly
regarded as a very good source for planning repairs or development of communi-
cation infrastructure in given areas. Thus, one can observe an increase in interest
in traffic simulations in recent years.

Cellular Automaton model created by Nagel and Schreckenberg [6] is a clas-
sical model describing flow of traffic movement in motorways. The flow depends
on few coefficients (e.g. imperfect driving style, slower vehicles, accidents) which
play key role in creation of traffic jams, especially in conjunction with increasing
number of vehicles on streets [2]. With increasing density of cars a phase transi-
tion is observed: from fluent flow to overload. In fluent flow phase vehicles move
with speed close to allowed speed limit which in urban environment increases
their density. The overload phase, on the contrary to fluent flow, has negative
linear correlation between traffic flow and vehicle density. It was proven that in
overload phase driver’s behaviour plays key role in field distribution of vehicles
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12044, pp. 478–488, 2020.
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between each other [4]. One of solutions to traffic jam problem is a roundabout -
an intersection without traffic lights offering favourable solutions in terms of flow
safety. Roundabout was introduced for the first time in Great Britain and cur-
rently is widely used in majority of countries. Drivers approaching a roundabout
are forced to decrease vehicle’s velocity and check for potential collisions with
other vehicles that already are in the roundabout before entering it.

It was conducted in many reports that risk of accident significantly decreased
in comparison to conventional intersections [7]. On the other hand accidents in
the roundabout are one of the most frequent causes of traffic jam creation.
Research conducted on collisions of 38 roundabouts in the state of Maryland
concluded that accidents happened more often at the entry than in, or at the
exit of the roundabout [5].

In the current paper we propose an adaptation of Nagel - Schreckenberg (fur-
ther Na-Sch) model that is strongly based on previous solutions [1,3,9–11]. We
extended given model by randomising parameters of the model such as maxi-
mum velocity assigned to each car. Additionally, we incorporated a mechanism
of intersections that allows cars to change the road they are currently on.

Our goal was to create a not very complicated adaptation of the Na-Sch
traffic model for urban conditions, which in the future we will be a basis for
large-scale simulations of traffic. In order to test the usability of the model, we
test it in a confrontation with real data, namely traffic characteristics in the city
of Darmstadt.

2 Mathematical Models

Cellular Automata are presented by a four (L, S, N, f), where each subsequent
element stands for: space as a network of cells, collection of states, collection
of given cell’s neighbors and a function of configuration change in particular
cells. The configuration C:L → S is a function connecting each cell with a state.
Function f changes configuration Ct into a new configuration Ct+1.

Classic and most popular model describing vehicle movement (based on cel-
lular automatons) is the Nagel-Schreckenberg [6] model. By default this model
describes vehicle movement on a highway but after few modifications it can also
be used to describe urban traffic. In Na-Sch cell size is stated as d = 7.5 m. In
each cell there can be only one vehicle (or none), vehicle’s velocity is described as
number of cells travelled during next iteration. Na-Sch is specified by following
rules of movement:

– Acceleration: v(t + 1) → min( v(t) + 1, vmax), where v(t) is current velocity
– Braking: v(t + 1) → min( v(t), g(t)), where g(t) is a number of empty cells

between vehicles
– Random element (unexplained, illogical braking): probability p that v(t + 1)

→ max(v(t) - 1, 0)
– Movement: x(t + 1) = x(t) + v(t)
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Fig. 1. Movement in Na-Sch for one traffic lane. Numbers at vehicles stand for current
velocity → number of cells travelled during iteration (source: [11])

Amongst adaptations of Nagel-Schreckenberg model one can points out
Hartman’s [3] work, where author includes not only multiple traffic lanes but
also roundabouts, conventional intersections, different vehicle lengths for par-
ticular vehicles (motorcycle, car, truck etc.) and modifies velocities accordingly.
Publication [8] describes traffic movement in a very detailed way, replacing every
intersection with a roundabout. Additionally some behaviors of drivers can be
explained in terms of Agent-Based Modeling [1].

The main reason why pure Na-Sch model couldn’t guarantee real results for
urban traffic is it’s primary assumption: it describes movement on a highway.
Highway traffic is diametrically different than urban traffic, where vehicles alter-
nately accelerate and brake. Almost every vehicle moves with different velocity
than other close-by vehicle which requires different approach. The differences
between modelled urban traffic and reality are described in the book [10].

3 Proposed Model

3.1 Model Description

Model presented by the authors is based on classic Nagel-Schreckenberg model
and a generic two-lane model (more suitable for representing urban traffic) pre-
sented by Rickert, Nagel, Schreckenberg and Latour [9]. Changes introduced to
those representations include:

– length of automaton cell changed to 2.5 m in order to adjust the model for
real-life urban traffic speeds (the effect of this modification is that one vehicle
does not fit in a single cell but the main purpose of the model was to simulate
the distribution and flow of motion in general and not to simulate it accurately
in micro-scale)
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– maximum speed of each car is randomly generated from range [3; 5] in order
to simulate different vehicle types and psychological profiles of drivers (i.e.
some drivers, especially elderly ones tend to drive slower in contrast to young
drivers that more often are driving in a reckless way)

– periodic boundary for conditions are no longer present – a car that exits one
road is transferred to another road at the same intersection

– generic two-lane model was expanded in order to model a multi-lane road
– modified movement algorithm – in each iteration, apart from updating cars

speed and position, the possibility of lane changes are considered

Single street is represented by an individual automaton for each lane with
specified rules of transition between them. In each iteration a car i switches lane
to another when following conditions are satisfied (from [9]):

gap(i) < l (1a)
gapo(i) > l (1b)

gapo,back > lo,back (1c)
rand() < pchange (1d)

Fig. 2. Graphical presentation of the lane changing rule with “gap” parameters

gap(i) denotes numbers of free cells in front of a car on current lane, gapo(i)
is an analogical distance on the destination lane, gapo,back(i) represents dis-
tance to the nearest car behind on destination lane, l and lo,back are parameters
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defining how far the driver looks ahead and behind on appropriate lanes (both
are determined by maximum speed), pchange denotes probability of lane change
(this represents irrational behaviour of a driver – staying on current lane despite
satisfaction of necessary conditions for a lane change).

Lane changes are not symmetrical – when considering switching to a lane
closer to the right side of the road condition 1a does not apply. That means that
a driver tries to return to the rightmost lane even if situation on his current lane
does not urge him to do so. This represents the rule, enforced by traffic law, of
driving as close to right edge of the road as possible (for a right-hand traffic).

In each iteration, for each lane on a road there are two steps of simulation:
firstly lane changes are conducted – conditions given in 1 are checked for every
car. After that, in step two, we apply regular Na-Sch rules for updating current
speed and position of each car.

This representation of a single street is a building block for creating a model of
a road network. Those blocks are joined together by a simple intersection model.
When a car travels “off” the current road it is transitioned to one of the adjacent
roads on the particular intersection (with certain probability distribution). On
each intersection a simple traffic lights mechanism was implemented to provide
collision avoidance.

The simple mechanism of traffic lights in our model is based on the assump-
tion that cars located on only one road at the time are allowed to enter an
intersection. In addition, the intervals of traffic lights changes are independent
of traffic volume or time of day.

On outer edges of modelled area authors implemented a mechanism of gen-
erating new cars to populate simulation area and removing the ones leaving it.
Generation of new cars happens with probability based on external data.

Cars that are generated do not have any target destination, but move around
the map in a random way, associated with the probability distribution assigned
to each intersection.

3.2 Model Implementation

Model described in previous section has been implemented as a Python applica-
tion. Matplotlib library has been used for developing a user interface.

The input of presented application is a data set containing information about
traffic volume outside represented area. Upon that data the amount of cars gener-
ated in each iteration is determined. Every minute of simulation the application
returns information about traffic density at each intersection inside simulated
area (“virtual sensors”). Virtual sensor is basically a counter that counts cars
which have gone through the intersection in the last minute of simulation.
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4 Simulation

4.1 Modelled Area

For the purpose of simulation a portion of Darmstadt city was modelled.
Darmstadt is a city located in southwest Germany and has a population of
about 157,400 (at the end of 2016). A company “[ui!] Urban Software Institute
GMBH”1, located in Darmstadt, provides data about traffic, based on readings
from sensors distributed at about 200 intersections in the city.

Modelled area covers eight intersections connected by ten roads with various
number of lanes. Chosen area is presented in Fig. 3.

Fig. 3. Modelled area with roads marked

4.2 Model Calibration

The calibration of the model was focused on finding an appropriate assignment
of probability distributions for each intersection. The other parameters of the
model were determined before calibration and remained unchanged.

1 https://www.ui.city/de/.
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4.3 Simulation Procedure

Throughout the simulation, the parameters of the intersections remain
unchanged. Only the parameters responsible for the frequency of new cars are
modified. Thanks to the modification of these parameters we were able to adjust
the intensity of traffic flowing into the modelled part of the city. These param-
eters were calculated for each minute of the simulation directly from real data
from sensors. At the beginning of the simulation, the grid is empty.

5 Simulation Results

5.1 Conducted Simulations

The aim of the first experiment was to examine the distribution of traffic gen-
erated upon input data from sensors outside simulated area. Output data from
the simulation were later compared with actual data from sensors at considered
area.

The intention of the second experiment was to check the models response for
a significantly greater traffic load (in our case five-fold the normal traffic density).
The results of this experiment were evaluated qualitatively, the analysed factors
were: occurrence and distribution of traffic jams and general smoothness of traffic
flow.

5.2 Results

In the first experiment the simulation was performed five times and average
value of traffic flow for each “virtual sensor” was calculated. Figures 4, 5, 6, 7
and 8 show the comparison of those mean values and measurement data from
real sensors for each minute of simulation. Results are presented for each minute
separately in order to present the accuracy of the model over time. Figure 9 shows
relative error between mean values and measurement data in every minute of
simulation for each intersection.

Values 0 appearing for sensor A99 were present in data from real sensors and
have been taken into account while establishing parameters of the model.

Results of the simulation show, that the data obtained during the simulation
correlate strongly with the measurement data, except for intersection A104 in
the fourth minute of the simulation. Likely cause for such non-compliance in
this particular point is that the probability distribution was not selected suffi-
ciently correctly. This issue is an area where a great deal of improvement can be
achieved.

Nonetheless, we should not draw any firm conclusions about the accuracy of
the model, since the simulation lasted only five minutes. However, the results
obtained allow us to conclude that with appropriate modifications the Na-Sch
model can be used for urban traffic modelling.
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5.3 Numerical Indicators

In this subsection we present numerical indicators that quantify overall agree-
ment between the model outcomes and the real data:

– Mean Absolute Error (MAE): 4.95
– Root mean squared error (RMSE): 7.53

Fig. 4. The first minute of simulation Fig. 5. The second minute of simulation

Fig. 6. The third minute of simulation Fig. 7. The fourth minute of simulation

Fig. 8. Fifth minute of simulation Fig. 9. Relative errors for each
intersection
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Results of the second experiment are presented in Figs. 10 and 11. Each red
dot represents one vehicle. In presented screenshots one can observe a congestion
occurring on the main roads.

Fig. 10. The second experiment (Color
figure online)

Fig. 11. The second experiment (Color
figure online)

6 Conclusions

The first of the experiments carried out shows that the proposed model and its
parameters describe the analysed area properly. Point discrepancies between the
results of the simulation and the actual data may be the result of various factors
that are difficult to predict and model (e.g. blocked road due to delivery to a
shop, bump, etc.). It is worth noting that there is no increase in the discrepancy
between the simulation data and the measured data over time, which confirms
the reliability of the model.

The second experiment assesses the ability of existing road infrastructure
to accommodate a significantly higher number of cars. As can be seen in the
attached simulation results, a five-fold increase in traffic volume compared to
normal levels causes significant congestion on the most frequently used roads.
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This is a common phenomenon and its prevention is a major challenge for road
infrastructure designers. There is also an interesting phenomenon of complete
congestion in Rheinstraße, one of the main arteries of the city, while there are
almost empty roads parallel to it, which can unload the traffic jam. The phe-
nomenon shows that the modelling of urban traffic presented in the project has
great potential for the very desirable optimisation of urban traffic today by, for
example, intelligent systems that can anticipate the possibility of congestion and
prevent its formation by means of appropriate traffic light control.

Presented model can be a subject of further development in order to make it
more realistic. This can be achieved by taking into account weather conditions,
time of year, random events such as the passage of privileged vehicles (ambu-
lance, fire brigade), crash or failure of traffic lights. After promising results of
the simulation, the model should also be extended in the future to cover a sig-
nificantly larger area than 8 junctions and during the simulation one should pay
attention to the density of vehicles in particular sub-areas. However, we would
like to show that using relatively simple modification of Nagel-Schreckenberg
model adapted to city conditions/traffic we are able to gain reliable results. We
believe that the proposed model will be a good basis for large scale models of
traffic.

Acknowledgement. We would like to express our gratitude for [ui!] Urban Software
Institute GMBH (https://www.ui.city/de/) for sharing their data regarding traffic in
the city of Darmstadt.
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Abstract. The problem of efficient pedestrian simulation, when large-
scale environment is considered, poses a great challenge. When the sim-
ulation model size exceeds the capabilities of a single computing node
or the results are expected quickly, the simulation algorithm has to use
many cores and nodes. The problem considered in the presented work
is the task of splitting the data-intensive computations with a common
data structure into separate computational domains, while preserving
the crucial features of the simulation model. We propose a new model
created on the basis of some popular pedestrian models, which can be
applied in parallel processing. We describe its implementation in a highly
scalable simulation framework. Additionally, the preliminary results are
presented and outcomes are discussed.

Keywords: HPC · Supercomputing · Pedestrian simulation · Crowd
dynamics · Proxemics

1 Introduction

The purpose of simulations is to predict the behaviour of certain aspects of real-
ity. Examples of their commercial applications are crowd dynamics during social
events or city life in video games. Complex simulations, representing a wider
spectrum of reality, are capable of yielding results both more precise and span-
ning over a larger simulation area. To satisfy increased resource requirements of
such simulations, it is necessary to use computers with high computing power.
Supercomputers meet this requirement due to high availability of nodes, often-
times configurable in terms of the number of dedicated computational cores and
memory.

Large-scale crowd simulations have the prospect of becoming an important
tool in which one can test different crowd dynamics scenarios for public facil-
ities and mass gatherings. Increasing availability of computing power enables
the implementation of tasks in such a scale that previously was impossible to
achieve/implement. However, it should be emphasized that the implementation
of large-scale simulations differs significantly from standard simulations. One of
c© Springer Nature Switzerland AG 2020
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the biggest challenges is the correct synchronization of individual computational
domains.

In our work we present the use of the Xinuk framework1 [2] to tackle
these problems. It allows to distribute the calculations into many nodes while
preserving statistical correctness of the result. It is worth noting that this
solution introduces an additional load caused by the information synchroniza-
tion between adjacent nodes. However, significant optimization of efficiency is
achieved through unidirectional communication. This approach necessitates an
appropriate modification of the model, which was created with the single-node
environment in mind.

We cannot afford for the imbalance between the simplification or omission of
model features and its adjustment to the solution discussed above, therefore our
work focuses both on desynchronization of the distributed simulation, but also
on retaining the correctness of the whole system. This introduction is followed by
the presentation of the related works, then the proposed model is discussed and
the implementation results are shown. Finally, the paper includes conclusions.

1.1 Related Works

In [9], the implementation of a model based on Cellular Automata with the use
of the Social Distance Model was proposed. The model has been optimized for
performing calculations using GPU technology. The key condition for efficient
use of the GPU is to divide the calculations in such a way that the individual
threads execute identical sets of functions - kernels - simultaneously. Therefore,
the grid of the Cellular Automata was divided between the threads, in such a
way that the one-threaded calculations were dealt with calculations related to
one cell and executed the same functions in parallel with others.

According to the authors, the model is characterized by great performance
and is able to realistically reproduce the movement of up to 108 pedestrians.

There are many simulation frameworks supporting execution in HPC environ-
ments, significant portion of which employ agent-based approach [1]. However,
only a few of those are actually suited for large-scale in parallel and distributed
infrastructures and capable of efficient utilization of available resources.

An example of such a tool is REPAST HPC [4], a framework operating
on the Message Passing Interface (MPI) standard [11] which has been used for
parallelizing a large-scale epidemiological model. Results and details of this study
can be found in [5].

Another example of tool supporting large scale simulations in social context
is FLAME [3] which uses a distributed memory model, Single Program Multi-
ple Data (SPMD) with synchronization points. As in the case of REPAST, the
FLAME framework also uses MPI as a means of communication between agents
on different computational units. The example simulation applying FLAME

1 A Scala/Akka distributed simulation framework developed at AGH University of
Science and Technology.
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framework can be found in [8] and includes a Carnot economic model of com-
peting companies or modeling biological systems as ant colonies.

PDES-MAS framework, based on Parallel Discrete Event Simulation (PDES)
paradigm, is also capable of running large scale social science simulations. This
tool divides a simulation model into a network of concurrent logical processes,
managing the shared state between agents using a tree-like network in a space-
time Distributed Shared Memory (DSM) model [13].

The Pandora framework is yet another example of an MPI based tool with the
possibility of using Cloud infrastructure [17] alongside traditional HPC resources.

An interesting simulation platform created specifically for complex artificial-
life simulations is Framsticks [10]. As well as previously mentioned frameworks,
it is capable of running in distributed environment.

All of the platforms mentioned above use standard technologies, like message
passing (MPI) to create processes and perform communication in parallel and
distributed environment – a well-established standard used for many years. The
standard approaches employing MPI are implemented in C++, which can offer
good performance, but is not particularly efficient in terms of rapid experiments
development and does not provide flexibility present in more modern approaches.

A high degree of distribution provides a great magnitude of performance
boost, but it also exhibits all the disadvantages of distributed computation. The
performance of a distributed solution is prone to decrease as a result of ineffi-
cient data synchronization, inter-node communication and serialization. Poten-
tial instability of hardware, especially network communication, might introduce
significant drawbacks on its own. Creating a solution that will maintain a consis-
tent state throughout an entire large computational cluster is a serious challenge.
It is necessary to put a lot of effort to ensure that the overhead is not outweigh-
ing the advantages of distribution, in result making it redundant and not worth
utilizing the resources.

1.2 HPC Simulation Framework

The need for efficient computing in the domain of micro-scale models simulation
is unquestionable. Use of High Performance Computing hardware in large scale
simulations could significantly improve performance, however, implementing a
scalable simulation algorithm, which can efficiently utilize hundreds or thousands
of computing nodes is not straightforward. The simulation of physical systems
require memory-intensive computations with a single data structure being con-
stantly updated, while achieving scalability for highly parallel hardware imposes
splitting the computational task into relatively independent parts.

Overcoming the bottleneck of data structures synchronization during model
updates requires dedicated algorithms. The algorithm has to accept the unavail-
ability of most recent data. Performing the update using slightly outdated infor-
mation can lead to model constraints violation, which has to be addressed. In
some cases it is possible to mitigate the influence of such desynchronization,
which has been demonstrated in [14]. The presented urban traffic simulation
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could handle significant desynchronization of computations in different compu-
tational domains thanks to the dedicated model update algorithm.

The generalization of the concept has been presented in [2], where a uni-
versal, scalable simulation framework, called Xinuk, is presented. The frame-
work supports parallel simulation (built according to well-known actor model
of parallelism, using Akka) of physical environments, which are represented as
two-dimensional uniform grids of cells. The update procedure is inspired by
classic cellular automaton. The framework implements abstract information dis-
tribution model, which can represent various phenomena and allow splitting the
simulated environment into separately updated computational domains.

The Xinuk framework is implemented in Scala – it uses the Java Virtual
Machine. It has been successfully tested on a large-scale HPC system, the
Prometheus supercomputer2. The results presented in [2] show that the frame-
work can efficiently use 144 computing nodes (3456 cores) working on a single
simulation task. The particular simulation models, used in the mentioned work,
were very simple, used for demonstrating the scalability rather than analyze the
simulation results.

In this paper we present the extensions introduced to the Xinuk firework,
which make it possible to implement a variant of a well-recognized pedestrian
motion model. Showing the ability of implementing its highly-scalable version is
the main contribution of this work.

1.3 Crowd Dynamics Modeling

Usually two levels of modelling approaches are considered: macroscopic and
microscopic. Macroscopic methods treat the whole crowd as a single entity, with-
out considering the movement of single units. An algorithmic tool that can be
used to implement this type of models is fluid mechanics or gas dynamics. Such
approaches are developed for instance by Huges et al. [7].

Microscopic modelling analyses the behaviour of individuals. The two main
approaches proposed in the literature are Social Force Model proposed in [6]
and Social Distances Model (SDM) described in [16]. SDM distinguishes four
social distances: intimate distance, where humans allow only very close relatives,
personal distance is typical for friends, social distance is the most common in
interpersonal interactions and appropriate for strangers, finally the last identified
distance is public distance, also called the distance of public speeches.

2 Proposed Model

The aim of our work is to investigate the possibilities and difficulties result-
ing from the implementation of models designed for the environment with one
computational domain, in the HPC environment. We decided to conduct our
research by creating a city simulation that focuses on pedestrian traffic. Interac-
tions between pedestrians [12] were implemented on the basis of proxemics rules
2 http://www.cyfronet.krakow.pl/en/.
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and especially the Social Distances Model [16]. The model has been adapted to
the requirements of the Xinuk framework [2], which enables using multi-core and
multi-node hardware.

2.1 Social Distances Model

The world is represented by a dedicated cellular automaton. Its cells can be in
one of three states: Movement space, Occupied and Obstacle.

State Occupied means that there is a person in it. In the subsequent iterations
of the simulation a pedestrian can change position and releases the cell. State
Obstacle are cells that will never change their state and remain inaccessible.

The gray filling in the middle of the square symbolizes a pedestrian (Fig. 1b).
This concept has been simplified in relation to the original SDM [16], where the
pedestrians were represented by ellipses.

Fig. 1. Simulation schema (a) and GUI (b).

It is not possible to use the exact implementation of the SDM model in a
multi-core environment. The unidirectional communication between computa-
tional domains causes difficulties which impose changes in some features. Infor-
mation about the result of calculations on one node is sent to another one without
getting any feedback. These places are called seams, because it expresses their
nature reasonably.

The most important feature of framework Xinuk is the unique method of
information propagation. Using “signal” we created social areas which are an
intrinsic part of daily life according to proxemics [15].

2.2 Extended Xinuk

The Xinuk framework was a good starting point for our purposes. Its current
version is used to scale the simulation, in which the reproduced world has no
complicated terrain (sea or meadow), and the simulation scalability is used to
give more accurate results.
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The goal was to simulate pedestrian traffic in the whole city. It required a
different approach than the one imposed by the Xinuk framework. Our simu-
lation world was supposed to be a huge space. It had to be divided into many
computational domains in order to acquire results in a reasonable time. We have
prepared the framework to be extended with features that enable us to divide a
ready-made map of a city between nodes.

In the simulation initialization process, individual computational domains
are assigned an identifier, which allows to determine which part of the city a
given unit calculates. We were able to initialize the grid of a CA for a specific
computational unit, but it takes place independently on each node. Hence, it was
impossible to set the obstacles that were located on the seams. After introducing
changes we have great foundations for generating obstacles on the basis of the
appropriate map fragments.

2.3 Pedestrians Movement

Persons, who participate in everyday life, move around the city from place to
place. In our simulation we simulated the same process.

Each pedestrian without a predefined goal is assigned a task. Its comple-
tion concerns approaching a specific point within the simulated city. This allows
missions with targets, located in the place of an obstacle (e.g. wall), to be accom-
plished.

In the current implementation, pedestrians do not calculate the route along
they move. We came to the conclusion that the classical path finding algorithm
such as A* would cause a large and unnecessary increase in computing complex-
ity. Instead, the direction is calculated in each iteration, then during the motion
selection, pedestrians prioritize the cells that brings them the closest to the com-
pletion of the task. Unfortunately, this approach has a huge disadvantage, as it
works correctly only if the map does not have “traps” (for example wall in shape
of horseshoe). In case of the presence of mentioned “traps”, pedestrians would
cyclically move within a group of cells.

To make simulation credible, we introduced social areas [16]. Each pedestrian
generates signal which defines his own social area. For each iteration of the
pedestrian movement, there is an appropriate number of iterations of signal
propagation. Therefore it spreads faster than people move.

Pedestrians should avoid obstacles and not encroach on social areas of others
at the same time. We developed a function (Eq. 1) that assigns value to cells,
which represents attractiveness of a cell for a pedestrian to enter.

f(distance, signal) = α ∗ norm(distance) − β ∗ signal (1)

A pedestrian task represented by a domain identifier and relative coordi-
nates are converted into direction and distance. Distances are normalized so
that they are within the [0, 1] range. Distances are then multiplied by the coef-
ficient (α ∈ N+) for evaluating the best cell in terms of shortening the distance.
The second factor taken into account is the signal emitted by other pedestrians.
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The value of the repulsive signal (signal) including the crowd size is multiplied
by a repulsion coefficient (β ∈ N+). Finally it is subtracted from earlier obtained
value. Properly selected coefficients guarantee that the pedestrian will reach the
destination quickly, while not disturbing the privacy of other participants of
everyday life.

As mentioned earlier, the data is propagated unidirectionally between com-
putational domains. When a pedestrian leaves the map fragment handled by a
node, the information is sent to the adjacent one, which then takes over. Mov-
ing people are received and processed without objection, they cannot turn back,
even if there is no room for them. Hence, it is necessary to take a number of
actions to prevent or handle conflicts.

Fig. 2. Cases when crowd formation is allowed. Pedestrians are marked with letters.
X represents problematic one.

It may happen that a pedestrian passing between computational domains
(Fig. 2a) will have to be placed in a spot that is already occupied by another
one. We have solved this problem by allowing a crowd of people to form. Its
graphical representation is identical to the single pedestrian, but the information
is recorded and at the first opportunity the crowd separates.

We also allow it to appear outside of the border of domains. When shifting
pedestrians, they are considered in an order and the decision is made on the basis
of available data. Therefore, people are moved without examining the situation
of others who are not considered yet. It happens (Fig. 2b) that a pedestrian is not
able to make a move, because he/she is blocked by others or the terrain. Then
another pedestrian takes his/her place, as at the stage of move determination it
is not known that the next pedestrian will not be able to change position. Thus,
a conflict occurs with two pedestrians occupying one place.

3 Results

We decided to transfer our simulation to HPC. For this purpose, we have
exploited infrastructure available at AGH University of Technology in its
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Academic Computer Center AGH Cyfronet. We used ‘Zeus’ supercomputer,
which consists of 25468 computational cores.

Fig. 3. Crowd formation frequency statistics.

We ran the simulation in two similar configuration to compare influence of
social areas effect. Both tests were conducted on 200,000 iterations, and the
world was divided into 256 parts, each with 225 cells.

As crowd formation is an important difference from SDM implementation
[16], we decided to keep track of how often it happens (Fig. 3a).

Fig. 4. The simulation visualization with visible signal.

Presence of signal affects motion of other pedestrians, because they interpret
the signal as discouraging and they rarely select cells with a high level of it.
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Hence, we reproduced behaviour of preserving the distance to the strangers
presented in [15], reducing the frequency of crowd formation (Fig. 3b).

To visualize social areas, the signal was presented in Fig. 4. Change of the
hue of graphical representation of the cell pictures the power of signal. Social
areas preserve consistency despite being located on different computing units
(Fig. 4b).

At the end, we checked how big performance boost we get using many
threads. Therefore we ran two 100,000-iteration tests, both with the same size of
CA (2402 cells) simulating movement of 256 pedestrians. The first one was con-
ducted using only one processor Intel Xeon (24 cores), the latter 10 processors
(240 cores). Amount of time saved due to distributed computation was signifi-
cant. For many CPUs, it took only 34m 36s to finish, but one needed 15h 28m
19s.

Fig. 5. Example of social area phenomenon.

Implemented movement algorithm can be presented in Fig. 5, where we also
observe a behaviour of pedestrian repulsion. Two persons avoid encroaching on
social areas of other pedestrians by taking other route than the shortest one
(marked with the arrows).

4 Conclusions

Although the presented model seems to be relatively simple, the results obtained
are satisfactory. The crowd is formed less than half (47%) as much frequently
when enabling influence of social areas on the movement selection process. We
successfully implemented SDM model in distributed environment.

Regarding the prepared HPC crowd simulation one can notice following,
further research directions: implementation movement pedestrian on a real map,
introducing obstacles and enhancement of movement algorithm.

Loading a complete map to each node creates memory lost, hence dividing it
at initialization of the simulation and distributing parts through computational
units seems to be the best approach.
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After introducing complex environment, there is a necessity of the advanced
movement algorithm, because some transition ways through the nodes may
be blocked. As a solution to that problem, we propose composing movement
algorithm consisted of two components: one global based on a transition graph
between nodes, second one with costs of reaching adjacent computational unit
using the signal mechanism.
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