
New Practical Advances in Polynomial
Root Clustering

Rémi Imbach1(B) and Victor Y. Pan2

1 Courant Institute of Mathematical Sciences, New York University,
New York, USA

remi.imbach@nyu.edu
2 Lehman College and the Graduate Center, City University of New York,

New York, USA
victor.pan@lehman.cuny.edu

https://cims.nyu.edu/~imbach/, http://comet.lehman.cuny.edu/vpan/

Abstract. We report an ongoing work on clustering algorithms for com-
plex roots of a univariate polynomial p of degree d with real or complex
coefficients. As in their previous best subdivision algorithms our root-
finders are robust even for multiple roots of a polynomial given by a
black box for the approximation of its coefficients, and their complexity
decreases at least proportionally to the number of roots in a region of
interest (ROI) on the complex plane, such as a disc or a square, but we
greatly strengthen the main ingredient of the previous algorithms. We
build the foundation for a new counting test that essentially amounts to
the evaluation of a polynomial p and its derivative p′, which is a major
benefit, e.g., for sparse polynomials p. Moreover with evaluation at about
log(d) points (versus the previous record of order d) we output correct
number of roots in a disc whose contour has no roots of p nearby. Our
second and less significant contribution concerns subdivision algorithms
for polynomials with real coefficients. Our tests demonstrate the power
of the proposed algorithms.

1 Introduction

We seek complex roots of a degree d univariate polynomial p with real or complex
coefficients. For a while the user choice for this problem has been (the package
MPsolve) based on e.g. Erhlich-Aberth (simultaneous Newton-like) iterations.
Their empirical global convergence (right from the start) is very fast, but its
formal support is a long-known challenge, and the iterations approximate the
roots in a fixed region of interest (ROI) about as slow as all complex roots.

In contrast, for the known algorithms subdividing a ROI, e.g., box, the cost of
root-finding in a ROI decreases at least proportionally to the number of roots in
it. Some recent subdivision algorithms have a proved nearly optimal complexity,

Rémi’s work is supported by NSF Grants # CCF-1563942 and # CCF-1708884.
Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and
by PSC CUNY Award 698130048.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 122–137, 2020.
https://doi.org/10.1007/978-3-030-43120-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_11

New Practical Advances in Polynomial Root Clustering 123

are robust in the case of root clusters and multiple roots, and their implemen-
tation in [IPY18] a little outperforms MPsolve for ROI containing only a small
number of roots, which is an important benefit in many computational areas.

The Local Clustering Problem. For a complex set S, Zero(S, p), or some-
times Zero(S), stands for the roots of p in S. #(S, p) (or #(S)) stands for the
number of roots of p in S. Here and hereafter the roots are counted with their
multiplicity.

We consider boxes (that is, squares with horizontal and vertical edges, parallel
to coordinate axis) and discs D(c, r) = {z s.t. |z − c| ≤ r} on the complex plane.
For such a box (resp. disc) S and a positive δ we denote by δS its concentric
δ-dilation. We call a disc Δ an isolator if #(Δ) > 0 and call it natural isolator
if in addition #(Δ) = #(3Δ). A set R of roots of p is called a natural cluster if
there exists a natural isolator Δ with Zero(R) = Zero(Δ). The Local Clustering
Problem (LCP) is to compute natural isolators for natural clusters together with
the sum of multiplicities of roots in the clusters:

Local Clustering Problem (LCP):
Given: a polynomial p ∈ C[z], a ROI B0 ⊂ C, ε > 0
Output: a set of pairs {(Δ1,m1), . . . , (Δ�,m�)} where:

- the Δj ’s are pairwise disjoint discs of radius ≤ ε,
- mj = #(Δj , p) = #(3Δj , p) and mj > 0 for j = 1, . . . , �

- Zero(B0, p) ⊆ ⋃�
j=1 Zero(Δ

j , p) ⊆ Zero(2B0, p).

The basic tool of the nearly optimal subdivision algorithm of [BSS+16] for
the LCP is the T ∗-test for counting the roots of p in a complex disc (with multi-
plicity). It relies on Pellet’s theorem, involves approximations of the coefficients
of p, and applies shifting and scaling the variable z and Dandelin-Gräffe’s root-
squaring iterations. [IPY18] describes high-level improvement of this test, and
Ccluster1, a C implementation of [BSS+16].

Our Contributions. Our new counting test, the P ∗-test, for a pair of complex
c and positive r computes the number s0 of roots of p in a complex disc Δ
centered at c with radius r. If the boundary ∂Δ contains no roots of p, then

s0 =
1

2πi

∫

∂Δ

p′(z)
p(z)

dz, for i =
√−1, (1)

by virtue of Cauchy’s theorem. By following [Sch82] and [Pan18], we approximate
s0 by s∗

0 obtained by evaluating p′/p on q points on the boundary ∂Δ within the
error bound |s0 − s∗

0| in terms of q and the relative width of a root-free annulus
around ∂Δ. Namely if #(1

2Δ) = #(2Δ) then for q = �log2(d+4)+2� we recover
exact value of s0 from s∗

0.

1 https://github.com/rimbach/Ccluster.

https://github.com/rimbach/Ccluster

124 R. Imbach and V. Y. Pan

Table 1. Running times in seconds of Ccluster, new and old versions, for computing
clusters of roots in a small ROI (local) and a ROI containing all the roots, and MPsolve.

Ccluster local Ccluster global MPsolve

#Clus told tnew told/tnew #Clus told tnew told/tnew t

Mignotte128 1 0.05 0.02 2.49 127 5.00 1.81 2.75 0.02

Mignotte256 1 0.16 0.05 2.82 255 31.8 10.7 2.95 0.07

Mignotte383 1 0.32 0.11 2.74 382 79.7 26.8 2.97 0.17

Mandelbrot7 1 0.18 0.06 2.92 127 7.17 2.88 2.48 0.06

Mandelbrot8 0 0.39 0.11 3.38 255 40.6 15.1 2.69 0.39

Mandelbrot9 5 3.08 0.91 3.37 511 266 97.1 2.74 3.20

A usual practice to ensure condition #(1
2Δ) = #(2Δ) when knowing a ρ > 1

so that #(1
ρΔ) = #(ρΔ) is to apply Dandelin-Gräffe’s iterations. In the test

we propose here, such root-squaring operations can be applied implicitly by
doubling the number q of evaluation points.

We give an effective2 (i.e. implementable) description of this P ∗-test, which
involves no coefficients of p and can be applied to a polynomial p represented by
a black box for its evaluation. For sparse polynomials and polynomials defined
by recursive process such as Mandelbrot’s polynomials (see [BF00], or Eq. (3)
below), the test is particularly efficient and the resulting acceleration of the
clustering algorithm of [BSS+16] is particularly strong.

Our second (and less significant) contribution applies to polynomials with real
coefficients: the roots of such polynomials are either real or appear in complex
conjugated pairs. As a consequence, one can recover all the roots in a ROI B0

containing R from the ones with positive imaginary parts. We show how to
improve a subdivision scheme by leveraging of the latter property.

Every polynomial p and its product pp with its complex conjugate p belongs
to this class and has additional property that the multiplicity of its real roots is
even, but we do not assume the latter restriction.

We implemented and tested our improvements in Ccluster. For polynomials
with real coefficients that are sparse or can be evaluated by a fast procedure, we
achieved a 2.5 to 3 fold speed-up as shown in Table 1 by columns told/tnew. When
the ROI contains only a few solutions, Ccluster is, thanks to those improve-
ments, a little more efficient than MPsolve (compare columns Ccluster local,
tnew and MPsolve in Table 1). We give details on our experiments below.

Implementation and Experiments. All the timings shown in this arti-
cle are sequential times in seconds on a Intel(R) Core(TM) i7-7600U CPU @
2.80 GHz machine with Linux. MPsolve is called with the command mpsolve

2 By effective, we refer to the pathway proposed in [XY19] to describe algorithms in
three levels: abstract, interval, effective.

New Practical Advances in Polynomial Root Clustering 125

Fig. 1. Left: 63 clusters of roots for a Mignotte polynomial of degree 64. Right: Clusters
of roots for the Mandelbrot polynomial of degree 63.

-as -Gi -o16 -j13. Table 1 shows comparative running times of Ccluster
and MPsolve on two families of polynomials, Mignotte and Mandelbrot’s poly-
nomials, with real coefficients, defined below. Columns tnew (resp. told) show
timings of Ccluster with (resp. without) the improvements described in this
paper. Columns #Clus show the number of clusters found by two versions.
We used both versions of Ccluster with ε = 2−53. Ccluster global refers to
the ROI [−500, 500] + i[−500, 500], that contains all the roots of the tested
polynomials; Ccluster local refers to an ROI containing only a few solutions.
We used [−0.5, 0.5] + i[−0.5, 0.5] for Mignotte’s polynomials and [−0.25, 0.25] +
i[−0.25, 0.25] for Mandelbrot’s polynomials.

The Mignotte’s polynomial of degree d and parameter a = 14 is:

Mignotted(z) = zd − 2(2az − 1)2 (2)

It has a cluster of two roots near the origin whose separation is near the theo-
retical minimum separation bound. It is sparse and can be evaluated very fast.
We define the Mandelbrot’s polynomial as Mandelbrot1(z) = 1 and

Mandelbrotk(z) = zMandelbrotk−1(z)2 + 1 (3)

Mandelbrotk(z) has degree 2k − 1. It can be evaluated with a straight line
program. The 63 clusters of roots of Mandelbrot6(z) and Mignotte64(z) are
depicted in Fig. 1.

Structure of the Paper. Our paper is organized as follows: in Sect. 2 we
describe our P ∗-test. In Sect. 3 we apply it to speeding up a clustering algorithm.
In Sect. 4 we cover our root-finder for polynomials with real coefficients. Section 5
presents the results of our improvements. In the rest of the present section, we
recall the related work and the clustering algorithm of [BSS+16].

3 MPsolve tries to isolate the roots unless the escape bound 10−16 is reached.

126 R. Imbach and V. Y. Pan

1.1 Previous Works

Univariate polynomial root-finding is a long-standing and still actual problem;
it is intrinsically linked to numerical factorization of a polynomial into the prod-
uct of its linear factors. The algorithms of [Pan02] support record and nearly
optimal bounds on the Boolean complexity of the solution of both problems of
factorization and root-finding. The cost bound of the factorization is smaller by
a factor of d, and both bounds differ from respective information lower bound
by at most a polylogarithmic factor in the input size and in the bound on the
required output precision. Root-finder supporting such bit complexity bounds
are said to be nearly optimal. The algorithms of [Pan02] are involved and have
never been implemented. User’s choice has been for a while the package of sub-
routines MPsolve (see [BF00] and [BR14]), based on simultaneous Newton-like
(i.e. Ehrlich-Aberth) iterations. These iterations converge to all roots simulta-
neously with cubic convergence rate, but only locally, that is, near the roots;
empirically they converge very fast also globally, right from the start, although
formal support for this empirical behavior is a long-known research challenge.
Furthermore these iterations compute a small number of roots in a ROI not
much faster than all roots.

In contrast, recent approaches based on subdivision (as well as the algorithms
of [Pan02]) compute the roots in a fixed ROI at a cost that decreases at least pro-
portionally to the number of roots. Near-optimal complexity has been achieved
both for the real case (see [PT13,PT16,SM16] that combines the Descartes rule
of signs with Newton’s iterations and its implementation in [KRS16]) and the
complex case. In the complex case [BSSY18] similarly combines counting test
based on Pellet’s theorem with complex version of the QIR algorithm, which in
turn combines Newton’s and secant iterations.

[BSS+16] extends the method of [BSSY18] for root clustering, i.e. it solves
the LCP and is robust in the case of multiple roots; its implementation ([IPY18])
is a little more efficient than MPsolve for ROI’s containing only several roots;
when all the roots are sought, MPsolve remains the user’s choice. The algo-
rithms of [BSS+16] and [BSSY18] are direct successors of the previous subdivi-
sion algorithms of [Ren87] and [Pan00], presented under the name of Quad-tree
algorithms (inherited from the earlier works by Henrici and Gargantini).

Besides Pellet’s theorem, counting test in ROI can rely on Eq. (1) and winding
numbers algorithms (see, e.g., [HG69,Ren87] and [ZZ19]).

1.2 Solving the LCP

C0 and C∗ Tests. The two tests C0 and C∗ discard boxes with no roots of p
and count the number of roots in a box, respectively. For a given complex disc
Δ, C0(Δ, p) returns either −1 or 0, and returns 0 only if p has no root in Δ,
while C∗(Δ, p) returns an integer k ≥ −1 such that k ≥ 0 only if p has k roots
in Δ. Below, we may write C0(Δ) for C0(Δ, p) and C∗(Δ) for C∗(Δ, p).

New Practical Advances in Polynomial Root Clustering 127

In [BSS+16,BSSY18,IPY18], both C0 and C∗ are based on the so called
“soft Pellet test” denoted T ∗(Δ, p) or T ∗(Δ) which returns an integer k ≥ −1
such that k ≥ 0 only if p has k roots in Δ:

C0(Δ) :=
{

0 if T ∗(Δ) = 0
−1 otherwise

C∗(Δ) := T ∗(Δ).

(4)

Boxes, Quadri-Section and Connected Components. The box B centered
in c = a + ib with width w is defined as [a − w/2, a + w/2] + i[b − w/2, b + w/2].
We denote by w(B) the width of B. We call containing disc of B the disc Δ(B)
defined as D(c, 3

4w(B)). We define the four children of B as the four boxes
centered in (a ± w

4) + i(b ± w
4) with width w

2 .
Recursive subdivisions of a ROI B0 falls back to the construction of a tree

rooted in B0. Hereafter we refer to boxes that are nodes (and possibly leafs) of
this tree as the boxes of the subdivision tree of B0.

A component C is a set of connected boxes. The component box BC of a
component C is a smallest square box subject to C ⊆ BC ⊆ B0, where B0 is the
initial ROI. We write Δ(C) for Δ(BC) and w(C) for w(BC). Below we consider
components made up of boxes of the same width; such a component is compact
if w(C) is at most 3 times the width of its boxes. Finally, a component C is
separated from a set S if ∀C′ ∈ S, 4Δ(C) ∩ C′ = ∅ and 4Δ(C) ⊆ 2B0.

A Root Clustering Algorithm. We give in Algorithm 1 a simple root clus-
tering algorithm based on subdivision of ROI B0. For convenience we assume
that p has no root in 2B0 \ B0 but this limitation can easily be removed. The
paper [BSS+16] proves that Algorithm1 terminates and output correct solution
provided that the C0 and C∗-tests are as in Eq. (4).

Note that in the while loop of Algorithm 1, components with widest contain-
ing box are processed first; together with the definition of a separated component,
this implies the following remark:

Remark 1. Let C be a component in Algorithm1 that passes the test in step 4.
Then C satisfies #(Δ(C)) = #(4Δ(C)).

2 Counting the Number of Roots in a Well Isolated Disc

In this section we cover a new test for counting the number of roots with mul-
tiplicity of p in a disc Δ provided that the roots in Δ are well isolated from the
other roots of p. Let us first formalize this notion:

Definition 2 (Isolation ratio). A complex disc Δ has isolation ratio ρ for a
polynomial p if ρ > 1 and Zero(1

ρΔ) = Zero(ρΔ).

128 R. Imbach and V. Y. Pan

Let Zero(Δ) = {α1, . . . , αdΔ} and let mi be the multiplicity of αi. The h-th
power sum of the roots in Δ is the complex number

sh =
dΔ∑

i=1

mi × αh
i (5)

In our test, called hereafter P ∗-test, we approximate the 0-th power sum s0

of the roots of p in Δ equal to the number of roots of p in Δ (counted with
multiplicity). We obtain precise s0 from s∗

0 where p and its derivative p′ are
evaluated on only a small number of points on the contour of Δ. For instance,
if Δ has isolation ratio 2 and p has degree 500, our test amounts to evaluating
p and p′ on q = 11 points; s0 is recovered from these values in O(q) arithmetic
operations.

Algorithm 1. Root Clustering Algorithm
Input: A polynomial p ∈ C[z], a ROI B0, ε > 0; suppose p has no roots in 2B0 \ B0

Output: Set R of components solving the LCP.
1: R ← ∅, Q ← {B0} // Initialization
2: while Q is not empty do // Main loop
3: C ← Q.pop() //C has the widest containing box in Q

// Validation
4: if w(C) ≤ ε and C is compact and C is separated from Q then
5: k ← C∗(Δ(C), p)
6: if k > 0 then
7: R.push((C, k))
8: break

// Bisection
9: S ← empty set of boxes

10: for each box B of C do
11: for each child B′ of B do
12: if C0(Δ(B′), p) returns −1 then
13: S.push(B′)

14: Q.push(connected components in S)

15: return R

If p and its derivative can be evaluated at a low computational cost, e.g.
when p is sparse or p is defined by a recurrence as the Mandelbrot polynomial
(see [BF00][Eq. (16)] or Eq. (3) above), our P ∗-test can be substantially cheaper
to apply than the T ∗-test presented above. Notice however that it requires the
isolation ratio of Δ (or at least a lower bound) to be known.

2.1 Approximation of the 0-th Power Sum of the Roots in a Disc

[Sch82] and [Pan18] give formulas for approximating the powers sums sh of the
roots in the unit disc. Here we compute s0 in any complex disc Δ = D(c, r).

New Practical Advances in Polynomial Root Clustering 129

For a positive integer q, define

s∗
0 =

r

q

q−1∑

g=0

ωg p′(c + rωg)
p(c + rωg)

(6)

where ω = e
2πi
q denotes a primitive q-th root of unity.

The theorem below shows that the latter number approximates the 0-th
power sum with an error that can be made as tight as desired by increasing q,
providing that Δ has isolation ratio noticeably exceeding 1.

Theorem 3. Let Δ have isolation ratio ρ for p, let θ = 1/ρ, let s0 be the 0-th
power sum of the roots of p in Δ, and let s∗

0 be defined as in Eq. 6. Then

(i) |s∗
0 − s0| ≤ dθq

1 − θq
.

(ii) Fix e > 0. If q = �logθ(
e

d+e)� then |s∗
0 − s0| ≤ e.

Proof of Theorem 3. Let pΔ(z) be the polynomial p(c + rz). Thus p′
Δ(z) =

rp′(c + rz) and Eq. (6) rewrites s∗
0 = 1

q

q−1∑

g=0
ωg p′

Δ(ωg)
pΔ(ωg) . In addition, the unit disc

D(0, 1) has isolation ratio ρ for pΔ and contains s0 roots of pΔ. Then apply
equation (12.10) in [Sch82] (with e−δ = θ, eδ = ρ) to pΔ(z) to obtain (i). (ii) is
a direct consequence of (i).

�
For example, if Δ has isolation ratio 2, p has degree 500 and one wants to

approximate s0 with an error less than 1/4, it suffices to apply formula in Eq. (6)
for q = 11, that is to evaluate p and its derivative p′ at 11 points.

Remark that in (ii), the required number q of evaluation points increases as
the logarithm of ρ: if Δ has isolation ratio

√
ρ (resp. ρ2) instead of ρ, 1

2q (resp. 2q)
evaluation points are required. Thus doubling the number of evaluation points
has the same effect as root squaring operations.

2.2 Black Box for Evaluating a Polynomial on an Oracle Number

Our goal is to give an effective description of our P ∗-test; to this end, let us
introduce the notion of oracle numbers that correspond to black boxes giving
arbitrary precision approximations of any complex number. Such oracle num-
bers can be implemented through arbitrary precision interval arithmetic or ball
arithmetic. Let C be the set of complex intervals. If a ∈ C, then w(a) is
the maximum width of real and imaginary parts of a.

For a number a ∈ C, we call oracle for a a function Oa : N → C such that
a ∈ Oa(L) and w(Oa(L)) ≤ 2−L for any L. Let OC be the set of oracle numbers.

For a polynomial p ∈ C[z], we call evaluation oracle for p a function Ip :
(OC,N) → C, such that if Oa is an oracle for a and L ∈ N, then p(a) ∈
Ip(Oa, L) and w(Ip(Oa, L)) ≤ 2−L.

We consider evaluation oracles Ip and Ip′ for p and its derivative p′. If p
is given by d + 1 oracles for its coefficients, one can easily construct Ip and

130 R. Imbach and V. Y. Pan

Ip′ by using for instance Horner’s rule. However for some polynomials defined
by a procedure, for instance the Mandelbrot polynomial (see Eq. (3)), one can
construct fast evaluation oracles Ip and Ip′ from the procedurial definition.

2.3 The P ∗-test

Algorithm 2 counts the number of roots of p in a disc Δ = D(c, r) having isolation
ratio at least ρ. For such a disc, any positive integer q and any integer 0 ≤ g < q,
one has p(c+rωg) �= 0. As a consequence, there exist an L′ s.t ∀L ≥ L′,∀0 ≤ g ≤
q−1, 0 /∈ Ip(Oc+rωg , L) and the intervals s∗

0 computed in step 4 of Algorithm 2
have strictly decreasing width as of L ≥ L′. This shows the termination of
Algorithm 2. Its correctness is stated in the following proposition:

Algorithm 2. P ∗(Ip, Ip′ ,Δ, ρ)
Input: Ip, Ip′ evaluation oracles for p and p′, Δ = D(c, r), ρ > 1. p has degree d.
Output: an integer in {0, . . . , d}
1: L ← 53, w ← 1, e ← 1/4, θ ← 1/ρ
2: q ← �logθ(

e
d+e

)�
3: while w ≥ 1/2 do

4: Compute interval s∗
0 as r

q

q−1∑

g=0

Oωg (L)
Ip′ (Oc+rωg ,L)

Ip(Oc+rωg ,L)

5: w ← w(s∗
0)

6: L ← 2 ∗ L
7: s0 ← s∗

0 + [−1/4, 1/4] + i[−1/4, 1/4]
8: return the unique integer in s0

Proposition 4. Let k be the result of the call P ∗(Ip, Ip′ ,Δ, ρ). If Δ has isolation
ratio at least ρ for p, then p has k roots in Δ counted with multiplicity.

Proof of Proposition 4. Once the while loop in Algorithm 2 terminates, the
interval s∗

0 contains s∗
0 and w(s∗

0) < 1/2. In addition, by virtue of statement
(ii) of Theorem 3, one has |s∗

0 − s0| ≤ 1/4, thus s0 defined in step 7 satisfies:
w(s0) < 1 and s0 ∈ s0. Since s0 contains at most one integer, s0 is the
unique integer in s0, and is equal to the number of roots in Δ.

�

3 Using the P ∗-test in a Subdivision Framework

Let us discuss the use of the P ∗-test as C0 and C∗-tests in order to speed up
Algorithm 1. Table 2 covers runs of Algorithm 1 on Mignotte and Mandelbrot’s
polynomials. t is the running time when C0 and C∗ tests are defined by Eq. (4).
Columns nb show the respective numbers of C0 and C∗-tests performed, column
t0 and t0/t (resp. t∗ and t∗/t) show time and ratio of times spent in C0 (resp.
C∗) tests when it is defined by Eq. (4).

New Practical Advances in Polynomial Root Clustering 131

One can readily use the P ∗-test to implement the C∗-test by defining

C∗(Δ) := P ∗(Ip, Ip′ , 2Δ, 2) (7)

Following Remark 1, the C∗-test is called in Algorithm 1 for components C sat-
isfying #(Δ(C)) = #(4Δ(C)). Hence 2Δ(C) has isolation ratio 2 and by virtue
of Proposition 4, C∗(Δ(C)) returns r ≥ 0 only if Δ(C) contains r roots.

However this would not imply much improvements in itself. Column t′∗ in
Table 2 shows the time that would be spent in C∗-tests if it was defined by
Eq. (7): it is far less than t∗, but the ratio of time spent in C∗-tests (see column
t∗/t) is very small. In contrast, about 90% of the running time of Algorithm1 is
spent in C0-tests (see column t0/t). We propose to use a modified version of the
P ∗-test as a filter in the C0-test to decrease its running time.

Table 2. Details on runs of Algorithm 1 on Mignotte and Mandelbrot’s polynomials.

C0-tests C∗-tests
T ∗-tests ˜P ∗-tests T ∗-tests P ∗-tests

nb t0 t0/t (%) t′0 n−1 n−2 nerr nb t∗ t∗/t (%) t′∗
Mignotte128 4508 4.73 90.9 0.25 276 0 12 128 0.07 1.46 0.01

Mignotte256 8452 27.8 91.2 0.60 544 0 20 256 0.58 1.92 0.02

Mandelbrot7 4548 6.34 88.1 0.28 168 0 28 131 0.11 1.51 0.01

Mandelbrot8 8892 35.6 88.4 0.67 318 0 57 256 0.69 1.71 0.03

Algorithm 3. P̃ ∗(Ip, Ip′ ,Δ, ρ)
Input: Ip, Ip′ evaluation oracles for p and p′, Δ = D(c, r), ρ > 1. p has degree d.
Output: an integer in {−2, −1, 0, . . . , d}

3.1 An Approximate P ∗-test

The approximate version of the P ∗-test is aimed at being applied to a disc
Δ = D(c, r) with unknown isolation ratio. Unless Δ has isolation ratio ρ > 1,
the very unlikely case where for some 0 ≤ g < q, p(c + rωg) = 0, leads to a non-
terminating call of P ∗(Ip, Ip′ ,Δ, ρ). Also, s0 computed in step 7 of Algorithm 2
could contain no integer or an integer that is not s0. We define the P̃ ∗-test
specified in Algorithm 3 by modifying Algorithm2 as follows:

1. after step 3, if an Ip(Oc+rωg , L) contains 0, the result -2 is returned;
2. step 7 is replaced with: s0 ← s∗

0 + [−1/2, 1/2] + i[−1/2, 1/2],
3. after step 7, unless s0 contains a unique integer, the result −1 is returned.

132 R. Imbach and V. Y. Pan

Modification 1 ensures termination when Δ does not have isolation ratio
ρ > 1. With modification 2, s0 can have width greater than 1 and contain
more than one integer. With modification 3, the P̃ ∗-test can return −1 which
means that no conclusion can be made. If P̃ ∗(Ip, Ip′ ,Δ, ρ) returns a positive
integer, this result has still to be checked, for instance, with the T ∗-test.

In Table 2, column n−2 (resp. n−1) shows the number of times P̃ ∗(Ip,
Ip′ ,Δ, 2) returns −2 (resp. −1) when applied in place of T ∗(Δ) in the C0-test.
Column nerr shows the number of times the conclusion of P̃ ∗ was wrong, and t′0
shows the total time spent in P̃ ∗-tests.

3.2 Using the P ∗ and P̃ ∗-test in a Subdivision Framework

Our improvement of Algorithm1 is based on the following heuristic remarks.
First, it is very unlikely that P̃ ∗(Ip, Ip′ ,Δ, 2) returns -2 (see column n−2 in
Table 2). Second, when P ∗(Ip, Ip′ ,Δ, 2) returns k ≥ 0, it is very likely that Δ
contains k roots counted with multiplicity (see column nerr in Table 2).

Fig. 2. Computing clusters for Mignotte64 in the ROI [−2, 2] + i[−2, 2]. Left: The
subdivision tree for Algorithm 1. Right: The subdivision tree for Algorithm 5.

We define the C0-test as follows:

C0(Δ) :=

⎧
⎪⎨

⎪⎩

−1 if P̃ ∗(Ip, Ip′ ,Δ, 2) /∈ {−2, 0},

−1 if P̃ ∗(Ip, Ip′ ,Δ, 2) ∈ {−2, 0} and T ∗(Δ) �= 0,

0 if P̃ ∗(Ip, Ip′ ,Δ, 2) ∈ {−2, 0} and T ∗(Δ) = 0.

(8)

If C0(Δ) is defined in Eq. (8), it returns 0 only if Δ contains no root. Thus
Algorithm 1 with C0 and C∗-tests defined by Eqs. (8) and (7) is correct.

Remark now that if a square complex box B of width w does not contain
root and is at a distance at least 3

2w from a root, then Δ(B) has isolation ratio
2, and P̃ ∗(Ip, Ip′ ,Δ(B), 2) returns 0 or −2. As a consequence, the termination
of Algorithm 1 with C0 and C∗-tests defined in Eqs. (8) and (7) amounts to the
termination of Algorithm 1 with C0 and C∗ defined in Eq. (4).

New Practical Advances in Polynomial Root Clustering 133

4 Clustering Roots of Polynomials with Real Coefficients

We consider here the special case where p ∈ R[z], and show how to improve
a subdivision algorithm for solving the LCP. We propose to leverage on the
geometric structure of the roots of p, that are either real, or imaginary and come
in complex conjugated pairs: if α ∈ C is a root of p so is α where α is the complex
conjugate of α. The modified subdivision algorithm we propose deals only with
the boxes of the subdivision tree of the ROI B0 that have a positive imaginary
part; the roots with positive imaginary parts are in the latter boxes. The roots
with negative imaginary parts are implicitly represented by the former ones.
In Fig. 2 are shown two subdivision trees constructed for clustering roots of a
Mignotte polynomial of degree 64; the left-most one is obtained when applying
Algorithm 1; the right-most one results of our improvement.

Below, we suppose that B0 is symmetric with respect to the real axis and
that p has no root in 2B0 \ B0. These two limitations can easily be removed.

Algorithm 4. Quadrisect(C)
Input: A polynomial p ∈ R[z] and a component C
Output: A list R of disjoint and not imaginary negative components
1: S ← empty list of boxes
2: for each constituent box B of C do
3: for each child B′ of B do
4: if B is not imaginary negative then
5: if C0(Δ(B′), p) returns -1 then
6: S.push(B′)

7: R ← group boxes of S in components
8: return R

Notations. Let B be a box centered in c. We define its conjugate B as the
box centered in c with width w(B). We say that B is imaginary positive (resp.
imaginary negative) if ∀b ∈ B, Im(b) > 0 (resp. Im(b) < 0).

Let C be a component of boxes of the subdivision tree of B0. We define C as
the component which boxes are the conjugate of the boxes of C. We call conjugate
closure of C, and we denote it by C∪ the set of boxes C ∪ (C \ C). If C intersects
R, C∪ is a component. We say that C is imaginary positive (resp. imaginary
negative) if each box in C is imaginary positive (resp. imaginary negative).

Solving the LCP for Polynomials with Real Coefficients. We describe
in Algorithm 4 a procedure to bisect a component, that discards boxes that are
imaginary negative in addition to those that contain no root.

Our algorithm for solving the LCP for polynomials with real coefficients is
presented in Algorithm 5. It maintains in the queue Q only components of boxes
that are imaginary positive or that intersect the real line. Components with

134 R. Imbach and V. Y. Pan

only imaginary negative boxes are implicitly represented by the imaginary posi-
tive ones. Components that intersect the real line are replaced by their conjugate
closure. Components in Q are ordered by decreasing width of their containing
boxes. The termination of Algorithm5 is a consequence of the termination of
Algorithm 1 that is proved in [BSS+16].

Let {(C1,m1), . . . , (C,m�)} be the list returned by Algorithm5 called for
arguments p,B0, ε. Then {(Δ(C1),m1), . . . , (Δ(C�),m�)} is a solution of the LCP
problem for p,B0, ε, i.e.:

(i) the Δ(Ci)’s are pairwise disjoint with radius less that ε,
(ii) ∀1 ≤ i ≤ �, (Ci,mi) satisfies #(Δ(Ci)) = #(3Δ(Ci)) = mi,
(iii) Zero(B0, p) ⊆ ⋃�

i=1 Zero(Δ(Ci), p) ⊆ Zero(2B0, p).

In what follow we may write R for the list of connected components in R.
(i), (ii) and (iii) are direct consequences of the following proposition:

Proposition 5. Consider Q and R after any execution of the while loop in
Algorithm5. Decompose Q in two lists Q1 and Q2 containing respectively the
imaginary positive components of Q and the non imaginary components of Q.
Note Q1 the list of the conjugates of the components in Q1 and Q2

∪ the list of the
conjugate closures of the components in Q2, and let Q∪ be Q1 ∪ Q2

∪. One has:

Algorithm 5. Local root clustering for polynomials with real coefficients
Input: A polynomial p ∈ R[z], a ROI B0, ε > 0; assume p has no roots in 2B0 \ B0,

and B0 is symmetric with respect to the real axis.
Output: A set R of components solving the LCP.
1: R ← ∅, Q ← {{B0}} // Initialization
2: while Q is not empty do // Main loop
3: C ← Q.pop() //C has the widest containing box in Q
4: sF lag ← false
5: if C is not imaginary positive then //Note: C ∩ R �= ∅
6: C ← C∪
7: sF lag ← C is separated from Q
8: else
9: sF lag ← (C is separated from Q) and (4Δ(C) ∩ C = ∅)

10: if w(C) ≤ ε and C is compact and sF lag then // Validation
11: m ← C∗(Δ(C), p)
12: if m > 0 then
13: R.push((C, m))
14: if C is imaginary positive then
15: R.push((C, m))

16: break
17: Q.push(Quadrisect(C)) // Bisection

18: return R

New Practical Advances in Polynomial Root Clustering 135

(1) any α ∈ Zero(B0) is in R ∪ Q ∪ Q∪,
(2) any C ∈ R is separated from (R \ {C}) ∪ Q ∪ Q∪,
(3) any (C,m) in R is such that m = #(Δ(C)) = #(3Δ(C)).

Proposition 5 is a consequence of Remark 1 and the following remark.

Remark 6. Let p ∈ R[z] and C be a component. If C is imaginary negative or
imaginary positive and if there exists m such that m = #(Δ(C)) = #(3Δ(C)),
then m = #(Δ(C)) = #(3Δ(C)).

5 Numerical Results

We implemented the two improvements of Sects. 3 and 4 in Ccluster. CclusterO
refers to the original version of Ccluster. Both CclusterR and CclusterPs
implement Algorithm 5. In CclusterPs, C0 and C∗ are defined by Eqs. (8)
and (7).

Testing Suite. We tested our improvements on Mignotte and Mandelbrot’s
polynomials and on Bernoulli and Runnel’s polynomials: the Bernoulli poly-
nomial of degree d is Bernoullid(z) =

∑d
k=0

(
d
k

)
bd−kzk where the bi’s are the

Bernoulli numbers. It has about d/2 non-zero coefficients and, as far as we know,
cannot be evaluated substantially faster than with Horner’s scheme. It has real
coefficients, and about 2/3 of its roots are real or imaginary positive (see left
part of Fig. 3). Let r = 2, q0(z) = 1, q1(z) = z and qk+1(z) = qk(z)r+zqk−1(z)r2

.
We define the Runnel’s polynomial of parameter k as Runnelsk = qk. It has real
coefficients, a multiple root (zero), and can be evaluated fast. The 107 distinct
roots of Runnels8 are drawn on right part of Fig. 3.

Fig. 3. Left: 64 clusters of roots for the Bernoulli polynomial of degree 64. Right: 107
clusters of roots for the Runnel’s polynomial of degree 170.

136 R. Imbach and V. Y. Pan

Results. Table 3 gives details concerning the execution of CclusterO, CclusterR
and CclusterPs for polynomials with increasing degrees. We used ε = 2−53 and
the ROI B0 = [−500, 500]+ i[−500, 500] that contains all the roots of all the con-
sidered polynomials. Column (#Clus,#Sols) shows the number of clusters and the
total multiplicity found. Columns (depth, size) show the depth and the size (i.e.
number of nodes) of the subdivision tree for each version. t1, t2 and t3 stand respec-
tively for the running time in second of CclusterO, CclusterR and CclusterPs.

Algorithm 5 achieves speed up t1/t2. It is almost 2 for Mignotte polynomials,
since about half of its roots are above the real axis. This speed up is less impor-
tant for the three other families of polynomials, which have a non-negligible ratio
of real roots. The speed up achieved by using the P ∗-test is t2/t3. It is signifi-
cant for Mignotte’s polynomial, which is sparse, and Mandelbrot and Runnel’s
polynomials for which one can construct fast evaluation procedures.

Table 3. Details on runs of CclusterO, CclusterR and CclusterPs for polynomials in
R[z] with increasing degree.

CclusterO CclusterR CclusterPs

(#Clus, #Sols)(depth, size) t1 (depth, size)t1/t2 (depth, size) t3 t2/t3t1/t3

Bernoulli128 (128, 128) (100, 4732) 6.30 (100, 3708) 1.72 (100, 4104) 3.30 1.10 1.90

Bernoulli191 (191, 191) (92, 7220) 20.2 (92, 5636) 1.74 (92, 6236) 10.7 1.08 1.88

Bernoulli256 (256, 256) (93, 9980) 41.8 (93, 7520) 1.67 (91, 8128) 21.9 1.14 1.90

Bernoulli383 (383, 383) (93, 14504) 120 (93, 11136) 1.82 (93, 11764) 53.5 1.23 2.25

Mignotte128 (127, 128) (96, 4508) 5.00 (92, 3212) 1.92 (92, 3484) 1.81 1.43 2.75

Mignotte191 (190, 191) (97, 6260) 15.5 (97, 4296) 2.01 (97, 4688) 4.34 1.77 3.58

Mignotte256 (255, 256) (94, 8452) 31.8 (94, 5484) 2.04 (94, 6648) 10.7 1.44 2.95

Mignotte383 (382, 383) (97, 12564) 79.7 (97, 8352) 1.98 (97, 9100) 26.8 1.49 2.97

Mandelbrot7 (127, 127) (96, 4548) 7.17 (96, 2996) 1.62 (96, 3200) 2.88 1.52 2.48

Mandelbrot8 (255, 255) (96, 8892) 40.6 (96, 5576) 1.71 (96, 6208) 15.1 1.56 2.69

Mandelbrot9 (511, 511) (100, 17956) 266 (100, 11016) 1.89 (100, 11868)97.1 1.44 2.74

Runnels8 (107, 170) (96, 4652) 13.3 (96, 3252) 1.61 (96, 3624) 6.51 1.26 2.04

Runnels9 (214, 341) (99, 9592) 76.2 (99, 6260) 1.70 (99, 6624) 32.2 1.38 2.36

Runnels10 (427, 682) (100, 19084) 479 (100, 12288) 1.69 (100, 12904) 211 1.34 2.26

6 Future Works

Our main contribution is a significant practical progress in subdivision root-
finding based on a new test for counting roots in a well-isolated disc. If the
latter assumption does not hold, the test result is not guaranteed but is very
likely to be correct. In a subdivision framework, we have proposed to use a test
based on Pellet’s theorem to verify its result. We aim to do so by using only
evaluations of p and p′. This would imply a very significant improvement of the
root clustering algorithm when p and p′ can be evaluated very efficiently.

New Practical Advances in Polynomial Root Clustering 137

References

[BF00] Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multi-
precision polynomial rootfinder. Numer. Algorithms 23(2), 127–173 (2000)

[BR14] Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multi-
precision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

[BSS+16] Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis
of root clustering for a complex polynomial. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC
2016, pp. 71–78. ACM, New York (2016)

[BSSY18] Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision
algorithm for complex root isolation based on Pellet test and Newton iter-
ation. J. Symb. Comput. 86, 51–96 (2018)

[HG69] Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simulta-
neous approximation of all zeros of a polynomial. In: Constructive Aspects
of the Fundamental Theorem of Algebra, pp. 77–113. Wiley-Interscience,
New York (1969)

[IPY18] Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex
root clustering algorithm. Math. Soft. - ICMS 2018, 235–244 (2018)

[KRS16] Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real poly-
nomials ... and now for real! In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pp. 303–
310. ACM, New York (2016)

[Pan00] Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s
quadtree construction and improved newton’s iteration. J. Complex. 16(1),
213–264 (2000)

[Pan02] Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical
factorization and root-finding. J. Symb. Comput. 33(5), 701–733 (2002)

[Pan18] Pan, V.Y.: Old and new nearly optimal polynomial root-finders. arXiv
preprint arXiv:1805.12042 (2018)

[PT13] Pan, V.Y., Tsigaridas, E.P.: On the Boolean complexity of real root refine-
ment. In: Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, ISSAC 2013, pp. 299–306. ACM, New York
(2013)

[PT16] Pan, V.Y., Tsigaridas, E.P.: Nearly optimal refinement of real roots of a
univariate polynomial. J. Symb. Comput 74, 181–204 (2016)

[Ren87] Renegar, J.: On the worst-case arithmetic complexity of approximating zeros
of polynomials. J. Complex. 3(2), 90–113 (1987)

[Sch82] Schönhage, A.: The fundamental theorem of algebra in terms of computa-
tional complexity. Manuscript. University of Tübingen, Germany (1982)

[SM16] Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J.
Symb. Comput. 73, 46–86 (2016)

[XY19] Xu, J., Yap, C.: Effective subdivision algorithm for isolating zeros of real
systems of equations, with complexity analysis. arXiv preprint (2019).
arXiv:1905.03505

[ZZ19] Zaderman, V., Zhao, L.: Counting roots of a polynomial in a convex compact
region by means of winding number calculation via sampling. arXiv preprint
arXiv:1906.10805 (2019)

http://arxiv.org/abs/1805.12042
http://arxiv.org/abs/1905.03505
http://arxiv.org/abs/1906.10805

	New Practical Advances in Polynomial Root Clustering
	1 Introduction
	1.1 Previous Works
	1.2 Solving the LCP

	2 Counting the Number of Roots in a Well Isolated Disc
	2.1 Approximation of the 0-th Power Sum of the Roots in a Disc
	2.2 Black Box for Evaluating a Polynomial on an Oracle Number
	2.3 The P*-test

	3 Using the P*-test in a Subdivision Framework
	3.1 An Approximate P*-test
	3.2 Using the P* and P*"0365P*-test in a Subdivision Framework

	4 Clustering Roots of Polynomials with Real Coefficients
	5 Numerical Results
	6 Future Works
	References

