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Abstract. We propose a theoretical approach to predict the onset of
cracks in arterial wall. The arterial wall is a soft composite made up
of hydrated ground matrix of proteoglycans reinforced by elastin and
collagen fibers spatially dispersed in the matrix. Like any other material,
the arterial tissue cannot store and dissipate strain energy above a certain
threshold. This threshold value is introduced in the constitutive theory
via energy limiters. The limiters naturally constrain reachable stresses
and enable analysis of mathematical condition of strong ellipticity. Loss
of the strong ellipticity corresponds to the juncture when superimposed
waves cease to propagate due to localization of material failure into cracks
perpendicular to a possible wave direction. Thus, the direction in which
crack starts to appear can be analyzed in addition to its inception. We
enrich the recently developed constitutive theories that account for fiber
dispersion of the arterial wall by including 8 and 16 structure tensors
with energy limiters. We analyze the loss of strong ellipticity in uniaxial
tension in circumferential and axial directions of the arterial wall. We
find that cracks appear in the direction perpendicular to tension, when
the speed of the superimposed longitudinal wave vanishes. We also find
that the appearance of cracks is predicted in the direction inclined (non-
perpendicular) to tension, when the speed of the superimposed transverse
wave vanishes.

Keywords: Failure localization · Strong ellipticity · Superimposed
waves · Structure tensors

1 Introduction

In this paper, we describe a procedure to find the inception of material insta-
bilities in arterial tissue. This requires developing constitutive models of arter-
ies capable of failure description and examining the mathematical condition of
strong ellipticity of the model for the given deformation.
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Constitutive models of the arterial wall have a great wealth of literature.
Experiments [1] showed anisotropic and heterogeneous characteristics of arteries.
Fung with collaborators introduced nonlinear elasticity models [2,3] to capture
the large deformation response at low stresses. In these models the character-
istic material directions were along the radial, circumferential and axial direc-
tions of artery. Numerous Fung-type phenomenological theories were proposed
since then [4–6]. Subsequently, frame-invariant forms of these models were devel-
oped by introducing the structure tensors [7–9]. Furthermore, the anisotropy
was accounted for by introducing the angular dispersion of collagen fibers in the
strain energy density to develop more physically appealing structural models
[10–14]. These models with analytically defined angular fiber dispersion needed
angular integration on a unit sphere that was computationally intensive. The
approach of generalized structure tensors (GST), which included fiber disper-
sion in structure tensor instead of strain energy density, was introduced to reduce
the computational cost [15,16]. Inability to easily exclude the compressed fibers
was the major drawback of the GST approach although it was computationally
attractive. An alternative approach that allowed for an easy exclusion of com-
pressed fibers, without forgoing the advantages of the fiber dispersion models,
was developed recently in [17]. This latter approach used 16 and 8 specially
chosen structure tensors to describe the fiber dispersion.

A systematic method capable of describing material failure, which was based
on the introduction of the energy limiters in the strain energy functions, was
proposed in [18–20]. The violation of the strong ellipticity condition can be
readily examined using this approach [21].

We enhance these recently developed constitutive theories of the arterial wall
including 8 and 16 structure tensors fiber dispersion models [17] with energy lim-
iters. We analyze the loss of strong ellipticity in uniaxial tension in circumferen-
tial and axial directions of the arterial wall. We find that the imposition of the
incompressibility constraint can have a significant effect on the crack direction.

2 Constitutive Theory

We assume that the arterial wall exhibits hyperelastic response. Arterial wall is
made of collagen fibers dispersed in isotropic ground matrix. The strain energy
function W of the intact artery wall involves two terms

W = g + f, (1)

where
g =

c

2
(I−1/3

3 I1 − 3) + K(I1/23 − 1)2, (2)

is the neo-Hookean strain energy for the isotropic ground matrix, where c and
K are the shear and bulk modulus respectively and I1 and I3 are the first ad
third strain invariants. In the limit of incompressibility, I3 = 1 is imposed in (2).

The total energy of dispersed fibers integrated on a unit sphere is

f =
∫

ρwdΞ =
∑
i

γ(i)w(i), (3)
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where the cubature formula for numerical integration appears on the right hand
side.

Here, γ(i) is the weight coefficient, Ξ is a solid angle; ρ is the angular density
of the fiber distribution (see [17,22,23]), which is normalized as

∫
ρdΞ = 4π; w

is the strain energy of single fiber per unit reference volume [7] and

w(i) =
k1
2k2

(exp[k2
〈
I
(i)
4 − 1

〉2

] − 1), (4)

where k1 and k2 are material parameters; the strain invariant I
(i)
4 = C : a(i) ⊗

a(i) > 1; and triangular brackets denote Macaulay brackets to exclude the fiber
response in compression, where 〈x〉 = 0∀x < 0 and x otherwise.

We choose a unit vector in the direction of a generic material fiber in the
initial configuration as

a(i)(Φ(i), Θ(i)) = cos Φ(i) sin Θ(i)e1 + sin Φ(i) sin Θ(i)e2 + cos Θ(i)e3, (5)

where 0 ≤ Φ ≤ 2π and 0 ≤ Θ ≤ π and integration points (Φ(i), Θ(i)) are taken
on the unit sphere.

Φ is the angle in the tangent plane measured from the circumferential direc-
tion e1 to the axial direction e2. Θ is the angle in the normal plane measured
from the radial direction e3 in this plane. a(i) ⊗ a(i) denote a finite number of
structure tensors representing fiber dispersion that account for anisotropy.

The limited bond energy of the particles in a representative volume restricts
the strain energy density on the macroscopic scale. Bounded strain energy implies
that a material can not sustain stress beyond a limit which leads to material
failure. Thus, we introduce a limiter in the strain energy in the following form
[20], to analyse the onset of failure,

ψ(F) = ψf − ψe(F), (6)

where, ψe(F) = φm−1Γ (m−1,W (F)mφ−m), ψf = ψe(1), and Γ (s, x) =∫ ∞
x

ts−1e−tdt is the upper incomplete gamma function.
Here, ψf is the failure energy; ψe(F) is the elastic energy; 1 is identity tensor;

φ is the energy limiter (average bond energy); and m is a material parameter. A
regularized formulation as in [26,27], for example, should be used, if the failure
propagation is also of interest.

3 Strong Ellipticity Condition

Incremental equations of momenta balance and constitutive equation in the Eule-
rian form, where the current configuration Ω is referential [19], can be written
as follows

ρ¨̃y = divσ̃, σ̃ + σL̃T = (σ̃ + σL̃T)T, (7)

and
σ̃ = A : L̃ + {ΠL̃T − Π̃1}, {L̃ : 1 = 0}, (8)
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where ρ = I
−1/2
3 ρ0 is the current mass density; σ = I

−1/2
3 PFT is the Cauchy

stress tensor and (divσ̃)i = ∂σij/∂yj ; σ̃ = I
−1/2
3 P̃FT is the incremental Cauchy

stress; L̃ = F̃F−1 is the incremental velocity gradient. Note that terms in braces
{...} should be considered for incompressible material models only.

The fourth order instantaneous elasticity tensor A has Cartesian components

Aijkl = I
−1/2
3 FjsFlm

∂2ψ

∂Fis∂Fkm
. (9)

We use the strain energy defined by (6) to calculate,

∂2ψ

∂Fis∂Fkm
=

(
∂2W

∂Fis∂Fkm
− mWm−1φ−m ∂W

∂Fkm

∂W

∂Fis

)
exp[−Wmφ−m]. (10)

Substitution of (10) in (9) yields

Aijkl = I
−1/2
3 FjsFlm

(
∂2W

∂Fis∂Fkm
− mWm−1φ−m ∂W

∂Fkm

∂W

∂Fis

)
exp[−Wmφ−m].

(11)
We choose the following form for a plane wave solution of the incremental

initial-boundary-value problem

ỹ = rg(s · y − vt), {Π̃ = Υg′(s · y − vt), } (12)

where r and s are the unit vectors in the directions of wave polarization and
wave propagation respectively; v is the wave speed; g

′
denotes the differential of

g with respect to the argument of the function.
We get the incremental stress σ̃ by substituting for Π̃ and L̃ = gradỹ =

∂ỹ/∂y from (12) to (8)1. Then, substituting this incremental stress σ̃ and ỹ
from (12) into the linear momentum balance (7)1, we get

ρv2r = Λ(s)r − {Υ s}, (13)

where Λ(s) is the acoustic tensor with Cartesian components Λik = Aijklsjsl.
Taking the scalar product of (13) with r, we obtain for the wave speed

I
1/2
3 ρv2 = I

1/2
3 r · Λr = f1f2, (14)

where

f1 = f3 − mWm−1φ−mf2
4 , f2 = exp[−Wmφ−m], (15)

f3 = sjslrirkFjsFlm
∂2W

∂Fis∂Fkm
, f4 = rkslFlm

∂W

∂Fkm
. (16)

The mathematical condition of the strong ellipticity of the incremental initial
boundary-value-problem is violated when the wave speed becomes zero and,
physically, it means material fails to propagate a wave in direction s. The latter
notion can also be interpreted as the onset of a crack perpendicular to s.
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Here, we will take into account longitudinal wave (P-wave) and transverse
wave (S-wave) in the plane of the arterial sheet for calculating the condition of
vanishing wave speed.

We write
s = r = cos αe1 + sin αe2 (17)

for the P-wave and

s = cos αe1 + sin αe2, r = − sin αe1 + cos αe2 (18)

for the S-wave, where α is unknown angle in the tangent plane spanned by the
unit tangent vectors e1 in the circumferential and e2 in axial directions of the
arterial wall, respectively.

4 Specialization of Material

We use the material models that were experimentally calibrated for the intact
material behavior [17]. We enhance them with a failure description by incor-
porating energy limiters. The model using 16 structure tensors includes out of
plane fiber dispersion while the model using 8 structure tensors does not. Param-
eters for these models are given in Table 1. For details on integration points and
weight coefficients, reader is referred to [17].

Table 1. Material constants for models with 16 and 8 structure tensors

Structure tensors c (kPa) k1(kPa) k2 φ (kPa) m K (kPa)

16 4 1 1.7 15.5 2.44 300

8 5.52 1 1.52 17 2.44 300

5 Results and Discussion

In this section, we present the results of the analysis of the loss of strong ellipticity
for the vanishing wave speed when the arterial wall is subjected to uniaxial
tension in circumferential and axial directions.

We analyze the loss of strong ellipticity for the “stiff” displacement-controlled
loading. The unknown out-of-plane principal stretch λ3 is determined in terms
of the known in-plane stretches λ1 and λ2 using the plane stress condition for a
plane sheet of arterial wall. Uniaxial tension in circumferential and axial direc-
tions are described as follows: λ2 = λ−0.5

1 and λ1 = λ−0.5
2 .

The condition of the vanishing wave speed: I
1/2
3 ρv2 = f1f2 = 0; enables us to

find the critical stretches that mark the loss of strong ellipticity. We obtain the
results for longitudinal P-waves and transverse S-waves in slightly compressible
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Fig. 1. Uniaxial tension in circumferential direction (the model with 16 structure ten-
sors): (a) stretch λ1 versus the orientation of the superimposed wave for f1 = 0 and
f2 = 0; (b) convergence of the exponential function f2(λ1) to zero; (c) Cauchy stress
[kPa] versus stretch; (d) crack directions

and incompressible (for S-waves only) material models. We found that the results
for the slightly compressible and incompressible materials are numerically very
close.

Figure 1 shows results of the analysis of loss of strong ellipticity for the model
with 16 structure tensors presented in the previous sections:

(a) Figure on top-left shows stretches as a function of direction (angle) of
the propagating longitudinal (P-) or transverse (S-) waves. The minimal
stretches indicate the loss of the strong ellipticity and the onset of cracks.

(b) Figure on top-right shows convergence of the exponential function f2 to zero.
Theoretically, f2 should approach zero at infinity. However, the numerical
infinity occurs fast!

(c) Bottom left shows the points on the stress-stretch curve, denoting the loss
of the strong ellipticity for P- and S-waves.

(d) Bottom right presents schematic showing the loading and possible directions
of the onset of cracks predicted by P- and S-waves.

The main findings can be summarized as follows:

1. The condition of the vanishing P-wave speed predicts the direction of cracks,
perpendicular to tension in uniaxial tension. It should be noted that the
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incompressibility constraint suppresses this prediction. This constraint elim-
inates the possibility of consideration of the longitudinal wave and cracks
associated with it. The incompressibility constraint acts as a Trojan Horse
for the study of the onset of cracks. Results akin to these have been reported
in [24] for purely isotropic soft material.

2. The condition of the vanishing S-wave speed predicts the direction of cracks,
inclined (non-perpendicular) to tension in uniaxial tension. Such cracks seem
unreasonable at first. However, in the recent experimental work [25], pecu-
liar form of cracks in the direction of tension in a silicone elastomer were
observed. The authors of the work associated these “sideways” cracks with
“microstructural anisotropy (in a nominally isotropic elastomer)”.

We should note that the present approach can provide new insights in the
design of experiments with cracking. Information about material anisotropy can
be obtained from the character and direction of cracks - the inverse problem.
However, this is outside the purview of the present work.

We emphasize that the proposed approach is suitable for the analysis of
the onset of cracks only. Regularized formulations (e.g. [26,27]), necessary for
monitoring the crack development were not considered in this work.

Finally, we note that more results concerning the present study can further
be found in [28].
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