
Chapter 6
Coupling Robust Optimization and
Model-Checking Techniques for Robust
Scheduling in the Context of Industry 4.0

Pascale Marangé, David Lemoine, Alexis Aubry, Sara Himmiche,
Sylvie Norre, Christelle Bloch, and Jean-François Pétin

Abstract This chapter presents a generic methodology when considering robustness
in production systems of Industry 4.0. It is the first milestone for coupling Operations
Research models for robust optimization and Discrete Event Systems models and
tools for property checking. The idea is to iteratively call Operations Research and
Discrete Event Systems Models for converging towards a solution with the required
robustness level defined by the decision-maker.

6.1 Introduction

In recent years, a new type of industry is emerging that aims to be more adaptable,
agile, and flexible. This industry called “Industry 4.0” promises to adapt to the
personalized needs of customers, thanks to the integration and generalization of new
Information and Communication Technologies (IoT, Big Data, RFID, Digital Twin,
etc.) into the production system such that new features can emerge:

• dynamical adaptation to the high market volatility and the need for tailor-made
product solutions.

P. Marangé (�) · A. Aubry · S. Himmiche · J.-F. Pétin
Université de Lorraine, CRAN, CNRS 7039, Nancy, France
e-mail: Pascale.Marangé@univ-lorraine.fr

D. Lemoine
IMT Atlantique, LS2N UMR CNRS 6004, Nantes, France
e-mail: david.lemoine@imt-atlantique.fr

S. Norre
Université Clermont Auvergne, LIMOS UMR CNRS 6158, Aubière, France
e-mail: sylvie.norre@uca.fr

C. Bloch
Université Bourgogne Franche-Comt., FEMTO-ST Institute, CNRS 6174, Montbéliard, France
e-mail: christelle.bloch@univ-fcomte.fr

© Springer Nature Switzerland AG 2020
B. Sokolov et al. (eds.), Scheduling in Industry 4.0 and Cloud Manufacturing,
International Series in Operations Research & Management Science 289,
https://doi.org/10.1007/978-3-030-43177-8_6

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43177-8_6&domain=pdf
mailto:Pascale.Marang�@univ-lorraine.fr
mailto:david.lemoine@imt-atlantique.fr
mailto:sylvie.norre@uca.fr
mailto:christelle.bloch@univ-fcomte.fr
https://doi.org/10.1007/978-3-030-43177-8_6

104 P. Marangé et al.

• Communication with other systems and their environment.
• Distributed intelligence: each component is able to sense and to decide.

However some enablers are needed to support the realization of this new paradigm
(Panetto et al. 2019). In particular, mass customization in shorter and shorter delay
leads to a difficulty in knowing the quantity and type of demand, the flow of
products and their fluctuations and thus increases perturbations into the production
model due to the great diversity of the manufactured products and their shortened
life cycle. Perturbations can be categorized as follows: (1) Uncertainties: as the
difference between predicted and actual information (uncertainties about the volume
of demand, the duration of operations, etc.); (2) Hazards are defined by the occurrence
of uncontrollable Event in production or in the environment (machine failure, urgent
order, etc.).

To incorporate perturbations into the problem, different types of models exist
in the literature. (Ierapetritou and Jia 2007) have listed the three common models
for integrating perturbations into production models: delimited form or scenario
description, probability description or stochastic models, and fuzzy modeling.

The main disadvantage of stochastic models was the need to have knowledge about
historical data for identifying the right probability distribution and its parameters.
However, Industry 4.0 and integration of big data technologies promise to have
access to data coming from the shop-floor such that this historical data and their
analysis should help to build the right stochastic model of perturbations.

Such models can be integrated into classical Operations Research Models for
Robust Optimization (Bertsimas and Sim 2004). The Operations Research models
and associated solution tools are particularly efficient for tending towards the optimal
solution despite the complexity of the problem. But the counterpart of this efficiency
is often a dedicated static model whose price of adaptation when considering a new
characteristic can be very high. By essence, production systems in Industry 4.0 will
be highly dynamical and reconfigurable. Discrete Event Systems (DES) models and
tools are particularly efficient to capture and model the dynamics of a system through
the modeling of states and Event (Cassandras and Lafortune 2009).

The objective of this chapter is to present a generic methodology to assess the
impact of perturbations into production systems in order to define a solution with
a good balance between performance and robustness. This methodology is the first
milestone for combining the advantages of robust optimization and Discrete Event
Systems models and tools. The idea beside is to iteratively call robust optimization
and Discrete Event Systems models for reaching the robustness level required by the
decision-maker. This methodology is shown to be relevantly applied in the context of
robust production scheduling when considering uncertainties on operation execution
durations.

This chapter is built as follows: the first section presents the generic hybrid
approach between Operations Research models for robust optimization and Discrete
Event Systems models and tools for property verification. The second section
presents the instantiation of this methodology to a scheduling problem under
perturbations in a workshop with parallel machines. The third section illustrates

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 105

and discusses the results on a use case. Finally the last section concludes the chapter
by recalling the obtained results and by opening the discussion considering general
considerations about perturbations and Industry 4.0.

6.2 A Hybrid Approach for Optimization Under
Perturbations

In this section, we begin by introducing Linear Programming and robustness, then
Discrete Event Systems concepts are also presented. We finish by describing the
proposed methodology to deal with the robustness level wanted by the decision-
maker for a solution, thanks to a combination of a robust linear programming
approach and Discrete Event Systems Models.

6.2.1 Linear Programming and Robustness

Linear programming is one of the most powerful tools in Operations Research. It
allows to model a wide variety of practical problems (particularly in logistics) and is
often able to solve them to optimality. Among these logistic problems, we can quote
scheduling, production planning, vehicle routing, time tabling, etc.

According to Papadimitriou and Steiglitz (1998), a Mixed Integer Linear
Programming (MILP) can be expressed as:

Maximize
n∑

j=1

cj xj (6.1)

s.t.

n∑

j=1

aij xj ≤ bi ∀i = 1, · · · ,m (6.2)

xj ∈ N ∀j = 1, · · · , p (6.3)

xj ∈ R+, ∀j = p + 1, · · · , n (6.4)

where

• (cj)j=1...,n, (bi)i=1...,m, (aij)(i,j)={1...,m}×{1...,n} are real variables which represent
the problem’s parameters (for instance, costs, distances, capacities, etc.).

• X = (xj)j=1...,n are the decision variables. They represent the solution we seek
to determine.

106 P. Marangé et al.

• Function (6.1) is a linear form which represents the criterion we seek to optimize
(in this case, maximize. For instance, it can be some logistics costs, customer’s
satisfaction, etc.).

• Equation (6.2) is a set of affine constraints that any solution of the modeled
problem must satisfy (it describes the problem specificities).

• Equations (6.3) and (6.4) are integrity and positivity constraints.

For more information about linear programming, readers can also refer to Chvátal
(1983), Wolsey (1998), and Nemhauser and Wolsey (1999).

Usually, when using such modeling, all parameters are assumed to be well known
and deterministic. Nevertheless, this situation is very rarely encountered in real life.
Therefore, solutions determined by this method may be unrealistic in practice. To
avoid this, one possibility is to introduce uncertainties on parameters in order to better
model reality and to try to find solutions able to absorb these perturbations without
unreasonably degrading their quality. This kind of approach is usually referred to as
robust (Billaut et al. 2013).

In linear programming, several robust approaches have been designed depending
on the type of parameters on which the uncertainties fall on. Here, we focus on issues
where uncertainties are related to (aij) parameters. More precisely, we assume that
each parameter aij takes its values in a bounded interval

[
āij − âij , āij + âij

]
. That

is to say that there is a random real variable ζij which takes its values in [−1, 1] such
that

aij = āij + ζij âij

Thus, according to these assumptions, a MILP that takes into account these
uncertainties can be formalized as follows:

Maximize
n∑

j=1

cj xj (6.5)

s.t.

n∑

j=1

āij xj +
n∑

j=1

ζij âij xj ≤ bi ∀i = 1, · · · ,m (6.6)

xj ∈ N ∀j = 1, · · · , p (6.7)

xj ∈ R+, ∀j = p + 1, · · · , n (6.8)

where
n∑

j=1

ζij âij xj models the uncertainty in constraint (6.6).

The main idea of robust approaches presented in this chapter is to try to reasonably
protect oneself from this uncertainty by taking into account the risk, thanks to a set of

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 107

deterministic functions
(
β

Ωi

i (x)
)

i=1,··· ,m, where (Ωi)i=1,··· ,m are parameters tuned

in order to meet the degrees
(
Γ

ref
i

)

i=1,··· ,m of protection the decision-maker wants
to implement, depending on the criticality of the constraint.

In other words, (Ωi)i=1,··· ,m have to be set up to be sure that the probability that
the uncertainty does not exceed β

Ωi

i (x) is greater or equal to Γ
ref
i , for i = 1, · · · ,m:

P

⎡

⎣
n∑

j=1

ζij âij xj ≤ β
Ωi

i (x)

⎤

⎦ ≥ Γ
ref
i , ∀i = 1, · · · ,m (6.9)

Thus, if one solution (Ωi)i=1,··· ,m can be set up such that Eq. (6.9) is satisfied,
solving the following optimization problem will ensure to have a solution X =(
xj

)
j=1,...,n

which can resist to uncertainty with degrees wanted by the decision-
maker:

Maximize
n∑

j=1

cj xj (6.10)

s.t.

n∑

j=1

āij xj + β
Ωi

i (x) ≤ bi ∀i = 1, · · · ,m (6.11)

xj ∈ N ∀j = 1, · · · , p (6.12)

xj ∈ R+, ∀j = p + 1, · · · , n (6.13)

In Bertsimas and Sim (2004), the authors propose to use the following set of
functions:

β
Ωi

i (x) = max∑n
j=1|ζij |≤Ωi

⎛

⎝
n∑

j=1

ζij âij xj

⎞

⎠ (6.14)

and they prove that this non-linear formulation can be linearized and is equivalent to
a MILP. Thus traditional Linear Programming technics can be used for solving the
initial problem. This kind of MILP is called a Robust Linear Programming Model.

Nevertheless, tuning Ω = (Ωi)i=1,··· ,m for satisfying (6.9) can be very difficult.
In Bertsimas and Sim (2004), the authors show that if for all i, each ζij is independent
and symmetrically distributed in [−1, 1], Ωi can be analytically determined. But,
such a hypothesis is not often verified in real industrial problems.

108 P. Marangé et al.

6.2.2 Discrete Event Systems Models for Evaluating Solution
Robustness

Industrial systems can be modeled by Discrete Event Systems (DES) that allow
a representation of the behavior of a system by considering the state and Event
that allow it to evolve. The event is seen as an instantaneous occurrence of an
action or phenomenon in the system environment. Changes due to the event can
be deterministic when the behavior is known with certainty or stochastic when the
occurrence of an event can lead to different states. These modeling tools can be Petri
Nets, State Automata, Statecharts, Bayesian Networks (Cassandras and Lafortune
2009).

To model the behavior of industrial systems and perturbations, we should be
able to represent many dynamic characteristics such as the communication between
elements of the workshop (jobs, resources), the time, and the probabilistic behavior of
perturbations. Many stochastic Discrete Event Systems languages allow the modeling
of these characteristics. For instance, Stochastic Petri Nets (Chiola et al. 1993),
Stochastic Automata (Alur and Dill 1994), Stochastic Automata Networks (Plateau
and Atif 1991).

The language chosen here is the Stochastic Timed Automata (STA). In fact, it
is an extension of the well-known Timed Automata (Alur and Dill 1994) which is
enriched with shared variables, synchronizing Event and probabilistic characteristics
(Larsen et al. 1997).

Definition 6.1 Formally a Stochastic Timed Automaton is presented as the following
n-tuple:
A = (L, V,E,C, Inv, P r, T , Lm, l0, v0) where

• L is a finite set of locations.
• V is a finite set of variables.
• E is a finite set of synchronizing Event
• C is a finite set of clocks.
• Inv is a set of invariants (conditions in location).
• Pr is a set of probabilities: (i) discrete for the set of transitions (from a

location, probabilistic transitions allow to attend different locations li with a given
probability pi , with

∑
pi = 1). (ii) Continuous for the variables (the crossing

condition of a transition is defined randomly by a probability distribution).
• T is a finite set of transitions (l, e, g,m, l′) ∈ L × E × G × M × L, where l

and l′ are, respectively, the starting and arriving locations. On a transition, three
optional elements are defined: (i) a guard (condition on variables) g from the set
of guards G, (ii) an update (on variables) m from the set of updates M , and (iii)
a synchronizing event e from the set E.

• Lm ⊆ L is the set of marked locations.
• l0 ∈ L is the initial location of the automaton.
• v0 is the initialization vector of variables.

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 109

Idle

≔
Busy

==

≤ Failed

1 −

≔ 1 −

<

Fig. 6.1 A Stochastic Timed Automaton representing a machine

The elements of a STA can be graphically represented as follows (see example
in Fig. 6.1). Locations are represented by vertices and transitions by arcs. An initial
active location is represented by a double vertex. The invariants are represented
inside the associated vertex (location). Guards are represented between brackets
“[]”. Synchronizing Event is represented in italics. The update of variables and
clocks are represented between parenthesis “()”. Discrete probabilities are modeled
by dotted arcs and associated probabilistic values are underlined. For continuous
probabilities, they are directly linked with the definition of variables.

The automaton MACHINE in Fig. 6.1 represents the behavior of a machine
that can be subjected to failures. For this purpose, the machine can be represented
by three states: Idle, Busy, Failed. Moreover, the failure rate is represented by λ and
the repair rate by μ.

Initially, the MACHINE is in the location Idle waiting for the CycleStart event.
After the occurrence of this event, the local clock c is initialized (c := 0) and the
MACHINE becomes Busy, i.e. is used for executing a cycle (that lasts normally
T time units). Before T times units, a failure may occur with a probability λ (the
MACHINE reaches the location Failed) or the machine continues its cycle with
the probability 1 − λ. In the location Failed, the MACHINE is repaired with the
probability μ and, in this case, the cycle restarts to zero (c := 0). In this example, a
failure has a big impact because the cycle restarts from zero after being repaired.

Discrete Event systems models can be used either to control, i.e. to inhibit certain
state transitions to avoid unwanted behaviors, or to evaluate performance, i.e. to
check properties such as the reachability of a state or the execution of an events
sequence. This “Model-Checking” ability can be used for evaluating the impact of a
perturbation on a system.

Properties that are traditionally desirable for an industrial system concern the
reliability, maintainability, and safety. And DES models and tools are usually used
for evaluating these properties. For instance, in Morel et al. (2009), Reliability is
defined as the ability of a device or system to perform a required function under
stated conditions for a specified period of time. This property is often measured
by the probability R(t) that a system will operate without failure before time t

(depending on the failure rate λ), i.e. the probability that the Time To Failure T T F

is greater than the time t :

110 P. Marangé et al.

R(t) = P(T T F > t) (6.15)

Now, we will show how DES models and tools can be used for evaluating
reliability. In the example in Fig. 6.1, reliability can be the probability that the
Failed state will be never reached before a cycle time T (meaning T T F > T , such
that the failure does not happen during the cycle, if not the cycle has to restart
from zero). For stochastic DES models, such a property can be expressed in PCTL
(Probabilistic Computation Tree Logic). This language is a probabilistic extension
of CTL (Computation Tree Logic) (Baier and Kwiatkowska 1998). This type of logic
allows to express properties like “What is the probability that the model is in the state
Failed, in the precise interval [0,T]?” This question can be transcribed in PCTL as
in the expression (6.16).

P =?[F ≤ T “MACHINE.Failed ′′] (6.16)

where P =? means that we want to assess the probability that the property that is
inside the brackets [] is reached. This property can be translated as follows:

• F ≤ T means “There exists in the future in a time that is less or equal to T .”
• “MACHINE.Failed” means “a state where the stochastic timed automata

MACHINE is in the marked location Failed.”

Finally the obtained result assesses 1 − R(T). So Model-Checking can be used
for evaluating the reliability of a system. And we could do the same for the
maintainability and safety.

The implementation of property verification is done by model-checking. The
input of the model-checker is a system model and a property. At the output, the
model-checker indicates whether the property is checked and, if not, a counter-
example is returned (i.e., an example that shows that the property is not checked). In
the case of stochastic system modeling, model-checking can be done numerically or
statistically:

• Numerical model-checking uses accurate valuation methods to determine the
probability value of a property. This type of model control ensures the accuracy
of the given solution, but it is not suitable for large problems.

• Statistical model-checking generates different execution paths and verifies, after
each execution, the satisfaction of a property. Statistical model-checking is
similar to the Monte Carlo simulation. Monte Carlo simulation is a method for
estimating a numerical quantity using random numbers. At each simulation step,
the expectation of the variable is calculated and the simulation stops when the
statistical parameters are satisfied. This avoids the combinatorial explosion and
is therefore adapted to check real systems (Ballarini et al. 2011).

Actually, reliability can be seen as a robustness property. The notion of robustness
has different definitions in literature that converge to the same idea: a robust
system should maintain or guarantee some performances despite perturbations and
variations generated by the system or its environment (Billaut et al. 2013).

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 111

When considering perturbations modeled as stochastic variables, the concept
of “service level” can be used for assessing the robustness (Dauzères-Pérès et al.
2010). A service level SL is defined as the probability that a criterion is smaller
(resp. larger) or equal to a given value. Thus, the assessed robustness level SL can
be translated as the probability P that a system state z is lower than a value zmax (or
larger than a value zmin) as in the following equation:

SL = P(z ≤ zmax) (6.17)

We can see that reliability falls within this definition. DES models and tools are
thus good candidates for evaluating the robustness level of a system.

6.2.3 Proposed Methodology for Combining the Two
Approaches

As said before, fine-tuning the Ω = (Ωi)i=1,··· ,m for satisfying (6.9) can be very
difficult in general cases. Therefore, we propose a methodology for iteratively and
numerically tuning Ω , thanks to Discrete Event Systems Models and associated
Model-Checking tools. Figure 6.2 sketches the proposed approach.

Here, we suppose that:

• the problematic we want to solve and which relies on the system-of-interest can
be formalized by a Mixed Integer Linear Programming model,

• the system-of-interest and its dynamic we want to study can be modeled, thanks
to a Discrete Event Systems Model (DES),

• the decision-maker is able to define the different robustness indicators(
Γ

ref
i

)

i=1,...,m
for each constraint i that must be satisfied by the solution

X.

To determine the parameters (Ωi)i=1,··· ,m that lead to the robustness level wanted
by decision-makers, we proposed a methodology based on the following three
iterative modules:

Module 1: The Operations Research Module (OR Module). According to the
current value of (Ωi)i=1,··· ,m, the Robust Mixed Integer Programming
Model using Bertsimas and Sim’s framework is designed (Bertsimas and
Sim 2004). Then, this is input into a Solver to get the optimal solution
taking into account the robustness parameters. The obtained solution X

is then sent to the second Module.
Module 2: The Discrete Event Systems Module (DES Module). Considering the

system-of-interest and the solution proposed by the Operations Research
module, a Stochastic Timed Automata model is first designed. Then, the
different robustness levels Γi (as instantiations of the service level SL)
to be assessed are defined as properties to be checked on the resulting

112 P. Marangé et al.

Fig. 6.2 The proposed methodology

model by a model-checker. The resulting (Γi)i=1,...,m are sent to the third
module.

Module 3: Update Module. Depending on the robustness levels (Γi)i=1,...,m

assessed by the Discrete Event Systems Module, if the robustness levels
required by the decision-maker are reached, then the process is stopped
and the solution is given. Otherwise, (Ωi)i=1,··· ,m are updated and sent
back to the Operations Research Module for a new iteration.

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 113

6.3 Application to the Problem of Scheduling Under
Perturbations

6.3.1 Scheduling Under Perturbations

The issue of production scheduling is an important decision-making problem
in industrial processes. Actually, to guarantee the production performances, the
decision-maker has to find an adapted schedule to its production system and
the associated constraints. A production scheduling problem consists usually in
(1) allocating the workshop resources to operations needed to make the jobs,
(2) sequencing the operations on resources (defining the execution order of
operations on resources), and (3) eventually defining the starting and ending dates
of each operation. The schedule obtained should satisfy the workshop constraints
(precedence constraints, non-preemption of operations, etc.). Indeed, each type of
workshop has its own constraints in order to satisfy the production objective (like
minimizing the total completion time of operations, number of late jobs, production
cost, etc.).

Monostori et al. (2016) consider robust scheduling as one of the six main
challenges in Research and Development for Cyber-Physical Production Systems.
Others like Zhong et al. (2017) prefer to talk about a need of intelligent scheduling
able to generate, from captured data, a reliable schedule in real time.

6.3.2 Instantiation of the Approach to Scheduling Under
Perturbations

Here, we present an illustration of our methodology applied to a scheduling problem
in a production area composed of two non-identical parallel machines: this means that
the machines can perform the same operations but with different processing times.
Then scheduling problem in this production cell involves both machine allocation
and sequencing, rather than simply sequencing (Mokotoff 2001). Figure 6.3 shows
the considered production cell.

In our case, we seek to minimize the completion time of the last scheduled job:
this criterion is usually called the Makespan and is denoted as Cmax . The main
assumptions of our problem are the following:

• All jobs are available at time 0,
• The two machines are always available (no breakdown, . . .),
• Processing times for the jobs are independents,
• A machine cannot process more than one product at any time.

This problem which is referred to as R2||Cmax has been shown to be NP-hard in
the weak sense (Lenstra et al. 1977). Here, we also assume that processing times are
not deterministic.

114 P. Marangé et al.

Stock

Machine
1

Machine
2

Stock

Physical flow

Fig. 6.3 The production area

6.3.2.1 Instantiation of the Methodology

The methodology presented in Fig. 6.2 can be instantiated as in Fig. 6.4. The
MILP formulation of the problem R2||Cmax under uncertainties is presented in
Sect. 6.3.2.2. The DES Module is presented in Sect. 6.3.2.3. The Update Module is
presented in Sect. 6.3.2.4.

6.3.2.2 Operations Research Module

First, we give the MILP formulation of this scheduling problem when all the
processing times are deterministics.

The parameters of the model are given in Table 6.1.
The decision variables are summarized in Table 6.2.
The R2||Cmax problem can be formulated as follows:

Minimize Cmax (6.18)

s.t.

2∑

k=1

xjk = 1 ∀j ∈ {1, . . . , N} (6.19)

Cmax −
N∑

j=1

tjkxjk ≥ 0 ∀k ∈ {1, 2} (6.20)

Cmax ≥ 0 (6.21)

xjk ∈ {0, 1} ∀ (j, k) ∈ {1, . . . , N} × {1, 2} (6.22)

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 115

Begin

Reading input data: Ω = (0; 0), Γ
=1,…,

Solving robust model thanks to linear solver

Operational Research Module

Robust Mixed Integer Linear Programming Model Design

Discrete Events System Module

Stochastic Timed Automata Model Design

Robustness Evaluation by model checking
=? [≤ "∀ . "]

End

Update of Ω

1 = Γ1 − Γ1

2 = Γ2 − Γ2

Ω1 = Ω1 + 1

Ω2 = Ω2 + 2

Update Module

Γ
=1,…,

Ω

Is the solution robust enough?
i.e. ∀ , Γ ≥ Γ ?

Yes

No

Fig. 6.4 Instantiated methodology to R2||Cmax

116 P. Marangé et al.

Table 6.1 Parameters of the
model

N : Number of jobs we have to schedule
tjk : Processing time for job j on the machine k,

(j, k) ∈ {1, . . . , N} × {1, 2}

Table 6.2 Decision variables
of the model X = (

xjk

)
jk

:

{
xjk = 1 if machine k is allocated to job j

xjk = 0 otherwise
(j, k) ∈ {1, . . . , N} × {1, 2}

Cmax : is the makespan value

Equation (6.18) is the objective function we seek to minimize. Equation (6.19)
ensures that every job is executed by a single machine. Constraint (6.20) requires
that total completion time Cmax is higher than the completion time on each machine.
Equations (6.21) and (6.22) are positivity and integrity constraints.

Now, we suppose that there are some uncertainties related to the jobs’ processing
times. As presented in the robustness section, there is a random variable ζjk which
takes its values in [−1, 1] such that

tjk = t̄jk + ζjk t̂jk

According to the Bertsimas and Sim (2004) approach, we can formulate the robust
model as follows:

Minimize Cmax (6.23)

s.t.

2∑

k=1

xjk = 1 ∀j ∈ {1, . . . , N} (6.24)

Cmax −
N∑

j=1

t̄jkxjk − max∑N
j=1|ζjk|≤Ωk

⎛

⎝
N∑

j=1

ζjk t̂jkxjk

⎞

⎠ ≥ 0 ∀k ∈ {1, 2} (6.25)

Cmax ≥ 0 (6.26)

xjk ∈ {0, 1} ∀ (j, k) ∈ {1, . . . , N} × {1, 2} (6.27)

In this context, Ωk represents the maximal deviation (using the L1-Norm) that
is taking into account in the model for each machine k. If Ωk = 0, which means
that no uncertainties are taken into account. In fact, the constraints (6.25) become
equivalent to the constraints (6.20) and the robust formulation becomes equivalent
to the deterministic formulation. On the contrary, if we want to consider all the
uncertainties, Ωk must be chosen as equal to N . If it is the case, the most conservative
solution will be obtained. In fact, the constraints (6.25) become equivalent to the
following:

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 117

Cmax −
N∑

j=1

t̄jkxjk −
N∑

j=1

t̂jkxjk ≥ 0, ∀k ∈ {1, 2} (6.28)

Thus, this corresponds to the worst-case formulation: i.e. the most conservative,
considering that the worst case (all the ζjk are equal to 1) is more important than the
other cases.

Here, the idea is to fix Ωk (as a “maximum amount of deviation” on the operation
durations) but with guaranteeing that the desirable robustness levels Γ

ref
k are

reached.

6.3.2.3 Discrete Event Systems Module

This section presents the DES formulation such that the allocation X = [
xjk

]
jk

resulting from the solving of the robust MILP formulation given in the previous
section can be evaluated regarding its robustness level and the result is sent to the
Update Module for updating accordingly (Ωk)k=1,2 (and a new iteration is launched)
or not. The DES module contains two steps:

Step 1: Stochastic Timed Automata Model design: using STA for modeling the
behavior of jobs and machines when executing the allocation X.

Step 2: Robustness evaluation by Model-Checking: evaluating the robustness levels
Γk associated with each machine k.

Stochastic Timed Automata Model Design

First we propose to model the behavior of the jobs and the machines when they are
not subjected to uncertainties. We define a job pattern that will be instantiated for
each job j and a machine pattern that will be instantiated for each machine k.

In the following, we denote as kj the machine that is allocated to the job j (defined
by X coming from the Operations Research Module). Formally kj = ∑

k xjk.k.
The job pattern (named αj) is presented in Fig. 6.5a. First, in the Waiting to be

executed location, the job j waits the availability of its allocated machine kj (through
the guard

[
Avail

(
kj

) == T rue
]
). When the guard is satisfied, the job pattern

sends a request to the machine pattern (by the synchronizing event Request
(
kj

)
)

and reaches the In execution location waiting for its completion (the reception of
the synchronizing event Completed (j)). After its completion, the job reaches the
Completed location.

The machine pattern is represented in Fig. 6.5b. In this model, the job that is
going to be executed is denoted as jk . First, in the Idle location, the machine waits a
request from a job (the synchronizing event Request (k)) and then reaches the Busy
location after updating its availability status (Avail(k) := False) and initializing
the local clock tjkk to 0. In the Busy location, the machine executes the job until the

118 P. Marangé et al.

Fig. 6.5 STA models of job and machine without considering perturbations. (a) Job STA: αj . (b)
Deterministic machine STA

Fig. 6.6 Perturbed machine STA

local clock reaches the deterministic duration t̄jkk . When the duration is reached, the
job can be informed of its completion (by the synchronizing event Completed (jk))
and the machine updates its availability status (Avail(k) := T rue). The machines
then go back to the Idle location.

Now, we integrate the uncertainties on the job duration into the machine pattern.
The resulting updated machine pattern is represented in Fig. 6.6. In the following,
we denote the upper value of the job duration as tmax

jkk
= t̄jkk + t̂jkk and the lower

value of the job duration as tmin
jkk

= t̄jkk − t̂jkk .
In the Busy 1 location, the machine waits to reach the minimal duration tmin

jkk

(through the guard
[
tjkk == tmin

jkk

]
). Moreover, the iteration counter l is initiated to

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 119

0. The idea is to let the duration increase according to a discrete probability p(l)

that is evolving depending on the iterations number l. In the Busy 2 location, if
the maximal duration is reached (

[
tjkk == tmax

jk

]
), then the machine reaches the

completing location. If it is not the case (
[
tjkk < tmax

jk

]
), there are two possible

probabilistic choices: (1) with the probability 1 − p(l), the duration can increase
and the iteration counter is updated (l := l + 1) or (2) with the probability p(l), the
current duration is the final duration.

Finally, the probability that tjkk = tmin
jkk

+ l is the probability to loop into the Busy
2 location l − 1 times and to get out from the loop in the lth iteration.

Actually, p(l) is a probabilistic parameter that can be calculated from the
probability distribution followed by tjkk .

Modeling the execution of the job as previously presented allows to not be
restricted to any kind of probability distribution (symmetric or not, discrete or
not, etc.). We could even imagine to cut the interval of the job duration in several
sub-intervals in which the probability distributions could be different. That makes
this approach a good complement to the robust linear programming of the Operations
Research module.

Robustness Evaluation by Model-Checking

In the second step, model-checking tools are used to assess the robustness level of
X.

In a scheduling problem, we can instantiate the service level presented in
Eq. (6.17) as follows: z is the total completion time despite the considered
uncertainties and zmax is the referential completion time Cmax associated with X

given by the Operations Research module. So we define the robustness level as
the probability that the executed makespan is smaller or equal than the referential
completion time Cmax . Formally, this metric is given by Eq. (6.29):

SL = P (Cmax (X,U) ≤ Cmax) (6.29)

where Cmax (X,U) is the executed makespan of an allocation X subjected to
uncertainties U .

So to assess the value of SL using DES models and associated Model-Checking,
the property to check is: “What is the probability that all the paths lead to a global
state where all the job models αj are in the marked location Completed in a time
that is less or equal to Cmax?”
Using PCTL, this property can be expressed as follows:

P =?
[
F ≤ Cmax “∀j αj .Completed ′′] (6.30)

120 P. Marangé et al.

where P =? means that we want to assess the probability that the property that is
inside the brackets [] is reached. This property can be translated as follows:

• “F ≤ Cmax” means “There exists in the future in a time that is less or equal to
Cmax .”

• “∀j αj .Completed” means “a state where, for all j , all the stochastic timed
automata αj are in the marked location Completed.”

That means that the formula
[
F ≤ Cmax “∀j αj .Completed”

]
is a PCTL expression

for: Cmax (X,U) ≤ Cmax .
Here, two robustness levels associated, respectively, with each machine can be

defined. They consist to consider only the uncertainties are only taken into account
on machine 1 or machine 2. So, we can evaluate which machine is more sensitive
than the other. These two robustness levels are defined as follows:

Γ1 = P

(
Cmax

(
X,

(
t̂j1

)
j1

)
≤ Cmax

)

Γ2 = P

(
Cmax

(
X,

(
t̂j2

)
j2

)
≤ Cmax

) (6.31)

where
(
t̂j1

)
j1 (resp.

(
t̂j2

)
j2) are the uncertainties on the operation durations when

considering that there are no uncertainties on the machine 2 (resp. 1). Finally, these
robustness levels assess whether the inequation (6.9) is satisfied or not. This result
is used in the Update Module for updating or not Ω .

Moreover, we are able to evaluate a general robustness level considering the global
uncertainties

(
t̂jk

)
jk

as follows:

Γ = P

(
Cmax

(
X,

(
t̂jk

)
jk

)
≤ Cmax

)
(6.32)

As the two machines are independent, we have Γ = Γ1 × Γ2.

6.3.2.4 Update Module

Update of Ω

Here we assumed that the decision-maker is able to fix a robustness level Γ ref he
would like to be achieved by the system. This robustness level assessed the minimal
acceptable probability that the executed makespan is smaller than the reference
makespan Cmax . Moreover, we considered that:

• the machine are independent: Γ ref = Γ
ref

1 × Γ
ref

2
• the contributions of each machine to the global robustness level are equivalent

(no machine is more critical than the other).

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 121

Thus, Γ
ref
k (defined in the inequation (6.9)) can be fixed as follows:

∀k ∈ {1, 2}, Γ ref
k =

√
Γ ref

Following the assessment of Γ , Γ1, and Γ2 by the Discrete Event Systems Module,
the following algebraic distances to the required minimal robustness levelΓ ref ,Γ ref

1 ,
and Γ

ref

2 can thus be calculated:

D = Γ ref − Γ (6.33)

D1 = Γ
ref

1 − Γ1 (6.34)

D2 = Γ
ref

2 − Γ2 (6.35)

If D1 > 0 or D2 > 0, which means that the required robustness levels are not
reached and the parameters Ω1 and Ω2 have to be updated. We propose to do it as
follows:

Ω1 = Ω1 + D1 (6.36)

Ω2 = Ω2 + D2 (6.37)

We can note that these update formulas are arbitrarily defined. However, they
express the fact that the further away from the objective (the bigger Dk), the more
the parameters Ωk must be amplified.

6.4 Application

In the application, 10 jobs are considered, with execution times having the
uncertainties defined in Table 6.3. Moreover, Γ ref is fixed to 0.90: meaning that
the probability that the executed makespan will be effectively less than or equal to
the optimal value is at least equal to 0.90.

Table 6.3 Characteristics of jobs

tmin
1k tmax

1k tmin
2k tmax

2k tmin
3k tmax

3k tmin
4k tmax

4k tmin
5k tmax

5k

machine k = 1 1 1 1 3 2 8 1 5 3 13
machine k = 2 1 3 1 1 1 3 2 6 3 9

tmin
6k tmax

6k tmin
7k tmax

7k tmin
8k tmax

8k tmin
9k tmax

9k tmin
10k pmax

10k

machine k = 1 1 3 2 6 1 3 3 5 1 1
machine k = 2 4 6 1 5 1 7 1 3 1 1

122 P. Marangé et al.

Table 6.4 Iterations for the application

Iteration Input Ω
OR module DES module Update module

k Solution Cmax {Γ, Γ1, Γ2} {D,D1,D2} Output Ω

0 [0, 0] X1 12 {0.65, 0.85, 0.77} {0.25, 0.10, 0.18} [0.10, 0.18]
1 [0.10, 0.18] X1 12.54 {0.65, 0.85, 0.77} {0.25, 0.10, 0.18} [0.21, 0.35]
2 [0.21, 0.35] X1 13.05 {0.80, 0.93, 0.88} {0.10, 0.02, 0.07} [0.23, 0.42]
3 [0.23, 0.42] X1 13.26 {0.80, 0.93, 0.88} {0.10, 0.02, 0.07} [0.25, 0.49]
4 [0.25, 0.49] X1 13.47 {0.80, 0.93, 0.88} {0.10, 0.02, 0.07} [0.27, 0.56]
5 [0.27, 0.56] X1 13.54 {0.80, 0.93, 0.88} {0.10, 0.02, 0.07} [0.29, 0.63]
6 [0.29, 0.63] X2 13.58 {0.80, 0.85, 0.95} {0.10, 0.10, 0.00} [0.39, 0.63]
7 [0.39, 0.63] X2 13.78 {0.80, 0.85, 0.95} {0.10, 0.10, 0.00} [0.49, 0.63]
8 [0.49, 0.63] X1 13.89 {0.80, 0.92, 0.87} {0.10, 0.03, 0.07} [0.51, 0.70]
9 [0.51, 0.70] X2 14.02 {0.90, 0.93, 0.99} {0.00, 0.02,−0.04} [0.53, 0.66]
10 [0.53, 0.66] X1 13.98 {0.92, 0.96, 0.95} {−0.02,−0.01, 0.00} ∅

Table 6.4 gives the different iterations of the combined approach. We started with
Ω = [0, 0] (meaning that no uncertainty is considered). Two solutions are explored
during different iterations. The solution X1 allocates the first machine to jobs 1, 4,
6, 7, 8 and the second machine to jobs 2, 3, 5, 9, 10. The solution X2 allocates the
first machine to jobs 1, 4, 6, 7, 8, 10 and the second machine to jobs 2, 3, 5, 9.

This application shows that combining the two approaches allows to converge to
a solution with a good robustness level without degrading too much the makespan.
Initially (without perturbations), the makespan was of 12 and the associated
robustness level was of 0.65. If the decision-maker accepts to degrade this makespan
of around 20% (increasing the makespan to 14), then the robustness level reaches
0.90. Moreover, this approach is a good means for tuning the Ω parameters even if
the probability distribution associated with the uncertainties is not symmetrical. We
can note here that the makespan for a robustness level of 1 is Cmax = 18 (namely the
most conservative solution). Thus, the couple (Cmax = 13.98, Γ = 0.9) is a good
compromise between optimality and robustness.

6.5 Conclusions

Among the major issues related to Industry 4.0, risk management and, consequently,
robust decision support play a significant role in the concerns of decision-makers.

In order to provide an efficient answer to this problem, we have proposed a generic
method combining robust mathematical programming and Discrete Event Systems
models. This allows to reach the level of robustness desired by the decision-maker by
finely assessing the degree of robustness of the solutions provided by the optimization
module, regardless of the probability distributions that follow the uncertainties on the

6 Coupling Robust Optimization and Model-Checking Techniques for Robust. . . 123

model input data. We have illustrated the latter on the case of a scheduling problem
with parallel machines.

However, as far as our methodology is generic, it will have to be adapted to the
context of use. In particular, the mechanism for updating robustness coefficients
Ω can be designed more efficiently to increase the rate of convergence of the
methodology towards a solution with the required robustness level. In addition,
instead of considering an equidistribution of the levels of robustness to be obtained
over all the constraints of the model, a more specific distribution of these can be
considered, taking into account, for example, the configuration of the production
system, the criticality of certain machines (for instance, requiring greater robustness
for bottleneck machines, etc.).

With the development of Industry 4.0 and, more particularly, the increasing
use of digital twins, these hybridization between decision support and performance
evaluation models are likely to develop. The advent of Big Data and its consequences
in terms of model calibration (and in particular through a more realistic estimation
of probability laws modeling data uncertainties) combined with ever-increasing
computing power will make it possible to implement this type of methodology in
decision support tools in an industrial context.

Acknowledgments This chapter is the result of a collaboration between the two working groups
Bermudes1 and SED2 from the French National Centre for Scientific Research (CNRS).

The Bermudes group has been created in 1996. It is labeled by the GDR RO3 and the GDR
MACS 4, which are two research groups depending on the French CNRS. Focused at the beginning
on classical scheduling issues such as classical scheduling workshop problems (Job Shop, Flow
Shop, Generalized Job Shop, Hybrid Flow Shop, etc.), scheduling problems in manufacturing
systems (Flexible Manufacturing Systems, Hoist Scheduling Problems), and Resource Constrained
Project Scheduling Problems, its research topics have evolved following Industry 4.0 context and
include now integrated scheduling problems taking into account both several related activities
(maintenance, transport, etc.) and different constraints (environmental, human, energetic, etc.).
Determination of robust or reactive scheduling has become an important issue.

The Discrete Event Systems Working Group (DES) has been created in 2014. It is a French
working group from the GDR MACS. Its objectives are to promote exchanges between the various
specialists, whether they come from the world of automation, computer science, or mathematics,
and thus to provide a better knowledge of the problems related to DES and the solutions that
can be provided. The topics covered include (1) the study of the syntax and semantics of DES
formalisms; (2) the application of these formalisms for modeling based on specifications, system
performance analysis, simulation, property verification, system control, supervision, observation,
detection, diagnosis, decision support, architecture selection, reconfiguration, etc.

1http://www.gt-bermudes.fr/.
2https://sites.google.com/site/gtsedmacs/.
3http://gdrro.lip6.fr/.
4https://gdr-macs.cnrs.fr/.

http://www.gt-bermudes.fr/
https://sites.google.com/site/gtsedmacs/
http://gdrro.lip6.fr/
https://gdr-macs.cnrs.fr/

124 P. Marangé et al.

References

Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2),
183–235.

Baier, C., & Kwiatkowska, M. (1998). Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11(3), 125–155.

Ballarini, P., Djafri, H., Duflot, M., Haddad, S., & Pekergin, N. (2011). Petri nets compositional
modeling and verification of Flexible Manufacturing Systems. In IEEE InternationalConference
on Automation Science and Engineering, pp. 588–593. New York: IEEE.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.
Billaut, J.-C., Moukrim, A., & Sanlaville, E. (2013). Flexibility and robustness in scheduling.

London: Wiley.
Cassandras, C. G., & Lafortune, S. (2009). Introduction to discrete event systems. New York:

Springer Science & Business Media.
Chiola, G., Marsan, M. A., Balbo, G., & Conte, G. (1993). Generalized stochastic petri nets: A

definition at the net level and its implications. IEEE Transactions on Software Engineering,
19(2), 89–107.

Chvátal, V. (1983). Linear programming. A series of books in the mathematical sciences. New
York: W. H. Freeman.

Dauzères-Pérès, S., Castagliola, P., & Lahlou, C. (2010). Service level in scheduling. In J.-C.
Billaut, A. Moukrim, & E. Sanlaville (Eds.), Flexibility and robustness in scheduling (chapter 5,
pp. 99–121). Hoboken: Wiley-ISTE.

Ierapetritou, M. G., & Jia, Z. (2007). Short-term scheduling of chemical process including
uncertainty. Control Engineering Practice, 15(10), 1207–1221. Special Issue - International
Symposium on Advanced Control of Chemical Processes (ADCHEM).

Larsen, K. G., Pettersson, P., & Yi, W. (1997). Uppaal in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1–2), 134–152.

Lenstra, J., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. In
P. Hammer, E. Johnson, B. Korte, & G. Nemhauser (Eds.), Studies in integer programming.
Annals of discrete mathematics (Vol. 1, pp. 343–362). Amsterdam: Elsevier.

Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia-Pacific Journal of
Operational Research, 18(2), pp. 193–242.

Monostori, L., Kádár, T., Bauerhansl, T., Kondoh, S., Kumara, S., Reinhart, G., et al. (2016).
Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621–641.

Morel, G., Pétin, J.-F., & Johnson, T. L. (2009). Reliability, maintainability, and safety (pp. 735–
747). Berlin/Heidelberg: Springer.

Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. Wiley-
Interscience series in discrete mathematics and optimization. New York, NY: Wiley.

Panetto, H., Iung, B., Ivanov, D., Weichhart, G., & Wang, X. (2019). Challenges for the cyber-
physical manufacturing enterprises of the future. Annual Reviews in Control, 47, 200–213.

Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and
complexity. Mineola, NY: Dover Publications.

Plateau, B., & Atif, K. (1991). Stochastic automata network of modeling parallel systems. IEEE
Transactions on Software Engineering 17(10), 1093–1108.

Wolsey, L. A. (1998). Integer programming. Wiley-Interscience series in discrete mathematics and
optimization. New York: Wiley.

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context
of industry 4.0: A review. Engineering, 3(5), 616–630.

	6 Coupling Robust Optimization and Model-Checking Techniques for Robust Scheduling in the Context of Industry 4.0
	6.1 Introduction
	6.2 A Hybrid Approach for Optimization Under Perturbations
	6.2.1 Linear Programming and Robustness
	6.2.2 Discrete Event Systems Models for Evaluating Solution Robustness
	6.2.3 Proposed Methodology for Combining the Two Approaches

	6.3 Application to the Problem of Scheduling Under Perturbations
	6.3.1 Scheduling Under Perturbations
	6.3.2 Instantiation of the Approach to Scheduling Under Perturbations
	6.3.2.1 Instantiation of the Methodology
	6.3.2.2 Operations Research Module
	6.3.2.3 Discrete Event Systems Module
	6.3.2.4 Update Module

	6.4 Application
	6.5 Conclusions
	References

