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Abstract. Mehta et al. [11] recently proposed an NMDS code-based
secret sharing scheme having a richer access structure than the tradi-
tional (t, n) threshold secret sharing schemes, and is based on two mutu-
ally nonmonotonic sets of user groups of sizes t and t − 1 respectively,
where n ≥ t > 1 corresponds to the total number of users. We give
a full generalization of their scheme with complete security proofs. We
propose an efficient generalized secret sharing scheme constructed using
NµMDS codes with time complexity of O(n3). The scheme accepts an
access structure constructed using µ + 1 mutually nonmonotonic sets of
user groups with sizes, t, t − 1, . . . , t − µ, respectively, where 1 ≤ µ < t,
and the parameter t defines the threshold such that all user groups of
size greater than t can recover the secret. The proposed secret sharing
scheme is perfect and ideal and has robust cheating detection and cheater
identification features.

Keywords: Secret sharing schemes · Generalized access structure ·
Near MDS codes · Almost MDS codes

1 Introduction

Secret sharing schemes allow a dealer, D, to split a secret s into n shares
s1, . . . , sn and distribute these shares to a set P of n users, P1, . . . , Pn, accord-
ing to an access structure Γ ⊂ 2P such that a subset A ⊆ P of users can form
the secret using their shares if and only if A ∈ Γ . Moreover the secret sharing
scheme is called a (t, n) threshold secret sharing scheme if the access structure
Γ is defined by

A ∈ Γ ⇐⇒ |A| ≥ t ,

for some t ∈ {1, 2, . . . , n}. Otherwise it is called a generalized secret sharing
scheme.

Blakley [2] and Shamir [13] independently proposed secret sharing schemes
in 1979. Shamir’s scheme utilises the standard Lagrange interpolation and linear
algebra whereas Blakley’s scheme uses the concept of intersection of hyperplanes
in finite geometries. Both of these schemes were threshold secret sharing schemes,
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that is, they restricted users in such a way that if and only if the number of users
exceeds the threshold, they could recover the secret. Ito et al. [8] introduced
the notion of a secret sharing scheme with a generalized access structure. A
generalized access structure consists of arbitrary subsets of users (irrespective of
each subset’s size), who could find the secret. They proposed a scheme in which
the dealer assigned several copies of a (t, n)-threshold secret sharing scheme to
every user. The dealer chooses two positive integers m and t and a prime power
q satisfying t ≤ m < q and

– chooses αt−1 ∈ GF(q) − {0} and α1, . . . , αt−2 from GF(q) and computes
f(x) = s + α1x + α2x

2 + · · · + αt−1x
t−1, where GF(q) is the Galois Field of

order q and f(0) = s ∈ GF(q) is the secret;
– chooses x1, . . . , xm ∈ GF(q) − {0} and computes sj = f(xj) (1 ≤ j ≤ m);
– and finally, assigns a subset Si ⊂ {(x1, s1), . . . , (xm, sm)} to the user Pi,

1 ≤ i ≤ n.

The access structure of this scheme contains all those sets for which the size of
the union of the users’ shares ≥t. In the worst case, the share size is exponential
in the size of the set of users. Benaloh and Leichter [1] proposed a secret sharing
scheme with a generalized access structure which was simpler than that of the Ito
et al.’s scheme [8]. Their construction utilizes the monotonicity property inherent
in secret sharing schemes. They create a composition of multiple schemes with
simple access structures and realize all access structures which can be defined
using a small monotone formula. Although this scheme is simpler and more
efficient than Ito et al.’s scheme [8], the share length is still exponential in the
number of users.

Considering the secret sharing scheme proposed by Shamir once again, note
that although a cheating user can not recover the secret by providing an incorrect
share, but by getting a wrong key, he can misguide the honest users. Various
ways of detecting and correcting the secret have been suggested by scholars.
Some consider that there are only t shareholders for secret recovery and to check
that the shares are not fake, the dealer gives an additional information such as
using some check vectors to which will act like some kind of certificate for each
user. Others have suggested to use error correcting codes where fake shares can
be assumed to be errors and corrected like error correction of codes. Most of
the initial schemes had concerns over cheater detection and identification and
use of trusted third parties (combiners and dealers). Lein et al. [6] proposed a
modification of Shamir’s scheme [13] which allowed for cheater detection and
identification. If m > t users come together, where t is the threshold, then there
are

(
m
t

)
ways for the users to pool their shares and for each such way, a t − 1

degree recovery polynomial can be constructed through interpolation. The orig-
inal polynomial can be then compared with the interpolated polynomial. Users
who could not recover the original polynomial and are in the majority of groups
are marked as possible cheaters and then the shares are corrected recursively
until no cheater is left. This cheater detection and identification algorithm trades
off space and time-complexities for secret recovery.
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Researchers also observed that instead of using arbitrary matrices, using
linear codes provided the following advantages

– A single generator matrix is sufficient to represent them.
– They enable easy transmission and easier error detection.
– Even though features for cheater detection, identification, and verification

were added, schemes were still efficient.

McEliece and Sarwate [10] constructed a secret sharing scheme from Reed-
Solomon codes and showed it to be essentially the same as the Shamir threshold
scheme [13]. Later, Massey [9] gave a general construction of linear secret sharing
schemes from linear codes (or linear matroids). Blakley and Kabatiansky [3] and
Dijk [4] gave a generalization of Massey’s scheme to multidimensional subspaces
instead of vectors. Pieprzyk and Zhang [12] used Maximum Distance Separa-
ble (MDS) codes to construct a secret sharing scheme in which, an Maximum
Distance Separable matrix G of dimension (t × n) along with a message vector
v of dimension 1 × t is chosen by the dealer. The dealer then finds the desired
codeword by computing v × G. The secret is the first element of the codeword.

It was shown in [9] that the access structure of the resulting secret sharing
schemes is determined by the minimal codewords in the dual code. However,
determining the minimal codewords in a linear code and hence, the access struc-
ture, is hard. Dodunekov [5] proposed using NMDS codes instead of MDS codes
to construct a secret sharing scheme while observing the following advantages:

– They are less space consuming and easier to implement.
– Their access structure is richer than MDS secret sharing.
– The generator matrix of the code is hard to identify by an adversary.
– Shares the same properties of cheating detection and cheater identification

with MDS codes based schemes.

Mehta et al. [11] proposed an NMDS code-based secret sharing scheme having a
richer access structure than the traditional (t, n) threshold secret sharing schemes
and an access structure constructed using two mutually nonmonotonic sets of
user groups having sizes, t and t − 1 respectively, where n corresponds to the
total number of users.

1.1 Our Contribution

We have proposed an efficient generalized secret sharing scheme based on
NμMDS codes. The use of the NμMDS matrices allows us to have authorized
sets of varying sizes thus allowing the scheme to have a generalized and richer
access structure. The proposed secret sharing scheme is perfect and ideal and
has robust cheating detection and cheater identification features. The time com-
plexity for the share distribution and share recovery phases is just O(n3), where
n is the order of users. The proposed scheme has a finer access structure and pro-
vides a direction towards a fully generalized secret sharing scheme. The scheme
constructs the access structure using μ + 1 mutually nonmonotonic sets of user
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groups of sizes, t, t − 1, . . . , t − μ, respectively, where 1 ≤ μ < t, and the param-
eter t defines the threshold such that all user groups of size greater than t can
recover the secret.

2 Preliminaries

We denote the Galois Field, GF(q), of order q where q = pm is a prime power
by Fq. For ai ∈ Fq, 1 ≤ i ≤ n, (a1, . . . , an) denotes a vector in F

n
q . We will also

use the same notation, (a1, . . . , an), to denote to denote a n×1 matrix (column)
over Fq. On the other hand, [ a1 a2 . . . an−1 an ] denotes a 1×n matrix (row)
over Fq. For vectors vi = (vi1, . . . , vit) ∈ F

t
q, 1 ≤ i ≤ n, [ v1 v2 . . . vn−1 vn ]

denotes the t × n matrix over Fq formed by considering vi as columns. For a
t × n matrix G over Fq, the ith column of G is denoted G[i] ∈ F

t
q, 0 ≤ i ≤ n.

2.1 Coding Theory

Definition 1. A non-empty subset C of An, where A = {a0, . . . aq−1}, is called
a q-ary block code of length n over A, and a string in C is called a codeword.

Definition 2. The number of positions in which x and y differ is known as
Hamming distance d(x, y) between x and y. The minimum distance of a code C
is defined as

d(C) = min
x�=y∈C

d(x, y) .

Definition 3. A linear code, L, of length n is a linear subspace of Fn
q . If dimen-

sion of L is t then we call it an [n, t]-code (over Fq). Further, if the minimum
distance of L is d then we call it an [n, t, d]-code (over Fq).

Definition 4. The set of non-zero coordinate positions of a codeword c ∈ C is
called its support, Supp(c). The support of a code C, Supp(C), is defined as

Supp(C) = ∪c∈C Supp(c) .

Definition 5. The rth generalized Hamming distance, dr(C), is the cardinality
of the minimum support of an [n, r]-subcode of [n, t]-code C, where, 1 ≤ r ≤ t.

dr(C) = min{|SuppD| : D is [n, r]q subcode of C} .

Remark 1. The Hamming Distance of C d(C) = d1(C).

Definition 6. For an [n, t, d]-code C, the Singleton bound states that the
parameters of C must satisfy

qt ≤ qn−d+1 .

In other words, d ≤ n − t + 1.
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Definition 7. The rth generalized Singleton bound dr(C) states that

dr(C) ≤ n − t + r where r = 1, 2, . . . , t .

Definition 8. A maximum distance separable (MDS) code is an [n, t]-linear
code which achieves the Singleton bound, that is, it is an [n, t, n − t + 1]-code.

Proposition 1. For an [n, t, d] MDS code L over Fq, let H be any of its parity
check matrix of L and let G = (It | A) be any of its generator matrix in standard
form (ref. Remark 2). Then

1. Any n − t columns of H are linearly independent.
2. Any t columns of G are linearly independent.
3. Any square submatrix of A is non singular.

Definition 9. The class of [n, t]-codes with

d1(C) = n − t

are called almost-MDS (AMDS) codes.

Definition 10. The class of [n, t]-codes with

d1(C) = n − t,

and di(C) = n − t + i, for i = 2, 3, . . . , t,

are called near-MDS (NMDS) codes.

Definition 11. The class of [n, t]-codes with

di(C) = n − t + 2i − μ − 1, for i = 1, 2, . . . , μ

and di(C) = n − t + i, for i = μ + 1, . . . , t,

are called NμMDS codes.

Remark 2. For the purposes of this work, we will assume that the generator
matrices G are in their standard form, that is, G = (It | A), where It is the
identity matrix of size t × t. Moreover, the MDS (or the NμMDS) matrices
correspond to the matrix A.

A detailed characterization of NμMDS codes was provided in [14]. The rele-
vant properties of NμMDS matrices required for this paper are as follows.

Proposition 2 (Properties of NμMDS Codes). The matrix characterization
of an NμMDS code with a generator matrix G is as follows:

1. For all i = 1, 2, . . . , μ,
(i) for i < l ≤ min{di − 1, t}, every (l − 2i + 2 + μ, l) submatrix has rank

≥ (l − i + 1).
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(ii) there exists an l, i < l ≤ min{di, t}, and an (l − 2i + 1 + μ, l) submatrix
with rank equal to (l − i).

2. For all i = μ + 1, . . . , t,
(i) for 1 < l ≤ min{(n − t), (t − μ)}, every (l, l + μ) submatrix has rank l.

Corollary 1 (Properties of NμMDS Matrices.) The standard generator
matrix for an [n, t] NμMDS code has the following properties:

1. Any t − μ + 2i columns of the generator matrix have rank ≥ t − μ + i, where
i = 0, 1, . . . , μ − 1.

2. There exists a set of t − μ + 2i + 1 columns with rank t − μ + i, for i =
0, 1, . . . , μ − 1.

3. Any t + μ columns of the generator matrix have rank t and are linearly inde-
pendent.

2.2 Secret Sharing

Let P = P1, . . . , Pn be a set of n users. We call a subset A of P a group of users.

Definition 12. A collection Γ ⊆ 2P is called monotone if A ∈ Γ and A ⊆ B
then B ∈ Γ .

Definition 13. We call two collections (sets) Gi,Gj ⊆ 2P mutually nonmono-
tonic sets if for all A ∈ Gi, there is no B ∈ Gj, such that B ⊂ A and vice
versa.

Definition 14. Γ ⊆ 2P is called an access structure if it is a monotone collec-
tion such that only the subsets of users in Γ are authorized to recover the secret.
Subsets not in Γ are termed to be unauthorized sets.

Definition 15. A distribution scheme is denoted by Π with S, the domain of
secrets, and R, a set of strings. For a secret t ∈ S and a string r ∈ R sampled
randomly observing Δ, where Δ is the probability distribution on R, a share
vector Π(t, r) = (s1, s2, . . . , sj) is computed and each share sj is communicated
to Pj via a secure channel.

Definition 16. A distribution scheme along with domain of secrets S realizing
access structure Γ is called a secret sharing scheme Σ = 〈Π,Δ〉.

Definition 17. A secret sharing scheme is correct if an authorized subset of
users can always recover the secret. In other words, for any set A ∈ Γ , there
exists a recovery function or algorithm SRA such that for a key k ∈ S,

Pr[SRA(A) is k] = 1 .

Definition 18. If T is the set of all possible shares and S is the set of all possible
secrets, then the information rate ρ of the secret sharing scheme is defined to be

ρ =
log(|S|)
log(|T |) .
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Definition 19. A secret sharing scheme is ideal if the set of all secrets, S, and
the set of all shares, T , are of same cardinality. That is, a secret sharing scheme
is ideal if its information rate is one.

Definition 20. A secret sharing scheme is perfect if an unauthorized group
of users, C, cannot obtain any information about the secret from their pool of
shares. That is, the probability of C recovering the secret using their pool of shares
is equivalent to the probability of recovering the secret without using their pool of
shares. In other words, for any subset B �∈ Γ , two secrets b and c ∈ S and every
possible share vector 〈sj〉Pj∈B,

Pr[Π(b, r)B = 〈sj〉Pj∈B] = Pr[Π(c, r)B = 〈sj〉Pj∈B]

Definition 21. A secret sharing scheme Σ is said to be linear over Fq if there
exists a vector v = (v0, v1, . . . , vt−1) ∈ F

t
q and a matrix A ∈ F

t×n
q , such that

v × A = (s0, s1, . . . , sn−1) where s0 is the secret and (s1, . . . , sn−1) is the share
vector.

Definition 22. During the secret recovery phase of a secret sharing scheme by
an authorized subset of users Ac, if a user Pi provides a wrong share, ŝi, instead
of the correct one, si, it was assigned by the dealer during the share distribution
phase, then the subset may fail to recover the secret, or worse, recover a wrong
secret. Such a user is called a cheater and detection of occurrence of such an
attack is called cheating detection.

Definition 23. Identification, with negligible error probability ε, of the user(s)
providing wrong inputs while recovering the secret is called cheater identification.

3 Proposed Secret Sharing Scheme

Though the scheme proposed in [11] has a richer access structure than the tradi-
tional (t, n) threshold secret sharing schemes, it only allows an access structure
consisting of two mutually nonmonotonic sets of user groups of sizes, t and t−1,
respectively. We propose a secret sharing scheme which admits a finer access
structure based on μ + 1, 1 ≤ μ ≤ n − t, mutually nonmonotonic sets of user
groups of sizes, t − μ + 1 + i, 1 ≤ i ≤ μ + 1, respectively. The proposed scheme
is based on the properties of NμMDS matrices which allow us to have an access
structure which is richer and independent of the field size.

3.1 Access Structure

The access structure of the proposed secret sharing scheme is definded using the
properties of NμMDS matrices [14] and is a generalization of the one proposed
in [11]. Let

G =
[

G[0] G[1] . . . G[t − 1] G[t] . . . G[n]
]
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be a standard generator matrix of an [n + 1, t, n − t − μ + 2] NμMDS code over
Fq where G[i] ∈ F

t
q, 0 ≤ i ≤ n.

Given a set P of n users, P1, . . . , Pn, we say that the column G[i] corresponds
to the user Pi and we define an access structure Γμ ⊂ 2P consisting of μ + 1
mutually nonmonotonic sets, namely, G0, G1, . . . , Gμ defined as as follows:

1. Gi, i < μ, consists of all (t−μ+i) users whose corresponding columns in G,
along with the first column, form t − μ + i + 1 linearly dependent columns,
and for all A ∈ Gi, there is no B ∈ Gj , j < i, such that B ⊂ A.

2. Gμ consists of all (t) users whose corresponding columns in G are linearly
independent, and for all A ∈ Gμ, there is no B ∈ Gj , j < μ, such that B ⊂ A.

Note that the access structure Γμ as defined above is a generalized access
structure and satisfies the monotonicity property. Thus, the secret sharing
scheme based on Γμ is a generalized secret sharing scheme.

3.2 Share Construction

To compute the n shares of a given secret s0 ∈ Fq, the dealer chooses t−1 random
elements α1, . . . , αt−1 from Fq and computes the codeword (s0, s1, . . . , sn) by
multiplying the generator matrix G by the t-length vector (s0, α1, . . . , αt−1).
That is,

(s0, s1, . . . , sn) = (s0, α1, . . . , αt−1) · G .

The elements si ∈ Fq, 1 ≤ i ≤ n, are the shares of the users P1, . . . , Pn respec-
tively. We say that the first column of G, G[0], corresponds to the secret s0
and the remaining columns G[i], 1 ≤ i ≤ n, correspond to the shares si of the
users Pi.

3.3 Secret Recovery

The secret recovery algorithm SRAμ is similar to the method proposed in [11]
with modifications in the algorithm to allow for recovery of secret by user subsets
of various sizes. Given a set of m users B = {Pj1 , . . . , Pjm

} ∈ Γμ and their
respective shares {sj1 , . . . , sjm

}, SRAμ computes the secret as follows:

1. Construct the matrix

G′ =
[

G[j1] . . . G[jm] G[0]
]

formed by the columns which correspond to the shares of the users and the
column which corresponds to the secret.

2. Row-reduce the matrix G′ to make its first m (or t, whichever is minimum)
rows and columns an identity matrix and denote the last column of this row-
reduced matrix G′ by G[0]′.

3. If m < t, add t − m zeros to construct the pooled codeword

pool = (st0 , st1 , . . . , stm−1 , 0, . . . , 0)

and multiply pool to G[0]′ to obtain the secret.
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4. Else multiply its sub-codeword (st0 , st1 , . . . , stt−1) to G[0]′ to obtain the
secret.

Here, ti’s correspond to the t (or m) columns forming an identity matrix.

4 Analysis of the Proposed Scheme

Lemma 1. For any (t − μ + 2i + 1) linearly dependent columns of an [n, t, n −
t − μ + 1] NμMDS matrix, G, with rank (t − μ + i) where 0 ≤ i ≤ μ − 1, each of
the remaining n − (t − μ + 2i + 1) columns is linearly independent of them.

Proof. Without loss of generality, suppose the given (t − μ + 2i + 1) linearly
dependent columns with rank (t−μ+1) are G[0], G[1], . . . , G[t − μ + 2i] and let
0 ≤ j ≤ (t − μ + 2i) be such that

G[j] =
t−μ+2i∑

i=0,i �=j

aiG[i], not all ai = 0 .

Now, let G[�] be a column from the remaining n − (t − μ + 2i + 1) columns
of the matrix which is linearly dependent on the given (t − μ + 2i + 1) columns.
That is,

G[�] =
t−μ+2i∑

i=0

biG[i], not all bi = 0 .

Substituting the value of G[j], we get

G[�] =
t−μ+2i∑

i=0,i �=j

(aibj + bi)G[i],

where 0 ≤ j ≤ t − μ + 2i and not all ai = 0 and not all bi = 0. Hence G[�] is a
linear combination of the remaining (t−μ+2i) columns G[i] (0 ≤ i ≤ t−μ+2i,
i �= j).

Since both the columns G[j] and G[�] are a linear combination of remaining
the (t − μ + 2i) columns, it makes the rank of these (t − μ + 2i + 2) columns
less than or equal to (t − μ + i). But, from Property 1 of NμMDS codes, any
(t−μ+2i+2) columns have rank ≥ (t−μ+i+1). Thus, our hypothesis is wrong
and G[�] must be linearly independent of the given (t − μ + 2i + 1) columns.

Proposition 3. There exists a group of (t − μ + 2i + 1) users, 0 ≤ i ≤ μ − 1
which is unauthorized.

Proof. By Lemma 1, for any (t − μ + 2i + 1) linearly dependent columns

{G[j1], G[j2], . . . , G[jt−μ+2i+1]}
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with rank (t−μ+ i), the column G[0] is linearly independent of them. Thus the
secret s0 cannot be recovered using just the shares

{sj1 , sj2 , . . . , sjt−μ+2i+1} .

Hence the users
{Pj1 , . . . , Pjt−μ+2i+1}

form an unauthorized set.

Proposition 4. There exists a group of (t − μ + 2i) users, 0 ≤ i ≤ μ − 1 which
is unauthorized.

Proof. If we take all columns except G[j�], (0 ≤ � ≤ (t − μ + 2i + 1)), from the
previous construction, we will get (t − μ + 2i) linearly dependent columns

{G[j1], . . . , G[j�−1], G[j�+1], . . . , G[j(t−μ+2i+1)]}

with rank (t − μ + i), with the secret’s column G[0] being linearly independent
from these (t − μ + 2i) columns. Thus, the (t − μ + 2i) users

{Pj1 , . . . , Pj�−1 , Pj�+1 , . . . , Pj(t−μ+2i+1)}

form an unauthorized set.

Theorem 1. The proposed secret sharing scheme Σμ is correct.

Proof. Let B ∈ Γμ. Then B is an authorized set and we show that B can correctly
recover the secret. Let sj1 , . . . , sjm

be the shares of the users in B, and s0 be the
secret.

Case 1: B is from Gi, i < μ: Note that, the column G[0] which corresponds to
the secret s0 is linearly dependent on the columns which correspond to the
users in B. Therefore, the algorithm SRAμ can find the coefficients ai’s (by
row-reducing the matrix formed by these columns and the column G[0]) such
that

s0 = a1sj1 + a2sj2 + . . . at−μ+isjt−μ+i

and find the secret s0.
Case 2: B is from Gμ: Since columns which correspond to the users in B are

t linearly independent columns of G, any other column of G, including the
column G[0], must be linearly dependent on them. Thus, the algorithm SRAμ

can find the coefficients ai’s (by row-reducing the matrix formed by these
columns and the column G[0]) such that

s0 = a1sj1 + a2sj2 + . . . atsjt

and find the secret s0.
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Case 3: B is a superset of a group in Gi or Gμ: If B is a superset of a group
in Gi, the users in B have at least t−μ+ i linearly independent columns in G
with the column G[0] being linearly dependent on them by definition of Gi.
Therefore the algorithm SRAμ, as in Case 1, can find the secret s0. Otherwise,
if B is a superset of a group in Gμ, then we already have t linearly independent
columns in G which correspond to the group in Gμ and the algorithm SRAμ,
as in Case 2, can find the secret s0.

Hence, if B is an authorized set, then Pr[SRAμ(B) = s0] = 1 and hence the secret
sharing scheme Σμ is correct.

Theorem 2. The proposed secret sharing scheme Σμ has perfect privacy.

Proof. Let B be an unauthorized set of m users which try to recover the secret.
Since the secret s0

$← Fq, the probability of randomly guessing the secret is 1/q.
Also, since NμMDS matrices have a high diffusion property, whenever a vector
v ∈ F

t
q is multiplied to its submatrix formed by its m columns, the output

generated is uniformly distributed in F
m
q . Hence, for any share si, 1 ≤ i ≤ n, the

probability of randomly guessing si is 1/q.

Case 1: m ≤ t − μ − 1: Note that, by Property 1 of NμMDS matrices, the
m + 1 ≤ t − μ columns in G which correspond to these m users along with
the column G[0] are linearly independent. Therefore the column G[0] cannot
be obtained as a linear combination of m columns which correspond to these
users, that is, SRAμ(B) �= s0. Thus B will require at least one more correct
share to compute the secret. But the probability of B guessing the correct
secret (or another correct share) is 1/q. Thus the probability of B obtaining
the secret is less than or equal to 1/q.

Case 2: m = t−μ+ i, 0 ≤ i < μ: Since B is unauthorized, it neither belongs in
Gi nor is a superset of a group in Gj , j < i. This implies that the column G[0]
is linearly independent of the columns which correspond to the users in B.
Therefore the column G[0] cannot be obtained as a linear combination of m
columns which correspond to these users, that is, SRAμ(B) �= s0. Thus B will
require at least one more correct share, or replace one of the pooled shares
with a forged share, to compute the secret. But the probability of B guessing
the correct secret (or another correct share) is 1/q. Thus the probability of B
obtaining the secret is less than or equal to 1/q.

Case 3: m = t + i, 0 ≤ i < μ: Since B is unauthorized, it neither belongs in Gμ

nor is a superset of a group in Gj , j ≤ μ. This implies that the columns which
correspond to B are linearly dependent and the column G[0] is independent of
them (rendering any subset of B not a part of Gj). Therefore the column G[0]
cannot be obtained as a linear combination of m columns which correspond
to these users, that is, SRAμ(B) �= s0. Thus B will require at least one more
correct share, or replace one of the pooled shares with a forged share, to
compute the secret. But the probability of B guessing the correct secret (or
another correct share) is 1/q. Thus the probability of B obtaining the secret
is less than or equal to 1/q.
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Note that, on an input of a random set of shares to SRAμ, the probability of
SRAμ generating the correct secret s0 is 1/q. Therefore,

Pr[SRAμ(B) = s0] = Pr[SRAμ(B) = s0]

and hence Σμ has perfect privacy.

Theorem 3. The proposed secret sharing scheme Σμ is ideal.

Proof. Since both the secret and the shares are elements of Fq, the information
rate ρ is

ρ =
log | Fq |
log | Fq | = 1

and hence Σμ is ideal.

Theorem 4. The proposed secret sharing scheme Σμ is a linear secret sharing
scheme.

Proof. By Definition 21 of a linear secret sharing scheme, and by the construction
of the shares as in Subsect. 3.2, it is clear that the proposed secret sharing scheme
is linear.

Proposition 5. The time-complexity for the share construction and the secret
recovery phase of the proposed scheme is O(n3).

Proof. That the complexity of the setup phase is O(n3) is straight forward. We
show that the complexity of the secret reconstruction phase is O(n3).

The Step 2 of Algorithm SRAμ computes the reduced row echelon form of the
matrix G′ constructed in Step 1. Since m ≤ n, G′ is at most a (t × n) matrix.
Since row reduction of a (t × n) matrix can be done in O(t2n) operations and
since t ≤ n, the complexity of this step is O(n3). That is the most complex
step of the code because the remaining steps are linear in the size of the matrix.
Hence, the complexity of the reconstruction phase is O(n3).

4.1 Cheating Detection and Cheating Identification

The proofs in this section Σμ have been adapted from [11]. The following two
lemmas, Lemmas 2 and 3, state standard properties of linear codes which we
will use in this section. We refer the reader to [7] for the proof of Lemma 3.

Lemma 2. Given an [n, t, n − t − μ + 1] NμMDS code and its generator matrix
G, if

(s0, s1, . . . , sn−1) = (α0, α1, . . . , αt−1) · G

and
(ŝ0, ŝ1, . . . , ŝn−1) = (α̂0, α̂1, . . . , α̂t−1) · G

such that
(α0, α1, . . . , αt−1) �= (α̂0, α̂1, . . . , α̂t−1) ,

then
d((s0, s1, . . . , sn−1), (ŝ0, ŝ1, . . . , ŝn−1)) ≥ n − t − μ + 1 .
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Proof. Since (α0, α1, . . . , αt−1) and (α̂0, α̂1, . . . , α̂t−1) are distinct, they generate
different codewords of the NμMDS code. Hence, they generate different code-
words (s0, s1, . . . , sn−1) and (ŝ0, ŝ1, . . . , ŝn−1) are distinct. Thus, the Hamming
distance between them must be greater than or equal to n − t − μ + 1, the
minimum distance of the code.

Lemma 3. Let C be an [n, t, d] linear code over GF(q). Let Ci be the punctured
code defined by dropping the ith coordinate, 1 ≤ i ≤ n, from the codewords of C.
Then, Ci is an [n − 1, t̃, d̃] code where

– t̃ = t and d̃ = d if C does not have any codeword of weight d with a nonzero
ith coordinate;

– t̃ = t and d̃ = d−1 if d > 1 and C has a codeword of weight d with a nonzero
ith coordinate;

– t̃ = t − 1 and d̃ ≥ d if d = 1, t > 1 and C has a codeword of weight d with a
nonzero ith coordinate.

Theorem 5. The proposed scheme allows cheating detection if the number of
cheaters in a group m users is less than m − t − 1.

Proof. Suppose Pj1 , . . . , Pjm
submit the shares ŝj1 = sj1+δ1, . . . , ŝjm

= sjm
+δm,

δj ∈ GF (q), to the reconstruction algorithm. Then if δi = 0, Pji
is honest, and if

δi �= 0, Pji
is a cheater. Let G′ be the t×m submatrix formed by the m columns

of G indexed by j1, j2, . . . jm. Let

H0 = {(s1, . . . , sm) | (s1, . . . , sm) = (α0, α1, . . . , αt−1) · G′, αi ∈ GF (q)} .

Let s = (sj1 , . . . , sjm
), δ = (δ1, . . . , δm) and ŝ = s + δ = (ŝj1 , . . . , ŝjm

).
By Lemma 3, any two distinct codewords in H0 have a Hamming distance

of at least m − t − 1. Now, if the Hamming weight of δ is less than m − t − 1,
then the Hamming distance between ŝ and s is less than m − t − 1. Thus by
Lemma 2, ŝ ∈ H0 if and only if ŝ = s, that is, when δ = 0. Hence, if the number
of cheating users is less than m − t − 1, cheating by them can be detected.

Theorem 6. The proposed scheme allows cheater identification if the number
of cheaters in a group m users is less than �m−t−1

2 �.
Proof. Let Pji

, 1 ≤ i ≤ m, G′, H0, s, δ and ŝ be as in Theorem 5. Let the
Hamming weight of δ is less than �m−t−1

2 �. Then the Hamming distance d(ŝ, s)
is less than �m−t−1

2 �. For any s̃ �= s ∈ H0, by Lemma 3, d(s, s̃) ≥ m − t − 1.
Hence using the triangle inequality, we get

d(ŝ, s̃) ≥ d(s, s̃) − d(ŝ, s)

≥ (m − t − 1) −
⌊

m − t − 1
2

⌋
=

⌈
m − t − 1

2

⌉
≥

⌊
m − t − 1

2

⌋
= d(ŝ, s) .

Hence, d(ŝ, s) = min{d(ŝ, s̃) | s̃ ∈ H0}. Thus standard error decoding tech-
niques for linear codes can be used to decode ŝ to recover the secret s. Then by
computing δ = ŝ − s, the user Pji

is determined to be a cheater if δi �= 0.
Hence, if the number of cheating users is less than �m−t−1

2 �, the secret can
be reconstructed correctly and all the cheating users can be identified.
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5 Conclusion and Future Work

We have proposed an efficient ideal and perfect generalized secret sharing scheme
based on NμMDS codes with desirable security features of cheating detection
and cheater identification. The use of the NμMDS matrices allows us to have
authorized sets of varying sizes thus allowing the scheme to have a generalized
and richer access structure. The proposed scheme allows an access structure
consisting of μ + 1 mutually nonmonotonic sets of user groups of sizes, t, t −
1, . . . , t − μ, respectively, where 1 ≤ μ < t, where n is the number of users
and the parameter t for the access structure is independent of the field size.
The proposed scheme admits a finer access structure and provides a direction
towards a fully generalized secret sharing scheme. We believe a fully generalized
secret sharing scheme realizing arbitrary access structures should be possible
with almost MDS codes. We are studying the properties of these codes and
working on generating an almost MDS code for any given access structure.
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