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Abstract. In this work we present an efficient algorithm that generates
the leader codewords of a linear code in an incremental form. On the
other hand, using the set of leader codewords we define a transformation
that remains invariant only if the codes are equivalent which is used as
a signature for checking the code equivalence problem. An upper bound
on the weight of the codewords is imposed to this algorithm in order
to get a smallest set that can be also used as a signature for the ‘Code
Equivalence Problem’.
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1 Introduction

In this work we are interested in the mathematical aspects of the set of leader
codewords of a linear code related with two main issues, its computation and
getting a signature for the ‘Code Equivalence Problem’. In [3] this set is defined
for binary codes and it vis given an algorithm for its computation in an incre-
mental form based on the Gröbner representation [9] of the code. The extension
of those results for general linear codes is analyzed in [5].

We formulate a kind of Möller’s algorithm for Gröbner representation tech-
niques that generates the leader codewords in an incremental form. Nevertheless,
we state and proof the correctness of the algorithm without the need of using
Gröbner basis. An upper bound on the weight of the codewords is imposed the
algorithm in order to get only those leader codewords bounded by a given weight.
We also show how can be used a suitable subset of the leader codewords in the
‘Code Equivalence Problem’, i.e. the problem of determining whether two given
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linear codes are permutation-equivalent. If they are, we also want to recover
this permutation group. In [10] the authors proved that this problem is not NP-
complete but also that it is at least as hard as the Graph Isomorphism Problem.
On the other hand, the support splitting algorithm [11] solves the computational
version of the problem in polynomial time for all but an exponentially small pro-
portion of the instances. In that paper it is stated that the main difficulty in the
implementation of the algorithm lies in the choice of the invariant since usually
the computation rapidly becomes intractable when its size grows.

Note that the role played by the Gröbner representation in the equivalence of
codes was introduced in [4]. The set of leader codewords proposed in this paper
is a structure which is considerably smaller that the invariant proposed in [4].
Despite of this, this set grows fast as the size of the code increase; so we impose
an upper bound on the weight of the codewords to be included and prove that
is enough to consider this subset of leader codewords as invariant. We use this
subset for finding the permutation between equivalent codes. Note also that it
can be used in any algorithm based on partitions and refinements like those in
[8,11]. In particular, we have adapted the support splitting algorithm by defining
a specific signature corresponding to this subset as invariant.

The structure of the paper is as follows. In Sect. 2 we present some prelim-
inary facts and notations. In Sect. 3 we define the set of leader codewords and
describe the algorithm. Section 4 provides a formal proof that this subset is an
invariant for the code and we show how it can be used for finding the permuta-
tion group between equivalent codes. The algorithm is described and formalized
in Sect. 5. Finally in Sect. 6 we present some experimental results.

2 Preliminaries

2.1 Linear Codes

From now on we shall denote by Fq the finite field with q = pm elements, p a
prime. A linear code C over Fq of length n and dimension k is a k-dimensional sub-
space of Fn

q . We will call the vectors v in F
n
q words and those v ∈ C, codewords.

For every word v ∈ F
n
q its support is defined as supp(v) = {i | vi �= 0} and its

Hamming weight, denoted by wH(v) as the cardinality of supp(v) and the Ham-
ming distance dH(x,y) between two words x, y ∈ F

n
q is dH(x,y) = wH(x − y).

The minimum distance d(C) of a linear code C is defined as the minimum weight
among all nonzero codewords.

The set of words of minimal Hamming weight in all the cosets of Fn
q /C is the

set of coset leaders of the code C in F
n
q and we will denote it by CL(C). CL(y)

will denote the subset of coset leaders corresponding to the coset y+ C. Given a
coset y+C we define the weight of the coset wH(y+C) as the smallest Hamming
weight among all vectors in the coset, or equivalently the weight of one of its
leaders. It is well known that given t = �d(C)−1

2 � where �·� denotes the greatest
integer function then every coset of weight at most t has a unique coset leader.
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2.2 The Weak Order Ideal of the Coset Leaders

Let f(X) be an irreducible polynomial over Fp of degree m and β be a root of
f(X), then any element a ∈ Fq can be represented as a1 + a2β + . . . + amβm−1

with ai ∈ Fp for i ∈ {1, . . . , m}.

Definition 1. We define the generalized support of a vector v = (v1, . . . ,vn) ∈
F

n
q as the support of the nm-tuple given by the concatenations of the p-adic expan-

sion of each component vi = vi1+vi2β+. . .+vimβm−1 of v. That is suppgen(v) =
(supp((vi1 , . . . , vim)) : i = 1, . . . , n), and suppgen(v)[i] = supp((vi1 , . . . , vim)).
We will say that ij ∈ suppgen(v) if the corresponding vij is not zero.

The set Can(Fq, f) =
{
eij = βj−1ei : i = 1, . . . , n; j = 1, . . . ,m

}
represents

the canonical basis of (Fn
q ,+). We state the following connection between F

n
q

and N
nm:

Δ : Fn
q →N

nm

v �→ (ψ(vij ) : i = 1, . . . , n, j = 1, . . . ,m),

where the mapping ψ : Fp → N is defined as k · 1Fp
�→ k mod p. On the other

hand we define the mapping ∇ : Nnm → F
n
q as a �→ (am(i−1)+1 + am(i−1)+2β +

. . . + am(i−1)+mβm−1), i = 1, . . . , n.

Definition 2. Given x,y ∈ (Fn
q ,+), x =

∑
i,j xijeij, y =

∑
i,j yijeij, we say

x ⊂ y if ψ(xij ) ≤ ψ(yij ) for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
The map Δ relates orders on F

n
q with orders on N

nm, and vice versa. An
admissible order on (Nnm,+) is a total order < on N

nm satisfying the following
two conditions

1. 0 < x, for all x ∈ N
nm, x �= 0.

2. If x < y, then x + z < y + z, for all z ∈ N
nm.

In particular, any admissible order on (Nnm,+), (lexicographical, degree lexi-
cographical, degree reverse lexicographical ...) induces an order on (Fn

q ,+). A
representation of a word v as an nm-tuple over N is said to be in standard form
if Δ(∇(v)) = v. We will denote the standard form of v as SF(v, f) (note that
∇(v) = ∇(SF(v, f))). Therefore, v is in standard form if v = SF(v, f) (we will
also say v ∈ SF(Fn

q , f)). In shake of brevity, from now on we will consider the
polynomial f fixed and we will use Can(Fq) and SF(Fn

q ) instead of Can(Fq, f)
and SF(Fn

q , f) respectively.

Definition 3. A subset O of Nk is an order ideal if for all w ∈ O and v ∈ N
k

s.t. vi ≤ wi, i = 1, . . . , k, then v ∈ O.

In the same fashion as the previous definition, we say that a subset S of F
n
q

is an order ideal if Δ(S) is an order ideal in N
nm. It is easy to check that an

equivalent definition for the order ideal would be that for all w ∈ S, and for
all ij ∈ suppgen(w), and v ∈ F

n
q s.t. w = v + eij we have v ∈ S. If we change

it slightly and instead of for all ij ∈ suppgen(w) the condition is satisfied at
least for one ij ∈ suppgen(w) we say that the set S is a weak order ideal. More
formally,
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Definition 4. A subset S of Fn
q is a weak order ideal if for all w ∈ S \ 0 there

exists a ij ∈ suppgen(w) such that for v ∈ F
n
q with w = v + eij then v ∈ S.

In the above situation we will say that the word w is an ancestor of the word
v, and that v is a descendant of w. In non binary case a coset leader could be an
ancestor of another coset leader or an ancestor of a word at Hamming distance
1 to a coset leader (this last case is not possible in the binary case).

The first idea that allows us to compute incrementally the set of all coset
leaders for a linear code was introduced in [4] using the additive structure of Fn

q

and the set of canonical generators Can(Fq). Unfortunately in [4] most of the
chosen coset representatives may not be coset leaders if the weight of the coset is
greater than t. In order to incrementally generate all coset leaders starting from
0 adding elements in Can(Fq), we must consider words with weight one more
than the previous chosen coset leader (see [5]).

Definition 5. Given ≺1 an admissible order on (Nnm,+) we define the weight
compatible order ≺ on (Fn

q ,+) associated to ≺1 as the ordering given by

1. x ≺ y if wH(x) < wH(y) or
2. if wH(x) = wH(y) then Δ(x) ≺1 Δ(y).

In other words, the words in F
n
q are ordered according their Hamming weights

and the order ≺1 break ties. These class of orders is a subset of the class of
monotone α-orderings in [7]. In fact we will need a little more than monotonicity,
we will also need the following condition: for every pair v,w ∈ SF(Fn

q ) such that
v ⊂ w one has that v ≺ w. Note that this last condition is indeed true for a
weight compatible order. In addition, for any weight compatible order ≺ every
strictly decreasing sequence terminates (due to the finiteness of the set F

n
q ). In

the binary case the behavior of the coset leaders can be translated to the fact
that the set of coset leader is an order ideal of F

n
2 ; whereas, for non binary

linear codes this is no longer true even if we try to use the characterization of
order ideals given in [6], where order ideals do not need to be associated with
admissible orders.

Definition 6. We define the weak order ideal of the coset leaders of a linear
code C as the set O(C) of elements in F

n
q verifying the following items,

1. 0 ∈ O(C).
2. If v ∈ O(C) and wH(v) = wH (v + C) then

{
v + eij | Δ(v) + Δ(eij) ∈ SF(Fn

q )
} ⊂ O(C).

3. If v ∈ O(C) and wH(v) = wH (v + C) + 1 then
{
v + eij | i ∈ supp(v), Δ(v) + Δ(eij) ∈ SF(Fn

q ) , v − vi ∈ CL(C)} ⊂ O(C).

Note that it is clear by items 2 and 3 in the definition above that O(C) is
a weak order ideal. Note also that the definition of the set O(C) also gives an
algorithmic process to built this set, which result very important to construct the
set CL(C) taking into account that CL(C) ⊂ O(C). The following two theorems
show the connections between the set of coset leaders and the weak order ideal
of the coset leaders.
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Theorem 1 (See [5]). Let w ∈ F
n
q . If there exists i ∈ 1, . . . , n s.t. w − wi ∈

CL(C) then w ∈ O(C).

Theorem 2 (See [5]). Let w ∈ F
n
q and w ∈ CL(C) then w ∈ O(C).

3 Leader Codewords of Linear Codes

Definition 7. The set of leader codewords of a linear code C is defined as

L(C) =
{
v1 + eij − v2 ∈ C \ {0} | Δ(v1) + Δ(eij) ∈ SF(Fn

q ),
v2 ∈ CL(C) and v1 − v1i ∈ CL(C)

}
.

Note that the definition is a bit more elaborated that the one for binary codes
in [3] due to the fact that in the general case not all coset leaders need to be
ancestors of coset leaders. The name of leader codewords comes from the fact
that one could compute all coset leaders of a corresponding word knowing the set
L(C) adapting [3, Algorithm 3]. Theorem 1 guarantees that w ∈ O(C) provided
that w−wi ∈ CL(C) for some i, then the associated set of leader codewords may
be computed as {w − v : w ∈ O(C), w − wi ∈ CL(C), v ∈ CL(w) and v �= w}.

3.1 Computing Algorithm

In [3] it is presented a Möller’s like algorithm for computing the leader codewords
for binary linear codes. Given a weight compatible ordering ≺, it is introduced
an incremental form of generating the set of leader codewords. The generation
of these elements is based on the construction of an object List (a crucial object
in a Möller-like algorithm). The object List for general linear codes is related
exactly with the computation of the set O(C); i.e. List is the smallest ordered
set of elements in F

n
q verifying the following properties:

1. 0 ∈ List.
2. Criterion 1: If v ∈ List and wH(v) = wH (v + C) then

{
v + eij | Δ(v) + Δ(eij) ∈ SF(Fn

q )
} ⊂ List.

3. Criterion 2: If v ∈ List and wH(v) = wH (v + C) + 1 then
{
v + eij | i ∈ supp(v), Δ(v) + Δ(eij) ∈ SF(Fn

q ),

v − vi ∈ CL(C)
} ⊂ List.

Given a weight compatible order ≺ and a linear code C, the algorithm will
incrementally generate all elements in List and also all coset leaders, starting
from the zero codeword in List. Then Theorem 1 guarantees that

w ∈ List provided that w − wi ∈ CL(C) for some i, (1)

and the associated set of leader codewords may be computed as {w − v : v ∈
CL(w) and v �= w}.
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3.2 Computing up to a Given Level

Let Q be a set of elements in F
n
q . We will call a level of weight k to the set

Q′ such that Q′ = {v ∈ Q | wH (v) = k} . We can get a partition of the set Q
ordered by the weight of each level 0 ≤ k1 < k2 < . . . < ks. We will refer to the
i-th set Qi in this partition by the level of weight ki of Q and we will denote as
Q[i] to the set of all words up to the level i.

As it was discussed in the previous section, the leader codewords of a linear
code C are generated in an incremental form according to a weight compatible
order, so we can set an upper bound if we only want the leader codewords up to
a given level. The following proposition establishes a connection between the
weight of the elements belonging to List and the weight of their corresponding
leader codewords.

Proposition 1. Let c ∈ L(C) and w ∈ List the least element w.r.t to ≺ such
that c = w − v, w − wi ∈ CL(C) for some i ∈ 1, . . . , n, v ∈ CL(C). Then
2wH(w) − 1 ≤ wH(c).

Proof. Since c = w − v and v ∈ CL(C), we have w ∈ v + C. Then wH(v) ≤
wH(w). If we suppose wH(v) = wH(w) − 2 then c = (wi − v) − (−(w − wi)) =
a − b, where a − ai = −v ∈ CL(C), b = −(w − wi) ∈ CL(C). Now, wH(a) ≤
wH(wi) + wH(v) = wH(w) − 1. This is wH(a) < wH(w) and so a ≺ w. Finally,
by (1), a − ai ∈ CL(C) implies a ∈ List, which is a contradiction because w is
the least element in List to obtain c.

Therefore, wH(v) ≥ wH(w) − 1, from where it is obtained 2wH(w) − 1 ≤
wH(c). �
Remark 1. As a direct consequence of the previous result we have that, in order
to compute all leader codewords up to a weight k, it is enough to stop the
algorithm in the first element of List of weight t such that 2t − 1 > k.

Algorithm 1 below summarizes the aspects discussed above. There are three func-
tions needed to understand the algorithm:

– InsertNexts[t, List] inserts all sums t + eij in List, where Δ(v) + Δ(eij) ∈
SF(Fn

q ), keeping the increasing order ≺ in List.
– NextTerm[List] returns the first element from List and deletes it from that

set.
– Member[obj,G] returns the position j of obj in G, if obj ∈ G, and false

otherwise.

Proposition 2. Algorithm1 computes the set of leader codewords of a linear
code C up to a given level.



224 M. Borges-Quintana et al.

Algorithm 1: Computation of the leader codewords up to a given level
input : A weight compatible ordering ≺, a parity check matrix H of a

code C and the level k.
output: L(C)[k].

1 List ← [0]; r ← 0; CL(C) ← ∅; S ← ∅; L(C) ← ∅; k′ ← 0; wk′ ← 0;
wk ← ∞; Stop ← false;

2 while List �= ∅ and Stop �= true do
3 t ← NextTerm[List];
4 if 2wH(t) − 1 ≤ wk then
5 s ← tHT ;
6 j ← Member[s,S];
7 if j �= false then
8 if wH(t) = wH(CL(C)[j][1]) then // Criterion 1 in List
9 CL(C)[j] ← CL(C)[j] ∪ {t};

10 List ← InsertNext[t, List];
11 end if
12 if wH(t) = wH(CL(C)[j][1]) + 1 then // Criterion 2 in

List
13 for i ∈ supp(t) : t − ti ∈ CL(C) do
14 List ← InsertNext[t, List];
15 end for
16 end if
17 for i ∈ supp(t) : t − ti ∈ CL(C) do
18 for t′ ∈ CL(C)[j] and (t �= t′) do
19 if wH(t − t′) > wk′ then
20 k′ ← k′ + 1; wk′ ← wH(t − t′);
21 if k′ = k then // L(C) has reached the level k
22 wk ← wk′ ;
23 end if
24 end if
25 if wH(t − t′) ≤ wk then
26 L(C) ← L(C) ∪ {t − t′};
27 end if
28 end for
29 end for
30 else
31 r ← r + 1; CL(C)[r] ← {t}; S[r] ← s;
32 List = InsertNext[t, List] // Criterion 1 in List;
33 end if
34 else
35 Stop ← true;
36 end if
37 end while
38 return L(C)
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Proof (Of Proposition 2). Let us first prove that all the words inserted in List
satisfy the desired properties pointed in Sect. 3.1. By Step 1, 0 ∈ List, verifying
the first property, then in Step 5 the syndrome (an element of the coset) of
t = NextTerm[List] is computed and based on the outcome of Step 6 we have
two possible cases,

1. If j = false then the coset C + t has not yet been considered, therefore it
is created taking t as a representative of minimal weight. Step 32 guarantees
Criterion 1 in the second property.

2. On the other hand, if j �= false, the coset C+tj has been created and in case
of wH(t) = wH (tj) Step 10 guarantees Criterion 1. If wH(t) = wH (tj) + 1
then Step 13 and Step 14 verify Criterion 2 in the third property of List.

Therefore Algorithm 1 constructs List fulfilling the required properties. Further-
more, in List is included the set O(C), then by Theorem2, List contains all
coset leaders, thus Step 9 and Step 31 assure the computation of the whole set of
coset leaders. From Step 19 to Step 24 the algorithm keeps track of the current
level of L(C) and the weight associated with that level. Finally, Step 25 and Step
26 create the set L(C) of leader codewords according to Definition 7. Meanwhile,
the second stop condition of the loop (Step 2) given by Proposition 1 prevents
from continuing when the current weight is greater than the given weight for the
desired level k. �
Of course note that if no level k is specified then Algorithm 1 computes the whole
set of leader codewords.

4 L(C) as an Invariant for Linear Codes

It is clear that if two codes C, C′ are permutation equivalent so that for a given
σ ∈ Sn we have that C′ = σ(C), then L(C′) = σ(L(C)). In [4, Theorem 3] it is
shown that two linear codes are equivalent if their so called Matphi structure are
equivalent. These Matphi structures depend also on the cosets determined by the
codes, but the size of this object is bigger than the set of leader codewords. The
following result establishes that the set of leader codewords is also an invariant.

Theorem 3. Let C, C′ be linear codes and σ ∈ Sn. Then C′ = σ(C) if and only
if L(C′) = σ(L(C)).

Proof. Let C′ = σ(C) for σ ∈ Sn, in order to prove L(C′) = σ(L(C)) it is enough to
prove that σ(L(C)) ⊂ L(C′). Let c ∈ L(C), then c = v1+eij−v2, Δ(v)+Δ(eij) ∈
SF(Fn

q ), v2 ∈ CL(C) and v1 − v1i ∈ CL(C). Thus, C′ = σ(C) implies σ(v1) −
σ(v1i) = σ(v1 − v1i) ∈ CL(C′), σ(v2) ∈ CL(C′) and Δ(σ(v1)) + Δ(eσ(i)j) ∈
SF(Fn

q ). Then, c′ = σ(c) = σ(v1) + σ(eij) − σ(v2) = σ(v1) + eσ(i)j − σ(v2).
Therefore, c′ ∈ L(C′).

Now, let us suppose that L(C′) = σ(L(C)) and let c ∈ C. In [5] it was proved
that the set L(C) is a test set for C. This means, there exist c1, . . . , ck, ci ∈
LC, i = 1, . . . , k such that c = c1 + . . . + ck. That is, we have

σ(c) = σ(c1) + . . . + σ(ck). (2)
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But σ(ci) ∈ L(C′), i = 1, . . . , k, then, taking into account (2) we obtain σ(c) ∈ C′.
�

Remark 2. A mapping is an invariant for a code means that it remains invariant
under a permutation. The previous theorem shows that the set of leader code-
words L(C) may give a very strong invariant in the sense that it is preserved if
and only if the codes are equivalent. Due to its prohibitive size as the code length
increases we take the subset L(C)[2] and for this we have L(C′)[2] = σ(L(C)[2])
provided that C′ = σ(C).

The following lemma allow us to state Theorem 4 in order to use the set of
leader codewords up to a given level as invariant.

Lemma 1. Let C = 〈B〉 and C′ = 〈B′〉 two codes over Fq with spanning sets B
and B′. If there exists σ ∈ Sn such that B′ = σ(B) then C′ = σ(C).

Proof. Let c′ ∈ C′. Then c′ =
∑

αi∈Fq
αiβ

′
i =

∑
αiσ(βi) = σ (

∑
αiβi) and hence

c′ ∈ σ(C). On the other hand, let c ∈ C. Then c =
∑

αi∈Fq
αiβi and σ(c) =∑

αiσ(βi) =
∑

αiβ
′
i. Therefore σ(c) ∈ C′. �

Theorem 4. Let C and C′ linear codes of Fn
q such that dim(C) = dim(C′) and

k = mins{s ∈ N | C =
〈
L(C)[s]

〉}. For m ≥ k, for any σ ∈ Sn such that
σ

(
L(C)[m]

)
= L(C′)[m] then C′ = σ(C).

Proof. It is a consequence of the fact that L(C)[m] is a spanning set of C for
m ≥ k, Lemma 1 and dim(C) = dim(C′). Note that, by applying the lemma,
C ∼ σ(C). On the other hand, σ(C) is a subspace of C′ of the same dimension of
C′, so σ(C) = C′. �

Note that all codewords of minimum weight are leader codewords. Moreover,
L(C)[1] is exactly this set of codewords. In case of codes that are generated by
this set, k = 1 in Theorem 4 and it is enough to use L(C)[1] to compute the
candidates permutations.

5 Finding the Permutation

The idea of using the subset L(C)[2] of the set L(C) as an invariant can be
applied for finding the permutations between equivalent codes and it can be used
in any algorithm based on partitions and refinements like [8,11]. In particular,
we have specified the algorithm described in [11] by defining a specific signature
corresponding to L(C)[2]. We have changed a little the definition of signature but
keeping the central idea. The construction of the partition and the refinement
process based on the signature follow similar procedures. A description of related
algorithms for code equivalence is done in [12].
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5.1 The Proposed Signature

One way of defining signatures for codes is by using an invariant, we are going
to introduce a signature based on the set L(C)[2].

Definition 8 ([11]). A signature S over a set Ω maps a code C of length n and
an element i ∈ In = {1, . . . , n} into an element of Ω and is such that for all
permutations σ ∈ Sn, S(C, i) = S(σ(C), σ(i)).

Let Z[y0, . . . , yn] be the polynomial ring of the n+1 variables y0, . . . , yn over
the integers. We define a signature over Ω = Z[y0, . . . , yn] × Z[y0, . . . , yn] which
depends on the numbers of assignments of positions already done. Note at the
beginning no assignment has been done yet.

Let J ⊂ In, J = {j1, . . . , js} be the assignments of positions we assumed
have been done to the set J ′ ⊂ In, J ′ = {j′

1, . . . , j
′
s}, J may be equal to the

empty set and s = 0. Then for all permutations σ ∈ Sn, such that σ(ji) = j′
i,

i = 1, . . . , s, we define for i ∈ In \ J

SLCs(C, i) = (ai0y0 + . . . + aisy0y1 · · · ys, bi0y0 + . . . + bisy0y1 · · · ys),

where the first component ai0y0 + . . .+aisy0y1 · · · ys stands for the subset L(C)1
of L(C)[2] and the second component bi0y0 + . . . + bisy0y1 · · · ys stands for the
subset L(C)2 of L(C)[2]. Specifically aik, k ∈ 0, . . . , s means that there are aik

elements c ∈ L(C)1 with ci �= 0 and others exactly k positions from J which are
not zero. Similarly, bik, k ∈ 0, . . . , s means that there are bik elements c ∈ L(C)2
with ci �= 0 and other exactly k positions from J which are not zero.

Note that SLCs(C, i) counts the interactions between the position i and the
set of positions J already assigned in the subsets L(C)1 and L(C)2 of L(C)[2]. As
it is expected, for all permutations σ ∈ Sn, such that σ(ji) = j′

i, i = 1, . . . , s,
SLCs(C, i) = SLCs(σ(C), σ(i)) which is guaranteed by Theorem3.

The (C,SLCs)-partition (see [11]) is P(C,SLCs) = {Je : e ∈ Ω}, where
Je = {i ∈ In \ J : SLCs(C, i) = e}. Note that the partition corresponding to a
permutation is such that P(σ(C),SLCs) = {σ(Je) : e ∈ Ω}, for all permutations
σ ∈ Sn, such that σ(ji) = j′

i, i = 1, . . . , s.

5.2 Refining the Partition

Given the linear codes C and C′ and a subset of s positions J already assigned
to J ′, such that SLCi(C, ji+1) = SLCi(C′, j′

i+1), i = 0, . . . , s − 1.
We compute the partitions P(C,SLCs) = {Je : e ∈ Ω} and P(C′,SLCs) =

{J ′
e : e ∈ Ω} and then we take into account that a position from Je must be

transformed into a position of J ′
e, so the next assignment is decided. For example,

we may take the Je1 subset of minimal cardinal and then the position i ∈ Je1 of
minimal absolute value. Once a new position is chosen we select its image j such
that SLCs(C′, j) = SLCs(C, i) and then J = J ∪ {i}, J ′ = J ′ ∪ {j}, s = s + 1.

In this process it is possible to detect some contradictions which means no
permutation will be found by this path. For example, it is clear that the cardinal
of the partitions for C and C′ must be the same, and also | Je |=| J ′

e | for all
e ∈ Ω.
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5.3 Computing Algorithm

Proposition 3. Algorithm2 computes a permutation σ ∈ Sn between the codes
C and C′, that is C′ = σ(C). If no permutation is found then these codes are not
permutation equivalent.

Algorithm 2: Computing the permutation
1 function PermutationEquivCodes

input : C, C′ and a weight compatible ordering ≺
output: A permutation σ ∈ Sn, such that C′ = σ(C)

2 J ← ∅; J ′ ← ∅; s ← 0
3 Compute L(C)[2] and L(C′)[2] using ≺ as described in Section 3
4 FindPermutation(L(C)[2],L(C′)[2], J, J ′, s)
5 if no permutation found then
6 return C, C′ are not permutation equivalent codes
7 end if
8 return σ ← σ(Ji) = J ′

i , i = 1, . . . , n

9 end func

10 function FindPermutation
input : L(C)[2],L(C′)[2] and J, J ′ ⊂ In where s = |J | = |J ′|
output: J, J ′ such that σ(Ji) = J ′

i , i = 1, . . . , n if a permutation is
found. No permutation found is returned otherwise

11 if |J | = n then
12 return J, J ′

13 end if
14 P ← {Je : SLCs(C, i) = e, i ∈ In \ J, e ∈ Ω} // use L(C)[2] as

invariant
15 P ′ ← {J ′

e : SLCs(C′, i) = e, i ∈ In \ J ′, e ∈ Ω} // to compute
SLCs(C, i)

16 if |Je| = |J ′
e| for all Je ∈ P, J ′

e ∈ P ′ then
17 J ← J ∪ {i}, i ∈ Je1 // Je1 , i chosen randomly or by an

heuristic
18 J∗ ← J ′

e1
such that J ′

e1
∈ P ′

19 while no permutation found and J∗ �= ∅ do
20 J ′ ← J ′ ∪ {j}, j ∈ J∗

21 FindPermutation(L(C)[2],L(C′)[2], J, J ′, s + 1)
22 if a permutation were found then
23 return J, J ′

24 end if
25 J ′ ← J ′ \ {j} ; J∗ ← J∗ \ {j}
26 end while
27 J ← J \ {i}
28 end if
29 return no permutation found
30 end func
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Proof (Of Proposition 3). It is clear that if there exists a permutation between
two codes C and C′, by Theorem 3, this permutation transforms L(C) into L(C′)
and then defines the same signatures and partitions. Thus one of those permu-
tations will be found by Algorithm2. The process is finite because there is a
finite number of permutations and therefore the process of analyzing different
assignments following the signatures and partitions is finite. �

Note that in Algorithm 2 the function PermutationEquivCodes do the ini-
tializations. Then the sets L(C)[2] and L(C′)[2] are computed (also they can be
loaded from a precomputed database) and then a call to the recursive function
FindPermutation is made which follows a refinement process following an n-ary
tree structure, where a permutation is found when a node of level n is reached.

Finding All the Permutations. Given a linear code C of length n, the sub-
group of all elements σ of Sn such that σ(C) = C is called the permutation
automorphism group of C. Note that if the permutation automorphism group is
nontrivial and if C′ is permutation equivalent to C, then several permutations
could satisfy C′ = σ(C). Algorithm 2 can be easily modified to compute all those
permutations. This can be achieved if a list of pairs J, J ′ is returned instead of
a single pair and before each successful return statement those pairs are added
to this list. An n-ary tree transversal is made, where at each node of level n
one permutation is considered. After that step an expurgation process should
be carried out since some invalid permutations could be introduced because
σ(L(C)[2]) = L(C′)[2] may not be sufficient to guarantee that σ(C) = C′.

Example 1 (Toy Example). Consider the binary codes C = 〈(0, 1, 0, 0, 1),
(1, 1, 0, 1, 0), (0, 1, 1, 0, 0)〉 and C′ = 〈(1, 1, 0, 0, 0), (1, 0, 1, 0, 1), (1, 0, 0, 1, 0)〉 and

L(C)1 = {(0, 1, 1, 0, 0), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1)},

L(C)2 = {(1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1)},

L(C′)1 = {(1, 1, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 0)},

L(C′)2 = {(1, 0, 1, 0, 1), (0, 1, 1, 0, 1), (0, 0, 1, 1, 1)}.

Note that C′ = σ(C) with σ = (1, 3, 4, 5, 2) and thus L(C′)[2] = σ(L(C)[2]). On
the first call to FindPermutation we get

SLC0(C, 1) = (0, 3y0), SLC0(C, 2) = (2y0, y0),
SLC0(C, 3) = (2y0, y0), SLC0(C, 4) = (0, 3y0), SLC0(C, 5) = (2y0, y0),
SLC0(C′, 1) = (2y0, y0), SLC0(C′, 2) = (2y0, y0),
SLC0(C′, 3) = (0, 3y0), SLC0(C′, 4) = (2y0, y0), SLC0(C′, 5) = (0, 3y0).

Now with e1 = (0, 3y0), e2 = (2y0, y0) such that e1, e2 ∈ Ω we get

P(C,SLC0) = {Je1 = {1, 4} , Je2 = {2, 3, 5}} ,

P ′(C′,SLC0) =
{
J ′

e1
= {3, 5} , J ′

e2
= {1, 2, 4}}

.
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At this point is verified that |Je1 | = |J ′
e1

| and |Je2 | = |J ′
e2

| and a coordinate
must be chosen, that is, i ∈ Je such that Je ∈ P. Recall that this can be done at
random or following some heuristics. Let us take the one with minimal cardinal
and the position with minimal absolute value. Then J = J ∪{1} ⇒ J = {1} and
we may try with each element in J ′

e1
, since σ(1) ∈ J ′

e1
provided that SLC0(C, 1) =

SLC0(C′, σ(1)). Starting with the minimum value J ′ = J ′∪{3} ⇒ J ′ = {3}, then
a recursive call is made, meaning that σ(1) = 3. Note that if no permutation is
found through this path, a new selection must be made following a tree structure.
In the new call we get

SLC1(C, 2) = (0, 2y0 + y0y1), SLC1(C, 3) = (0, 2y0 + y0y1),
SLC1(C, 4) = (0, 3y0y1), SLC1(C, 5) = (0, 2y0 + y0y1),
SLC1(C′, 1) = (0, 2y0 + y0y1), SLC1(C′, 2) = (0, 2y0 + y0y1),
SLC1(C′, 4) = (0, 2y0 + y0y1), SLC1(C′, 5) = (0, y0y1),

P(C,SLC1) = {Je1 = {4} , Je2 = {2, 3, 5}} ,

P ′(C′,SLC1) =
{
J ′

e1
= {5} , J ′

e2
= {1, 2, 4}}

,

where J = J ∪ {4} ⇒ J = {1, 4} and J ′ = J ′ ∪ {5} ⇒ J ′ = {3, 5}, meaning that
σ(1) = 3 and σ(4) = 5. Following this refining procedure is obtained J and J ′

such that σ(ji) = j′
i, i = 1, . . . , 5.

6 Experimental Results

The algorithms in this paper were implemented in C++ using the GNU operating
system based gcc compiler and performed using the high performance computing
capabilities provided at University of Oriente, Cuba (http://www.uo.edu.cu). In
Table 1 we show the advantage of choosing the set of leader codewords only up to
the second level. A significant difference can be noticed in the execution time,
since for level 2 there is a relatively slight change as the number of cosets increase,

Table 1. Execution time and number of leader codewords

Codes # Cosets Level 2 All levels

Time (sec.) Num. Time (sec.) Num.

F2 [12, 6, 4] 64 0.0001 28 0.0310 50

F2 [15, 8, 3] 128 0.0001 9 0.1400 127

F2 [18, 10, 3] 256 0.0150 16 0.6560 328

F3 [12, 6, 3] 729 0.0620 16 6.9690 568

F3 [12, 5, 3] 2187 0.0620 12 42.2510 472

F3 [13, 6, 4] 2187 0.1250 28 57.8660 520

F4 [11, 5, 4] 4096 0.2970 42 271.0270 816

F4 [12, 6, 3] 4096 0.4100 15 401.0000 2435

F4 [14, 7, 4] 16384 1.1720 27 10942.7280 4564

http://www.uo.edu.cu
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compared with the fast growth in computing the whole set. On the other hand,
the number of leader codewords up to the second level remains stable and much
more smaller (see Fig. 1).
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All levels
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Fig. 1. Number of leader codewords up to the 2nd and all levels

In order to evaluate the performance of the algorithm for finding the permu-
tation between two linear codes, a code is generated first at random and then is
applied a permutation generated at random too. For these two codes we compute
the set of the leader codewords up to the second level, and then, they are used
as input for the algorithm that will give as output the first valid permutation.

Table 2 is shows execution times for the leader codewords up to the second
level, only for the generated code, and in a different column is showed the time

Table 2. Execution time in seconds to find the first permutation between two linear
codes randomly permuted

Codes (C) Cosets L(C)[2] 1st permutation

F2 [15, 7, 3] 256 0.031 0.015

F2 [21, 12, 3] 512 0.093 0.047

F2 [29, 18, 3] 2048 0.328 0.078

F2 [34, 19, 4] 32768 12.688 0.063

F3 [18, 8, 4] 59049 22.891 0.078

F3 [23, 12, 5] 177147 96.395 0.078

F3 [32, 20, 5] 531441 567.770 0.240

F4 [20, 10, 5] 1048576 647.020 0.060

F4 [26, 15, 5] 4194304 3001.800 0.360

F4 [30, 18, 5] 16777216 9402.400 0.140
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Table 3. Execution time in seconds to find all permutations

Codes Permutations First (sec.) All (sec.)

F2 [15, 7, 3] 8 0.015 0.031

F2 [29, 18, 3] 96 0.078 0.265

F2 [21, 12, 3] 144 0.047 0.271

F4 [30, 18, 5] 720 0.140 0.830

F2 [15, 7, 3] 768 0.015 1.218

F3 [18, 8, 4] 1536 0.015 2.828

F3 [23, 12, 4] 3456 0.042 8.636

F2 [34, 19, 4] 4608 0.063 9.000

F4 [30, 18, 5] 10080 0.024 9.376

consumed by Algorithm 1. The codes are generated increasing the number of
cosets as before, but this time these numbers are much more greater, showing
the advantage of using the selected invariant L(C)[2]. Note that the time used by
the algorithm to get the first correct permutation is significantly smaller than
the time spent in computing the invariant.

Finally Table 3 shows the execution times for the algorithm adapted to com-
pute all the permutations and it is compared with the timing of the first permu-
tation obtained. The time for finding the first permutation depends on how the
elements are chosen in each refinement stage. This explain the fluctuating time
according to the increasing number of elements in the permutation group.

Some Comments on Complexity Issues. Authors would like to emphasize
that the main goal of this paper is the study the computation of leader code-
words and the properties related to the permutation equivalent problem from
the mathematical point of view. Some of the experiments are devoted to show
the possibility of using part of the set of leader codewords instead of the whole
set and to compare this two instance.

Algorithm 1 for computing the leader codewords is efficient because its com-
putational complexity is linear on the size of the weak order ideal of the code,
and because of the nature of the leader codewords this can not be improved
much more. Also we adapted the algorithm to compute the set up to a given
weight. Anyway the computation of this set becomes intractable when the code
length increase, particularly, the redundancy of the code (the number of cosets).

On the other hand, we used the SSA Algorithm and we construct with the
leader codewords a signature in order to use the scheme of this algorithm. The
main limitation is the high complexity of computing the invariant, the set of
leader codewords up to a given level. For complexity issues regarding the SSA
Algorithm and other problems related with the code equivalence, we recommend
[13], which examines also complexity issues of SSA, [1] it can be used as a
comparison for works related to this problem, [2], useful reference and a standard
in these works to compare against.



Computing an Invariant of a Linear Code 233

References

1. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group
isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1395–1408. Society for Industrial and Applied
Mathematics (2011)

2. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.:
Error-Correcting Linear Codes: Classification by Isometry and Applications, vol.
18. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31703-1

3. Borges-Quintana, M., Borges-Trenard, M., Márquez-Corbella, I., Mart́ınez-Moro,
E.: Computing coset leaders and leader codewords of binary codes. J. Algebra
Appl. 14(8), 19 (2015)

4. Borges-Quintana, M., Borges-Trenard, M., Mart́ınez-Moro, E.: On a Gröbner bases
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