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Abstract. Many biological systems including humans are made up of various
cells. In addition, cells of a specific type gather together to form tissues, and organs
are organized as an aggregate of multiple tissues. One of the tissues constituting
organs is epithelial tissue. Epithelial tissue is composed of epithelial cells, and
almost all the surfaces inside and outside the body is coveredwith epithelial tissue,
many ofwhich aremonolayered.Mathematicalmodels expressingmorphogenesis
of epithelial tissue have been developed by many researchers. One of the models,
the cell vertex model [1] discusses tissue growth through polygonal approxima-
tion of cells, but it does not take into account the curvature of cell boundaries.
Ishimoto et al., developed the bubbly vertex model [2] introducing the curvature
into the model and studied the morphology of the epithelial tissue.
In this study, we focus on two mathematical models of epithelial tissue: the

cell vertex model and the bubbly vertex model. We analyze the rheological
properties of the models by simulation and aim at finding a correspondence with
actual viscoelastic epithelial tissues.
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1 Introduction

A number of researchers have developed mathematical models that express the mor-
phology of epithelial tissue, which we focuses on in this research: the cell vertex model
(VM) [1, 3, 4], the cell-centered model [5], the cellular Potts model [6, 7] and so on.
Among them, vertex model discussed tissue growth by polygonal approximation of
cells, but it does not take into account the curvature of cell boundaries. In 2014,
Ishimoto et al. developed the bubbly vertex model (BVM) [2] introducing the curvature
into this model and studied the morphology of the epithelial tissue.

Morphogenesis of epithelial tissues is nothing but the formation of multicellular
mechanical structures by intercellular communication and intracellular activities.
Computer-aided elucidation of such formation mechanisms has been awaited for fur-
ther applications. However, correspondence between existing simulation models and
epithelial tissues has not been established due to the complexity of even the basic
physical properties of the tissues [8]. In addition, the properties may vary depending on
morphogenetic stages and the affiliated organs.
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In this study, we will quantify the rheological properties of the two models (VM
and BVM) by simulation, aiming at establishing a correspondence with various
epithelial tissues with viscoelasticity.

2 Rheology and Complex Modulus

In this study, we use some concepts of rheology to analyze the viscoelastic properties
of epithelial tissue. Since epithelial tissue is a collection of epithelial cells, and the cells
are composed of many proteins, epithelial tissue can be considered as a highly self-
assembled macromolecular substance. Polymeric substances are said to be typical
viscoelastic bodies. Since a viscoelastic body is a substance having both viscosity and
elasticity, in the mechanical behavior of the tissue viscous fluid and ideal elastic
responses would be combined in a complex manner.

One of the simplest viscoelastic models is the Maxwell model. The system can be
represented by a dashpot and a spring arranged in series (Fig. 1).

To quantify the mechanical properties of this linear viscoelastic model, the rela-
tionship between stress and strain is used when strain � tð Þ changes periodically as in
Eq. (1).

� tð Þ ¼ �0 � eixt; ð1Þ

where �0 is the strain amplitude and x is the angular velocity. Since, in general, there is
found a phase lag between the strain � tð Þ and the acting stress s tð Þ, the stress s tð Þ is
represented with the phase difference d by

s tð Þ ¼ s0 � ei xtþ dð Þ; ð2Þ

where s0 is the stress amplitude. Setting Gj j ¼ s0=�0, G0 ¼ Gj j cos d and G00 ¼ Gj j sin d
for simplicity, Eq. (2) becomes

s tð Þ ¼ Gj j � �0 � eixt � eid ¼ Gj j � eid � �: ð3Þ

Here, Gj j is called the absolute dynamic elastic modulus, G0j j is the storage
modulus, G00j j is the loss modulus, and G� is expressed by the sum of G0 and G00 as

G� ¼ G0 þ iG00; ð4Þ

where G� is the complex modulus. In what follows, we will quantify the complex
modulus of the two models. Note that we usually do not intend to do shear test of the

Fig. 1. Simple Maxwell model.
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tissues in the lateral direction. So, we do not consider the shear modulus but the
definitions of the moduli given above in what follows.

3 Numerical Analysis of In-Silico Epithelial Tissues
by Mathematical Models

3.1 Vertex Model

In the VM, cells in tissue are approximated by polygons, and these polygons are
expressed by vertices, and edges connecting them. Here, the vertices represent multi-
cellular connections and the edges represent cell boundaries. In this model, the edges
are defined by straight lines, and in most cases, it is assumed that each vertex is
connected to only three edges. Also, the energy in the network is described as

E xif gð Þ ¼
X

i;jh i Kijlij þ
X

a

Ca

2
L2a þ

X
a

ja
2

Aa � A0
a

� �2 ð5Þ

using the potential function [3], where i and j are adjacent vertices, and a labels a cell.
xi is the 2D position of the ith vertex, i.e., the junction of the cell boundaries. Kij is a
constant, Ca and ja are nonnegative constants, lij is the cell edge length, and La is the
cell perimeter. Aa is the area of cell a and A0

a is its preferred area. The area “constraint”
of the third term is introduced as a “mechanism to make the cell size uniform” in [4].

The equation of motion at the vertex position is given by

gi
dxi
dt

¼ � @E xif gð Þ
@xi

: ð6Þ

The left hand side of Eq. (6) is the friction force, and gi represent the friction
coefficient. The right hand side is the potential force, and the inertia term is ignored in
this equation.

3.2 Bubbly Vertex Model

In the VM, the cell boundary is expressed by linear approximation, but one can
introduce curvature to it as in the BVM [2]. In the BVM, each cell has a unique
hydrostatic pressure, and each cell boundary has a unique curvature resulting from the
mechanical properties of the boundary and the surrounding pressure. The general form
of the potential energy function of this model is defined in [2] as

E xif g; Rij
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where Rij
� �

is the curvature radius of the cell boundaries, a and b are the cell number.

The pair i; jh i represents the cell boundary connecting vertices i and j. Kab and C lð Þ
ab are

constants dependent on the cells a and b on both sides of the cell boundary, and C Lð Þ
a is

a nonnegative constant for cell a. lij is the cell boundary length. j 1;2ð Þ
a is a nonnegative

number depending on the cell height of epithelial tissue [4]. dSa is the surface element
of the cell a for the integration of the osmotic pressure Pa, and Pouter is the pressure in
the outer region of the tissue when the tissue boundary exists.

The equation of motion of the BVM is given by

gi
d xi � Xið Þ

dt
¼ � @E xif gð Þ

@xi
: ð8Þ

The left hand side of Eq. (8) is the friction, and the right hand side is the potential
force. The variable Xi is introduced as a referential position to the vertex i. The noise
term is suppressed for convenience, and the inertia term is neglected as in the VM.

3.3 Analysis Method and Initial Conditions

Most cell shapes in epithelial tissue show hexagonal shapes in a mechanically stable
state, as Staple et al. analyzed the behavior of cell shapes in tissue based on the
relationship between K and C in Eq. (6) [3]. In our study, in order to analyze the
rheological properties of the tissue in which the hexagon seems to be in the mechanical

stable state, analysis is performed by changing parameters Kab, C
lð Þ
ab and C Lð Þ

a within the
parameter range for the stable hexagonal lattice in [3].

As a method of evaluating the simulation, complex modulus is used to quantify the
rheological properties of the epithelial tissue, and its mechanical indications is to be
analyzed (Fig. 2).

We use two types initial configurations for a tissue shape (polygon and square) for
different in-silico experiments, and the polygonally shaped tissue is composed of

Fig. 2. Polygon shape (left) and square shape (right) initial configurations.
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217cells, and the square-shaped tissue is composed of 250 cells. Here, each cell is
randomly arranged first by Voronoi division, and the tissue is relaxed mechanically
enough to be the equilibrated initial configuration.

4 Results and Discussion

In this section, we present our simulation results of viscoelastic measurement of the
polygonal stress test in the VM and BVM, and the results of the square stretch test in
the VM. In these simulations, the polygonal tissue is isotopically stressed from the
outside of the tissue, and in the square tissue, the left side of the tissue is fixed and the
stress is applied to the right side so that a prescribed strain is achieved.

Figure 3 shows the storage and loss moduli of the polygonal stress test in the VM
and BVM cases. Here, there are 5 data points, and a spline curve interpolation is
applied. The complex moduli are converted from the complex compliances.

Fig. 3. Viscoelastic properties of the VM (top) and the BVM (bottom) in the polygonal tissue.
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In Fig. 3, the tissue behaves in a solid-like behavior in the range where G0 is larger
than G00, and the liquid-like behavior in the range where G00 is larger than G0. In the
VM, G0 and G00 intersect in the vicinity of log10 x ¼ �0:5 in each parameter, but in the
BVM, it can be seen that both moduli do not intersect in the frequency range for this
simulation. From this result, the BVM is considered to exhibit complex viscoelasticity
in a wider area compared to the VM.

Figure 4 shows the simulation results of the VM in a square tissue. Here, there are 5
data points, and the same curve interpolation is applied. The viscoelastic properties of
the square tissue by the stretch test are largely different from the properties plotted in
Fig. 3. A reason why they are largely different is because, in the latter test, a tissue is
adhered to a substrate such as PDMS and vibrated together. The different friction works
between the substrate and the tissue.

Among the tested parameter values in the stretch test, at K ¼ 0:12 and C ¼ 0:03,
the loss modulus has a different response from the others. With regard to storage
modulus, there is no significant change, so the test might investigate only the viscosity
component of the tissue. To deepen the discussion, it would be interesting to see
whether this phenomenon is unique to this set of values and, if so, the set characterizes
the tissue.

Fig. 4. Viscoelastic properties of the VM in the square tissue.
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5 Conclusion

We analyzed the viscoelastic properties of polygonal and square epithelial tissues using
the cell vertex model and the bubbly vertex model. In this study, simulation parameters
were set for the tissue to be hexagonally stable state, and the viscoelasticity of the
epithelial tissue was confirmed from the rheological analysis by in-silico experiments.
It would be better to continue to analyze the viscoelastic properties with more
parameter values in the future.

Although the initial configurations used in these simulations are constructed from
random Voronoi division, it would be more implicative to use initial configurations
constructed from experimental images.
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