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Abstract. The reconstruction of three-dimensional biological structures from
magnetic resonance image and computed tomography data remains challenging
because of the limitations of existing numerical techniques and substantial
computer resources required. The work renders the structure as the zero-level
contour of a level set function, which converges to the model when an objective
functional, the sum of a fitting energy term used to extract the local intensity and
a diffusion term acting as a regularization contributor, is minimized. In addition,
a reaction-diffusion method developed to replace the original time-difference
algorithm by finite element analysis. Numerical examples illustrate that corre-
spondingly clear and smooth structures of a woodpecker’s skull can be obtained.
Compared with the model reconstructed in a commercial tool, Mimics, our
results presents substantially clearer and smoother interfaces without any iso-
lated part.
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1 Introduction

It is highly desirable to build effective and reliable three-dimensional (3D) models from
tomographic images collected from computed tomography (CT) and magnetic reso-
nance (MR) because it will provide practicians with comprehensive and intuitive
structural information in clinic. The 3D reconstruction largely relies on image seg-
mentation techniques [1, 2] to separate the raw data into non-overlapped geometric
regions in line with their intensity information. However, there are still some diffi-
culties, such as inhomogeneity of tissues, artefacts of images, a lack of computer
resources, and irregularities of noise hinder the development of reconstruction of
complex biological structures.

Recently, the global fitting energy in Chan-Vese model, which is a popular
piecewise smoothed model and applies the specific energy functional as sum of the
contour perimeter and fitting term has been replaced by a term of local data fitting
energy, aiming to measure the image intensities on both sides of the contour. Its
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minimization allows the local intensity to participate in directing the motion of the
boundary [18]. In addition, a regularization term can be included into the energy
functional to increase the robustness of updating algorithm for the conventional
Hamilton-Jacobi equation. Nevertheless, there are still two issues associated with this
method: (1) small time step is compulsory when updating the governing equation with
time-difference method; and (2) the level set function should be re-initialized frequently
to remain the regularity [19].

In this study, we develop the reaction-diffusion approach to expediting the updating
process of Hamilton-Jacobi equation, which involves both a reaction process to express
local interaction between intensities and a diffusion process to allow the intensities
homogenized in a spatial context [20]. The original idea of the reaction-diffusion
method is to reveal the propagation of a gene population [21], and then it has been
successfully introduced to structural topology optimization [22] to make the objective
functional get convergent within fewer iteration steps. Another attractive character of
reaction-diffusion method is the dispensability of the re-initialization process because
the smoothness of the level set function is enhanced mathematically by a diffusion term
in the energy functional. The regularity of the contour can be fully retained by a
diffusion energy, thus the perimeter length term can be removed from the reaction-
diffusion model. Furthermore, the finite element method used in renewing the
Hamilton-Jacobi equation is able to allow a much larger time step than time difference
method. Finally, we use this reaction-diffusion based level set method to reconstruct the
skull of a woodpecker from the raw data, and hence a well-constructed structure is
obtained within few iteration steps. Compared with the model reconstructed in a
commercial tool, Mimics [23], our results presents substantially clearer and smoother
interfaces without any isolated part.

The rest of paper is organized as follows. In Sect. 2, we describe the image
reconstruction methodology. Section 3 presents some numerical implementations and
examples. Conclusion is drawn in Sect. 4.

2 Image Reconstruction Methodology

1. Level set method
Level set method distinguishes the individual parts from the raw data by tracing the
zero-level contour of a high-dimensional level set functional [13]. Mathematically, it is
represented as:

uðxÞ[ 0 8x 2 X1

uðxÞ ¼ 0 8x 2 C
uðxÞ\0 8x 2 X2

8<
: ð1Þ

where the interface is represented as Г, which commonly separates the solid region Ω1

and void region Ω2 in domain Ω, and x denotes the spatial variable. The evolution of
the boundaries with respect to the fictitious time t is tracked by the well-known
Hamilton-Jacobi equation, formulated as:
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@uðx; tÞ
@t

� VNðx; tÞ ruðx; tÞj j ¼ 0 in X ð2Þ

where VN is the velocity along the normal direction, which is normally determined as
the negative variational of an objective functional J with respect to the level set
function as:

VN ¼ � @Jðuðx; tÞÞ
@uðx; tÞ ð3Þ

where the negative sign allows the functional being minimized. By introducing the time
difference method, Eq. (2) becomes:

unþ 1 ¼ un þDtVN runj j ¼ 0 ð4Þ

where the finite time-step Δt needs to satisfy the Courant-Friedrichs-Lewy (CFL) sta-
bility condition [24]:

Vn
max � Dt� min hx; hy; hz

� � ð5Þ

Thereinto, hx, hy and hz denote the grid space in x, y and z directions, respectively.
Obviously, the size-dependent time step could result in very slow convergence for

the raw data with extremely high resolution in the level-set based image separation.
Conversely, large time increment may cause the level set function unstable and diverge
largely from the value of signed distance quickly in the evolution. Another reason of
low efficiency in updating the level set function is the compulsory re-initialization
process in each or every a few steps to guarantee the level set function remaining as a
distance function from the interface and therefore avoiding the ill-conditioning (e.g.
small gradient of level set function) when numerically locating the interface [25].

2. Reaction-diffusion equation
We herein propose to adopt the reaction-diffusion equation for improving the efficiency
of updating the level set function. Since the Hamilton-Jacobi equation is solved using
the finite element analysis in this algorithm, the constraint to the time step resulted from
CFL condition is released, and thus the re-initialization process becomes unnecessary.
Without specific indication, a general objective function J is employed without
showing its physical meanings in the following derivative. In the next Section, this
function will be replaced by a sum of two energy terms used for image segmentation.

The optimization problem is mathematically expressed as:

inf
u

FðuÞ ¼ JðuÞþ 1
2

Z
X
s ruj j2dXþ k

Z
X
dX� V0

� �
ð6Þ

in which k represents the Lagrangian multiplier for the volume constraint V0. The
second term in Eq. (6) represents the interface energy, which is widely used in image
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processing and other physical model like the Cahn-Hilliard equation [26]. For the sake
of controlling the regularization effect, it is weighted by a small positive factor s > 0.
This energy term serves as number of roles, such as a regulator to the optimization
problem, a smoother of the level set function, and a stabilizer of the algorithm. Due to
the competences between regularity and the smoothness, the re-initialization process
becomes unnecessary [22].

In accordance with the Karush-Kuhn-Tucker conditions [27], by introducing a
fictitious time t and assuming that the level set function u is an implicit function of time
t, the structural changes in domain Ω are naturally and flexibly implemented. In the
level set-based optimization method, the object functions are updated by solving time
evolutional equation as Eq. (2). Here, a standard algorithm to minimize function F is to
find the steady state solution of the gradient follow equation which assumes that the
variation of the level set function u with respect to time t is equal to @F=@u which is
the Gâeaux derivative [28] of the function F, as:

@u
@t

¼ � @F
@u

ð7Þ

Substituting Eq. (6) into Eq. (7), the following equation is obtained:

@u
@t

¼� ð@JðuÞ
@u

� sDuÞ ð8Þ

where Δ is the Laplace operator. Based upon the definition that the boundary is
composed of Dirichlet boundary on the non-design boundary and Neumann boundary
on the rest, the time evolutionary equation related to boundary conditions is expressed
as:

@u
@t ¼ � @F

@u¼� ðC @JðuÞ
@u � sDuÞ in X

@u
@n ¼ 0 on @Xn@CN

u ¼ 1 on @CN

8><
>: ð9Þ

In the reaction-diffusion method, sΔu is considered to be the diffusion term other
than the regularization term in the time-difference algorithm, while the derivative of the
cost function dJ(u)/du acts as a reaction term to account for the change in the curve
(2D) or surface (3D) which is weighted by a factor C for normalization, defined as [22]:

C ¼ c
R
X dX1R

X
@JðuÞ
@u

��� ���dX1

ð10Þ

Rearrange Eq. (9) in a weak form for implementing discretization by finite element
method, as follows:
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R
X

uðtþDtÞ
Dt udXþ R

X rTuðtþDtÞðsruÞdX
¼ R

X ðC @JðuÞ
@u þ uðtÞ

Dt ÞudX for 8u 2 eu
u ¼ 1 on @CN

8<
: ð11Þ

where eu is the Sobolev functional space of level set function.
For the time-related discretization, the implicit scheme is applied and the domain Ω

is discretized based on finite element method. Thus, the discretized evolution equation
is formulated as:

1
DtT1 þ sT2
� �

fðtþDtÞ ¼ uðtÞ
Dt þC @JðuÞ

@u in X
u ¼ 1 on @CN

�
ð12Þ

where f(t) is the nodal value vector of the level set function at time t, T1 and T2 can be
described as follows:

T1 ¼
Se
j¼i

R
Ve
NTNdVe

T2 ¼
Se
j¼i

R
Ve
rNTrNdVe

8>><
>>: ð13Þ

where e is the number of element. j is the number of the elements and N is the
interpolation function of the level set function.

Through application of the reaction-diffusion equation to update the level set
function, the compulsory re-initialization process in the level set method and the typical
weaknesses from time difference method can be avoided. Therefore, introducing
reaction-diffusion equation into the level set method is able to establish a more efficient,
powerful and re-initialization-free algorithm for 3D reconstruction.

3 Numerical Implementation and Examples

1. Numerical implementation
Compared with current popular energy formulation in dealing with image segmentation
schemes, here we only apply a data fitting energy [18] and a diffusion term which
replaces the sum of two necessary terms in others, including an arc length term and a
regularization term.

Fðu; f1; f2Þ ¼
X2
i¼1

ki

Z
ð
Z

Krðx� yÞ IðyÞ � fiðxÞj j2Me
i
ðuðyÞÞdyÞdxþ s

Z
ruðxÞj jð Þ2dx

ð14Þ

where M1(u) = H(u) and M2(u) =1 − H(u), I denotes an image, k1 and k2 are positive
constants, and f1(x) and f2(x) are the two values that approximate the weighted averages
of the image intensities in Ωin and Ωout which are inside and outside a close contour in
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the design domain Ω, respectively. The intensities I(y) effectively involved in the above
fitting energy are in a local region, whose size can be controlled by the Gaussian kernel
Kr which is shown as follows:

KrðIÞ ¼ 1

ð2pÞn=2rn
e� Ij j2=2r2 ð15Þ

where the scale parameter r > 0.
The Heaviside function used in the above energy functional is defined by

HðxÞ ¼ 1
2

1þ 2
p
arctanðx

e
Þ

� 	
ð16Þ

The derivative of H is

dðxÞ ¼ H0ðxÞ ¼ 1
p

e
e2 þ x2

ð17Þ

The functional F(u, f1, f2) is the minimized postulate of a fixed level set function u.
By applying the calculus of variations, the functions f1(x) and f2(x) need to satisfy the
Euler-Lagrange equations, as follows:Z

Krðx� yÞ IðyÞ � fiðxÞj j2Me
i
ðuðyÞÞdy ¼ 0 i ¼ 1; 2 ð18Þ

From Eq. (18), we obtain

fiðxÞ ¼ KrðxÞ � ½Me
i ðuðxÞÞIðxÞ�

KrðxÞ �Me
i ðuðxÞÞ

i ¼ 1; 2 ð19Þ

where the symbol * represents a convolution operator. Keeping f1 and f2 be fixed, the
derivative of energy functional F(u, f1, f2) with respect to t is:

@u
@t

¼ �dðuÞðk1c1 � k2c2Þþ sr2u ð20Þ

where d is Delta function and c1 and c2 is given by:

ciðxÞ ¼
Z

Krðx� yÞ IðxÞ � fiðyÞj j2dy i ¼ 1; 2 ð21Þ

Next, the updating process is carried out by using the reaction-diffusion scheme
with respect to Eq. (12). The approach in this section will be implemented through the
following numerical examples.
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2. Numerical example
In this section, we reconstruct three numerical models for a woodpecker from the raw
CT data to assess the validity and utility of our proposed method. In all examples, the
value of e in Eq. (16) is set to be 0.1 and parameter Kr = 1.0 and the value of k1 and k2
in Eq. (20) are set to be k1 = 1.0 and k2 = 20, respectively.

Due to huge amount of invalid information in CT images, the intensity distribution
(see Fig. 1) shows that the useful data related to the bone of a woodpecker is mainly
located in the region where intensity is greater than 500. Thus, in these given case
scenarios, only the part where conforms to intensity T > 500 is considered.

A. Case 1
In the first case, the diffusion parameter s is set to be s = 5.0 � 10−6, parameter
r = 6.0 and the time increment Δt = 0.01. Figure 2 illustrates the segmentation process
using the proposed method, the value of m stands for the number of iteration steps. As
shown in the 500th step, a smooth and clear model for a woodpecker’s skull is obtained
by using the proposed method.

Fig. 1. Image intensity distribution
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As mentioned before, the major novelty of this new method lies in applying the
reaction-diffusion equation to update of the level set function. To demonstrate the
superiority of the proposed method to traditional algorithms, an example obtained from
time difference method was considered, which needs to add an extra perimeter length
term into the energy functional for maintaining the smoothness of level set contour.
Herein, the arc length parameter in perimeter length term µ = 1.0 and all other sets are
not changed for reasonable comparison.

The two sub-figures in Fig. 3 specifically show that the surface obtained by the
proposed method (Fig. 3(a)) is clearer, smoother and more accurate than that in the
conventional time difference method (Fig. 3(b)). In the next stage of our research, we
will investigate the impact-resistance of the woodpecker’s skull. Thus, clarity, smooth
and accuracy of the model are primary considerations. Some preliminary studies have
shown that the asperous result in Fig. 3(b) is not suitable for carrying out impact
simulation.

m=0 m=2 m=5

m=10 m=30 m=60

m=120 m=240 m=500

Fig. 2. Configurational transformation in case 1
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B. Case 2
In the second case, diffusion parameter s is set to be s = 5.0 � 10−5, parameter r = 3.0
and time step Δt = 0.001. Instead of variable values with regard to Eq. (10), parameter
C is assigned to be the fixed value of C = 0.1. The segmentation process in this case is
displayed in Fig. 4.

Further algorithmic comparison between the proposed method and time difference
method are shown in Figs. 5 and 6, which includes the performance of configurations
and numerical analysis. Note that the parameter µ in the length term for the conven-
tional model is set to be µ = 1.0 by remaining the other parameters unchanged.

Fig. 3. Comparison of the configurational performance between (a) the reaction diffusion
algorithm and (b) the time difference algorithm

m=0 m=1 m=10

Fig. 4. Configurational transformation in case 2

Fig. 5. Comparison of the configurational performance between (a) the proposed method and
(b) the time difference method
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Differing from the comparison in Fig. 3, both the results in Fig. 5(a) and (b) are
fairly similar. It is difficult to distinguish which provides better configuration by eyes.
Thus, an in-depth comparison between the models with the reaction-diffusion equation
and time difference method is needed.

In these four line charts in Fig. 6, the blue line presents the energy variation in the
model using the proposed method, while the red line shows the transformation using the
conventional finite difference method. In order to check the convergence of energy
Jð/; f1; f2Þ, we use the following criterion: if Jnþ 1 � Jnð Þ=Jn 6 10�3, the nth iteration
step attains convergence. Herein, Jn /; f1; f2ð Þ represents the energy value in the nth
iteration step. It is evident that both models are able to converge quickly after 2 itera-
tions. It means that the proposed model can not only generate more accurate results, but
also achieve a goal of immediate image segmentation by adjusting a certain parameter.

Note that Sections A and B confirmed that the proposed method has potential to
reconstruct complex three-dimensional raw data into biological structures with well-
defined boundaries. In comparison with the conventional time difference method, the
proposed method exhibits certain superiority in 3D reconstruction.

C. Parameter investigations
Note that the scale parameter r plays an important role in determining the width of the
Gaussian kernel. The alteration of r leads to the changes in Kr, f1 and f2. In addition to
r, diffusion parameter s that is used to control the effect of regularization also plays a
significant role in running the proposed method. As two of the significant parameters,

Fig. 6. The comparison of energy variation between the proposed method and time difference
method, including (a) total energy, (b) fitting energy, (c) regularity-related energy, and
(d) perimeter length energy
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the effects of r and s are investigated further in this section. Before discussing the
effects of parameters, a case scenario is presented in Fig. 7. Except that the diffusion
parameter s is changed to s = 7.0 � 10−6 and scale parameter r is set to r = 3.0, the
other parameters are remained the same as case 1.

Compared with the result of case 1 shown in Fig. 2, while the configurations in the
both cases are of almost the same level of smoothness, huge differences occur in the
other aspects. Therefore, it proves that the change of s and r play significant roles in
the transformation of model.

Figure 8 compares the performances of the obtained configurations under different
values of r. In terms of clarity and smoothness, the surfaces on all results are nearly
same, but increasing r increases the volume of final configurations. Nevertheless, the
complexity of calculation is also raised numerically. It means that more computational
resource and cost are needed to complete the entire modelling process. Therefore,
taking the efficiency into considerations, setting r as big as possible does not mean the
best choice.

m=0 m=2 m=5

m=10 m=30 m=60

m=120 m=240 m=500

Fig. 7. Configurational transformation in case 3
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Next, the effects from regularization parameter s are analysed as shown in Fig. 9 in
which the results at the 500th iteration are compared for the different values of s. Owing
to the functions of controlling the effects of the regularization and adjusting length of
level set contours, the rise of parameter s leads to length shortening in the configu-
rations (see Fig. 8). It is estimated that the case (b) and (c) in Figs. 8 require more
iteration steps to achieve a similar configuration to case (a). Namely, the change of
parameter s makes the segmentation process longer. To some degree, an appropriate
reduction in s is beneficial to improving the efficiency. Nevertheless, specifying s at a
smaller value could potentially make the proposed method unable to run.

Based on the discussion in this section, it is found that the parameters r and s has
significant effects on the reconstruction results. Prescription of reasonable parameters
would be helpful for dealing with different 3D structures.

D. Reconstruction in Mimics
At present, several commercial codes are able to conduct image processing, such as
Mimics, Simpleware [29] and 3D-doctor [30]. As one of the most popular recon-
struction programs, Mimics uses 2D cross-sectional images, e.g. obtained from com-
puter tomography and magnetic resonance image, to reconstruct 3D models. In order to
make a comparison between both the results generated from Mimics and the proposed
method, the woodpecker’s CT data is imported into Mimics for 3D modelling.

(a) σ =3.0 (b) σ =6.0 (c) σ =9.0

Fig. 8. Comparison of the configurational performance when r is equal to (a) 3.0, (b) 6.0 and
(c) 9.0

(a) τ =7.0× 10-6 (b) τ =2.0× 10-5 (c) τ =7.0× 10-5

Fig. 9. Comparison of the configurational performance in 500th iteration step when s is set to
(a) 7.0 � 10−6, (b) 2.0 � 10−5, (c) 7.0 � 10−5
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The modelling in Mimics is relying on defining a certain range of grey scale for
identifying the eligible sections in each CT image. These distinguished parts are used to
make up a new 3D model. However, due to proximate greyscales for skull, spine and
weasand, it is difficult to segment an accurate scope for reconstructing the wood-
pecker’s skull. Further, as presented in Fig. 10, the marginal area in the materialized
model is fuzzy with a huge number of isolated regions. Thus, the simulation of a
woodpecker’s impacting process is hard to be conducted by directly using Mimics
results unless further tunning is taken.

4 Conclusions

This study proposed a novel level set method by incorporating the reaction-diffusion
equation, and applied it to reconstruct the three-dimensional structures from the high
resolution raw data. We defined the energy functional with a fitting energy, which
extracted the initial contour toward desired boundaries by utilizing local intensity and a
diffusion term to regularize the level set function and smooth the interface contour.

The proposed method is capable of reconstruction images with high inhomogeneity
of intensity, and provide desirable reconstructed model for complicated scanning
images with blurred boundaries. With the diffusion term in the reaction-diffusion
equation, the regularity of the level set function and the smoothness of the contour can
be intrinsically maintained to ensure accurate computation, and thus the expensive re-
initialization process and perimeter length term which are compulsory in conventional
level set algorithms can be eliminated.

In addition, the finite element method replaces the time difference method to allow
a greater time step when updating the level set function. For this reason, the efficiency
to a certain degree is improved. The numerical example showcased the desired per-
formance of the proposed method for CT image based reconstruction of a

Fig. 10. Reconstruction result in Mimics
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woodpecker’s skull. Compared with the model reconstructed using commercial code
Mimics, the proposed method is able to provide a better result with clearer and
smoother interfaces without isolated parts.
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