
Chapter 7
Integrated Scheduling of Information
Services and Logistics Flows in the
Omnichannel System

Dmitry Ivanov and Boris Sokolov

Abstract This chapter develops a model for dynamic integrated scheduling of
information services and logistics flows in the omnichannel system. The proposed
service-oriented description makes it possible to coordinate the information services
and material process schedules simultaneously. It also becomes possible to determine
the volume of information services needed for physical supply processes. In addition,
impact of disruptions in information services on the schedule execution in the
physical structure is analyzed. The results provide a base for information service
scheduling according to actual physical process execution.

7.1 Background

Nowadays, companies start adopting the decentralized distributed information
services (ISs). One of these concepts is omnichannel that is commonly understood as
a multichannel promotion actions (in-store, social media, and mobile applications)
to improve the customer experience (Ailawadi and Farris 2017). Combination of
traditional retail stores and online sales is the core idea in the omnichannel concept.

Omnichannel implementation in practice is challenged by cross-channel logistics
coordination, the resulting increase in coordination complexity. In addition, it
requires extensions to traditional functionality in enterprise resource planning (ERP)
and warehouse management system (WMS) systems (Pagani and Pardo 2017). At
the same time, omnichannel is expected to increase the reaction flexibility to demand
fluctuations as well as to positively influence the lead times and capacity utilization.
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Moreover, the literature on supply chain resilience and first analyses of COVID-19
pandemic impacts on the supply chains and production systems show that firms with
omnichannel distribution systems were able to sustain the disruptions along with the
ripple effect control (Lee et al. 2020; Ivanov and Dolgui 2019; Hosseini et al. 2019;
Ivanov et al. 2019; Panetto et al. 2019; Ivanov 2020; Ivanov and Dolgui 2020a, b;
Ivanov and Das 2020).

Omnichannel concept is based on the IS usage. Due to the increasing role of IS in
different forms, for example, cloud computing requires service-based approaches to
integrated scheduling of both material and information flows (Bardhan et al. 2010;
Li et al. 2010). The impact of information technology (IT) on the material processes
in supply network (SN) became crucial in recent years (Choi et al. 2002; Giard and
Mendy 2008; Camarinha-Matos and Macedo 2010; Cannella et al. 2014). Recent
research indicated that an aligning of business processes and information systems
may potentially provide new quality of decision-making support and an increased
performance (Surana et al. 2005; Dedrick et al. 2008; Jain et al. 2009; Ivanov et al.
2014).

Most of the new IT share attributes of intelligence. Examples include data mining,
cloud computing, physical internet, pattern recognition, knowledge discovery, to
name a few. In addition, the beginning era of Internet of Things and explicit inclusion
of wireless sensor networks, machine-to-machine systems, and mobile apps into the
management require the data-driven business models instead of static information
architectures. Elements of physical processes are supported by information services.
In addition, such systems evolve through adaptation and reconfiguration of their
structures, that is, through structural dynamics (Ivanov et al. 2004, 2007, 2010,
2015; Ivanov and Sokolov 2012a, b, 2013). Such SCs are common not only in
manufacturing but also in different cyber-physical systems, for example, in networks
of emergency response units, energy supply, city traffic control, and security control
systems.

It can be observed that current concepts and models for schedule integration do
not provide adequate decision support from intelligent IS; we regard this shortcoming
as an opportunity for research and development, which could significantly improve
the practice of logistics management. On one hand, the alignment of new intelligent
elements of IS infrastructures with real material flows can be achieved. On the other
hand, investments into IS can be estimated regarding real schedules.

This chapter faces these two decision domains on the basis of structural dynamics
control approach that is built upon tools from optimal program control theory (Ivanov
et al. 2005, 2010). Although recent research has extensively dealt with supply chain
(SC) scheduling (Chen 2010) and IS scheduling (see, e.g., works on scheduling in
telecommunications) in isolation, the integrated scheduling of both material and
information flows still represents a research gap (Dolgui et al. 2019; Ivanov et al.
2016, 2018, 2020; Panetto et al. 2019).

In this chapter, the problem of coordinated dynamic scheduling of IS and material
flows in the context of cyber-physical systems is stated and solved with the help
of optimal control approach. In addition, specific research contributions are the
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Fig. 7.1 Interrelations among material flows, sales channels, IS, functions, and IR

considerations of IS reconfiguration in a real execution stage and monetary estimation
of investments into IS.

7.2 Problem Statement

Consider a simple example of the interrelations among physical processes, ISs,
information functions, and information resources (IRs) that is presented in Fig. 7.1.

Such a framework is based on recent developments in cloud computing, see for
example, studies by Wang et al. (2010) and Jiang et al. (2012). For material flow
scheduling and control, some ISs are needed. They should be available when material
flow is scheduled and executed. The ISs are provided by some distributed IRs which
may be subject to full or partial unavailability due to planned upgrades or unpredicted
disruptions. Therefore, such network needs to be considered as a dynamic system
(Ivanov & Sokolov 2010; Ivanov et al. 2012).

7.2.1 General Assumptions

Let us define a formal scheduling problem for this framework. The majority of the
technical part of this chapter is based upon the study by Ivanov et al. (2014).

• The jobs in material flows are independent and available for processing at time
zero. Each of the jobs has a release date that is known in advance through the
schedule coordination.

• Precedence constraints exist, that is, the operations are logically arranged in jobs.
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• The material flow operations are executed at one of the enterprises in the network
and are supported by ISs from different IRs.

• Machines and IRs have unequal information processing rates which may also
differ for various operations and therefore influence the processing time and
processing volume.

• Each IS may be composed of functions from different IRs and is characterized
by availability time windows, productivity, that is, the processed volume of
operations at an instant of time, and costs (fixed cost and operation cost).

• Setup times are independent and included in the processing time.
• Initial state and the desired end state of the dynamic system are known.
• Transition from the initial state to the end state depends on selection of controls

in material flow, IS, and IR reconfiguration scheduling models.

7.2.2 Notations

• Denote A = {Aν ; ν = 1, . . . , n} as jobs in a material flow.
• Each of the jobs Aν is composed of the operations D(ν) =

{
D

(ν)
i ; i = 1, . . . , kν

}
.

• ai is the planned processing volume (e.g., lot-size) of the operation D
(ν)
i .

• Consider a set of enterprises (machines) B = {Bj; j = 1, . . . ,m}.
• Denote B(ν,i) =

{
B

(ν,i)
r ; r = 1, . . . , ρν

}
as a set of IRs.

• Denote ai as processing volume of the operation D
(ν)
i .

• Denote e
(i)
r , V

(i)
r , Φ

(i)
r as maximal processing intensity of the operation D

(ν)
i

at the IR B
(ν,i)
r , maximal capacity of the IR B

(ν,i)
r , and maximal productivity

of the IR B
(ν,i)
r before the reconfiguration correspondingly; e

(i)
r , V

(i)

r , Φ
(i)

r are
given variables characterizing the same domains but after a disruption-based
reconfiguration.

• Let t be current instant of time, T = (t0, tf ] the scheduling horizon, and t0 (tf ) the
start (end) instant of time for the scheduling horizon, respectively.

• Denote ε(t) as an element of the matrix of time-spatial constraints (ε(t) = 1, if
tk0 < t ≤ tkf , ε(t) = 0 otherwise), where k are the numbers of time windows
available for operation execution (e.g., subject to maintenance).

• Denote S(ν) =
{
S

(ν)
l ; l = 1, . . . , dj

}
as a set of IT services to execute operations

D(ν).
• Denote F (ν,l) =

{
F

(ν,l)
χ ;χ = 1, . . . , Sl

}
as a set of functions of IR to implement

the service.
• Denote fixed cost as c

(ν,1)
il (t) and operation cost as c

(ν,2)
il (t).

• Denote g
(ν)
l as a number of operations D

(ν)
i which may be processed by a service

S
(ν)
l .

• Denote h
(ν)
i as a given number of services S

(ν)
l which may be simultaneously

used by execution of the operation D
(ν)
i .
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• Denote D
(ν,i)
l =

{
D

(ν,i)
<l,χ>; l = 1, . . . , dj , χ = 1, . . . , Sl

}
as operations of IR

(e.g., information processing, storage, transmission, and protection).
• Denote D

(p,i)
r =

{
D

(p,i)
<r,k>;p = 1, . . . , P (r); k = 1, . . . , π

(r)
i

}
as operations in

the jobs for reconfiguration of the IR B
(ν,i)
r .

• Denote V
(ν)
χ as the online storage capacity of the IR B

(ν,i)
r to execute the operation

D
(ν,i)
<l,χ> and δ

(ν,l)
χ r (τ ) as a quality function to estimate the execution results.

• Denote c
(l,1)
χ r (τ ), c(l,2)

χ r (τ ) as given time functions of fixed and operation costs of
an IR B

(ν,i)
r used for the operation D

(ν,i)
<l,χ> by realization of the function F

(ν,l)
χ .

• Denote η
(ν)
il (t) as a given time function which characterizes the costs of idle time

of services for the operation D
(ν)
i .

• y
(ν)
il denotes the value of current idle cost due to a backlog in the operation D

(ν)
i

caused by unavailability of the service S
(ν)
l .

In order to describe the execution of operations, let us introduce the state
variables:

• x
(ν)
il (t) characterizes the execution of the operation D

(ν)
i with the use of the service

S
(ν)
l ;

• x
(ν,1)
il (t) is an auxiliary variable characterizing the current state of the operation

D
(ν)
i . Its value is numerically equal to the time interval that has elapsed since the

beginning of the scheduling interval and the execution start of the operation D
(ν)
i ;

• x
(ν,2)
il (t) is an auxiliary variable characterizing the current state of the processing

operation. Its value is numerically equal to the time interval that has elapsed since
the end of the execution of the operation D

(ν)
i and the end of the scheduling

interval;
• x

(ν,l)
r is an auxiliary variable characterizing the employment time of the IR B

(ν,j)
r ;

• x
(ν,l)
χ is an auxiliary variable which characterizes the execution of the operation

D
(ν,j)
<l,χ>;

• x
(ν,l)
rSl

(t) is an auxiliary variable characterizing the current state of the information
processing operation. Its value is numerically equal to the time interval that has
elapsed since the end of the execution of the operation D

(ν,j)
<l,χ> and the instant of

time t;
• u

(ν)
il (t) is a control that is equal to 1 if the operation D

(ν)
i is assigned to the service

S
(ν)
l at the moment t; otherwise u

(ν)
il (t) = 0;

• ϑ
(ν,1)
il (t)

(
ϑ

(ν,2)
il (t)

)
are auxiliary control variables that are equal to 1 if the

operation D
(ν)
i has not started and is equal 0 otherwise;

• w
(ν,l)
χ r is a control that is equal to 1 if the operation D

(ν,j)
<l,χ> is assigned to the IR

B
(ν,i)
r and is equal 0 otherwise;

• ω
(ν,l)
rSl

(t) is auxiliary control that is equal to 1 if all the operations D
(ν,j)
<l,χ> in the

function F
(ν,l)
χ are completed and is equal 0 otherwise;
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• ϑ
(p,2)
r (t) is auxiliary control that is equal to 1 if the reconfiguration from old

parameters e
(i)
r , V

(i)
r , Φ

(i)
r to new ones e

(i)
r , V

(i)

r , Φ
(i)

r is completed and is 0
otherwise.

The problem is to find a joint schedule for dynamic execution of information
services and physical flows, that is, two schedules should be generated in a
coordinated manner, that is,

• an optimal program control (OPC) (schedule) for the integrated execution of
material flows and information services (model M1),

• an OPC (schedule) for the execution of information services within the IRs (model
M2).

Jobs are to be scheduled subject to maximal customer service level (i.e., minimal
lateness), minimal backlogs, minimal idle time of services, and minimal costs of IT
(e.g., fixed, operation, and idle costs).

7.3 Methodology

In this section, we describe both general methodology and method for formulation
of the integrated scheduling model in particular.

7.3.1 Structure Dynamics Control Methodology

The logistics network dynamic characteristics are distributed upon different
structures, that is:

• organizational structure dynamics (i.e., agile supply structure),
• functional structure dynamics (i.e., flexible competencies),
• information structure dynamics (i.e., fluctuating information availability), and
• financial structure dynamics (i.e., cost and profit sharing).

This multidimensional dynamic space along with the coordinated and distributed
decision-making leads us to the understanding of the logistics network as
multistructural systems with structure dynamics. The main idea of the proposed
method is the dynamic interpretation of planning in accordance with the natural logic
of time with the help of OPC. The solution procedure is transferred to mathematical
programming (MP). In this setting, the solution procedure becomes undependable
from the continuous optimization and can be of a discrete nature, for example, an
integer linear program (Ivanov et al. 2020).

The modeling procedure is based on the dynamic representation where the
scheduling decisions are taken for certain intervals of structural constancy and
regarding problems of significantly smaller dimensionality. For each interval, a static



7 Integrated Scheduling of Information Services and Logistics Flows in the. . . 131

optimization problem of a smaller dimensionality can be solved with the help of MP.
The transitions between the intervals are modeled in the dynamic OPC model. The
computational time decreases considerably.

Besides, a priori knowledge of the logistics network structure, and moreover,
structure dynamics, is no more necessary—the structures and corresponding
functions are optimized simultaneously as the control becomes a function of both
states and structures. The splitting of the planning period into the intervals occurs
according to the natural logic of time and events. As the proposed method is based
on control theory, it is a convenient approach to describe intangible services due
to abstract nature of state variables which can be interpreted as abstract service
volumes.

7.3.2 Formulation of the Integrated Scheduling Model

The basic conceptual idea of this approach is that the operations and machine
availability are dynamically distributed in time on the scheduling horizon. As such,
not all operations and machines are involved in decision-making at the same time.
Therefore, it becomes quite natural to transit from large-size allocation matrices
with a high number of binary variables to a scheduling problem that is dynamically
decomposed.

In following an approach to decompose the solution space and to use exact
methods over its restricted subspaces, we propose to use the OPC theory for the
dynamic scheduling problem decomposition. Computational procedure will be based
on modified maximum principle in continuous form blended with MP.

That is why the basic technical idea of our approach, which extends the previous
application of maximum principle to production and logistics, is to apply the methods
of discrete optimization for combinatorial tasks within certain time intervals and to
use the OPC with all its advantages (i.e., accuracy of continuous time, integration of
planning and control, and the operation execution parameters as time functions) for
(1) flow control within the operations and (2) interlinking the partial (decomposed)
solutions into the optimal schedule.

The SN is modeled as a networked control system described through a
dynamic interpretation of the operations’ execution. The execution of operations
is characterized by (1) results (e.g., processed volume and completion time), (2)
intensity consumption of the machines, and (3) supply and information flows
resulting from the schedule execution. The operations control model (M1) is first
used to assign and sequence ISs to operations in material flows, and then a flow
control model (M2) is employed to assign and schedule jobs at IRs subject to the
requirements on the ISs availability. The basic interaction of these two models is
that after the solving M1, the found control variables are used in the constraints of
M2. Note that in the calculation procedure, the models M1 and M2 will be solved
simultaneously, that is, the scheduling problems in all the structures (i.e., material
flows, ISs, and IRs) will be integrated.
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7.4 Mathematical Model

7.4.1 Mathematical Model M1

The model of operation execution dynamics can be expressed as (7.1)–(7.3):

dx
(ν,l)
i

dt
= εil(t) · u

(ν)
il (t) (7.1)

dy
(ν)
il

dt
= ηil(t)

[
1 − ϑ

(ν,1)
il − u

(ν)
il − ϑ

(ν,2)
il

]
(7.2)

dx
(ν,1)
il

dt
= ϑ

(ν,1)
il ; dx

(ν,2)
il

dt
= ϑ

(ν,2)
il (7.3)

Equation (7.1) describes operation execution dynamics subject to availability of
IS described in the matrix function εil(t). u

(ν)
il (t) = 1 if service S

(ν)
l is assigned to

the operation D
(ν)
i , u

(ν)
il (t) = 0 otherwise. Equation (7.2) represents idle time in the

material flow caused by unavailability of the IS S
(ν)
l . Equation (7.3) represents the

dynamics of operation’s execution according to precedence constraints.
The control actions are constrained as follows:

kj∑
i=1

u
(ν)
il (t) ≤ g

(ν)
l ; ∀l;

dj∑
l=1

u
(ν)
il (t) ≤ h

(ν)
i ; ∀i (7.4)

dj∑
l=1

u
(ν)
il

⎡
⎣ ∑

α∈Γν1

(
a(ν,l)
α − x(ν,l)

α

)
+

∏
β∈Γν2

(
a

(ν,l)
β − x

(ν,l)
β

)⎤
⎦ = 0; ∀ν (7.5)

ϑ
(ν,1)
il · x

(ν,l)
il = 0; ϑ

(ν,2)
il

(
a

(ν,l)
il − x

(ν,l)
il

)
= 0; ∀i; ∀l (7.6)

u
(ν)
il (t) ∈ {0, 1} ;ϑ

(ν)
il (t) ∈ {0, 1} (7.7)

Constraints (7.4) are assignment problem constraints. They define possibilities
of parallel use of many services for one operation and for parallel processing of
many operations at one service. Constraints (7.5) determine the precedence relations.
Constraints (7.6) interconnect main and auxiliary controls. Equation (7.7) constraints
control to be Boolean variables.
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Remark 7.1 Note that constraints (7.4)–(7.7) are identical to those in MP models.
However, at each t-point of time, the number of variables is determined by the
operations which are currently in the “scheduling window.” Therefore, the tendency
will be to have small-size instances and to apply known methods for the solution of
MP models (e.g., Hungarian or Branch & Bound methods) subject to the problems
(7.1)–(7.12).

The boundary conditions are defined as shown in Eqs. (7.8) and (7.9):

t = t
(j)

0 : x
(ν)
i

(
t
(j)

0

)
= y

(ν)
il

(
t
(j)

0

)
= x

(ν)
il

(
t
(j)

0

)
= 0 (7.8)

t = t
(j)
f : x

(ν)
i

(
t
(j)
f

)
= a

(ν)
i ; y

(ν)
l

(
t
(j)
f

)
; x

(ν)
i

(
t
(j)
f

)
∈ R1 (7.9)

Equations (7.8) and (7.9) define initial and end values of the variables x
(ν)
i (t),

y
(ν)
il (t), x

(ν)
il (t) at the moments t

(j)

0 and t
(j)
f .

Remark 7.2 End conditions in OPC models play the role of demand variables in MP
models. Conditions (7.9) reflect the desired end state. The right parts of equations
are predetermined at the planning stage subject to the planned demand for each job.

The goals are defined as shown in Eqs. (7.10)–(7.12):

min J
(ν)
1 =

kν∑
i=1

dj∑
l=1

y
(ν)
il

(
t
(j)
f

)
(7.10)

max J2 =
kν∑

i=1

dj∑
l=1

1

x
(ν,2)
il

(
t
(j)
f

)
t
(j)
f∫

t
(j)
0

ϑ
(ν,2)
il (τ ) dτ (7.11)

min J3 =
kν∑

i=1

dj∑
l=1

t
(j)
f∫

t
(j)
0

[
c
(ν,1)
il (τ ) + c

(ν,2)
il (τ )

]
· u

(ν)
il (τ ) dτ (7.12)

Equation (7.10) minimizes losses from the idle time of services. Equation (7.11)
estimates the service level by the volume of on-time completed jobs in the material
flow. Equation (7.12) minimizes total costs of IS.
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7.4.2 Mathematical Model M2

The model of operation execution dynamics in the IRs can be expressed as (7.13):

dx
(ν,l)
χ

dt
=

ρν∑
r=1

u(ν,l)
χ r ; dx

(ν,l)
r

dt
=

Sl∑
χ=1

w(ν,l)
χ r ; dx

(ν,l)
rSl

dt
= ω

(ν,l)
rSl

(7.13)

Equation (7.13) describes operation’s execution dynamic in the IR subject to
operation of the IRs and recovery operations in the case of disruptions in the
information structure.

The control actions are constrained as shown in Eqs. (7.14)–(7.20):

0 ≤ u(ν,l)
χ r ≤

[
e
(j)
χ r

(
1 − ϑ

(p,2)
r (t)

)
+ e

(j)
χ rϑ

(p,2)
r (t)

]
w(ν,l)

χ r , (7.14)

nj∑
ν=1

Sν∑
χ=1

V (ν)
χ · w(ν,l)

χ r ≤
[
V

(j)
r

(
1 − ϑ

(p,2)
r (t)

)
+ V

(j)

r ϑ
(p,2)
r (t)

]
ξ

(j,1)
r , (7.15)

nj∑
ν=1

Sν∑
χ=1

u(ν,l)
χ r (t) ≤

[
Φ

(j)
r

(
1 − ϑ

(p,2)
r (t)

)
+ Φ

(j)

r ϑ
(p,2)
r (t)

]
ξ

(j,2)
r , (7.16)

ρν∑
r=1

w(ν,l)
χ r

⎡
⎣ ∑

π∈Γχ3

(
a(ν,l)
π − x(ν,l)

π

)
+

∏
μ∈Γμ4

(
a(ν,l)
μ − x(ν,l)

μ

)⎤
⎦ = 0, (7.17)

ρν∑
r=1

w(ν,l)
χr (t) ≤ ψχ ; ∀χ;

sl∑
χ=1

w(ν,l)
χr (t) ≤ φr ; ∀r, (7.18)

ω
(ν,l)
rSl

(
a

(ν,l)
Sl

− x
(ν,l)
Sl

)
= 0, (7.19)

w(ν,l)
χr ∈

{
0, u

(ν)
il

}
;ϑ

(p,2)
r (t), ω

(ν,l)
rSl

∈ {0, 1} ; ξ
(j,1)
r (t); ξ

(j,2)
r (t) ∈ [0, 1] .

(7.20)
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With the help of functions 0 ≤ ξ
(j,1)
r (t) ≤ 1 and 0 ≤ ξ

(j,2)
r (t) ≤ 1, perturbation

impacts on the IR B
(ν,j)
r can be modeled. Equations (7.14)–(7.16) constraint

information processing at B
(ν,j)
r before and after the reconfiguration. Constraints

(7.17) set precedence relations on information processing operation similar to Eq.
(7.5). Constraints (7.18) are related to assignment problem and are similar to (7.4).
Equation (7.19) determines the conditions of processing completion.

The boundary conditions are defined as shown in Eqs. (7.21) and (7.22):

t = t
(j)

0 : x(ν,l)
χ

(
t
(j)

0

)
= x(ν,l)

r

(
t
(j)

0

)
= x

(ν,l)
rSl

(
t
(j)

0

)
= 0, (7.21)

t = t
(j)
f : x(ν,l)

χ

(
t
(j)
f

)
= a(ν,l)

χ ; x(ν,l)
r

(
t
(j)
f

)
; x

(ν,l)
rSl

(
t
(j)
f

)
∈ R1. (7.22)

The goals are defined as shown in Eqs. (7.23)–(7.26):

J4 =
ρν−1∑
r=1

ρν∑
r1=r+1

t
(j)
f∫

t
(j)
0

(
x(ν,l)
r (τ ) − x(ν,l)

r1
(τ )

)
dτ, (7.23)

J5 =
ρν∑

r=1

Sl∑
χ=1

t
(j)
f∫

t
(j)
0

δ(ν,l)
χ r (τ ) · w(ν,l)

χ r (τ ) dτ, (7.24)

J6 = 1

2

Sl∑
χ=1

(
a(ν,l)
χ − a(ν,l)

χ

(
t
(j)
f

))2
, (7.25)

J7 =
Sl∑

χ=1

ρν∑
r=1

t
(j)
f∫

t
(j)
0

[
c(l,1)
χ r (τ ) + c(l,2)

χ r (τ )
]
w(ν,l)

χ r (τ ) dτ. (7.26)

Equation (7.23) estimates uniformity of the use of the IRs B
(ν,j)
r and B

(ν,j)
r1 ; r,

r1 ∈ {1, . . . , ρν}. Equation (7.24) estimates amount of completed operations D
(ν,j)
〈l,χ〉 .

Equation (7.25) takes into account losses from nonfulfilled operations. Equation
(7.26) assesses total cost of ownership (TCO) for the IR B

(ν,j)
r .
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7.4.3 Model Integration

The developed modeling complex is composed of dynamic models of IS and IR
control subject to execution of material flows. It also includes elements of IR
reconfiguration [e.g., in Eqs. (7.14)–(7.16) and (7.20)]. Full consideration of the
reconfiguration model can be found in (Ivanov and Sokolov 2013).

The presented models M1 and M2 are interconnected with the help of Eq. (7.6)
where elements from M2 are used in M1. In its turn, M1 influences M2 through Eqs.
(7.14) and (7.20).

The proposed models and algorithms have been validated in a developed prototype
based on C++ and XML. The OPC calculation is based on theHamiltonian function.
In integrating the main and the conjunctive equation systems, the values of variables
in both of the systems can be obtained at each point of time. The maximum principle
guarantees that the optimal solutions (i.e., the solution with maximal values) of the
instantaneous problems (i.e., at each point of time) give the optimal solution to the
overall problem. For these subproblems, optimal solutions can be found, for example,
with the help of MP. Then these solutions are linked into an OPC.

7.4.4 Model Analysis

Let us discuss optimality and sufficiency properties that have been proved
theoretically and experimentally. The formulated scheduling model satisfies the
conditions of the existence theorem in Lee and Markus (1967, Theorem 4, Corollary
2), which allows us to assert the existence of the optimal solution in the appropriate
class of admissible controls. The formulated scheduling problem is the standard
problem of OPC with mixed constraints and its optimal solution and relaxed
system can be obtained with the help of local cut method-based modification of
the continuous maximum principle. An analysis of constraints in M1 and M2 shows
that both state and control variables are constrained (i.e., the mixed state-control
constraints exist Boltyanskiy 1973) and form therefore a dynamic system with
a variable control domain. To obtain necessary conditions of control optimality,
Boltyansky’s method of local sections can be used. Then the necessary conditions
can be formulated in the form of the Boltyanskiy’s theorem (maximum principle)
(1973).

Corollary 7.1 Analysis of Boltyanskiy (1973) and Moiseev (1974) shows that for
the linear nonstationary finite-dimensional systems (models M1 and M2) with the
convex area of admissible controlQ(x) and performance indicators (7.10)–(7.12) and
(7.23)–(7.26), the stated necessary conditions of optimality are also the conditions
of sufficiency.

According to study (Ivanov and Sokolov 2012a), the initial problem of
nonclassical calculus of variations can be transformed to the two-point boundary
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problem help of local cut method. The assignment and routing at each instant of
time are performed on the basis of the “dynamic priority” of the operations. The
dynamic priority includes both the values of conjunctive variables and the current
values of the goal functions (7.10)–(7.12) and (7.23)–(7.26).

7.5 Algorithmic Realization

Theorem 7.1 Let � be a relaxed problem for the basic OPC problem. Then

(a) If the problem � does not have allowable solutions, then this is true for the
problem PS as well.

(b) If the OPC of the problem � is allowable, then it is the OPC for the problem PS
as well.

Proof

(a) If the problem � does not have allowable solutions, then a control u(t)
transferring dynamic system (7.1)–(7.3) and (7.13) ẋ = f (x, u, t) from a given
initial state to a given final state does not exist. The same end conditions are
violated in the OPC problem.

(b) Let u∗ (t), ∀ t ∈ (T0, Tf ] be an OPC in � and x(t) be a solution to models M1
and M2 subject to u(t) = u∗ (t). Then u∗ (t) meets the requirements of the local
cut method and maximizes Hamiltonian for the OPC problem. Hence, vector
u∗ (t) and x∗ (t) return minimum to performance indicators (7.10)–(7.12) and
(7.23)–(7.26). The proof is complete. �

As the dynamics of state and conjunctive variables is described by differential
equations, it becomes possible to calculate these variables at any instant of time
subject to given initial conditions. Therefore, the Hamiltonian becomes the function
of only one variable u that can be calculated at any t subject to allowable control
from u ∈ Gu. Therefore, the OPC problem can be reduced to a boundary problem
with the help of the local cut method.

Let us consider the algorithmic realization of the above-described modified
maximum principle. After transforming to the boundary problem, a relaxed problem
can be solved to receive OPC for the schedule of the model M1, for computation of
which the main and conjunctive systems are integrated, that is, the OPC vector u∗ (t)
and the state trajectory x∗ (t) are obtained. The OPC vector at time t = T0 and for
the given value of ψ(t) should return maximum criteria indicators (7.10)–(7.12) and
(7.23)–(7.26) have been transformed to a general performance index and expressed
in a scalar form JG.

The basic peculiarity of the considered boundary problem is that the initial
conditions for the conjunctive variables ψ(t0) are not given. At the same time, an
OPC should be calculated subject to end conditions (7.8) and (7.9) and (7.21) and
(7.22). To obtain the conjunctive system vector, we use the Krylov-Chernousko
method for OPC problem with free right end that is based on joint use of modified
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successive approximations method and branch-and-bound method. We propose to
use a heuristics schedule u(t) to obtain the initial conditions for ψ(t0). Then, the
algorithm can be stated as follows:

• Step 1: An initial solution u(t), t ∈ (
T0, Tf

]
is calculated and iteration step r = 0.

• Step 2: The parameters of the gained schedule u(t), t ∈ (
T0, Tf

]
are put into

Eqs. (7.1)–(7.3) and (7.13) and integrated. As a result of the dynamic model run,
a new trajectory of operation states x(r)(t) is received. Besides, if t = Tf then the
record value JG = J

(r)
G can be calculated.

• Step 3: Then, the transversality conditions are evaluated. The conjugate system is
integrated subject to u(t) = u(t) and over the interval from t = Tf to t = T0. For
t = T0, the first approximation ψ

(r)
l (T0) is received as a result. Here, the iteration

number r = 0 is completed.
• Step 4: The control u(r)(t) being searched for subject to maximization of the

Hamiltonian function. The iterative process of the optimal schedule search is
terminated as follows: either the allowable solution is determined, or at the fourth
step no significant improvement is achieved.

Analogously, the OPC for the schedule of the model M2 can be obtained through
the integration of corresponding conjunctive systems. Subsequently, through the
reverse integration of the main equation systems, the mutual interrelating of the
models M1 and M2 is realized.
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