
Daniel Slamanig
Elias Tsigaridas
Zafeirakis Zafeirakopoulos (Eds.)

LN
CS

 1
19

89

8th International Conference, MACIS 2019
Gebze, Turkey, November 13–15, 2019
Revised Selected Papers

Mathematical Aspects of Computer
and Information Sciences

Lecture Notes in Computer Science 11989

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Daniel Slamanig • Elias Tsigaridas •

Zafeirakis Zafeirakopoulos (Eds.)

Mathematical Aspects of Computer
and Information Sciences

8th International Conference, MACIS 2019
Gebze, Turkey, November 13–15, 2019
Revised Selected Papers

123

Editors
Daniel Slamanig
AIT Austrian Institute of Technology
Vienna, Austria

Elias Tsigaridas
IMJ-PRG
Sorbonne University
Paris, France

Zafeirakis Zafeirakopoulos
Institute of Information Technologies
Gebze Technical University
Gebze, Turkey

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-43119-8 ISBN 978-3-030-43120-4 (eBook)
https://doi.org/10.1007/978-3-030-43120-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4181-2561
https://orcid.org/0000-0002-9632-6325
https://doi.org/10.1007/978-3-030-43120-4

Preface

Mathematical Aspects of Computer and Information Sciences (MACIS) is a series of
biennial conferences focusing on research in mathematical and computational aspects
of computing and information science. It is broadly concerned with algorithms, their
complexity, and their embedding in larger logical systems. At the algorithmic level,
there is a rich interplay between the numerical/algebraic/geometrical/topological axes.
At the logical level, there are issues of data organization, interpretation, and associated
tools. These issues often arise in scientific and engineering computation where we need
experiments and case studies to validate or enrich the theory. At the application level,
there are significant applications in the areas of mathematical cryptography, machine
learning, and data analysis, and the various combinatorial structures and coding theory
concepts that are used in a pivotal role in computing and information sciences. MACIS
is interested in outstanding and emerging problems in all these areas. Previous MACIS
conferences have been held in Beijing (2006, 2011), Paris (2007), Fukuoka (2009),
Nanning (2013), Berlin (2015), and Vienna (2017). MACIS 2019 was held at the
Gebze Technical University (GTU) located at the borders of Istanbul with Kocaeli,
during November 13–15, 2019.

We are grateful to the track chairs and the Program Committee for their critical role
in putting together a very successful technical program, especially under strict dead-
lines. We also wish to extend our gratitude to all MACIS 2019 conference participants
– all of them contributed to making the conference a success. The conference would not
have been possible without the hard work of the local organizing team: Gizem Süngü,
Fatma Nur Esirci, Başak Karakaş, and Tülay Ayyıldız Akoğlu. We are grateful to
GTU, in particular the Rector and the International Relations office of GTU, for
offering the facilities where the conference took place, sponsoring the conference
through the Scientific Research Programs Fund of the University, and providing
material distributed to the participants. Moreover, we are grateful for the constant
support of the Institute of Information Technologies of GTU. We also acknowledge
support by the project 117F100 under the program 3501 of the Scientific and Tech-
nological Research Council of Turkey, by the project 118F321 under the program 2509
of the Scientific and Technological Research Council of Turkey, and the project
NEMO under the program 2232 (International Leading Researchers Program) of the
Scientific and Technological Research Council of Turkey. Finally we are grateful to
Maplesoft for sponsoring the Best Early Stage Researcher Presentation Award. Last but
not least, we are thankful to the three invited speakers, Matthias Beck (San Francisco
State University, USA, and Free University of Berlin, Germany), Georg Fuchsbauer
(Inria/ENS, France), and Agnes Szanto (North Carolina State University, USA), for
honoring the conference with their participation and stimulating talks.

This volume contains 36 refereed papers (22 regular and 14 short papers) carefully
selected out of 66 total submissions (48 regular, 18 short); thus, MACIS 2019 had an

overall acceptance rate of 55%. The papers are organized in different categories cor-
responding to four tracks featured in the MACIS 2019 conference. The topics of the
MACIS 2019 tracks cover a wide array of research areas, as follows:

Track 1: Algorithms and Foundations
Track Chairs: Chenqi Mou, Maximilian Jaroschek, Fadoua Ghourabi
Track 2: Security and Cryptography
Track Chairs: Alp Bassa, Olivier Blazy, Guénaël Renault
Track 3: Combinatorics, Codes, Designs and Graphs
Track Chairs: Michel Lavrauw, Liam Solus, Tınaz Ekim
Track 4: Data Modeling and Machine Learning
Track Chairs: Giorgos Kollias, Kaie Kubjas, Günce Orman
Tools and Software Track
Track Chairs: Matthew England, Vissarion Fisikopoulos, Ali Kemal Uncu

We wish to thank all the track chairs for their hard work in putting together these
tracks. Last but not least, we thank the Springer management and production team for
their support during the production of this volume.

January 2020 Daniel Slamanig
Elias Tsigaridas

Zafeirakis Zafeirakopoulos

vi Preface

Organization

General Chair

Zafeirakis Zafeirakopoulos Gebze Technical University, Turkey

Program Committee Chairs

Daniel Slamanig AIT Austrian Institute of Technology, Austria
Elias Tsigaridas Inria, IMJ-PRG, France

Program Committee

Alp Bassa Bosphorus University, Turkey
Olivier Blazy University of Limoges, France
Türkü Özlüm Çelik MPI MiS Leipzig, Germany
Tınaz Ekim Bosphorus University, Turkey
Matthew England Coventry University, UK
Vissarion Fisikopoulos National University of Athens, Greece
Fadoua Ghourabi Ochanomizu University, Japan
Maximilian Jaroschek Technische Universität Wien, Austria
Giorgos Kapetanakis University of Crete, Greece
Giorgos Kollias IBM Research, USA
Kaie Kubjas Aalto University, Finland
Kağan Kurşungöz Sabanci University, Turkey
Michel Lavrauw Sabanci University, Turkey
Chenqi Mou Beihang University, China
Gunce Orman Galatasaray University, Turkey
Veronika Pillwein RISC, Austria
Mohan Ravichandran Mimar Sinan Fine Arts University, Turkey
Guénaël Renault Inria, École Polytechnique, France
Liam Solus KTH, Sweden
Ali Kemal Uncu RISC, Austria

Additional Reviewers

Per Alexandersson
Ibrahim Almakky
Carlos Améndola
Erchan Aptoula
Kamal Bentahar
Eliana Duarte
Dorian Florescu
Ragnar Freij-Hollanti
Matteo Gallet
Oliver Gnilke

Didem Gözüpek
Antonio Jimenez-Pastor
Vassilios Kalantzis
Lukas Katthän
Florian Kohl
Stephan Krenn
Luke Oeding
Sebastian Ramacher
Georg Regensburger
Elina Robeva

Markus Schofnegger
Dimitris E. Simos
Colin Stephen
Ivan Tomasic
Pinar Uluer
Thibaut Verron
Mario Werner
Juan Xu
Burcu Yilmaz
Nikolai Zamarashkin

MACIS Steering Committee

Dimitris E. Simos (Chair) SBA Research, Austria
Ilias Kotsireas Wilfrid Laurier University, Canada
Siegfried Rump Hamburg University of Technology, Germany
Chee Yap New York University, USA
Temur Kutsia RISC, Johannes Kepler University, Austria
Johannes Blömer Paderborn University, Germany

viii Organization

Contents

Algorithms and Foundations

Certified Hermite Matrices from Approximate Roots - Univariate Case 3
Tulay Ayyildiz Akoglu and Agnes Szanto

On Parametric Border Bases . 10
Yosuke Sato, Hiroshi Sekigawa, Ryoya Fukasaku,
and Katsusuke Nabeshima

Reliable Computation of the Singularities of the Projection
in R

3 of a Generic Surface of R4 . 16
Sény Diatta, Guillaume Moroz, and Marc Pouget

Evaluation of Chebyshev Polynomials on Intervals and Application
to Root Finding . 35

Viviane Ledoux and Guillaume Moroz

Proving Two Conjectural Series for fð7Þ and Discovering More
Series for fð7Þ . 42

Jakob Ablinger

Generalized Integral Dependence Relations. 48
Katsusuke Nabeshima and Shinichi Tajima

Hilbert-Type Dimension Polynomials of Intermediate
Difference-Differential Field Extensions . 64

Alexander Levin

Comprehensive LU Factors of Polynomial Matrices. 80
Ana C. Camargos Couto, Marc Moreno Maza, David Linder,
David J. Jeffrey, and Robert M. Corless

Sublinear Cost Low Rank Approximation via Subspace Sampling 89
Victor Y. Pan, Qi Luan, John Svadlenka, and Liang Zhao

CUR LRA at Sublinear Cost Based on Volume Maximization 105
Qi Luan and Victor Y. Pan

New Practical Advances in Polynomial Root Clustering. 122
Rémi Imbach and Victor Y. Pan

On the Chordality of Simple Decomposition in Top-Down Style. 138
Chenqi Mou and Jiahua Lai

Automatic Synthesis of Merging and Inserting Algorithms on Binary Trees
Using Multisets in Theorema . 153

Isabela Drămnesc and Tudor Jebelean

Algebraic Analysis of Bifurcations and Chaos for Discrete
Dynamical Systems . 169

Bo Huang and Wei Niu

Security and Cryptography

Acceleration of Spatial Correlation Based Hardware Trojan Detection
Using Shared Grids Ratio. 187

Fatma Nur Esirci and Alp Arslan Bayrakci

A Parallel GPU Implementation of SWIFFTX . 202
Metin Evrim Ulu and Murat Cenk

Computing an Invariant of a Linear Code . 218
Mijail Borges-Quintana, Miguel Ángel Borges-Trenard,
Edgar Martínez-Moro, and Gustavo Torres-Guerrero

Generalized Secret Sharing Schemes Using NlMDS Codes 234
Sanyam Mehta and Vishal Saraswat

Exploiting Linearity of Modular Multiplication . 249
Hamdi Murat Yıldırım

Combinatorics, Codes, Designs and Graphs

On a Weighted Spin of the Lebesgue Identity. 273
Ali Kemal Uncu

Edge-Critical Equimatchable Bipartite Graphs. 280
Yasemin Büyükçolak, Didem Gözüpek, and Sibel Özkan

Determining the Rank of Tensors in F
2
q � F

3
q � F

3
q 288

Nour Alnajjarine and Michel Lavrauw

Second Order Balance Property on Christoffel Words 295
Lama Tarsissi and Laurent Vuillon

IPO-Q: A Quantum-Inspired Approach to the IPO Strategy
Used in CA Generation . 313

Michael Wagner, Ludwig Kampel, and Dimitris E. Simos

A Fast Counting Method for 6-Motifs with Low Connectivity 324
Taha Sevim, Muhammet Selçuk Güvel, and Lale Özkahya

x Contents

LaserTank is NP-Complete. 333
Per Alexandersson and Petter Restadh

Data Modeling and Machine Learning

Improved Cross-Validation for Classifiers that Make Algorithmic Choices
to Minimise Runtime Without Compromising Output Correctness 341

Dorian Florescu and Matthew England

A Numerical Efficiency Analysis of a Common Ancestor Condition 357
Luca Carlini, Nihat Ay, and Christiane Görgen

Optimal Transport to a Variety . 364
Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar,
Bernd Sturmfels, and Lorenzo Venturello

SFV-CNN: Deep Text Sentiment Classification with Scenario
Feature Representation. 382

Haoliang Zhang, Hongbo Xu, Jinqiao Shi, Tingwen Liu,
and Jing Ya

Reinforcement Learning Based Interactive Agent for Personalized
Mathematical Skill Enhancement. 395

Muhammad Zubair Islam, Kashif Mehmood, and Hyung Seok Kim

Common Vector Approach Based Image Gradients Computation
for Edge Detection . 408

Sahin Isik and Kemal Ozkan

Optimizing Query Perturbations to Enhance Shape Retrieval 422
Bilal Mokhtari, Kamal Eddine Melkemi, Dominique Michelucci,
and Sebti Foufou

Authorship Attribution by Functional Discriminant Analysis. 438
Chahrazed Kettaf and Abderrahmane Yousfate

Tools and Software Track

An Overview of Geometry Plus Simulation Modules 453
Angelos Mantzaflaris

DD-Finite Functions Implemented in Sage . 457
Antonio Jiménez-Pastor

Author Index . 463

Contents xi

Algorithms and Foundations

Certified Hermite Matrices from
Approximate Roots - Univariate Case

Tulay Ayyildiz Akoglu1(B) and Agnes Szanto2

1 Karadeniz Technical University, Trabzon, Turkey
tulayaa@ktu.edu.tr

2 North Carolina State University, Raleigh, NC, USA
aszanto@ncsu.edu

Abstract. Let f1, . . . , fm be univariate polynomials with rational coef-
ficients and I := 〈f1, . . . , fm〉 ⊂ Q[x] be the ideal they generate. Assume
that we are given approximations {z1, . . . , zk} ⊂ Q[i] for the common
roots {ξ1, . . . , ξk} = V (I) ⊆ C. In this study, we describe a symbolic-
numeric algorithm to construct a rational matrix, called Hermite matrix,
from the approximate roots {z1, . . . , zk} and certify that this matrix is
the true Hermite matrix corresponding to the roots V (I). Applications
of Hermite matrices include counting and locating real roots of the poly-
nomials and certifying their existence.

Keywords: Symbolic–numeric computation · Approximate roots ·
Hermite matrices

1 Introduction

The development of numerical and symbolic techniques to solve systems of poly-
nomial equations resulted in an explosion of applicability, both in term of the
size of the systems efficiently solvable and the reliability of the output. Nonethe-
less, many of the results produced by numerical methods are not certified. In
this paper, we show how to compute exact Hermite matrices from approximate
roots of polynomials, and how to certify that these Hermite matrices are correct.

Hermite matrices and Hermite bilinear forms were introduced by Hermite in
1850 [7], and have many applications, including counting real roots [3,8,9] and
locating them [2]. Assume that we are given the ideal I := 〈f1, . . . , fm〉 ⊂ Q[x]
generated by rational polynomials, and assume that dimQ Q[x]/I = k. Hermite
matrices have two kinds of definitions (see the precise formulation in Sect. 2.1):

1. The first definition of Hermite matrices uses the traces of k2 multiplication
matrices, each of them of size k × k. The advantage of this definition is
that it can be computed exactly, working with rational numbers only. The
disadvantage is that it requires the computation of the traces of k2 matrices.

T. A. Akoglu—partially supported by TUBITAK grant 119F211.
A. Szanto—partially supported by NSF grants CCF-1813340 and CCF-1217557.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 3–9, 2020.
https://doi.org/10.1007/978-3-030-43120-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_1

4 T. A. Akoglu and A. Szanto

2. The second definition uses symmetric functions of the k common roots of I,
counted with multiplicity. The advantage of this definition is that it gives a
very efficient way to evaluate the entries of the Hermite matrix, assuming
that we know the common roots of I exactly. The disadvantage is that we
need to compute the common roots exactly, which may involve working in
field extensions of Q.

In this paper we propose to use the second definition to compute Hermite
matrices, but instead of using exact roots, we use approximate roots that can be
computed with numerical methods efficiently [6]. Once we obtain an approximate
Hermite matrix, we use rational number reconstruction (RNR) to construct a
matrix with rational entries of bounded denominators. Finally, we give a sym-
bolic method which certifies that the rational Hermite matrix we computed is
in fact the correct one, corresponding to the exact roots of I.

Using RNR techniques on rational polynomial systems is not a new concept.
A common approach is to use p-adic lifting or iterative refinement to build an
approximate solution, then apply rational number reconstruction [13–15]. Peryl
and Parrilo [11] used the approximate solutions as starting points for the com-
putation of exact rational sum of squares decomposition of rational polynomials.
RNR is also used to solve systems of linear equations and inequalities over the
rational numbers [12]. Moreover, RNR can be used to construct the coefficients
of the rational univariate representation of rational polynomial systems [1].

The novelty of this note and the difficulty of this problem is to certify the
correctness of the Hermite matrix that we computed with the above heuristic
approach. This part of the algorithm is purely symbolic. The main idea is to
use the fact that companion matrices act like roots of the polynomials, so we
can certify them, and then we use the famous Newton-Girard formulas [16] to
connect the entries of the companion matrix with the entries of the Hermite
matrix.

A natural question arises about the advantage of this hybrid symbolic–
numeric approach over purely symbolic methods, for example by taking the
gcd of the input polynomials and computing the symbolic Hermite matrix of the
gcd using the definition with traces. In many cases, the input polynomials have
much higher degree D than the number of common roots, so the bottleneck of
the computation is computing the common roots or the gcd of the polynomials.
Our approach computes numerically the roots of one polynomial with integer
coefficients of size at most h, substitutes them into the other m − 1 polynomi-
als to find the common roots, which can be done using O((D3 + hD2) + hmD)
binary operations up to logarithmic factors (c.f. [4,10]). On the other hand,
computing the gcd of m degree D polynomials with integer coefficients of overall
size H ≤ mh takes O(mD3) arithmetic operation with integers of size O(D4H).
(c.f. [5]).

Certified Hermite Matrices from Approximate Roots - Univariate Case 5

2 Preliminaries

2.1 Hermite Matrices

Let f1, . . . , fm ∈ Q[x], I = 〈f1, . . . , fm〉 ⊂ Q[x] and k := dimQ Q[x]/I. Assume
that (the residue classes of the polynomials in) B = {1, x, . . . , xk−1} form a basis
for Q[x]/I. Note that all definitions in this section are valid for polynomials over
R or C, but in this note we only consider polynomials with rational coefficients.

In [3, Section 4.3.2] it is shown that the following two definitions of Hermite
matrices are equivalent:

Definition 1. Let ξ1, ξ2, . . . , ξk ∈ C be the common roots of I (here each root
is listed as many times as their multiplicity) and g ∈ Q[x]. Then the Hermite
matrix of I with respect to g is

Hg := V T
B GVB (1)

where VB = [ξj−1
i]i,j=1,...,k is the Vandermonde matrix of the roots with respect to

the basis B and G is an k ×k diagonal matrix with [G]ii = g(ξi) for i = 1, . . . , k.
We will also need the extended Hermite matrix of I with respect to g

H+
g := V T

B+GVB+ ∈ Q(k+1)×(k+1) (2)

where VB+ = [ξj−1
i]i=1,...,k,j=1,...,k+1 ∈ Ck×(k+1) is the Vandermonde matrix

corresponding to B+ := {1, x, x2, . . . , xk}.
Definition 1 gives the following formula for g = 1

H1 =

[
k∑

l=1

ξi+j−2
l

]
i,j=1,...,k

. (3)

The right hand side of (3) is the (i + j − 2)-th power sum of the roots, which is
an elementary symmetric function of the roots.

The second definition implies that the Hermite matrix has a Hankel structure
and its entries are rational numbers.

Definition 2. Let I as above and g ∈ Q[x]. The Hermite matrix of I with
respect of g is

Hg :=
[
Tr(Mgxi+j−2)

]k
i,j=1

,

where Mf denotes the matrix of the multiplication map μf : Q[x]/I → Q[x]/I,
μf (p) := p · f + I in the basis B.

2.2 Rational Number Reconstruction

Continued fractions are widely used for rational approximation purposes. Let
z be a real number, one can compute the sequence of repeated quotients using

6 T. A. Akoglu and A. Szanto

continued fractions, yielding rational approximations for z. If the denominator
is bounded, the following theorem guarantees the uniqueness of the rational
approximation in case of existence.

Theorem 1. [12] There exists a polynomial time algorithm which, for a given
rational number z and a natural number B tests if there exists a pair of integers
(p, q) with 1 ≤ q ≤ B and ∣∣∣∣z − p

q

∣∣∣∣ <
1

2B2

if so, finds this unique pair of integers.

If we have a bound E for the absolute approximation error of z, then the
denominator bound can be defined as B :=

⌈
(2E)−1/2

⌉
to guarantee the unique-

ness of a rational number within distance E from z with denominator at most B.

3 Construction and Certification of Hermite Matrices

In the following algorithm we assume that I = 〈f1, . . . , fm〉 is radical, i.e. if
k = dimQ[x]/I then V (I) has cardinality k. Our algorithm to construct and
certify Hermite matrices from approximate roots is as follows.

Algorithm: Certified Univariate Hermite Matrix

– Input: f1, . . . , fm, g ∈ Q[x]; k = dimQ[x]/I; {z1, . . . , zk} ⊂ Q[i] approximate
roots; a bound E on the absolute error of these approximate roots.

– Output: Hg ∈ Qk×k or Fail.
1: Compute the approximate extended Hermite matrix

H̃+
1 :=

[
k∑

l=1

zi+j−2
l

]
i,j=1,...,k+1

∈ Q[i](k+1)×(k+1).

2: Use Rational Number Reconstruction for the real part of each entry H̃+
1 ,

using Theorem 1 with denominator bound for the (i, j)-th entry

Bi,j :=
⌈
(2k(i + j − 2)EAi+j−3)−1/2

⌉
. (4)

Here A is an upper bound for the coordinates of the approximate roots.
The resulting matrix is denoted by H+

1 ∈ Q(k+1)×(k+1).
3: H1 ← the first k rows and the first k columns of H+

1 Hk
1 ← the first k

rows and the last k columns of H+
1 .

4: If H+
1 has Hankel structure and rank(H1) = rank(H+

1) = k, then

Mx ← H−1
1 · Hk

1

else return Fail.

Certified Hermite Matrices from Approximate Roots - Univariate Case 7

5: If Mx has a companion matrix shape and fi(Mx) = 0 for i = 1, . . . ,m
then p(x) ← charpol(Mx) else return Fail; If p is not square-free then
return Fail. Otherwise Mx is the certified multiplication matrix by x in
Q[x]/I.

6: Use the Newton–Girard formulas [16] with the coefficients of p to yield
the d-th power sums of the roots of p for d = 0, . . . , 2k − 2, as in (3). If
each one matches to the corresponding entry of H1, then it certifies H1,
else return Fail.

7: Once H1 and Mx are certified, return

Hg ← H1 · g(Mx),

which is correct by H1 · g(Mx) = (V TV) · (V −1GV) = V TGV = Hg.

Note that if we do not give k = dimQ Q[x]/I as part of the input, the above
algorithm only certifies that the output matrix Hg corresponds to a rational
subvariety of V (I), i.e. possibly a proper subset of V (I) that is defined by
rational polynomials.

We finish this note by describing a modification of the above algorithm for
the case when I is not radical. In this case we return a certified Hermite matrix
Hg corresponding to a rational component of the radical of I, i.e. each common
roots of I is counted with multiplicity one or zero. We still start with the same
input, but z1, . . . , zk may have repetitions (or form clusters). In Step 4, instead
of requiring H1 to have rank k, we compute the companion matrix Mx using a
maximal non-singular submatrix of H+

1 , which may have size smaller than k. In
Step 6, we use the Newton–Girard formulas to define H1, and return Hg defined
as in Step 7, which may also have size smaller than k.

In future work, we plan to extend these results to multivariate and overde-
termined polynomial systems.

4 Example

We demonstrate our algorithm on a simple example. Consider f(x) =
16x4 − 10x2 + 1 ∈ Q[x], with g(x) = 1. The exact roots of f are
1/

√
2,−1/

√
2, 1/2

√
2,−1/2

√
2. We get the following approximate solutions using

homotopy method in Maple: z1 = 0.7071067810, z2 = −0.7071067810, z3 =
0.3535533905, z4 = −0.3535533905. This solution has error bound E := 10−8.
1: Compute the approximate extended Hankel matrix H̃+

1 from z1, z2, z3, z4:

H̃
+
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0 −0.0000000007 1.2500000052 −0.00000000026 0.5312500055

−0.0000000007 1.2500000053 −0.0000000002 0.5312500055 −5.3363907043 × 10−11

1.2500000052999999 −0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062541

−0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062542 −9.3658008865 × 10−12

0.5312500055 −5.3363907043 × 10−11 0.2539062541 −9.3658008865 × 10−12 0.1254882840

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

8 T. A. Akoglu and A. Szanto

2: Rationalize H+
1 , using A = 0.8 and E = 10−8 and (4). This gives B ∼= 2700

as upper bound for the denominators of each entry of the Hankel matrix H+
1 .

H+
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 5
4 0 17

32

0 5
4 0 17

32 0
5
4 0 17

32 0 65
256

0 17
32 0 65

256 0
17
32 0 65

256 0 257
2048

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3: Let H1 be the first k rows and the first k columns of H+
1 , and Hk

1 be the first
k rows and the last k columns of H+

1 .
4: H+

1 has Hankel structure and rank(H+
1) = rank(H1) = 4. Then

Mx = H−1
1 · H4

1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 − 1
16

1 0 0 0

0 1 0 5
8

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ .

5: Mx has a companion matrix shape and f(Mx) = 0, then p(x) := x4− 5
8x2+ 1

16
with gcd(p, p′) = 1 (square free). Thus we certified that Mx is the multiplication
matrix by x in Q[x]/〈f〉.
6: We Newton–Girard formulas with the elementary symmetric functions: e0 =
1, e1 = 0, e2 = − 5

8 , e3 = 0, e4 = 1
16 , which yields

4∑
i=1

ξ0i = 4,

4∑
i=1

ξ2i =
5
4
,

4∑
i=1

ξ4i =
17
32

,

4∑
i=1

ξ6i =
65
256

,

4∑
i=1

ξ8i =
257
2048

,

and all odd power sums are zero. Each sum matches the corresponding entry,
thus we certified H1.
7: Since g(x) = 1, Return H1.

References

1. Ayyildiz Akoglu, T., Hauenstein, J.D., Szanto, A.: Certifying solutions to overde-
termined and singular polynomial systems over Q. J. Symb. Comput. 84, 147–171
(2018)

2. Ayyildiz Akoglu, T.: Certifying solutions to polynomial systems over Q. Ph.D.
thesis, North Carolina State University (2016)

3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. AACIM,
vol. 10. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

4. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the pellet test and newton iteration. J.
Symb. Comput. 86, 51–96 (2018)

https://doi.org/10.1007/3-540-33099-2

Certified Hermite Matrices from Approximate Roots - Univariate Case 9

5. González-Vega, L.: On the complexity of computing the greatest common divisor of
several univariate polynomials. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds.)
LATIN 1995. LNCS, vol. 911, pp. 332–345. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59175-3 100

6. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)

7. Hermite, C.: Sur le nombre des racines d’une équation algébrique comprise entre
des limites données. J. Reine Angew. Math. 52, 39–51 (1850). Also in Oeuvres
completes, vol. 1, pp. 397–414

8. Hermite, C.: Remarques sur le théorème de Sturm. CR Acad. Sci. Paris 36(52–54),
171 (1853)

9. Hermite, C.: Extrait d’une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt
de Berlin sur le nombre des racines d’une équation algébrique comprises entre
des limites données. Journal für die reine und angewandte Mathematik 52, 39–51
(1856)

10. Pan, V.Y.: Nearly optimal polynomial root-finders: the state of the art and new
progress. arXiv:1805.12042v10 [cs.NA] (2019)

11. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational
coefficients. Theoret. Comput. Sci. 409(2), 269–281 (2008)

12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
13. Steffy, D.E.: Exact solutions to linear systems of equations using output sensitive

lifting. ACM Commun. Comput. Algebra 44(3/4), 160–182 (2011)
14. Wan, Z.: An algorithm to solve integer linear systems exactly using numerical

methods. J. Symb. Comput. 41, 621–632 (2006)
15. Wang, X., Pan, V.Y.: Acceleration of Euclidean algorithm and rational number

reconstruction. SIAM J. Comput. 32(2), 548–556 (2003)
16. Weisstein, E.W.: Newton-Girard Formulas. From MathWorld-A Wolfram Web

Resource. http://mathworld.wolfram.com/Newton-GirardFormulas.html

https://doi.org/10.1007/3-540-59175-3_100
https://doi.org/10.1007/3-540-59175-3_100
http://arxiv.org/abs/1805.12042v10
http://mathworld.wolfram.com/Newton-GirardFormulas.html

On Parametric Border Bases

Yosuke Sato1(B), Hiroshi Sekigawa1, Ryoya Fukasaku2,
and Katsusuke Nabeshima3

1 Tokyo University of Science, Tokyo, Japan
ysato@rs.kagu.tus.ac.jp, sekigawa@rs.tus.ac.jp

2 Kyushu University, Fukuoka, Japan
fukasaku@math.kyushu-u.ac.jp

3 Tokushima University, Tokushima, Japan
nabeshima@tokushima-u.ac.jp

Abstract. We study several properties of border bases of parametric
polynomial ideals and introduce a notion of a minimal parametric border
basis. It is especially important for improving the quantifier elimination
algorithm based on the computation of comprehensive Gröbner systems.

Keywords: Parametric border basis · Comprehensive Gröbner
system · Quantifier elimination

1 Introduction

We study properties of border bases of zero-dimensional parametric polynomial
ideals. Main motivation of our work is to improve the CGS-QE algorithm intro-
duced in [1]. It is a special type of a quantifier elimination (QE) algorithm which
has a great effect on QE of a first order formula containing many equalities. The
most essential part of the algorithm is to eliminate all existential quantifiers ∃X̄
from the following basic first order formula:

φ(Ā) ∧ ∃X̄ (
∧

1≤i≤s

fi(Ā, X̄) = 0 ∧
∧

1≤i≤t

hi(Ā, X̄) ≥ 0) (1)

with polynomials f1, . . . , fs, h1, . . . , ht in Q[Ā, X̄] such that the parametric ideal
I = 〈f1, . . . , fs〉 is zero-dimensional in C[X̄] for any specialization of the parame-
ters Ā = A1, . . . , Am satisfying φ(Ā), where φ(Ā) is a quantifier free formula con-
sisting only of equality = and disequality �=. The algorithm computes a reduced
comprehensive Gröbner system (CGS) G = {(S1, G1), . . . , (Sr, Gr)} of the para-
metric ideal I on the algebraically constructible set S = {ā ∈ Cm|φ(ā)}, then
applies the method of [9] with several improvements of [2–4,7]. One of the most
important properties of the reduced CGS is that C[X̄]/〈f1(X̄, ā) . . . , fs(X̄, ā)〉
has an invariant basis {t ∈ T (X̄) : t � LT (g) for any g ∈ Gi} as a C-vector space
for every ā ∈ Si. It enables us to perform several uniform computations with
parameters Ā for every ā ∈ Si. (More detailed descriptions can be found in [1].)
In order to obtain a simple quantifier free formula, a compact representation
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 10–15, 2020.
https://doi.org/10.1007/978-3-030-43120-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_2

On Parametric Border Bases 11

of a reduced CGS of I is desirable, minimizing the number r of the partition
S1, . . . ,Sr of S is particularly important. Border bases are alternative tools for
handling zero-dimensional ideals [5]. We have observed that the reduced CGS
can be replaced with a parametric border basis in our algorithm. Since border
bases have several nice properties which Gröbner bases do not possess, we can
obtain a simpler quantifier free formula using a parametric border basis.

In this paper, we study border bases in parametric polynomial rings. We
give a formal definition of a parametric border basis and show several properties
which are important for improving the CGS-QE algorithm. Since our work is
still on going and the paper is a short paper, we do not get deeply involved in
the application of parametric border bases to QE.

The paper is organized as follows. In Sect. 2, we first give a quick review of
a CGS for understanding the merit of our work, then give a formal definition
of a parametric border basis. In Sect. 3, we introduce our main results together
with a rather simple example for understanding our work. Numerical stability
is one of the most important properties of border bases. In Sect. 4, we study
this property in our setting. We follow the book [5] for the terminologies and
notations concerning border bases.

2 Preliminary

In the rest of the paper, let Q and C denote the field of rational numbers and
complex numbers, X̄ and Ā denote some variables X1, . . . , Xn and A1, . . . , Am,
T (X̄) denote a set of terms in X̄. For t1, t2 ∈ T (X̄), t1 | t2 and t1 � t2 denote
that “t2 is divisible by t1” and “t2 is not divisible by t1” respectively. For a
polynomial f ∈ C[Ā, X̄], regarding f as a member of a polynomial ring C[Ā][X̄]
over the coefficient ring C[Ā], its leading term and coefficient w.r.t. an admissible
term order 	 of T (X̄) are denoted by LT�(f) and LC�(f) respectively. When
	 is clear from context, they are simply denoted by LT (f) and LC(f).

2.1 Comprehensive Gröbner System

Definition 1. For an algebraically constructible subset (ACS in short) S of Cm,
a finite set {S1, . . . ,Sr} of ACSs of Cm which satisfies ∪r

i=1Si = S and Si∩Sj =
∅(i �= j) is called an algebraic partition of S. Each Si is called a segment.

Definition 2. Fix an admissible term order on T (X̄). For a finite set F ⊂
Q[Ā, X̄] and an ACS S of Cm, a finite set of pairs G = {(G1,S1), . . . , (Gr,Sr)}
with finite sets G1, . . . , Gr of Q[Ā, X̄] satisfying the following properties is called
a reduced comprehensive Gröbner system (CGS) of 〈F 〉 on S with parameters Ā.
(When S is the whole space Cm, “on Cm” is usually omitted.)

1. {S1, . . . ,Sr} is an algebraic partition of S.
2. For each i and ā ∈ Si, Gi(ā) is a reduced Gröbner basis of 〈F (ā)〉 ⊂ C[X̄],

where Gi(ā) = {g(ā, X̄)|g(Ā, X̄) ∈ Gi} and F (ā) = {f(ā, X̄)|f(Ā, X̄) ∈ F}.
3. For each i, LC(g)(ā) �= 0 for every g ∈ Gi and ā ∈ Si.

12 Y. Sato et al.

Remark 3. The set of leading terms of all polynomials of Gi(ā) is invariant
for each ā ∈ Si. Hence, not only the dimension of the ideal 〈Gi(ā)〉 is invariant
but also the C-vector space C[X̄]/〈F (ā)〉 has the same finite basis {t ∈ T (X̄) :
t � LT (g) for any g ∈ Gi} for every ā ∈ Si when 〈F (ā)〉 is zero-dimensional.

2.2 Border Bases in Parametric Polynomial Rings

Definition 4. For a finite set F ⊂ Q[Ā, X̄] and an ACS S of Cm such that
the ideal 〈F (ā)〉 is zero-dimensional for each ā ∈ S, a finite set of triples
B = {(B1,S1,O1), . . . , (Br,Sr,Or)} with a finite set Bi of Q(Ā)[X̄] and an
order ideal Oi of T (X̄) for each i satisfying the following properties is called a
parametric border basis (PBB) of 〈F 〉 on S with parameters Ā.
(When S is the whole space Cm, “on Cm” is usually omitted.)

1. {S1, . . . ,Sr} is an algebraic partition of S.
2. For each i, any denominator of a coefficient of an element of Bi does not

vanish on Si.
3. For each i and ā ∈ Si, Bi(ā) is a Oi-border basis of 〈F (ā)〉 ⊂ C[X̄].

3 Properties of Parametric Border Bases

Consider the set F = {X2 + 1
4Y 2 −AXY +B − 1, 1

4X2 +Y 2 −BXY +A− 1} of
parametric polynomials in Q[A,B,X, Y] with parameters A and B, which is a
similar but a little bit more complicated example than the one discussed in the
book [5]. 〈F (a, b)〉 is zero-dimensional for every (a, b) ∈ C2. It has the following
reduced CGS G = {(G1,S1), . . . , (G7,S7)} w.r.t. the lexicographic term order
such that X 	 Y .

G1 = {−5X2 + 20BY X + 4, −5Y 2 − 20B + 4}, S1 = V(A − 4B),

G2 = {5X2 − 4Y X + 5B − 5, (5B − 1)Y X − 5Y 2, (20B − 29)Y 3 + (−25B3 + 35B2 − 11B + 1)Y },

S2 = V(4A − B − 3) \ {(4
5 , 1

5), (89
80 , 29

20)},

G3 = {16(A − 4B)(4A − B − 3)X + (−64A2 + 272AB − 64B2 − 225)Y 3 + (−64A3 + (256B + 64)A2+

(64B2 − 320B − 240)A − 256B3 + 256B2 + 60B + 180)Y, (−64A2 + 272AB − 64B2 − 225)Y 4 + (−64A3+

(256B + 64)A2 + (64B2 − 320B − 480)A − 256B3 + 256B2 + 120B + 360)Y 2 − 16(4A − B − 3)2},

S3 = C2 \ S1 ∪ S2 ∪ S4 ∪ · · · ∪ S7 = C2 \ V((A − 4B)(4A − B − 3)(64A2 − 272AB + 64B2 + 225)),

G4 = {20X2 + 9, Y }, S4 = {(89
80 , 29

20)},

G5 = {58Y 2 + 245, 35X − Y }, S5 = {(101
20 , 29

20)},

G6 = {60(20B − 29)X + ((400B2 − 400B − 36)A − 1600B3 + 1600B2 + 519B − 375)Y, 15((400B−
64)A − 64B − 425)Y 2 + 128((200B2 − 80B − 42)A − 50B3 + 20B2 − 177B + 75)},

S6 = V(64A2 − 272AB + 64B2 + 225) \ S3 ∪ S4 ∪ S5,

G7 = {1}, S7 = V(−10881A − 10000B3 + 8400B2 + 9744B + 3925, 25A2 − 17A + 25B2 − 17B−
25, (400B − 64)A − 64B − 425) = {(α1 + β1i, α1 − β1i), (α1 − β1i, α1 + β1i), (−α2 − β2i, −α2+

β2i), (α2 + β2i, −α2 − β2i)}withα1 � 1.16856, β1 � 0.266288, α2 � 0.668559, β2 � 0.633712.

Note that the C-vector space C[X,Y]/〈F (a, b)〉 has dimension 4, 4, 4, 2, 2, 2 and
1 for (a, b) ∈ S1,S2,S3,S4,S5,S6 and S7 respectively. Even though S1,S2 and S3

are connected and the C-vector space C[X,Y]/〈F (a, b)〉 has the same dimension
4 on S1, S2 and S3, we cannot glue them into a single segment as long as we
use a reduced CGS. On the other hand, we can glue them into a single segment
with the following PBB B = {(B1,S ′

1,O1), . . . , (B5,S ′
5,O5)}.

On Parametric Border Bases 13

B1 = Y 2 +
4(A−4B)

15 XY + 4
15 (4A − B − 3), XY 2 +

16(A−4B)(A−4B+3)
64A2−272AB+64B2+225

Y

+
60(4A−B−3)

64A2−272AB+64B2+225
X,

X2 +
4(B−4A)

15 XY + 4
15 (4B − A − 3), X2Y +

16(B−4A)(B−4A+3)
64A2−272AB+64B2+225

X +
60(4B−A−3)

64A2−272AB+64B2+225
Y,

S′
1 = S1 ∪ S2 ∪ S3 = C2 \ V(64A2 − 272AB + 64B2 + 225),O1 = {1, X, Y,XY },

B2 = {X2 + 9
20 , Y,XY },S′

2 = S4,O2 = {1, X},
B3 = {X − 1

35Y,XY + 7
58 , Y

2 + 245
58 , },S′

3 = S5O3 = {1, Y },
B4 = {X +

(400B2−400B−36)A−1600B3+1600B2+519B−375
60(20B−29) Y,

XY − 32((400B2−400B−36)A−1600B3+1600B2+519B−375)((200B2−80B−42)A−50B3+20B2−177B+75)
225(20B−29)((400B−64)A−64B−425) ,

Y 2 +
128((200B2−80B−42)A−50B3+20B2−177B+75)

15((400B−64)A−64B−425) },S′
4 = S6,O4 = {1, Y },

B5 = {1},S′
5 = S7,O5 = ∅.

Note also that C[X,Y]/〈F (a, b)〉 has the same dimension 2 on S ′
2,S ′

3 and S ′
4.

Even though S ′
2, S ′

4 and S ′
3, S ′

4 are connected, however, we cannot glue them
into a single segment for both of them. The reason for S ′

2, S ′
4 is that 〈F (a, b)〉

has the only one order ideal O2 on (a, b) ∈ S′
2 (i.e., (a, b) = (8980 , 29

20)), while
S ′
4 contains a point (2920 , 89

80) such that 〈F (2920 , 89
80)〉 has the only one order ideal

O4 different from O2. The reason for S ′
3, S ′

4 is rather subtle. We cannot have a
uniform parametric representation for both of B3 and B4. Those observations
lead us to the following definition of a minimal PBB.

Definition 5. A PBB B = {(B1,S1,O1), . . . , (Br,Sr,Or)} of 〈F 〉 is said to be
minimal if for any pair (Si, Sj) of connected segments such that C[X̄]/〈F (ā, X̄)〉
has the same dimension on them it satisfies either of the following:

1. Oi �= Oj, but also 〈F (ā)〉 does not possess a common order ideal on Si ∪ Sj.
2. Oi = Oj and there exist no uniform parametric representation for both of Bi

and Bj on Si ∪ Sj.

Where “Si and Sj are connected” means that Si ∩ Sj ∩ (Si ∪ Sj) �= ∅, X denotes
the Zariski closure of X. Intuitively, Si and Sj are connected if and only if there
exist two points āi ∈ Si and āj ∈ Sj which are connected by a continuous path
in Si ∪ Sj.

Note that a Gröbner basis can be considered as a border basis with the naturally
induced order ideal, we can convert a reduced CGS into a PBB using uniform
parametric monomial reductions on each segment. Hence, we can compute a
PBB of any given 〈F 〉. Existence of a minimal PBB is also obvious, however,
we have not obtained an effective algorithm yet. The reason is that we do not
have an algorithm to decide whether the property 2 holds yet, while it is easy
to check the property 1 using the (parametric) border division algorithm by Bi

on Si and by Bj on Sj . At this time, we have obtained the following results.

Lemma 6. Let (B,S,O) be a member of a PBB B of 〈F 〉 such that S = Cm \
V(I) for some ideal I ⊂ Q[Ā]. If there are other members (Bn1 ,Sn1 ,On1), . . . ,
(Bnk

,Snk
,Onk

) of B such that C[X̄]/〈F (ā, X̄)〉 has the same dimension on S ∪
Sn1 ∪ · · · ∪ Snk

and 〈F (ā, X̄)〉 also has a unique order ideal O′ on every ā ∈
S ∪Sn1 ∪ · · ·∪Snk

, then we can compute a finite subset B′ of Q(Ā)[X̄] such that
B′(ā) is a O′-border basis of 〈F (ā)〉 on S ∪ Sn1 ∪ · · · ∪ Snk

.

14 Y. Sato et al.

In the above example, by this lemma, we can glue (G1, S1), (G2, S2), (G3, S3)
into (B1,S ′

1,O1) with S ′
1 = S1 ∪ S2 ∪ S3 and the order ideal O1 induced from

(G1, S1).

Lemma 7. Let (Bi,Si,O) and (Bj ,Sj ,O) be members of a PBB. If there exists
ā ∈ Si ∩ Sj such that we cannot specialize some t + h(Ā, X̄) ∈ Bj with t ∈ ∂O
and Ā = ā, then there exists no uniform parametric representation for Bi and
Bj on Si ∪ Sj.

In the above example, B3 and B4 do not have a uniform parametric representa-
tion since the denominator 60(20B − 29) of a coefficient of a polynomial in B4

vanishes for (A,B) = (10120 , 29
20) ∈ S ′

3 ∩ S ′
4.

4 Stability of Parametric Border Basis

Numerical stability is one of the most important properties of border bases. We
give a precise definition of the stability of a border basis of a parametric ideal
as follows.

Definition 8. Let F be a finite subset of Q[Ā, X̄] and S be a subset (not nec-
essary to be algebraically constructible) of Cm such that the C-vector space
C[X̄]/〈F (ā, X̄)〉 has an invariant finite dimension for every ā ∈ S. For ā ∈ S
which is not an isolated point of S, let 〈F (ā, X̄)〉 have a O-border basis B =
{t1 + g1, . . . , tl + gl} with {t1, . . . , tl} = ∂O and g1, . . . , gl ∈ C[X̄] for some order
ideal O = {s1, . . . , sk}. If there exists an open neighborhood S ′ ⊂ S of ā such
that 〈F (c̄, X̄)〉 has an invariant order ideal O together with a O-border basis
{t1+φ1

1(c̄)s1+ · · ·+φ1
k(c̄)sk, . . . , tl+φl

1(c̄)s1+ · · ·+φl
k(c̄)sk} for each c̄ ∈ S ′ with

mappings φi
j from S ′ to C. (Note that it is uniquely determined.) In addition, if

these mappings are continuous at Ā = ā that is limc̄→ā φi
1(c̄)s1+· · ·+φi

k(c̄)sk = gi
for each i = 1, . . . , l, then we say B is stable at Ā = ā in S.

Unfortunately, the stability property does not hold for some parametric ideal
〈F (Ā, X̄)〉.
Example 9. Let F = {A(X − Y), AX4 + X2 + A − 1, AY 4 + Y 2 + A − 1}.
C[X,Y]/〈F (a)〉 has dimension 4 for any a ∈ S = C. Possible order ideals of
〈F (a)〉 are {1,X,X2,X3} and {1, Y, Y 2, Y 3} for a �= 0 but only {1,X, Y,XY }
for a = 0. Hence, the {1,X, Y,XY }-border basis B of 〈F (0)〉 is not stable at
A = 0 in S.

In case a parametric ideal has an invariant order ideal in some connected region
S its border basis seems to be stable at any point of S, although we have not
proved it yet.

Example 10. For the example of the previous section, 〈F (a, b,X, Y)〉 has an
order ideal {1, Y } for every (a, b) ∈ S ′

3∪S ′
4. As is mentioned at the end of previous

section, we do not have a uniform parametric representation of the {1, Y }-border
basis of 〈F (a, b,X, Y)〉 for every (a, b) ∈ S ′

3 ∪ S ′
4. It seems that the {1, Y }-border

On Parametric Border Bases 15

basis of 〈F (a, b,X, Y)〉 is not stable at (a, b) = (10120 , 29
20). But it is actually stable

at (A,B) = (10120 , 29
20) in S ′

3 ∪ S ′
4. That is (400B2−400B−36)A−1600B3+1600B2+519B−375

60(20B−29) ,

32((400B2−400B−36)A−1600B3+1600B2+519B−375)((200B2−80B−42)A−50B3+20B2−177B+75)
225(20B−29)((400B−64)A−64B−425) and

128((200B2−80B−42)A−50B3+20B2−177B+75)
15((400B−64)A−64B−425) converge to − 1

35 ,− 7
58 and 245

58 as (A,B) →
(10120 , 29

20) in S ′
3 ∪ S ′

4.

5 Conclusion and Remarks

A terrace introduced in [8] is an ideal algebraic structure for a canonical rep-
resentation of a comprehensive Gröbner system. It is the smallest commutative
von Neumann regular ring extending Q[Ā], meanwhile Q(Ā) is the smallest field
extending Q[Ā]. If we are allowed to use this structure to represent coefficients
of parametric polynomials, we can also similarly define a PBB and a minimal
PBB. For the definition of a minimal PBB, we do not need the property 2, that
is we always have Oi �= Oj . Furthermore the better thing is that we can always
compute it, though we have not tried to use it yet since the implementation of
the structure of terrace is not very straightforward.

References

1. Fukasaku, R., Iwane, H., Sato, Y.: Real quantifier elimination by computation of
comprehensive Gröbner systems. In: Proceedings of ISSAC 2015, pp. 173–180 (2015)

2. Fukasaku, R., Iwane, H., Sato, Y.: On the implementation of CGS real QE. In:
Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725,
pp. 165–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3 21

3. Fukasaku, R., Sato, Y.: On real roots counting for non-radical parametric ideals.
In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS,
vol. 10693, pp. 258–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72453-9 18

4. Fukasaku, R., Iwane, H., Sato, Y.: On multivariate hermitian quadratic forms. Math.
Comput. Sci. 13(1–2), 79–93 (2019)

5. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Hei-
delberg (2005). https://doi.org/10.1007/3-540-28296-3. Section 6.4 Border Bases

6. Montes, A.: The Gröbner Cover. ACM, vol. 27. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03904-2

7. Sato, Y., Fukasaku, R., Sekigawa, H.: On continuity of the roots of a parametric
zero dimensional multivariate polynomial ideal. In: Proceedings of ISSAC 2018, pp.
359–365 (2018)

8. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. J.
Symb. Comput. 36(3–4), 649–667 (2003)

9. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Alge-
braic Decomposition. TEXTSMONOGR, pp. 376–392. Springer, Vienna (1998).
https://doi.org/10.1007/978-3-7091-9459-1 20

https://doi.org/10.1007/978-3-319-42432-3_21
https://doi.org/10.1007/978-3-319-72453-9_18
https://doi.org/10.1007/978-3-319-72453-9_18
https://doi.org/10.1007/3-540-28296-3
https://doi.org/10.1007/978-3-030-03904-2
https://doi.org/10.1007/978-3-030-03904-2
https://doi.org/10.1007/978-3-7091-9459-1_20

Reliable Computation of the Singularities
of the Projection in R3 of a Generic

Surface of R4

Sény Diatta1,2, Guillaume Moroz2, and Marc Pouget2(B)

1 University Assane Seck of Ziguinchor, Ziguinchor, Senegal
senydiatta@gmail.com

2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{Guillaume.Moroz,Marc.Pouget}@inria.fr

Abstract. Computing efficiently the singularities of surfaces embedded
in R3 is a difficult problem, and most state-of-the-art approaches only
handle the case of surfaces defined by polynomial equations. Let F and G
be C∞ functions from R4 to R and M = {(x, y, z, t) ∈ R4 |F (x, y, z, t) =
G(x, y, z, t) = 0} be the surface they define. Generically, the surface M is
smooth and its projection Ω in R3 is singular. After describing the types
of singularities that appear generically in Ω, we design a numerically
well-posed system that encodes them. This can be used to return a set
of boxes that enclose the singularities of Ω as tightly as required. As
opposed to state-of-the art approaches, our approach is not restricted
to polynomial mapping, and can handle trigonometric or exponential
functions for example.

1 Introduction

Consider two real analytic functions F,G defined in R4 and denote by M the
smooth surface defined as the real common zeros of F and G. Let p be the
projection map from M to R3 along the direction (0, 0, 0, 1) and Ω the image
of M by p. The goal of this paper is to take advantage of the structure of
the singularities of Ω and to present a regular system allowing to isolate them
efficiently. Computing the singularities of such surfaces is fundamental for the
reliable visualization of surfaces, and for problems that arise in fields such as
mechanical design, control theory or biology.

The modern theory of singularities started with Whitney, Thom and Mather
and the classification of singularities is an active research domain since then.
Most of the literature focus on the local case of germs of functions, and only
more recently the case of multigerms, that is taking into account the interplay
of several points in the source space at once, attracted more attention, see e.g.
[16] and references therein. Particularly relevant for our work is the case of
functions from a surface to R3 which is studied in [7,8,13].

Unfortunately, these classifications do not lead directly to algorithms com-
puting explicitly the singularities associated to varieties. Still, in [3], a numeric
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 16–34, 2020.
https://doi.org/10.1007/978-3-030-43120-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_3

Singularities of the Projection of a Generic Surface 17

approach is presented for computing the apparent contour of a function from the
plane to itself. In [9], the authors proposed a reliable numeric algorithm to com-
pute the singularities of the projection of smooth curves from R3 to R2, using a
so-called Ball system. We generalize this approach to compute the singularities
of the projection of smooth surfaces from R4 to R2.

After recalling some results from singularity and transversality theory in
Sect. 2, we prove our first result on the types of singularities in Ω, the projec-
tion of a generic smooth compact surface, in Sect. 3. We prove in Sect. 4 that
Equations (S-Ball) define a regular system that can be used to compute the set
of singularities of Ω. Finally, in Sect. 5, we will illustrate our approach with the
classical Whitney Umbrella, and with the computation of the singularities of a
surface that cannot be handled by state-of-the-art method up to our knowledge.

Notation and Main Results
In the following, the surface M is a compact smooth 2-submanifold of R4 defined
by the zero locus of the C∞ functions F and G. We denote by Scompact the subset
of mappings in C∞(R4,R2) that implicitly define a compact surface. With the
coordinates (x, y, z, t) on R4, we denote p : M → R3 the projection along the t-
axis, and Ω is the image of M by p. We call a plane in R4 vertical if it is parallel to
the t-axis, that is it contains the vector (0, 0, 0, 1). The tangent plane P of M at a
point q is the set of vectors orthogonal to both ∇F (q) = (∂xF, ∂yF, ∂zF, ∂tF)(q)
and ∇G(q). Thus the tangent plane at q is vertical iff ∂tF (q) = ∂tG(q) = 0. We
say that a property is generic if it is satisfied by a countable intersection of open
dense sets of C∞ mappings (see [4, §3.2.6]). The open sets we consider are given
by the Whitney topology (as defined in [4, p.45] or [6, chap. II §3]) on the space
of smooth maps C∞(R4;R2), restricted to Scompact.

Our first result is a description of the generic singularities of Ω in terms of
singularities of the projection map. We prove that Ω generically has only 3 kinds
of singularities whose definition is given in [8], and recalled in Definition 3.

Theorem 1. (Generic properties)

1. The surface defined by F = G = 0 is generically smooth.
2. The singularities of the projection in R3 of a generic compact surface of R4

is a curve C of double points having as singularities a discrete set of triple
points and cross-caps.

To compute the curve C of double points, a naive approach consists in dupli-
cating the last variable, as in Equation (S-dble) of Sect. 4.1. However, this leads
to a system that is not regular near the cross-caps. Thus, such an approach
is not suitable for numerical solvers such as path continuation or subdivision
algorithms.

Our second result shows that the computation of the singular curve C can be
reduced to solving the regular system (S-Ball) of 4 equations in 5 variables. We
call this system the Ball system as in [9] where the same approach was used for
the projection of a space curve in the plane. We first define the operators S and
D applied to a given smooth function A defined on R4.

18 S. Diatta et al.

S.A(x, y, z, c, r) =
{

1
2 (A(x, y, z, c +

√
r) + A(x, y, z, c − √

r)) if r > 0
A(x, y, z, c) if r = 0,

D.A(x, y, z, c, r) =
{ 1

2
√

r
(A(x, y, z, c +

√
r) − A(x, y, z, c − √

r)) if r > 0
∂tA(x, y, z, c) if r = 0.

We then define the Ball system as

⎧⎪⎪⎨
⎪⎪⎩

S.F (x, y, z, c, r) = 0
S.G(x, y, z, c, r) = 0
D.F (x, y, z, c, r) = 0
D.G(x, y, z, c, r) = 0.

(S-Ball)

Theorem 2. (Computation of the singularities)
Let M ⊂ R4 be a compact surface solution of F = G = 0 that satisfies the generic
properties of Theorem 1. Let CBall be the curve solution of the system (S-Ball).

1. The points of CBall are regular points of System (S-Ball).
2. The projection of CBall to R3 is the singular locus C of Ω.

A direct corollary of this theorem is that one can enclose the curve of singular-
ities of Ω using state–of-the-art numerical algorithms such as the one presented
in [11] for example.

2 Preliminaries

Before enumerating the different types of singularities that can appear on the
projection in R3 of a generic surface of R4, we recall some basic definitions on
regularity and transversality theory.

2.1 Regular, Critical and Singular Points

Definition 1. (Regular and critical points of p)

– Regular point of p. A point q ∈ M is a regular point of p when its derivative
has full rank, that is rank(dp)q = 2. This is equivalent to say that the tangent
plane to M at q is not vertical.

– Critical point of p. A point q ∈ M which is not a regular point of p is
called a critical point of p. Equivalently the tangent plane at q is vertical i.e.
∂tF (q) = ∂tG(q) = 0.

Let P be a point of Ω, we say that a point q ∈ p−1(P) ⊂ M is a regular
(resp. singular) pre-image of P , if q is a regular (resp. critical) point of p.

Definition 2. (Regular points of a variety or a system)

– Regular point of Ω. A point P ∈ Ω is a regular point of Ω if Ω is locally a
2-submanifold of R3, otherwise, it is a singular point of Ω.

Singularities of the Projection of a Generic Surface 19

– Regular solution of a system. A solution of a square system is regular
if the Jacobian determinant does not vanish at this solution. When there are
more variables than equations, one requires that the Jacobian matrix is full
rank (i.e. the associated linear map is surjective) at the solution.

For a point P ∈ Ω with pre-images qi ∈ M, we denote Pi the tangent plane
of M at qi and Πi its image by p. We distinguish three types of singular points
of Ω that are illustrated in Fig. 1.

regular point triple pointcross-cap double point

M ⊂ R4

Ω = p(M) ⊂ R3

p t t

t3

t2

t1

t1

t2

Fig. 1. Types of singularities of Ω = p(M) with their pre-images on M

Definition 3. (Singular points of Ω)

– Double point. P ∈ Ω is a double point if it has two regular pre-images q1
and q2 in M and Π1 ∩ Π2 is a line. According to the classification in [8,
Table 1], P is the image of a singularity of type A2

0 of the mapping p.
– Triple point. P ∈ Ω is a triple point if it has three regular pre-images

q1, q2 and q3 and ∩{1≤i≤3}Πi is a point. According to the classification in [8,
Table 1], P is the image of a singularity of type A3

0 of the mapping p.
– Cross-cap. P ∈ Ω is a cross-cap if it has one critical pre-image q in M and

q is a singularity of type cross-cap of p according to Definition 7. According
to the classification in [8, Table 1], P is the image of a singularity of type S0

of the mapping p.

We use the following characterization of cross-caps in our particular setting.
It is adapted from [12] and a private communication with David Mond, a proof
is in the appendix.

Lemma 1 ([12]). The projection p has a singularity of type cross-cap iff the
direction of projection is in the tangent plane and assuming wlog (indeed the
surface can be parameterized by either (x, t), (y, t) or (z, t)) that M has a local
parameterization of the form (a(z, t), b(z, t), z, t), one has ∂zta∂ttb−∂tta∂ztb �= 0.

20 S. Diatta et al.

2.2 Transversality and Genericity

For the results of Sect. 3, we introduce the relevant tools from singularity theory
and in particular the notion of transversality.

Definition 4 ([4, Definition 2.5.1]). Let E be a finite-dimensional vector
space, the subspaces T and T ′ are transverse if T + T ′ = E.

The notion of transversality extends to functions via the tangent map.

Definition 5 ([4, Definition 3.7.1]). Let E,F be finite vector spaces, V and
W be submanifolds of E and F respectively, and f ∈ C∞(V ;F).

– f is transverse to W at q ∈ V if either f(q) does not belong to W or f(q)
belongs to W and the image of the tangent space TqV by the tangent linear
map df(q) is transverse to the tangent space Tf(q)W.

– f is transverse to W if it is transverse to W at every point q of V.

Definition 6 ([4, §3.8.3]). Let r be a non-negative integer and E,F two finite-
dimensional vector spaces. Let V be a submanifold of E and f ∈ C∞(V ;F).
Then, the map

jrf : V → Jr(V, F)

q 	→ (q, f(q), f ′(q), . . . , f (r)(q))

is called the r-jet of f and Jr(V, F) is called the space of jets of order r of maps
from V to F .

In our setting, p is a mapping from M to R3. We denote by Σ1 the subman-
ifold of J1(M,R3) of jets of corank 1, that is such that the linear map the jet
defines from TqM to R3 has corank 1 (with corank = min(dim(M),R3)−rank
= 2−rank). We then denote Σ1(p) = (j1p)−1(Σ1).

Definition 7 ([6, Definition 4.5]). A point q of M is a cross-cap of p if it is
in Σ1(p) and j1p is transverse to Σ1 at q.

We now state Thom’s transversality theorem which is the main tool to deter-
mine the generic properties of projected surfaces (see Theorem 1).

Proposition 1 ([4, Theorem 3.9.4]). Let E and F be two finite-dimensional
vector spaces, with U an open set in E. Let r be an integer, and let W be a
submanifold of Jr(U ;F). Then the set of maps f ∈ C∞(U ;F) such that jrf
is transverse to W is a dense residual subset of C∞(U ;F). In other words, for
generic f in C∞(U ;F) the map jrf is transverse to W . In addition, in this case,
(jrf)−1(W) is a submanifold of U of codimension equal to codim(W).

Finally, we show that the subset Scompact of mappings that define a compact
set is open, such that a residual subset of C∞ mappings is also a residual set in
the set of mappings that define implicitly compact sets.

Singularities of the Projection of a Generic Surface 21

Lemma 2. Scompact is open in C∞(R4,R2) equipped with the Whitney topology.

Proof. If fn is a sequence that converges toward f in C∞(R4,R2), then according
to [6, p.43], there exists a compact set K ⊂ R4 and an integer n such that
fn(x) = f(x) for all x ∈ R4 \ K. This implies that C∞(R4,R2) \ Scompact is a
closed set, which concludes the proof.
�

3 Generic Properties of Projected Surfaces

In this section, we prove Theorem 1 describing the expected geometric structure
of a projected surface, it is similar to [4, Prop. 4.7.8] for the apparent contour
of a generic surface in R3.

Proof (of Theorem 1). First, we remark that if M is a smooth compact surface,
and p is a point of Ω that has one regular pre-image q by p, then it is a regular
point of Ω. Indeed by the regularity of q, there exists a neighbourhood U of q
in M such that all points of U are regular for the projection p. Moreover, let us
show that there exists a neighbourhood V of p such that p−1(V) ⊂ U , then p
is an embedding between p−1(V) and V and thus p is a regular point of Ω. By
contradiction, assume that for any neighbourhood V of p, p−1(V) �⊂ U . Then one
can construct a sequence pi ∈ Ω converging to p such that qi = p−1(pi) �∈ U . By
compacity of M, one can assume that qi converges to q′ ∈ M. By continuity of
p, p(q′) = p and since p has a unique pre-image, one conclude that q′ = q. This is
in contradiction with the fact that the qi are not in U which is a neighbourhood
of q.

Using the Transversality Theorem 1 and its multijet version [4, Thm 3.9.7]
we prove that generically: (a) M is smooth, (b) if a point of Ω has 2 pre-images
by p then it is a double point, (c) if a point of Ω has more than 2 pre-images
then it is a triple point, (d) if a point p of Ω has a pre-image q and the tangent
plane to M at q is vertical, then p is a cross-cap.

Let Δ(n)(U) denote the subset of Un consisting of n-tuples of pairwise distinct
points and let Jr

(n)(U,F) be the space of n-multijets of order r of maps from U

to F (see [4, §3.9.6] for details). The idea is to express a geometric property as a
submanifold of a jet space Jr

(n)(U,F) such that the number of equations defining
this submanifold coincides with its codimension. The transversality theorem then
yields that generically the geometric property is satisfied on a submanifold of the
original space with the same codimension. In particular when the codimension
is larger than the dimension of the original space this means that the geometric
property generically does not hold.

(a) Consider the jet of order 0:

j0(F,G) : R4 → J0(R4,R2)
q 	→ (q, F (q), G(q)).

The set W = {F (q) = G(q) = 0} is a linear submanifold of J0(R4,R2) of
codimension 2. The transversality theorem yields that, generically, the set

22 S. Diatta et al.

M = j0(F,G)−1(W) is a smooth surface, i.e. a 2-dimensional submanifold
of R4.

(b) Let qi = (xi, yi, zi, ti) in R4. We consider the 2-multijet defined by:

j1(2)(F,G) : Δ(2)(R4) → J1
(2)(R

4,R2)

(q1, q2) 	→ (q1, F (q1), G(q1),∇F (q1),∇G(q1),
q2, F (q2), G(q2),∇F (q2),∇G(q2)).

The set W = {x1 = x2, y1 = y2, z1 = z2, F (q1) = G(q1) = F (q2) = G(q2) =
0} is a linear submanifold of J1

(2)(R
4,R2) of codimension 7. The transver-

sality theorem yields that, generically, the set of pairs of distinct points of
M that project to the same point of Ω = p(M) is a 1-dimensional subman-
ifold of Δ(2)(R4). In addition, generically, both points qi are regular points
of the projection p, since if it were not the case and q1 were critical then
this would add the two equations ∂tF (q1) = ∂tG(q1) = 0. This defines a
9-codimensional submanifold of J1

(2)(R
4,R2) which pull back in Δ(2)(R4)

of dimension 8 must be void. Similarly, adding the condition that the tan-
gent spaces Π1 and Π2 coincide would add two equations to W and thus
generically does not hold.

(c) Consider the 3-multijet

j0(3)(F,G) : Δ(3)(R4) → J0
(3)(R

4,R2)

(q1, q2, q3) 	→ (q1, F (q1), G(q1), q2, F (q2), G(q2), q3, F (q3), G(q3))

The condition to have 3 points in M that project to the same point in Ω
can be written in J0

(3)(R
4,R2) as {x1 = x2 = x3, y1 = y2 = y3, z1 = z2 =

z3, F (qi) = G(qi) = 0, 1 ≤ i ≤ 3} which is a submanifold of codimension 12,
that is exactly the dimension of Δ(3)(R4). By the transversality theorem,
there is thus generically a discrete set of such points. In addition, extending
this jet at order 1, the condition that the intersection of the tangent planes
∩3

i=1Πi is not a point or one of the points is critical for the projection would
add other equations and thus this generically does not occur. Similarly, using
a 4-multijet, one proves that there cannot be more than 3 distinct points
projecting to the same point. The set of triple points of Ω is thus generically
a discrete set.

(d) Consider the jet of order 1:

j1(F,G) : R4 → J1(R4,R2)
q 	→ (q, F (q), G(q),∇F (q),∇G(q))

The set critical points of p can be written in J1(R4,R2) as {F (q) = G(q) =
∂tF (q) = ∂tG(q) = 0} which is a submanifold of codimension 4, so that
generically there is a discrete set of such points. To prove that these are

Singularities of the Projection of a Generic Surface 23

generically cross-caps using Lemma 1, one has to use a jet of order 2 together
with a local parameterization of M to see that with the additional condition
∂zta ∂ttb − ∂tta ∂ztb = 0 one defines a submanifold of codimension 5.

The conclusion is that, generically, the singular points of Ω have at most 3
pre-images. When there is only one pre-image, it is a critical point of p and the
point on Ω is a cross-cap. When there are 2 or 3 pre-images they are all regular
points of p, and this gives a 1-dimensional curve of double points with a discrete
set of triple points.
�

4 Computing the Singularities of the Projected Surface

Within this section, we assume the generic properties of Theorem 1 hold. The
surface Ω is thus the disjoint union of regular points, double points, triple points
and cross-caps.

4.1 Systems Encoding Singularities

We define the systems (S-dble), (S-tple) and (S-cros) to encode the singularities
of the surface Ω in higher dimensional spaces. Figure 1 illustrates the geometry
of these systems.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (x, y, z, t1) = 0
G(x, y, z, t1) = 0
F (x, y, z, t2) = 0
G(x, y, z, t2) = 0

t1 �= t2

(S-dble)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F (x, y, z, t1) = 0
G(x, y, z, t1) = 0
F (x, y, z, t2) = 0
G(x, y, z, t2) = 0
F (x, y, z, t3) = 0
G(x, y, z, t3) = 0
ti �= tj for i �= j.

(S-tple)

⎧
⎪⎨

⎪⎩

F (x, y, z, t) = 0
G(x, y, z, t) = 0

∂tF (x, y, z, t) = 0
∂tG(x, y, z, t) = 0

(S-cros)

One remarks that the solutions of system (S-dble) come in pairs by exchang-
ing the t1 and t2 coordinates. Also a solution of system (S-tple) yields three pairs
of solutions of system (S-dble). We will define in Sect. 4.3 the additional system
(S-Ball) that gathers the double points, the triple points and the cross-caps. This
subsection is devoted to the proof of the following theorem.

Theorem 3. A point p = (x, y, z) ∈ Ω is a

1. Double point iff it has exactly two regular pre-images (x, y, z, t1) and
(x, y, z, t2), and the Jacobian matrix associated to (S-dble) has maximum rank
at (x, y, z, t1, t2).

2. Triple point iff it has three regular pre-images that give a regular solution of
(S-tple).

3. Cross-cap iff it has one critical pre-image that is a regular solution of (S-cros).

24 S. Diatta et al.

4.2 Regularity

We decompose the proof of Theorem 3 in several lemmas. We show that, gener-
ically, the double points are encoded by the system (S-dble) where its Jacobian
has maximum rank (Lemma 3), the triple points are encoded by the regular
solutions of system (S-tple) (Lemma 4) and the cross-caps are encoded by the
regular solutions of system (S-cros) (Lemma 5).

Lemma 3. [Theorem 3(1)] A point P = (x, y, z) in Ω is a double point iff it has
two regular pre-images q1 = (x, y, z, t1) and q2 = (x, y, z, t2), and the Jacobian
matrix associated to (S-dble) has maximum rank at q̃ = (x, y, z, t1, t2).

Proof. Let P be a double point of Ω with q1, q2 its regular preimages by p. Let P1

and P2 be the tangent planes to M at q1 and q2, and Π1, Π2 their projections.
Since q1, q2 are regular points of p, P1, P2 are not vertical. The Jacobian matrix
J1 associated to the system (S-dble) is

J1 =

⎛
⎜⎜⎝

∂xF1 ∂yF1 ∂zF1 ∂t1F1 0
∂xG1 ∂yG1 ∂zG1 ∂t1G1 0
∂xF2 ∂yF2 ∂zF2 0 ∂t2F2

∂xG2 ∂yG2 ∂zG2 0 ∂t2G2

⎞
⎟⎟⎠

with Fi(x, y, z, t1, t2) = F (x, y, z, ti) and Gi(x, y, z, t1, t2) = G(x, y, z, ti) for
i = 1, 2.

We first show that if Π1 ∩ Π2 is a line, then J1 has maximum rank at q̃.
Consider two non-null vectors u = (ux, uy, uz, u1, u2) and v = (vx, vy, vz, v1, v2)
in Ker(J1(q̃)), then we have

{∇F (q1) · (ux, uy, uz, u1) = 0
∇G(q1) · (ux, uy, uz, u1) = 0 and

{∇F (q2) · (vx, vy, vz, u2) = 0
∇G(q2) · (vx, vy, vz, u2) = 0.

Since the tangent plane Pi to M at qi is the set of vectors orthogonal to ∇F (qi)
and ∇G(qi)

(ux, uy, uz, u1) ∈ P1 and (ux, uy, uz, u2) ∈ P2,

which implies that (ux, uy, uz) ∈ Π1 ∩Π2. Similarly v ∈ Ker(J1(q̃)) implies that
(vx, vy, vz) ∈ Π1 ∩ Π2. Since Π1 ∩ Π2 is a line, there exists λ ∈ R such that
λ(ux, uy, uz) = (vx, vy, vz).

If λ = 0 then (vx, vy, vz) = (0, 0, 0), which implies that the vector (0, 0, 0, v1)
is in P1. This is not possible since q1 is a regular point of p and thus P1 is not
vertical.

If λ �= 0, since P1 is not vertical, at least one of the partial derivatives
∂tF or ∂tG is non-null at q1. Without loss of generality, one can assume that
∂tF (q1) = ∂t1F1(q̃) �= 0. Thus u, v ∈ Ker(J1(q̃)) implies

{
ux∂xF1(q̃) + uy∂yF1(q̃) + uz∂zF1(q̃) + u1∂t1F1(q̃) = 0
vx∂xF1(q̃) + vy∂yF1(q̃) + vz∂zF1(q̃) + v1∂t1F1(q̃) = 0.

Singularities of the Projection of a Generic Surface 25

Multiplying the first line by λ and subtracting the second one where (vx, vy, vz)
is substituted by λ(ux, uy, uz) yields (λu1 − v1)∂t1F1(q̃) = 0, thus λu1 − v1 = 0
and finally v1 = λu1.

Using the same approach at q2 for the non-vertical tangent plane P2, one con-
cludes that v2 = λu2. So u and v are colinear vectors, thus dim(Ker(J1(q̃))) = 1
and J1(q̃) has rank 4 which is maximal.

We now show the converse statement and thus assume that the Jacobian
matrix is of maximum rank. By contradiction, if Π1 ∩ Π2 is not a line, then it
is a plane Π := Π1 = Π2. In this case, one can find two vectors (ux, uy, uz) and
(vx, vy, vz) in Π that are linearly independent.

Let u = (ux, uy, uz, u1, u2) be such that (ux, uy, uz, ui) is the pre-image of
(ux, uy, uz) in Pi. By definition of the tangent planes, one has{∇F (q1) · (ux, uy, uz, u1) = 0

∇G(q1) · (ux, uy, uz, u1) = 0 and

{∇F (q2) · (vx, vy, vz, u2) = 0
∇G(q2) · (vx, vy, vz, u2) = 0,

thus, u is in Ker(J1(q̃)). Similarly, let v = (vx, vy, vz, v1, v2) be such that
(vx, vy, vz, vi) is the pre-image of (vx, vy, vz) in Pi, we also have that v is in
Ker(J1(q̃)). Since the vectors (ux, uy, uz) and (vx, vy, vz) are linearly indepen-
dent, the vectors u and v are also independent so dim(Ker(J1(q̃))) ≥ 2 and
J1(q̃) is not of maximum rank. Π1 ∩ Π2 is thus necessarily a line.
�
Lemma 4. [Theorem 3(2)] A point P = (x, y, z) in Ω is a triple point iff it
has three regular pre-images (x, y, z, ti), i = 1, 2, 3 and q̃ = (x, y, z, t1, t2, t3) is a
regular solution of the system (S-tple).

Proof. Let P be a point in Ω with three regular pre-images q1, q2, q3 by p. Let
Pi be the tangent plane to M at qi, note that Pi is not vertical since qi is a
regular point of p. The Jacobian matrix J2 associated to the system (S-tple) is

J2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂xF1 ∂yF1 ∂zF1 ∂t1F1 0 0
∂xG1 ∂yG1 ∂zG1 ∂t1G1 0 0
∂xF2 ∂yF2 ∂zF2 0 ∂t2F2 0
∂xG2 ∂yG2 ∂zG2 0 ∂t2G2 0
∂xF3 ∂yF3 ∂zF3 0 0 ∂t3F3

∂xG3 ∂yG3 ∂zG3 0 0 ∂t3G3

⎞
⎟⎟⎟⎟⎟⎟⎠

with Fi(x, y, z, t1, t2, t3) = F (x, y, z, ti) and Gi(x, y, z, t1, t2, t3) = G(x, y, z, ti)
for i = 1, 2, 3.

If J2(q̃) is not invertible, then there exists a non-zero vector v = (vx, vy, vz, v1,
v2, v3) ∈ Ker(J2(q̃)). In other words, we have ∇F (qi) · (vx, vy, vz, vi) = ∇G(qi) ·
(vx, vy, vz, vi) = 0 and thus (vx, vy, vz, vi) ∈ Pi. This implies that (vx, vy, vz) ∈
∩3

i=1Πi and on the other hand, since Pi is not vertical, this vector is non-null.
We thus have that ∩3

i=1Πi is not a point.
Conversely, if ∩3

i=1Πi is not a point, then there exists a non-null vector
(vx, vy, vz) ∈ ∩3

i=1Πi. Let (vx, vy, vz, vi) ∈ Pi be the pre-image of (vx, vy, vz),
we then have ∇F (qi) · (vx, vy, vz, vi) = ∇G(qi) · (vx, vy, vz, vi) = 0. In other
words, J2(q̃) · (vx, vy, vz, v1, v2, v3) = 0 and thus J2(q̃) is not invertible.
�

26 S. Diatta et al.

Lemma 5. [Theorem 3(3)] A point P = (x, y, z) in Ω is a cross-cap iff it has
one critical pre-image that is a regular solution of (S-cros).

Proof. First note that for a solution q of the system (S-cros), q is in M and
∂tF (q) = ∂tG(q) = 0, thus the tangent plane P to M at q is vertical which is
the first condition for a cross-cap in Lemma 1.

Without loss of generality, one can assume the surface parameterized by the
variables z and t. Indeed, ∇F (q) and ∇G(q) are independant so that there exists

a 2×2 minor with non-null determinant. If we assume det
(

∂xF (q) ∂yF (q)
∂xG(q) ∂yG(q)

)
�= 0

then, by the implicit function theorem, M is locally the image of a mapping
(z, t) 	→ (a(z, t), b(z, t), z, t), with a and b two smooth functions. In other words,
M is the zero locus of the functions{

F̃ (x, y, z, t) = −x + a(z, t)
G̃(x, y, z, t) = −y + b(z, t).

The Jacobian matrix of the system (S-cros) using the functions F̃ and G̃ is then

J̃3 =

⎛
⎜⎜⎝

−1 0 ∂z(a) ∂t(a)
0 −1 ∂z(b) ∂t(b)
0 0 ∂zt(a) ∂tt(a)
0 0 ∂zt(b) ∂tt(b)

⎞
⎟⎟⎠

and its determinant reads as det(J̃3) = ∂zt(a)∂tt(b) − ∂tt(a)∂zt(b), which is
precisely the quantity for the second condition of a cross-cap in Lemma 1. So we
have just proved that P is a cross-cap iff det(J̃3) �= 0.

It remains to prove that det(J̃3) �= 0 iff det(J3) �= 0 where J3 is the Jacobian
matrix associated to the system (S-cros):

J3 =

⎛
⎜⎜⎝

∂xF ∂yF ∂zF 0
∂xG ∂yG ∂zG 0
∂xtF ∂ytF ∂ztF ∂ttF
∂xtG ∂ytG ∂ztG ∂ttG

⎞
⎟⎟⎠ .

We apply Hadamard’s Lemma [4, Lemma 4.2.1] twice, first to F (a+X, b+Y, z, t)
with respect the variable X:

F (a + X, b + Y, z, t) − F (a, b + Y, z, t) = Xg1(X, b + Y, z, t) (1)

with
g1(0, b + Y, z, t) = ∂xF (a, b + Y, z, t) (2)

and then to F (a, b + Y, z, t) with respect to the variable Y :

F (a, b + Y, z, t) − F (a, b, z, t) = Y g2(Y, z, t)

with
g2(0, z, t) = ∂yF (a, b, z, t). (3)

Singularities of the Projection of a Generic Surface 27

By definition of the parametrization (z, t) 	→ (a(z, t), b(z, t), z, t), for any point
on the surface M sufficiently close to q, F (a(z, t), b(z, t), z, t) = 0, thus equality
(1) becomes

F (a + X, b + Y, z, t) = Xg1(X, b + Y, z, t) + Y g2(Y, z, t) (4)

Now we set:
X = x − a(z, t)

Y = y − b(z, t).

Substituting X and Y in the relations (4), (2) and (3) yields

F (x, y, z, t) = −F̃ (x, y, z, t)g1(x + a, y, z, t) − G̃(x, y, z, t)g2(b + y, z, t). (5)

In the same way, applying Hadamard’s Lemma to G(a + X, b + Y, z, t), there
exist two smooth functions h1 and h2 such that

G(x, y, z, t) = −F̃ (x, y, z, t)h1(x + a, y, z, t) − G̃(x, y, z, t)h2(b + y, z, t) (6)

with h1(0, y, z, t) = ∂xG(a, y, z, t) and h2(0, z, t) = ∂yG(a, b, z, t). We rewrite

the relations (5) and (6) as
(

F
G

)
= −

(
g1 g2
h1 h2

)
︸ ︷︷ ︸

A

(
F̃

G̃

)
= A

(
F̃

G̃

)
. Note that at

the point q, A(q) = −
(

∂xF (q) ∂yF (q)
∂xG(q) ∂yG(q)

)
and by our assumption detA(q) �= 0.

Differentiating with respect to t yields
(

∂tF
∂tG

)
= ∂tA

(
F̃

G̃

)
+ A

(
∂tF̃

∂tG̃

)
.

We can thus rewrite the system for cross-caps as

(
F G ∂tF ∂tG

)T

︸ ︷︷ ︸
F

=
(A 0

∂tA A
)

︸ ︷︷ ︸
N

(
F̃ G̃ ∂tF̃ ∂tG̃

)T

︸ ︷︷ ︸
F̃

. (7)

The Jacobian determinants J3 = det(Jac(F)) and J̃3 = det(Jac(F̃)). The
partial derivative of equation (7) with respect to any of the variables yields
∂F = ∂(N × F̃) = ∂N × F̃ + N × ∂F̃ , and since at the point q, F̃(q) = 0, this
simplifies to ∂F(q) = N (q) × ∂F̃(q). At the point q, we thus have the equation
J3(q) = N (q) × J̃3(q), and since detN (q) = det A(q)2 �= 0 we conclude that

det J3(q) �= 0 ⇔ det J̃3(q) �= 0. (8)

�

28 S. Diatta et al.

4.3 Ball System

In this section, we show that the system (S-Ball) represents the solutions of
(S-dble), (S-tple) and (S-cros) as regular solutions of a single system of equations
via a change of variables. We call this system the Ball system as in [9] where the
same approach was used for the projection of a space curve in the plane.

Lemma 6. The projections in R3 of the solutions of the Ball system for r ≥ 0
are the projections of the solutions of systems (S-dble), (S-tple) and (S-cros).

Proof. Let (x, y, z, c, r) be a solution of the Ball system. If r = 0, the Ball system
is exactly the system (S-cros). If r > 0, defining t1 = c−√

r, t2 = c+
√

r, one can
transform the Ball system into the system (S-dble) by multiplying the last two
lines by

√
r and adding or subtracting the two first lines by the last two ones.

Finally by construction, the projection of the solutions of (S-tple) is included
in the projection of the solutions of (S-dble), and thus in the projection of the
solutions of the Ball system.
�
Lemma 7. Let P = (x, y, z) be a point in Ω.

1. P is a double point iff it has two regular pre-images (x, y, z, t1) and (x, y, z, t2)
with t1 �= t2 such that (x, y, z, t1+t2

2 , (t1−t2
2)2) is a regular solution of (S-Ball).

2. If P is a triple point, then it has three pre-images that give three regular
solutions of (S-Ball).

3. If P is a cross-cap, then it has one critical pre-image (x, y, z, t) such that
(x, y, z, t, 0) is a regular solution of (S-Ball).

To prove Lemma 7, we first note that S.F, S.G,D.F and D.G are smooth
functions. The following lemma is a variation of [9, Lemma 6] to the case of
functions of R4 that we state without proof.

Lemma 8. If A is a real smooth function, then S.A and D.A are real smooth
functions. Moreover, the derivatives of S.A with respect to x, y, z, c, r are
respectively S.∂xA, S.∂yA, S.∂zA, S.∂tA, 1

2D.∂tA. The derivatives of D.A
with respect to x, y, z, c, r are respectively D.∂xA, D.∂yA, D.∂zA, D.∂tA and
1
2r (S.∂tA − D.A) if r > 0 and 1

6∂ttA if r = 0.

Proof (Proof of Lemma 7.). For the case r > 0, according to Lemma 8, the
Jacobian of (S-Ball) is

J(c,r>0) =

⎛
⎜⎜⎝

S.∂xF S.∂yF S.∂zF S.∂tF
D.∂tF

2

S.∂xG S.∂yG S.∂zG S.∂tG
D.∂tG

2

D.∂xF D.∂yF D.∂zF D.∂tF
S.∂tF−D.F

2r

D.∂xG D.∂yG D.∂zG D.∂tG
S.∂tG−D.G

2r

⎞
⎟⎟⎠ .

Let q = (x, y, z, c, r) be a solution of the Ball system with r > 0, J(c,r>0) can be
simplified using the fact that D.F (q) = D.G(q) = 0. Denote q1 = (x, y, z, c+

√
r)

and q2 = (x, y, z, c − √
r) the two points of M solutions of (S-dble) according

Singularities of the Projection of a Generic Surface 29

to Lemma 6. Applying to J(c,r>0) successively the following transformations on
its lines and columns: �3 ←− √

r × �3, �4 ←− √
r × �4, c5 ←− (2

√
r)c5, �1 ←−

�1 + �3, �3 ←− �1 − �3, �2 ←− �2 + �4, �4 ←− �2 − �4, one has:

det J(c,r>0) = 0 ⇐⇒ det

⎛
⎜⎜⎝

∂xF (q1) ∂yF (q1) ∂zF (q1) ∂tF (q1) ∂tF (q1)
∂xG(q1) ∂yG(q1) ∂zG(q1) ∂tG(q1) ∂tG(q1)
∂xF (q2) ∂yF (q2) ∂zF (q2) ∂tF (q2) −∂tF (q2)
∂xG(q2) ∂yG(q2) ∂zG(q2) ∂tG(q2) −∂tG(q2)

⎞
⎟⎟⎠ = 0

By changing again c4 ←− 1
2 (c4 + c5) and c5 ←− 1

2 (c4 − c5), we get

det J(c,r>0) = 0 ⇐⇒ det

⎛
⎜⎜⎝

∂xF (q1) ∂yF (q1) ∂zF (q1) ∂tF (q1) 0
∂xG(q1) ∂yG(q1) ∂zG(q1) ∂tG(q1) 0
∂xF (q2) ∂yF (q2) ∂zF (q2) 0 ∂tF (q2)
∂xG(q2) ∂yG(q2) ∂zG(q2) 0 ∂tG(q2)

⎞
⎟⎟⎠ = 0

The matrix on the right hand side is exactly that of the Jacobian of the system
(S-dble), thus the lemma reduces to Lemma 3. In particular, this implies that
both for double points and for triple points the solutions of the Ball system are
regular.

For the case r = 0, the Ball system (S-Ball) coincides with the system
(S-cros). In particular, according to Lemma 5, if P is cross-cap, the Jacobian of
Equations (S-cros) is non-zero, which implies that the Jacobian matrix of the
Ball system (S-Ball) is full rank. This implies that above cross-cap, the solution
of the Ball system is regular.
�

4.4 Algorithm

We developed a solver optimized for multivariate high degree polynomials called
voxelize and available with GPL license ([14]). It is based on a classical bisection
approach with an interval exclusion test that excludes the boxes that don’t satisfy
the input equations and inequalities ([15, Chapter 5] and references therein). For
storing the set of boxes created during the subdivision, we use the Compressed
Sparse Fiber data structure [2,17], described in the literature as a generalization
of the Compressed Sparse Row format. The main advantage of this data structure
is that it allows us to efficiently evaluate a polynomial on a set of boxes appearing
during the subdivision algorithm. More precisely, given a set S of K boxes in
Rn arranged as a cube with K = kn, evaluating a polynomial of degree d on S
can be done in O(dnk + · · · + dkn) arithmetic operations. If k > d, this leads to
O(ndK) arithmetic operations.

30 S. Diatta et al.

5 Example

5.1 Whitney Umbrella

Our first example is the Whitney Umbrella. Its parametric equations are:
x(u, v) = u, y(u, v) = v2 and z(u, v) = uv. Letting F (x, y, z, t) = y − t2 and
G(x, y, z, t) = z − xt, the Whitney Umbrella is exactly the projection in R3 of
the surface defined by F = G = 0. The corresponding Ball system is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S.F = y − c2 − r = 0
S.G = z − xc = 0
D.F = −2c = 0
D.G = −x = 0

Thus, substituting c by 0, we deduce that the set of singularities of the Whitney
Umbrella is defined by x = 0, z = 0 and y = r ≥ 0.

Note that most state-of-the-art approaches start by computing the implicit
equation of the Whitney Umbrella: P (x, y, z) = x2y − z2 = 0, and then compute
the singularities of this map as P = ∂xP = ∂yP = ∂zP = 0. Unfortunately,
the solution to this system is x = 0 and z = 0, which adds a handle that is
not a singularity of the original surface. This is a known artifact that comes
from the Zariski closure of the original surface. Our method has the advantage
of returning the exact set of singularities of the Whitney Umbrella, without the
spurious handle.

5.2 Large Polynomials

Another advantage of our approach is that it is based on numerical methods, and
as such, it can compute the singularities of polynomial maps of high degrees. For
example, the polynomials in Equations (9) are generated randomly with degree
7. Computing SF, SG,DF,DG can be done quickly with a computer algebra
system. Then, using our subdivision solver voxelize, we enclosed the solutions
of the Ball system within the input box x = [−0.35, 0.35], y = [−0.35, 0.35], z =
[0.4, 1.1], c = [−5, 5], r = [0, 5]. Our result is displayed on Fig. 2, the red curve is
the projection in R3 of the boxes of R5 enclosing the Ball system, each box being
of size a factor 2−11 of the size of the input box. The surface F = G = 0 is also
enclosed by voxelize in boxes in R4, we then use a generalization to 4D of the
SurfaceNet approach [1,5] to compute a mesh that is eventually projected in R3

and displayed on the left of Fig. 2. On a quadcore Intel CPU i7-8650U, voxelize
running time was 11 seconds to enclose the Ball system and 8.5 s to enclose the
surface and compute its meshing.

Singularities of the Projection of a Generic Surface 31

Fig. 2. Left: Singular surface Ω, projection in R3 of the smooth 2-manifold M of R4

defined by Equations (9). Right: Singular curve of Ω with cross-caps (blue) and triple
points (green). (Color figure online)

6 Conclusion

As shown in the examples, our approach handles computation of singularities not
handled by other state-of-the-art methods. Moreover, even though our approach

32 S. Diatta et al.

cannot handle the computation of the singularities associated to any mapping,
we showed that our approach works for almost all mappings.

With the systems we describe in Sect. 4.1, we could also compute the triple
points and the cross-cap singularities. Note that in order to make this computa-
tion reliable, we need additional computation, not covered here, to ensure that
we don’t miss triple-points near cross-caps.

Finally, it is also possible to check the assumptions satisfied generically in
Theorem 1 using a semi-algorithm that terminates if and only if the required
conditions are satisfied, such an approach is exemplified in a close setting in [10].

Acknowledgment. We thanks David Mond for providing to us, via a private com-
munication, this proof of the characterization of cusps.

7 Appendix: Proof of Lemma 1

Let q ∈ M be a cross-cap singularity of the projection p : M 	→ R3.
First, the condition q ∈ Σ1(p) means that dp(q) has corank 1. Since rank(p)

= 2 – corank(p) = 1, the condition is also equivalent to dp(q) has rank 1. In other
words, the 2-dimensional tangent plane to M at q projects to a line, that is the
direction of projection is in the tangent plane. Thus, the condition q ∈ Σ1(p)
of Definition 7 is equivalent to the first condition of Lemma 1: the direction of
projection is in the tangent plane.

We now assume that the surface M is locally parameterized in a neighbor-
hood of q by (z, t) 	→ (a(z, t), b(z, t), z, t), so that p(z, t) = (a(z, t), b(z, t), z). The
space J1(M,R3) is thus locally equal to U ×R3 ×L(R2,R3) where U is a subset
of R2 and L stands for the space of linear mappings. The 1-jet of a mapping
(f1(z, t), f2(z, t), f3(z, t)) : M 	→ R3 is

⎛
⎝(z, t), (f1(z, t), f2(z, t), f3(z, t)),

⎛
⎝f1z f1t

f2z f2t

f3z f3t

⎞
⎠

⎞
⎠ .

Σ1 is the subset of J1(M,R3) such that the matrix

⎛
⎝f1z f1t

f2z f2t

f3z f3t

⎞
⎠ has corank 1,

that is has rank 1. Without loss of generality, if we assume (f3z, f3t) �= (0, 0), Σ1

is thus implicitly defined by the two equations:
∣∣∣∣f1z f1t

f3z f3t

∣∣∣∣ = 0 and
∣∣∣∣f2z f2t

f3z f3t

∣∣∣∣ = 0.

One thus has Σ1 = Φ−1(0) with

Φ : J1(M,R3) → R2

⎛
⎝(z, t), (f1(z, t), f2(z, t), f3(z, t)),

⎛
⎝f1z f1t

f2z f2t

f3z f3t

⎞
⎠

⎞
⎠ 	→

(
f1zf3t − f1tf3z

f2zf3t − f2tf3z

)

Singularities of the Projection of a Generic Surface 33

According to [6, Lemma 4.3], j1p is transverse to Σ1 at q iff Φ·j1p is a submersion

at q. On the other hand, Φ · j1p = Φ

⎛
⎝(z, t), (a(z, t), b(z, t), z),

⎛
⎝az at

bz bt

1 0

⎞
⎠

⎞
⎠ =

−(at, bt). This mapping is a submersion iff its Jacobian
(

azt att

bzt btt

)
is full rank,

that is aztbtt − attbzt �= 0 which is exactly the second condition of Lemma 1.

References

1. de Bruin, P.W., Vos, F.M., Post, F.H., Frisken-Gibson, S.F., Vossepoel, A.M.:
Improving triangle mesh quality with SurfaceNets. In: Delp, S.L., DiGoia, A.M.,
Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 804–813. Springer, Heidel-
berg (2000). https://doi.org/10.1007/978-3-540-40899-4 83

2. Chou, S., Kjolstad, F., Amarasinghe, S.: Format abstraction for sparse tensor
algebra compilers. Proc. ACM Program. Lang. 2(OOPSLA), 123:1–123:30 (2018).
https://doi.org/10.1145/3276493

3. Delanoue, N., Lagrange, S.: A numerical approach to compute the topology of the
apparent contour of a smooth mapping from R2 to R2. J. Comput. Appl. Math.
271, 267–284 (2014). https://doi.org/10.1016/j.cam.2014.03.032

4. Demazure, M.: Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear
Problems. UTX. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-
57134-3

5. Gibson, S.F.F.: Constrained elastic surface nets: generating smooth surfaces from
binary segmented data. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI
1998. LNCS, vol. 1496, pp. 888–898. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0056277

6. Golubistky, M., Guillemin, V.: Stable Mappings and Their Singularities. GTM,
vol. 14. Springer, New York (1973). https://doi.org/10.1007/978-1-4615-7904-5

7. Goryunov, V.V.: Local invariants of mappings of surfaces into three-space. In:
Arnold, V.I., Gelfand, I.M., Retakh, V.S., Smirnov, M. (eds.) The Arnold-Gelfand
Mathematical Seminars, pp. 223–255. Birkhäuser, Boston (1997). https://doi.org/
10.1007/978-1-4612-4122-5 11

8. Hobbs, C.A., Kirk, N.P.: On the classification and bifurcation of multigerms of
maps from surfaces to 3-space. Math. Scand. 89(1), 57–96 (2001). https://doi.org/
10.7146/math.scand.a-14331

9. Imbach, R., Moroz, G., Pouget, M.: Numeric and certified isolation of the singu-
larities of the projection of a smooth space curve. In: Kotsireas, I.S., Rump, S.M.,
Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 78–92. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32859-1 6

10. Imbach, R., Moroz, G., Pouget, M.: A certified numerical algorithm for the topology
of resultant and discriminant curves. J. Symb. Comput. 80(Part 2), 285–306 (2017).
https://doi.org/10.1016/j.jsc.2016.03.011

11. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope
continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013).
https://doi.org/10.1137/130906544

12. Mond, D.: Classification of certain singularities and applications to differential
geometry. Ph.D. thesis, The University of Liverpool (1982)

https://doi.org/10.1007/978-3-540-40899-4_83
https://doi.org/10.1145/3276493
https://doi.org/10.1016/j.cam.2014.03.032
https://doi.org/10.1007/978-3-642-57134-3
https://doi.org/10.1007/978-3-642-57134-3
https://doi.org/10.1007/BFb0056277
https://doi.org/10.1007/BFb0056277
https://doi.org/10.1007/978-1-4615-7904-5
https://doi.org/10.1007/978-1-4612-4122-5_11
https://doi.org/10.1007/978-1-4612-4122-5_11
https://doi.org/10.7146/math.scand.a-14331
https://doi.org/10.7146/math.scand.a-14331
https://doi.org/10.1007/978-3-319-32859-1_6
https://doi.org/10.1016/j.jsc.2016.03.011
https://doi.org/10.1137/130906544

34 S. Diatta et al.

13. Mond, D.: On the classification of germs of maps from R2 to R3. Proc. London
Math. Soc. s3–s50(2), 333–369 (1985). https://doi.org/10.1112/plms/s3-50.2.333

14. Moroz, G.: Voxelize (2018–2019). https://gitlab.inria.fr/gmoro/voxelize. https://
doi.org/10.5281/zenodo.3562432

15. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511526473

16. Sinha, R.O., Atique, R.W.: Classification of multigerms (from a modern viewpoint).
Minicourse 3 of the School on Singularity Theory, 17–22 July 2016 (2016). www.
worksing.icmc.usp.br/main site/2016/minicourse3 notes.pdf

17. Smith, S., Karypis, G.: Tensor-matrix products with a compressed sparse tensor.
In: Proceedings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms, IA3 2015, pp. 5:1–5:7. ACM (2015). https://doi.org/10.1145/2833179.
2833183

https://doi.org/10.1112/plms/s3-50.2.333
https://gitlab.inria.fr/gmoro/voxelize
https://doi.org/10.5281/zenodo.3562432
https://doi.org/10.5281/zenodo.3562432
https://doi.org/10.1017/CBO9780511526473
www.worksing.icmc.usp.br/main_site/2016/minicourse3_notes.pdf
www.worksing.icmc.usp.br/main_site/2016/minicourse3_notes.pdf
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/2833179.2833183

Evaluation of Chebyshev Polynomials on
Intervals and Application to Root Finding

Viviane Ledoux1,2 and Guillaume Moroz1(B)

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
viviane.ledoux@ens.fr, guillaume.moroz@inria.fr

2 École Normale Supérieure, Paris, France

Abstract. In approximation theory, it is standard to approximate func-
tions by polynomials expressed in the Chebyshev basis. Evaluating a
polynomial f of degree n given in the Chebyshev basis can be done
in O(n) arithmetic operations using the Clenshaw algorithm. Unfortu-
nately, the evaluation of f on an interval I using the Clenshaw algorithm
with interval arithmetic returns an interval of width exponential in n. We
describe a variant of the Clenshaw algorithm based on ball arithmetic
that returns an interval of width quadratic in n for an interval of small
enough width. As an application, our variant of the Clenshaw algorithm
can be used to design an efficient root finding algorithm.

Keywords: Clenshaw algorithm · Chebyshev polynomials · Root
finding · Ball arithmetic · Interval arithmetic

1 Introduction

Clenshaw showed in 1955 that any polynomial given in the form

p(x) =
n∑

i=0

aiTi(x) (1)

can be evaluated on a value x with a single loop using the following functions
defined by recurrence:

uk(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if k = n + 1
an if k = n

2xuk+1(x) − uk+2(x) + ak if 1 ≤ k < n

xu1(x) − u2(x) + a0 if k = 0

(2)

such that p(x) = u0(x).
Unfortunately, if we use Eq. (2) with interval arithmetic directly, the result

can be an interval of size exponentially larger than the input, as illustrated in
Example 1.
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 35–41, 2020.
https://doi.org/10.1007/978-3-030-43120-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_4

36 V. Ledoux and G. Moroz

Example 1. Let ε > 0 be a positive real number, and let x be the interval
[12 − ε, 1

2 + ε] of width 2ε. Assuming that an = 1, we can see that un−1 is an
interval of width 4ε. Then by recurrence, we observe that un−k is an interval of
width at least 4εFk where (Fn)n∈N denotes the Fibonacci sequence, even if all
ai = 0 for i < n.

Note that the constant below the exponent is even higher when x is closer to
1. These numerical instabilities also appear with floating point arithmetic near
1 and −1 as analyzed in [4].

To work around the numerical instabilities near 1 and −1, Reinsch suggested
a variant of the Clenshaw algorithm [4,7]. Let dn(x) = an and un(x) = an, and
for k between 0 and n − 1, define dk(x) and uk(x) by recurrence as follows:

{
dk(x) = 2(x − 1)uk+1(x) + dk+1(x) + ak

uk(x) = dk(x) + uk+1

(3)

Computing p(x) with this recurrence is numerically more stable near 1. However,
this algorithm does not solve the problem of exponential growth illustrated in
Example 1.

Our first main result is a generalization of Eq. 3 for any value in the interval
[−1, 1]. This leads to Algorithm 1 that returns intervals with tighter radii, as
analyzed in Lemma 2. Our second main result is the use of classical backward
error analysis to derive Algorithm 2 which gives an even better radii. Then in
Sect. 3 we use the new evaluation algorithm to design a root solver for Chebyshev
series, detailed in Algorithm 3.

2 Evaluation of Chebyshev Polynomials on Intervals

2.1 Forward Error Analysis

In this section we assume that we want to evaluate a Chebyshev polynomial on
the interval I. Let a be the center of I and r be its radius. Furthermore, let γ
and γ be the 2 conjugate complex roots of the equation:

X2 − 2aX + 1 = 0. (4)

In particular, using Vieta’s formulas that relate the coefficients to the roots of a
polynomial, γ satisfies γ + γ = 2a and γγ = 1.

Let zn(x) = an and un(x) = an, and for k between 0 and n − 1, define zk(x)
and uk(x) by recurrence as follows:

{
zk(x) = 2(x − a)uk+1(x) + γzk+1(x) + ak

uk(x) = zk(x) + γuk+1(x)
(5)

Using Eq. (4), we can check that the uk satisfies the recurrence relation
uk(x) = 2xuk+1(x) − uk+2(x) + ak, such that p(x) = xu1(x) − u2(x) + a0.

Evaluation of Chebyshev Polynomials 37

Let (ek) and (fk) be two sequences of positive real numbers. Let BR(a, r) and
BR(uk(a), ek) represent the intervals [a − r, a + r] and [uk(a) − ek, uk(a) + ek].
Let BC(zk(a), fk) be the complex ball of center zk(a) and radius fk.

Our goal is to compute recurrence formulas on the ek and the fk such that:
{

zk(BR(a, r)) ⊂ BC(zk(a), fk)
uk(BR(a, r)) ⊂ BR(uk(a), ek).

(6)

Lemma 1. Let en = 0 and fn = 0 and for n > k ≥ 1:
{

fk = 2r|uk+1(a)| + 2rek+1 + fk+1

ek = min(ek+1 + fk,
fk√
1−a2) if |a| < 1 else ek+1 + fk

(7)

Then, (ek) and (fk) satisfy Eq. (6).

Proof (sketch). For the inclusion zk(BR(a, r)) ⊂ BC(zk(a), fk), note that γ has
modulus 1, such that the radius of γzk+1 is the same as the radius of zk+1 when
using ball arithmetics. The remaining terms bounding the radius of zk follow
from the standard rules of interval arithmetics.

For the inclusion uk(BR(a, r)) ⊂ BC(uk(a), ek), note that the error segment
on uk is included in the Minkowski sum of a disk of radius fk and a segment of
radius ek+1, denoted by M . If θ is the angle of the segment with the horizontal,
we have cos θ = a. We conclude that the intersection of M with a horizontal line
is a segment of radius at most min(ek+1 + fk,

fk√
1−a2).

Corollary 1. Let BR(u, e) = BallClenshawForward((a0, . . . , an), a, r) be the
result of Algorithm 1, then

p(BR(a, r)) ⊂ BR(u, e)

Moreover, the following lemma bounds the radius of the ball returned by
Algorithm 1.

Lemma 2. Let BR(u, e) = BallClenshawForward((a0, . . . , an), a, r) be the
result of Algorithm 1, and let M be an upper bound on |uk(a)| for 1 ≤ k ≤ n.
Assume that εk < Mr for 1 ≤ k ≤ n, then

⎧
⎪⎪⎨

⎪⎪⎩

e < 2Mn2r if n < 1
2
√
1−a2

e < 9Mn r√
1−a2 if 1

2
√
1−a2 ≤ n <

√
1−a2

2r

e < 2M
[
(1 + 2r√

1−a2)n − 1
]
if

√
1−a2

2r < n

Proof (sketch). We distinguish 2 cases. First if n < 1
2
√
1−a2 , we focus on the

relation ek ≤ ek+1 + fk + Mr, and we prove by descending recurrence that
ek ≤ 2M(n − k)2r and fk ≤ 2Mr(2(n − k − 1) + 1).

38 V. Ledoux and G. Moroz

For the case 1
2
√
1−a2 ≤ n, we use the relation ek ≤ fk√

1−a2 + Mr, that
we substitute in the recurrence relation defining fk to get fk ≤ 2rM +

2r√
1−a2 fk+1 + fk+1 + Mr

√
1 − a2. We can check by recurrence that fk ≤

3
2M

√
1 − a2

[
(1 + 2r√

1−a2)n − 1
]
, which allows us to conclude for the case

√
1−a2

2r ≤ n. Finally, when 1
2
√
1−a2 ≤ n <

√
1−a2

2r , we observe that (1+ 2r√
1−a2)n −

1 ≤ n exp(1) 2r√
1−a2 which leads to the bound for the last case.

Algorithm 1. Clenshaw evaluation algorithm, forward error
function BallClenshawForward((a0, . . . , an), a, r)

� Computation of the centers uk

un+1 ← 0
un ← an

for k in n − 1, n − 2, . . . , 1 do
uk ← 2auk+1 − uk+2 + ak

εk ← bound on the rounding error for uk

u0 ← au1 − u2 + a0

ε0 ← bound on the rounding error for u0

� Computation of the radii ek
fn ← 0
en ← 0
for k in n − 1, n − 2, . . . , 1 do

fk ← 2r|uk+1| + 2rek+1 + fk+1

ek ← min(ek+1 + fk, fk√
1−a2

) + εk

f0 ← r|u1| + 2re1 + f1
e0 ← min(e1 + f0,

f0√
1−a2

) + ε0

return BR(u0, e0)

2.2 Backward Error Analysis

In the literature, we can find an error analysis of the Clenshaw algorithm [3].
The main idea is to add the errors appearing at each step of the Clenshaw
algorithm to the input coefficients. Thus the approximate result correspond to
the exact result of an approximate input. Finally, the error bound is obtained
as the evaluation of a Chebyshev polynomial. This error analysis can be used
directly to derive an algorithm to evaluate a polynomial in the Chebyshev basis
on an interval in Algorithm 2.

Lemma 3. Let en = 0 and for n > k ≥ 1:

ek = 2r|uk+1(a)| + ek+1 (8)

and e0 = r|u1(a)| + e1. Then (ek) satisfies uk(BR(a, r)) ⊂ BR(uk(a), ek).

Evaluation of Chebyshev Polynomials 39

Proof (sketch). In the case where the computations are performed without
errors, D. Elliott [3, Equation (4.9)] showed that for γ = x̃ − x we have:

p(x̃) − p(x) = 2γ
n∑

i=0

ui(x̃)Ti(x) − γu1(x̃)

In the case where x̃ = a and x ∈ BR(a, r) we have γ ≤ r and |T (x)| ≤ 1
which implies ek ≤ r|u1(a)| +

∑n
i=2 2r|ui(a)|.

Corollary 2. Let BR(u, e) = BallClenshawBackward((a0, . . . , an), a, r) be the
result of Algorithm 2, and let M be an upper bound on |uk(a)| for 1 ≤ k ≤ n.
Assume that εk < Mr for 1 ≤ k ≤ n, then e < 3Mnr.

Algorithm 2. Clenshaw evaluation algorithm, backward error
function BallClenshawBackward((a0, . . . , an), a, r)

� Computation of the centers uk

un+1 ← 0
un ← an

for k in n − 1, n − 2, . . . , 1 do
uk ← 2auk+1 − uk+2 + ak

εk ← bound on the rounding error for uk

u0 ← au1 − u2 + a0

ε0 ← bound on the rounding error for u0

� Computation of the radii ek
en ← 0
for k in n − 1, n − 2, . . . , 1 do

ek ← ek+1 + 2r|uk+1| + εk

e0 ← e1 + r|u1| + ε0
return BR(u0, e0)

3 Application to Root Finding

For classical polynomials, numerous solvers exist in the literature, such as those
described in [5] for example. For polynomials in the Chebyshev basis, several
approaches exist that reduce the problem to polynomial complex root finding
[1], or complex eigenvalue computations [2] among other.

In this section, we experiment a direct subdivision algorithm based on interval
evaluation, detailed in Algorithm 3. This algorithm is implemented and publicly
available in the software clenshaw [6].

We applied this approach to Chebyshev polynomials whose coefficients are
independently and identically distributed with the normal distribution with
mean 0 and variance 1.

40 V. Ledoux and G. Moroz

As illustrated in Fig. 1 our code performs significantly better than the clas-
sical companion matrix approach. In particular, we could solve polynomials of
degree 90000 in the Chebyshev basis in less than 5 s and polynomials of degree
5000 in 0.043 s on a quad-core Intel(R) i7-8650U cpu at 1.9 GHz. For comparison,
the standard numpy function chebroots took more than 65 s for polynomials
of degree 5000. Moreover, using least square fitting on the ten last values, we
observe that our approach has an experimental complexity closer to Θ(n1.67),
whereas the companion matrix approach has a complexity closer to Θ(n2.39).

Algorithm 3. Subdivision algorithm for root finding
Require: (a0, . . . , an) represents the Chebyshev polynomial approximating f(x)

(b0, . . . , bn) represents the Chebyshev polynomial approximating df
dx

(x)
Ensure: Res is a list of isolating intervals for the roots of f in [−1, 1]

function SubdivideClenshaw((a0, . . . , an), (b0, . . . , bn))
� Partition [−1, 1] in intervals where F either has constant sign or is monotonous
L ← [BR(0, 1)]
Partition ← []
while L is not empty do

BR(a, r) ← pop the first element of L
BR(f, s) ← BallClenshaw ((a0, . . . , an), a, r)
BR(df, t) ← BallClenshaw ((b0, . . . , bn), a, r)
if f − s > 0 then

append the pair (BR(a, r), “plus”) to Partition
else if f + s < 0 then

append the pair (BR(a, r), “minus”) to Partition
else if g − s > 0 or g + s < 0 then

append the pair (BR(a, r), “monotonous”) to Partition
else

B1, B2 ← subdivideBR(a, r)
append B1, B2 to L

� Compute the sign of F at the boundaries
BR(f, s) ← BallClenshaw ((a0, . . . , an), −1, 0)
append the pair (BR(−1, 0), sign(BR(f, s))) to Partition
BR(f, s) ← BallClenshaw ((a0, . . . , an), 1, 0)
append the pair (BR(1, 0), sign(BR(f, s))) to Partition

� Recover the root isolating intervals
Partition ← sort Partition
Res ← the “monotonous” intervals of Partition

such that the adjacent intervals have opposite signs
return Res

Evaluation of Chebyshev Polynomials 41

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Degree of the input Chebyshev polynomial (in log10 deg)

−4

−3

−2

−1

0

1

2

So
lv
in
g
tim

e
in

(in
lo
g 1

0
se
co
nd
s)

clenshaw (bisection and clenshaw evaluation)
numpy (eigenvalues of the companion matrix)

Fig. 1. Time for isolating the roots of a random Chebyshev polynomial, on a quad-core
Intel(R) i7-8650U cpu at 1.9 GHz, with 16G of ram

References

1. Boyd, J.: Computing zeros on a real interval through chebyshev expansion and
polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002). https://
doi.org/10.1137/S0036142901398325

2. Boyd, J.: Finding the zeros of a univariate equation: proxy rootfinders, cheby-
shev interpolation, and the companion matrix. SIAM Rev. 55(2), 375–396 (2013).
https://doi.org/10.1137/110838297

3. Elliott, D.: Error analysis of an algorithm for summing certain finite series. J. Aust.
Math. Soc. 8(2), 213–221 (1968). https://doi.org/10.1017/S1446788700005267

4. Gentleman, W.M.: An error analysis of Goertzel’s (Watt’s) method for computing
Fourier coefficients. Comput. J. 12(2), 160–164 (1969). https://doi.org/10.1093/
comjnl/12.2.160

5. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials
... and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2016, pp. 303–310. ACM, New York
(2016). https://doi.org/10.1145/2930889.2930937

6. Moroz, G.: Clenshaw 0.1, December 2019. https://doi.org/10.5281/zenodo.3571248,
https://gitlab.inria.fr/gmoro/clenshaw

7. Oliver, J.: An error analysis of the modified Clenshaw method for evaluating Cheby-
shev and Fourier series. IMA J. Appl. Mathe. 20(3), 379–391 (1977). https://doi.
org/10.1093/imamat/20.3.379

https://doi.org/10.1137/S0036142901398325
https://doi.org/10.1137/S0036142901398325
https://doi.org/10.1137/110838297
https://doi.org/10.1017/S1446788700005267
https://doi.org/10.1093/comjnl/12.2.160
https://doi.org/10.1093/comjnl/12.2.160
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.5281/zenodo.3571248
https://gitlab.inria.fr/gmoro/clenshaw
https://doi.org/10.1093/imamat/20.3.379
https://doi.org/10.1093/imamat/20.3.379

Proving Two Conjectural Series for ζ(7)
and Discovering More Series for ζ(7)

Jakob Ablinger(B)

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

jakob.ablinger@risc.jku.at

Abstract. We give a proof of two identities involving binomial sums
at infinity conjectured by Zhi-Wei Sun. In order to prove these iden-
tities, we use a recently presented method i.e., we view the series as
specializations of generating series and derive integral representations.
Using substitutions, we express these integral representations in terms
of cyclotomic harmonic polylogarithms. Finally, by applying known rela-
tions among the cyclotomic harmonic polylogarithms, we derive the
results. These methods are implemented in the computer algebra package
HarmonicSums.

1 Introduction

In order to prove the two formulas (conjectured in [16])

∞∑

k=1

33H
(5)
k + 4/k5

k2
(
2k
k

) = −45
8

ζ(7) +
13
3

ζ(2)ζ(5) +
85
6

ζ(3)ζ(4), (1)

∞∑

k=1

33H
(3)
k + 8/k3

k4
(
2k
k

) = −259
24

ζ(7) − 98
9

ζ(2)ζ(5) +
697
18

ζ(3)ζ(4), (2)

where H
(a)
k :=

∑k
i=1

1
ia , we are going to use a method presented in [2], there-

fore we repeat some important definitions and properties (for more details we
refer the interested reader to [4,7,12]). Let K be a field of characteristic 0. A
function f = f(x) is called holonomic (or D-finite) if there exist polynomi-
als pd(x), pd−1(x), . . . , p0(x) ∈ K[x] (not all pi being 0) such that the following
holonomic differential equation holds:

pd(x)f (d)(x) + · · · + p1(x)f ′(x) + p0(x)f(x) = 0. (3)

J. Ablinger—This work was supported by the Austrian Science Fund (FWF) grant
SFB F50 (F5009-N15) and has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk�lodowska-Curie grant
agreement No. 764850 “SAGEX”.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 42–47, 2020.
https://doi.org/10.1007/978-3-030-43120-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_5

Proving Two Conjectural Series for ζ(7) and Discovering More Series 43

A sequence (fn)n≥0 with fn ∈ K is called holonomic (or P-finite) if there exist
polynomials pd(n), pd−1(n), . . . , p0(n) ∈ K[n] (not all pi being 0) such that the
holonomic recurrence

pd(n)fn+d + · · · + p1(n)fn+1 + p0(n)fn = 0 (4)

holds for all n ∈ N (from a certain point on). In the following we utilize the
fact that holonomic functions are precisely the generating functions of holo-
nomic sequences: for a given holonomic sequence (fn)n≥0, the function defined
by f(x) =

∑∞
n=0 fnxn (i.e., its generating function) is holonomic.

Note that given a holonomic recurrence for (fn)n≥0 it is straightforward to
construct a holonomic differential equation satisfied by its generating function
f(x) =

∑∞
n=0 fnxn. For a recent overview of this holonomic machinery and

further literature we refer to [12].
In the frame of the proofs we will deal with iterated integrals, hence we define

G (f1(τ), f2(τ), · · · , fk(τ);x) :=
∫ x

0

f1(τ1)G (f2(τ), · · · , fk(τ), τ1) dτ1,

where f1(x), f2(x), . . . , fk(x) are hyperexponential functions. Note that f(x) is
called hyperexponential if f ′(x)/f(x) = q(x), where q(x) is a rational function
in x.

Another important class of iterated integrals that we will come across are
the so called cyclotomic harmonic polylogarithms at cyclotomy 3 (compare [8]):
let mi := (ai, bi) ∈ {(0, 0), (1, 0), (3, 0), (3, 1)} for x ∈ (0, 1) we define cyclotomic
polylogarithms at cyclotomy 3 :

H(x) = 1,

Hm1,...,mk
(x) =

⎧
⎪⎨

⎪⎩

1
k! (log x)k, if mi = (0, 0)

∫ x

0
ybi

Φai
(y)Hm2,...,mk

(y)dy, otherwise,

where Φa(x) denotes the ath cyclotomic polynomial, for instance Φ1(x) = x − 1
and Φ3(x) = x2 + x + 1. We call k the weight of a cyclotomic polylogarithm and
in case the limit exists we extend the definition to x = 1 and write

Hm1,...,mk
:= Hm1,...,mk

(1) = lim
x→1

Hm1,...,mk
(x).

Throughout this article we will write 0, 1, λ and μ for (0, 0), (1, 0), (3, 0), and
(3, 1), respectively.

Note that cyclotomic polylogarithms evaluated at one posses a multitude
of known relations, namely shuffle, stuffle, multiple argument, distribution and
duality relations, for more details we refer to [6,8,10].

2 Proof of the Conjectures

In order to prove (1) and (2) we will apply the method described in [2] and
hence we will make use of the command ComputeGeneratingFunction which is

44 J. Ablinger

implemented in the package HarmonicSums1[5]. Consider the sum left hand side
of (1) and execute (note that in HarmonicSums S[a, k] :=

∑k
i=1

1
ia)

ComputeGeneratingFunction

[
33S[5, k] + 4/k5

k2
(
2k
k

) , x, {n, 1,∞}
]

which gives (after sending x → 1)

4801781G(a, a; 1)

73728
+

451993G(0, a, a; 1)

6144
+

10193

512
G(0, 0, a, a; 1)

+
363

128

√
3G(a, 0, a, a; 1) +

1875

128
G(0, 0, 0, a, a; 1) +

363

64
G(a, a, 0, a, a; 1)

+
37

8
G(0, 0, 0, 0, a, a; 1) +

33

32

√
3G(a, 0, 0, 0, a, a; 1) +

37

4
G(0, 0, 0, 0, 0, a, a; 1)

+
33

16
G(a, a, 0, 0, 0, a, a; 1) +

18937121G(a; 1)

122880
√

3
− 895605490019

5573836800
, (5)

where 0 represents 1/τ and a :=
√

τ
√

4 − τ .
Internally ComputeGeneratingFunction splits the left hand side of (1) into

∞∑

k=1

xk 4
k7

(
2k
k

) +
∞∑

k=1

xk 33H
(5)
k

k2
(
2k
k

) (6)

and computes the following two recurrences

0 = −(1 + k)7f(k) + 2(2 + k)6(3 + 2k)f(1 + k),

0 = (1 + k)2(2 + k)6f(k) − 2(2 + k)2(3 + 2k)(5 + 2k)(55 + 75k + 40k2

+ 10k3 + k4)f(1 + k) + 4(3 + k)6(3 + 2k)(5 + 2k)f(2 + k),

satisfied by 4

k7(2kk) and 33S[5,k]

k2(2kk) , respectively. Then it uses closure properties of

holonomic functions to find the following differential equations

0 = f(x) + 3(−128 + 85x)f ′(x) + x(−6906 + 3025x)f ′′(x)

+ 14x2(−1541 + 555x)f (3)(x) + 7x3(−3112 + 993x)f (4)(x)

+ 42x4(−215 + 63x)f (5)(x) + 2x5(−841 + 231x)f (6)(x)

+ 6x6(−23 + 6x)f (7)(x) + (−4 + x)x7f (8)(x),

0 = 128f(x) + 8(−1650 + 2171x)f ′(x) + 2
(
21870 − 164445x + 101876x2) f ′′(x)

+ 2x
(
264850 − 761631x + 310438x2) f (3)(x)

+ 4x2 (
354295 − 599492x + 183087x2) f (4)(x)

+ 2x3 (
694988 − 826235x + 202454x2) f (5)(x)

+ 8x4 (
76912 − 70638x + 14483x2) f (6)(x)

1 The package HarmonicSums (Version 1.0 19/08/19) together with a Mathematica

notebook containing the computations described here can be downloaded at https://
risc.jku.at/sw/harmonicsums.

https://risc.jku.at/sw/harmonicsums
https://risc.jku.at/sw/harmonicsums

Proving Two Conjectural Series for ζ(7) and Discovering More Series 45

+ x5 (
135020 − 101534x + 17921x2) f (7)(x)

+ x6 (
15020 − 9614x + 1491x2) f (8)(x)

+ 2(−4 + x)x7(−100 + 31x)f (9)(x) + (−4 + x)2x8f (10)(x),

satisfied by the first and the second sum in (6), respectively.
These differential equations are solved using the differential equation solver

implemented in HarmonicSums2. This solver finds all solutions of holonomic dif-
ferential equations that can be expressed in terms of iterated integrals over hyper-
exponential alphabets [4,7,11,14,15]; these solutions are called d’Alembertian
solutions [9], in addition for differential equations of order two it finds all solu-
tions that are Liouvillian [3,13,15].

Solving the differential equations, comparing initial values, summing the two
results and sending x → 1 leads to (5).

Since the iterated integrals in (5) only iterate over the integrands 1/τ and√
τ
√

4 − τ we can use the substitution (compare [1, Section 3])

τ → (τ − 1)2/(1 + τ + τ2)

to compute a representation in terms of cyclotomic harmonic polylogarithms
at cyclotomy 3. This step is implemented in the command SpecialGLToH in
HarmonicSums and executing this command leads to

− 3552Hλ,λ,1,1,1,1,1 + 1776Hλ,λ,1,1,1,1,λ + 3552Hλ,λ,1,1,1,1,μ

+ 1776Hλ,λ,1,1,1,λ,1 − 3264Hλ,λ,1,1,1,λ,λ − 1776Hλ,λ,1,1,1,λ,μ

...

− 1776Hλ,λ,μ,μ,μ,λ,1 + 3264Hλ,λ,μ,μ,μ,λ,λ + 1776Hλ,λ,μ,μ,μ,λ,μ

− 3552Hλ,λ,μ,μ,μ,μ,1 + 1776Hλ,λ,μ,μ,μ,μ,λ + 3552Hλ,λ,μ,μ,μ,μ,μ,

where in total the expression consists of 243 cyclotomic polylogarithms.
Finally, we can use the command ComputeCycloH1Basis[7,3] to com-

pute basis representation of the appearing cyclotomic harmonic polylogarithms.
ComputeCycloH1Basis takes into account shuffle, stuffle, multiple argument,
distribution and duality relations, for more details we refer to [6,8,10] and
[1, Section 4]. Note that this is the computationally hardest part, since a lin-
ear system with more than 16000 variables and approximately 20000 equations
has to be solved, however this has to be done only once. Applying these relations
we find

− 459
4

H0,0,1Hλ
4 − 39

2
H0,0,0,0,1Hλ

2 +
45
8

H0,0,0,0,0,0,1, (7)

2 The Mathematica built-in differential equation solver was not sufficient to solve these
differential equations. The implemented solver does not rely on the Mathematica

built-in DSolve.

46 J. Ablinger

for which it is straightforward to verify that it is equal to the right hand side
of (1) and hence this finishes the proof. Equivalently we find

∞∑

k=1

33H
(3)
k + 8/k3

k4
(
2k
k

) =
−6273

20
Hλ

4H0,0,1 + 49Hλ
2H0,0,0,0,1 +

259
24

H0,0,0,0,0,0,1,

which is equal to the right hand side of (2).

3 More Identities

Using the same strategy it is possible to discover also other identities, here we
list some of the additional identities that we found (with c :=

∑∞
i=0

1
(3i+1)4):

∞∑

k=1

3H
(2)
k − 1/k2

k5
(
2k
k

) = −205ζ(7)
18

+
5π2ζ(5)

18
+

π4ζ(3)
18

− π7

486
√

3
+

√
3cπ3

8
,

∞∑

k=1

11H
(3)
k + 8H

(2)
k /k

k4
(
2k
k

) =
7337ζ(7)

216
+

11π2ζ(5)
81

+
1417π4ζ(3)

4860
− 4π7

729
√

3
+

cπ3

√
3

,

∞∑

k=1

2H
(5)
k − H

(3)
k /k2

k2
(
2k
k

) = −ζ(7)
72

+
8π2ζ(5)

81
− 17π4ζ(3)

4860
.

References

1. Ablinger, J.: Discovering and proving infinite binomial sums identities. J. Exp.
Math. 26, 62–71 (2017). arXiv: 1507.01703

2. Ablinger, J.: Discovering and proving infinite pochhammer sum identities. J. Exp.
Math. 1–15 (2019). arXiv: 1902.11001

3. Ablinger, J.: Computing the inverse Mellin transform of holonomic sequences using
Kovacic’s algorithm. In: PoS RADCOR2017, vol. 69 (2017). arXiv: 1801.01039

4. Ablinger, J.: Inverse mellin transform of holonomic sequences. In: PoS LL 2016,
vol. 067 (2016). arXiv: 1606.02845

5. Ablinger, J.: The package HarmonicSums: computer algebra and analytic aspects
of nested sums. In: Loops and Legs in Quantum Field Theory - LL 2014 (2004).
arXiv: 1407.6180

6. Ablinger, J., Blümlein, J., Schneider, C.: Generalized harmonic, cyclotomic, and
binomial sums, their polylogarithms and special numbers. J. Phys. Conf. Ser. 523,
012060 (2014). arxiv: 1310.5645

7. Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums
and their associated iterated integrals. J. Math. Phys. Comput. 55, 1–57 (2014).
arXiv: 1407.1822

8. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms
generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011).
arxiv: 1105.6063

9. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and
difference equations. In: Proceedings of ISSAC 1994. ACM Press (1994)

http://arxiv.org/abs/1507.01703
http://arxiv.org/abs/1902.11001
http://arxiv.org/abs/1801.01039
http://arxiv.org/abs/1606.02845
http://arxiv.org/abs/1407.6180
http://arxiv.org/abs/1310.5645
http://arxiv.org/abs/1407.1822
http://arxiv.org/abs/1105.6063

Proving Two Conjectural Series for ζ(7) and Discovering More Series 47

10. Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data
mine. Comput. Phys. Commun. 181, 582–625 (2010). arXiv: 0907.2557

11. Bronstein, M.: Linear ordinary differential equations: breaking through the order
2 barrier. In: Proceedings of ISSAC 1992. ACM Press (1992)

12. Kauers, M., Paule, P.: The Concrete Tetrahedron. Text and Monographs in Sym-
bolic Computation. Springer, Wien (2011). https://doi.org/10.1007/978-3-7091-
0445-3

13. Kovacic, J.J.: An algorithm for solving second order linear homogeneous differential
equations. J. Symb. Comput. 2, 3–43 (1986)

14. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial
coefficients. J. Symb. Comput. 14, 243–264 (1992)

15. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symb.
Comput. 27, 239–259 (1999)

16. Sun, Z.-W.: List of conjectural series for powers of π and other constants.
arXiv: 1102.5649

http://arxiv.org/abs/0907.2557
https://doi.org/10.1007/978-3-7091-0445-3
https://doi.org/10.1007/978-3-7091-0445-3
http://arxiv.org/abs/1102.5649

Generalized Integral Dependence
Relations

Katsusuke Nabeshima1(B) and Shinichi Tajima2

1 Graduate School of Technology, Industrial and Social Sciences,
Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, Japan

nabeshima@tokushima-u.ac.jp
2 Graduate School of Science and Technology, Niigata University,

8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan
tajima@emeritus.niigata-u.ac.jp

Abstract. A generalization of integral dependence relations in a ring
of convergent power series is studied in the context of symbolic compu-
tation. Based on the theory of Grothendieck local duality on residues,
an effective algorithm is introduced for computing generalized integral
dependence relations. It is shown that, with the aid of local cohomol-
ogy, generalized integral dependence relations in the ring of convergent
power series can be computed in a polynomial ring. An extension of the
proposed method to parametric cases is also discussed.

Keywords: Integral closure · Standard basis · Local cohomology

1 Introduction

Integral closure is an important concept in commutative algebra, number theory,
algebraic geometry and singularity theory [17,21]. In this paper, we consider the
concept of integral dependence relations over an ideal from the point of view
of complex analysis. We extend the classical concept of integral dependence
relations and introduce a notion of generalized integral dependence relations in
a ring of convergent power series. We study its basic properties and give an
algorithm for computing these relations.

In [4], Kashiwara investigated Bernstein-Sato polynomials. In this paper, he
used the concept of integral closure to prove the existence of good operators.
In [22], Yano studied Bernstein-Sato polynomials and gave in particular sev-
eral examples by utilizing integral dependence relations and some kinds of their
generalizations. Note also that in [15], Scherk studied Gauss-Manin connections
of isolated hypersurface singularities by using a sort of generalization of inte-
gral dependence relations for computing a saturation of Brieskorn lattice. These
results therefore suggest that effective methods for computing integral depen-
dence relations and their generalizations are desired in many applications.

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C)
(18K03214 and 18K03320).

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 48–63, 2020.
https://doi.org/10.1007/978-3-030-43120-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_6

Generalized Integral Dependence Relations 49

In our previous paper [12], we gave an effective algorithm for computing inte-
gral numbers. We apply the same framework to generalized integral dependence
relations, and study them in the context of symbolic computation. The key ideas
of our approach are the use of local cohomology and computing ideal quotients
in a polynomial ring.

This paper is organized as follows. Section 2 briefly reviews methods of solv-
ing extended ideal membership problems and algebraic local cohomology that are
needed to construct an algorithm for computing generalized integral dependence
relations. Section 3 gives the generalization of integral dependence relations and
provides a new algorithm for computing generalized integral dependence rela-
tions. Moreover, Sect. 3 describes an extension of the proposed algorithm to
parametric cases.

In this paper, we fix the following notations. The set of natural numbers N

includes zero, and K is the field of rational numbers Q or the field of complex
numbers C. Let X be an open neighborhood of the origin O of the n-dimensional
complex space Cn with coordinates x = (x1, . . . , xn) and let OX be the sheaf
on X of holomorphic functions, OX,O the stalk at the origin of OX . We assume
that s polynomials f1, . . . , fs in K[x] satisfy

{x ∈ X|f1(x) = · · · = fs(x) = 0} = {O}.

Let IO be the ideal generated by f1, . . . , fs in OX,O. Let I be the ideal generated
by f1, . . . , fs in the polynomial ring K[x].

2 Preliminaries

Here we review methods for solving extended ideal membership problems and
algebraic local cohomology.

2.1 Solving Extended Ideal Membership Problems

In [12] an algorithm for solving ideal membership problems of IO is given, and
in [9] an algorithm for solving extended ideal membership problems of IO is
given, too. Following [9] and [12], we briefly review two methods for solving the
extended ideal membership problems. The underlining idea of these methods is
the following lemma.

Lemma 1 ([12]). Let h be a polynomial in K[x]. Then, h ∈ IO if and only if
there exists a polynomial u in the ideal quotient I : 〈h〉 such that u /∈ m, where
I : 〈h〉 = {u ∈ K[x]|uh ∈ I} is the ideal quotient in K[x] and m = 〈x1, . . . , xn〉
is the maximal ideal generated by x1, . . . , xn.

Suppose that h ∈ K[x] and h ∈ IO. Then, there exists u ∈ I : 〈h〉 such
that u(O) �= 0. As uh ∈ I, there exist p1, p2, . . . , ps ∈ K[x] such that uh =
p1f1 +p2f2 + · · ·+psfs. The condition u(O) �= 0 implies that

pi

u
is an element of

OX,O. That is, the extended ideal membership problem can be solved as follows:

h =
p1
u

f1 +
p2
u

f2 + · · · +
ps

u
fs. (1)

50 K. Nabeshima and S. Tajima

We review two methods to compute p1, p2, . . . , ps ∈ K[x].

Method 1: The first method utilizes the extended Gröbner basis algorithm (for
instance, see [1]) to compute the polynomials p1, p2, . . . , ps of the Eq. (1). Let us
fix a term order on the variables x and let {g1, . . . , gr} be a Gröbner basis of
I = 〈f1, . . . , fs〉 in K[x]. Then, the extended Gröbner basis algorithm outputs
ai1, ai2, . . . , ais ∈ K[x] that satisfy

gi = ai1f1 + ai2f2 + . . . + aisfs

where 1 ≤ i ≤ r. As uh can be reduced to 0 by {g1, . . . , gr}, polynomials
b1, b2, . . . , br that satisfy

uh = b1g1 + b2g2 + · · · + brgr,

can be obtained by the division algorithm. Therefore,

uh =

⎛
⎝

r∑
j=1

bjaj1

⎞
⎠ f1 +

⎛
⎝

r∑
j=1

bjaj2

⎞
⎠ + · · · +

⎛
⎝

r∑
j=1

bjajs

⎞
⎠ fs,

namely, pi =

⎛
⎝

r∑
j=1

bjaji

⎞
⎠, for 1 ≤ i ≤ s.

Method 2: The second method utilizes the syzygy computation. Let us con-
sider the module M of syzygies of uh, f1, . . . , fs. There exists an algorithm for
computing the reduced Gröbner basis of M w.r.t. a POT (position over term)
module order in K[x]s+1. Let G be a Gröbner basis of M . As uh ∈ 〈f1, . . . , fs〉
in K[x], there exist a vector (1,−a1,−a2, . . . ,−as) in G. This means

uh = a1f1 + a2f2 + · · · + asfs,

namely, pi = ai for 1 ≤ i ≤ s.
In Sect. 3, we will use the methods to compute generalized integral depen-

dence relations.

2.2 Algebraic Local Cohomology and Standard Bases

Here we briefly review algebraic local cohomology and the relation between alge-
braic local cohomology and standard bases. The details are given in [11,19,20].

All local cohomology classes, in this paper, are algebraic local cohomology
classes that belong to the set defined by

Hn
[O](OX) = lim

k→∞
Extn

OX,O
(OX,O/〈x1, x2, . . . , xn〉k,OX)

where 〈x1, x2, . . . , xn〉 is the maximal ideal generated by x1, x2, . . . , xn. We rep-
resent an algebraic local cohomology class as a polynomial

∑
cλξλ where cλ ∈ K,

Generalized Integral Dependence Relations 51

λ ∈ Nn and ξ = (ξ1, ξ2, . . . , ξn). (See [7,11,20].) For each i ∈ {1, 2, . . . , n}, ξi

corresponds to xi. The multiplication by xα is defined as

xα ∗ ξλ =

⎧⎨
⎩

ξλ−α, λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where α = (α1, α2, . . . , αn) ∈ Nn and λ − α = (λ1 − α1, . . . , λn − αn) ∈ Nn.
Let us fix a global term order ≺ on the variables ξ. For a given algebraic

local cohomology class of the form

ψ = cλξλ +
∑

ξλ′ ≺ξλ

cλ′ξλ′
(cλ �= 0),

we call ξλ the head term, cλ the head coefficient and ξλ′
the lower terms. We

write the head term as ht(ψ), the set of terms of ψ as Term(ψ) = {ξκ|ψ =∑
κ∈Nn cκξκ, cκ �= 0, cκ ∈ K} and the set of lower terms of ψ as LL(ψ) = {ξκ ∈

Term(ψ)|ξκ �= ht(ψ)}. Let H be a finite subset of Hn
[O](OX). We write the set

of head terms of H as ht(H) and the set of lower terms of H as LL(H) =⋃
ψ∈H LL(ψ).

Definition 1 (Inverse orders). Let ≺ be a local or global term order. Then,
the inverse order ≺−1 of ≺ is defined by

ξα ≺ ξβ ⇐⇒ xβ ≺−1 xα

where α, β ∈ Nn.

Definition 2 (Minimal bases). A basis {ξα1 , ξα2 , . . . , ξα�} for a monomial
ideal is said to be minimal if no ξαi in the basis divides other ξαj for i �= j,
where α1, α2, . . . , α� ∈ Nn.

Set

HF = {ψ ∈ Hn
[O](OX)|f1 ∗ ψ = f2 ∗ ψ = · · · = fs ∗ ψ = 0}

and
AnnOX,O

(HF) = {g ∈ OX,O|g ∗ ψ = 0,∀ψ ∈ HF }.

Note that since {x ∈ X|f1(x) = · · · = fs(x) = 0} = {O}, HF is a finite
dimensional vector space. In [11,20], computation methods of a basis of the
finite dimensional vector space HF are introduced.

Let ξλ be a term. For a set T of terms in K[ξ], we write the neighbors of T
as Neighbor(T), i.e., Neighbor(T) = {ξiξ

κ|ξκ ∈ T, i{1, 2, . . . , n}}.

Theorem 1 ([11]). Using the same notation as above, let H be a basis of
the vector space HF such that for all ψ ∈ H, the head coefficient of ψ is 1,
ht(ψ) /∈ ht(H\{ψ}) and ht(ψ) /∈ LL(H) w.r.t. a global term order ≺. Let Ψ be
the minimal basis of the ideal generated by Neighbor(ht(H))\ht(H).

52 K. Nabeshima and S. Tajima

Let ψ = ξλ +
∑

ξλ′ ≺ξλ

c(λ,λ′)ξ
λ′

in H where c(λ,λ′) ∈ K and λ, λ′ ∈ Nn. The

transfer SBH is defined by:
⎧⎨
⎩

SBH(ξα) = xα −
∑

ξκ∈ht(H)

c(κ,α)x
κ, in K[x] if ξα ∈ LL(H),

SBH(ξα) = xα, in K[x] if ξα /∈ LL(H),

where α, κ ∈ Nn.
Then, SBH(Ψ) = {SBH(ξλ)|ξλ ∈ Ψ} is the reduced standard basis of the ideal

IO w.r.t. the local term order ≺−1 in OX,O. Moreover, IO = AnnOX,O
(HF).

In the next section, we will apply Theorem 1 for computing generalized inte-
gral dependence relations.

3 Generalized Integral Dependence Relations

In this section, we introduce the notion of a generalized integral dependence
relation as an extension of the classical concept of integral dependence relation.
We show its basic properties and give an algorithm for computing generalized
integral dependence relations.

Definition 3 (Integral dependence relation). Let I be an ideal in a ring
R. An element h ∈ R is said to be integral over I if there exists an integer 	 and
ai ∈ Ii, for i = 1, 2, . . . , 	, such that

h� + a1h
�−1 + a2h

�−2 + · · · + a�−1h + a� = 0.

The smallest number 	 that satisfies the equation above, is called integral number
of h w.r.t. I. The equation above is called an integral dependence relation of h
over I.

Remark. It is possible to check whether h is integral or not, by computing
Hilbert-Samuel multiplicity of I and that of the ideal (I, h). An algorithm for
computing Hilbert-Samuel multiplicity is given in [16].

We generalize the concept of integral dependence relation as follows.

Definition 4 (Generalized integral dependence relation). Let h be inte-
gral over I, 	 the integral number of h w.r.t. I and k a non-zero natural number
with k < 	. If there exists b ∈ R and ai ∈ Ii, for i = 1, 2, . . . , k, such that

bhk + a1h
k−1 + a2h

k−2 + · · · + ak−1h + ak = 0,

then, we call the equation above a generalized integral dependence relation of h
over I.

Generalized Integral Dependence Relations 53

We consider generalized integral dependence relations in the local ring OX,O.
Let h be integral over IO, 	 the integral number of h w.r.t. IO and k a non-

zero natural number with k < 	. Suppose that the following generalized integral
dependence relation of h over IO holds:

bhk + a1h
k−1 + a2h

k−2 + · · · + ak−1h + ak = 0 (2)

where b ∈ OX,O, ai ∈ Ii
O and i = 1, . . . , k. Then,

bhk = −a1h
k−1 − a2h

k−2 − · · · − ak−1h − ak,

namely, b is a member of the ideal quotient

(IOhk−1 + I2
Ohk−2 + · · · + Ik−1

O h + Ik
O) : 〈hk〉.

Set
Jk = IOhk−1 + I2

Ohk−2 + · · · + Ik−1
O h + Ik

O,

then, a coefficient b of hk in (2) is a member of Jk : 〈hk〉. Set

Qk = Jk : 〈hk〉.
Lemma 2. Let h be integral over IO and 	 the integral number of h w.r.t. IO.
Then,

Q1 ⊆ Q2 ⊆ · · · ⊆ Q� = OX,O.

Proof. For all g ∈ Qk, we have ghk ∈ Jk. It is obviously ghk+1 ∈ hJk. Thus,

g ∈ hJk : 〈hk+1〉.
Since Jk = IOhk−1+I2

Ohk−2+ · · ·+Ik−1
O h+Ik

O, we have hJk ⊂ Jk+1. Hence,

g ∈ hJk : 〈hk+1〉 ⊂ Jk+1 : 〈hk+1〉
so Qk ⊆ Qk+1. By the definition of the integral number, we have 1 ∈ J� : 〈h�〉.
Therefore, Q� = OX,O. ��

Next, we focus our attention on K[x]. For all k ∈ N, let

Jk = Ihk−1 + I2hk−2 + · · · + Ik−1h + Ik

and Qk = Jk : 〈hk〉 in K[x].
We define HQk

to be the set of algebraic local cohomology classes in Hn
[O](OX)

that is annihilated by the ideal Qk, i.e.,

HQk
= {ψ ∈ Hn

[O](OX)|g ∗ ψ = 0,∀g ∈ Qk}.

We set
AnnOX,O

(HQk
) = {g ∈ OX,O|g ∗ ψ = 0,∀ψ ∈ HQk

},

then we have the following lemma.

54 K. Nabeshima and S. Tajima

Lemma 3. (i) Qk = AnnOX,O
(HQk

).
(ii) Let b ∈ AnnOX,O

(HQk
). Then, there exists u ∈ Qk : 〈b〉 ⊂ K[x] such that

u(O) �= 0.

Proof. (i) Let Jk = Jk,0 ∩J ′
k be an ideal decomposition of Jk in K[x] where Jk,0

is the primary ideal component at the origin O of the the ideal Jk. Then,

Jk : 〈hk〉 = (Jk,0 : 〈hk〉) ∩ (J ′
k : 〈hk〉).

Since the common locus V(Jk) of the ideal Jk has an isolated point at O, HQk
=

HJk,0 : 〈hk〉. Next, let us consider the ideal in OX,O. Then,

OX,O(Jk,0 : 〈hk〉) = Jk : 〈hk〉 = Qk.

Thus,
HJk,0 : 〈hk〉 = {ψ ∈ Hn

[O](OX)| q ∗ ψ = 0,∀q ∈ Qk}.

By Grothendieck local duality theorem, AnnOX,O
(HQk

) = Qk. (See [2,10,18].)
(ii) This follows from Lemma 1. ��
As we described in Theorem 1, a standard basis of AnnOX,O

(HQk
) can be

obtained by computing a basis of the vector space HQk
. We can select b of

Lemma 3 from the standard basis of AnnOX,O
(HQk

). Let U be a Gröbner basis
of Qk : 〈b〉. Then, we can select an element u such that u(O) �= 0 from the
Gröbner basis U . Hence, ub ∈ Qk, i.e., ubhk ∈ Jk ⊂ K[x]. There exists ci ∈ Ii

(1 ≤ i ≤ k) such that

ubhk = c1h
k−1 + c2h

k−2 + · · · + ck−1h + ck. (3)

As we mentioned in Sect. 2, the elements c1, . . . , ck can be obtained by solving
the extended ideal membership problems. Therefore, as u(O) �= 0, we can obtain
the generalized integral dependence relation as follows

bhk +
−c1
u

hk−1 +
−c2
u

hk−2 + · · · +
−ck−1

u
h +

−ck

u
= 0,

−ci

u
∈ Ii

O,

where 1 ≤ i ≤ k.
Set

Fi =

⎧⎨
⎩fα1

1 fα2
2 · · · fαs

s

∣∣∣∣∣∣
s∑

j=1

αj = i, α1, . . . , αs ∈ N

⎫⎬
⎭

and Fih
k = {ghk|g ∈ Fi} where i, k ∈ N.

Then, we have Ii = 〈Fi〉 and

Jk = 〈F1h
k−1〉 + 〈F2h

k−2〉 + · · · + 〈Fk−1h〉 + 〈Fk〉.

There exist dg in OX,O such that −ci =
∑
g∈Fi

dgg.

Now, we are ready to introduce an algorithm for computing u, b,−c1, . . . ,−ck

of the Eq. (3) and each dg.

Generalized Integral Dependence Relations 55

Algorithm 1. (Generalized integral dependence relation)

Input: h ∈ K[x], {f1, . . . , fs} ⊂ K[x]: h is integral over IO = 〈f1, . . . , fs〉 in OX,O.
Output:L =

⋃�
i=1{[i, Li]},

Li = {([b1i0 , u1i0], v1i1 , .., v1ii), ([b2i0 , u2i0], v2i1 , .., v2ii), .., ([bri0 , uri0], vri1 , .., vrii)}:

For each [i, Li], the set {b1i0 , b2i0 , . . . , bri0} is a reduced standard basis of
AnnOX,O (HQi), uji0(O) �= 0 and

uji0bji0hi + vji1hi−1 + · · · + vjii−1h + vjii = 0, vjik ∈ Ii−k
O

where Qi = Ji : hi ⊂ K[x], HQi = {ψ ∈ Hn
[O](OX)|g ∗ ψ = 0, ∀g ∈ Qi}, 1 ≤ j ≤ r and

1 ≤ k ≤ i. The number � is the integral number of h over IO.
BEGIN
L ← ∅; Allsb ← ∅; J ← ∅; Sb ← ∅; k ← 1;
while Sb �= {1} do
F ← {fα1

1 fα2
2 · · · fαs

s | ∑s
j αj = k, α1, . . . , αs ∈ N};

J ← {h · g|g ∈ J} ∪ F ;
Q ← Compute a basis of the ideal quotient 〈J〉 : hk in K[x];
Ψ ← Compute a basis of the vector space HQ = {ψ ∈ Hn

[O](OX)|g ∗ ψ = 0, ∀g ∈ Q};
Sb ← Compute the reduced standard basis of AnnOX,O (Span(Ψ));
Lk ← ∅;
while Sb �= ∅ do
b ← Select b from Sb; Sb ← Sb\{b};
if b /∈ Allsb then
U ← Compute a basis of the ideal quotient 〈Q〉 : 〈b〉 in K[x];
u ← Select u from U such that u(O) �= 0;

(v1, . . . , vk−1) ← Compute vj ’s that satisfy ubhk =

k−1∑

j=0

vjh
j

where vj =
∑

ghj∈J,h�g

djgg; (1)

(Solve extended ideal membership problem of ubhk w.r.t. J .)
Lk ← Lk ∪ {([b, u], −v1, . . . , −vk−1)};
Allsb ← Allsb ∪ {b};
else
[k′, Lk′] ← Select [k′, Lk′] from L such that ([b, u], v1, . . . , vk′−1) ∈ Lk′ ;
([b, u], v1, . . . , vk′−1) ← Take ([b, u], v1, . . . , vk′−1) from Lk′ ;
Lk ← Lk ∪ {([b, u], v1, . . . , vk′−1, 0, . . . , 0

︸ ︷︷ ︸
k−k′elements

)};

end-if
end-while
L ← {[k, Lk]} ∪ L; k ← k + 1;
end-while
return L;
END

56 K. Nabeshima and S. Tajima

Theorem 2. Algorithm 1 always terminates and outputs correctly.

Proof. As h is integral over the zero-dimensional ideal IO, let us 	 be its integral
number. By Lemma 3, Qk = AnnOX,O

(HQ), namely, HQ = Span(Ψ) is a finite
dimensional vector space. Thus, by Theorem 1, the reduced standard basis Sb
of AnnOX,O

(HQ) is a finite set of polynomials where 1 ≤ k ≤ 	. Therefore, the
second while-loop stops after a finite number of iterations.

Since 	 is the integral number, if k = 	, then by Lemma 2
AnnOX,O

(Span(Ψ)) = 〈1〉, namely, the reduced standard basis is {1}. Hence,
the first while-loop always stops after a finite number of iterations. Therefore,
Algorithm 1 terminates.

If b /∈ Allsb, the algorithm computes the relation

ubhk −
k−1∑
j=0

⎛
⎝ ∑

ghj∈J,h�g

djgg

⎞
⎠ hj = 0,

at (�1), by utilizing an algorithm for solving extended ideal membership
problems. As we describe above, the relation is a generalized integral depen-
dence relation or an integral dependence relation of h over IO. If b ∈ Allsb,
then, for some k′ < k, we already have a generalized integral dependence
relation ubhk′

+ v1h
k′−1 + . . . + vk′−1 = 0 of degree k′. Hence, a relation

hk−k′
(ubhk′

+ v1h
k′−1 + · · · + vk′−1) = 0 over IO of degree k follows directly

from that of degree k′. ��

Note that it is possible to return djg’s where ubhk =
k−1∑
j=0

⎛
⎝ ∑

ghj∈J,h�g

djgg

⎞
⎠ hj .

We illustrate Algorithm 1 with the following example.

Example 1. Let us consider f = x3z+y6+z3 and h = y4z. Set I = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉 ⊂

K[x, y, z] and IO = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉 ⊂ OX,O. The variables ξ, η, ζ correspond the

variables x, y, z for algebraic local cohomology classes, respectively. The term
order ≺ is the degree lexicographic order with ζ ≺ η ≺ ξ.

We execute Algorithm 1 to get generalized integral dependence relations of
h over IO.
� Case k = 1. Set F = {∂f

∂x , ∂f
∂y , ∂f

∂z } and J = F in K[x, y, z].

1: The reduced Gröbner basis of 〈J〉 : 〈h〉 ⊂ K[x, y, z] is Q = {x2, z2, y}.
2: A basis of the vector space HQ = {ψ ∈ H3

[O](OX)|g ∗ ψ = 0,∀g ∈ Q} is
{1, ξ, ζ, ξζ}.

3: The reduced standard basis of AnnOX,O
(HQ) w.r.t. ≺−1 is Sb = {x2, y, z2}.

Set b1 = x2, b2 = y, b3 = z2 and Allsb = Sb.
4-1: The reduced Gröbner basis of 〈Q〉 : 〈x2〉 is {1}. Thus, set u = 1. As

ub1h ∈ 〈J〉 = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉, by utilizing a method of solving extended ideal

membership problems, we obtain the following generalized integral depen-
dence relation

−3x2h + y4(∂f
∂x) = 0. (4)

Generalized Integral Dependence Relations 57

4-2: Similarly, 〈Q〉 : 〈y〉 = 〈Q〉 : 〈z2〉 = 〈1〉. Set u = 1. As ub2h, ub3h ∈ 〈J〉, we
obtain the following generalized integral dependence relations

−6yh + z(∂f
∂y) = 0, 9z2h +

(
−xy4(∂f

∂x) + 3y4z ∂f
∂z

)
= 0. (5)

� Case k = 2. Set J = {∂f
∂xh, ∂f

∂y h, ∂f
∂z h, (∂f

∂x)2, (∂f
∂y)2, (∂f

∂z)2, (∂f
∂x)(∂f

∂y), (∂f
∂x)(∂f

∂z),
(∂f

∂y)(∂f
∂z)}.

1: The reduced Gröbner basis of 〈J〉 : 〈h2〉 ⊂ K[x, y, z] is Q = {x2, y, z}. Set
b1 = x2, b2 = y, b3 = zD

2: A basis of the vector space HQ = {ψ ∈ H3
[O](OX)|g ∗ ψ = 0,∀g ∈ Q} is

{1, ξ}.
3: The reduced standard basis of AnnOX,O

(HQ) w.r.t. ≺−1 is Sb = {x2, y, z}.
4-1: As x2, y ∈ Allsb, we do not need to compute the relations. In fact, the

generalized integral dependence relations

−3x2h2 + y4(
∂f

∂x
)h = 0, −6yh2 + z(

∂f

∂y
)h = 0.

directly follow from (4), and (5).
4-2: The reduced Gröbner basis of 〈Q〉 : 〈z〉 is {1}. Set u = 1. As zh2 ∈ 〈J〉,

by utilizing a method of solving extended ideal membership problems, we
obtain the following generalized integral dependence relation

−54zh2 + (−xy3(
∂f

∂x
)(

∂f

∂y
) + 3y3z(

∂f

∂y
)(

∂f

∂z
)) = 0.

Renew Allsb as Allsb ∪ {z}.

� Cases k = 3. Set J = {∂f
∂xh2, ∂f

∂y h2, ∂f
∂z h2, (∂f

∂x)2h, (∂f
∂y)2h, (∂f

∂z)2h, (∂f
∂x)(∂f

∂y)h,

(∂f
∂x)(∂f

∂z)h, (∂f
∂y)(∂f

∂z)h, (∂f
∂x)3, (∂f

∂x)2(∂f
∂y), (∂f

∂x)2(∂f
∂z), (∂f

∂x)(∂f
∂y)2, (∂f

∂x)(∂f
∂z)2,

(∂f
∂x)(∂f

∂y)(∂f
∂z), (∂f

∂y)3, (∂f
∂y)2(∂f

∂z), (∂f
∂y)(∂f

∂z)2, (∂f
∂z)3}.

1: The reduced Gröbner basis of 〈J〉 : 〈h3〉 is Q = {1}.
2: The reduced standard basis of AnnOX,O

(HQ) is Sb = {1}. Thus, the integral
number is 3. Set u = 1.

3-1: As uh3 ∈ 〈J〉, we have the following integral dependence relation

h3 +
1

324
(xy2(

∂f

∂x
)(

∂f

∂y
)2 − 3y2z(

∂f

∂y
)2(

∂f

∂z
)) = 0.

As Sb = {1}, we stop the computation.

We have implemented Algorithm 1 in the computer algebra system
Risa/Asir [14].

58 K. Nabeshima and S. Tajima

4 Parametric Cases

We conclude this paper by considering the extension of Algorithm 1 to paramet-
ric cases.

Let t = {t1, . . . , tm} be variables such that t ∩ x = ∅ and C[t][x] be a poly-
nomial ring with coefficients in a polynomial ring C[t].

For g1, . . . , gr ∈ C[t], V(g1, . . . , gr) ⊆ Cm denotes the affine variety of g1, . . . ,
gr, i.e., V(g1, . . . , gr) = {t̄ ∈ Cm|g1(t̄) = · · · = gr(t̄) = 0}. We call an algebraic
constructible set of a from V(g1, . . . , gr)\V(g′

1, . . . , g
′
r′) ⊆ Cm with g1, . . . , gr, g

′
1,

. . . , g′
r′ ∈ C[t], a stratum.

For every t̄ ∈ Cm, the canonical specialization homomorphism σt̄ : C[t][x] →
C[x] (or C[t] → C) is defined as the map that substitutes t by t̄ in f(t, x) ∈
C[t][x] (i.e., σt̄(f) = f(t̄, x) ∈ C[x]). The image σt̄ of a set F is denoted by
σt̄(F) = {σt̄(f)|f ∈ F} ⊂ C[x].

Definition 5 (Comprehensive Gröbner system (CGS)). Let ≺ be a term
order on the variables x. Let F be a subset of C[t][x], A1,A2, . . . ,Aν strata in Cm

and G1, G2, . . . , Gν subsets in C[t][x]. A finite set G = {(A1, G1), (A2, G2), . . . ,
(Aν , Gν)} of pairs is called comprehensive Gröbner system on A1 ∪ · · · ∪ Aν of
〈F 〉 if for all ā ∈ Ai, σā(Gi) is a Gröbner basis of 〈σā(F)〉 in C[x] for each
i = 1, 2, . . . , ν. We simply say G is a comprehensive Gröbner system of 〈F 〉 if
A1 ∪ · · · ∪ Aν = Cm.

We refer to [3,5,6] for algorithms and implementations of computing com-
prehensive Gröbner basis.

In order to extend Algorithm 1 to parametric cases, we need algorithms
for computing comprehensive Gröbner systems of ideal quotients, parametric
local cohomology classes and parametric standard bases. In [8,13], algorithms
for computing comprehensive Gröbner systems of ideal quotients are given. In
[7,11], algorithms for computing parametric local cohomology classes and para-
metric standard bases are given, too. Therefore, we are able to naturally extend
Algorithm 1 to parametric cases.

Here we give an example for the parametric case.
Let us consider f = x2y + y5 + z4 + y4z ∈ C[x, y, z] (V ∗1

18 singularity) that
defines an isolated singularity at the origin O in C3 and h = xyz+t1y

3z+t2y
3z2 ∈

(C[t1, t2])[x, y, z] where t1, t2 are parameters. Set I = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉 in C[x, y, z],

IO = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉 in OX,O and ≺ is the degree lexicographic term order with

ζ ≺ η ≺ ξ.
� Case k = 1. Set J = {∂f

∂x , ∂f
∂y , ∂f

∂z }.

1-1: A comprehensive Gröbner system of 〈J〉 : 〈h〉 w.r.t. the degree lexico-
graphic term order with (x, y, z) is

{A1 = (V(t1, t2), Q11 = {1}),
(A2 = V(t1)\V(t1, t2), Q12 = {4y2 + 25z,−16yz + 125z, 64z2 + 625z, x}),
(A3 = V(64t1 − 625t2)\V(t1, t2), Q13 = {5y2 + 4yz, z2, x}),
(A4 = C2\V(64t21−625t1t2), Q14 = {16yz2−125z2, 64z3+625z2, 5y2+4yz, x})}.

Generalized Integral Dependence Relations 59

We compute generalized integral dependence relations in each stratum.
1-2-1: If (t1, t2) belongs to the stratum A1, then the reduced standard basis of

AnnOX,O
(HQ11) w.r.t. ≺−1 is {1}. Therefore, the integral number is 1. As

the reduced Gröbner basis of 〈Q11〉 : 〈1〉 is {1}, an integral dependence
relation of h over IO is

• h − 1
2z ∂f

∂x = 0.

1-2-2: If (t1, t2) belongs to the stratum A2, then the reduced standard basis of
AnnOX,O

(HQ12) w.r.t. ≺−1 is Sb12 = {x, y2, z}. As 〈Q12〉 : 〈x〉 = 〈1〉 and
〈Q12〉 : 〈y2〉 = 〈Q12〉 : 〈z〉 = 〈x, 16y−125, 64z +625〉, set u12 = 16y−125.
(One can also select 64z+625 that has a constant term.) Then, generalized
integral dependence relations are the following.

• xh + ((xz + t2z
2y2) ∂f

∂x
) = 0,

• u12y
2h+((2x2− 5

2
t2xy3+2t2xy2z− 25

2
t2xz2+ 125

2
y2z−40z3) ∂f

∂x
−(4xy+4t2y

3z−
25t2z

2y + 20t2z
3) ∂f

∂y
+ (5t2x

2 + 20xy + 20t2y
3z) ∂f

∂z
) = 0,

• u12zh+(25
8

t2xy2− 5
2
t2xyz+2t2xz2−8yz2+ 125

2
z2) ∂f

∂x
−(25

4
t2y

3−5t2y
2z+4t2yz2)

∂f
∂y

+ (125
4

t2y
3) ∂f

∂z
) = 0.

1-2-3: If (t1, t2) belongs to the stratum A3, then the reduced standard basis of
AnnOX,O

(HQ13) w.r.t. ≺−1 is Sb13 = {x, y3, z2, yz + 5
4y2}. For all b ∈

Sb13, the reduced Gröbner basis of 〈Q13〉 : 〈b〉 is {1}. Then, generalized
integral dependence relations are the following.

• xh − 1
2
(xz + t2y

2z2 + t1y
2z) ∂f

∂x
= 0,

• y3h + 1
128

(16x2 + 20t2xy3 + 16t2xy2z + 125t2xyz − 100t1xz2 − 320z3) ∂f
∂x

+
−1
128

(32xy +32t2y
3z +250t2y

2z −200t2yz2 +160t2z
3) ∂f

∂y
+ 1

128
(40t2x

2 +160xy +

160t2y
3z) ∂f

∂z
= 0,

• z2h+ 1
512

(−16t2xy3−125t2xy2+100t2xyz−80t2xz2−256z3) ∂f
∂x

+ 1
512

(250t2y
3−

200t2 y2z + 160t2yz2 − 128t2z
3) ∂f

∂y
+ 1

512
(32t2x

2 − 1250t2y
3) ∂f

∂z
= 0,

• (yz + 5
4
y2)h + 1

8
(t2xz2 + t1xz − 5y2z − 4yz2) ∂f

∂x
− 1

8
(2t2yz2 + 2t1yz) ∂f

∂y
= 0.

Set Allsb3 = Sb13.
1-2-4: If (t1, t2) belongs to the stratum A4, then the reduced standard basis of

AnnOX,O
(HQ14) w.r.t. ≺−1 is Sb14 = {x, y3, z2, yz + 5

4y2}. As 〈Q14〉 :
〈x〉 = 〈Q14〉 : 〈yz + 5

4y2〉 = 〈1〉 and 〈Q14〉 : 〈y3〉 = 〈Q14〉 : 〈z2〉 =
〈x, 16y − 125, 64z + 625〉, set u14 = 16y − 125. Then, generalized integral
dependence relations are the following.

• xh − 1
2
(xz + t1y

2z + t2y
2z2) ∂f

∂x
= 0,

• u14y
3h+ −1

8
(4t2x

3+125x2−16t1y
3+100t2yz2+100t1yz−160t2xz3−80t1xz2−

256z4−2500z3) ∂f
∂x

+ −1
8

(−8t2x
2y−250xy−200t2y

2z2−200t1y
2z+160t2yz3+160

t1yz2−128t2z
4−128t1z

3) ∂f
∂y

+ −1
8

(40t2x
2y+32t2x

2z+32t1x
2+128xyz+1250xy

+128t2y
3z3 + 128t1yz2) ∂f

∂z
= 0,

60 K. Nabeshima and S. Tajima

• u14z
2h + 1

40
(125t2xy2z − 100t2xyz2 + 80t2xz3 + 125t1xy2 − 100t1xyz +

80t1xz2 +256z4 −16x2y +2500z3) ∂f
∂x

+ 1
40

(−250t2y
3z +200t2y

2z2 −160t2yz3 −
250t1y

3 +200t1y
2z −160t1yz2 +32xy2) ∂f

∂y
+ 1

40
(250t2y

3z +1250t1y
3 −160xy2 −

128xyz) ∂f
∂z

= 0,

• (yz + 5
4
y2)h − 1

8
(−t1xz − t2xz2 + 5y2z + 4yz2) ∂f

∂x
+ (2t1yz + 2t2yz2) ∂f

∂y
= 0.

Set Allsb4 = Sb14.

� Case k = 2. Set J = {∂f
∂xh, ∂f

∂y h, ∂f
∂z h, (∂f

∂x)2, (∂f
∂y)2, (∂f

∂z)2, (∂f
∂x)(∂f

∂y), (∂f
∂x)(∂f

∂z),
(∂f

∂y)(∂f
∂z)}.

2-1: A comprehensive Gröbner system of 〈J〉 : 〈h2〉 on C2\V(t1, t2) is

{(A2, Q22 = {x, 16y − 125, 64z + 625}),
(A3, Q23 = {5y + 4z, z2, x}),
(A4, Q24 = {64z3 + 625z2, 5y + 4z, x})}.

2-2-2: If (t1, t2) belongs to the stratum A2, then the reduced standard basis of
AnnOX,O

(HQ21) w.r.t. ≺−1 is {1}. Therefore, the integral number is 2. As
〈Q22〉 : 〈1〉 = 〈Q22〉, set u22 = 16y − 125. An integral dependence relation
of h over IO is

• 800u22h
2 + v221h + v222 = 0 where

v221 = 75000t2x
2z − 250000t2y

4z − 300000t2y
3z2 + 500000t2z

4,
v222 = −125000t22y

11 − 100000t22y
10z − 12800t22y

7z4 − 250000t22y
7z3 −

25000t22x
2y7− 500000t22y

3z6−25000t22x
2y3z3−25600t2xy5z3+250000t2xy5z2+

500000t2xy4z3 − 500000t2xyz5 + 5y8 + 4y7z + 75000t2x
3yz2 − 12800x2y3z2 +

20y4z3 + 16y3z4 + x2y4 +100000x2y2z2 + 25000b2y3 + 4x2z3.

2-2-3: If (t1, t2) belongs to the stratum A3, then the reduced standard basis of
AnnOX,O

(HQ23) w.r.t. ≺−1 is Sb23 = {x, y2, yz, z+ 5
4y}. Since x ∈ Allsb3,

its generalized integral dependence relation can be obtained from 1-2-3.
For all b ∈ Sb23\{x}, the reduced Gröbner basis of 〈Q23〉 : 〈b〉 is {1}.
Then, generalized integral dependence relations are the following.

• −16384y2h2 + v231h + v232 = 0 where
v231 = (160000t22y

8z3+128000t22y
7z4+160000t1t2y

8z2+128000t1t2y
7z3+32000

t22x
2y4z3+32000t1t2x

2y4z2+160000t2xy6z2+128000t2xy5z3+32000t2x
3y2z2),

v232 = (16384t22y
8z4+160000t22y

8z3−128000t22y
7z4−1250000t22y

7z3−32000t22x
2

y4z3+32768t2xy6z3−312500t22x
2y4z2+160000t2xy6z2−128000t2xy5z3−32000

t2x
3y2z2 + 16384x2y4z2).

• 327680yzh2+(−327680t22y
7z5−6400000t22y

7z4−31250000t22y
7z3−655360t2xy5

z4 − 6400000t2xy5z3 − 327680x2y3z3) = 0.
• 327680(z + 5

4
)h2 + v233h + v234 = 0 where

v233 = −4000000t22y
7z3−3200000t22y

6z4−4000000t1t2y
7z2−3200000t1t2y

6z3−
800000t22x

2y3z3 − 819200t2xy5z3 − 800000t1t2x
2y3z2 − 819200t1xy5z2 −

4000000t2 xy5z2 − 3200000t2xy4z3 − 800000t2x
3yz2 − 819200x2y3z2,

v234 = −409600t22y
7z4 − 327680t22y

6z5 − 4000000t22y
7z3 − 3200000t22y

6z4 +
800000 t22x

2y3z3 − 655360t2xy4z4 + 7812500t22x
2y3z2 + 4000000t2xy5z2 −

3200000t2xy4z3+ 800000t2x
3yz2 + 409600x2y3z2 − 327680x2y2z3.

Generalized Integral Dependence Relations 61

2-2-4: If (t1, t2) belongs to the stratum A4, then the reduced standard basis of
AnnOX,O

(HQ24) w.r.t. ≺−1 is Sb24 = {x, y2, yz, z+ 5
4y}. Since x ∈ Allsb4,

its generalized integral dependence relation can be obtained from 1-2-4.
As 〈Q24〉 : 〈y2〉 = 〈Q24〉 : 〈yz〉 = 〈x, 16y − 125, 64z + 625〉 and 〈Q24〉 :
〈z+ 5

4y〉 = 〈1〉, set u24 = 16y−125. Then, generalized integral dependence
relations are the following.

• 128u24y
2h2 + v241h + v242 = 0 where

v241 = 16000t1t2y
8z3 − 20480t1t2y

6z5 + 250000t22y
7z4 + 300000t22y

6z5+
16000t21y

8z2−20480t21y
6z4+250000t1t2y

7z3+300000t1t2y
6z4+51200t1t2y

3z7−
500000t22y

3z7 + 51200t21y
3z6 + 3200t1t2x

2y4z3 − 5120t1t2x
2y3z4 − 500

000t1t2y
3z6 + 75000t22x

2y3z4 + 3200t22x
2y4z2 − 5120t21x

2y3z3 + 750
00t1t2x

2y3z3 + 16000t1xy6z2 − 20480t1xy4z4 + 250000t2xy5z3 + 300
000t2xy4z4 + 51200t1xyz6 − 500000t2xyz6 + 3200t1x

3y2z2 − 5120t1x
3yz3 +

75000t2x
3yz3,

v242 = −2048b2y9z4−4096t1t2y
9z3+16000t22y

8z4−2048t21y
9z2+16000t1t2y

8z3+
20480t1t2y

6z5−250000t22y
7z4−300000t22y

6z5+20480t21y
6z4−250000t1t2y

7z3−30
0000t1t2y

6z4 − 51200t1t2y
3z7 + 500000t22y

3z7 − 4096t2xy7z3 − 51200t21y
3z6 −

3200t1t2x
2y4z3 + 5120t1t2x

2y3z4 + 500000t1t2y
3z6 − 4096t1xy7z2 − 750

00t22x
2y3z4 +32000t2xy6z3 −3200t21x

2y4z2 +5120t21x
2y3z3 −75000t1t2x

2y3z3 +
16000t1xy6z2+20480t1xy4z4−250000t2xy5z3−300000t2xy4z4−51200t1xyz6+
500000t2xyz6 − 2048x2y5z2 − 3200t1x

3y2z2 + 5120t1x
3yz3 − 75000t2x

3yz3 +
16000x2y4z2.

• 12800u24yzh2 + v243h + v244 = 0 where
v243 = 3200000t1t2y

7z4+3840000t1t2y
6z5−31250000t22y

7z4−37500000t22y
6z5+

320 0000t21y
7z3 + 3840000t21y

6z4 − 31250000t1t2y
7z3 − 37500000t1t2y

6z4 −
6400000t1t2y

3z7 +62500000t22y
3z7 − 6400000t21y

3z6 + 960000t1t2x
2y3z4 +

62500000t1t2y
3z6 − 93750 00t22x

2y3z4 + 960000t21x
2y3z3 − 9375000t1t2x

2y3z3 +
3200000t1xy5z3 + 3840000t1x y4z4 − 31250000t2xy5z3 − 37500000t2xy4z4 −
6400000t1xyz6 + 62500000t2xyz6 + 960 000t1x

3yz3 − 9375000t2x
3yz3,

v244 = (−204800t22y
8z5 − 409600t1t2y

8z4 + 1600000t22y
7z5 − 204800t21y

8z3 −
3840000 t1t2y

6z5 + 31250000t22y
7z4 + 37500000t22y

6z5 − 1600000t21y
7z3 −

3840000t21y
6z4 + 312 50000t1t2y

7z3 + 37500000t1t2y
6z4 + 6400000t1t2y

3z7 −
62500000t22y

3z7 − 409600t2x y6z4 + 6400000t21y
3z6 − 960000t1t2x

2y3z4 −
62500000t1t2y

3z6 − 409600t1xy6z3 + 937 5000t22x
2y3z4 + 3200000t2xy5z4 −

960000t21x
2y3z3 + 9375000t1t2x

2y3z3 − 3840000t1 xy4z4 + 31250000t2xy5z3 +
37500000t2xy4z4 + 6400000t1xyz6 − 62500000t2xyz6 − 204 800x2y4z3 −
960000t1x

3yz3 + 9375000t2x
3yz3 + 1600000x2y3z3.

• 320(z + 5
4
y)h2 + v245h + v246 = 0 where

v245 = −400t2y
4z2−320t2y

3z3−400t1y
4z−320t1y

3z2−80t2x
2z2−80t1x

2z−800x
y2z − 640xyz2,
v246 = 80t22x

2y3z4 + 160t1t2x
2y3z3 + 400t2xy5z3 + 320t2xy4z4 + 80t21x

2y3z2 +
400t1xy5 z2 + 320t1xy4z3 + 80t2x

3yz3 + 80t1x
3yz2 + 400x2y3z2 + 320x2y2z3.

� Case k = 3. J = Ih2 + I2h + I3.

3-1: A comprehensive Gröbner system of J : 〈h3〉 on C2\V(t1) is

{(V(t2)\V(t1, t2), Q31 = {x, 16y − 125, 64z + 625}),
(V(64t1 − 625t2)\V(t1, t2), Q32 = {1}),
(C2\V(64t21t2 − 625t1t

2
2), Q33 = {x, 16y − 125, 64z + 625})}.

62 K. Nabeshima and S. Tajima

3-2: If (t1, t2) belongs to strata V(t1)\V(t1, t2), V(64t1 − 625t2)\V(t1, t2)
and C2\V(64 t1t

2
2 − 625t1t

2
2), then the reduced standard bases of

AnnOX,O
(HQ31), AnnOX,O

(HQ32) and AnnOX,O
(HQ33) are {1}. Therefore,

the integral number is 3.

We omit the integral dependence relations of h over IO.

References

1. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1993). https://
doi.org/10.1007/978-1-4612-0913-3 6

2. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. A Wiley-Interscience
publication (1978)

3. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehen-
sive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49,
27–44 (2013)

4. Kashiwara, M.: B-functions and holonomic systems. Rationality of roots of B-
functions. Invent. Math. 38, 33–53 (1976–1977)

5. Nabeshima, K.: On the computation of parametric Gröbner bases for modules and
syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)

6. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner
systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32973-9 21

7. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local
cohomology classes associated with semi-quasihomogeneous singularities and stan-
dard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)

8. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with
parametric semi-quasihomogeneous hypersurface isolated singularities. In: Pro-
ceedings of the ISSAC 2015, pp. 291–298. ACM (2015)

9. Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings
of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap,
C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32859-1 22

10. Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of μ-constant defor-
mations via parametric local cohomology systems. Appl. Algebra Eng. Commun.
Comput. 27, 451–467 (2016)

11. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and para-
metric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122
(2017)

12. Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and
computing integral numbers in a ring of convergent power series via comprehensive
Gröbner systems. Math. Comput. Sci. 13, 185–194 (2019)

13. Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point. To
appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC] (2019)

14. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings
of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/
Asir/asir.html

https://doi.org/10.1007/978-1-4612-0913-3_6
https://doi.org/10.1007/978-1-4612-0913-3_6
https://doi.org/10.1007/978-3-642-32973-9_21
https://doi.org/10.1007/978-3-642-32973-9_21
https://doi.org/10.1007/978-3-319-32859-1_22
http://arxiv.org/abs/1903.12365
http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.math.kobe-u.ac.jp/Asir/asir.html

Generalized Integral Dependence Relations 63

15. Scherk, J.: On the Gauss-Manin connection of an isolated hypersurface singularity.
Math. Ann. 238, 23–32 (1978)

16. Shibuta, F., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplic-
ities and reductions of zero-dimensional ideal of Cohen-Macaulay local rings. J.
Symb. Comput. 96, 108–121 (2020)

17. Swanson, I., Huneke, C.: Integral Closure of Ideals. Rings, and Modules. Cambridge
University Press, Cambridge (2006)

18. Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules.
RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)

19. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology
class. J. Symb. Comput. 44, 435–448 (2009)

20. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local
cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

21. Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic
Geometry. Springer, Heidelberg (1998)

22. Yano, T.: On the theory of b-functions. Pub. Res. Inst. Math. Sci. 14, 111–202
(1978)

Hilbert-Type Dimension Polynomials
of Intermediate Difference-Differential

Field Extensions

Alexander Levin(B)

The Catholic University of America, Washington, DC 20064, USA
levin@cua.edu

https://sites.google.com/a/cua.edu/levin

Abstract. Let K be an inversive difference-differential field and L a
(not necessarily inversive) finitely generated difference-differential field
extension of K. We consider the natural filtration of the extension L/K
associated with a finite system η of its difference-differential generators
and prove that for any intermediate difference-differential field F , the
transcendence degrees of the components of the induced filtration of F
are expressed by a certain numerical polynomial χK,F,η(t). This poly-
nomial is closely connected with the dimension Hilbert-type polynomial
of a submodule of the module of Kähler differentials ΩL∗|K where L∗

is the inversive closure of L. We prove some properties of polynomials
χK,F,η(t) and use them for the study of the Krull-type dimension of the
extension L/K. In the last part of the paper, we present a generalization
of the obtained results to multidimensional filtrations of L/K associated
with partitions of the sets of basic derivations and translations.

Keywords: Difference-differential field · Difference-differential
module · Kähler differentials · Dimension polynomial

1 Introduction

Dimension polynomials associated with finitely generated differential field exten-
sions were introduced by Kolchin in [4]; their properties and various applications
can be found in his fundamental monograph [5, Chapter 2]. A similar tech-
nique for difference and inversive difference field extensions was developed in
[7,8,12,13] and some other works of the author. Almost all known results on
differential and difference dimension polynomials can be found in [6] and [10].
One can say that the role of dimension polynomials in differential and difference
algebra is similar to the role of Hilbert polynomials in commutative algebra and
algebraic geometry. The same can be said about dimension polynomials associ-
ated with difference-differential algebraic structures. They appear as generaliza-
tions of their differential and difference counterparts and play a key role in the

Supported by the NSF grant CCF-1714425.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 64–79, 2020.
https://doi.org/10.1007/978-3-030-43120-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_7

Hilbert-Type Dimension Polynomials 65

study of dimension of difference-differential modules and extensions of difference-
differential fields. Existence theorems, properties and methods of computation
of univariate and multivariate difference-differential dimension polynomials can
be found in [15], [6, Chapters 6 and 7], [14], [19] and [20].

In this paper we prove the existence and obtain some properties of a univari-
ate dimension polynomial associated with an intermediate difference-differential
field of a finitely generated difference-differential field extension (see Theorem2
that can be considered as the main result of the paper). Then we use the obtained
results for the study of the Krull-type dimension of such an extension. In partic-
ular, we establish relationships between invariants of dimension polynomials and
characteristics of difference-differential field extensions that can be expressed in
terms of chains of intermediate fields. In the last part of the paper we gener-
alize our results on univariate dimension polynomials and obtain multivariate
dimension polynomials associated with multidimensional filtrations induced on
intermediate difference-differential fields. (Such filtrations naturally arise when
one considers partitions of the sets of basic derivations and translations.) Note
that we consider arbitrary (not necessarily inversive) difference-differential exten-
sions of an inversive difference-differential field. In the particular case of purely
differential extensions and in the case of inversive difference field extensions, the
existence and properties of dimension polynomials were obtained in [11] and
[13]. The main problem one runs into while working with a non-inversive dif-
ference (or difference-differential) field extension is that the translations are not
invertible and there is no natural difference (respectively, difference-differential)
structure on the associated module of Kähler differentials. We overcome this
obstacle by considering such a structure on the module of Kähler differentials
associated with the inversive closure of the extension. Finally, the results of
this paper allow one to assign a dimension polynomial to a system of algebraic
difference-differential equations of the form fi = 0, i ∈ I (fi lie in the alge-
bra of difference-differential polynomials K{y1, . . . , yn} over a ground field K)
such that the difference-differential ideal P generated by the left-hand sides is
prime and the solutions of the system should be invariant with respect to the
action of a group G that commutes with basic derivations and translations. As
in the case of systems of differential or difference equations, the dimension poly-
nomial of such a system is defined as the dimension polynomial of the subfield of
the difference-differential quotient field K{y1, . . . , yn}/P whose elements remain
fixed under the action of G. Using the correspondence between dimension poly-
nomials and Einstein’s strength of a system of algebraic differential or difference
equations established in [16] and [6, Chapter 6] (this characteristic of a system
of PDEs governing a physical field was introduced in [1]), one can consider this
dimension polynomial as an expression of the Einstein’s strength of a system of
difference-differential equations with group action.

2 Preliminaries

Throughout the paper Z, N and Q denote the sets of all integers, all non-negative
integers and all rational numbers, respectively. As usual, Q[t] will denote the ring

66 A. Levin

of polynomials in one variable t with rational coefficients. By a ring we always
mean an associative ring with a unity. Every ring homomorphism is unitary
(maps unit onto unit), every subring of a ring contains the unity of the ring.
Every module is unitary and every algebra over a commutative ring is unitary
as well. Every field is supposed to have characteristic zero.

A difference-differential ring is a commutative ring R considered together
with finite sets Δ = {δ1, . . . , δm} and σ = {α1, . . . , αn} of derivations and injec-
tive endomorphisms of R, respectively, such that any two mappings of the set
Δ

⋃
σ commute. The elements of the set σ are called translations and the set

Δ
⋃

σ will be referred to as a basic set of the difference-differential ring R, which
is also called a Δ-σ-ring. We will often use prefix Δ-σ- instead of the adjective
“difference-differential”. If all elements of σ are automorphisms of R, we say that
the Δ-σ-ring R is inversive. In this case we set σ∗ = {α1, . . . , αn, α−1

1 , . . . , α−1
n }

and call R a Δ-σ∗-ring.
If a Δ-σ-ring R is a field, it is called a difference-differential field or a Δ-σ-

field. If R is inversive, we say that R is a Δ-σ∗-field.
In what follows, Λ will denote the free commutative semigroup of all power

products λ = δk1
1 . . . δkm

m αl1
1 . . . αln

n where ki, lj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ n). Fur-
thermore, Θ and T will denote the commutative semigroups of power products
δk1
1 . . . δkm

m and αl1
1 . . . αln

n (ki, lj ∈ N), respectively. If λ = δk1
1 . . . δkm

m αl1
1 . . . αln

n ∈
Λ, we define the order of λ as ord λ =

∑m
i=1 ki +

∑n
j=1 lj and set Λ(r) = {λ ∈

Λ | ord λ ≤ r} for any r ∈ N.
If the elements of σ are automorphisms, then Λ∗ and Γ will denote the free

commutative semigroup of all power products μ = δk1
1 . . . δkm

m αl1
1 . . . αln

n with
ki ∈ N, lj ∈ Z and the free commutative group of power products γ = αl1

1 . . . αln
n

with l1, . . . , ln ∈ Z, respectively. The order of such elements μ and γ are defined
as ord λ =

∑m
i=1 ki +

∑n
j=1 |lj | and ord γ =

∑n
j=1 |lj |, respectively. We also set

Λ∗(r) = {μ ∈ Λ∗ | ord μ ≤ r} (r ∈ N).
A subring (ideal) S of a Δ-σ-ring R is said to be a difference-differential (or

Δ-σ-) subring of R (respectively, difference-differential (or Δ-σ-) ideal of R) if
S is closed with respect to the action of any operator of Δ

⋃
σ. In this case the

restriction of a mapping from Δ
⋃

σ on S is denoted by same symbol. If S is a
Δ-σ-subring R, we also say that R is a Δ-σ-overring of S. If S is a Δ-σ-ideal of
R and for any τ ∈ T , the inclusion τ(a) ∈ S implies that a ∈ S, we say that the
Δ-σ-ideal S is reflexive or that S is a Δ-σ∗-ideal of R.

If L is a Δ-σ-field and K a subfield of L which is also a Δ-σ-subring of L, then
K is said to be a Δ-σ-subfield of L; L, in turn, is called a difference-differential
(or Δ-σ-) field extension or a Δ-σ-overfield of K. In this case we also say that
we have a Δ-σ-field extension L/K.

If R is a Δ-σ-ring and S ⊆ R, then the intersection of all Δ-σ-ideals of R
containing the set S is, obviously, the smallest Δ-σ-ideal of R containing S. This
ideal is denoted by [S]; as an ideal, it is generated by the set {λ(x) |x ∈ S, λ ∈ Λ}.
If S is finite, S = {x1, . . . , xk}, we say that the Δ-σ-ideal I = [S] is finitely
generated, write I = [x1, . . . , xk] and call x1, . . . , xk Δ-σ-generators of I.

Hilbert-Type Dimension Polynomials 67

If K is a Δ-σ-subfield of the Δ-σ-field L and S ⊆ L, then the intersection
of all Δ-σ-subfields of L containing K and S is the unique Δ-σ-subfield of L
containing K and S and contained in every Δ-σ-subfield of L with this property.
It is denoted by K〈S〉. If S is finite, S = {η1, . . . , ηs} we write K〈η1, . . . , ηs〉 for
K〈S〉 and say that this is a finitely generated Δ-σ-extension of K with the set of
Δ-σ-generators {η1, . . . , ηs}. It is easy to see that K〈η1, . . . , ηs〉 coincides with
the field K({ληi |λ ∈ Λ, 1 ≤ i ≤ s}). (If there might be no confusion, we often
write λη for λ(η) where λ ∈ Λ and η is an element of a Δ-σ-ring.)

Let R1 and R2 be two difference-differential rings with the same basic set
Δ

⋃
σ. (More rigorously, we assume that there exist injective mappings of the

sets Δ and σ into the sets of derivations and automorphisms of the rings R1 and
R2, respectively, such that the images of any two elements of Δ

⋃
σ commute.

We will denote the images of elements of Δ
⋃

σ under these mappings by the
same symbols δ1, . . . , δm, α1, . . . , αn). A ring homomorphism φ : R1 −→ R2 is
called a difference-differential (or Δ-σ-) homomorphism if φ(τa) = τφ(a) for any
τ ∈ Δ

⋃
σ, a ∈ R. It is easy to see that the kernel of such a mapping is a

Δ-σ∗-ideal of R1.
If R is a Δ-σ-subring of a Δ-σ-ring R∗ such that the elements of σ act as

automorphisms of R∗ and for every a ∈ R∗ there exists τ ∈ T such that τ(a) ∈ R,
then the Δ-σ∗-ring R∗ is called the inversive closure of R.

The proof of the following result can be obtained by mimicking the proof of
the corresponding statement about inversive closures of difference rings, see [10,
Proposition 2.1.7].

Proposition 1. (i) Every Δ-σ-ring has an inversive closure.
(ii) If R∗

1 and R∗
2 are two inversive closures of a Δ-σ-ring R, then there exists

a Δ-σ-isomorphism of R∗
1 onto R∗

2 that leaves elements of R fixed.
(iii) If a Δ-σ-ring R is a Δ-σ-subring of a Δ-σ∗-ring U , then U contains an

inversive closure of R.
(iv) If a Δ-σ-ring R is a field, then its inversive closure is also a field.

If K is an inversive difference-differential field and L = K〈η1, . . . , ηs〉, then
the inversive closure of L is denoted by K〈η1, . . . , ηs〉∗. Clearly, this Δ-σ∗-field
coincides with the field K({μηi|μ ∈ Λ∗, 1 ≤ i ≤ s}).

Let R be a Δ-σ-ring and U = {ui | i ∈ I} a family of elements of some Δ-σ-
overring of R. We say that the family U is Δ-σ-algebraically dependent over R,
if the family {λui |λ ∈ Λ, i ∈ I} is algebraically dependent over R. Otherwise,
the family U is said to be Δ-σ-algebraically independent over R.

If K is a Δ-σ-field and L a Δ-σ-field extension of K, then a set B ⊆ L is said
to be a Δ-σ-transcendence basis of L over K if B is Δ-σ-algebraically independent
over K and every element a ∈ L is Δ-σ-algebraic over K〈B〉 (that is, the set
{λa |λ ∈ Λ} is algebraically dependent over K〈B〉). If L is a finitely generated
Δ-σ-field extension of K, then all Δ-σ-transcendence bases of L over K are finite
and have the same number of elements (the proof of this fact can be obtained by
mimicking the proof of the corresponding properties of difference transcendence
bases, see [10, Section 4.1]). In this case, the number of elements of any Δ-σ-
transcendence basis is called the difference-differential (or Δ-σ-) transcendence

68 A. Levin

degree of L over K (or the Δ-σ-transcendence degree of the extension L/K); it
is denoted by Δ-σ-trdegK L.

The following theorem proved in [15] generalizes the Kolchin’s theorem on
differential dimension polynomial (see [5, Chapter II, Theorem 6]) and also the
author’s theorems on dimension polynomials of difference and inversive difference
field extensions (see [10, Theorems 4.2.1 and 4.2.5]).

Theorem 1. With the above notation, let L = K〈η1, . . . , ηs〉 be a Δ-σ-field
extension of a Δ-σ-field K generated by a finite set η = {η1, . . . , ηs}. Then there
exists a polynomial χη|K(t) ∈ Q[t] such that

(i) χη|K(r) = trdegK K({ληj |λ ∈ Λ(r), 1 ≤ j ≤ s}) for all sufficiently large
r ∈ Z (that is, there exists r0 ∈ Z such that the equality holds for all r > r0).

(ii) deg χη|K ≤ m + n and χη|K(t) can be written asχη|K(t) =
m+n∑

i=0

ai

(
t + i

i

)

,

where ai ∈ Z.
(iii) d = deg χη|K , am+n and ad do not depend on the set of Δ-σ-generators η of

L/K (am+n = 0 if d < m + n). Moreover, am+n = Δ-σ-trdegK L.

The polynomial χη|K(t) is called the Δ-σ-dimension polynomial of the Δ-σ-field
extension L/K associated with the system of Δ-σ-generators η. We see that
χη|K(t) is a polynomial with rational coefficients that takes integer values for
all sufficiently large values of the argument. Such polynomials are called numer-
ical; their properties are thoroughly described in [6, Chapter 2]. The invari-
ants d = deg χη|K and ad (if d < m + n) are called the Δ-σ-type and typical
Δ-σ-transcendence degree of L/K; they are denoted by Δ-σ-typeK L and Δ-σ-
t. trdegK L, respectively.

3 Dimension Polynomials of Intermediate
Difference-Differential Fields. The Main Theorem

The following result is an essential generalization of Theorem 1. This general-
ization allows one to assign certain numerical polynomial to an intermediate
Δ-σ-field of a Δ-σ-field extension L/K where K is an inversive Δ-σ-field. (We
use the notation introduced in the previous section.)

Theorem 2. Let K be an inversive Δ-σ-field with basic set Δ
⋃

σ where Δ =
{δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of derivations and automorphisms
of K, respectively. Let L = K〈η1, . . . , ηs〉 be a Δ-σ-field extension of K gener-
ated by a finite set η = {η1, . . . , ηs}. Let F be an intermediate Δ-σ-field of the
extension L/K and for any r ∈ N, let Fr = F

⋂
K({ληj |λ ∈ Λ(r), 1 ≤ j ≤ s}).

Then there exists a numerical polynomial χK,F,η(t) ∈ Q[t] such that

(i) χK,F,η(r) = trdegK Fr for all sufficiently large r ∈ N;
(ii) deg χK,F,η ≤ m + n and χK,F,η(t) can be written as χK,F,η(t) =

m+n∑

i=0

ci

(
t + i

i

)

where ci ∈ Z (1 ≤ i ≤ m + n).

Hilbert-Type Dimension Polynomials 69

(iii) d = deg χK,F,η(t), cm+n and cd do not depend on the set of Δ-σ-generators
η of the extension L/K. Furthermore, cm+n = Δ-σ-trdegK F .

The polynomial χK,F,η(t) is called a Δ-σ-dimension polynomial of the inter-
mediate field F associated with the set of Δ-σ-generators η of L/K.

The proof of Theorem2 is based on properties of difference-differential mod-
ules and the difference-differential structure on the module of Kähler differentials
considered below. Similar properties in differential and difference cases can be
found in [2] and [10, Section 4.2], respectively.

Let K be a Δ-σ-field and Λ the semigroup of power products of basic oper-
ators introduced in Sect. 2. Let D denote the set of all finite sums of the form∑

λ∈Λ aλλ where aλ ∈ K (such a sum is called a Δ-σ-operator over K; two Δ-
σ-operators are equal if and only if their corresponding coefficients are equal).
The set D can be treated as a ring with respect to its natural structure of a left
K-module and the relationships δa = aδ + δ(a), αa = α(a)α for any a ∈ K,
δ ∈ Δ, α ∈ σ extended by distributivity. The ring D is said to be the ring of
Δ-σ-operators over K.

If A =
∑

λ∈Λ aλλ ∈ D, then the number ordA = max{ord λ | aλ �= 0} is
called the order of the Δ-σ-operator A. In what follows, we treat D as a filtered
ring with the ascending filtration (Dr)r∈Z where Dr = 0 if r < 0 and Dr = {A ∈
D | ord A ≤ r} if r ≥ 0.

Similarly, if a Δ-σ-field K is inversive and Λ∗ is the semigroup defined in
Sect. 2, then E will denote the set of all finite sums

∑
μ∈Λ∗ aμμ where aμ ∈ K.

Such a sum is called a Δ-σ∗-operator over K; two Δ-σ∗-operators are equal if
and only if their corresponding coefficients are equal. Clearly, the ring D of Δ-
σ-operators over K is a subset of E . Moreover, E can be treated as an overring
of D such that α−1a = α−1(a)α−1 for every α ∈ σ, a ∈ K. This ring is called
the ring of Δ-σ∗-operators over K.

The order of a Δ-σ∗-operator B =
∑

μ∈Λ∗ aμμ is defined in the same way as
the order of a Δ-σ-operator: ordB = max{ord μ | aμ �= 0}. In what follows the
ring E is treated as a filtered ring with the ascending filtration (Er)r∈Z such that
Er = 0 if r < 0 and Er = {B ∈ E | ord B ≤ r} if r ≥ 0.

If K is a Δ-σ-field, then a difference-differential module over K (also called a
Δ-σ-K-module) is a left D-module M , that is, a vector K-space where elements
of Δ

⋃
σ act as additive mutually commuting operators such that δ(ax) =

a(δx)+ δ(a)x and α(ax) = α(a)αx for any δ ∈ Δ, α ∈ σ, x ∈ M , a ∈ K. We say
that M is a finitely generated Δ-σ-K-module if M is finitely generated as a left
D-module.

Similarly, if K is a Δ-σ∗-field, then an inversive difference-differential module
over K (also called a Δ-σ∗-K-module) is a left E-module (that is, a Δ-σ-K-
module M with the action of elements of σ∗ such that α−1(ax) = α−1(a)α−1x
for every α ∈ σ). A Δ-σ∗-K-module M is said to be finitely generated if it is
generated as a left E-module by a finite set whose elements are called Δ-σ∗-
generators of M .

If M is a Δ-σ-K-module (respectively, a Δ-σ∗-module, if K is a Δ-σ∗-field),
then by a filtration of M we mean an exhaustive and separated filtration of

70 A. Levin

M as a D- (respectively, E-) module, that is, an ascending chain (Mr)r∈Z of
vector K-subspaces of M such that DrMs ⊆ Mr+s (respectively, ErMs ⊆ Mr+s)
for all r, s ∈ Z, Mr = 0 for all sufficiently small r ∈ Z, and

⋃
r∈Z Mr = M .

A filtration (Mr)r∈Z of a Δ-σ-K- (respectively, Δ-σ∗-K) module M is said to
be excellent if every Mr is a finite dimensional vector K-space and there exists
r0 ∈ Z such that Mr = Dr−r0Mr0 (respectively, Mr = Er−r0Mr0) for any r ≥ r0.
Clearly, if M is generated as a D- (respectively, E-) module by elements x1, . . . xs,
then (

∑s
i=1 Drxi)r∈Z

(respectively, (
∑s

i=1 Erxi)r∈Z
) is an excellent filtration of

M ; it is said to be the natural filtration associated with the set of generators
{x1, . . . , xs}.

If M ′ and M ′′ are Δ-σ-K- (respectively, Δ-σ∗-K-) modules, then a mapping
f : M ′ → M ′′ is said to be a Δ-σ-homomorphism if it is a homomorphism of D-
(respectively, E-) modules. If M ′ and M ′′ are equipped with filtrations (M ′

r)r∈Z

and (M ′′
r)r∈Z, respectively, and f(M ′

r) ⊆ M ′′
r for every r ∈ Z, then f is said to

be a Δ-σ-homomorphism of filtered Δ-σ-K- (respectively, Δ-σ∗-K-) modules.
The following two statements are direct consequences of [6, Theorem 6.7.3]

and [6, Theorem 6.7.10], respectively.

Theorem 3. With the above notation, let K be a Δ-σ-field, M a finitely gen-
erated Δ-σ-K-module, and (Mr)r∈Z the natural filtration associated with some
finite system of generators of M over the ring of Δ-σ-operators D. Then there
is a numerical polynomial φ(t) ∈ Q[t] such that:

(i) φ(r) = dimK Mr for all sufficiently large r ∈ Z.

(ii) deg φ ≤ m + n and φ(t) can be written as φ(t) =
m+n∑

i=0

ai

(
t + i

i

)

where

a0, . . . , am+n ∈ Z.
(iii) d = deg φ(t), an and ad do not depend on the finite set of generators of the

D-module M the filtration (Mr)r∈Z is associated with. Furthermore, am+n

is equal to the Δ-σ-dimension of M over K (denoted by Δ-σ-dimK M), that
is, to the maximal number of elements x1, . . . , xk ∈ M such that the family
{λxi |λ ∈ Λ, 1 ≤ i ≤ k} is linearly independent over K.

Theorem 4. Let f : M ′ → M ′′ be an injective homomorphism of filtered Δ-σ-
K-modules M ′ and M ′′ with filtrations (M ′

r)r∈Z and (M ′′
r)r∈Z, respectively. If

the filtration of M ′′ is excellent, then the filtration of M ′ is excellent as well.

Proof of Theorem 2. Let L = K〈η1, . . . , ηs〉 be a Δ-σ-field extension of a Δ-
σ∗-field K. Let L∗ be the inversive closure of L, that is, L∗ = K〈η1, . . . , ηs〉∗. Let
M = ΩL∗|K , the module of Kähler differentials associated with the extension
L∗/K. Then M can be treated as a Δ-σ∗-L∗-module where the action of the
elements of Δ

⋃
σ∗ is defined in such a way that δ(dζ) = dδ(ζ) and α(dζ) =

dα(ζ) for any ζ ∈ L∗, δ ∈ Δ, α ∈ σ∗ (see [2] and [12, Lemma 4.2.8]).
For every r ∈ N, let Mr denote the vector L∗-subspace of M generated by all

elements dζ where ζ ∈ K(
s⋃

i=1

Λ∗(r)ηi). It is easy to check that (Mr)r∈Z (Mr = 0

Hilbert-Type Dimension Polynomials 71

if r < 0) is the natural filtration of the Δ-σ∗-L∗-module M associated with the
system of Δ-σ∗-generators {dη1, . . . , dηs}.

Let F be any intermediate Δ-σ-field of L/K, Fr = F
⋂

K({ληj |λ ∈
Λ(r), 1 ≤ j ≤ s}) (r ∈ N) and Fr = 0 if r < 0. Let E and D denote the
ring of Δ-σ∗-operators over L∗ and the ring of Δ-σ-operators over L, respec-
tively. Let N be the D-submodule of M generated by all elements of the form
dζ with ζ ∈ F (by dζ we always mean dL∗|Kζ). Furthermore, for any r ∈ N, let
Nr be the vector L-space generated by all elements dζ with ζ ∈ Fr and Nr = 0
if r < 0.

It is easy to see that (Nr)r∈Z is a filtration of the Δ-σ-L-module N , and
if M ′ =

∑s
i=1 Ddηi, then the embedding N → M ′ is a homomorphism of fil-

tered D-modules. (M ′ is considered as a filtered D-module with the excellent
filtration (

∑s
i=1 Drdηi)r∈Z

.) By Theorem 4, (Nr)r∈Z is an excellent filtration of
the D-module N . Applying Theorem3 we obtain that there exists a polynomial
χK,F,η(t) ∈ Q[t] such that χK,F,η(t)(r) = dimK Nr for all sufficiently large r ∈ Z.

As it is shown in [17, Chapter V, Section 23], elements ζ1, . . . , ζk ∈ L∗ are
algebraically independent over K if and only if the elements dζ1, . . . , dζk are
linearly independent over L∗. Thus, if ζ1, . . . , ζk ∈ Fr (r ∈ Z) are algebraically
independent over K, then the elements dζ1, . . . , dζk ∈ Nr are linearly inde-
pendent over L∗ and therefore over L. Conversely, if elements dx1, . . . , dxh

(xi ∈ Fr for i = 1, . . . , h) are linearly independent over L, then x1, . . . , xh

are algebraically independent over K. Otherwise, we would have a polyno-
mial f(X1, . . . , Xh) ∈ K[X1, . . . , Xh] of the smallest possible degree such that
f(x1, . . . , xh) = 0. Then df(x1, . . . , xh) =

∑h
i=1

∂f
∂Xi

(x1, . . . , xh)dxi = 0 where
not all coefficients of dxi are zeros (they are expressed by polynomials of degree
less than deg f). Since all the coefficients lie in L, we would have a contradiction
with the linear independence of dx1, . . . , dxh over L.

It follows that dimL Nr = trdegK Fr for all r ∈ N. Applying Theorem3 we
obtain the statement of Theorem2.
�

Clearly, if F = L, then Theorem 2 implies Theorem 1. Note also that if an
intermediate field F of a finitely generated Δ-σ-field extension L/K is not a
Δ-σ-subfield of L, there might be no numerical polynomial whose values for
sufficiently large integers r are equal to trdegK(F

⋂
K({ληj |λ ∈ Λ(r), 1 ≤ j ≤

s})). Indeed, let Δ = {δ} and σ = ∅. Let L = K〈y〉, where the Δ-σ-generator y is
Δ-σ-independent over K, and let F = K(δ2y, . . . , δ2ky, . . .). Then Λ = {δi | i ∈
N}, Λ(r) = {1, δ, . . . , δr}, Fr = F

⋂
K(λy |λ ∈ Λ(r)) and trdegK Fr = [r

2] (the
integer part of r

2), which is not a polynomial of r. In this case, the function φ(r) =
trdegK Fr is a quasi-polynomial, but if one takes F = K(δ2y, . . . , δ2

k

y, . . .), then
trdegK Fr = [log2 r].

4 Type and Dimension of Difference-Differential Field
Extensions

Let K be an inversive difference-differential (Δ-σ-) field with a basic set Δ
⋃

σ
where Δ = {δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of derivations and

72 A. Levin

automorphisms of K, respectively. Let L = K〈η1, . . . , ηs〉 be a Δ-σ-field exten-
sion of K generated by a finite set η = {η1, . . . , ηs}. (We keep the notation
introduced in Sect. 2.)

Let U denote the set of all intermediate Δ-σ-fields of the extension L/K and

BU = {(F,E) ∈ U × U |F ⊇ E}.

Furthermore, let Z denote the ordered set Z
⋃{∞} (where the natural order on

Z is extended by the condition a < ∞ for any a ∈ Z).

Proposition 2. With the above notation, there exists a unique mapping μU :
BU → Z such that

(i) μU(F,E) ≥ −1 for any pair (F,E) ∈ BU.
(ii) If d ∈ N, then μU(F,E) ≥ d if and only if trdegE F > 0 and there exists an

infinite descending chain of intermediate Δ-σ-fields

F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · · ⊇ E (1)

such that
μU(Fi, Fi+1) ≥ d − 1 (i = 0, 1, . . .). (2)

Proof. In order to show the existence and uniqueness of the desired mapping
μU, one can just mimic the proof of the corresponding statement for chains of
prime differential ideals given in [3, Section 1] (see also [11, Proposition 4.1] and
[13, Section 4] where similar arguments were applied to differential and inversive
difference field extensions, respectively). Namely, let us set μU(F,E) = −1 if
F = E or the field extension F/E is algebraic. If (F,E) ∈ BU, trdegE F > 0 and
for every d ∈ N, there exists a chain of intermediate Δ-σ-fields (1) with condition
(2), we set μU(F,E) = ∞. Otherwise, we define μU(F,E) as the maximal integer
d for which condition (ii) holds (that is, μU(F,E) ≥ d). It is clear that the
mapping μU defined in this way is unique.
�

With the notation of the last proposition, we define the type of a Δ-σ-field
extension L/K as the integer

type(L/K) = sup{μU(F,E) | (F,E) ∈ BU}. (3)

and the dimension of the Δ-σ-extension L/K as the number
dim(L/K) = sup{q ∈ N | there exists a chain F0 ⊇ F1 ⊇ · · · ⊇ Fq such that
Fi ∈ U and

μU(Fi−1, Fi) = type(L/K) (i = 1, . . . , q)}. (4)

It is easy to see that for any pair of intermediate Δ-σ-fields of L/K such that
(F,E) ∈ BU, μU(F,E) = −1 if and only if the field extension E/F is algebraic.
It is also clear that if type(L/K) < ∞, then dim(L/K) > 0.

Hilbert-Type Dimension Polynomials 73

Proposition 3. With the above notation, let F and E be intermediate Δ-σ-
fields of a Δ-σ-field extension L = K〈η1, . . . , ηs〉 generated by a finite set η =
{η1, . . . , ηs}. Let F ⊇ E, so that (F,E) ∈ BU. Then for any integer d ≥ −1, the
inequality μU(F,E) ≥ d implies the inequality deg(χK,F,η(t) − χK,E,η(t)) ≥ d.
(χK,F,η(t) and χK,E,η(t) are the Δ-σ-dimensions polynomials of the fields F and
E associated with the set of Δ-σ-generators η of L/K.)

Proof. We proceed by induction on d. Since deg(χK,F,η(t)−χK,E,η(t)) ≥ −1 for
any pair (F,E) ∈ BU and deg(χK,F,η(t) − χK,E,η(t)) ≥ 0 if trdegE F > 0, our
statement is true for d = −1 and d = 0. (As usual we assume that the degree of
the zero polynomial is −1.)

Let d > 0 and let the statement be true for all nonnegative integers
less than d. Let μU(F,E) ≥ d for some pair (F,E) ∈ BU, so that there
exists a chain of intermediate Δ-σ-fields (1) such that μU(Fi, Fi+1) ≥ d − 1
(i = 0, 1, . . .). If deg(χK,Fi,η(t) − χK,Fi+1,η(t)) ≥ d for some i ∈ N, then
deg(χK,F,η(t) − χK,E,η(t)) ≥ deg(χK,Fi,η(t) − χK,Fi+1,η(t)) ≥ d, so the state-
ment of the proposition is true.

Suppose that deg(χK,Fi,η(t) − χK,Fi+1,η(t)) = d − 1 for every i ∈ N, that is,

χK,Fi,η(t) − χK,Fi+1,η(t) =
d−1∑

j=0

a
(i)
j

(
t + j

j

)

where a
(1)
0 , . . . , a

(i)
d−1 ∈ Z, a

(i)
d−1 > 0.

Then

χK,F,η(t) − χK,Fi+1,η(t) =
i∑

k=0

(χK,Fk,η(t) − χK,Fk+1,η(t)) =
d−1∑

j=0

b
(i)
j

(
t + j

j

)

where b
(i)
0 , . . . , b

(i)
d−1 ∈ Z and b

(i)
d−1 =

∑i
k=0 a

(k)
d−1. Therefore, b

(0)
d−1 < b

(1)
d−1 < . . .

and limi→∞ b
(i)
d−1 = ∞. On the other hand, deg(χK,F,η(t) − χK,Fi+1,η(t)) ≤

deg(χK,F,η(t) − χK,E,η(t)). If deg(χK,F,η(t) − χK,E,η(t)) = d − 1, that is,

χK,F,η(t) − χK,E,η(t) =
d−1∑

j=0

cj

(
t + j

j

)

for some c0, . . . , cd−1 ∈ Z, then we would

have b
(i)
d−1 < cd−1 for all i ∈ N contrary to the fact that limi→∞ b

(i)
d−1 = ∞. Thus,

deg(χK,F,η(t) − χK,E,η(t)) ≥ d, so the proposition is proved.
�
The following theorem provides a relationship between the introduced char-

acteristics of a finitely generated Δ-σ-extension and the invariants of its Δ-σ-
dimension polynomial introduced by Theorem2.

Theorem 5. Let K be an inversive difference-differential (Δ-σ-) field with basic
set Δ

⋃
σ where Δ = {δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of deriva-

tions and automorphisms of K, respectively. Let L be a finitely generated Δ-σ-
field extension of K. Then

(i) type(L/K) ≤ Δ-σ-typeK L ≤ m + n.
(ii) If Δ-σ-trdegK L > 0, then type(L/K) = m+n, dim(L/K) = Δ-σ-trdegK L.
(iii) If Δ-σ-trdegK L = 0, then type(L/K) < m + n.

74 A. Levin

Proof. Let η = {η1, . . . , ηs} be a system of Δ-σ-generators of L over K and
for every r ∈ N, let Lr = K({ληi |λ ∈ Λ(r), 1 ≤ i ≤ s}). Furthermore, if
F is any intermediate Δ-σ-field of the extension L/K, then Fr (r ∈ N) will
denote the field F

⋂
Lr. By Theorem 2, there is a polynomial χK,F,η(t) ∈ Q[t]

such that χK,F,η(r) = trdegK Fr for all sufficiently large r ∈ N, deg χK,F,η ≤
m + n, and this polynomial can be written as χK,F,η(t) =

∑m+n
i=1 ai

(
t+i
i

)
where

a0, . . . , am+n ∈ Z and am+n = Δ-σ-trdegK F . Clearly, if E and F are two
intermediate Δ-σ-fields of L/K and F ⊇ E, then χK,F,η(t) ≥ χK,E,η(t). (This
inequality means that χF (r) ≥ χE(r) for all sufficiently large r ∈ N. As it
is first shown in [18], the set W of all differential dimension polynomials of
finitely generated differential field extensions is well ordered with respect to this
ordering. At the same time, as it is proved in [6, Chapter 2], W is also the set
of all Δ-σ-dimension polynomials associated with finitely generated Δ-σ-field
extensions).

Note that if F ⊇ E and χK,F,η(t) = χK,E,η(t), then the field extension F/E
is algebraic. Indeed, if x ∈ F is transcendental over E, then there exists r0 ∈ N

such that x ∈ Fr for all r ≥ r0. Therefore, trdegK Fr = trdegK Er+trdegEr
Fr >

trdegK Er for all r ≥ r0 hence χK,F,η(t) > χK,E,η(t) contrary to our assumption.
Since deg(χK,F,η(t) − χK,E,η(t)) ≤ m + n for any pair (F,E) ∈ BU, the last

proposition implies that type(L/K) ≤ Δ-σ-typeK L ≤ m+n. If Δ-σ-trdegK L =
0, then type(L/K) ≤ Δ-σ-typeK L < m+n. Thus, it remains to prove statement
(ii) of the theorem.

Let Δ-σ-trdegK L > 0, let element x ∈ L be Δ-σ-transcendental over K
and let F = K〈x〉. Clearly, in order to prove that type(L/K) = m + n it is
sufficient to show that μU(F,K) ≥ m + n. This inequality, in turn, immediately
follows from the consideration of the following m + n strictly descending chains
of intermediate Δ-σ-fields of F/K.

F = K〈x〉 ⊃ K〈δ1x〉 ⊃ K〈δ21x〉 ⊃ · · · ⊃ K〈δi1
1 x〉 ⊃ K〈δi1+1

1 x〉 ⊃ · · · ⊃ K,

K〈δi1
1 x〉 ⊃ K〈δi1+1

1 x, δi1
1 δ2x〉 ⊃ K〈δi1+1

1 x, δi1
1 δ22x〉 ⊃ . . . K〈δi1+1

1 x, δi1
1 δi2

2 x〉 ⊃
K〈δi1+1

1 x, δi1
1 δi2+1

2 x〉 ⊃ · · · ⊃ K〈δi1+1
1 x〉,

. . .

K〈δi1+1
1 x, δi1+1

1 δi2+1
2 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m x〉 ⊃ K〈δi1+1
1 x,

. . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m x, δi1+1
1 . . . δ

im−1+1
m−1 δim

m (α1 − 1)x〉 ⊃
⊃ · · · ⊃ K〈δi1+1

1 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m (α1 − 1)2x〉 ⊃
⊃ · · · ⊃ K〈δi1+1

1 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m (α1 − 1)im+1x〉 ⊃
· · · ⊃ K〈δi1+1

1 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m (α1 − 1)im+1+1x〉 ⊃
· · · ⊃ K〈δi1+1

1 x, δi1+1
1 δi2+1

2 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m x〉,

. . .

Hilbert-Type Dimension Polynomials 75

K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m (α1 − 1)im+1+1 . . . (αn−1 − 1)im+n−1x〉 ⊃
K〈δi1+1

1 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m (α1 − 1)im+1+1 . . .

(αn−1 − 1)im+n−1+1(αn − 1)x〉 ⊃ · · · ⊃ K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . .

δ
im−1+1
m−1 δim

m (α1 − 1)im+1+1 . . . (αn−1 − 1)im+n−1+1(αn − 1)im+nx〉 ⊃ · · · ⊃ K〈δi1+1
1 x,

. . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim

m (α1 − 1)im+1+1 . . . (αn−1 − 1)im+n−1+1x〉.

These m + n chains show that μU(F,K) ≥ m + n, hence type(L/K) =
m + n. Furthermore, if Δ-σ-trdegK L = k > 0 and x1, . . . , xk is a Δ-σ-
transcendence basic of L over K, then every xi (2 ≤ i ≤ k) is Δ-σ-independent
over K〈x1, . . . , xi−1〉. Therefore, the above chains show that μU(K〈x1〉,K) =
μU(K〈x1, x2〉,K〈x1〉) = · · · = μU(K〈x1, . . . , xk〉,K〈x1, . . . , xk−1〉) = m + n,
hence dim(L/K) ≥ k = Δ-σ-trdegK L.

In order to prove the opposite inequality, suppose that F0 ⊇ F1 ⊇ · · · ⊇ Fp

is an ascending chain of intermediate Δ-σ-fields of the extension L/K such that
μU(Fi, Fi+1) = type(L/K) = m+n for i = 0, . . . , p−1. Clearly, in order to prove
our inequality, it is sufficient to show that p ≤ k.

For every i = 0, . . . , p, the Δ-σ-dimension polynomial χK,Fi,η(t), whose
existence is established by Theorem 2, can be written as χK,Fi,η(t) =
m+n∑

j=0

a
(i)
j

(
t + j

j

)

where a
(i)
j ∈ Z (0 ≤ i ≤ p − 1, 0 ≤ j ≤ m + n). Then

χK,F0,η(t) − χK,Fp,η(t) =
p∑

i=1

(χK,Fi−1,η(t) − χK,Fi,η(t)) =
p∑

i=1

m+n∑

j=0

(a(i−1)
j −

a
(i)
j)

(
t + j

j

)

= (a(0)
m+n − a

(p)
m+n)

(
t + m + n

m + n

)

+ o(tm+n) where o(tm+n) denotes

a polynomial of degree at most m + n − 1.
Since μU(Fi, Fi+1) = m + n (0 ≤ i ≤ p − 1), we have deg(χK,Fi,η(t) −

χK,Fi+1,η(t)) = m + n (see Proposition 3). Therefore, a
(0)
m+n > a

(1)
m+n > · · · >

a
(p)
m+n, hence

a
(0)
m+n − a

(q)
m+n =

p∑

i=1

(a(i−1)
m+n − a

(i)
m+n) ≥ p.

On the other hand, χK,F0,η(t) − χK,Fp,η(t) ≤ χK,L,η(t) =
m+n∑

i=0

ai

(
t + i

i

)

where

am+n = Δ-σ-trdegK L. Therefore, p ≤ a
(0)
m+n − a

(p)
m+n ≤ k = σ-trdegK L. This

completes the proof of the theorem.
�

5 Multivariate Dimension Polynomials of Intermediate
difference-Differential Field Extensions

In this section we present a result that generalizes both Theorem 2 and the
theorem on multivariate dimension polynomial of a finitely generated differential

76 A. Levin

field extension associated with a partition of the basic set of derivations, see [9,
Theorem 4.6].

Let K be a difference-differential (Δ-σ-) field with basic sets Δ =
{δ1, . . . , δm} and σ = {α1, . . . , αn} of derivations and automorphisms, respec-
tively. Suppose that these sets are represented as the unions of p and q nonempty
disjoint subsets, respectively (p, q ≥ 1):

Δ = Δ1

⋃
· · ·

⋃
Δp, σ = σ1

⋃
· · ·

⋃
σq, (5)

Δ1 = {δ1, . . . , δm1}, Δ2 = {δm1+1, . . . , δm1+m2}, . . . ,Δp =
{
δm1+···+mp−1

+1, . . . , δm

}
, σ1 = {α1, . . . , αn1}, σ2 = {αn1+1, . . . , αn1+n2}, . . . ,

σq = {αn1+···+nq−1+1, . . . , αn}; (m1 + · · · + mp = m; n1 + · · · + nq = n).
For any element λ = δk1

1 . . . δkm
m αl1

1 . . . αln
n ∈ Λ (ki, lj ∈ N; we use the notation

of Sect. 2), the order of λ with respect to a set Δi (1 ≤ i ≤ p) is defined as
m1+···+mi∑

μ=m1+···+mi−1+1

kμ; it is denoted by ordi λ. (If i = 1, the last sum is replaced by

m1∑

μ=1

kμ.) Similarly, the order of λ with respect to a set σj (1 ≤ j ≤ q), denoted

by ord′
j λ, is defined as

n1+···+nj∑

ν=n1+···+nj−1+1

lν . (If j = 1, the last sum is
n1∑

ν=1

lν .)

If r1, . . . , rp+q ∈ N, we set

Λ(r1, . . . , rp+q) = {λ ∈ Λ| ordi λ ≤ ri (1 ≤ i ≤ p) and ord′
j λ ≤ rp+j(1 ≤ j ≤ q)}.

Furthermore, for any permutation (j1, . . . , jp+q) of the set {1, . . . , p + q}, let
<j1,...,jp+q

be the lexicographic order on Np+q such that (r1, . . . , rp+q) <j1,...,jp+q

(s1, . . . , sp+q) if and only if either rj1 < sj1 or there exists k ∈ N, 1 ≤ k ≤ p + q,
such that rjν

= sjν
for ν = 1, . . . , k and rjk+1 < sjk+1 .

If A ⊆ Np+q, then A′ will denote the set of all (p + q)-tuples a ∈ A that are
maximal elements of this set with respect to one of the (p+q)! orders <j1,...,jp+q

.
Say, if A = {(1, 1, 1), (2, 3, 0), (0, 2, 3), (2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)} ⊆ N3,
then A′ = {(2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)}.

Theorem 6. With the above notation, let F be an intermediate Δ-σ-field of
a Δ-σ-field extension L = K〈η1, . . . , ηs〉 generated by a finite family η =
{η1, . . . , ηs}. Let partitions (5) be fixed and for any r1, . . . , rp+q ∈ Np+q, let

Fr1,...,rp+q
= F

⋂
K(

s⋃

j=1

Λ(r1, . . . , rp+q)ηj).

Then there exists a polynomial in p + q variables ΦK,F,η ∈ Q[t1, . . . , tp+q] such
that

(i) ΦK,F,η(r1, . . . , rp+q) = trdegK K(
s⋃

j=1

Λ(r1, . . . , rp+q)ηj)

Hilbert-Type Dimension Polynomials 77

for all sufficiently large (r1, . . . , rp+q) ∈ Np+q. (That is, there exist
r
(0)
1 , . . . , r

(0)
p+q ∈ N such that the equality holds for all (r1, . . . , rp+q) ∈ Np+q

with ri ≥ r
(0)
i , 1 ≤ i ≤ p + q.);

(ii) degti
Φη ≤ mi (1 ≤ i ≤ p), degtp+j

Φη ≤ nj (1 ≤ j ≤ q) and Φη(t1, . . . , tp+q)
can be represented as

Φη =
m1∑

i1=0

. . .

mp∑

ip=0

n1∑

ip+1=0

. . .

nq∑

ip+q=0

ai1...ip+q

(
t1 + i1

i1

)

. . .

(
tp+q + ip+q

ip+q

)

(6)

where ai1...ip+q
∈ Z.

(iii) Let Eη = {(i1, . . . , ip+q) ∈ Np+q | 0 ≤ ik ≤ mk for k = 1, . . . , p, 0 ≤ ip+j ≤
nj for j = 1, . . . , q, and ai1...ip+q

�= 0}. Then d = deg Φη, am1...mpn1...nq
,

elements (k1, . . . , kp+q) ∈ E′
η, the corresponding coefficients ak1...kp+q

, and
the coefficients of the terms of total degree d do not depend on the choice of
the set of Δ-σ-generators η. Furthermore, am1...mpn1...nq

= Δ-σ-trdegK L.

Proof. We will mimic the method of the proof of Theorem2 using the results
on multivariate dimension polynomials of Δ-σ-L-modules. Let D be the ring
of Δ-σ-operators over L considered as a filtered ring with (p + q)-dimensional
filtration {Dr1,...,rp+q

| (r1, . . . , rp+q) ∈ Zp+q} where for any r1, . . . , rp+q ∈ Np+q,
Dr1,...,rp+q

is the vector L-subspace of D generated by Λ(r1, . . . , rp+q), and
Dr1,...,rp+q

= 0 if at least one ri is negative. If M is a Δ-σ-L-module, then a
family {Mr1,...,rp+q

|(r1, . . . , rp+q) ∈ Zp+q} of vector K-subspaces of M is said to
be a (p + q)-dimensional filtration of M if

(i) Mr1,...,rp+q
⊆ Ms1,...,sp+q

whenever ri ≤ si for i = 1, . . . , p + q.
(ii)

⋃
(r1,...,rp+q)∈Zp+q Mr1,...,rp+q

= M .

(iii) There exists (r(0)1 , . . . , r
(0)
p+q) ∈ Zp such that Mr1,...,rp+q

= 0 if ri < r
(0)
i for

at least one index i.
(iv) Dr1,...,rp+q

Ms1,...,sp+q
⊆ Mr1+s1,...,rp+q+sp+q

for any (p + q)-tuples
(r1, . . . , rp+q), (s1, . . . , sp+q) ∈ Zp+q,

If every vector L-space Mr1,...,rp+q
is finite-dimensional and there exists an

element (h1, . . . , hp) ∈ Zp such that Dr1,...,rp+q
Mh1,...,hp+q

= Mr1+h1,...,rp+q+hp+q

for any (r1, . . . , rp+q) ∈ Np+q, the filtration {Mr1,...,rp+q
|(r1, . . . , rp+q) ∈ Zp+q}

is called excellent. Clearly, if z1, . . . , zk is a finite system of generators of a Δ-
σ-L-module M , then {∑k

i=1 Dr1,...,rp+q
zi|(r1, . . . , rp+q) ∈ Zp+q} is an excellent

(p + q)-dimensional filtration of M .
Let L∗ be the inversive closure of L. As we have seen, the module of Kähler

differentials ΩL∗|K can be equipped with a structure of a Δ-σ∗-L-module such
that β(dζ) = dβ(ζ) for any ζ ∈ L∗, β ∈ Δ

⋃
σ (d = dL∗|K). Let M ′ denote a

D-submodule
∑s

i=1 Ddηi of M treated as a filtered D-module with the nat-
ural (p + q)-dimensional filtration {M ′

r1,...,rp+q
|(r1, . . . , rp+q) ∈ Zp+q} where

M ′
r1,...,rp+q

=
∑s

i=1 Dr1,...,rp+q
dηi. Let N be a D-submodule of M ′ generated

by all elements dζ where ζ ∈ F and for any r1, . . . , rp+q ∈ N, let Nr1,...,rp+q
be

78 A. Levin

the vector L-space generated by all elements dζ where ζ ∈ Fr1,...,rp+q
. Setting

Nr1,...,rp+q
= 0 if (r1, . . . , rp+q) ∈ Zp+q \Np+q, we get a (p+q)-dimensional filtra-

tion of the Δ-σ-L-module N , and the embedding N → M ′ becomes a homomor-
phism of (p + q)-filtered Δ-σ-L-modules. Now, one can mimic the proof of The-
orem 3.2.8 of [12] to show that the filtration {Nr1,...,rp+q

|(r1, . . . , rp+q) ∈ Zp+q}
is excellent. The result of Theorem 6 immediately follows from the fact that
dimL Nr1,...,rp+q

= trdegK Fr1,...,rp+q
for all (r1, . . . , rp+q) ∈ Np+q (as it is men-

tioned in the proof of Theorem 2, a family (ζi)i∈I of elements of L (in particular,
of Fr1,...,rp+q

) is algebraically independent over K if and only if the family (dζi)i∈I

is linearly independent over L) and the result of [12, Theorem 3.5.8] (it states
that under the above conditions, there exists a polynomial ΦK,F,η(t1, . . . , tp+q) ∈
Q[t1, . . . , tp+q] such that Φη(r1, . . . , rp+q) = dimL Nr1,...,rp+q

for all sufficiently
large (r1, . . . , rp+q) ∈ Zp+q and ΦK,F,η(t1, . . . , tp+q) satisfies conditions (ii) of
Theorem 6. Statement (iii) of Theorem 6 can be obtained in the same way as
statement (iii) of Theorem 2 of [13].)

References

1. Einstein, A.: The Meaning of Relativity. Appendix II (Generalization of Gravita-
tion Theory), 4th edn, pp. 133–165. Princeton University Press, Princeton (1953)

2. Johnson, J.L.: Kähler differentials and differential algebra. Ann. Math. 89(2), 92–
98 (1969)

3. Johnson, J.L.: A notion on Krull dimension for differential rings. Comment. Math.
Helv. 44, 207–216 (1969)

4. Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equa-
tions. Bull. Amer. Math. Soc. 70, 570–573 (1964)

5. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

6. Kondrateva, M.V., Levin, A.B., Mikhalev, A.V., Pankratev, E.V.: Differential and
Difference Dimension Polynomials. Kluwer Academic Publishers, Dordrecht (1999)

7. Levin, A.B.: Characteristic polynomials of filtered difference modules and difference
field extensions. Russ. Math. Surv. 33(3), 165–166 (1978)

8. Levin, A.B.: Characteristic polynomials of inversive difference modules and some
properties of inversive difference dimension. Russ. Math. Surv. 35(1), 217–218
(1980)

9. Levin, A.B.: Gröbner bases with respect to several orderings and multivariable
dimension polynomials. J. Symbolic Comput. 42(5), 561–578 (2007)

10. Levin, A.B.: Difference Algebra. Springer, New York (2008)
11. Levin, A.B.: Dimension polynomials of intermediate fields and Krull-type dimen-

sion of finitely generated differential field extensions. Math. Comput. Sci. 4(2–3),
143–150 (2010)

12. Levin, A.: Multivariate dimension polynomials of inversive difference field exten-
sions. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.)
AADIOS 2012. LNCS, vol. 8372, pp. 146–163. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54479-8 7

13. Levin, A.: Dimension polynomials of intermediate fields of inversive difference field
extensions. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS,
vol. 9582, pp. 362–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32859-1 31

https://doi.org/10.1007/978-3-642-54479-8_7
https://doi.org/10.1007/978-3-642-54479-8_7
https://doi.org/10.1007/978-3-319-32859-1_31
https://doi.org/10.1007/978-3-319-32859-1_31

Hilbert-Type Dimension Polynomials 79

14. Levin, A.B.: Multivariate difference-differential polynomials and new invariants of
difference-differential field extensions. In: Proceedings of ISSAC 2013, Boston, MA,
pp. 267–274 (2013)

15. Levin, A.B., Mikhalev A.V.: Difference-Differential Dimension Polynomials.
Moscow State University, VINITI, No. 6848-B 88, pp. 1–64 (1988)

16. Mikhalev, A.V., Pankratev, E.V.: Differential dimension polynomial of a system
of differential equations. Algebra (Collection of Papers). Moscow State University,
Moscow, pp. 57–67 (1980)

17. Morandi, P.: Fields and Galois Theory. Springer, New York (1996)
18. Sit, W.: Well-ordering of certain numerical polynomials. Trans. Amer. Math. Soc.

212, 37–45 (1975)
19. Zhou, M., Winkler, F.: Computing difference-differential dimension polynomials

by relative Gröbner bases in difference-differential modules. J. Symbolic Comput.
43(10), 726–745 (2008)

20. Zhou, M., Winkler, F.: Gröbner bases in difference-differential modules and
difference-differential dimension polynomials. Sci. China, Ser. A Math. 51(9),
1732–1752 (2008)

Comprehensive LU Factors of Polynomial
Matrices

Ana C. Camargos Couto1 , Marc Moreno Maza1, David Linder2,
David J. Jeffrey1(B) , and Robert M. Corless1

1 ORCCA, University of Western Ontario, London, ON, Canada
djeffrey@uwo.ca

2 Maplesoft, Waterloo, ON, Canada

Abstract. The comprehensive LU decomposition of a parametric
matrix consists of a case analysis of the LU factors for each specializa-
tion of the parameters. Special cases can be discontinuous with respect
to the parameters, the discontinuities being triggered by zero pivots
encountered during factorization. For polynomial matrices, we describe
an implementation of comprehensive LU decomposition in Maple, using
the RegularChains package.

Keywords: Parametric linear algebra · LU decomposition · Regular
chains

1 Introduction

Decomposing a matrix A into lower and upper triangular factors L and U
is one of the fundamental operations in linear algebra. It is implemented in
Maple’s LinearAlgebra package as LUDecomposition. For polynomial matri-
ces, the function takes the usual Computer Algebra option of returning only a
generic factorization. Thus, for example,

A1 =

⎡
⎣

1 − x 2 3
2 − x 5 6
x 3 2

⎤
⎦ =

⎡
⎢⎢⎢⎣

1 0 0

x−2
x−1 1 0

−x
x−1

5x−3
3x−1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 − x 2 3

0 3x−1
x−1

3x
x−1

0 0 − 2
3x−1

⎤
⎥⎥⎥⎦ . (1)

The special cases x = 1, 3/2 make the elements singular. The importance of re-
computing singular cases is established in [5], and, in the context of differential
elimination, in [7]. We remark that special cases for LU factoring do not always
occur when pivots are zero, because sometimes alternative pivots can lead to the
same factoring. Indeed special cases can be exactly detected by Maple’s existing
LUDecomposition function through a special syntax implementing the algorithm
of [5], which is not the default because its output is not just a simple answer, as
we discuss below. See [8] for an example of the syntax. Because re-computation

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 80–88, 2020.
https://doi.org/10.1007/978-3-030-43120-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_8&domain=pdf
http://orcid.org/0000-0002-1252-2880
http://orcid.org/0000-0002-2161-6803
http://orcid.org/0000-0003-0515-1572
https://doi.org/10.1007/978-3-030-43120-4_8

Comprehensive LU Factors of Polynomial Matrices 81

is necessary in those special cases by that method, which allows comprehensive
computation but is not itself comprehensive, we do not directly compare our
present implementation to that syntax.

Symbolic computing in the presence of parameters has been the subject of
discussion over many years [1]. Early systems, such as Macsyma, often asked a
user interactively for information regarding a parameter, while other approaches
used provisos, case analyses, error messages, etc. An important distinction is that
between comprehensive approaches and generic approaches. In a comprehensive
approach, a system will attempt to identify and compute all possible special
cases, in contrast to a generic approach which selects one expression, implying
conditions (which may not be stated) on the parameters.

Comprehensive solutions have been defined and used in several areas of math-
ematics. In algebraic geometry, a comprehensive Gröbner Basis was defined in
[6], and a comprehensive triangular system based on regular chains was defined
in [9]. In the Maple package DEtools, the rifsimp program offers a casesplit
option, which is equivalent to a comprehensive analysis. A comprehensive solu-
tion of linear systems was presented in [14]. Computer Algebra systems have
tended to avoid comprehensive results for several reasons. First, there is the
difficulty of continuing a computation using a comprehensive result; secondly,
there has been a fear that the number of cases will multiply exponentially and
overwhelm the system. Although this could happen, there are many problems
for which a comprehensive solution is possible and desirable.

2 Preliminaries

The implementation is based on Maple’s RegularChains library, which we
briefly describe in this section. The notion of a regular chain, introduced inde-
pendently in [2] and [4], is closely related to that of a triangular decomposition
of a polynomial system. Broadly speaking, a triangular decomposition of a poly-
nomial system S is a set of simpler (in a precise sense) polynomial systems
S1, . . . , Se such that a point p is a solution of S if, and only if, p is a solution of
(at least) one of the systems S1, . . . , Se.

If one wishes to describe all the solutions of S, those simpler systems are
required to be regular chains. We refer to [3,10] for a formal presentation on the
concepts of a regular chain.
Multivariate Polynomials. Let K be a field. If K is an ordered field, then we
assume that it is a real closed field such as the field R of real numbers. Otherwise,
we assume that K is algebraically closed, like the field C of complex numbers.
Let X1 < · · · < Xs be s � 1 ordered variables. We denote by K[X1, . . . , Xs]
the ring of polynomials in the variables X1, . . . , Xs with coefficients in K. For a
non-constant polynomial p ∈ K[X1, . . . , Xs], the greatest variable in p is called
the main variable of p, denoted by mvar(p), and the leading coefficient of p w.r.t.
mvar(p) is called the initial of p, denoted by init(p).
Regular Chains. A set R of non-constant polynomials in K[X1, . . . , Xs] is
called a triangular set, if for all p, q ∈ R with p �= q we have mvar(p) �= mvar(p).

82 A. C. Camargos Couto et al.

A variable Xi is said to be free w.r.t. R if there exists no p ∈ R such that
mvar(p)=Xi. For a nonempty triangular set R, we define the saturated ideal
sat(R) of R to be the ideal(R):h∞

R , where hR is the product of the initials of the
polynomials in R. The saturated ideal of the empty triangular set is defined as
the trivial ideal 〈0〉. From now on, R denotes a triangular set of K[X1, . . . , Xs].
The ideal sat(R) has several properties, and in particular it is unmixed [11]. We
denote its height, that is, the number of polynomials in R, by e, thus sat(R) has
dimension s − e. Let Xi1 < · · · < Xie be the main variables of the polynomials
in R. We denote by rj the polynomial of R whose main variable is Xij and by
hj the initial of rj . Thus hR is the product h1 · · ·he. We say that R is a regular
chain whenever R is empty or, {r1, . . . , re−1} is a regular chain and he is regular
modulo the saturated ideal sat({r1, . . . , re−1}).
Constructible Sets. Let F ⊂ K[X1, . . . , Xs] be a set of polynomials and
g ∈ K[X1, . . . , Xs] be a polynomial. We denote by V (F) ⊆ Ks the zero set
or affine variety of F , that is, the set of points in the affine space Ks at which
every polynomial f ∈ F vanishes. If F consists of a single polynomial f , we write
V (f) instead of V (F). We call a constructible set any subset of Ks of the form
V (F)\V (g). Let R ⊂ K[X1, . . . , Xs] be a regular chain and let h ∈ K[X1, . . . , Xs]
be a polynomial. We say that the pair [R, h] is a regular system whenever
h is regular modulo sat(R) and V (hR) ⊆ V (h) holds. We write Z(R, h) for
V (R) \ V (h). One should observe that for a regular system [R, h] the zero set
Z(R, h) is necessarily not empty. Regular systems provide an encoding for con-
structible sets. More precisely, there exists a finite family T of regular systems
[R1, h1], . . . , [Re, he] of K[X1, . . . , Xs] such that

V (F) \ V (g) = Z(R1, h1) ∪ · · · ∪ Z(Re, he).

We call T a triangular decomposition of the constructible set V (F)\V (g). Encod-
ing constructible sets with regular systems has another benefit. It leads to effi-
cient algorithms for performing set-theoretic operations on constructible sets;
see [9]. These operations, as well as the above mentioned triangular decomposi-
tion algorithms, are part of the RegularChains library [12,13] distributed with
the Maple CAS.

3 Comprehensive LU Method

We consider the LU factoring of matrices with multivariate polynomial entries,
using partial pivoting. The pivots are analysed with the RegularChains library
in Maple. Care is taken to identify cases where zero pivots do not, after all,
lead to distinct LU factors. Considering that constructible sets represent the
solution set of a polynomial, if there exists cases where the pivot is zero in a step
of LU decomposition, constructible sets are used to represent their equations.
Subsequently, these equations are used to express the constraints of validity of
each solution branch (e.g.: x = 3/2 for the example shown in Sect. 1)

For the decomposition to be comprehensive (i.e., span all possible scenar-
ios), we need to conduct the row reductions on all possible unique cases that

Comprehensive LU Factors of Polynomial Matrices 83

Fig. 1. Steps towards the comprehensive solution. Each root-to-leaf path represents
a distinct LU decomposition of A. On each step, the calculation is split between two
potential branches. Square nodes represents non-unique, and therefore dropped, cases.

may arise. Therefore, at each step, a pivot’s constructible sets are analysed. Let
CS1 express the solution set of pivot �= 0. This constructible set can be built with
the GeneralConstruct command from the RegularChains library in Maple:

>> GeneralConstruct([],[A(k,k)],R);

Where the first and second arguments express equations and inequations to
build the constructible set from, and the third argument is a polynomial ring.
In order to build CS1, we would give GeneralConstruct one inequation that
represents the condition pivot �= 0, and no equations. If CS1 is nonempty, there
are cases in which the natural matrix pivot can be used for the row reduction
operation; so this operation is recorded in a branch (pivot �= 0 in Fig. 1). Let
CS2 express the solution set of an inequation pivot = 0. Similarly to the other
case, CS2 can be built with the GeneralConstruct command:

>> GeneralConstruct([A(k,k)],[],R);

However, in this case, an equation pivot = 0 is passed as argument to the
function, and no inequations are used. If CS2 is non-empty, we look for an alter-
native pivot in the same column that has an empty CS2 (this way guaranteeing
that there will be no cases where division by zero is possible). The alterna-
tive pivot is used to build the permutation matrix and the original CS2 value is
saved, so that we can keep track of the exception case conditions. The alternative
operation is recorded in a second branch (pivot = 0 in Fig. 1).

This process is repeated iteratively on each step of the LU factoring, every
time splitting the result in two possible cases, and this way forming an incomplete

84 A. C. Camargos Couto et al.

binary tree (incomplete because we only keep the unique leaves). The result is
a group of solutions and their constraints, where the joining of all solution’s
constructible sets form a partition of the variable domain space.

4 Implementation in Maple

We have written a Maple procedure ComprehensiveLU(A,R,opt) to implement
the method described. The arguments are A, a square matrix with polynomial
elements, R, a descriptor of the polynomial ring containing the elements (the
procedure PolynomialRing in the RegularChains library), and opt, to select
different displays of the results. The results are returned as a list of lists. Each
list consists of a factoring (P,L,U), and a constructible set, specifying the con-
ditions. It is our intention to add the ComprehensiveLU procedure as part of the
LinearAlgebra library from Maple in the future.

The options available for the printing of conditions are constructible sets
(the default), prettyprinting and programmable. To present some examples
below, we have unpacked the output using the prettyprinting option, for
easier reading. We have also confined our examples to small matrices with
only a few polynomial entries. In each example, the first case corresponds
to the generic result, and equals the result returned by the Maple command
LinearAlgebra[LUDecomposition].

We return to the introductory example (1).

⎡
⎣

1 − x 2 3
2 − x 5 6
x 3 2

⎤
⎦ =

⎡
⎢⎢⎢⎣

1 0 0

x−2
x−1 1 0

−x
x−1

5x−3
3x−1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 − x 2 3

0 3x−1
x−1

3x
x−1

0 0 − 2
3x−1

⎤
⎥⎥⎥⎦ ,

{
x− 1 �= 0 ,

3x− 1 �= 0 .
(2)

The permutation matrix is I and is omitted. The two conditions are not returned
by Maple. The special cases are

⎡
⎣

1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

1 0 0
1/2 1 0
5/2 0 1

⎤
⎦

⎡
⎣

2/3 2 3
0 2 −1/2
0 0 −3/2

⎤
⎦ ,when

{
3x− 1 = 0 .

and ⎡
⎣

0 0 1
0 1 0
1 0 0

⎤
⎦

⎡
⎣

1 0 0
1 1 0
0 1 1

⎤
⎦

⎡
⎣

1 3 2
0 2 4
0 0 −1

⎤
⎦ , when

{
x− 1 = 0 .

A multivariate example shows how the number of conditions increases as the
number of parameters increases.

A =

⎡
⎣
a 2b 3
d −2 6
7 3 2

⎤
⎦ . (3)

Comprehensive LU Factors of Polynomial Matrices 85

The generic case (also returned by Maple without conditions) is

A =

⎡
⎢⎢⎢⎣

1 0 0

d
a 1 0

7
a

−3a+14b
2bd+2a 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a 2b 3

0 −2bd−2a
a

−3d+6a
a

0 0 (4d−84)b+22a−9d−42
2bd+2a

⎤
⎥⎥⎥⎦ ,

{
a �= 0 ,

a + bd �= 0 .
(4)

There are 3 special cases, and it is interesting to note that they uncover additional
constraints.

A =

⎡
⎣

1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

1 0 0
−7
bd 1 0

−1/b 0 1

⎤
⎦

⎡
⎢⎢⎢⎣

−bd 2b 3

0 3d+14
d

2bd+21
bd

0 0 6b+3
b

⎤
⎥⎥⎥⎦ ,

⎧
⎪⎨
⎪⎩

a + bd = 0
b �= 0
d �= 0

(5)

The second case is

A =

⎡
⎣

0 0 1
0 1 0
1 0 0

⎤
⎦

⎡
⎣

1 0 0
d/7 1 0
0 −14b

3d+14 1

⎤
⎦

⎡
⎢⎢⎢⎣

7 3 2

0 − 3d
7 − 2 − 2d

7 + 6

0 0 −4bd+84b+9d+42
3d+14

⎤
⎥⎥⎥⎦ ,

{
a = 0
3d + 14 �= 0

(6)

Lastly,

A =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

⎡
⎣

1 0 0
0 1 0

−2/3 0 1

⎤
⎦

⎡
⎣

7 3 2
0 2b 3
0 0 22/3

⎤
⎦ ,

{
a = 0 ,

3d + 14 = 0
(7)

4.1 Efficiency

The implementation uses the RegularChains library, which is more efficient at
performing polynomial arithmetic than the older LUDecomposition procedure.
In order to perform comparison tests, we created a set of input matrices with
polynomial elements up to degree 5, and measured the computation time for
the LU factoring of each configuration. To ensure a fair efficiency analysis, the
comparison test restricts the ComprehensiveLU program to computing only the
generic case, in order to keep it comparable with the Maple library. The results
are shown in Fig. 2. See below the script for the efficiency comparison test:

cf := proc(d) randpoly([x_1, x_2, x_3], dense, degree = d); end;
t1 := []: t2 := []: xd := []:
for d from 1 to 2 do # coeff. degree

m := 3; n:= 3; ## order of the matrix
xd := [op(xd),d];
A := Matrix([[cf(d), cf(d), cf(d)], [1, cf(d), cf(d)],

86 A. C. Camargos Couto et al.

Fig. 2. Computation time vs polynomial degree for LUDecomposition of Maple and the
present ComprehensiveLU. Recursion levels were introduced, with ComprehensiveLU
being restricted to computing only the generic case.

[cf(d), 2, 4]]):
R := PolynomialRing([x_3, x_2, x_1]):
t_1 := x_1^n + x_1 + 1; t_2 := x_2^2 - x_1 - 1;
t_3 := x_3^2 - x_2 - 1;
cs := GeneralConstruct([t_1, t_2, t_3], [], R):
t := time(): ComprehensiveLU(A, R, cs);
t1 := [op(t1),time() - t]:
printf("with \%g degree polynomials, ComprehensiveLU took

\%g seconds to compute the result \n",d, time() - t);
a_1:=RootOf(t_1, x_1): a_2:=RootOf(y^2 - a_1 + 1, y):
a_3:=RootOf(z^2 - a_2 + 1, z):
B := eval(A, [x_1 = a_1, x_2 = a_2, x_3 = a_3]);
t := time(): LUDecomposition(B);
t2 := [op(t2),time() - t]:
printf("with \%g degree polynomials, LUDecomposition took

\%g seconds to compute the result \n",d, time() - t);
end do:

The experiment consists of an LU factoring of 3 × 3 matrices with random
polynomials. In order to make the computations algebraically challenging, recur-
rence levels were established to define the polynomial variables, which obey addi-
tional polynomial relationships with highest degree equal to 3. The experiment
script loops over values of the random polynomial degree d ranging from 1 to 5
and records the time it took both algorithms to compute the final result in each
iteration. The plot in Fig. 2 illustrates the comparison findings.

Comprehensive LU Factors of Polynomial Matrices 87

5 Conclusion

In parametric linear algebra, LU decomposition can be a discontinuous operation
if the pivots encountered throughout the factorization are polynomials with roots
defined in the problem’s domain space. The discontinuity equations define special
cases that we carefully consider in this project.

Our aim is to provide a comprehensive tool for computing LU factors of para-
metric matrices in Maple. We have shown that the main existing procedure in
Maple’s LinearAlgebra library, LUDecomposition, can only decompose generic
cases of parametric matrices in an explicit way. Therefore, our algorithmic pro-
cedure ComprehensiveLU can be seen as a complement to the existing library
function.

References

1. Corless, R.M., Jeffrey, D.J.: Well... it isn’t quite that simple. SIGSAM Bull. 26(3),
2–6 (1992)

2. Kalkbrener, M.: Three Contributions to Elimination Theory. Johannes Kepler Uni-
versity, Linz (1991)

3. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comp. 28(1–2), 105–124 (1999)

4. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. International Atomic Energy Agency,
IC/89/263, Miramare, Trieste, Italy (1991)

5. Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix.
SIGSAM Bull. 31(3), 20–30 (1997)

6. Weispfenning, V.: Comprehensive grobner bases. J. Symbolic Comput. 14, 1–29
(1992)

7. Reid, G.: Algorithms for reducing a system of PDEs to standard form, determining
the dimension of its solution space and calculating its Taylor series solution. Eur.
J. Appl. Math. 2, 293–318 (1991)

8. Jeffrey, D.J., Corless R.M.: Linear algebra in Maple. In: Hogben, L. (ed) Chapter
89 in the CRC Handbook of Linear Algebra, 2nd ed. Chapman & Hall/CRC (2013)

9. Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive
triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75187-8 7

10. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

11. Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangu-
lar Systems and the D5 Principle. In: Dumas, J.-G. et al. (eds.) Proceedings of
Transgressive Computing 2006, Granada, Spain (2006)

12. Chen, C., et al.: Solving semi-algebraic systems with the RegularChains library in
Maple. In: Raschau, S. (ed.) Proceedings of the Fourth International Conference
on Mathematical Aspects of Computer Science and Information Sciences (MACIS
2011), pp. 38–51 (2011)

https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/978-3-540-75187-8_7

88 A. C. Camargos Couto et al.

13. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10.
In: Kotsireas, I.S. (ed.) Proceedings of Maple Summer Conference 2005, Waterloo,
Canada (2005)

14. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comp.
13, 353–394 (1992)

Sublinear Cost Low Rank Approximation
via Subspace Sampling

Victor Y. Pan1(B), Qi Luan2, John Svadlenka3, and Liang Zhao1,3

1 Department of Computer Science,
Lehman College of the City University of New York, Bronx, NY 10468, USA

victor.pan@lehman.cuny.edu
2 Program in Mathematics, The Graduate Center of the City University of New

York, New York, NY 10036, USA
qi luan@yahoo.com

3 Program in Computer Science, The Graduate Center of the City University of New
York, New York, NY 10036, USA

jsvadlenka@gradcenter.cuny.edu, lzhao1@gc.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Low Rank Approximation (LRA) of a matrix is a hot
research subject, fundamental for Matrix and Tensor Computations and
Big Data Mining and Analysis. Computations with LRA can be per-
formed at sublinear cost, that is, by using much fewer memory cells and
arithmetic operations than an input matrix has entries. Although every
sublinear cost algorithm for LRA fails to approximate the worst case
inputs, we prove that our sublinear cost variations of a popular subspace
sampling algorithm output accurate LRA of a large class of inputs.

Namely, they do so with a high probability (whp) for a random
input matrix that admits its LRA. In other papers we propose and ana-
lyze other sublinear cost algorithms for LRA and Linear Least Sqaures
Regression. Our numerical tests are in good accordance with our formal
results.

Keywords: Low-rank approximation · Sublinear cost · Subspace
sampling

2000 Math. Subject Classification: 65Y20 · 65F30 · 68Q25 ·
68W20 · 15A52

1 Introduction

LRA Background. Low rank approximation (LRA) of a matrix is a hot
research area of Numerical Linear Algebra (NLA) and Computer Science (CS)
with applications to fundamental matrix and tensor computations and Data
Mining and Analysis (see surveys [HMT11,M11,KS17], and [CLO16]). Matri-
ces from Big Data (e.g., unfolding matrices of multidimensional tensors) are
frequently so immense that realistically one can access only a tiny fraction of
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 89–104, 2020.
https://doi.org/10.1007/978-3-030-43120-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_9

90 V. Y. Pan et al.

their entries, although quite typically these matrices admit their LRA (cf. (1)
in Sect. 2). One can operate with such matrices at sublinear computational cost,
that is, by using much fewer memory cells and arithmetic operations than an
input matrix has entries, but can we compute LRA at sublinear cost? Yes and
no. No, because every sublinear cost LRA algorithm fails even on the small input
families of AppendixB. Yes, because our sublinear cost variations of a popular
subspace sampling algorithm output accurate LRA for a large class of input.

Let us provide some details.
Subspace sampling algorithms compute LRA of a matrix M by using auxil-

iary matrices FM , MH or FMH for random multipliers F and H, commonly
called test matrices and having smaller sizes. The output LRA are nearly opti-
mal whp provided that F and H are Gaussian, Rademacher’s, SRHT or SRFT
matrices;1 furthermore the algorithms consistently output accurate LRA in their
worldwide application with these and some other random multipliers F and H,
all of which, however, are multiplied by M at superlinear cost (see [TYUC17,
Section 3.9], [HMT11, Section 7.4], and the bibliography therein).

Our modifications are deterministic. They use fixed sparse orthogonal (e.g.,
subpermutation) multipliers2 F and H, run at sublinear cost, and whp output
reasonably close dual LRA, i.e., LRA of a random input admitting LRA; we
deduce our error estimates under three distinct models of random matrix com-
putations in Sections 4.1 – 4.3. Unlike the customary randomized algorithms
of [HMT11], [M11], [KS17], which perform at superlinear cost and which whp
output close LRA of any matrix that admits LRA, our deterministic algorithms
run at sublinear cost and whp output close LRA of many such matrices and in
a sense most of them. Namely we prove that whp they output close LRA of a
random input matrix that admits LRA.

How meaningful are our results? Our definitions of three classes of random
matrices of low numerical rank are quite natural for various real world applica-
tions of LRA, but are odd for some other ones, as is the case with any definition
of that kind. In spite of such odds, however, our formal study is in good accor-
dance with our numerical tests for both synthetic and real world inputs, some
from [HMT11]. Surely it is not realistic to assume that an input matrix is ran-
dom, but we can randomize it by means of pre-processing of an input with
random multipliers and then apply our results. Moreover, empirically such a
randomized pre-processing and sublinear cost pre-processing with proper sparse
multipliers consistently give similar results.

Our upper bounds on the output error of LRA of an m×n matrix of numerical
rank r exceed the optimal error bound by a factor of

√
min{m,n}r, but if

the optimal bound is small enough we can apply two algorithms for iterative

1 Here and hereafter “Gaussian matrices” stands for “Gaussian random matrices”
(see Definition 1). “SRHT and SRFT” are the acronyms for “Subsample Random
Hadamard and Fourier transforms”. Rademacher’s are the matrices filled with iid
variables, each equal to 1 or −1 with probability 1/2.

2 Subpermutation matrices are full-rank submatrices of permutation matrices.

Sublinear Cost Low Rank Approximation via Subspace Sampling 91

refinement of LRA, proposed in [PLa], running at sublinear cost, and reasonably
efficient according to the results of numerical tests in [PLa].

As we discussed earlier, any sublinear cost LRA algorithm (and ours are
no exception) fails on some families of hard inputs, but our analysis and tests
show that the class of such inputs is narrow. We conjecture that it shrinks fast
if we recursively apply the same algorithm with new multipliers; in Sect. 5 we
comment of some heuristic recipes for these recursive processes; our numerical
tests consistently confirm their efficiency.

Impact of Our Study, Its Extensions and By-Products

(i) Our duality approach is efficient for some fundamental matrix computations
besides LRA: [PQY15,PZ17a], and [PZ17b] formally support empirical effi-
ciency of dual Gaussian elimination with no pivoting, while [LPb] proposes
a dual sublinear cost deterministic modification of Sarlós’ randomized algo-
rithm of 2006 and then proves that whp it outputs nearly optimal solution
of the important problem of Linear Least Squares Regression (LLSR) for
random input, and consequently for a large class of inputs – in a sense for
most of them. This formal study turned out to be in very good accordance
with the results of our extensive tests with synthetic and real world inputs.

(ii) In the paper [PLa] we proposed, analyzed, and tested new sublinear cost
algorithms for refinement of a crude but reasonably close LRA.

(iii) In [LPa] and [PLSZa] we proved that popular Cross-Approximation LRA
algorithms running at sublinear cost as well as our simplified sublinear
cost variations of these algorithms output accurate solution of dual LRA
whp, and we also devised a sublinear cost algorithm for transformation of
any LRA into its special form of CUR LRA, which is particularly memory
efficient.

(iv) Our acceleration of LRA can be immediately extended to the acceleration
of Tensor Train Decomposition because it is reduced to recursive compu-
tation of LRA of unfolding matrices. Likewise our results can be readily
extended to Tucker Decomposition of tensors because Tucker Decomposi-
tion is essentially LRA of unfolding matrices of a tensor. Extension to CP
Decomposition of Tensors, however, remains a challenge.

(v) In [LPa] we also extended our progress by devising deterministic and prac-
tically promising algorithm that at sublinear cost computes accurate LRA
for a symmetric positive semidefinite matrix admitting LRA.

Related Works. LRA has huge bibliography; see, e.g., [M11,HMT11,KS17].
The papers [PLSZ16] and [PLSZ17] have provided the first formal support
for dual accurate randomized LRA at sublinear cost (they call sublinear cost
algorithms superfast). The earlier papers [PQY15,PLSZ16,PZ17a], and [PZ17b]
studied duality for other fundamental matrix computations besides LRA, and
we have already cited extension of our progress in [PLa], [LPa] and [LPb].

Organization of the Paper. In Sect. 2 we recall random sampling for LRA.
In Sects. 3 and 4 we estimate output errors of our dual LRA algorithms running

92 V. Y. Pan et al.

at sublinear cost. In Sect. 5 we generate multipliers for both pre-processing and
sampling. AppendixA is devoted to background on matrix computations. In
AppendixB we specify some small families of inputs on which any sublinear
cost LRA algorithm fails. Because of size limitation for this paper we leave to
[PLSZb] various details, our historical comments, the test results, and some
proofs, in particular the proofs of Theorems 5 and 6.

Some Definitions. The concepts “large”, “small”, “near”, “close”, “approxi-
mate”, “ill-” and “well-conditioned”, are usually quantified in the context. “�”
and “�” mean “much less than” and “much greater than”, respectively. “Flop”
stands for “floating point arithmetic operation”; “iid” for “independent identi-
cally distributed”. In context a “perturbation of a matrix” can mean a perturba-
tion having a small relative norm. Rp×q denotes the class of p × q real matrices.
We assume dealing with real matrices throughout, and so the Hermitian trans-
pose M∗ of M turns into transpose MT , but our study can be readily extended
to complex matrices; see some relevant results about complex Gaussian matrices
in [E88,CD05,ES05], and [TYUC17].

2 Four Known Subspace Sampling Algorithms

Hereafter || · || and || · ||F denote the spectral and the Frobenius matrix norms,
respectively; | · | can denote either of them. M+ denotes the Moore – Penrose
pseudo inverse of M .

Next we devise a sublinear cost algorithm for LRA XY of matrix M such
that

M = XY + E, ||E||/||M || ≤ ε, (1)

for pairs of matrices X of size m × r and Y of size r × n, a matrix norm || · ||,
and a small tolerance ε.

Algorithm 1. Range Finder (see Remark 1).

Input: An m × n matrix M and a target rank r.
Output: Two matrices X ∈ Rm×l and Y ∈ Rl×m defining an LRA M̃ = XY ..
Initialization: Fix an integer l, r ≤ l ≤ n, and an n×l test matrix (multiplier)

H of rank l.
Computations:

1. Compute the m × l matrix MH.
2. Fix a nonsingular matrix T−1 ∈ Rl×l and output the matrix X :=

MHT−1 ∈ Rm×l.
3. Output an l × n matrix Y := argminV |XV − M | = X+MT .

Remark 1. Let rank(FM) = k. Then XY = MH(MH)+M independently of
the choice of T−1, but a proper choice of a nonsingular matrix T numeri-
cally stabilizes the algorithm. For l > r ≥ nrank(MH) the matrix MH is
ill-conditioned,3 but let Q and R be the factors of the thin QR factorization
3 nrank(W) denotes numerical rank of W (see AppendixA.1).

Sublinear Cost Low Rank Approximation via Subspace Sampling 93

of MH, choose T := R, and observe that X = MHT−1 = Q is an orthogonal
matrix. X = MHT−1 is also an orthogonal matrix if T = RΠ and if R and Π
are factors of a rank-revealing QRΠ factorization of MH.

Column Subspace Sampling turns into Column Subset Selection in the case
of a subpermutation matrix H.

Algorithm 2. Transposed Range Finder (see Remark 2).

Input: As in Algorithm 1.
Output: Two matrices X ∈ Rk×n and Y ∈ Rm×k defining an LRA M̃ = Y X.
Initialization: Fix an integer k, r ≤ k ≤ m, and a k × m test matrix (multi-

plier) F of full numerical rank k.
Computations:

1. Compute the k × m matrix FM .
2. Fix a nonsingular k × k matrix S−1; then output k × n matrix X :=

S−1FM .
3. Output an m × k matrix Y := argminV |V X − M |.

Row Subspace Sampling turns into random Row Subset Selection in the case of
a subpermutation matrix F .

Remark 2. Y = M(S−1FM)+ and Y X = M(FM)+FM independently of the
choice of S−1 if rank(FM) = l, but a proper choice of S numerically stabilizes
the algorithm. For k > r ≥ nrank(FMH) the matrix FMH is ill-conditioned,
but S−1FM is orthogonal if S = L, X := Q = L−1FM , Y := Q∗M , and L and
Q are the factors of the thin LQ factorization of FM .

The following algorithm combines row and column subspace sampling. In the
case of the identity matrix S it turns into the algorithm of [TYUC17, Section 1.4],
whose origin can be traced back to [WLRT08].

Algorithm 3. Row and Column Subspace Sampling (see Remark 3).

Input: As in Algorithm 1.
Output: Two matrices X ∈ Rm×k and Y ∈ Rk×m defining an LRA M̃ = XY .
Initialization: Fix two integers k and l, r ≤ k ≤ m and r ≤ l ≤ n; fix two test

matrices (multipliers) F ∈ Rk×m and H ∈ Rn×l of full numerical ranks and
two nonsingular matrices S ∈ Rk×k and T ∈ Rl×l.

Computations:
1. Output the matrix X = MHT−1 ∈ Rm×l.
2. Compute the matrices U := S−1FM ∈ Rk×n and W := S−1FX ∈ Rm×l.
3. Output the l × n matrix Y := argminV |W+V − U |.

Remark 3. Y X = MH(FMH)+FM independently of the choice of the matrices
S−1 and T−1 if the matrix FMH has full rank min{k, l}, but a proper choice of S
and T numerically stabilizes the computations of the algorithm. For min{k, l} >
r ≥ nrank(FMH) the matrix FMH is ill-conditioned, but we can make it
orthogonal by properly choosing the matrices S−1 and T−1.

94 V. Y. Pan et al.

Remark 4. By applying Algorithm 3 to the transpose matrix M∗ we obtain
Algorithm 4, which begins with column subspace sampling followed by row
subspace sampling. Our study of Algorithms 1 and 3 for input M actually covers
Algorithms 2 and 4 as well.

Next we estimate the output errors of Algorithm 1 for any input; then extend
these estimates to the output of Algorithm 3, at first for any input and then for
random inputs.

3 Deterministic Error Bounds for Sampling Algorithms

Suppose that we are given matrices MHT−1 and S−1FM . We can perform Algo-
rithm 3 at arithmetic cost in O(kln), which is sublinear if kl � m. Furthermore
let k2 � m and l2 � n. Then for proper deterministic choice of sparse (e.g.,
subpermutation) matrices S and T we can also compute the matrices MHT−1

and S−1FM at sublinear cost and thus complete computations of entire Algo-
rithm 3 at sublinear cost. In this case we cannot ensure any reasonable accuracy
of the output LRA for a worst case input and even for small input families of
AppendixB, but we are going to prove that the output of that deterministic
algorithm is quite accurate whp for random input and therefore for a large class
of inputs, which is in good accordance with the results of our tests with synthetic
and real world inputs.

We deduce some auxiliary deterministic output error bounds for any fixed
input matrix in this section and refine them for random input under our prob-
abilistic models in the next section. It turned out that the output error bounds
are dominated at the stage of performing Range Finder because in Sect. 3.2 we
rather readily bound additional impact of pre-processing with multipliers F and
S−1F .

3.1 Deterministic Error Bounds for Range Finder

Theorem 1 [HMT11, Theorem 9.1]. Suppose that Algorithm 1 has been applied
to a matrix M with a multiplier H and let

C1 = V ∗
1 H, C2 = V ∗

2 H, (2)

M =
(

U1 Σ1 V ∗
1

U2 Σ2 V ∗
2

)
, Mr = U1Σ1V

∗
1 , and M − Mr = U2Σ2V

∗
2 (3)

be SVDs of the matrices M , its rank-r truncation Mr, and M −Mr, respectively.
[Σ2 = O and XY = M if rank(M) = r. The columns of V ∗

1 span the top right
singular space of M .] Then

|M − XY |2 ≤ |Σ2|2 + |Σ2C2C
+
1 |2. (4)

Notice that |Σ2| = σ̄r+1(M), |C2| ≤ 1, and |Σ2C2C
+
1 | ≤ |Σ2| |C2| |C+

1 | and
obtain

|M − XY | ≤ (1 + |C+
1 |2)1/2σ̄r+1(M) for C1 = V ∗

1 H. (5)

Sublinear Cost Low Rank Approximation via Subspace Sampling 95

It follows that the output LRA is optimal up to a factor of (1 + |C+
1 |2)1/2.

Next we deduce an upper bound on the norm |C+
1 | in terms of ||((MH)r)+||,

||M ||, and η := 2σr+1(M) ||((MH)r)+||.
Corollary 1. Under the assumptions of Theorem 1 let the matrix MrH have
full rank r. Then

|(MrH)+|/|M+
r | ≤ |C+

1 | ≤ |(MrH)+| |Mr| ≤ |(MrH)+| |M |.
Proof. Deduce from (2) and (3) that MrH = U1Σ1C1. Hence C1 = Σ−1

1 U∗
1MrH.

Recall that the matrix MrH has full rank r, apply Lemma 2, recall that U1

is an orthogonal matrix, and obtain |(MrH)+|/|Σ−1
1 | ≤ |C+

1 | ≤ |(MrH)+| |Σ1|.
Substitute |Σ1| = |Mr| and |Σ−1

1 | = |M+
r | and obtain the corollary.

Corollary 2. See [PLSZb]. Under the assumptions of Corollary 1 let

η := 2σr+1(M) ||((MH)r)+|| < 1, η′ :=
2σr+1(M)

1 − η
||((MH)r)+|| < 1.

Then
1 − η′

||M+
r || ||((MH)r)+|| ≤ ||C+

1 || ≤ ||M ||
1 − η

||((MH)r)+||.

For a given matrix MH we compute the norm ||((MH)r)+|| at sublinear
cost if l2 � n. If also some reasonable upper bounds on ||M || and σr+1(M) are
known, then Corollary 2 implies a posteriori estimates for the output errors of
Algorithm 1.

3.2 Deterministic Impact of Pre-multiplication on the Errors of
LRA

It turned out that the impact of pre-processing with multipliers S−1F into the
output error bounds is dominated at the stage of Range Finder.

Lemma 1. [The impact of pre-multiplication on LRA errors.] Suppose that
Algorithm 3 outputs a matrix XY for Y = (FX)+FM and that m ≥ k ≥
l = rank(X). Then

M − XY = W (M − XX+M) for W = Im − X(FX)+F, (6)

|M − XY | ≤ |W | |M − XX+M |, |W | ≤ |Im| + |X| |F | |(XF)+|. (7)

Proof. Recall that Y = (FX)+FM and notice that (FX)+FX = Il if k ≥ l =
rank(FX). Therefore Y = X+M + (FX)+F (M − XX+M). Consequently (6)
and (7) hold.

We bounded the norm |M −XX+M | in the previous subsection; next we bound
the norms |(FX)+| and |W | of the matrices FX and W , computed at sublinear
cost for kl � n, a fixed orthogonal X, and proper choice of sparse F .

96 V. Y. Pan et al.

Theorem 2. [P00, Algorithm 1] for a real h > 1 applied to an m× l orthogonal
matrix X performs O(ml2) flops and outputs an l×m subpermutation matrix F
such that ||(FX)+|| ≤ √

(m − l)lh2 + 1, and ||W || ≤ 1 +
√

(m − l)lh2 + 1, for
W = Im + X(FX)+F of (6) and any fixed h > 1; ||W || ≈ √

ml for m � l and
h ≈ 1.

[P00, Algorithm 1] outputs l×m matrix F . One can strengthen deterministic
bounds on the norm |W | by computing proper k × m subpermutation matrices
F for k of at least order l2.

Theorem 3. For k of at least order l2 and a fixed orthogonal multiplier X com-
pute a k × m subpermutation multiplier F by means of deterministic algorithms
by Osinsky, running at sublinear cost and supporting [O18, equation (1)]. Then
||W || ≤ 1 + ||(FX)+|| = O(l) for W of (6).

4 Accuracy of Sublinear Cost Dual LRA Algorithms

Next we estimate the output errors of Algorithm 1 for a fixed orthogonal matrix
H and two classes of random inputs of low numerical rank, in particular for
perturbed factor-Gaussian inputs of Definition 2. These estimates formally sup-
port the observed accuracy of Range Finder with various dense multipliers (see
[HMT11, Section 7.4], and the bibliography therein), but also with sparse mul-
tipliers, with which Algorithms 3 and 4 run at sublinear cost.4 We extend these
upper estimates for output accuracy to variations of Algorithm 3 that run at
sublinear cost; then we extend them to Algorithm 4 by means of transposition
of an input matrix. This study involves the norms of a Gaussian matrix and its
pseudo inverse, whose estimates we recall in Appendix A.4.

Hereafter d= denotes equality in probability distribution.

Definition 1. A matrix is Gaussian if its entries are iid Gaussian (normal)
variables. We let Gp×q denote a p × q Gaussian matrices, and define random
variables νp,q

d= |G|, νsp,p,q
d= ||G||, νF,p,q

d= ||G||F , ν+
p,q

d= |G+|, ν+
sp,p,q

d= ||G+||,
and ν+

F,p,q
d= ||G+||F , for a p × q random Gaussian matrix G. [νp,q

d= νq,p and

ν+
p,q

d= ν+
q,p, for all pairs of p and q.]

Theorem 4 [Non-degeneration of a Gaussian Matrix]. Let F
d= Gr×p, H

d=
Gq×r, M ∈ Rp×q and r ≤ rank(M). Then the matrices F , H, FM , and MH
have full rank r with probability 1.

Assumption 1. We simplify the statements of our results by assuming that a
Gaussian matrix has full rank and ignoring the probability 0 of its degeneration.

In Theorems 5 and 6 of the next subsections we state our error estimates,
which we prove in [PLSZb].
4 We defined Algorithm 4 in Remark 4

Sublinear Cost Low Rank Approximation via Subspace Sampling 97

4.1 Errors of Range Finder for a Perturbed Factor-Gaussian Input

Assumption 2. Suppose that M̃ = AB is a right m×n factor Gaussian matrix
of rank r, H = UHΣHV ∗

H is a n × l test matrix, and let θ = e
√

l(
√

n+
√

r)
l−r be

a constant. Here and hereafter e := 2.71828182 Define random variables
ν = ||B|| and μ = ||(BUH)+||, and recall that ν

d= νsp,r,n and μ
d= ν+

sp,r,l.

Theorem 5. [Errors of Range Finder for a perturbed factor-Gaussian matrix.]
Under Assumption 2, let φ =

(
νμ||H+||)−1 − 4α||H||, and let M = M̃ + E be a

right factor Gaussian with perturbation such that

α :=
||E||F

(σr(M) − σr+1(M))
≤ min

(
0.2,

ξ

8κ(H)θ

)
(8)

where 0 < ξ < 2−0.5. Apply Algorithm 1 to M with a test matrix (multiplier) H.
Then

||M − XY ||2 ≤
(
1 + φ−2

)
σ2

r+1(M) and

||M − XY || ≤
(
1 + 2||H+||θ/ξ

)
σr+1(M) (9)

with a probability no less than 1 − 2
√

ξ. If r � l, then θ ≈ e
√

n/l, implying that
the coefficient of σr+1(M) on the right hand side of (9) is close to

1 +
2e||H+||

ξ

√
n/l = O(

√
n/l).

4.2 Output Errors of Range Finder Near a Matrix with a Random
Singular Space

Next we state similar estimates under an alternative randomization model for
dual LRA.

Theorem 6 [Errors of Range Finder for an input with a random singular space].
Let the matrix V1 in Theorem 1 be the n × r Q factor in a QR factorization of
a normalized n × r Gaussian matrix G and let the multiplier H = UHΣHV ∗

H be
any n × l matrix of full rank l ≥ r.

(i) Then for random variables ν = |G| and μ = |GT UH |, it holds that

|M − XY |/σ̄r+1(M) ≤ φr,l,n := (1 + (νμ|H+|)2)1/2.

(ii) For n ≥ l ≥ r + 4 ≥ 6, with a probability at most 1 − 2
√

ξ it holds that

φ2
sp,r,l,n ≤ 1 + ξ−2 e2 ||H+||2(

√
l(

√
n +

√
r)

l − r

)2

and
φ2

F,r,l,n ≤ 1 + ξ−2 r2 ||H+||2F
n

l − r − 1
.

Here ||H+|| = 1 and ||H+||F =
√

l if the matrix H is orthogonal.

Bound the output errors of Algorithms 3 and 4 by combining the estimates
of this section and Sect. 3.2 and by transposing an input matrix M .

98 V. Y. Pan et al.

4.3 Impact of Pre-multiplication in the Case of Gaussian Noise

Next deduce randomized estimates for the impact of pre-multiplication in the
case where an input matrix M includes considerable additive white Gaussian
noise,5 which is a classical representation of natural noise in information theory,
is widely adopted in signal and image processing, and in many cases properly
represents the errors of measurement and rounding (cf. [SST06]).

Theorem 7. Suppose that two matrices F ∈ Rk×m and H ∈ Rn×l are orthogo-
nal where k ≥ 2l + 2, l ≥ 2 and k, l < min(m,n), A ∈ Rm×n, λE is a positive
scalar,

M = A + E,
1

λE
E

d= Gm×n, (10)

and W = Im − MH(FMH)+F (cf. (6) for X = MH). Then

E

(||W ||F − √
m

λE ||M ||F
)

≤
√

l

k − 2l − 1
and E

(||W || − 1
λE ||M ||

)
≤ e

√
k − l

k − 2l
. (11)

Proof. Assumption (10) and Lemma 5 together imply that FEH is a scaled
Gaussian matrix: 1

λE
FEH

d= Gk×l. Hence FMH = FAH + λEGk,l. Apply
Theorem 10 and obtain

E ||(FMH)+|| ≤ λE
e
√

k − l

k − 2l
and E ||(FMH)+||F ≤ λE

√
l

k − 2l − 1

Recall from (6) that |W | ≤ |Im| + |(FMH)+| |M | since the multipliers F and
H are orthogonal, and thus

E|W | ≤ |Im| + |M | · E |(FMH)+|.

Substitute equations ||Im||F =
√

m and ||Im|| = 1 and claim (iii) of Theorem
12 and obtain (11).

Remark 5. For k = l = ρ, S = T = Ik, subpermutation matrices F and H, and
a nonsingular matrix FMH, Algorithms 3 and 4 output LRA in the form CUR
where C ∈ Rm×ρ and R ∈ Rρ×n are two submatrices made up of ρ columns and
ρ rows of M and U = (FMH)−1. [PLSZa] extends our current study to devising
and analyzing algorithms for the computation of such CUR LRA in the case
where k and l are arbitrary integers not exceeded by ρ.

5 Additive white Gaussian noise is statistical noise having a probability density func-
tion (PDF) equal to that of the Gaussian (normal) distribution.

Sublinear Cost Low Rank Approximation via Subspace Sampling 99

5 Multiplicative Pre-processing for LRA

We proved that sublinear cost variations of Algorithms 3 and 4 whp output
accurate LRA of a random input. In the real world computations input matrices
are not random, but we can randomize them by multiplying them by random
matrices.

Algorithms 1–4 output accurate LRA whp if such multipliers are Gaussian,
SRHT, SRFT or Rademacher’s (cf. [HMT11, Sections 10 and 11], [T11]. Multi-
plication by these matrices runs at a superlinear cost, and our heuristic recipe
is to apply these algorithms with a small variety of sparse multipliers Fi and/or
Hi, i = 1, 2, . . . , with which computational cost becomes sublinear, and then to
monitor the accuracy of the output LRA by applying the criteria of the previous
section, [PLa], and/or [PLSZa].

Various families of sparse multipliers have been proposed, extensively tested
in [PLSZ16] and [PLSZ17], and turned out to be nearly as efficient as Gaussian
multpliers according to these tests. One can readily complement these families
with subpermutation matrices and, say, sparse quasi Rademacher’s multipli-
ers (see [PLSZa]) and then combine these basic multipliers together into their
orthogonalized sums, products or other lower degree polynomials (cf. [HMT11,
Remark 4.6]).

Acknowledgements. We were supported by NSF Grants CCF–1116736, CCF–
1563942, CCF–1733834 and PSC CUNY Award 69813 00 48.

Appendix

A Background on Matrix Computations

A.1 Some Definitions

– An m × n matrix M is orthogonal if M∗M = In or MM∗ = Im.
– For M = (mi,j)

m,n
i,j=1 and two sets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, define

the submatrices MI,: := (mi,j)i∈I;j=1,...,n,M:,J := (mi,j)i=1,...,m;j∈J , and
MI,J := (mi,j)i∈I;j∈J .

– rank(M) denotes the rank of a matrix M .
– argmin|E|≤ε|M | rank(M +E) is the ε-rank(M) it is numerical rank, nrank(M),

if ε is small in context.
– Write σj(M) = 0 for j > r and obtain Mr, the rank-r truncation of M .
– κ(M) = ||M || ||M+|| is the spectral condition number of M .

A.2 Auxiliary Results

Next we recall some relevant auxiliary results (we omit the proofs of two well-
known lemmas).

100 V. Y. Pan et al.

Lemma 2 [The norm of the pseudo inverse of a matrix product]. Suppose that
A ∈ Rk×r, B ∈ Rr×l and the matrices A and B have full rank r ≤ min{k, l}.
Then |(AB)+| ≤ |A+| |B+|.
Lemma 3 (The norm of the pseudo inverse of a perturbed matrix, [B15, The-
orem 2.2.4]). If rank(M + E) = rank(M) = r and η = ||M+|| ||E|| < 1, then

1√
r
||(M + E)+|| ≤ ||(M + E)+|| ≤ 1

1 − η
||M+||.

Lemma 4 (The impact of a perturbation of a matrix on its singular values,
[GL13, Corollary 8.6.2]). For m ≥ n and a pair of m × n matrices M and M +E
it holds that

|σj(M + E) − σj(M)| ≤ ||E|| for j = 1, . . . , n.

Theorem 8 (The impact of a perturbation of a matrix on its top singular
spaces, [GL13, Theorem 8.6.5]). Let g =: σr(M) − σr+1(M) > 0 and ||E||F ≤
0.2g. Then for the left and right singular spaces associated with the r largest sin-
gular values of the matrices M and M + E, there exist orthogonal matrix bases
Br,left(M), Br,right(M), Br,left(M + E), and Br,right(M + E) such that

max{||Br,left(M+E)−Br,left(M)||F , ||Br,right(M+E)−Br,right(M)||F } ≤ 4||E||F
g .

For example, if σr(M) ≥ 2σr+1(M), which implies that g ≥ 0.5 σr(M), and if
||E||F ≤ 0.1 σr(M), then the upper bound on the right-hand side is approxi-
mately 8||E||F /σr(M).

A.3 Gaussian and Factor-Gaussian Matrices of Low Rank and Low
Numerical Rank

Lemma 5 [Orthogonal invariance of a Gaussian matrix]. Suppose that k, m,
and n are three positive integers, k ≤ min{m,n}, Gm,n

d= Gm×n, S ∈ Rk×m,
T ∈ Rn×k, and S and T are orthogonal matrices. Then SG and GT are Gaussian
matrices.

Definition 2 [Factor-Gaussian matrices]. Let r ≤ min{m,n} and let Gm×n
r,B ,

Gm×n
A,r , and Gm×n

r,C denote the classes of matrices Gm,rB, AGr,n, and Gm,rCGr,n,
respectively, which we call left, right, and two-sided factor-Gaussian matrices
of rank r, respectively, provided that Gp,q denotes a p × q Gaussian matrix,
A ∈ Rm×r, B ∈ Rr×n, and C ∈ Rr×r, and A, B and C are well-conditioned
matrices of full rank r.

Theorem 9. The class Gm×n
r,C of two-sided m × n factor-Gaussian matrices

Gm,rΣGr,n does not change if in its definition we replace the factor C by a
well-conditioned diagonal matrix Σ = (σj)r

j=1 such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Sublinear Cost Low Rank Approximation via Subspace Sampling 101

Proof. Let C = UCΣCV ∗
C be SVD. Then A = Gm,rUC

d= Gm×r and B =

V ∗
CGr,n

d= Gr×n by virtue of Lemma 5, and so Gm,rCGr,n = AΣCB for A
d=

Gm×r, B
d= Gr×n, and A independent from B.

Definition 3. The relative norm of a perturbation of a Gaussian matrix is the
ratio of the perturbation norm and the expected value of the norm of the matrix
(estimated in Theorem 11).

We refer to all three matrix classes above as factor-Gaussian matrices of
rank r, to their perturbations within a relative norm bound ε as factor-Gaussian
matrices of ε-rank r, and to their perturbations within a small relative norm as
factor-Gaussian matrices of numerical rank r to which we also refer as pertur-
bations of factor-Gaussian matrices.

Clearly ||(AΣ)+|| ≤ ||Σ−1|| ||A+|| and ||(ΣB)+|| ≤ ||Σ−1|| ||B+|| for a two-
sided factor-Gaussian matrix M = AΣB of rank r of Definition 2, and so whp
such a matrix is both left and right factor-Gaussian of rank r.

Theorem 10. Suppose that λ is a positive scalar, Mk,l ∈ Rk×l and G a k × l
Gaussian matrix for k − l ≥ l + 2 ≥ 4. Then, we have

E ||(Mk,l + λG)+|| ≤ λe
√

k − l

k − 2l
and E ||(Mk,l + λG)+||F ≤ λ

√
l

k − 2l − 1

Proof. Let Mk,l = UΣV ∗ be full SVD such that U ∈ Rk×k, V ∈ Rl×l, U
and V are orthogonal matrices, Σ = (D | Ol,k−l)∗, and D is an l × l diagonal
matrix. Write Wk,l := U∗(Mk,l + λG)V and observe that U∗Mk,lV = Σ and

U∗GV =
[
G1

G2

]
is a k × l Gaussian matrix by virtue of Lemma 5. Hence

σl(Wk,l) = σl

([
D + λG1

λG2

])
≥ max{σl(D + λG1), λσl(G2)},

and so |W+
k,l| ≤ min{|(D + λG1)+|, |λG+

2 |}. Recall that G1
d= Gl×l and G2

d=
Gk−l×l are independent, and now Theorem 10 follows because |(Mk,l+λGk,l)+| =
|W+

k,l| and by virtue of claim (iii) and (iv) of Theorem 12.

A.4 Norms of a Gaussian Matrix and Its Pseudo Inverse

Γ (x) =
∫ ∞
0

exp(−t)tx−1dt denotes the Gamma function.

Theorem 11 [Norms of a Gaussian matrix. See [DS01, Theorem II.7] and our
Definition 1].

(i) Probability{νsp,m,n > t+
√

m+
√

n} ≤ exp(−t2/2) for t ≥ 0, E(νsp,m,n) ≤√
m +

√
n.

(ii) νF,m,n is the χ-function, with E(νF,m,n) = mn and probability density
2xn−iexp(−x2/2)

2n/2Γ (n/2)
.

102 V. Y. Pan et al.

Theorem 12 [Norms of the pseudo inverse of a Gaussian matrix (see
Definition 1)].

(i) Probability {ν+
sp,m,n ≥ m/x2} < xm−n+1

Γ (m−n+2) for m ≥ n ≥ 2 and all
positive x,

(ii) Probability {ν+
F,m,n ≥ t

√
3n

m−n+1} ≤ tn−m and Probability {ν+
sp,m,n ≥

t e
√

m
m−n+1} ≤ tn−m for all t ≥ 1 provided that m ≥ 4,

(iii) E((ν+
F,m,n)2) = n

m−n−1 and E(ν+
sp,m,n) ≤ e

√
m

m−n provided that m ≥ n+2 ≥ 4,

(iv) Probability {ν+
sp,n,n ≥ x} ≤ 2.35

√
n

x for n ≥ 2 and all positive x, and fur-
thermore ||Mn,n + Gn,n||+ ≤ νn,n for any n × n matrix Mn,n and an n × n
Gaussian matrix Gn,n.

Proof. See [CD05, Proof of Lemma 4.1] for claim (i), [HMT11, Proposition 10.4
and equations (10.3) and (10.4)] for claims (ii) and (iii), and [SST06, Theorem
3.3] for claim (iv).

Theorem 12 implies reasonable probabilistic upper bounds on the norm ν+
m,n

even where the integer |m − n| is close to 0; whp the upper bounds of Theorem
12 on the norm ν+

m,n decrease very fast as the difference |m − n| grows from 1.

B Small Families of Hard Inputs for Sublinear Cost LRA

Any sublinear cost LRA algorithm fails on the following small families of LRA
inputs.

Example 1. Let Δi,j denote an m × n matrix of rank 1 filled with 0s except for
its (i, j)th entry filled with 1. The mn such matrices {Δi,j}m,n

i,j=1 form a family
of δ-matrices. We also include the m × n null matrix Om,n filled with 0s into
this family. Now any fixed sublinear cost algorithm does not access the (i, j)th
entry of its input matrices for some pair of i and j. Therefore it outputs the
same approximation of the matrices Δi,j and Om,n, with an undetected error
at least 1/2. Arrive at the same conclusion by applying the same argument to
the set of mn + 1 small-norm perturbations of the matrices of the above family
and to the mn + 1 sums of the latter matrices with any fixed m × n matrix of
low rank. Finally, the same argument shows that a posteriori estimation of the
output errors of an LRA algorithm applied to the same input families cannot
run at sublinear cost.

The example actually covers randomized LRA algorithms as well. Indeed suppose
that with a positive constant probability an LRA algorithm does not access K
entries of an input matrix with a positive constant probability. Apply this algo-
rithm to two matrices of low rank whose difference at all these K entries is equal
to a large constant C. Then, clearly, with a positive constant probability the algo-
rithm has errors at least C/2 at at least K/2 of these entries. The paper [LPa]
shows, however, that accurate LRA of a matrix that admits sufficiently close

Sublinear Cost Low Rank Approximation via Subspace Sampling 103

LRA can be computed at sublinear cost in two successive Cross-Approximation
(C-A) iterations (cf. [GOSTZ10]) provided that we avoid choosing degenerat-
ing initial submatrix, which is precisely the problem with the matrix families of
Example 1. Thus we readily compute close LRA if we recursively perform C-A
iterations and avoid degeneracy at some C-A step.

References

[B15] Björck, Å.: Numerical Methods in Matrix Computations. TAM, vol. 59.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-05089-8

[CD05] Chen, Z., Dongarra, J.J.: Condition numbers of Gaussian random matri-
ces, SIAM. J. Matrix Anal. Appl. 27, 603–620 (2005)

[CLO16] Cichocki, C., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., Mandic, D.P.:
Tensor networks for dimensionality reduction and large-scale optimization:
part 1 low-rank tensor decompositions. Found. Trends R© Mach. Learn.
9(4–5), 249–429 (2016)

[DS01] Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices, and
banach spaces. In: Johnson, W.B., Lindenstrauss, J., (eds.) Handbook on
Geometry of Banach Spaces, pp. 317–368, North Holland (2001)

[E88] Edelman, A.: Eigenvalues and condition numbers of random matrices.
SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)

[ES05] Edelman, A., Sutton, B.D.: Tails of condition number distributions. SIAM
J. Matrix Anal. Appl. 27(2), 547–560 (2005)

[GL13] Golub, G.H., Van Loan, C.F.: Matrix Computations, fourth edition. The
Johns Hopkins University Press, Baltimore (2013)

[GOSTZ10] Goreinov, S., Oseledets, I., Savostyanov, D., Tyrtyshnikov, E., Zama-
rashkin, N.: How to find a good submatrix. In: Matrix Methods: Theory,
Algorithms, Applications,(dedicated to the Memory of Gene Golub, edited
by V. Olshevsky and E. Tyrtyshnikov), pp. 247–256. World Scientific Pub-
lishing, New Jersey (2010)

[HMT11] Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with random-
ness: probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM Rev. 53(2), 217–288 (2011)

[KS17] Kishore Kumar, N., Schneider, J.: Literature survey on low rank approxi-
mation of matrices. Linear Multilinear Algebra 65(11), 2212–2244 (2017).
arXiv:1606.06511v1 [math.NA] 21 June 2016

[LPa] Luan, Q., Pan, V.Y.: CUR LRA at sublinear cost based on volume max-
imization, In: Salmanig, D. et al. (eds.) MACIS 2019, LNCS 11989, pp.
xx–yy. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-
43120-49. arXiv:1907.10481 (2019)

[LPb] Luan, Q., Pan, V.Y., Randomized approximation of linear least squares
regression at sublinear cost. arXiv:1906.03784, 10 June 2019

[M11] Mahoney, M.W.: Randomized algorithms for matrices and data. Found.
Trends Mach. Learn. 3, 2 (2011)

[O18] Osinsky, A.: Rectangular maximum volume and projective volume search
algorithms. arXiv:1809.02334, September 2018

[P00] Pan, C.-T.: On the existence and computation of rank-revealing LU fac-
torizations. Linear Algebra Appl. 316, 199–222 (2000)

https://doi.org/10.1007/978-3-319-05089-8
http://arxiv.org/abs/1606.06511v1
https://doi.org/10.1007/978-3-030-43120-4
https://doi.org/10.1007/978-3-030-43120-4
http://arxiv.org/abs/1907.10481
http://arxiv.org/abs/1906.03784
http://arxiv.org/abs/1809.02334

104 V. Y. Pan et al.

[PLa] Pan, V.Y., Luan, Q.: Refinement of low rank approximation of a matrix
at sublinear cost. arXiv:1906.04223, 10 June 2019

[PLSZ16] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: Primitive and Cynical Low
Rank Approximation, Preprocessing and Extensions. arXiv 1611.01391, 3
November 2016

[PLSZ17] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: Superfast Accurate Low
Rank Approximation. Preprint, arXiv:1710.07946, 22 October 2017

[PLSZa] Pan, V.Y., Luan, Svadlenka, Q., Zhao, L.: CUR Low Rank Approximation
at Sublinear Cost. arXiv:1906.04112, 10 June 2019

[PLSZb] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: Low rank approximation at
sublinear cost by means of subspace sampling. arXiv:1906.04327, 10 June
2019

[PQY15] Pan, V.Y., Qian, G., Yan, X.: Random multipliers numerically stabilize
Gaussian and block Gaussian elimination: proofs and an extension to low-
rank approximation. Linear Algebra Appl. 481, 202–234 (2015)

[PZ17a] Pan, V.Y., Zhao, L.: New studies of randomized augmentation and addi-
tive preprocessing. Linear Algebra Appl. 527, 256–305 (2017)

[PZ17b] Pan, V.Y., Zhao, L.: Numerically safe Gaussian elimination with no piv-
oting. Linear Algebra Appl. 527, 349–383 (2017)

[SST06] Sankar, A., Spielman, D., Teng, S.-H.: Smoothed analysis of the condition
numbers and growth factors of matrices. SIMAX 28(2), 446–476 (2006)

[T11] Tropp, J.A.: Improved analysis of subsampled randomized Hadamard
transform. Adv. Adapt. Data Anal. 3(1–2), 115–126 (2011). (Special issue
”Sparse Representation of Data and Images”)

[TYUC17] Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Practical sketching algo-
rithms for low-rank matrix approximation. SIAM J. Matrix Anal. Appl.
38, 1454–1485 (2017)

[WLRT08] Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algo-
rithm for the approximation of matrices. Appl. Comput. Harmonic. Anal.
25, 335–366 (2008)

http://arxiv.org/abs/1906.04223
http://arxiv.org/abs/1710.07946
http://arxiv.org/abs/1906.04112
http://arxiv.org/abs/1906.04327

CUR LRA at Sublinear Cost Based
on Volume Maximization

Qi Luan1 and Victor Y. Pan2,3(B)

1 Mathematics, The Graduate Center of the City University of New York,
New York, NY 10036, USA

qi luan@yahoo.com
2 Computer Science and Mathematics,The Graduate Center of the City

University of New York, New York, NY 10036, USA
3 Computer Science, Lehman College of the City University of New York,

Bronx, NY 10468, USA
victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. A matrix algorithm runs at sublinear cost if it uses much
fewer memory cells and arithmetic operations than the input matrix
has entries. Such algorithms are indispensable for Big Data Mining and
Analysis, where input matrices are so immense that one can only access
a small fraction of all their entries. Typically, however, such matrices
admit their Low Rank Approximation (LRA), which one can access and
process at sublinear cost. Can, however, we compute LRA at sublinear
cost? Adversary argument shows that no algorithm running at sublinear
cost can output accurate LRA of worst case input matrices or even of
the matrices of small families of our Appendix A, but we prove that some
sublinear cost algorithms output a reasonably close LRA of a matrix W
if (i) this matrix is sufficiently close to a low rank matrix or (ii) it is
a Symmetric Positive Semidefinite (SPSD) matrix that admits LRA. In
both cases supporting algorithms are deterministic and output LRA in
its special form of CUR LRA, particularly memory efficient. The design
of our algorithms and the proof of their correctness rely on the results
of extensive previous study of CUR LRA in Numerical Linear Algebra
using volume maximization. In case (i) we apply Cross-Approximation
(C-A) iterations, running at sublinear cost and computing accurate LRA
worldwide for more than a decade. We provide the first formal support
for this long-known empirical efficiency assuming non-degeneracy of the
initial submatrix of at least one C-A iteration. We cannot ensure non-
degeneracy at sublinear cost for a worst case input but prove that it
holds with a high probability (whp) for any initialization in the case of a
random or randomized input. Empirically we can replace randomization
with sparse multiplicative preprocessing of an input matrix, performed
at sublinear cost. In case (ii) we make no additional assumptions about
the input class of SPSD matrices admitting LRA or about initialization
of our sublinear cost algorithms for CUR LRA, which promise to be prac-
tically valuable. We hope that proper combination of our deterministic
techniques with randomized LRA methods, popular among Computer
Science researchers, will lead them to further progress in LRA.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 105–121, 2020.
https://doi.org/10.1007/978-3-030-43120-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_10

106 Q. Luan and V. Y. Pan

Keywords: Low Rank Approximation (LRA) · CUR LRA · Sublinear
cost · Symmetric Positive Semidefinite (SPSD) matrices ·
Cross-Approximation (C-A) · Maximal volume

2000 Math. Subject Classification: 65Y20 · 65F30 · 68Q25 · 15A52

1 Introduction

1.1. LRA Problem. An m × n matrix W admits its close approximation of
rank at most r if and only if the matrix W has numerical rank at most r (and
then we write nrank(W) ≤ r), that is,

W = AB + E, ||E||/||W || ≤ ε, (1.1)

for A ∈ Cm×r, B ∈ Cr×n, a matrix norm || · ||, and a small tolerance ε. Such
an LRA approximates the mn entries of W by using (m + n)r entries of A and
B. This is a crucial benefit in applications of LRA to Big Data Mining and
Analysis, where the size mn of an input matrix is usually immense, and one
can only access a tiny fraction of its mn entries. Quite typically, however, such
matrices admit LRA of (1.1) where (m+n)r � mn. (Hereafter a � b and b � a
mean that the ratio |a/b| is small in context.)

Can we, however, compute close LRA at sublinear cost, that is, by using much
fewer memory cells and flops than an input matrix has entries? Based on adver-
sary argument one can prove that no algorithm running at sublinear cost can
output close LRA of the worst case inputs and even of the matrices of small
families of our AppendixA, but for more than a decade Cross-Approximation
(C-A) iterations, running at sublinear cost, have been routinely computing close
LRA worldwide. Moreover they output LRA in its special form of CUR LRA (see
Sect. 2), which is particularly memory efficient and is defined by a proper choice
of a submatrix G of W , said to be a generator of CUR LRA or a CUR generator.

1.2. Our First Main Result. The main result of Part I of our paper, made
up of Sects. 2–5, provides partial formal support for this empirical phenomenon.

Let us elaborate. Let σj(M) denote the jth largest singular value of a matrix
M , which is the minimal distance from M to a matrix of rank j + 1 in spectral
norm. Suppose that C-A iterations are applied to an m×n matrix W that admits
a sufficiently close LRA (1.1). Let Wi and Vi denote the input and output subma-
trices of W at the ith C-A iteration for i = 1, 2, . . . and let || · || denote the spectral
or Frobenius matrix norm. Then we prove (see Corollary 3 and Remark 3) that the
approximation error norm ||W − Vi+1|| is within a factor f from optimal, which
is reasonably bounded unless the ratio σr(Wi)/σr(W) is small.

Our proof relies on Theorems 1 and 2, recalled from [OZ18], which extend long
study traced back to [CI94,GE96,GTZ97,GT01] and which bound the output
errors of CUR LRA in term of maximization of the volume v2(G) or r-projective
volume v2,r(G) of a CUR generator G (see Definition 1 for these concepts).

The ratio σr(Wi)/σr(W) is small where one applies C-A iterations to a worst
case input matrix, but one can prove that it is not small whp where an input
matrix of small numerical rank is random or randomized by means of its pre-

CUR LRA at Sublinear Cost Based on Volume Maximization 107

and post-multiplying by random multipliers. Empirically the ratio tends to be
not small even where an input matrix of small numerical rank is pre-processed
with any fixed rather than random orthogonal multipliers, and in particular at
sublinear cost for proper sparse multipliers. The above error factor f can be
considered a price for obtaining CUR LRA at sublinear cost, but if the ratio
σr+1(W)/σr(W) is small enough, we can iteratively refine LRA at sublinear
cost by means of our algorithms of [PLa].

1.3. Our Results About CUR LRA of SPSD Matrices. Our novel sub-
linear cost algorithm computes reasonably close CUR LRA of any SPSD matrix
admitting LRA. Then again we devise and analyze our algorithm based on the
cited link of the error bounds of an output CUR LRA and maximization of
the volume or r-projective volume of a CUR generator, and we can reapply our
comments on deviation from optimum and iterative refinement of the output.

1.4. Earlier Works. Our results of Part I appeared in [PLSZ16, Section 5]
and [PLSZ17, Part II] together with various results on LRA of random input
matrices.1 Our progress in Part II has been inspired by the results of [OZ18] and
[CKM19]. Section 1.4 of [LPa] covers relevant earlier works in more details.

1.5. Organization of Our Paper. We define CUR LRA and C-A iterations in
the next section. We devote Sect. 3 to background material on matrix volumes,
their maximization and its impact on LRA. In Sect. 4 we recall C-A iterations
and in Sect. 5 prove that they output reasonably close LRA of a matrix having
sufficiently low numerical rank. These sections make up Part I of our paper,
while Sects. 6–8 make up its Part II. In Sect. 6 we state our main results for
SPSD inputs. We prove the correctness of our algorithms in Sect. 7 and [LPa]
and estimate their complexity in Sect. 8. In the Appendix we recall the relevant
definitions and auxiliary results and specify small matrix families that are hard
for LRA at sublinear cost.

Part I. CUR LRA by Means of C-A Iterations

2 Background: CUR LRA

We use basic definitions for matrix computations recalled in AppendixB. We
simplify our presentation by confining it to the case of real matrices, but the
extension to the case of complex matrices is straightforward.

CUR LRA of a matrix W of numerical rank at most r is defined by three
matrices C, U , and R, with C and R made up of l columns and k rows of W ,

1 The papers [PLSZ16], unsuccessfully submitted to ACM STOC 2017 and widely
circulated at that time, and [PLSZ17] provided the first formal support for LRA
at sublinear cost, which they called “superfast” LRA. Their approach has extended
to LRA the earlier study in [PQY15,PZ17a], and [PZ17b] of randomized Gaussian
elimination with no pivoting and other fundamental matrix computations. It was
followed by sublinear cost randomized LRA algorithms of [MW17].

108 Q. Luan and V. Y. Pan

respectively, U ∈ Cl×k said to be the nucleus of CUR LRA,

0 < r ≤ k ≤ m, r ≤ l ≤ n, kl � mn, (2.1)

W = CUR + E, and ||E||/||W || ≤ ε, for a small tolerance ε > 0. (2.2)

CUR LRA is a special case of LRA of (1.1) where k = l = r and, say, A = LU ,
B = R. Conversely, given LRA of (1.1) one can compute CUR LRA of (2.2) at
sublinear cost (see [PLa] and [PLSZa]).

Define a canonical CUR LRA as follows.

(i) Fix two sets of columns and rows of W and define its two submatrices C
and R made up of these columns and rows, respectively.

(ii) Define the k × l submatrix Wk,l made up of all common entries of C and R,
and call it a CUR generator.

(iii) Compute its rank-r truncation Wk,l,r by setting to 0 all its singular values,
except for the r largest ones.

(iv) Compute the Moore–Penrose pseudo inverse U =: W+
k,l,r and call it the

nucleus of CUR LRA of the matrix W (cf. [DMM08,OZ18]); see an alter-
native choice of a nucleus in [MD09]).

Wr,r = Wr,r,r, and if a CUR generator Wr,r is nonsingular, then U = W−1
r,r .

3 Background: Matrix Volumes

3.1 Definitions and Hadamard’s Bound

Definition 1. For three integers k, l, and r such that 1 ≤ r ≤ min{k, l}, define
the volume v2(M) :=

∏min{k,l}
j=1 σj(M) and r-projective volume v2,r(M) :=

∏r
j=1 σj(M) of a k × l matrix M such that v2,r(M) = v2(M) if r = min{k, l},

v2
2(M) = det(MM∗) if k ≥ l; v2

2(M) = det(M∗M) if k ≤ l, v2
2(M) = |det(M)|2

if k = l.

Definition 2. The volume of a k × l submatrix WI,J of a matrix W is h-
maximal over all k × l submatrices if it is maximal up to a factor of h. The
volume v2(WI,J) is column-wise (resp. row-wise) h-maximal if it is h-maximal
in the submatrix WI,: (resp. W:,J). The volume of a submatrix WI,J is column-
wise (resp. row-wise) locally h-maximal if it is h-maximal over all submatrices
of W that differ from the submatrix WI,J by a single column (resp. single row).
Call volume (hc, hr)-maximal if it is both column-wise hc-maximal and row-wise
hr-maximal. Likewise define locally (hc, hr)-maximal volume. Write maximal
instead of 1-maximal and (1, 1)-maximal in these definitions. Extend all of them
to r-projective volumes.

For a k × l matrix M = (mij)
k,l
i,j=1,1 write mj := (mij)k

i=1 and m̄i :=
((mij)l

j=1)
∗ for all i and j. For k = l = r recall Hadamard’s bound

v2(M) = |det(M)| ≤ min {
∏r

j=1
||mj ||,

∏r

i=1
||m̄∗

j ||, rr/2 maxr
i,j=1 |mij |r}.

CUR LRA at Sublinear Cost Based on Volume Maximization 109

3.2 The Impact of Volume Maximization on CUR LRA

The estimates of the two following theorems in the Chebyshev matrix norm ||·||C
increased by a factor of

√
mn turn into estimates in the Frobenius norm || · ||F

(see (B.3)).

Theorem 1 [OZ18].2 Suppose r := min{k, l}, WI,J is the k× l CUR generator,
U = W+

I,J is the nucleus of a canonical CUR LRA of an m × n matrix W ,
E = W − CUR, h ≥ 1, and the volume of WI,J is locally h-maximal, that is,

h v2(WI,J) = max
B

v2(B)

where the maximum is over all k × l submatrices B of the matrix W that differ
from WI,J in at most one row and/or column. Then

||E||C ≤ h f(k, l) σr+1(W) for f(k, l) :=

√
(k + 1)(l + 1)

|l − k| + 1
.

Theorem 2 [OZ18]. Suppose that Wk,l = WI,J is a k × l submatrix of an
m × n matrix W , U = W+

k,l,r is the nucleus of a canonical CUR LRA of W ,
E = W −CUR, h ≥ 1, and the r-projective volume of WI,J is locally h-maximal,
that is,

h v2,r(WI,J) = max
B

v2,r(B)

where the maximum is over all k × l submatrices B of the matrix W that differ
from WI,J in at most one row and/or column. Then

||E||C ≤ h f(k, l, r) σr+1(W) for f(k, l, r) :=

√
(k + 1)(l + 1)

(k − r + 1)(l − r + 1)
.

Corollary 1. Suppose that BW = (BU |BV) for a nonsingular matrix B and
that the submatrix U is h-maximal in the matrix W = (U |V). Then the submatrix
BU is h-maximal in the matrix BW .

Remark 1. Theorems 1 and 2 have been stated in [OZ18] under assumptions
that the matrix WI,J has (globally) h-maximal volume or r-projective volume,
respectively, but their proofs in [OZ18] support the above extensions to the case
of locally maximal volume and r-projective volume.

4 C-A Iterations

C-A iterations recursively apply two auxiliary Subalgorithms A and B (see
Algorithm 1).

2 The theorem first appeared in [GT01, Corollary 2.3] in the special case where k =
l = r and m = n.

110 Q. Luan and V. Y. Pan

Given a 4-tuple of integers k, l, p, and q such that r ≤ k ≤ p and r ≤ l ≤ q
subalgorithm A is applied to a p × q matrix and computes its k × l submatrix
whose volume or projective volume is maximal up to a fixed factor h ≥ 1 among
all its k × l submatrices. For simplicity first consider the case where k = l = p =
q = r (see Fig. 1, borrowed from [PLSZa]).

Fig. 1. The three successive C-A steps output three striped matrices.

Subalgorithm B verifies whether the error norm of the CUR LRA built on a
fixed CUR generator is within a fixed tolerance τ (see [PLa] for some verification
recipes).

5 CUR LRA by Means of C-A Iterations

We can apply C-A steps by choosing deterministic algorithms of [GE96] for Sub-
algorithm A. In this case mq and pn memory cells and O(mq2) and O(p2n) flops
are involved in “vertical” and “horizontal” C-A iterations, respectively. They
run at sublinear cost if p2 = o(m) and q2 = o(n) and output submatrices hav-
ing h-maximal volumes for h being a low degree polynomial in m + n. Every
iteration outputs a matrix that has locally h-maximal volume in a “vertical” or
“horizontal” submatrix, and the hope is to obtain globally h̄-maximal subma-
trix (for reasonably bounded h̄) when maximization is performed recursively in
alternate directions.

Of course, the contribution of C-A step is nil where it is applied to a p × q
input whose volume is 0 or nearly vanishes compared to the target maximum,
but the consistent success of C-A iterations in practice suggests that in a small
number of loops such a degeneration is regularly avoided.

In the next subsection we show that already two successive C-A iterations
output a CUR generator having h-maximal volume (for any h > 1) if these
iterations begin at a p × q submatrix of W that shares its rank r > 0 with
W . By continuity of the volume the result is extended to small perturbations
of such matrices within a norm bound estimated in Theorem13. In Sect. 5.2
we extend these results to the case where r-projective volume rather than the
volume of a CUR generator is maximized. (Theorem 2 shows benefits of such a
maximization.) In Sect. 5.3 we summarize our study in this section and comment
on the estimated and empirical performance of C-A iterations.

CUR LRA at Sublinear Cost Based on Volume Maximization 111

5.1 Volume of the Output of a C-A Loop

By comparing SVDs of the matrices W and W+ obtain the following lemma.

Algorithm 1. C-A Iterations
Input: W ∈ Cm×n, four positive integers r, k, l, and ITER; a number τ > 0.

Output: A CUR LRA of W with an error norm at most τ or FAILURE.

Initialization: Fix a submatrix W0 made up of l columns of W and
obtain an initial set I0.

Computations:
for i = 1, 2, . . . , ITER do

if i is even then
“Horizontal” C-A step:
1. Let Ri := WIi−1,: be a p × n submatrix of W .
2. Apply Subalgorithm A for q = n to Ri and obtain a k × l
submatrix Wi = WIi−1,Ji .

else
“Vertical” C-A step:
1. Let Ci := W:,Ji−1 be an m × q submatrix of W .
2. Apply Subalgorithm A for p = m to Ci and obtain a k × l
submatrix Wi = WIi,Ji−1 .

end if

Apply subalgorithm B and obtain E, the error bound of CUR LRA built
on the generator Wi.
if E ≤ τ then

return CUR LRA built on the generator Wi.
end if

end for
return Failure

Lemma 1. σj(W)σrank(W)+1−j(W+) = 1 for all matrices W and all subscripts
j, j ≤ rank(W).

Corollary 2. v2(W)v2(W+) = 1 and v2,r(W)v2,r(W+
r) = 1 for all matrices W

of full rank and all integers r such that 1 ≤ r ≤ rank(W).

We are ready to prove that a k× l submatrix of rank r that has (h, h′)-locally
maximal nonzero volume in a rank-r matrix W has hh′-maximal volume globally
in W , that is, over all k × l submatrices of W .

Theorem 3. Suppose that the volume of a k× l submatrix WI,J is nonzero and
(h, h′)-maximal in a matrix W for h ≥ 1 and h′ ≥ 1 where rank(W) = r =
min{k, l}. Then this volume is hh′-maximal over all its k × l submatrices of the
matrix W .

112 Q. Luan and V. Y. Pan

Proof. The matrix WI,J has full rank because its volume is nonzero.
Fix any k × l submatrix WI′,J ′ of the matrix W , recall that W = CUR, and

obtain that
WI′,J ′ = WI′,J W+

I,J WI,J ′ .

If k ≤ l, then first apply claim (iii) of Theorem14 for G := WI′,J and
H := W+

I,J ; then apply claim (i) of that theorem for G := WI′,J W+
I,J and

H := WI,J ′ and obtain that

v2(WI′,J) = v2(WI′,J W+
I,J WI,J ′) ≤ v2(WI′,J)v2(W+

I,J)v2(WI,J ′).

If k > l deduce the same bound by applying the same argument to the matrix
equation

WT
I′,J ′ = WT

I,J ′W+T
I,J WT

I′,J .

Combine this bound with Corollary 2 for W replaced by WI,J and deduce
that

v2(WI′,J ′) = v2(WI′,J W+
I,J WI,J ′) ≤ v2(WI′,J)v2(WI,J ′)/v2(WI,J). (5.1)

Recall that the matrix WI,J is (h, h′)-maximal and conclude that

hv2(WI,J) ≥ v2(WI,J ′) and h′v2(WI,J) ≥ v2(WI′,J).

Substitute these inequalities into the above bound on the volume v2(WI′,J ′)
and obtain that v2(WI′,J ′) ≤ hh′v2(WI,J).

5.2 From Maximal Volume to Maximal r-Projective Volume

Recall that the CUR LRA error bound of Theorem1 is strengthened when we
shift to Theorem 2, that is, maximize r-projective volume for r < k = l rather
than the volume. Next we reduce maximization of r-projective volume of a CUR
generators to volume maximization.

Corollary 1 implies the following lemma.

Lemma 2. Let M and N be a pair of k × l submatrices of a k × n matrix and
let Q be a k × k unitary matrix. Then v2(M)/v2(N) = v2(QM)/v2(QN), and if
r ≤ min{k, l} then also v2,r(M)/v2,r(N) = v2,r(QM)/v2,r(QN).

The submatrices R′ and
(

R′

O

)

of R of Algorithm 2 have maximal volume

and maximal r-projective volume in the matrix R, respectively, by virtue of
Theorem 14 and because v2(R) = v2,r(R) = v2,r(R′). Therefore the submatrix
W:,J has maximal r-projective volume in the matrix W by virtue of Lemma2.

Remark 2. By transposing a horizontal input matrix W and interchanging the
integers m and n and the integers k and l we extend the algorithm to computing
a k × l submatrix of maximal or nearly maximal r-projective volume in an m× l
matrix of rank r.

CUR LRA at Sublinear Cost Based on Volume Maximization 113

Algorithm 2. From maximal volume to maximal r-projective volume
Input: Four integers k, l, n, and r such that 0 < r ≤ k ≤ n and r ≤ l ≤ n; a
k × n matrix W of rank r; a black box algorithm that finds an r × l
submatrix having locally maximal volume in an r × n matrix of full rank r.
Output: A column set J such that W:,J has maximal r-projective volume
in W .
Computations:

1. Compute a rank-revealing QRP factorization W = QRP , where Q is a

unitary matrix, P is a permutation matrix, R =

(
R′

O

)
, and R′ is an r × n

matrix. (See [GL13, Sections 5.4.3 and 5.4.4] and [GE96].)
2. Compute an r × l submatrix R′

:,J of R′ having maximal volume.
return J ′ such that P : J ′ −→ J .

5.3 Complexity and Accuracy of a Two-Step C-A Loop

The following theorem summarizes our study in this section.

Theorem 4. Given five integers k, l, m, n, and r such that 0 < r ≤ k ≤ m and
r ≤ l ≤ n, suppose that two successive C-A steps (say, based on the algorithms
of [GE96]) combined with Algorithm2 have been applied to an m × n matrix
W of rank r and have output k × l submatrices W ′

1 and W ′
2 = WI2,J2 with

nonzero r-projective column-wise locally h-maximal and nonzero r-projective
row-wise locally h′-maximal volumes, respectively. Then the submatrix W ′

2 has
h′h-maximal r-projective volume in the matrix W .

By combining Theorems 1, 2, and 4 we obtain the following corollary.

Corollary 3. Under the assumptions of Theorem4 apply a two-step C-A loop
to an m × n matrix W of rank r and suppose that both its C-A steps output
k × l submatrices having nonzero r-projective column-wise and row-wise locally
h-maximal volumes (see Remark 3 below). Build a canonical CUR LRA on a
CUR generator W ′

2 = Wk,l of rank r output by the second C-A step. Then

(i) the computation of this CUR LRA by using the auxiliary algorithms of
[GE96] involves (m + n)r memory cells and O((m + n)r2) flops3 and

(ii) the error matrix E of the output CUR LRA satisfies the bound ||E||C ≤
g(k, l, r) h̄ σr+1(W) for h̄ of Theorem4 and g(k, l, r) denoting the func-
tions f(k, l) of Theorem1 or f(k, l, r) of Theorem2. In particular ||E||C ≤
2hh′σ2(W) for k = l = r = 1.

Remark 3. Theorem 13 enables us to extend Theorem 4 and Corollary 3 to the
case of an input matrix W of numerical rank r if the input matrix of any C-A
3 For r = 1 an input matrix turns into a vector of dimension m or n, and then

we compute its absolutely maximal coordinate just by applying m − 1 or n − 1
comparisons, respectively (cf. [O17]).

114 Q. Luan and V. Y. Pan

step shares its numerical rank with W . This is fulfilled whp for a random matrix
W that admits LRA (see our full paper, arXiv:1907.10481).

Part II. CUR LRA for SPSD Matrices

6 CUR LRA of SPSD Matrices: Two Main Results

For SPSD matrices we can a little improve our estimates of Theorem 13 by
applying Wielandt–Hoffman theorem (see [GL13, Theorem 8.6.4]), but we are
going to compute reasonably close CUR LRA of an SPSD matrix at sublinear
cost with no restriction on its distance from a low rank matrix.

Theorem 5 (Main Result 1). Suppose that A ∈ Rn×n is an SPSD matrix,
r and n are two positive integers, r < n, ξ is a positive number, and I is the
output of Algorithm6. Write C := A:,I , U := A−1

I,I , and R := AI,:. Then

||A − CUR||C ≤ (1 + ξ)(r + 1)σr+1(A). (6.1)

Furthermore Algorithm6 runs at an arithmetic cost in O(nr4 log r).

Theorem 6 (Main Result 2, proven in [LPa], due to size limitation for this
paper). Suppose that A ∈ Rn×n is an SPSD matrix, r, K and n are three positive
integers such that r < K < n, ξ is a positive number, and I is the output of
Algorithm6. Write C := A:,I , U := (AI,I)+r , and R := AI,:. Then

||A − CUR||C ≤ (1 + ξ)
K + 1

K − r + 1
σr+1(A). (6.2)

In particular, let K = cr − 1 for c > 1. Then

||A − CUR||C ≤ (1 +
1

c − 1
)(1 + ξ)σr+1(A). (6.3)

Furthermore Algorithm6 runs at an arithmetic cost in O(r2K4n+rK4n log n) =
O((r+log n)K4n), which turns into O((r+log n)n5) in case of a constant c > 1.

7 Proof of Main Result 1

Theorem 7 (Adapted from [OZ18, Thm. 6] and [GT01, Thm. 2.1]). Suppose
that W ∈ R(r+1)×(r+1),

W =
[

A b
cT d

]

,

and A ∈ Rr×r has maximal volume among all r × r submatrices of W . Then

v2 (W)
v2 (A)

≤ (1 + r)σr+1(W). (7.1)

http://arxiv.org/abs/1907.10481

CUR LRA at Sublinear Cost Based on Volume Maximization 115

Algorithm 3. Greedy Column Subset Selection [CM09].
Input: A ∈ Rm×nan a positive integer K < n.
Output: I.

Initialize I = {}.
M1 ← A.
for t = 1, 2, ..., K do

i ← arg maxa∈[n] ||M t
:,a||

I ← I ∪ {i}.
M t+1 ← M t − ||M t

:,i||−2(M t
:,i)(M

t
:,i)

TM t

end for
return I.

Hereafter [n] denotes the set of n integers {1, 2, . . . , n}, and |T | denotes the
cardinality (the number of elements) of a set T .

The theorem is readily deduced from the following result.

Theorem 8 (Cf. [CKM19]). Suppose that W is an n×n SPSD matrix and I and
J are two sets of integers in [n] having the same cardinality. Then v2 (WI,J)2 ≤
v2 (WI,I) v2 (WJ ,J).

Theorem 8 shows that the maximal volume submatrix M of an SPSD matrix
A can be chosen to be principal. This can be exploited to greatly reduce the cost
of searching for the maximal volume submatrix. As pointed out in [CKM19] and
implied in [CM09] searching for a maximal volume submatrix in a general matrix
or even in an SPSD matrix is NP hard and therefore is impractical for inputs
of even moderately large size. [CKM19] proposed to search for a submatrix with
a large volume by means of algorithm that is equivalent to Gaussian Elimi-
nation with Complete Pivoting (Algorithm 4). Such a submatrix, however,
only guarantees an upper bound of 4rσr+1(A) on the Chebyshev error norm for
the output CUR LRA (see the definition of Chebyshev’s norm in AppendixB).

Next we seek a principal submatrix AI,I having maximal volume in every
matrix AS,S such that S ⊃ I and |S| = |I| + 1. Such a submatrix generates a
CUR LRA with Chebyshev error norm bound (r +1)σr+1(A), thus considerably
improving the aforementioned exponential bound. According to the following
theorem, we arrive at such a submatrix AI,I by recursively replacing a single
index in an initial set I.

Theorem 9. Suppose that A ∈ Rn×n is an SPSD matrix, I is an index set, and
0 < |I| = r < n. Let v2 (AI,I) ≥ v2 (AJ ,J) for any index set J where |J | = r,
and J only differs from I at a single element. Then AI,I is a maximal volume
submatrix of AS,S for any superset S of I lying in [n] and such that |S| = r +1.

Proof. Apply [CKM19] Thm. 1 to such an SPSD matrix AS,S and obtain that
there exists a subset I ′ of S such that |I ′| = r and AI′,I′ is a maximal volume
submatrix of AS,S . v2 (AI,I) ≥ v2 (AI′,I′) since I ′ and I differs at most at a
single element, and this proves the theorem.

116 Q. Luan and V. Y. Pan

Algorithm 4. An SPSD Matrix: Gaussian Elimination with Complete
Pivoting (cf. [B00] and [CKM19]).

Input: An SPSD matrix A ∈ Rn×n and a positive integer K < n.
Output: I.

Initialize R ← A, and I = {}.
for t = 1, 2, ..., K do

it ← arg maxj∈[n] |Rj,j |.
I ← I ∪ {it}.
R ← R − R:,it · r−1

it,it
· Rit,:.

end for
return I.

The papers [GT01] and [OZ18] have considerably relaxed the condition that
the generator AI,I is a maximal volume submatrix: if v2 (AI,I) is increased by a
factor of h > 1 from maximal, then the error bound only increases by at most the
same factor of h. In the case of SPSD inputs, we extend this relaxation further to
AI,I having close-to-maximal volume among “nearby” principal submatrices.

Theorem 10. For an SPSD matrix A ∈ Rn×n, a positive integer r < n, and
a positive number ξ, let I ⊂ [n] be an index set and let |I| = r. Suppose that
(1 + ξ)v2 (AI,I) ≥ v2 (AJ ,J) for any subset J of [n] such that |J | = r and J
differs from I at one element. Then

||A − A:,IA−1
I,IAI,:||C ≤ (1 + ξ)(r + 1)σr+1(A). (7.2)

If v2 (AI,I) is increased by at most a factor of 1+ξ each time when we replace
an index in I, then Algorithm 6 would not run into infinite loop due to rounding
to machine precision. Furthermore, Theorem 10 guarantees that the accuracy is
mostly preserved, that is, upon termination, the returned index set I satisfies
inequality (7.2).

Let t denote the number of times a single index in I is replaced. In the
following, we show that t is bounded by O(r log r), if the initial set I0 is greedily
chosen in Algorithm 3.

Theorem 11 (Adapted from [CM09] Thm. 10). For a matrix C ∈ Rm×n and a
positive integer r < n, let Algorithm3 with input C and r output a set I. Then

v2 (C:,I) ≥ 1
r!

max
S⊂[n]:|S|=r

v2 (C:,S) . (7.3)

Theorem 12. For an SPSD matrix A ∈ Rn×n and a positive integer r < n, let
Algorithm4 with inputs A and r output a set I. Then

v2 (AI,I) ≥ 1
(r!)2

max
S⊂[n]:|S|=r

v2 (AS,S) . (7.4)

Corollary 4. For an SPSD matrix A ∈ Rn×n, a positive integer r < n, and a
positive number ξ, Algorithm6 calls Algorithm5 at most O(r log r) times.

CUR LRA at Sublinear Cost Based on Volume Maximization 117

Algorithm 5. Index Swap
Input: An SPSD matrix A ∈ Rn×n, a set I ∈ [n], a positive integer r ≤ |I|,
and a positive number ξ.
Output: J

Compute v2,r
(
AI,I

)
for all i ∈ I do

I′ ← I − {i}
for all j ∈ [n] − I do

J ← I′ ∪ {j}
Compute v2,r

(
AJ ,J

)
if v2,r

(
AJ ,J

)
/v2,r

(
AI,I

)
> 1 + ξ then

return J
end if

end for
end for
return I

8 Complexity Analysis

In this section, we estimate the time complexity of performing the Main Algo-
rithm (Algorithm 6) in the case of both r = K and r < K. The cost of finding
the initial set I0 by means of Algorithm 4 is O(nK2). Let t denote the number of
iterations and let c(r,K) denote the arithmetic cost of performing Algorithm 5
with parameters r and K. Then the complexity is in O(nK2 + t · c(r,K)).

In the case of r = K, Corollary 4 implies that t = O(r log r). Algorithm 5 may
need up to nr comparisons of v2

(
AI,I

)
and v2

(
AJ ,J

)
. Since I and J differs at

most at one index, we compute v2
(
AJ ,J

)
faster by using small rank update of

Algorithm 6. Main Algorithm
Input: An SPSD matrix A ∈ Rn×n, two positive integers K and r such that
r ≤ K < n, and a positive number ξ.
Output: I

I ← Algorithm 4(A, K)
while TRUE do

J ← Algorithm 5(A, I, r, ξ)
if J = I then

BREAK
else

I ← J
end if

end while
return I.

118 Q. Luan and V. Y. Pan

AI,I instead of computing from the scratch; this saves a factor of k. Therefore
c(r, r) = O(r3n), and the time complexity of the Main Algorithm is O(nr4 log r).

In the case of r < K, according to [GE96, Theorem 7.2] and [CM09, Theorem
10], t increases slightly to O(r2+r log n), and if v2,r

(
AJ ,J

)
is computed by using

SVD, then c(r,K) = O(K4n), and the time complexity of the Main Algorithm
is O(r2K4n + rK4n log n).

Acknowledgements. Our research has been supported by NSF Grants CCF-1116736,
CCF-1563942, and CCF-133834 and PSC CUNY Award 69813 00 48. We also thank
A. Cortinovis, A. Osinsky, N. L. Zamarashkin for pointers to their papers [CKM19] and
[OZ18], S. A. Goreinov for reprints, of his papers, and E. E. Tyrtyshnikov for pointers
to the bibliography and the challenge of formally supporting empirical power of C-A
algorithms.

Appendix

A Small Families of Hard Inputs for Sublinear Cost LRA

Any sublinear cost LRA algorithm fails on the following small input families.

Example 1. Define a family of m×n matrices of rank 1 (we call them δ-matrices):

{Δi,j , i = 1, . . . ,m; j = 1, . . . , n}.

Also include the m × n null matrix Om,n into this family. Now fix any sublinear
cost algorithm; it does not access the (i, j)th entry of its input matrices for some
pair of i and j. Therefore it outputs the same approximation of the matrices Δi,j

and Om,n, with an undetected error at least 1/2. Apply the same argument to
the set of mn + 1 small-norm perturbations of the matrices of the above family
and to the mn + 1 sums of the latter matrices with any fixed m × n matrix of
low rank. Finally, the same argument shows that a posteriori estimation of the
output errors of an LRA algorithm applied to the same input families cannot
run at sublinear cost.

This example actually covers randomized LRA algorithms as well. Indeed
suppose that with a positive constant probability an LRA algorithm does not
access K entries of an input matrix. Apply this algorithm to two matrices of
low rank whose difference at all these K entries is equal to a large constant C.
Then, clearly, with a positive constant probability the algorithm has errors at
least C/2 at at least K/2 of these entries.

B Definitions for Matrix Computations and a Lemma

Next we recall some basic definitions for matrix computations (cf. [GL13]).
Cm×n is the class of m × n matrices with complex entries.
Is denotes the s× s identity matrix. Oq,s denotes the q × s matrix filled with

zeros.

CUR LRA at Sublinear Cost Based on Volume Maximization 119

diag(B1, . . . , Bk) = diag(Bj)k
j=1 denotes a k × k block diagonal matrix with

diagonal blocks B1, . . . , Bk.
(B1 | . . . | Bk) and (B1, . . . , Bk) denote a 1 × k block matrix with blocks

B1, . . . , Bk.
WT and W ∗ denote the transpose and the Hermitian transpose of an m × n

matrix W = (wij)
m,n
i,j=1, respectively. W ∗ = WT if the matrix W is real.

For two sets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n} define the submatrices

WI,: := (wi,j)i∈I;j=1,...,n,W:,J := (wi,j)i=1,...,m;j∈J , WI,J := (wi,j)i∈I;j∈J .
(B.1)

An m × n matrix W is unitary (also orthogonal when real) if W ∗W = In or
WW ∗ = Im.

Compact SVD of a matrix W , hereafter just SVD, is defined by the equations

W = SW ΣW T ∗
W ,

where S∗
W SW = T ∗

W TW = Iρ, ΣW := diag(σj(W))ρ
j=1, ρ = rank(W),

(B.2)

σj(W) denotes the jth largest singular value of W for j = 1, . . . , ρ; σj(W) =
0 for j > ρ.

||W || = ||W ||2, ||W ||F , and ||W ||C denote spectral, Frobenius, and Cheby-
shev norms of a matrix W , respectively, such that (see [GL13, Section 2.3.2 and
Corollary 2.3.2])

||W || = σ1(W), ||W ||2F :=
m,n∑

i,j=1

|wij |2 =
rank(W)∑

j=1

σ2
j (W), ||W ||C :=

m,n
max
i,j=1

|wij |,

||W ||C ≤ ||W || ≤ ||W ||F ≤
√

mn ||W ||C , ||W ||2F ≤ min{m,n} ||W ||2. (B.3)

W+ := TW Σ−1
W S∗

W is the Moore–Penrose pseudo inverse of an m×n matrix W .

||W+||σr(W) = 1 (B.4)

for a full rank matrix W .
A matrix W has ε-rank at most r > 0 for a fixed tolerance ε > 0 if there is

a matrix W ′ of rank r such that ||W ′ − W ||/||W || ≤ ε. We write nrank(W) = r
and say that a matrix W has numerical rank r if it has ε-rank r for a small ε.

Lemma 3. Let G ∈ Ck×r, Σ ∈ Cr×r and H ∈ Cr×l and let the matrices G, H
and Σ have full rank r ≤ min{k, l}. Then ||(GΣH)+|| ≤ ||G+|| ||Σ+|| ||H+||.
A proof of this well-known result is included in [LPa].

C The Volume and r-Projective Volume of a Perturbed
Matrix

Theorem 13. Suppose that W ′ and E are k × l matrices, rank(W ′) = r ≤
min{k, l}, W = W ′ + E, and ||E|| ≤ ε. Then
(
1− ε

σr(W)

)r ≤
r∏

j=1

(
1− ε

σj(W)

)
≤ v2,r(W)

v2,r(W ′)
≤

r∏
j=1

(
1+

ε

σj(W)

)
≤

(
1+

ε

σr(W)

)r
. (C.1)

120 Q. Luan and V. Y. Pan

If min{k, l} = r, then v2(W) = v2,r(W), v2(W ′) = v2,r(W ′), and

(
1 − ε

σr(W)

)r

≤ v2(W)
v2(W ′)

=
v2,r(W)
v2,r(W ′)

≤
(
1 +

ε

σr(W)

)r

. (C.2)

Proof. Bounds (C.1) follow because a perturbation of a matrix within a norm
bound ε changes its singular values by at most ε (see [GL13, Corollary 8.6.2]).
Bounds (C.2) follow because v2(M) = v2,r(M) =

∏r
j=1 σj(M) for any k × l

matrix M with min{k, l} = r, in particular for M = W ′ and M = W = W ′ +E.

If the ratio ε
σr(W) is small, then

(
1 − ε

σr(W)

)r

= 1 − O
(

rε
σr(W)

)
and

(
1 + ε

σr(W)

)r

= 1 + O
(

rε
σr(W)

)
, which shows that the relative perturbation

of the volume is amplified by at most a factor of r in comparison to the relative
perturbation of the r largest singular values.

D The Volume and r-Projective Volume of a Matrix
Product

Theorem 14 (Cf. [OZ18]). [Examples 2 and 3 below show some limitations on
the extension of the theorem.]

Suppose that W = GH for an m × q matrix G and a q × n matrix H. Then

(i) v2(W) = v2(G)v2(H) if q = min{m,n}; v2(W) = 0 ≤ v2(G)v2(H) if q <
min{m,n}.

(ii) v2,r(W) ≤ v2,r(G)v2,r(H) for 1 ≤ r ≤ q,
(iii) v2(W) ≤ v2(G)v2(H) if m = n ≤ q.

Example 2. If G and H are unitary matrices and if GH = O, then v2(G) =
v2(H) = v2,r(G) = v2,r(H) = 1 and v2(GH) = v2,r(GH) = 0 for all r ≤ q.

Example 3. If G = (1 | 0) and H = diag(1, 0), then v2(G) = v2(GH) = 1 and
v2(H) = 0.

References

[B00] Bebendorf, M.: Approximation of boundary element matrices. Numer.
Math. 86(4), 565–589 (2000)

[CI94] Chandrasekaran, S., Ipsen, I.: On rank revealing QR factorizations. SIAM
J. Matrix Anal. Appl. 15, 592–622 (1994)

[CKM19] Cortinovis, A., Kressner, D., Massei, S.: MATHICSE technical report:
on maximum volume submatrices and cross approximation for symmetric
semidefinite and diagonally dominant matrices. MATHICSE, 12 February
2019

[CM09] Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-
matrix of a matrix and related problems. Theor. Comput. Sci. 410(47–49),
4801–4811 (2009)

CUR LRA at Sublinear Cost Based on Volume Maximization 121

[DMM08] Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR
matrix decompositions. SIAM J. Matrix Anal. Appl. 30(2), 844–881
(2008)

[GE96] Gu, M., Eisenstat, S.C.: An efficient algorithm for computing a strong rank
revealing QR factorization. SIAM J. Sci. Comput. 17, 848–869 (1996)

[GL13] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns
Hopkins University Press, Baltimore (2013)

[GT01] Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in
approximation by low rank matrices. Contemp. Math. 208, 47–51 (2001)

[GTZ97] Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of
pseudo-skeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)

[LPa] Luan, Q., Pan, V.Y.: Low rank approximation of a matrix at sublinear
cost, 21 July 2019. arXiv:1907.10481

[MD09] Mahoney, M.W., Drineas, P.: CUR matrix decompositions for improved
data analysis. Proc. Natl. Acad. Sci. USA 106, 697–702 (2009)

[MW17] Musco, C., Woodruff, D.P.: Sublinear time low-rank approximation of pos-
itive semidefinite matrices. In: IEEE 58th FOCS, pp. 672–683 (2017)

[O17] Osinsky, A.I.: Probabilistic estimation of the rank 1 cross approximation
accuracy, submitted on 30 June 2017. arXiv:1706.10285

[OZ18] Osinsky, A.I., Zamarashkin, N.L.: Pseudo-skeleton approximations with
better accuracy estimates. Linear Algebra Appl. 537, 221–249 (2018)

[PLa] Pan, V.Y., Luan, Q.: Refinement of low rank approximation of a matrix
at sub-linear cost, submitted on 10 June 2019. arXiv:1906.04223

[PLSZ16] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: Primitive and cynical low
rank approximation, preprocessing and extensions, submitted on 3 Novem-
ber 2016. arXiv:1611.01391v1

[PLSZ17] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: Superfast accurate
approximation of low rank matrices, submitted on 22 October 2017.
arXiv:1710.07946v1

[PLSZa] Pan, V.Y., Luan, Q., Svadlenka, J., Zhao, L.: CUR low rank approximation
at sub-linear cost, submitted on 10 June 2019. arXiv:1906.04112

[PQY15] Pan, V.Y., Qian, G., Yan, X.: Random multipliers numerically stabilize
Gaussian and block Gaussian elimination: proofs and an extension to low-
rank approximation. Linear Algebra Appl. 481, 202–234 (2015)

[PZ17a] Pan, V.Y., Zhao, L.: New studies of randomized augmentation and addi-
tive preprocessing. Linear Algebra Appl. 527, 256–305 (2017)

[PZ17b] Pan, V.Y., Zhao, L.: Numerically safe Gaussian elimination with no piv-
oting. Linear Algebra Appl. 527, 349–383 (2017)

http://arxiv.org/abs/1907.10481
http://arxiv.org/abs/1706.10285
http://arxiv.org/abs/1906.04223
http://arxiv.org/abs/1611.01391v1
http://arxiv.org/abs/1710.07946v1
http://arxiv.org/abs/1906.04112

New Practical Advances in Polynomial
Root Clustering

Rémi Imbach1(B) and Victor Y. Pan2

1 Courant Institute of Mathematical Sciences, New York University,
New York, USA

remi.imbach@nyu.edu
2 Lehman College and the Graduate Center, City University of New York,

New York, USA
victor.pan@lehman.cuny.edu

https://cims.nyu.edu/~imbach/, http://comet.lehman.cuny.edu/vpan/

Abstract. We report an ongoing work on clustering algorithms for com-
plex roots of a univariate polynomial p of degree d with real or complex
coefficients. As in their previous best subdivision algorithms our root-
finders are robust even for multiple roots of a polynomial given by a
black box for the approximation of its coefficients, and their complexity
decreases at least proportionally to the number of roots in a region of
interest (ROI) on the complex plane, such as a disc or a square, but we
greatly strengthen the main ingredient of the previous algorithms. We
build the foundation for a new counting test that essentially amounts to
the evaluation of a polynomial p and its derivative p′, which is a major
benefit, e.g., for sparse polynomials p. Moreover with evaluation at about
log(d) points (versus the previous record of order d) we output correct
number of roots in a disc whose contour has no roots of p nearby. Our
second and less significant contribution concerns subdivision algorithms
for polynomials with real coefficients. Our tests demonstrate the power
of the proposed algorithms.

1 Introduction

We seek complex roots of a degree d univariate polynomial p with real or complex
coefficients. For a while the user choice for this problem has been (the package
MPsolve) based on e.g. Erhlich-Aberth (simultaneous Newton-like) iterations.
Their empirical global convergence (right from the start) is very fast, but its
formal support is a long-known challenge, and the iterations approximate the
roots in a fixed region of interest (ROI) about as slow as all complex roots.

In contrast, for the known algorithms subdividing a ROI, e.g., box, the cost of
root-finding in a ROI decreases at least proportionally to the number of roots in
it. Some recent subdivision algorithms have a proved nearly optimal complexity,

Rémi’s work is supported by NSF Grants # CCF-1563942 and # CCF-1708884.
Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and
by PSC CUNY Award 698130048.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 122–137, 2020.
https://doi.org/10.1007/978-3-030-43120-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_11

New Practical Advances in Polynomial Root Clustering 123

are robust in the case of root clusters and multiple roots, and their implemen-
tation in [IPY18] a little outperforms MPsolve for ROI containing only a small
number of roots, which is an important benefit in many computational areas.

The Local Clustering Problem. For a complex set S, Zero(S, p), or some-
times Zero(S), stands for the roots of p in S. #(S, p) (or #(S)) stands for the
number of roots of p in S. Here and hereafter the roots are counted with their
multiplicity.

We consider boxes (that is, squares with horizontal and vertical edges, parallel
to coordinate axis) and discs D(c, r) = {z s.t. |z − c| ≤ r} on the complex plane.
For such a box (resp. disc) S and a positive δ we denote by δS its concentric
δ-dilation. We call a disc Δ an isolator if #(Δ) > 0 and call it natural isolator
if in addition #(Δ) = #(3Δ). A set R of roots of p is called a natural cluster if
there exists a natural isolator Δ with Zero(R) = Zero(Δ). The Local Clustering
Problem (LCP) is to compute natural isolators for natural clusters together with
the sum of multiplicities of roots in the clusters:

Local Clustering Problem (LCP):
Given: a polynomial p ∈ C[z], a ROI B0 ⊂ C, ε > 0
Output: a set of pairs {(Δ1,m1), . . . , (Δ�,m�)} where:

- the Δj ’s are pairwise disjoint discs of radius ≤ ε,
- mj = #(Δj , p) = #(3Δj , p) and mj > 0 for j = 1, . . . , �

- Zero(B0, p) ⊆ ⋃�
j=1 Zero(Δ

j , p) ⊆ Zero(2B0, p).

The basic tool of the nearly optimal subdivision algorithm of [BSS+16] for
the LCP is the T ∗-test for counting the roots of p in a complex disc (with multi-
plicity). It relies on Pellet’s theorem, involves approximations of the coefficients
of p, and applies shifting and scaling the variable z and Dandelin-Gräffe’s root-
squaring iterations. [IPY18] describes high-level improvement of this test, and
Ccluster1, a C implementation of [BSS+16].

Our Contributions. Our new counting test, the P ∗-test, for a pair of complex
c and positive r computes the number s0 of roots of p in a complex disc Δ
centered at c with radius r. If the boundary ∂Δ contains no roots of p, then

s0 =
1

2πi

∫

∂Δ

p′(z)
p(z)

dz, for i =
√−1, (1)

by virtue of Cauchy’s theorem. By following [Sch82] and [Pan18], we approximate
s0 by s∗

0 obtained by evaluating p′/p on q points on the boundary ∂Δ within the
error bound |s0 − s∗

0| in terms of q and the relative width of a root-free annulus
around ∂Δ. Namely if #(1

2Δ) = #(2Δ) then for q = �log2(d+4)+2� we recover
exact value of s0 from s∗

0.

1 https://github.com/rimbach/Ccluster.

https://github.com/rimbach/Ccluster

124 R. Imbach and V. Y. Pan

Table 1. Running times in seconds of Ccluster, new and old versions, for computing
clusters of roots in a small ROI (local) and a ROI containing all the roots, and MPsolve.

Ccluster local Ccluster global MPsolve

#Clus told tnew told/tnew #Clus told tnew told/tnew t

Mignotte128 1 0.05 0.02 2.49 127 5.00 1.81 2.75 0.02

Mignotte256 1 0.16 0.05 2.82 255 31.8 10.7 2.95 0.07

Mignotte383 1 0.32 0.11 2.74 382 79.7 26.8 2.97 0.17

Mandelbrot7 1 0.18 0.06 2.92 127 7.17 2.88 2.48 0.06

Mandelbrot8 0 0.39 0.11 3.38 255 40.6 15.1 2.69 0.39

Mandelbrot9 5 3.08 0.91 3.37 511 266 97.1 2.74 3.20

A usual practice to ensure condition #(1
2Δ) = #(2Δ) when knowing a ρ > 1

so that #(1
ρΔ) = #(ρΔ) is to apply Dandelin-Gräffe’s iterations. In the test

we propose here, such root-squaring operations can be applied implicitly by
doubling the number q of evaluation points.

We give an effective2 (i.e. implementable) description of this P ∗-test, which
involves no coefficients of p and can be applied to a polynomial p represented by
a black box for its evaluation. For sparse polynomials and polynomials defined
by recursive process such as Mandelbrot’s polynomials (see [BF00], or Eq. (3)
below), the test is particularly efficient and the resulting acceleration of the
clustering algorithm of [BSS+16] is particularly strong.

Our second (and less significant) contribution applies to polynomials with real
coefficients: the roots of such polynomials are either real or appear in complex
conjugated pairs. As a consequence, one can recover all the roots in a ROI B0

containing R from the ones with positive imaginary parts. We show how to
improve a subdivision scheme by leveraging of the latter property.

Every polynomial p and its product pp with its complex conjugate p belongs
to this class and has additional property that the multiplicity of its real roots is
even, but we do not assume the latter restriction.

We implemented and tested our improvements in Ccluster. For polynomials
with real coefficients that are sparse or can be evaluated by a fast procedure, we
achieved a 2.5 to 3 fold speed-up as shown in Table 1 by columns told/tnew. When
the ROI contains only a few solutions, Ccluster is, thanks to those improve-
ments, a little more efficient than MPsolve (compare columns Ccluster local,
tnew and MPsolve in Table 1). We give details on our experiments below.

Implementation and Experiments. All the timings shown in this arti-
cle are sequential times in seconds on a Intel(R) Core(TM) i7-7600U CPU @
2.80 GHz machine with Linux. MPsolve is called with the command mpsolve

2 By effective, we refer to the pathway proposed in [XY19] to describe algorithms in
three levels: abstract, interval, effective.

New Practical Advances in Polynomial Root Clustering 125

Fig. 1. Left: 63 clusters of roots for a Mignotte polynomial of degree 64. Right: Clusters
of roots for the Mandelbrot polynomial of degree 63.

-as -Gi -o16 -j13. Table 1 shows comparative running times of Ccluster
and MPsolve on two families of polynomials, Mignotte and Mandelbrot’s poly-
nomials, with real coefficients, defined below. Columns tnew (resp. told) show
timings of Ccluster with (resp. without) the improvements described in this
paper. Columns #Clus show the number of clusters found by two versions.
We used both versions of Ccluster with ε = 2−53. Ccluster global refers to
the ROI [−500, 500] + i[−500, 500], that contains all the roots of the tested
polynomials; Ccluster local refers to an ROI containing only a few solutions.
We used [−0.5, 0.5] + i[−0.5, 0.5] for Mignotte’s polynomials and [−0.25, 0.25] +
i[−0.25, 0.25] for Mandelbrot’s polynomials.

The Mignotte’s polynomial of degree d and parameter a = 14 is:

Mignotted(z) = zd − 2(2az − 1)2 (2)

It has a cluster of two roots near the origin whose separation is near the theo-
retical minimum separation bound. It is sparse and can be evaluated very fast.
We define the Mandelbrot’s polynomial as Mandelbrot1(z) = 1 and

Mandelbrotk(z) = zMandelbrotk−1(z)2 + 1 (3)

Mandelbrotk(z) has degree 2k − 1. It can be evaluated with a straight line
program. The 63 clusters of roots of Mandelbrot6(z) and Mignotte64(z) are
depicted in Fig. 1.

Structure of the Paper. Our paper is organized as follows: in Sect. 2 we
describe our P ∗-test. In Sect. 3 we apply it to speeding up a clustering algorithm.
In Sect. 4 we cover our root-finder for polynomials with real coefficients. Section 5
presents the results of our improvements. In the rest of the present section, we
recall the related work and the clustering algorithm of [BSS+16].

3 MPsolve tries to isolate the roots unless the escape bound 10−16 is reached.

126 R. Imbach and V. Y. Pan

1.1 Previous Works

Univariate polynomial root-finding is a long-standing and still actual problem;
it is intrinsically linked to numerical factorization of a polynomial into the prod-
uct of its linear factors. The algorithms of [Pan02] support record and nearly
optimal bounds on the Boolean complexity of the solution of both problems of
factorization and root-finding. The cost bound of the factorization is smaller by
a factor of d, and both bounds differ from respective information lower bound
by at most a polylogarithmic factor in the input size and in the bound on the
required output precision. Root-finder supporting such bit complexity bounds
are said to be nearly optimal. The algorithms of [Pan02] are involved and have
never been implemented. User’s choice has been for a while the package of sub-
routines MPsolve (see [BF00] and [BR14]), based on simultaneous Newton-like
(i.e. Ehrlich-Aberth) iterations. These iterations converge to all roots simulta-
neously with cubic convergence rate, but only locally, that is, near the roots;
empirically they converge very fast also globally, right from the start, although
formal support for this empirical behavior is a long-known research challenge.
Furthermore these iterations compute a small number of roots in a ROI not
much faster than all roots.

In contrast, recent approaches based on subdivision (as well as the algorithms
of [Pan02]) compute the roots in a fixed ROI at a cost that decreases at least pro-
portionally to the number of roots. Near-optimal complexity has been achieved
both for the real case (see [PT13,PT16,SM16] that combines the Descartes rule
of signs with Newton’s iterations and its implementation in [KRS16]) and the
complex case. In the complex case [BSSY18] similarly combines counting test
based on Pellet’s theorem with complex version of the QIR algorithm, which in
turn combines Newton’s and secant iterations.

[BSS+16] extends the method of [BSSY18] for root clustering, i.e. it solves
the LCP and is robust in the case of multiple roots; its implementation ([IPY18])
is a little more efficient than MPsolve for ROI’s containing only several roots;
when all the roots are sought, MPsolve remains the user’s choice. The algo-
rithms of [BSS+16] and [BSSY18] are direct successors of the previous subdivi-
sion algorithms of [Ren87] and [Pan00], presented under the name of Quad-tree
algorithms (inherited from the earlier works by Henrici and Gargantini).

Besides Pellet’s theorem, counting test in ROI can rely on Eq. (1) and winding
numbers algorithms (see, e.g., [HG69,Ren87] and [ZZ19]).

1.2 Solving the LCP

C0 and C∗ Tests. The two tests C0 and C∗ discard boxes with no roots of p
and count the number of roots in a box, respectively. For a given complex disc
Δ, C0(Δ, p) returns either −1 or 0, and returns 0 only if p has no root in Δ,
while C∗(Δ, p) returns an integer k ≥ −1 such that k ≥ 0 only if p has k roots
in Δ. Below, we may write C0(Δ) for C0(Δ, p) and C∗(Δ) for C∗(Δ, p).

New Practical Advances in Polynomial Root Clustering 127

In [BSS+16,BSSY18,IPY18], both C0 and C∗ are based on the so called
“soft Pellet test” denoted T ∗(Δ, p) or T ∗(Δ) which returns an integer k ≥ −1
such that k ≥ 0 only if p has k roots in Δ:

C0(Δ) :=
{

0 if T ∗(Δ) = 0
−1 otherwise

C∗(Δ) := T ∗(Δ).

(4)

Boxes, Quadri-Section and Connected Components. The box B centered
in c = a + ib with width w is defined as [a − w/2, a + w/2] + i[b − w/2, b + w/2].
We denote by w(B) the width of B. We call containing disc of B the disc Δ(B)
defined as D(c, 3

4w(B)). We define the four children of B as the four boxes
centered in (a ± w

4) + i(b ± w
4) with width w

2 .
Recursive subdivisions of a ROI B0 falls back to the construction of a tree

rooted in B0. Hereafter we refer to boxes that are nodes (and possibly leafs) of
this tree as the boxes of the subdivision tree of B0.

A component C is a set of connected boxes. The component box BC of a
component C is a smallest square box subject to C ⊆ BC ⊆ B0, where B0 is the
initial ROI. We write Δ(C) for Δ(BC) and w(C) for w(BC). Below we consider
components made up of boxes of the same width; such a component is compact
if w(C) is at most 3 times the width of its boxes. Finally, a component C is
separated from a set S if ∀C′ ∈ S, 4Δ(C) ∩ C′ = ∅ and 4Δ(C) ⊆ 2B0.

A Root Clustering Algorithm. We give in Algorithm 1 a simple root clus-
tering algorithm based on subdivision of ROI B0. For convenience we assume
that p has no root in 2B0 \ B0 but this limitation can easily be removed. The
paper [BSS+16] proves that Algorithm1 terminates and output correct solution
provided that the C0 and C∗-tests are as in Eq. (4).

Note that in the while loop of Algorithm 1, components with widest contain-
ing box are processed first; together with the definition of a separated component,
this implies the following remark:

Remark 1. Let C be a component in Algorithm1 that passes the test in step 4.
Then C satisfies #(Δ(C)) = #(4Δ(C)).

2 Counting the Number of Roots in a Well Isolated Disc

In this section we cover a new test for counting the number of roots with mul-
tiplicity of p in a disc Δ provided that the roots in Δ are well isolated from the
other roots of p. Let us first formalize this notion:

Definition 2 (Isolation ratio). A complex disc Δ has isolation ratio ρ for a
polynomial p if ρ > 1 and Zero(1

ρΔ) = Zero(ρΔ).

128 R. Imbach and V. Y. Pan

Let Zero(Δ) = {α1, . . . , αdΔ} and let mi be the multiplicity of αi. The h-th
power sum of the roots in Δ is the complex number

sh =
dΔ∑

i=1

mi × αh
i (5)

In our test, called hereafter P ∗-test, we approximate the 0-th power sum s0

of the roots of p in Δ equal to the number of roots of p in Δ (counted with
multiplicity). We obtain precise s0 from s∗

0 where p and its derivative p′ are
evaluated on only a small number of points on the contour of Δ. For instance,
if Δ has isolation ratio 2 and p has degree 500, our test amounts to evaluating
p and p′ on q = 11 points; s0 is recovered from these values in O(q) arithmetic
operations.

Algorithm 1. Root Clustering Algorithm
Input: A polynomial p ∈ C[z], a ROI B0, ε > 0; suppose p has no roots in 2B0 \ B0

Output: Set R of components solving the LCP.
1: R ← ∅, Q ← {B0} // Initialization
2: while Q is not empty do // Main loop
3: C ← Q.pop() //C has the widest containing box in Q

// Validation
4: if w(C) ≤ ε and C is compact and C is separated from Q then
5: k ← C∗(Δ(C), p)
6: if k > 0 then
7: R.push((C, k))
8: break

// Bisection
9: S ← empty set of boxes

10: for each box B of C do
11: for each child B′ of B do
12: if C0(Δ(B′), p) returns −1 then
13: S.push(B′)

14: Q.push(connected components in S)

15: return R

If p and its derivative can be evaluated at a low computational cost, e.g.
when p is sparse or p is defined by a recurrence as the Mandelbrot polynomial
(see [BF00][Eq. (16)] or Eq. (3) above), our P ∗-test can be substantially cheaper
to apply than the T ∗-test presented above. Notice however that it requires the
isolation ratio of Δ (or at least a lower bound) to be known.

2.1 Approximation of the 0-th Power Sum of the Roots in a Disc

[Sch82] and [Pan18] give formulas for approximating the powers sums sh of the
roots in the unit disc. Here we compute s0 in any complex disc Δ = D(c, r).

New Practical Advances in Polynomial Root Clustering 129

For a positive integer q, define

s∗
0 =

r

q

q−1∑

g=0

ωg p′(c + rωg)
p(c + rωg)

(6)

where ω = e
2πi
q denotes a primitive q-th root of unity.

The theorem below shows that the latter number approximates the 0-th
power sum with an error that can be made as tight as desired by increasing q,
providing that Δ has isolation ratio noticeably exceeding 1.

Theorem 3. Let Δ have isolation ratio ρ for p, let θ = 1/ρ, let s0 be the 0-th
power sum of the roots of p in Δ, and let s∗

0 be defined as in Eq. 6. Then

(i) |s∗
0 − s0| ≤ dθq

1 − θq
.

(ii) Fix e > 0. If q = �logθ(
e

d+e)� then |s∗
0 − s0| ≤ e.

Proof of Theorem 3. Let pΔ(z) be the polynomial p(c + rz). Thus p′
Δ(z) =

rp′(c + rz) and Eq. (6) rewrites s∗
0 = 1

q

q−1∑

g=0
ωg p′

Δ(ωg)
pΔ(ωg) . In addition, the unit disc

D(0, 1) has isolation ratio ρ for pΔ and contains s0 roots of pΔ. Then apply
equation (12.10) in [Sch82] (with e−δ = θ, eδ = ρ) to pΔ(z) to obtain (i). (ii) is
a direct consequence of (i).

�
For example, if Δ has isolation ratio 2, p has degree 500 and one wants to

approximate s0 with an error less than 1/4, it suffices to apply formula in Eq. (6)
for q = 11, that is to evaluate p and its derivative p′ at 11 points.

Remark that in (ii), the required number q of evaluation points increases as
the logarithm of ρ: if Δ has isolation ratio

√
ρ (resp. ρ2) instead of ρ, 1

2q (resp. 2q)
evaluation points are required. Thus doubling the number of evaluation points
has the same effect as root squaring operations.

2.2 Black Box for Evaluating a Polynomial on an Oracle Number

Our goal is to give an effective description of our P ∗-test; to this end, let us
introduce the notion of oracle numbers that correspond to black boxes giving
arbitrary precision approximations of any complex number. Such oracle num-
bers can be implemented through arbitrary precision interval arithmetic or ball
arithmetic. Let C be the set of complex intervals. If a ∈ C, then w(a) is
the maximum width of real and imaginary parts of a.

For a number a ∈ C, we call oracle for a a function Oa : N → C such that
a ∈ Oa(L) and w(Oa(L)) ≤ 2−L for any L. Let OC be the set of oracle numbers.

For a polynomial p ∈ C[z], we call evaluation oracle for p a function Ip :
(OC,N) → C, such that if Oa is an oracle for a and L ∈ N, then p(a) ∈
Ip(Oa, L) and w(Ip(Oa, L)) ≤ 2−L.

We consider evaluation oracles Ip and Ip′ for p and its derivative p′. If p
is given by d + 1 oracles for its coefficients, one can easily construct Ip and

130 R. Imbach and V. Y. Pan

Ip′ by using for instance Horner’s rule. However for some polynomials defined
by a procedure, for instance the Mandelbrot polynomial (see Eq. (3)), one can
construct fast evaluation oracles Ip and Ip′ from the procedurial definition.

2.3 The P ∗-test

Algorithm 2 counts the number of roots of p in a disc Δ = D(c, r) having isolation
ratio at least ρ. For such a disc, any positive integer q and any integer 0 ≤ g < q,
one has p(c+rωg) �= 0. As a consequence, there exist an L′ s.t ∀L ≥ L′,∀0 ≤ g ≤
q−1, 0 /∈ Ip(Oc+rωg , L) and the intervals s∗

0 computed in step 4 of Algorithm 2
have strictly decreasing width as of L ≥ L′. This shows the termination of
Algorithm 2. Its correctness is stated in the following proposition:

Algorithm 2. P ∗(Ip, Ip′ ,Δ, ρ)
Input: Ip, Ip′ evaluation oracles for p and p′, Δ = D(c, r), ρ > 1. p has degree d.
Output: an integer in {0, . . . , d}
1: L ← 53, w ← 1, e ← 1/4, θ ← 1/ρ
2: q ← �logθ(

e
d+e

)�
3: while w ≥ 1/2 do

4: Compute interval s∗
0 as r

q

q−1∑

g=0

Oωg (L)
Ip′ (Oc+rωg ,L)

Ip(Oc+rωg ,L)

5: w ← w(s∗
0)

6: L ← 2 ∗ L
7: s0 ← s∗

0 + [−1/4, 1/4] + i[−1/4, 1/4]
8: return the unique integer in s0

Proposition 4. Let k be the result of the call P ∗(Ip, Ip′ ,Δ, ρ). If Δ has isolation
ratio at least ρ for p, then p has k roots in Δ counted with multiplicity.

Proof of Proposition 4. Once the while loop in Algorithm 2 terminates, the
interval s∗

0 contains s∗
0 and w(s∗

0) < 1/2. In addition, by virtue of statement
(ii) of Theorem 3, one has |s∗

0 − s0| ≤ 1/4, thus s0 defined in step 7 satisfies:
w(s0) < 1 and s0 ∈ s0. Since s0 contains at most one integer, s0 is the
unique integer in s0, and is equal to the number of roots in Δ.

�

3 Using the P ∗-test in a Subdivision Framework

Let us discuss the use of the P ∗-test as C0 and C∗-tests in order to speed up
Algorithm 1. Table 2 covers runs of Algorithm 1 on Mignotte and Mandelbrot’s
polynomials. t is the running time when C0 and C∗ tests are defined by Eq. (4).
Columns nb show the respective numbers of C0 and C∗-tests performed, column
t0 and t0/t (resp. t∗ and t∗/t) show time and ratio of times spent in C0 (resp.
C∗) tests when it is defined by Eq. (4).

New Practical Advances in Polynomial Root Clustering 131

One can readily use the P ∗-test to implement the C∗-test by defining

C∗(Δ) := P ∗(Ip, Ip′ , 2Δ, 2) (7)

Following Remark 1, the C∗-test is called in Algorithm 1 for components C sat-
isfying #(Δ(C)) = #(4Δ(C)). Hence 2Δ(C) has isolation ratio 2 and by virtue
of Proposition 4, C∗(Δ(C)) returns r ≥ 0 only if Δ(C) contains r roots.

However this would not imply much improvements in itself. Column t′∗ in
Table 2 shows the time that would be spent in C∗-tests if it was defined by
Eq. (7): it is far less than t∗, but the ratio of time spent in C∗-tests (see column
t∗/t) is very small. In contrast, about 90% of the running time of Algorithm1 is
spent in C0-tests (see column t0/t). We propose to use a modified version of the
P ∗-test as a filter in the C0-test to decrease its running time.

Table 2. Details on runs of Algorithm 1 on Mignotte and Mandelbrot’s polynomials.

C0-tests C∗-tests
T ∗-tests ˜P ∗-tests T ∗-tests P ∗-tests

nb t0 t0/t (%) t′0 n−1 n−2 nerr nb t∗ t∗/t (%) t′∗
Mignotte128 4508 4.73 90.9 0.25 276 0 12 128 0.07 1.46 0.01

Mignotte256 8452 27.8 91.2 0.60 544 0 20 256 0.58 1.92 0.02

Mandelbrot7 4548 6.34 88.1 0.28 168 0 28 131 0.11 1.51 0.01

Mandelbrot8 8892 35.6 88.4 0.67 318 0 57 256 0.69 1.71 0.03

Algorithm 3. P̃ ∗(Ip, Ip′ ,Δ, ρ)
Input: Ip, Ip′ evaluation oracles for p and p′, Δ = D(c, r), ρ > 1. p has degree d.
Output: an integer in {−2, −1, 0, . . . , d}

3.1 An Approximate P ∗-test

The approximate version of the P ∗-test is aimed at being applied to a disc
Δ = D(c, r) with unknown isolation ratio. Unless Δ has isolation ratio ρ > 1,
the very unlikely case where for some 0 ≤ g < q, p(c + rωg) = 0, leads to a non-
terminating call of P ∗(Ip, Ip′ ,Δ, ρ). Also, s0 computed in step 7 of Algorithm 2
could contain no integer or an integer that is not s0. We define the P̃ ∗-test
specified in Algorithm 3 by modifying Algorithm2 as follows:

1. after step 3, if an Ip(Oc+rωg , L) contains 0, the result -2 is returned;
2. step 7 is replaced with: s0 ← s∗

0 + [−1/2, 1/2] + i[−1/2, 1/2],
3. after step 7, unless s0 contains a unique integer, the result −1 is returned.

132 R. Imbach and V. Y. Pan

Modification 1 ensures termination when Δ does not have isolation ratio
ρ > 1. With modification 2, s0 can have width greater than 1 and contain
more than one integer. With modification 3, the P̃ ∗-test can return −1 which
means that no conclusion can be made. If P̃ ∗(Ip, Ip′ ,Δ, ρ) returns a positive
integer, this result has still to be checked, for instance, with the T ∗-test.

In Table 2, column n−2 (resp. n−1) shows the number of times P̃ ∗(Ip,
Ip′ ,Δ, 2) returns −2 (resp. −1) when applied in place of T ∗(Δ) in the C0-test.
Column nerr shows the number of times the conclusion of P̃ ∗ was wrong, and t′0
shows the total time spent in P̃ ∗-tests.

3.2 Using the P ∗ and P̃ ∗-test in a Subdivision Framework

Our improvement of Algorithm1 is based on the following heuristic remarks.
First, it is very unlikely that P̃ ∗(Ip, Ip′ ,Δ, 2) returns -2 (see column n−2 in
Table 2). Second, when P ∗(Ip, Ip′ ,Δ, 2) returns k ≥ 0, it is very likely that Δ
contains k roots counted with multiplicity (see column nerr in Table 2).

Fig. 2. Computing clusters for Mignotte64 in the ROI [−2, 2] + i[−2, 2]. Left: The
subdivision tree for Algorithm 1. Right: The subdivision tree for Algorithm 5.

We define the C0-test as follows:

C0(Δ) :=

⎧
⎪⎨

⎪⎩

−1 if P̃ ∗(Ip, Ip′ ,Δ, 2) /∈ {−2, 0},

−1 if P̃ ∗(Ip, Ip′ ,Δ, 2) ∈ {−2, 0} and T ∗(Δ) �= 0,

0 if P̃ ∗(Ip, Ip′ ,Δ, 2) ∈ {−2, 0} and T ∗(Δ) = 0.

(8)

If C0(Δ) is defined in Eq. (8), it returns 0 only if Δ contains no root. Thus
Algorithm 1 with C0 and C∗-tests defined by Eqs. (8) and (7) is correct.

Remark now that if a square complex box B of width w does not contain
root and is at a distance at least 3

2w from a root, then Δ(B) has isolation ratio
2, and P̃ ∗(Ip, Ip′ ,Δ(B), 2) returns 0 or −2. As a consequence, the termination
of Algorithm 1 with C0 and C∗-tests defined in Eqs. (8) and (7) amounts to the
termination of Algorithm 1 with C0 and C∗ defined in Eq. (4).

New Practical Advances in Polynomial Root Clustering 133

4 Clustering Roots of Polynomials with Real Coefficients

We consider here the special case where p ∈ R[z], and show how to improve
a subdivision algorithm for solving the LCP. We propose to leverage on the
geometric structure of the roots of p, that are either real, or imaginary and come
in complex conjugated pairs: if α ∈ C is a root of p so is α where α is the complex
conjugate of α. The modified subdivision algorithm we propose deals only with
the boxes of the subdivision tree of the ROI B0 that have a positive imaginary
part; the roots with positive imaginary parts are in the latter boxes. The roots
with negative imaginary parts are implicitly represented by the former ones.
In Fig. 2 are shown two subdivision trees constructed for clustering roots of a
Mignotte polynomial of degree 64; the left-most one is obtained when applying
Algorithm 1; the right-most one results of our improvement.

Below, we suppose that B0 is symmetric with respect to the real axis and
that p has no root in 2B0 \ B0. These two limitations can easily be removed.

Algorithm 4. Quadrisect(C)
Input: A polynomial p ∈ R[z] and a component C
Output: A list R of disjoint and not imaginary negative components
1: S ← empty list of boxes
2: for each constituent box B of C do
3: for each child B′ of B do
4: if B is not imaginary negative then
5: if C0(Δ(B′), p) returns -1 then
6: S.push(B′)

7: R ← group boxes of S in components
8: return R

Notations. Let B be a box centered in c. We define its conjugate B as the
box centered in c with width w(B). We say that B is imaginary positive (resp.
imaginary negative) if ∀b ∈ B, Im(b) > 0 (resp. Im(b) < 0).

Let C be a component of boxes of the subdivision tree of B0. We define C as
the component which boxes are the conjugate of the boxes of C. We call conjugate
closure of C, and we denote it by C∪ the set of boxes C ∪ (C \ C). If C intersects
R, C∪ is a component. We say that C is imaginary positive (resp. imaginary
negative) if each box in C is imaginary positive (resp. imaginary negative).

Solving the LCP for Polynomials with Real Coefficients. We describe
in Algorithm 4 a procedure to bisect a component, that discards boxes that are
imaginary negative in addition to those that contain no root.

Our algorithm for solving the LCP for polynomials with real coefficients is
presented in Algorithm 5. It maintains in the queue Q only components of boxes
that are imaginary positive or that intersect the real line. Components with

134 R. Imbach and V. Y. Pan

only imaginary negative boxes are implicitly represented by the imaginary posi-
tive ones. Components that intersect the real line are replaced by their conjugate
closure. Components in Q are ordered by decreasing width of their containing
boxes. The termination of Algorithm5 is a consequence of the termination of
Algorithm 1 that is proved in [BSS+16].

Let {(C1,m1), . . . , (C,m�)} be the list returned by Algorithm5 called for
arguments p,B0, ε. Then {(Δ(C1),m1), . . . , (Δ(C�),m�)} is a solution of the LCP
problem for p,B0, ε, i.e.:

(i) the Δ(Ci)’s are pairwise disjoint with radius less that ε,
(ii) ∀1 ≤ i ≤ �, (Ci,mi) satisfies #(Δ(Ci)) = #(3Δ(Ci)) = mi,
(iii) Zero(B0, p) ⊆ ⋃�

i=1 Zero(Δ(Ci), p) ⊆ Zero(2B0, p).

In what follow we may write R for the list of connected components in R.
(i), (ii) and (iii) are direct consequences of the following proposition:

Proposition 5. Consider Q and R after any execution of the while loop in
Algorithm5. Decompose Q in two lists Q1 and Q2 containing respectively the
imaginary positive components of Q and the non imaginary components of Q.
Note Q1 the list of the conjugates of the components in Q1 and Q2

∪ the list of the
conjugate closures of the components in Q2, and let Q∪ be Q1 ∪ Q2

∪. One has:

Algorithm 5. Local root clustering for polynomials with real coefficients
Input: A polynomial p ∈ R[z], a ROI B0, ε > 0; assume p has no roots in 2B0 \ B0,

and B0 is symmetric with respect to the real axis.
Output: A set R of components solving the LCP.
1: R ← ∅, Q ← {{B0}} // Initialization
2: while Q is not empty do // Main loop
3: C ← Q.pop() //C has the widest containing box in Q
4: sF lag ← false
5: if C is not imaginary positive then //Note: C ∩ R �= ∅
6: C ← C∪
7: sF lag ← C is separated from Q
8: else
9: sF lag ← (C is separated from Q) and (4Δ(C) ∩ C = ∅)

10: if w(C) ≤ ε and C is compact and sF lag then // Validation
11: m ← C∗(Δ(C), p)
12: if m > 0 then
13: R.push((C, m))
14: if C is imaginary positive then
15: R.push((C, m))

16: break
17: Q.push(Quadrisect(C)) // Bisection

18: return R

New Practical Advances in Polynomial Root Clustering 135

(1) any α ∈ Zero(B0) is in R ∪ Q ∪ Q∪,
(2) any C ∈ R is separated from (R \ {C}) ∪ Q ∪ Q∪,
(3) any (C,m) in R is such that m = #(Δ(C)) = #(3Δ(C)).

Proposition 5 is a consequence of Remark 1 and the following remark.

Remark 6. Let p ∈ R[z] and C be a component. If C is imaginary negative or
imaginary positive and if there exists m such that m = #(Δ(C)) = #(3Δ(C)),
then m = #(Δ(C)) = #(3Δ(C)).

5 Numerical Results

We implemented the two improvements of Sects. 3 and 4 in Ccluster. CclusterO
refers to the original version of Ccluster. Both CclusterR and CclusterPs
implement Algorithm 5. In CclusterPs, C0 and C∗ are defined by Eqs. (8)
and (7).

Testing Suite. We tested our improvements on Mignotte and Mandelbrot’s
polynomials and on Bernoulli and Runnel’s polynomials: the Bernoulli poly-
nomial of degree d is Bernoullid(z) =

∑d
k=0

(
d
k

)
bd−kzk where the bi’s are the

Bernoulli numbers. It has about d/2 non-zero coefficients and, as far as we know,
cannot be evaluated substantially faster than with Horner’s scheme. It has real
coefficients, and about 2/3 of its roots are real or imaginary positive (see left
part of Fig. 3). Let r = 2, q0(z) = 1, q1(z) = z and qk+1(z) = qk(z)r+zqk−1(z)r2

.
We define the Runnel’s polynomial of parameter k as Runnelsk = qk. It has real
coefficients, a multiple root (zero), and can be evaluated fast. The 107 distinct
roots of Runnels8 are drawn on right part of Fig. 3.

Fig. 3. Left: 64 clusters of roots for the Bernoulli polynomial of degree 64. Right: 107
clusters of roots for the Runnel’s polynomial of degree 170.

136 R. Imbach and V. Y. Pan

Results. Table 3 gives details concerning the execution of CclusterO, CclusterR
and CclusterPs for polynomials with increasing degrees. We used ε = 2−53 and
the ROI B0 = [−500, 500]+ i[−500, 500] that contains all the roots of all the con-
sidered polynomials. Column (#Clus,#Sols) shows the number of clusters and the
total multiplicity found. Columns (depth, size) show the depth and the size (i.e.
number of nodes) of the subdivision tree for each version. t1, t2 and t3 stand respec-
tively for the running time in second of CclusterO, CclusterR and CclusterPs.

Algorithm 5 achieves speed up t1/t2. It is almost 2 for Mignotte polynomials,
since about half of its roots are above the real axis. This speed up is less impor-
tant for the three other families of polynomials, which have a non-negligible ratio
of real roots. The speed up achieved by using the P ∗-test is t2/t3. It is signifi-
cant for Mignotte’s polynomial, which is sparse, and Mandelbrot and Runnel’s
polynomials for which one can construct fast evaluation procedures.

Table 3. Details on runs of CclusterO, CclusterR and CclusterPs for polynomials in
R[z] with increasing degree.

CclusterO CclusterR CclusterPs

(#Clus, #Sols)(depth, size) t1 (depth, size)t1/t2 (depth, size) t3 t2/t3t1/t3

Bernoulli128 (128, 128) (100, 4732) 6.30 (100, 3708) 1.72 (100, 4104) 3.30 1.10 1.90

Bernoulli191 (191, 191) (92, 7220) 20.2 (92, 5636) 1.74 (92, 6236) 10.7 1.08 1.88

Bernoulli256 (256, 256) (93, 9980) 41.8 (93, 7520) 1.67 (91, 8128) 21.9 1.14 1.90

Bernoulli383 (383, 383) (93, 14504) 120 (93, 11136) 1.82 (93, 11764) 53.5 1.23 2.25

Mignotte128 (127, 128) (96, 4508) 5.00 (92, 3212) 1.92 (92, 3484) 1.81 1.43 2.75

Mignotte191 (190, 191) (97, 6260) 15.5 (97, 4296) 2.01 (97, 4688) 4.34 1.77 3.58

Mignotte256 (255, 256) (94, 8452) 31.8 (94, 5484) 2.04 (94, 6648) 10.7 1.44 2.95

Mignotte383 (382, 383) (97, 12564) 79.7 (97, 8352) 1.98 (97, 9100) 26.8 1.49 2.97

Mandelbrot7 (127, 127) (96, 4548) 7.17 (96, 2996) 1.62 (96, 3200) 2.88 1.52 2.48

Mandelbrot8 (255, 255) (96, 8892) 40.6 (96, 5576) 1.71 (96, 6208) 15.1 1.56 2.69

Mandelbrot9 (511, 511) (100, 17956) 266 (100, 11016) 1.89 (100, 11868)97.1 1.44 2.74

Runnels8 (107, 170) (96, 4652) 13.3 (96, 3252) 1.61 (96, 3624) 6.51 1.26 2.04

Runnels9 (214, 341) (99, 9592) 76.2 (99, 6260) 1.70 (99, 6624) 32.2 1.38 2.36

Runnels10 (427, 682) (100, 19084) 479 (100, 12288) 1.69 (100, 12904) 211 1.34 2.26

6 Future Works

Our main contribution is a significant practical progress in subdivision root-
finding based on a new test for counting roots in a well-isolated disc. If the
latter assumption does not hold, the test result is not guaranteed but is very
likely to be correct. In a subdivision framework, we have proposed to use a test
based on Pellet’s theorem to verify its result. We aim to do so by using only
evaluations of p and p′. This would imply a very significant improvement of the
root clustering algorithm when p and p′ can be evaluated very efficiently.

New Practical Advances in Polynomial Root Clustering 137

References

[BF00] Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multi-
precision polynomial rootfinder. Numer. Algorithms 23(2), 127–173 (2000)

[BR14] Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multi-
precision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

[BSS+16] Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis
of root clustering for a complex polynomial. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, ISSAC
2016, pp. 71–78. ACM, New York (2016)

[BSSY18] Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision
algorithm for complex root isolation based on Pellet test and Newton iter-
ation. J. Symb. Comput. 86, 51–96 (2018)

[HG69] Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simulta-
neous approximation of all zeros of a polynomial. In: Constructive Aspects
of the Fundamental Theorem of Algebra, pp. 77–113. Wiley-Interscience,
New York (1969)

[IPY18] Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex
root clustering algorithm. Math. Soft. - ICMS 2018, 235–244 (2018)

[KRS16] Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real poly-
nomials ... and now for real! In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pp. 303–
310. ACM, New York (2016)

[Pan00] Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s
quadtree construction and improved newton’s iteration. J. Complex. 16(1),
213–264 (2000)

[Pan02] Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical
factorization and root-finding. J. Symb. Comput. 33(5), 701–733 (2002)

[Pan18] Pan, V.Y.: Old and new nearly optimal polynomial root-finders. arXiv
preprint arXiv:1805.12042 (2018)

[PT13] Pan, V.Y., Tsigaridas, E.P.: On the Boolean complexity of real root refine-
ment. In: Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, ISSAC 2013, pp. 299–306. ACM, New York
(2013)

[PT16] Pan, V.Y., Tsigaridas, E.P.: Nearly optimal refinement of real roots of a
univariate polynomial. J. Symb. Comput 74, 181–204 (2016)

[Ren87] Renegar, J.: On the worst-case arithmetic complexity of approximating zeros
of polynomials. J. Complex. 3(2), 90–113 (1987)

[Sch82] Schönhage, A.: The fundamental theorem of algebra in terms of computa-
tional complexity. Manuscript. University of Tübingen, Germany (1982)

[SM16] Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J.
Symb. Comput. 73, 46–86 (2016)

[XY19] Xu, J., Yap, C.: Effective subdivision algorithm for isolating zeros of real
systems of equations, with complexity analysis. arXiv preprint (2019).
arXiv:1905.03505

[ZZ19] Zaderman, V., Zhao, L.: Counting roots of a polynomial in a convex compact
region by means of winding number calculation via sampling. arXiv preprint
arXiv:1906.10805 (2019)

http://arxiv.org/abs/1805.12042
http://arxiv.org/abs/1905.03505
http://arxiv.org/abs/1906.10805

On the Chordality of Simple
Decomposition in Top-Down Style

Chenqi Mou1,2(B) and Jiahua Lai1

1 LMIB–School of Mathematical Sciences, Beihang University, Beijing 100191, China
2 Beijing Advanced Innovation Center for Big Data and Brain Computing,

Beihang University, Beijing 100191, China
{chenqi.mou,jiahualai}@buaa.edu.cn

Abstract. Simple decomposition of polynomial sets computes condi-
tionally squarefree triangular sets or systems with certain zero or ideal
relationships with the polynomial sets. In this paper we study the
chordality of polynomial sets occurring in the process of simple decom-
position in top-down style. We first reformulate Wang’s algorithm for
simple decomposition in top-down style so that the decomposition pro-
cess can be described in an inductive way. Then we prove that for a
polynomial set whose associated graph is chordal, all the polynomial
sets in the process of Wang’s algorithm for computing simple decompo-
sition of this polynomial set have associated graphs which are subgraphs
of the input chordal graph.

Keywords: Chordal graph · Simple decomposition · Top-down style ·
Triangular system

1 Introduction

Triangular decomposition is the process to decompose an arbitrary multivari-
ate polynomial set into finitely many polynomial sets in triangular shape, called
triangular sets, with associated zero or ideal relationships between the polyno-
mial set and triangular sets. Here the triangular shape means that the greatest
variables of the polynomials in the triangular sets increase strictly according to
a given variable ordering. This special shape makes triangular sets particularly
suitable for polynomial elimination and polynomial system solving. With exten-
sive study on their properties and computation [1,6,11,16,24,27,28], triangular
sets have become an indispensable tool for handling polynomials and polynomial
ideals symbolically like Gröbner bases [4,8,9], with diverse applications in, e.g.,
automatic geometric theorem proving [28,29] and cryptanalysis [5,14].

This paper focuses on how to apply the chordal graphs to study and analyze
the behaviors of simple decomposition in top-down style. The study in this paper

This work was partially supported by the National Natural Science Foundation of
China (NSFC 11971050 and 11771034) and the Fundamental Research Funds for the
Central Universities in China (YWF-19-BJ-J-324).

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 138–152, 2020.
https://doi.org/10.1007/978-3-030-43120-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_12

On the Chordality of Simple Decomposition in Top-Down Style 139

is directly inspired by the pioneering work of Cifuentes and Parrilo [7], where the
connections between chordal graphs and triangular decomposition were estab-
lished for the first time. After that the properties and behaviors of algorithms
for triangular decomposition in top-down style were analyzed via the changes
of associated graphs of polynomial sets in the process of decomposition [19,20].
In particular, several algorithms for triangular decomposition in top-down style
from [24,26,27] were proved to preserve chordality of polynomial sets in the
decomposition. This fine property explains one experimental observation in [7]
that algorithms due to Dongming Wang become more efficient when the poly-
nomial sets to decompose are associated with chordal graphs from a theoretical
point of view, and gives birth to efficient sparse algorithms for triangular decom-
position in top-down style which make full use of the sparsity and chordality of
the polynomial sets. It is worth mentioning that the results obtained in [19,20]
can be viewed as multivariate generalization of the existing role of chordal graphs
in sparse Gaussian elimination in linear algebra [13,21,22]. In particular, experi-
mentally the sparse algorithms proposed in [20] for triangular decomposition are
more efficient when the chordal polynomial set becomes sparser.

One key idea for the aforementioned sparse triangular decomposition is to use
the perfect elimination ordering from the chordal graph as the variable ordering
for triangular decomposition. In fact, other concepts and tools from graph theory
have also been applied to find “good” variable orderings to speedup the com-
putation of triangular decomposition, for example the Dulmage-Mendelssohn
decomposition of a bipartite graph associated to the polynomial set [10] and
the computation of strongly connected components of a digraph associated to
the polynomial set by using Tarjan’s algorithm [18]. The authors feel that there
should be more potential in the applications of graph theory in studying trian-
gular decomposition.

One specific kind of algorithms not covered in [19,20] are those for simple
decomposition in top-down style. Simple sets are special triangular sets which
are squarefree conditionally (and thus they are also called squarefree regular
sets) [17,25]. Due to this property, simple sets are useful for counting the num-
bers of solutions of polynomial systems and have been successfully applied to
study differential systems [2,3,12]. This paper aims at proving similar theoretical
results on one typical algorithm in top-down style for decomposing polynomial
sets into simple sets or systems, that is the one due to Wang based on subre-
sultant regular subchains [25], to those proved in [19,20]. As one may find later
in this paper, structurally this algorithm is much more complicated than those
already studied in [19,20].

The main contributions of this paper include the following: (1) Reformulation
of Wang’s algorithm for simple decomposition in [25], which essentially handles
the nodes in the decomposition tree in a depth-first way, into a form which
focuses on how child nodes are spawned from its parent node in the decomposi-
tion tree and thus suitable for the inductive proof (See Sect. 3 below). (2) Proof
that this algorithm also preserves chordality of the polynomial set in the process
of decomposition (see Sect. 5, in particular Theorem 1, below). These theoretical

140 C. Mou and J. Lai

results provide better understanding on algorithms in top-down style for simple
decomposition and add Wang’s algorithm for simple decomposition to the list of
potential algorithms to use as a subroutine in sparse algorithms for triangular
decomposition [20].

2 Preliminaries

Let K[x1, . . . , xn] be the multivariate polynomial ring over a field K in the vari-
ables x1, . . . , xn. We fix a variable ordering x1 < · · · < xn throughout this paper.
For simplicity we write K[x1, . . . , xn] as K[x].

2.1 Triangular and Simple Systems

Let F be a polynomial in K[x]. Then the greatest variable appearing in F is called
the leading variable of F and denoted by lv(F). Suppose that lv(F) = xk. Then F
can be written as F = Ixd

k +R such that I ∈ K[x1, . . . , xk−1], R ∈ K[x1, . . . , xk],
and deg(R, xk) < d. The polynomials I and R here are called the initial and tail
of F and denoted by ini(F) and tail(F) respectively.

Denote the algebraic closure of K by K. For two polynomial sets F ,G ⊂ K[x],
the set of common zeros in K

n
of the polynomials in F is denoted by Z(F), and

Z(F/G) := Z(F) \ Z(
∏

G∈G G).

Definition 1. An ordered set of non-constant polynomials T = [T1, . . . , Tr] ⊂
K[x] is called a triangular set if lv(T1) < · · · < lv(Tr). A pair (T ,U) with
T ,U ⊂ K[x] is called a triangular system if T is a triangular set, and for each
i = 2, . . . , r and any xi−1 ∈ Z([T1, . . . , Ti−1]/U), we have ini(Ti)(xi−1) �= 0.

Definition 2. Let T be a polynomial in K[x1, . . . , xk] and xk−1 be an element
in K̃k−1, where K̃ is some field extension of K. Then the univariate polynomial
T (xk−1, xk) is said to be squarefree with respect to (written as w.r.t. hereafter)
xk if

gcd(T (xk−1, xk),
∂T

∂xk
(xk−1, xk)) ∈ K̃,

where ∂T
∂xk

is the formal derivative of T w.r.t. xk.

For a polynomial set F ⊂ K[x], we denote its subset {F ∈ F : lv(F) = xi}
by F (i) for an integer i (1 ≤ i ≤ n).

Definition 3. ([27, Def. 3.3.1]) For two polynomial sets T ,U ⊂ K[x], the pair
(T ,U) is called a simple system if the following conditions hold.

(a) T and U are either triangular sets in K[x] or emptysets;
(b) for each i = 1, . . . , n, #T (i) + #U (i) ≤ 1;
(c) for each i = 1, . . . , n, if T (i) ∪ U (i) �= ∅, then for any P ∈ T (i) ∪ U (i) and

xi−1 ∈ Z(T (<i)/U (<i)), ini(P)(xi−1) �= 0 and P (xi−1, xi) is squarefree w.r.t.
xi, where T (<k) denotes the truncated triangular set [T (1), . . . , T (k−1)] and
U (<k) is similarly defined.

On the Chordality of Simple Decomposition in Top-Down Style 141

A triangular set T is called a simple set if (T , ∅) forms a simple system or
there exists another triangular set U such that (T ,U) forms a simple system.

Simple systems are also referred to as Thomas systems [3,12] and simple sets
as squarefree regular sets [15]. Compared to the regular sets or regular chains
(see. e.g., [1,16,30]), simple systems or sets impose stronger requirements on
the polynomials within so that they are conditionally squarefree. This property
of squarefreeness is particularly useful for counting the number of solutions of
polynomial systems [2].

Definition 4. For an arbitrary non-empty polynomial set F ⊂ K[x], a finite
number of triangular sets T1, . . . , Ts ⊂ K[x] (or triangular systems (T1,U1), . . . ,
(Ts,Us) respectively) are said to form a triangular decomposition of F if the zero
relationship Z(F) =

⋃s
i=1 Z(Ti/ ini(Ti)) holds, where ini(Ti) := {ini(T) : T ∈ Ti}

(or Z(F) =
⋃s

i=1 Z(Ti/Ui) holds respectively). A triangular decomposition is
called a simple decomposition if each of its triangular sets or systems is simple.

The process for computing the triangular decomposition of a polynomial set
F is also called triangular decomposition of F .

There exist many algorithms for decomposing polynomial sets into triangular
sets or systems with different properties. One of the main strategies for these
algorithms for triangular decomposition is to perform reduction on polynomials
which contain the greatest unprocessed variable until there is only one polyno-
mial left whose greatest variable is this variable, at the same time producing new
polynomials whose leading variables are strictly smaller than this variable. Algo-
rithms for triangular decomposition with this strategy are said to be in top-down
style and the readers are referred to [20] for more details on such algorithms.

2.2 Subresultant Regular Subchains

Let F and G be two polynomials in K[x] such that m = deg(F, xk) ≥
deg(G, xk) = �, and M be the Sylvester matrix of F and G w.r.t. xk. For two
integers i, j (0 ≤ i ≤ j < �), define Mij to be the submatrix of M obtained
by deleting the last j rows of F ’s coefficients, the last j rows of G’s coefficients,
and the last 2j + 1 columns except the (m + � − i − j)-th one. Then the polyno-
mial Hj =

∑j
i=0 |Mij |xi

k is called the jth subresultant of F and G w.r.t. xk. In
particular, the jth subresultant Hj is said to be regular if deg(Hj , xk) = j.

Definition 5. Let F,G,Hj (j = 0, . . . , μ − 1) ∈ K[x] be defined as above,
where μ := m − 1 when m > � and μ := � otherwise. Then the sequence
F,G,Hμ−1,Hμ−2, . . . , H0 is called the subresultant chain of F and G w.r.t. xk.
Furthermore, let Hd1 , . . . , Hdr

be the regular ones in Hμ−1, . . . , H0 with d1 >
· · · > dr. Then the sequence F,G,Hd1 , . . . , Hdr

is called the subresultant regular
subchain of F and G w.r.t. xk.

142 C. Mou and J. Lai

Lemma 1. ([27, Lem. 3.3.3]) Let P be a polynomial in K[x] with lv(P) = xk and
H2, . . . , Hr be the subresultant regular subchain of P and its formal derivative
∂P
∂xk

w.r.t. xk. Let

H∗
2 = H2, H∗

i = Hi/I (i = 3, . . . , r), (1)

where I = lc(P, xk). Then

Z(P/I) =
r⋃

i=2

Z({Qi, Ii+1, . . . , Ir}/IIi), Z(∅/PI) =
r⋃

i=2

Z({Ii+1, . . . , Ir}/QiIIi),

where Qi = pquo(P,H∗
i , xk) and Ii = lc(H∗

i , xk) for i = 2, . . . , r. In particular,
for any i = 2, . . . , r and xk−1 ∈ Z({Ii+1, . . . , Ir}/IIi), Qi(x̄k−1, xk) is square-
free.

2.3 Chordal Graphs and Polynomial Sets

Let F be a polynomial in K[x]. The set of variables which effectively appear in
F is called the variable support of F , denoted by supp(F). For a polynomial set
F ⊂ K[x], define supp(F) :=

⋃
F∈F supp(F). We associate an undirected graph

(V,E) to F with the vertex set V = supp(F) and the edge set E = {(xi, xj) : 1 ≤
i �= j ≤ n and ∃F ∈ F such that xi, xj ∈ supp(F)} and denote the associated
graph by G(F).

Definition 6. Let G = (V,E) be a graph with V = {x1, . . . , xn}. Then an
ordering xi1 < xi2 < · · · < xin of the vertices is called a perfect elimination
ordering of G if for each j = i1, . . . , in, any two distinct vertices in {xj} ∪ {xk :
xk < xj and (xk, xj) ∈ E} are connected with an edge of G. A graph G is said
to be chordal if there exists a perfect elimination ordering of it.

Chordality of a graph G implies that whenever (xi, xk) ∈ G and (xj , xk) ∈ G
with xi < xk and xj < xk, we have (xi, xj) ∈ G. We will frequently use this
property in the proofs in the sequel. Whether an arbitrary graph is chordal or
not can be effectively tested with existing algorithms [23] (a perfect elimination
ordering will also be returned if chordality is verified).

Definition 7. A polynomial set F ⊂ K[x] is said to be chordal if its associated
graph G(F) is chordal.

The associated graph of the chordal polynomial set P = {x2+x1, x3+x1, x
2
4+

x2, x
3
4 + x3, x5 + x2, x5 + x3 + x2} is illustrated in Fig. 1 below.

3 Reformulation of Wang’s Algorithm for Simple
Decomposition in Top-Down Style

In this section we reformulate Wang’s top-down algorithm for simple decom-
position, which essentially handles all the nodes in the decomposition tree in

On the Chordality of Simple Decomposition in Top-Down Style 143

Fig. 1. Associated chordal graph G(P) (x1 < x2 < x3 < x4 < x5 is one perfect
elimination ordering)

a depth-first way, into the following Algorithm1, which focuses on how all the
child nodes are spawned from each node and is thus convenient for the study on
the chordality in an inductive way in Sect. 5.

Since in the decomposition process into simple systems, the squarefreeness of
the polynomial in the equation or inequation part needs to be recorded, and thus
the underlying data structure we use in Algorithm1 is (P,Q, k, sqf), which is
slightly different from the one used in the previous related papers of the authors
[19,20]. In this data structure, P is the polynomial set representing equations,
Q is the polynomial set representing inequations, k is the index of the variable
xk under process, and sqf is a flag for recording whether the polynomial in P is
squarefree or not: sqf = 1 means that #P(k) = 1 and the polynomial in P(k) is
squarefree w.r.t. xk. For the set Φ consisting of such 4-tuples and for an integer
i (0 ≤ i ≤ n), Φ(i) denotes {(P,Q, k, sqf) ∈ Φ : k = i}.

In Algorithm 1 below, the function pop(S) returns an element from S and
then remove it from S, the function SubRegSubchain(T1, T2) returns the subre-
sultant regular subchain (H2, . . . , Hr) of the two polynomials T1 and T2 w.r.t.
lv(T2), and the function SubRegSubchain∗(T, ∂T

∂xk
) returns (H∗

2 , . . . , H∗
r), which

are as defined in (1).
Next we justify the correctness of the reformulation as Algorithm1, focus-

ing on where two important changes happen: Case 1) When the parameter “k”
in (P,Q, k, sqf) becomes k − 1 (lines 6, 10, 14, and 33 in Algorithm1, mean-
ing that the process on the variable xk finishes); Case 2) When the parameter
“sqf” becomes 1 from 0 (lines 27, 31, and 38 in Algorithm1, meaning that the
polynomial in the equation part becomes squarefree).

Case 1. In this case we need to show that the process for handling the current
variable xk finishes, namely polynomial sets P and Q in the node (P,Q, k, sqf)
satisfy the conditions (b) and (c) of Definition 3 for i = k.

Line 6: now P(k) = Q(k) = ∅ and the conditions are satisfied trivially.
Line 10: now P(k) = ∅ and T =

∏
Q∈Q(k) Q is of degree 1, which means Q(k)

contains only one polynomial which is T itself. Clearly T (xk−1, xk) is squarefree
w.r.t. xk for any xk−1, and the conditions are satisfied (note that lv(ini(T)) <
xk).

144 C. Mou and J. Lai

Algorithm 1: Wang’s algorithm for simple decomposition Ψ :=
SimDec(F)
Input: F , a polynomial set in K[x]
Output: Ψ , a set of finite simple systems which form a simple decomposition of F

1 Φ := {(F , ∅, n, 0)}; Ψ := ∅;
2 for k = n, . . . , 1 do

3 while Φ(k) �= ∅ do

4 (P, Q, k, sqf) := pop(Φ(k));

5 if P(k) = ∅ then

6 if Q(k) = ∅ then Φ := Φ ∪ {(P, Q, k − 1, 0)};
7 else
8 T :=

∏
Q∈Q(k) Q;

9 Φ := Φ ∪ {(P ∪ ini(T), Q\Q(k) ∪ {tail(T)}, k, 0)};
10 if deg(T, xk) = 1 then Φ := Φ ∪ {(P, Q\Q(k) ∪ {T, ini(T)}, k − 1, 0)};
11 else

12 (H∗
2 , . . . , H∗

r) := SubRegSubchain∗(T, ∂T
∂xk

);

13 for i = 2, . . . , r do

14 Φ := Φ ∪ {(P ∪ {lc(H∗
i+1, xk), . . . , lc(H

∗
r , xk)}, Q\Q(k) ∪

{pquo(T, H∗
i , xk), lc(H

∗
i , xk), ini(T)}, k − 1, 0)};

15 else

16 T2 := a polynomial in P(k) of least degree in xk;
17 Φ := Φ ∪ {(P\{T2} ∪ {ini(T2), tail(T2)}, Q, k, 0)};
18 if #P(k) > 1 then

19 T1 := a polynomial in P(k)\{T2};
20 (H2, . . . , Hr) := SubRegSubchain(T1, T2);
21 if lv(Hr) = xk then r := r; else r := r − 1;
22 for i = 2, . . . , r − 1 do
23 Φ := Φ ∪ {(P\{T1, T2} ∪ {Hi, lc(Hi+1,xk), . . . , lc(Hr, xk)}, Q ∪

{ini(T2), lc(Hi, xk)}, k, 0)};
24 Φ := Φ ∪ {(P\{T1, T2} ∪ {Hr, Hr}, Q ∪ {ini(T2), lc(Hr, xk)}, k, 0)};
25 else
26 if sqf = 0 then
27 if deg(T2) = 1 then Φ := Φ ∪ {(P, Q ∪ {ini(T2)}, k, 1)};
28 else

29 (H∗
2 , . . . , H∗

r) := SubRegSubchain∗(T2, ∂T2
∂xk

);

30 for i = 2, . . . , r do
31 Φ := Φ ∪ {(P\{T2} ∪ {pquo(T2, H∗

i , xk), lc(H
∗
i+1, xk), . . . ,

lc(H∗
r , xk)}, Q ∪ {ini(T2), lc(H∗

i , xk)}, k, 1)};

32 else

33 if Q(k) = ∅ then Φ := Φ ∪ {(P, Q, k − 1, 0)};
34 else

35 T1 := a polynomial in Q(k);
36 (H2, . . . , Hr) := SubRegSubchain(T1, T2);
37 for i = 2, . . . , r do
38 Φ := Φ ∪ {(P\{T2} ∪ {pquo(T2, Hi, xk), lc(Hi+1, xk), . . .,

lc(Hr, xk)}, Q\{T1} ∪ {lc(Hi, xk)}, k, 1)};

39 for (P, Q, 0) ∈ Φ(0) do

40 if P(0)∪Q(0)\{0} = ∅ then
41 Ψ := Ψ ∪ {(P\{0}, Q\{0})};
42 return Ψ ;

On the Chordality of Simple Decomposition in Top-Down Style 145

Line 14: now P(k) = ∅ and deg(T) > 1. Note that for each i, the first two
polynomial sets of the node adjoined to Φ are

P̃ := P ∪ {lc(H∗
i+1, xk), . . . , lc(H∗

r , xk)},

Q̃ := Q\Q(k) ∪ {pquo(T,H∗
i , xk), lc(H∗

i , xk), ini(T)}.

First in the second polynomial set above, we see that lv(pquo(T,H∗
i , xk)) = xk,

lv(lc(H∗
i , xk)) < xk, and lv(ini(T)) < xk, and thus there is only one polyno-

mial pquo(T,H∗
i , xk) in the updated Q̃(k). Then by Lemma 1 we know that

pquo(P,H∗
i , xk)(x̄k−1, xk) is squarefree for any xk−1 ∈ Z({lc(H∗

i+1, xk), . . . ,
lc(H∗

r , xk)}/ lc(H∗
i , xk) ini(T)). By the definition of P̃ and Q̃ above, we have

Z(P̃(<k)/Q̃(<k)) ⊂ Z({lc(H∗
i+1, xk), . . . , lc(H∗

r , xk)}/ lc(H∗
i , xk) ini(T)),

and thus the conditions are satisfied.
Line 33: now sqf = 1, meaning that for the only one polynomial T ∈ P(k),

T (xk−1, xk) is squarefree w.r.t. xk and Q = ∅, and thus the conditions are
satisfied.

Case 2. In this case we need to show that in lines 27, 31, and 38, the polynomial
set P of the node (P,Q, k, sqf) to adjoin to Φ has only one polynomial whose
leading variable is xk and it is squarefree w.r.t. xk.

The first argument is straightforward by viewing that all the three lines are
governed by a “else” statement in line 15 with which the condition is “P(k) = ∅”
and also governed by a “else” statement in line 25 with which the condition is
“#P(k) > 1”.

The second argument is for the squarefreeness of the unique polynomial T
in the polynomial set P of the node: in line 27 the squarefreeness of T is trivial
since deg(T, xk) = 1, in line 31 the squarefreeness of T can be proved in a
similar way to that in line 14 of Case 1 above, and in line 38 the polynomial
T = pquo(T2,Hi, xk) is squarefree w.r.t. xk because here T2 is already squarefree
w.r.t. xk.

4 Decomposition Tree of Wang’s Algorithm for Simple
Decomposition in Top-Down Style

Based on the descriptions of Wang’s algorithm for simple decomposition as
SimDec() (Algorithm 1), now we can construct the decomposition tree of the
algorithm in the following way. Let F be the input polynomial set of SimDec().
The decomposition tree of SimDec() is rooted at the node (F , ∅, n, 0). Then any
node (P,Q, k, sqf) in the tree spawns its child nodes according the number of
polynomials in P(k), whether the polynomial in P(k) is squarefree w.r.t. xk or
not, etc. This process is called splitting in the terminologies of triangular decom-
position.

Next we identify all the four possible cases of splitting from a node
(P,Q, k, sqf) in the decomposition tree.

146 C. Mou and J. Lai

(I) When #P(k) > 1, algorithm SimDec() picks a polynomial T2 ∈ P(k) of
least degree in xk and another polynomial T1 ∈ P(k) and applies elimination of
xk to these two polynomials by computing their subresultant regular subchain to
spawn the child nodes (P ′,Q′, k, 0) (in line 17 of Algorithm1) and (Pi,Qi, k, 0)
for i = 2, . . . , r (in lines 23 and 24) of (P,Q, k, sqf), where

P ′ := P\{T2} ∪ {ini(T2), tail(T2)},

Q′ := Q,

Pi := P\{T1, T2} ∪ {Hi, lc(Hi+1, xk), . . . , lc(Hr, xk)}, i = 2, . . . , r − 1,

Pr := P\{T1, T2} ∪ {Hr,Hr},

Qi := Q ∪ {ini(T2), lc(Hi, xk)}, i = 2, . . . , r.

(2)

(II) When #P(k) = 1 and sqf = 0, algorithm SimDec() computes the subre-
sultant regular subchain of the unique polynomial T2 ∈ P(k) and its derivative
to spawn the child nodes (P ′,Q′, k, 0) (in line 17) as in case (I) above and
(P∗

i ,Q∗
i , k, 1) for i = 2, . . . , r (in line 31) of (P,Q, k, sqf), where

P∗
i :=P\{T2}∪{pquo(T2,H

∗
i ,xk), lc(H∗

i+1,xk),. . ., lc(H∗
r , xk)}, i = 2, . . . , r,

Q∗
i :=Q ∪ {ini(T2), lc(H∗

i , xk)}, i = 2, . . . , r.
(3)

(III) When #P(k) = 1 and sqf = 1, algorithm SimDec() computes the subre-
sultant regular subchain of the unique polynomial T2 ∈ P(k) and some polyno-
mial T1 in Q(k) to spawn the child nodes (P ′,Q′, k, 0) (in line 17) as in case (I)
above and (P ′

i,Q′
i, k, 1) for i = 2, . . . , r (in line 38) of (P,Q, k, 1), where

P ′
i :=P\{T2}∪{pquo(T2, Hi, xk), lc(Hi+1,xk), . . . , lc(Hr,xk)}, i = 2, . . . , r,

Q′
i :=Q\{T1} ∪ {lc(Hi, xk)}, i = 2, . . . , r.

(4)

(IV) When P(k) = ∅, algorithm SimDec() computes the subresultant regular
subchain of the product T of all the polynomial in Q(k) and its derivative to
spawn the child nodes (P#,Q#, k, 0) (in line 9) and (P#

i ,Q#
i , k − 1, 0) for i =

2, . . . , r (in line 14) of (P,Q, k, sqf), where

P# := P ∪ {ini(T)},

Q# := Q\Q(k) ∪ {tail(T)},

P#
i := P ∪ {lc(H∗

i+1, xk), . . . , lc(H∗
r , xk)}, i = 2, . . . , r,

Q#
i := Q\Q(k) ∪ {pquo(T,H∗

i , xk), lc(H∗
i , xk), ini(T)}, i = 2, . . . , r.

(5)

Based on the analysis above, the decomposition tree of the algorithm
SimDec() for simple decomposition is illustrated in Fig. 2 below. We would like
to remark that due to the heavy use of computation of subresultant regular sub-
chains, the number of child nodes at one node in this tree is usually more than
2 and not fixed and thus dynamic.

On the Chordality of Simple Decomposition in Top-Down Style 147

(, ∅, n, 0)

· · ·
· · ·

· · · · · ·

· · ·
· · · · · ·

︸
︷
︷

︸

n

︸
︷
︷

︸ n−1...
k+1

· · ·· · · · · ·

(P,Q,k,0)

· · ·
(P′,Q′,k,0) (P2,Q2,k,0) (P3,Q3,k,0) (Pr,Qr, k, 0)· · ·

#P(k) > 1

(P,Q,k,0)

· · ·
(P′,Q′,k,0) (P∗

2,Q∗
2,k,1) (P∗

3,Q∗
3,k,1) (P∗

r ,Q∗
r , k, 1)· · ·

#P(k) = 1

(P,Q,k,1)

· · ·
(P′,Q′,k,0) (P′

2,Q′
2,k,1) (P′

3,Q′
3,k,1) (P′

r,Q′
r, k, 1)· · ·

#P(k) = 1

(P,Q,k,1)

· · ·
(P#,Q#, k, 0)

(P#
2 ,Q#

2 , k−1,0) (P#
r ,Q#

r , k−1,0)· · ·

P(k) = ∅

︸
︷
︷

︸

k

︸
︷
︷

︸

k−1...
1

Fig. 2. Dynamic multi-branch decomposition tree of SimDec() for simple decomposition

5 Chordality of Polynomial Sets in Wang’s Algorithm
for Simple Decomposition in Top-Down Style

In this section we prove case by case that when the polynomial set F of SimDec()
is chordal and a perfect elimination ordering is used as the variable ordering for

148 C. Mou and J. Lai

SimDec(), the two polynomial sets P and Q of an arbitrary node (P,Q, k, sqf)
in the decomposition tree have associated graphs G(P) and G(Q) which are
subgraphs of G(F), namely algorithm SimDec() preserves the chordality of the
input polynomial set.

Proposition 1. Let (P,Q, k, sqf) be any node in the decomposition tree of
SimDec(F) such that #P(k) ≥ 1, T2 be a polynomial in P(k) with least degree in
xk, and P ′ be as defined in (2). Then we have G(P ′) ⊂ G(P).

Proof. See the proof of [20, Prop. 20].
�

Proposition 2. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn as
one perfect elimination ordering of G(F), and (P,Q, k, sqf) be an arbitrary node
in the decomposition tree of SimDec(F) such that #P(k) > 1, G(P) ⊂ G(F),
and G(Q) ⊂ G(F). Let T2 be a polynomial in P(k) with least degree in xk, T1 be
another polynomial in P(k), and Pi,Qi (i = 2, . . . , r) be as defined in (2). Then
G(Pi) ⊂ G(F) and G(Qi) ⊂ G(F) for i = 2, . . . , r.

Proof. See the proof of [20, Prop. 24] for the inclusion G(Pi) ⊂ G(F). To prove
G(Qi) ⊂ G(F) for i = 2, . . . , r, it suffices to show that any edge (xp, xq) ∈ G(Qi)
is also an edge of G(F). Since Qi = Q ∪ {ini(T2), lc(Hi, xk)}, if there exists a
polynomial T ∈ Q such that xp, xq ∈ supp(T), then by the assumption G(Q) ⊂
G(F) clearly we have (xp, xq) ∈ G(F); otherwise there exists a polynomial T ∈
{ini(T2), lc(Hi, xk)} such that xp, xq ∈ supp(T), and by similar arguments in the
proof of [20, Prop. 24] we can show that (xp, xq) ∈ G(F).
�

Proposition 3. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn as
one perfect elimination ordering of G(F), and (P,Q, k, sqf) be an arbitrary node
in the decomposition tree of SimDec(F) such that #P(k) = 1 and sqf = 0. Let T2

be the unique polynomial in P(k), H2, . . . , Hr be the subresultant regular subchain
of T2 and ∂T2

∂xk
, and P∗

i (i = 2, . . . , r) be as defined in (3). Then G(P∗
i) ⊂ G(P)

for i = 2, . . . , r. In particular, if G(P) ⊂ G(F) and G(Q) ⊂ G(F), we have
G(Q∗

i) ⊂ G(F) for i = 2, . . . , r.

Proof. Note that for each i = 2, . . . , r, P∗
i is constructed from P by remov-

ing T2 and adding pquo(T2,H
∗
i , xk), lc(H∗

i+1, xk), . . ., and lc(H∗
r , xk). First all

the polynomials H2, . . . , Hr in the subresultant regular subchain, and thus
H∗

2 , . . . , H∗
r as defined in (1), are constructed from the polynomial T2 only, and

so are pquo(T2,H
∗
i , xk), lc(H∗

i+1, xk), . . ., and lc(H∗
r , xk). This leads to the inclu-

sions supp(pquo(T2,H
∗
i , xk)) ⊂ supp(T2) and supp(lc(H∗

i , xk)) ⊂ supp(T2) for
i = 2, . . . , r.

For any edge (xp, xq) ∈ G(P∗
i), if there exists a polynomial T ∈ P \{T2}

such that xp, xq ∈ supp(T), then clearly (xp, xq) ∈ G(P). Otherwise there
exists a polynomial T ∈ {pquo(T2,H

∗
i , xk), lc(H∗

i+1, xk), . . . , lc(H∗
r , xk)} such

that xp, xq ∈ supp(T). By the argument above we know that xp, xq ∈ supp(T2),
and thus (xp, xq) ∈ G(P). This proves the first part of the conclusion.

By (3) we know that Q∗
i := Q ∪ {ini(T2), lc(H∗

i , xk)}. Clearly supp(Q∗
i) ⊂

supp(P) ∪ supp(Q) ⊂ supp(F). To prove G(Q∗
i) ⊂ G(F), it suffices to show

On the Chordality of Simple Decomposition in Top-Down Style 149

that any edge (xp, xq) ∈ G(Q∗
i) is also an edge of G(F). If there exists

a polynomial T ∈ Q such that xp, xq ∈ supp(T), then by the assumption
G(Q) ⊂ G(F) we have (xp, xq) ∈ G(F); otherwise there exists a polynomial
T ∈ {ini(T2), lc(H∗

i , xk)} such that xp, xq ∈ supp(T), and in a similar way as in
the proof above we know that (xp, xq) ∈ G(P) ⊂ G(F).
�

Proposition 4. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn

as one perfect elimination ordering of G(F) and (P,Q, k, sqf) be an arbitrary
node in the decomposition tree of SimDec(F) such that sqf = 1, G(P) ⊂ G(F),
and G(Q) ⊂ G(F). Let T2 be the unique polynomial in P(k), T1 be some
polynomial in Q(k), H2, . . . , Hr be the subresultant regular subchain of T1 and
T2, and P ′

i,Q′
i (i = 2, . . . , r) be as defined in (4). Then G(P ′

i) ⊂ G(F) and
G(Q′

i) ⊂ G(F) for i = 2, . . . , r.

Proof. For each i = 2, . . . , r, clearly we have supp(P ′
i) ⊂ supp(P) ∪ supp(Q) ⊂

supp(F). For any edge (xp, xq) ∈ G(P ′
i), if there exists a polynomial T ∈ P \

{T2} such that xp, xq ∈ supp(T), then (xp, xq) ∈ G(P) ⊂ G(F). Otherwise
there exists a polynomial T ∈ {pquo(T2,Hi, xk), lc(Hi+1, xk), . . . , lc(Hr, xk)}
such that xp, xq ∈ supp(T), and thus xp, xq ∈ supp(T) ⊂ supp(T1) ∪ supp(T2).
We consider the following three cases.

(a) When xp, xq ∈ supp(T1): by the assumption that G(Q) ⊂ G(F) we have
(xp, xq) ∈ G(Q) ⊂ G(F).

(b) When xp, xq ∈ supp(T2): similarly by G(P) ⊂ G(F) we have (xp, xq) ∈
G(P) ⊂ G(F).

(c) When xp ∈ supp(T1) and xq ∈ supp(T2) (without loss of generality, we
can assume that): by T1 ∈ Q(k) we know that xk ∈ supp(T1) and thus
(xp, xk) ∈ G(Q) ⊂ G(F). Similarly we also have (xq, xk) ∈ G(F). Then by
the chordality of G(F) we know that (xp, xq) ∈ G(F).

To summarize, we have G(P ′
i) ⊂ G(F) for i = 2, . . . , r.

Next we prove the inclusions G(Q′
i) ⊂ G(F). For each i = 2, . . . , r, we know

that Q′
i := Q\{T1}∪{lc(Hi, xk)} and it is easy to see that supp(Q′

i) ⊂ supp(P)∪
supp(Q) ⊂ supp(F). For any edge (xp, xq) ∈ G(Q′

i), if there exists a polynomial
T ∈ Q\{T1}, then clearly (xp, xq) ∈ G(P) ⊂ G(F); otherwise xp, xq ∈ lc(Hi, xk),
and by the same arguments above we know that (xp, xq) ∈ G(F).
�

Proposition 5. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn

as one perfect elimination ordering of G(F) and (P,Q, k, sqf) be an arbitrary
node in the decomposition tree of SimDec(F) such that P(k) = ∅, G(P) ⊂ G(F),
and G(Q) ⊂ G(F). Let T =

∏
Q∈Q(k) Q, H2, . . . , Hr be the subresultant regular

subchain of T and ∂T
∂xk

, and P#, Q#, and P#
i ,Q#

i (i = 2, . . . , r) be as defined
in (5). Then G(P#), G(Q#), G(P#

i), G(Q#
i) (i = 2, . . . , r) are all subgraphs of

G(F).

Proof. The inclusions G(P#) ⊂ G(F) and G(Q#) ⊂ G(F) are easy to derive
with the assumptions G(P) ⊂ G(F) and G(Q) ⊂ G(F).

150 C. Mou and J. Lai

As in the first part of the proof for Proposition 3 above, we can show that
supp(pquo(T1,H

∗
i , xk)), supp(ini(T)), and supp(lc(H∗

i , xk)) (i = 2, . . . , r) are all
subsets of supp(T). For any edge (xp, xq) ∈ G(Q#

i), if there exists a polynomial
T̃ ∈ Q\Q(k) such that xp, xq ∈ supp(T̃), then clearly (xp, xq) ∈ G(Q) ⊂ G(F).
Otherwise there exists a polynomial T̃ ∈ {pquo(T,H∗

i , xk), lc(H∗
i , xk), ini(T)}

such that xp, xq ∈ supp(T̃). By the above arguments we know that xp, xq ∈
supp(T). Since T =

∏
Q∈Q(k) Q, there exist polynomials Q1 and Q2 in Q(k) such

that xp, xk ∈ supp(Q1) and xq, xk ∈ supp(Q2). Then (xp, xk) ∈ G(Q) ⊂ G(F)
and (xq, xk) ∈ G(Q) ⊂ G(F), and the chordality of G(F) implies (xp, xq) ∈
G(F).

To prove the inclusions G(P#
i) ⊂ G(F), it suffices to show that each edge

(xp, xq) ∈ G(P#
i) is also an edge of G(F). If there exists a polynomial T̃ ∈ P

such that xp, xq ∈ supp(T̃), then clearly (xp, xq) ∈ G(P) ⊂ G(F); otherwise
there exists a polynomial T̃ ∈ {lc(H∗

i+1, xk), . . . , lc(H∗
r , xk)} such that xp, xq ∈

supp(T̃), and by the same arguments as above, we know that (xp, xq) ∈ G(Q) ⊂
G(F). This ends the proof.
�

Theorem 1. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn as
one perfect elimination ordering of G(F). Then for any node (P,Q, k, sqf) in the
decomposition tree of SimDec(F), we have G(P) ⊂ G(F) and G(Q) ⊂ G(F).

Proof. We prove this theorem by induction on the depth of the node in the
decomposition tree of SimDec(F). When d = 0, clearly for the root (F , ∅, n, 0)
the conclusions hold. Now suppose that for any node (P̃, Q̃, k̃, ˜sqf) of depth
d in the decomposition tree, we have G(P̃) ⊂ G(F) and G(Q̃) ⊂ G(F). Let
(P,Q, k, sqf) be an arbitrary node of depth d + 1 in the decomposition tree,
with its parent node (P̃, Q̃, k̃, ˜sqf) of depth d. Next we prove G(P) ⊂ G(F) and
G(Q) ⊂ G(F).

In Algorithm 1 there are the following lines where new nodes are spawned,
and we prove the conclusions case by case.

(1) Lines 6 and 33: trivially by the inductive assumption.
(2) Lines 9 and 14: the inclusions can be derived directly by Proposition 5.
(3) Line 10: it suffices to prove that for any (xp, xq) ∈ G(Q), we have (xp, xq) ∈

G(Q̃). If there exists a polynomial T̃ ∈ Q̃\Q̃(k) such that xp, xq ∈ supp(T̃),
then clearly (xp, xq) ∈ G(Q̃); otherwise there exists a polynomial T̃ = T or
ini(T) such that xp, xq ∈ supp(T̃), where T is the unique polynomial in Q̃(k)

(which is true under the condition deg(T, xk) = 1 in line 10), then we know
that xp, xq ∈ supp(T) and thus (xp, xq) ∈ G(Q̃) ⊂ G(F).

(4) Line 17: by Proposition 1 we have G(P) ⊂ G(F), and the inclusion G(Q) ⊂
G(F) holds trivially.

(5) Lines 23 and 24: the inclusions can be derived directly by Proposition 2.
(6) Line 27: easy to derive by viewing that supp(ini(T2)) ⊂ supp(T2).
(7) Line 31: the inclusions can be derived directly by Proposition 3.
(8) Line 38: the inclusions can be derived directly by Proposition 4.

On the Chordality of Simple Decomposition in Top-Down Style 151

This ends the inductive proof of the theorem.
�

Corollary 1. Let F ⊂ K[x] be a chordal polynomial set with x1 < · · · < xn as
one perfect elimination ordering of G(F) and (T1,U1), . . . , (Ts,Us) be the simple
systems computed by SimDec(F). Then G(Ti) ⊂ G(F) for i = 1, . . . , s.

Proof. Straightforward from Theorem 1.
�

6 Concluding Remarks

In this paper we first reformulate Wang’s algorithm for simple decomposition
in top-down style into Algorithm1 which is suitable for studying it in an induc-
tive way. Then we prove in Theorem 1 that under the conditions that the poly-
nomial set to decompose is chordal and one perfect elimination ordering is used,
all the polynomial sets representing equations and inequations in the decom-
position process of Wang’s algorithm for simple decomposition have associated
graphs which are subgraphs of the input chordal graph. This naturally leads to
Corollary 1 that all the simple systems computed by this algorithm have associ-
ated graphs which are subgraphs of the chordal graph. In other words, we prove
that Wang’s algorithm for simple decomposition in top-down style preserves
chordality of the input polynomial set.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symbolic Comput. 28(1–2), 105–124 (1999)

2. Bächler, T.: Counting solutions of algebraic systems via triangular decomposition.
Ph.D. thesis, RWTH Aachen University (2014)

3. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symbolic Comput. 47(10),
1233–1266 (2012)

4. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität
Innsbruck, Austria (1965)

5. Chai, F., Gao, X.S., Yuan, C.: A characteristic set method for solving Boolean
equations and applications in cryptanalysis of stream ciphers. J. Syst. Sci. Com-
plex. 21(2), 191–208 (2008)

6. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. J. Symbolic Comput. 47(6), 610–642 (2012)

7. Cifuentes, D., Parrilo, P.A.: Chordal networks of polynomial ideals. SIAM J. Appl.
Algebra Geom. 1(1), 73–110 (2017)

8. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry. Springer, Heidel-
berg (1998). https://doi.org/10.1007/978-1-4757-6911-1

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

10. Gao, X.S., Jiang, K.: Order in solving polynomial equations. In: Gao, X.S., Wang,
D. (eds.) Computer Mathematics, Proceedings of ASCM 2000, pp. 308–318. World
Scientific (2000)

https://doi.org/10.1007/978-1-4757-6911-1

152 C. Mou and J. Lai

11. Gao, X.S., Chou, S.C.: Solving parametric algebraic systems. In: Wang, P. (ed.)
Proceedings of ISSAC 1992, pp. 335–341. ACM (1992)

12. Gerdt, V., Robertz, D.: Lagrangian constraints and differential Thomas decompo-
sition. Adv. Appl. Math. 72, 113–138 (2016)

13. Gilbert, J.R.: Predicting structure in sparse matrix computations. SIAM J. Matrix
Anal. Appl. 15(1), 62–79 (1994)

14. Huang, Z., Lin, D.: Attacking Bivium and Trivium with the characteristic set
method. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 77–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21969-6 5

15. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms
i: polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol.
2630, pp. 1–39. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45084-
X 1

16. Kalkbrener, M.: A generalized Euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symbolic Comput. 15(2), 143–167 (1993)

17. Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over
finite fields: The positive-dimensional case. Theoret. Comput. Sci. 468, 102–113
(2013)

18. Mou, C.: Symbolic detection of steady states of autonomous differential biological
systems by transformation into block triangular form. In: Jansson, J., Mart́ın-Vide,
C., Vega-Rodŕıguez, M.A. (eds.) AlCoB 2018. LNCS, vol. 10849, pp. 115–127.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91938-6 10

19. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition
in top-down style. In: Arreche, C. (ed.) Proceedings of ISSAC 2018, pp. 287–294.
ACM (2018)

20. Mou, C., Bai, Y., Lai, J.: Chordal graphs in triangular decomposition in top-down
style. J. Symbolic Comput. (2019, to appear)

21. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Rev. 3(2), 119–130
(1961)

22. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl.
32(3), 597–609 (1970)

23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

24. Wang, D.: An elimination method for polynomial systems. J. Symbolic Comput.
16(2), 83–114 (1993)

25. Wang, D.: Decomposing polynomial systems into simple systems. J. Symbolic Com-
put. 25(3), 295–314 (1998)

26. Wang, D.: Computing triangular systems and regular systems. J. Symbolic Com-
put. 30(2), 221–236 (2000)

27. Wang, D.: Elimination Methods. Springer, Wien (2001). https://doi.org/10.1007/
978-3-7091-6202-6

28. Wu, W.T.: On zeros of algebraic equations: An application of Ritt principle. Kexue
Tongbao 31(1), 1–5 (1986)

29. Wu, W.T.: Mechanical Theorem Proving in Geometries: Basic Principles. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-7091-6639-0

30. Yang, L., Zhang, J.Z.: Searching dependency between algebraic equations: An
algorithm applied to automated reasoning. In: Johnson, J., McKee, S., Vella, A.
(eds.) Artificial Intelligence in Mathematics, pp. 147–156. Oxford University Press,
Oxford (1994)

https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/978-3-319-91938-6_10
https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6639-0

Automatic Synthesis of Merging
and Inserting Algorithms on Binary Trees

Using Multisets in Theorema

Isabela Drămnesc1(B) and Tudor Jebelean2

1 West University, Timişoara, Romania
isabela.dramnesc@e-uvt.ro

2 Johannes Kepler University, Linz, Austria
Tudor.Jebelean@jku.at

Abstract. We demonstrate the automatic proof–based synthesis of mer-
ging and inserting algorithms for [sorted] binary trees, using the notion
of multisets, in the Theorema system. Each algorithm is extracted from
the proof of the conjecture based on the specification of the desired func-
tion, in the form of a list of [conditional] equalities, which can be directly
executed. The proofs are performed in natural style, using general tech-
niques, but most importantly efficient inference rules and strategies spe-
cific for the domains involved. In particular we present specific techniques
for the construction of arbitrarily nested recursive algorithms by general
Noetherian induction, as well as a systematic method for the generation
of the conjectures and consequently of the algorithms for the auxiliary
functions needed in the main function.

Keywords: Algorithm synthesis · Binary trees · Multisets · Theorema

1 Introduction

Automated synthesis of algorithms based on logical principles is an interesting
alternative to algorithm verification, because it focuses on the study of the pro-
perties of the involved domains, from which correct algorithms are obtained
automatically, instead of creating them by human ingenuity. The case studies
presented in this paper are part of our research on systematic theory construc-
tion (theory exploration [2]) and automated synthesis in the domain of finite
binary trees for which we also use finite multisets. In two related papers [9,10]
we already investigated algorithms for deletion from lists and binary trees, as
well as sorting algorithms for lists. Multisets allow to express in a natural way
the fact that two trees have the same elements, but more importantly (as are
revealed by our experiments) it leads to powerful proof techniques. For space
reasons, in this presentation we focus on one argument induction1 and also on
compositional construction2 and do not approach yet algorithms which use both
1 For binary functions one may use simultaneous induction on both arguments.
2 The construction of the object desired for the synthesis uses only the objects which

are already present in the proof, and does not try to decompose some of them.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 153–168, 2020.
https://doi.org/10.1007/978-3-030-43120-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_13

154 I. Drămnesc and T. Jebelean

lists and trees. We approach automated synthesis as described in our previous
work – see e.g. [8,15]. First one proves automatically a synthesis conjecture which
is based on the specification (input and output conditions) of the desired func-
tion, then the algorithm is extracted automatically from the proof. We use the
Theorema system [6], in which the inference rules and the logical formulae are
presented in natural style – similar to the one used by humans. Since Theorema
also allows the execution of algorithms, we can test them immediately in the
system. The theoretical basis and the correctness of the proof based synthesis
scheme is well–known, see [7,18].

Each algorithm is produced as a list of clauses, each clause being a (possibly
conditional) universally quantified equality which is to be applied as a rewrite
rule from left to right. The LHS3 of each equality consists of the function symbol
(of the desired algorithm) applied to a term which identifies a certain class of
possible inputs (this is sometimes called pattern matching programming). The
clauses are such that all possible inputs are considered (covering), and no two
clauses may apply to the same input (mutual exclusion) – these properties are
automatically insured by the synthesis method.

Related Work and Originality. [18] introduces deductive techniques for algo-
rithm synthesis, in particular for constructing recursive algorithms. These tech-
niques are applied in [23] to manually derive several sorting algorithms in the
theories of integers and strings. They present also a rule for generating auxiliary
algorithms, see also [20]. Later implementations using some of these principles
are in [17,22]. We presented a more detailed survey of synthesis methods in
[8]. In the current paper we follow some of the principles from [18,23], but we
develop different proof–based techniques for algorithm synthesis.

The theory of multisets is well studied in the literature, including compu-
tational formalizations (see e.g. [19], where finite multisets are called bags). A
presentation of the theory of multisets and a good survey of the literature related
to multisets and their usage is [1] and some interesting practical developments
are in [21]. In previous work on synthesis, multisets are not explicitly used in
the process of proof–based algorithm synthesis. They are just mentioned in the
problem specification (e.g., in expressing the permutation of two objects), but
their definition and properties are not involved in the process of proof–based
algorithm synthesis. In this paper we explicitly use multisets, their definition
and properties in the entire process of algorithm synthesis.

In our previous work we study proof–based algorithm synthesis in the theo-
ries of lists, sets and binary trees [12] separately ([8,14,15]), but without using
multisets.

A systematic formalization of the theory of lists using multisets for the proofs
of correctness of various sorting algorithms is mechanized in Isabelle/HOL4,
but this does not address the problem of algorithm synthesis. An interesting
formalization in a previous version of Theorema [5], which includes the theory
exploration and the synthesis of a sorting algorithm is presented in [4], which also
3 We use LHS for left hand side and RHS for right hand side.
4 https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting Algorithms.html.

https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting_Algorithms.html

Synthesis of Algorithms on Binary Trees 155

constituted the inspiration of our previous research on proof–based synthesis.
However, in that pioneering work, the starting point of the synthesis (besides
the specification of the desired function) is a specific algorithm scheme, while in
our approach we use induction principles and dynamic induction.

In contrast to other investigations and to our previous research, the cur-
rent study uses multisets in the synthesis problem and in the entire process of
algorithm synthesis, combined properties which are necessary in the process of
algorithm synthesis, the automatically generated proofs are performed in the
new version of the Theorema system [6,24], and the investigation is performed
in parallel on the two domains. We already investigated the proof–based syn-
thesis of auxiliary algorithms on binary trees: Merge [11], and Insert [13], see
also [15], but we did not use multisets and we applied different proof techniques.
In our current approach using multisets we investigate in companion papers the
synthesis of Delete on lists and trees [9] and the synthesis of sorting algorithms
on lists [10].

Moreover, this paper describes more precisely the practical techniques for
cascading and for general Noetherian induction, and illustrates them in more
detail on several examples. For the purposes above, three novel inference
rules are introduced, and seven inference rules and seven strategies are
extended for these case studies on binary trees using multisets.

2 Proof–Based Synthesis

2.1 Context

Notations. We use square brackets for function and for predicate application,
for instance: f [x] instead of f(x) and P [a] instead of P (a). Quantified variables
are placed under the quantifier, as in ∀

X
and ∃

X
.

The objects occurring in the formulae are: elements—objects from a totally
ordered domain (denoted a, b, c) which are members of composite objects; mul-
tisets denoted A,B,C; and binary trees denoted L,R, S, T,X, Y, Z. (Multisets
and binary trees are also addressed as composite objects).

Knowledge Base. For space reasons, we list explicitly only the formulae which
are used in the proofs presented in this paper, the theory exploration includes
more statements.

Elements of various composite structures are any objects whose domain
is totally ordered (notation ≤ and <). The ordering on elements is extended
to orderings between an element and a composite object (denoted �,≺) and
between composite objects (denoted �), by requiring that all elements of the
composite object observe the ordering relation5.

Finite multisets are composite objects which may contain the same elements
several times, that is each element has a certain multiplicity. ∅ denotes the empty
5 Note that this introduces exceptions to antisymmetry and transitivity when the

empty composite object is involved.

156 I. Drămnesc and T. Jebelean

multiset, {{a}} denotes the multiset having only the element a with multiplicity 1.
The union (additive) is denoted by 	 : multiplicity is the sum of multiplicities—
like in [16]. Union is commutative and associative with unit ∅, these properties
are used implicitly by the prover. We use M for the multiset of elements of a
tree. When two trees have the same elements (that is, their multisets are equal),
we call them equivalent.

A finite binary tree is either ε (empty) or a triplet 〈L, a,R〉, where L and R
are trees. The multiset of a tree has the following property:

Property 1. ∀
a,L,R

(
M[ε] = ∅

M[〈L, a,R〉] = M[L] 	 {{a}} 	 M[R]

)

Sorted trees are defined in the following way:

Definition 1.

∀
a,L,R

(
IsSorted[ε]

IsSorted[〈L, a,R〉] ⇐⇒ IsSorted[L] ∧ IsSorted[R] ∧ L � a � R

)

Problem and Approach. Given two trees X,Y , merge them into a tree Z.
Moreover, if X,Y are sorted, then Z should be also sorted. The synthesis con-
jecture has the general structure ∀

X,Y
(I[X,Y] =⇒ ∃

Z
O[X,Y,Z]), where I is the

input condition and O is the output condition.
In the general case X,Y,Z are not required to be sorted, there is no input

condition6 and the output condition O[X,Y,Z] is (M[Z] = M[X]	M[Y]), thus
we have:

Conjecture 1. ∀
X

∀
Y
∃
Z

(
M[Z] = M[X] 	 M[Y]

)
For sorted trees we also consider the input condition I[X,Y] : (IsSorted[X] ∧
IsSorted[Y]) and we add IsSorted[Z] to the output condition, thus we have:

Conjecture 2. ∀
X

∀
Y
(IsSorted[X] ∧ IsSorted[Y]) =⇒ ∃

Z

(
M[Z] = M[X] 	 M[Y] ∧

IsSorted[Z]
)

One may try to prove the conjectures by various induction principles, using
one argument or both. For space reasons we focus in the present case study on
domain definition based induction and on induction on first argument: ∀

X
P [X]

is proven by the induction principle established by the inductive definition of
the domain. When necessary we refine this induction to a dynamic induction
method which is applicable to any Noetherian domain: in the induction step we
start to prove the induction conclusion P [t] (t ground term) by assuming some
induction hypotheses P [X0], . . . , P [Xn] according to the inductive definition of
the domain (X0, . . . , Xn are Skolem constants). If during the proof we need

6 This means that the input condition is the logical constant True and the implication
from the synthesis conjecture reduces to O[X,Y, Z].

Synthesis of Algorithms on Binary Trees 157

some assumption P [t′] where t′ (also ground term) represents an object which is
strictly smaller than the object represented by t in the Noetherian ordering, then
we may assume P [t′] holds, that is we can add it to the induction hypotheses.
The soundness of this technique is presented in detail in [15], and it allows to
discover concrete induction principles based on the general Noetherian induction.
The principle of well–founded induction is described as a deduction rule in [18].
Similarly, we use the Noetherian ordering induced by the strict inclusion of the
corresponding multisets, which conveniently extends to a meta–ordering between
terms, induced by the strict inclusion of the constants occurring in the respective
terms. The practical technique for this dynamic induction is described as proof
strategy ST-6 and is illustrated on several examples below.

Moreover we use the cascading method pioneered in [3]: when the proof fails,
from the failed goal the prover constructs a conjecture synthesis statement which
can be used to obtain the auxiliary function which is necessary for the current
synthesis. We have been using this for the case of lists in [8,10], and in this
paper we describe it in a more systematic manner as proof strategy ST-7 and
we illustrate it on several examples: all insertion algorithms are generated by
cascading starting from failed merging–synthesis proofs. [23] presents a method
as a generalization of [18] (an “eureka step” is presented as a rule) for generation
auxiliary procedures. Their method seems to be similar to cascading, but they
use different deductive steps to generate the new statement to be proven and the
development of the corresponding auxiliary functions. Moreover, in this paper we
present the cascading method as an automatic proof technique in the Theorema
system.

Induction Principle for Binary Trees. We use the induction principle estab-
lished by the domain definition. In order to prove ∀

X
P [X] (base case) prove

P [ε]; (induction step) for Skolem constants a, L0, R0 assume induction hypoteses
P [L0], P [R0] and prove induction conclusion P [〈L0, a, R0〉], where 〈L0, a, R0〉 is
the subject of the induction conclusion.

In order to synthesize a merging algorithm as a function F [X,S] we prove
Conjecture 1 (take S for Y and T for Z) by transforming S into a Skolem constant
S0 and performing induction on X:

Base Case: We prove ∃
T
O[ε, S0, T]. If the proof succeeds to find for T a ground

witness �1[S0] then we know that F [ε, S] = �1[S].

Step Case: For arbitrary but fixed a, L0 and R0 (new constants), assume:
∃
T
O[L0, S0, T] and ∃

T
O[R0, S0, T], which are Skolemized by introducing two new

constants T1 and T2. We prove: ∃
T
O[〈L0, a, R0〉, S0, T]. If the proof succeeds

to find a witness �2[a, L0, R0, S0, T1, T2], then we know that F [〈L, a,R〉, S] =
�2[a, L,R, S, F [L, S], F [R,S]]. T1 and T2 are replaced by F [L, S] and F [R,S],
respectively. Multiple witnesses generate several conditional equalities. Addi-
tional arguments to �2 may be introduced by dynamic induction as described
above and also below at strategy ST-6.

158 I. Drămnesc and T. Jebelean

In the case of sorted trees, the proof schema is the same, only the given trees
(L0, R0, S0, T1, T2) are assumed to be sorted, and the witness obtained has to be
also sorted.

2.2 Special Inference Rules and Strategies

Following natural style proving, we use Skolem constants (denoted with nume-
rical underscore like V1) introduced for existential assumptions and universal
goals, as well as metavariables (denoted with star power like T ∗) introduced for
existential goals. The prover uses classical inference rules (split ground conjunc-
tions, rewrite by equality, etc.) as well as special rules appropriate for trees and
multisets.

The strategies are similar to the ones in [8,15]. The first four strategies are
briefly described in [9] and the last three strategies extend the ones in [10] on
binary trees. The inference rules: IR-1, IR-2, IR-3, IR-4, IR-5, IR-6, and
IR-8 are adapted for these current case studies of synthesis (they extend the
inference rules for lists in [9] and [10]) and all the others presented in this section
are novel.

These inference rules and strategies are not specific to the problem of tree
merging, but are developed in general for the automation of proof based synthesis
of algorithms on lists and trees.

Special Inference Rules
Each rule is illustrated with an example from the experiments presented in

Sect. 3.

IR-1: Eliminate assumed formulae from goal. In a conjunctive goal, delete the
part which is already an assumption, or an instance of it. For example goal
(34) becomes (35).

IR-2: Rewrite by equality. Example: goal (5) is transformed into (6).
IR-3: Transform to multiple atoms. This rule transforms parts of the goals or of

the assumptions (like e.g. IsSorted) into simpler atoms (e.g. by definition).
Example: goal (33) becomes (34).

IR-4: Transform union of M in goal. Example: goal (7) becomes (8).
IR-5: Solve metavariables. Example: goal (32) to (33).
IR-6: Reduce the goal using assumptions. Example: transforms goal (35) using

the assumption (24) into (36).
IR-7: Generate branches for trees. This rule extracts the symbols from a multi-

set, arranges the symbols and generates branches with new goals. Example:
when the goal is M[T ∗] = M[L0] 	 {{a}} 	 M[R0] 	 M[S0] extracts the
symbols: L0, a, R0, S0 and generates the permutations of (L0, R0, S0). The
element a is considered to be the root of the obtained trees. From all permu-
tations only those are considered which correspond to the current assump-
tions about ordering.

IR-7-a: Generate branches for binary non-sorted trees. Example: if the assump-
tions are (3) and (4), then the prover generates an OR node with four
branches, having goals: (7), (9), (11), and (13).

Synthesis of Algorithms on Binary Trees 159

IR-7-b: Generate branches for binary sorted trees. Example: the assump-
tions are the ones above in IR-7-a and also (17), (18), and the goal (19),
then the prover generates an OR node with two branches, having in the
goal IsSorted[T ∗] and also: on one branch goal (20) and on another branch
goal (23).

IR-8: Simple goal conditional assumption. When the proof fails and the current
goal is ground and contains only simple elements (not composite objects),
then the proof stops and its result is considered to be this goal (as opposite to
True when the proof succeeds, or False when it fails). Typically this happens
in branches generated by the rule IR-7, and the unproved goal will become a
condition in the synthesized algorithm, as explained below at strategy ST-4.
Example: goal (37).

Strategies

ST-1: Quantifier reduction. This strategy organizes the inference rules for quan-
tifiers (e. g. when applying an induction principle), and it is more effective
on goals. For the soundness of the prover it is necessary to keep track of the
order in which Skolem constants and metavariables have been introduced,
because a Skolem constant which cannot be generated before a certain meta-
variable cannot be used in a solution for that meta–variable.

ST-2: Priority of local assumptions. We consider as local assumptions ground
formulae which are generated during the current proof and as global assump-
tions definitions and properties in the knowledge base. The strategy consists
in using first the local assumptions. Example: when the goal is M[W ∗] =
{{a}}	M[U0]	M[V0] and the assumption is M[W1] = M[U0]	M[V0], the
new goal will be M[W ∗] = {{a}} 	 M[W1] because we give priority to terms
containing the Skolem constants generated by the induction hypothesis (they
correspond to recursive calls).

ST-3: Generate more local assumptions. Example: apply Modus Ponens on
local assumptions.

ST-4: Conditional branches. Alternative branches generated by the rule IR-
7 may finish with success (proof value is True), failure (False), or some
“simple” goal (proof value is this goal) as explained at IR-8. One may see
the corresponding OR node of the proof as constituting the logical oper-
ation “or” applied to the proof values. If the result is True – that is, the
disjunction is a logical consequence of the current theory (we can just say
“it holds”), then the proof can be considered successful, and in fact it can
be transformed by eliminating the false proof values, and by considering the
remaining disjunction as a basis for proof by cases – which will now be an
AND node, having on each branch the previous proof value as assumption.
This approach in fact discovers automatically the basis for the case distinc-
tion proof. Moreover, if there are subsets of the disjunction which already
hold disjunctively (we can say they are “covering”), then each such subset
can be a basis for the case distinction, thus we can have several successful
proof alternatives.

160 I. Drămnesc and T. Jebelean

The strategy we employ does not actually transform the proof, because we
are only interested in the algorithm. Instead, the respective proof values
(simple failed goals) on the branches are taken as conditions for the logical
equalities which compose the synthesized algorithm.

ST-5: Pair multisets. Often the goal contains an equality like M[Y ∗] = M[t1]	
M[t2] 	 . . . , where Y ∗ is the metavariable we need to solve, and t1, t2, . . .
are ground terms. The main flow of the proof consists in transforming the
union on the LHS of the equality into a single M[t], because this gives the
solution Y ∗ → t. Therefore the prover groups pairs of operands of 	 together
(no matter whether they are contingent or not, because commutativity),
creating alternatives for different groupings. (Consequently the pair will be
transformed into an single multiset term by equality rewriting, or it will be
treated by strategy ST-6 or ST-7).

ST-6: Dynamic Induction. As mentioned in Subsect. 2.1, we use Noetherian
induction based on the well–founded ordering between composite objects
determined by the strict inclusion of the corresponding multisets. This is
checked syntactically by the meta-relation between terms induced by the
strict inclusion of the multisets of constants occuring in the terms. When
a ground term t′ occurring in the goal is smaller than the subject t of
the current induction conclusion P [t], then P [t′] is used as: ∀

Y
(I[t′, Y] =⇒

∃
Z
O[t′, Y, Z]). Then the prover chooses a ground instantiation s (also part

of the goal) for Y , it checks whether I[t′, s] holds, it creates a new Skolem
constant like for instance Z1 and it assumes O[t′, s, Z1] holds. In the synthe-
sized algorithm Z1 will be replaced by F [t′, s] (where F is the name of the
currently synthesized function). Typically the terms t′ and s come from a
pair of multiset terms by application of the strategy ST-5. Example: goals
(40) and (42) are obtained using P [X] (15).

ST-7: Cascading. When a pair of multiset terms t1[x], t2[y] (x, y constants)
is chosen by applying strategy ST-5, it may be that there exists no equal-
ities among the current assumptions for reducing it to a single multiset
term, or the reduction does not lead to a successful proof. In this case the
prover constructs the conjecture: ∀

X,Y
(I[X,Y] =⇒ ∃

Z
(M[Z] = t1[X] 	 t2[Y] ∧

Q[X,Y,Z])), whose proof results in the synthesis of a new function F [X,Y]
having the properties required by the current proof situation: I[X,Y] is com-
posed conjunctively from the assumptions which contain only the constants
x, y (which are replaced by X,Y) and Q[X,Y,Z] is inferred from the current
goal.

3 Experiments

3.1 Synthesis of Merging on Non–sorted Binary Trees

The proof of Conjecture 1 by Induction on X proceeds as described in
Subsect. 2.1 for the formula P [X]: ∀

S
∃
T

(
M[T] = M[X] 	 M[S]

)
. On both

Synthesis of Algorithms on Binary Trees 161

branches (base case and induction step), the universal S is Skolemized to S0

(“arbitrary but fixed”) and the existential T is replaced by the metavariable T ∗

(unknown witness), according to ST-1.

Proof. Base case: Prove

M[T ∗] = M[ε] 	 M[S0]. (1)

Apply IR-4 using Property 1 and the goal becomes:

M[T ∗] = M[S0]. (2)

Apply IR-5, the obtained substitution is {T ∗ → S0}.

Induction step: Assume

M[T1] = M[L0] 	 M[S0], (3)

M[T2] = M[R0] 	 M[S0] (4)

and prove:
M[T ∗] = M[〈L0, a, R0〉] 	 M[S0]. (5)

Apply IR-2 using Property 1 and the goal becomes:

M[T ∗] = M[L0] 	 {{a}} 	 M[R0] 	 M[S0]. (6)

Apply IR-7-a: using the assumptions (3), (4) and generate and OR node with
four branches:

Branch-1: The new goal is:

M[T ∗] = M[L0] 	 {{a}} 	 M[T2]. (7)

Apply IR-4 and the goal becomes:

M[T ∗] = M[〈L0, a, T2〉]. (8)

Apply IR-5 and the obtained substitution on this branch is {T ∗ → 〈L0, a, T2〉}.

Branch-2: The new goal is:

M[T ∗] = M[T1] 	 {{a}} 	 M[R0]. (9)

Apply IR-4 and the goal becomes:

M[T ∗] = M[〈T1, a, R0〉] (10)

and the substitution is {T ∗ → 〈T1, a, R0〉}.

Branch-3: The new goal is:

M[T ∗] = M[R0] 	 {{a}} 	 M[T1]. (11)

162 I. Drămnesc and T. Jebelean

Apply IR-4, the goal becomes:

M[T ∗] = M[〈R0, a, T1〉] (12)

and the substitution is {T ∗ → 〈R0, a, T1〉}.

Branch-4: The new goal is:

M[T ∗] = M[T2] 	 {{a}} 	 M[L0]. (13)

Apply IR-4, the goal becomes:

M[T ∗] = M[〈T2, a, L0〉] (14)

and the substitution is {T ∗ → 〈T2, a, L0〉}.

Since all branches succeed, each of them generates an alternative algorithm,
thus we have:

Algorithm 1. Concatenation of trees.

∀
a,L,R,S

(
Conc[ε, S] = S

Conc[〈L, a,R〉, S] = 〈L, a,Conc[R,S]〉

)

as well as three other concatenation algorithms where the RHS of the second
equality is: 〈F [L, S], a, R〉, 〈R, a, F [L, S]〉, or 〈F [R,S], a, L〉.

3.2 Synthesis of Merging on Sorted Binary Trees

The proof of Conjecture 2 by Induction on X proceeds as described in
Subsect. 2.1 for the formula P [X] :

∀
S

(
(IsSorted[X]∧ IsSorted[S]) =⇒ ∃

T
(M[T] = M[X]	M[S]∧ IsSorted[T]

)
(15)

On both branches (base case and induction step), the universal S is Skolemized
to S0 (“arbitrary but fixed”) and the existential T is replaced by the metavariable
T ∗ (unknown witness), according to ST-1. The proof is similar with the previous
one, with the difference that at the induction step in addition to the induction
hypothesis (3), (4) one obtains more assumptions regarding the ordering.

Proof.
IsSorted[T1] ∧ IsSorted[T2], (16)

IsSorted[〈L0, a, R0〉]. (17)

By IR-3 from (17) obtain:

IsSorted[L0] ∧ L0 � a ∧ a � R0 ∧ IsSorted[R0]. (18)

The goal is similar to (6), in addition T ∗ has to be sorted:

M[T ∗] = M[L0] 	 {{a}} 	 M[R0] 	 M[S0] ∧ IsSorted[T ∗]. (19)

Synthesis of Algorithms on Binary Trees 163

Apply IR-7-b using the induction hypothesis (3), (4), and also (17), (18) and
generate two branches:

Branch-1: The new goal is

M[T ∗] = M[T1] 	 {{a}} 	 M[R0] ∧ IsSorted[T ∗]. (20)

Apply IR-4 and the goal is:

M[T ∗] = M[〈T1, a, R0〉] ∧ IsSorted[T ∗]. (21)

Apply IR-5, the obtained substitution is {T ∗ → 〈T1, a, R0〉} and the remaining
goal is:

IsSorted[〈T1, a, R0〉]. (22)

Apply IR-3 using Property 1, IR-2 using (16), (18), IR-6 using (3), (18) and
the remaining goal is S0 � a. The proof fails on this branch.

Branch-2: The new goal is

M[T ∗] = M[L0] 	 {{a}} 	 M[T2] ∧ IsSorted[T ∗]. (23)

Similarly, the obtained substitution is {T ∗ → 〈L0, a, T2〉} and the remaining goal
is a � S0. The proof fails.

However synthesis is still possible by the technique described below.

Cascading–Synthesis of Insertion on Binary Trees: The prover applies
strategy ST-5 (pair multisets) by grouping {{a}} and M[R0] – for which we
already know a � R0 – and then strategy ST-7 (cascading), producing the
conjecture:

Conjecture 3. ∀
a,R

((
IsSorted[R] ∧ a � R

)
=⇒ ∃

S

(
M[S] = {{a}} 	 M[R] ∧

IsSorted[S]
))

By proving this conjecture we obtain the algorithm Prepend which places a given
element as the leftmost node of a given tree:

Algorithm 2. Prepend an element to a tree.

∀
a,b,L,R

(
Prepend[a, ε] = 〈ε, a, ε〉

Prepend[a, 〈L, b,R〉] = 〈Prepend[a, L], b, R〉

)

However, by using this auxiliary function the main proof still does not suc-
ceed, therefore a merging algorithm cannot be found.

Similarly, for the goal (23), by grouping M[L0] and {{a}} – for which we
already know L0 � a, we obtain the conjecture for the synthesis of the auxiliary
function Append, which places a given element at the rightmost node of a given
tree, but in this case the synthesis of the merging algorithm still fails.

If for proving (19) we group M[S0] and {{a}}, then there is no more ordering
between them, and the conjecture is:

164 I. Drămnesc and T. Jebelean

Conjecture 4. ∀
a,X

(
IsSorted[X] =⇒ ∃

S

(
M[S] = {{a}} 	 M[X] ∧ IsSorted[S]

))
By proving this conjecture we obtain the function Insert which places a given
element as the appropriate position in a sorted tree.

Prove Conjecture 4 by applying Induction on X.

Proof. Base Case: The obtained substitution is {T ∗ → 〈ε, a, ε〉}.

Induction Step: Assume

M[S1] = {{a}} 	 M[L0], (24)

M[S2] = {{a}} 	 M[R0], (25)

IsSorted[S1] ∧ IsSorted[S2], (26)

IsSorted[〈L0, b, R0〉], (27)

IsSorted[L0] ∧ L0 � b ∧ b � R0 ∧ IsSorted[R0] (28)

and prove:
M[S∗] = {{a}} 	 M[〈L0, b, R0〉] ∧ IsSorted[S∗]. (29)

Apply IR-2 using Property 1 and the new goal is:

M[S∗] = {{a}} 	 M[L0] 	 {{b}} 	 M[R0] ∧ IsSorted[S∗]. (30)

Apply IR-7-b considering b to be the root of the obtained tree, using the assump-
tions (24), (25), (27) and generate two branches:

Branch-1: The new goal is:

M[S∗] = M[S1] 	 {{b}} 	 M[R0] ∧ IsSorted[S∗]. (31)

Apply IR-4 using Property 1 and prove:

M[S∗] = M[〈S1, b, R0〉] ∧ IsSorted[S∗]. (32)

Apply IR-5, the substitution is {T ∗ → 〈S1, b, R0〉} and the new goal is:

IsSorted[〈S1, b, R0〉]. (33)

Apply IR-3 using Definition 1 and the goal becomes:

IsSorted[S1] ∧ S1 � b ∧ b � R0 ∧ IsSorted[R0]. (34)

Apply IR − 1 using (26), (28) and the remaining goal is : S1 � b. (35)

Apply IR − 6 using (24) and the new goal is : a ≤ b ∧ L0 � b. (36)

Apply IR − 1 using (28) and the remaining goal is : a ≤ b. (37)

By IR-8, (37) becomes the conditional assumption on this branch.

Branch-2: The new goal is:

M[S∗] = M[L0] 	 {{b}} 	 M[S2] ∧ IsSorted[S∗]. (38)

Similar as in the previous branch, the obtained substitution is {T ∗ → 〈L0, b, S2〉}
and the conditional assumption on this branch is b ≤ a. By ST-4 we obtain:

Synthesis of Algorithms on Binary Trees 165

Algorithm 3. Insertion in a sorted tree.

∀
a,b,L,R

⎛
⎜⎝

Ins[a, ε] = 〈ε, a, ε〉

Ins[a, 〈L, b,R〉] =

{
〈Ins[a, L], b, R〉, if a ≤ b

〈L, b, Ins[a,R]〉, if b < a

⎞
⎟⎠

By the cascading strategy ST-7, we continue the proof of the merging con-
jecture by replacing in the goal (19) the subterm {{a}}	M[S0] (which generated
the conjecture for synthesizing Ins) by the corresponding instance Ins[a, S0] :

Proof.

M[T ∗] = M[L0] 	 M[R0] 	 M[Ins[a, S0]] ∧ IsSorted[T ∗]. (39)

Apply strategy ST-5 (pair multisets) and ST-6 (dynamic induction) to M[R0]
and M[Ins[a, S0]]. The object represented by R0 is smaller in the well founded
ordering than the object 〈R0, a, L0〉, which is the subject of the current induction
conclusion (formula (15) with substitution X −→ 〈R0, a, L0〉). Therefore we
may assume P [R0] holds, and use Ins[a, S0] for the instantiation of the second
argument, thus by Skolemization we obtain an object R1 observing:

M[R1] = M[R0] 	 M[Ins[a, S0]] ∧ IsSorted[R1]. (40)

Apply equality rewriting using this to transform goal (39) into:

M[T ∗] = M[L0] 	 M[R1] ∧ IsSorted[T ∗]. (41)

Since the object represented by L0 is smaller in the well founded ordering than
〈R0, a, L0〉, we can again apply Noetherian induction to obtain L1 with:

M[L1] = M[L0] 	 M[R0] ∧ IsSorted[L1]. (42)

Apply equality rewriting using this to transform goal (41) into:

M[T ∗] = M[L1] ∧ IsSorted[T ∗] (43)

which gives the solution T ∗ = L1 and the proof succeeds, giving the algorithm:

Algorithm 4. Merge sorted trees, version 1.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[L,Merge[R, Ins[a, S]]]

)

Note how a nested recursion—for which a concrete induction principle would
be difficult to guess—is produced automatically by our method. This algorithm
is interesting because it is probably optimal: essentially it inserts one by one
the elements of the first tree into the (sorted) second tree. Note also that the
assumptions (17) and (18) are not necessary for the success of the proof, and
indeed the algorithm produces a sorted tree even if the first argument is not
sorted. Similarly to the situation with lists [10], since the first argument does

166 I. Drămnesc and T. Jebelean

not need to be sorted, both this algorithm and the next one can be used for
sorting as Merge[T, ε]. Sorting is performed by traversing the tree and inserting
the elements one by one in a new sorted tree, which appears to be optimal.

There are many ways in which the subterms of the RHS of the equality in
(19) can be grouped pairwise and then be used in a similar manner to cascade
new auxiliary functions and to produce new merging algorithms. We present
here only one other alternative, which is interesting because it is tail recursive,
and only slightly less efficient than the previous one.

The proof is modified as follows:

Proof. Strategy ST-5 (pair multisets) on the goal (39) groups the subterms
M[L0] and M[R0], and then strategy ST-7 (cascade) generates the conjecture:

∀
L,R

∃
X

M[X] = M[L] 	 M[R] ∧ IsSorted[X] (44)

The proof of this is very similar to the proof of Conjecture 1 (for synthesis of
merging on non-sorted trees) presented at the beginning of Sect. 3.1, with the dif-
ference that the proof starts with the additional assumptions IsSorted[L0, a, R0],
IsSorted[T1], IsSorted[T2], while the goal has also IsSorted[T ∗]. Therefore the
proof succeeds on the first branch with the same witness 〈L0, a, T2〉, which is
proven sorted by applying the definition and the properties of ordering to the
assumptions—so the same Algorithm 1 Conc also concatenates sorted trees into
a sorted tree.

Strategy ST-7 (cascading) replaces in goal (19) the pair M[L0] 	 M[R0] by
M[Conc[L0, R0]] to get:

M[T ∗] = M[Conc[L0, R0]] 	 M[Ins[a, S0]] ∧ IsSorted[T ∗]. (45)

Since Conc[L0, R0] is smaller in the well–founded ordering than 〈L0, a, R0〉, stra-
tegy ST-6 (dynamic induction) uses it together with the instantiation
M[Ins[a, S0]] for the second argument, and obtains L2 with the property:

M[L2] = M[R0] 	 M[Ins[a, S0]] ∧ IsSorted[L2]. (46)

By equality rewriting this transforms the goal (45) into:

M[T ∗] = M[L2] ∧ IsSorted[T ∗] (47)

which gives the solution T ∗ = L2 and the proof succeeds, giving the algorithm:

Algorithm 5. Merge sorted trees, version 2.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[Conc[L,R], Ins[a, S]]]

)

Similarly to the other version, since the first argument does not need to be sorted,
this can also be used for sorting as Merge[T, ε]. This algorithm is interesting
because it is tail recursive, even as it is slightly less efficient than the previous
one.

Synthesis of Algorithms on Binary Trees 167

4 Conclusions and Further Work

Our experiments demonstrate the possibility of automatic synthesis of complex
algorithms on (possibly sorted) binary trees, using the notion of multiset. In
certain cases, depending on the proof strategy, several algorithms are produced
for the same function or from different proofs the same algorithm is produced.

Even as some of the synthesized algorithms are relatively straightforward
and sometimes not optimal, this case study helps in at least three ways. First,
the study develops the underlying theory and helps understand better the prin-
ciples of theory exploration, for instance by a parallel development one has hints
about interesting functions on trees suggested by the classical operations on mul-
tisets (insertion corresponds to union with one element, merging corresponds to
union, etc.). Second, the study helps to develop efficient proof methods for these
domains, in particular by using specific inference rules and strategies which are
also taylored for synthesis proofs, notably for discovering induction principles for
nested recursion. Finally, the various algorithms which are produced can con-
stitute a test field for methods of automatic evaluation of efficiency, time and
space consumption, etc.

A distinctive feature of our approach is the use of natural–style proofs, which
is facilitated by the Theorema system. The natural style of proving (as formula
notation, as proof text, and as inference steps) has the advantage of allowing
human inspection in an intuitive way, and this facilitates the development of intu-
itive inference rules which embed the knowledge about the underlying domains.

The experiments presented here continue our previous work on synthesis of
deletion algorithms and sorting algorithms on lists using multisets and is prereq-
uisite for further work on synthesis of more complex algorithms for sorting and
searching, including algorithms which combine operations on several domains.

References

1. Blizard, W.D.: Multiset theory. Notre Dame J. Formal Logic 30(1), 36–66 (1989).
https://doi.org/10.1305/ndjfl/1093634995

2. Buchberger, B.: Theory exploration with theorema. Analele Universitatii Din
Timisoara, Seria Matematica-Informatica XXXVII(2), 9–32 (2000)

3. Buchberger, B.: Algorithm invention and verification by lazy thinking. Analele
Universitatii din Timisoara, Seria Matematica - Informatica XLI, 41–70 (2003)

4. Buchberger, B., Craciun, A.: Algorithm synthesis by lazy thinking: using problem
schemes. In: Proceedings of SYNASC, pp. 90–106 (2004)

5. Buchberger, B., et al.: The theorema project: a progress report. In: Calculemus
2000, pp. 98–113. A.K. Peters, Natick (2000)

6. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0: computer-assisted natural-style mathematics. J. Formal. Reason. 9(1), 149–
185 (2016). https://doi.org/10.6092/issn.1972-5787/4568

7. Bundy, A., Dixon, L., Gow, J., Fleuriot, J.: Constructing induction rules for
deductive synthesis proofs. Electron. Notes Theor. Comput. Sci. 153, 3–21 (2006).
https://doi.org/10.1016/j.entcs.2005.08.003

https://doi.org/10.1305/ndjfl/1093634995
https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.1016/j.entcs.2005.08.003

168 I. Drămnesc and T. Jebelean

8. Dramnesc, I., Jebelean, T.: Synthesis of list algorithms by mechanical proving. J.
Symb. Comput. 68, 61–92 (2015). https://doi.org/10.1016/j.jsc.2014.09.030

9. Dramnesc, I., Jebelean, T.: Case studies on algorithm discovery from proofs: the
delete function on lists and binary trees using multisets. In: SISY 2019, pp. 213–
220. IEEE Xplore (2019)

10. Dramnesc, I., Jebelean, T.: Proof-based synthesis of sorting algorithms using mul-
tisets in theorema. In: FROM 2019, EPTCS 303, pp. 76–91 (2019). https://doi.
org/10.4204/EPTCS.303.6

11. Dramnesc, I., Jebelean, T., Stratulat, S.: Combinatorial techniques for proof-based
synthesis of sorting algorithms. In: SYNASC 2015, pp. 137–144 (2015). https://
doi.org/10.1109/SYNASC.2015.30

12. Dramnesc, I., Jebelean, T., Stratulat, S.: Theory exploration of binary trees. In:
SISY 2015, pp. 139–144. IEEE (2015). https://doi.org/10.1109/SISY.2015.7325367

13. Dramnesc, I., Jebelean, T., Stratulat, S.: A case study on algorithm discovery
from proofs: the insert function on binary trees. In: SACI 2016, pp. 231–236. IEEE
(2016). https://doi.org/10.1109/SACI.2016.7507376

14. Drămnesc, I., Jebelean, T., Stratulat, S.: Proof–based synthesis of sorting algo-
rithms for trees. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 562–575. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 43

15. Dramnesc, I., Jebelean, T., Stratulat, S.: Mechanical synthesis of sorting algorithms
for binary trees by logic and combinatorial techniques. J. Symb. Comput. 90, 3–41
(2019). https://doi.org/10.1016/j.jsc.2018.04.002

16. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd edn. Addison-Wesley, Boston (1998). https://doi.org/10.1137/1012065

17. Korukhova, Y.: Automatic deductive synthesis of lisp programs in the system
ALISA. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 242–252. Springer, Heidelberg (2006). https://
doi.org/10.1007/11853886 21

18. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/357084.357090

19. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, vol.
1: Deductive Reasoning. Addison-Wesley, Boston (1985). https://doi.org/10.2307/
2275898

20. Manna, Z., Waldinger, R.: Fundamentals of deductive program synthesis. IEEE
Trans. Softw. Eng. 18(8), 674–704 (1992). https://doi.org/10.1109/32.153379

21. Radoaca, A.: Properties of multisets compared to sets. In: SYNASC 2015, pp.
187–188 (2015). https://doi.org/10.1109/SYNASC.2015.37

22. Smith, D.R.: Kids: a semiautomatic program development system. IEEE Trans.
Softw. Eng. 16(9), 1024–1043 (1990). https://doi.org/10.1109/32.578788

23. Traugott, J.: Deductive synthesis of sorting programs. J. Symb. Comput. 7(6),
533–572 (1989). https://doi.org/10.1016/S0747-7171(89)80040-9

24. Windsteiger, W.: Theorema 2.0: a system for mathematical theory exploration.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 49–52. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 9

https://doi.org/10.1016/j.jsc.2014.09.030
https://doi.org/10.4204/EPTCS.303.6
https://doi.org/10.4204/EPTCS.303.6
https://doi.org/10.1109/SYNASC.2015.30
https://doi.org/10.1109/SYNASC.2015.30
https://doi.org/10.1109/SISY.2015.7325367
https://doi.org/10.1109/SACI.2016.7507376
https://doi.org/10.1007/978-3-319-30000-9_43
https://doi.org/10.1007/978-3-319-30000-9_43
https://doi.org/10.1016/j.jsc.2018.04.002
https://doi.org/10.1137/1012065
https://doi.org/10.1007/11853886_21
https://doi.org/10.1007/11853886_21
https://doi.org/10.1145/357084.357090
https://doi.org/10.2307/2275898
https://doi.org/10.2307/2275898
https://doi.org/10.1109/32.153379
https://doi.org/10.1109/SYNASC.2015.37
https://doi.org/10.1109/32.578788
https://doi.org/10.1016/S0747-7171(89)80040-9
https://doi.org/10.1007/978-3-662-44199-2_9

Algebraic Analysis of Bifurcations and
Chaos for Discrete Dynamical Systems

Bo Huang1,2 and Wei Niu3,4(B)

1 LMIB-School of Mathematical Sciences, Beihang University, Beijing 100191, China
bohuang0407@buaa.edu.cn

2 Courant Institute of Mathematical Sciences, New York University,
New York 10012, USA

3 Ecole Centrale de Pékin, Beihang University, Beijing 100191, China
wei.niu@buaa.edu.cn

4 Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing 100191, China

Abstract. This paper deals with the stability, bifurcations and chaotic
behaviors of discrete dynamical systems by using methods of symbolic
computation. We explain how to reduce the problems of analyzing the
stability, bifurcations and chaos induced by snapback repellers to alge-
braic problems, and solve them by using an algorithmic approach based
on methods for solving semi-algebraic systems. The feasibility of the sym-
bolic approach is demonstrated by analyses of the dynamical behaviors
for several discrete models.

Keywords: Bifurcations · Chaos · Discrete systems · Symbolic
computation · Snapback repeller

1 Introduction

Many biological phenomena, control and economic problems may be modeled
mathematically by dynamical systems (see [14,17,26]). Most of such systems
are nonlinear, and it is difficult to find their analytical solutions in general,
so studying the qualitative behaviors of their solutions becomes an important
issue. The most concerned behaviors of such systems are stability of fixed points,
bifurcations, chaos and so on.

This work was done while Bo Huang was visiting NYU Courant. The first author wishes
to thank Professor Chee Yap for his profound concern. Both authors thank Professor
Dongming Wang for his valuable suggestions and the anonymous referees for their
helpful comments on improving the presentation. The work was partially supported by
China Scholarship Council (No. 201806020128), by the Academic Excellent Foundation
of BUAA for PhD Students, by the NSF grant #CCF-1708884, and by the NSFC
project 11601023.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 169–184, 2020.
https://doi.org/10.1007/978-3-030-43120-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_14

170 B. Huang and W. Niu

Consider the following first-order autonomous discrete difference equations
(high-order systems can be transformed into first-order ones)

⎧
⎪⎪⎨

⎪⎪⎩

x1(t + 1) = φ1(μ1, . . . , μm, x1(t), . . . , xn(t)),
...

xn(t + 1) = φn(μ1, . . . , μm, x1(t), . . . , xn(t)),

(1)

where μ1, . . . , μm are parameters independent of t, x1, . . . , xn are variables, and
φi : Km+n → K is a map for i = 1, . . . , n with K a field. For discrete biological
models in the form of (1), a general algebraic approach has been proposed in
[20] for the detection and analysis of stability and bifurcations of real fixed
points. More recently, this approach has also been applied to the analysis of
chaos induced by snapback repeller for discrete dynamical systems [15]. Discrete
dynamical systems in the form of (1) could serve as the underlying mathematical
model for many practical problems. The dynamical behaviors (e.g., bifurcations
and chaos) of such systems are of significance in these practical problems (see
[11,17]). Therefore it is of importance and our interest to adapt, extend, and
apply the algebraic approach to analyze the bifurcations and chaos for interesting
and challenging discrete models.

In this paper we focus on a class of n-dimensional discrete dynamical systems
in the form (1) with

x(t + 1) = f(µ,x(t)), (2)

where f is a C1 nonlinear map with parameters µ from R, the real number
field. Our objective in this paper is to study algebraically and symbolically the
conditions on the parameters µ for the discrete system (2) to have a prescribed
number of (stable) fixed points, certain types of bifurcations and chaotic behav-
iors. More concretely, we are interested in the following problem.

Problem. Let x̄ be a fixed point of system (2) (i.e., f(µ, x̄) = x̄). Determine
the explicit conditions on the parameters µ such that

1. the fixed point x̄ is stable for system (2);
2. system (2) may undergo some important bifurcations;
3. x̄ is a snapback repeller of system (2).

Remark 1. In this paper we consider the Neimark-Sacher bifurcation, the period
doubling bifurcation and the stationary bifurcation for the discrete system (2).
These important bifurcations will be introduced in Sect. 2.

This paper reports our current study on the use of algebraic methods based
on Gröbner bases [3,9], triangular decomposition [27,28], quantifier elimination
[5,13], real solution classification [30] and discriminant varieties [19] for stabil-
ity, bifurcations and chaos analysis of discrete systems in the form of (1). The
outline of our work is as follows. In Sect. 2, we first explain how to reduce the
stability, bifurcations and chaos problems of discrete systems over R to purely
algebraic problems and then solve these problems by using algebraic methods.
An illustrative example and some experimental results together with remarks
are provided in Sect. 3. This paper ends with a discussion in Sect. 4.

Algebraic Analysis of Bifurcations and Chaos 171

2 Algebraic Criteria for Stability, Bifurcations and Chaos

In this section, we recall some important bifurcations and the snapback repeller
for a discrete dynamical system together with some theorems on the algebraic
criteria of zero distribution with respect to the unit circle, then we explain how
to reduce the problems of stability, bifurcations and chaos analyses to algebraic
problems.

2.1 Stability Analysis of Fixed Points

We first describe some notions for system (2). Let fk denote the k times of
compositions of f with itself. A point x, is said to be a p-periodic point of f if
fp(x) = x but fk(x) �= x for p > k ≥ 1. If p = 1, i.e., f(x) = x, then x is called
a fixed point. Let f ′(x) be the Jacobian matrix of f with determinant |f ′(x)|.

Clearly we can use the equation: [x− f(µ,x) = 0] to detect the fixed points
of system (2). After computing the fixed points, we want to analyze the stability
of (2) at each fixed point or to determine conditions on the parameters for the
fixed point to be stable. To this end, we let

A(λ) = λn + an−1λ
n−1 + . . . + a0 (3)

be the characteristic polynomial of the Jacobian matrix f ′(x) of system (2),
where ai = ai(µ,x), i = 0, . . . , n − 1. The following theorem tells us how to
determine the stability of a fixed point for a discrete system.

Theorem 1 (see, e.g., [10]). Let x̄ be a fixed point of system (2). If all the
eigenvalues λi of the Jacobian matrix f ′(x) are inside the unit circle, i.e. |λi| < 1
for all i, then x̄ is asymptotically stable.

In this paper we will use a sequence of symmetric polynomials of descend-
ing degrees for the characteristic polynomial A(λ) to determine the stability
of a fixed point (see Theorem 4 in Sect. 2.3), instead of using the Schur-Cohn
criterion. Since the Schur-Cohn criterion is expressed in terms of certain deter-
minants formed by the coefficients of A(λ), and the computational complexity of
these determinants may grow very fast with the dimension n of system (2). We
remark that for the bifurcation analysis we will still use the generalized forms of
the Schur-Cohn criterion (see Sect. 2.2). Exploring how to extend Theorem4 to
analyze the bifurcations of discrete systems is a question for further study.

2.2 Bifurcation Analysis

Similar to the continuous case, there may be many different situations for dis-
crete systems. In this subsection, we recall some important bifurcations for dis-
crete systems and explain how to reduce the problems of bifurcation analysis to
algebraic problems.

172 B. Huang and W. Niu

(1) Neimark-Sacher bifurcation. The Neimark-Sacher bifurcation for dis-
crete dynamical systems corresponds to the Hopf bifurcation in the continu-
ous case. For this bifurcation, the Jacobian matrix f ′(x) has a pair of complex
conjugate eigenvalues on the unit cycle and all other eigenvalues inside the circle.
The following theorem is generalized from the Schur-Cohn criterion.

Theorem 2 [29]. A pair of complex conjugate roots of A(λ) lie on the unit circle
and the other roots of A(λ) all lie inside the unit circle if and only if

(a) A(1) > 0 and (−1)nA(−1) > 0,
(b) D±

1 > 0, D±
3 > 0,. . . , D±

n−3 > 0, D+
n−1 > 0, D−

n−1 = 0 (when n is even), or
D±

2 > 0, D±
4 > 0,. . . , D±

n−3 > 0, D+
n−1 > 0, D−

n−1 = 0 (when n is odd),

where

D±
i =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 an−1 an−2 · · · an−i+1

0 1 an−1 · · · an−i+2

0 0 1 · · · an−i+3

...
...

...
. . .

...
0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

±

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ai−1 ai−2 · · · a1 a0

ai−2 ai−3 · · · a0 0
...

...
. . .

...
...

a1 a0 · · · 0 0
a0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

are the same as in the Schur-Cohn criterion (see, e.g., [20]).

In this case, system (2) may undergo a Neimark-Sacher bifurcation.

(2) Period Doubling Bifurcation. A period doubling bifurcation (or flip
bifurcation) can arise only in a discrete dynamical system. At this bifurcation,
the system switches to a new behavior with twice the period of the original
system. A series of period doubling bifurcations may lead the system from order
to chaos. In this situation, the Jacobian matrix f ′(x) has one real eigenvalue
which equals −1, and the other eigenvalues of f ′(x) are all inside the unit circle.
Obviously, a necessary and sufficient condition for the characteristic polynomial
A(λ) to have one real root −1 and all other roots inside the unit circle is

(a) A(1) > 0 and A(−1) = 0,
(b) D±

1 > 0, D±
3 > 0,. . . , D±

n−3 > 0, D±
n−1 > 0 (when n is even), or

D±
2 > 0, D±

4 > 0,. . . , D±
n−3 > 0, D±

n−1 > 0 (when n is odd).

(3) Stationary Bifurcation. If the Jacobian matrix f ′(x) has one real eigen-
value which equals 1, then the system (2) may undergo a saddle-node (also called
fold bifurcation), transcritical or pitchfork bifurcation. These bifurcations are all
called stationary bifurcations, see [20] for more details on these types of bifur-
cations. Replacing condition (a) for period doubling bifurcation by A(1) = 0
and (−1)nA(−1) > 0, one can obtain the condition under which system (2) may
undergo a stationary bifurcation, but the determination of the type of stationary
bifurcation for a concrete system requires further analysis.

Therefore, the problem of determining the conditions on parameters under
which a bifurcation of certain type may occur can be reduced to an algebraic
problem, see ([20], Sect. 3) for more details.

Algebraic Analysis of Bifurcations and Chaos 173

Note that the conditions for the bifurcations analyzed above are the critical
conditions for one of the eigenvalues to reach the unit circle. This eigenvalue
should not be stationary on the unit circle, but continue to go outside of the
circle as the parameters vary. So whether a bifurcation indeed occurs or not
depends on the critical conditions together with the so-called transversality (or
crossing) condition and the non-resonance condition. In this paper, we focus our
study on the critical conditions, which provides possibilities for the occurrence
of bifurcations. The derivation of necessary and sufficient bifurcation conditions
and further analysis of the types and stability of bifurcations are our ongoing
research.

2.3 Snapback Repeller and Marotto’s Theorem

We now describe the notion of snapback repeller and Marotto’s theorem. For the
C1 nonlinear map f of (2), we let Br(x) be the closed ball of radius r centered
at x under a given norm || · || in Rn. We say that a fixed x̄ is a repelling fixed
point of f with respect to the norm || · || if there exists a constant s > 1 such
that ||f(x)−f(y)|| > s · ||x−y|| for any x,y ∈ Br(x̄) with x �= y, where Br(x̄)
is defined on this norm || · ||, called a repelling neighborhood of x̄.

Definition 1. Let x̄ be a repelling fixed point of f in Br(x̄) for some r > 0.
We say that x̄ is a snapback repeller of f if there exist a point x0 ∈ Br(x̄)
with x0 �= x̄ and an integer m > 1, such that xm = x̄ and |f ′(xk)| �= 0 for
1 ≤ k ≤ m, where xk = fk(x0).

The point x0 in this definition is called a snapback point of f . Under this
definition, the following theorem by Marotto holds [22,23].

Theorem 3. If f possesses a snapback repeller, then f is chaotic in the follow-
ing sense: There exist (i) a positive integer N such that for each integer p ≥ N , f
has a periodic point of period p; (ii) a “scrambled set” of f , i.e., an uncountable
set S containing no periodic points of f such that

(a) f(S) ⊂ S,
(b) lim sup

k→∞
‖ fk(u) − fk(v) ‖> 0, for all u,v ∈ S with u �= v,

(c) lim sup
k→∞

‖ fk(u) − fk(vp) ‖> 0, for all u ∈ S and any periodic point vp of

f ;

(iii) an uncountable subset S0 of S such that lim inf
k→∞

‖ fk(u) − fk(v) ‖= 0, for

every u,v ∈ S0.

In this work we study the snapback repeller of system (2) by quoting the
following lemma from [18] which can be used to determine a repelling fixed
point of f under the Euclidean norm.

174 B. Huang and W. Niu

Lemma 1. Let x̄ be a fixed point of f which is continuously differentiable in
Br(x̄). If

λ > 1, for all eigenvalues λ of
(
f ′(x̄)

)T

f ′(x̄), (4)

then there exist s > 1 and r′ ∈ (0, r] such that ||f(x)−f(y)||2 > s · ||x−y||2, for

all x,y ∈ Br′(x̄) with x �= y, and all the eigenvalues of
(
f ′(x)

)T

f ′(x) exceed
one for all x ∈ Br′(x̄).

Our objective is to present a symbolic computation approach to detect the
chaotic behavior of system (2) by using Marotto’s theorem. In the following,
we will describe the algebraic criterion for Marotto’s theorem.

Algebraic Criterion for Zeros Distribution with Respect to the Unit
Circle. Our aim is to derive the algebraic criterion for all zeros of a given
polynomial to be inside the unit circle (IUC) or outside the unit circle (OUC).
To this end, we will use a sequence of symmetric polynomials of descending
degrees for the characteristic polynomial, see [4] (or [15]).

Let
D(λ) = d0 + d1λ + . . . + dnλn (5)

be this characteristic polynomial, where di = di(µ,x), i = 0, . . . , n. Then denote
by D∗(λ) the reciprocated polynomial of D(λ), namely, D∗(λ) = λnD(λ−1) =
dn + dn−1λ + · · · + d0λ

n.
Given the polynomial D(λ), we assign to it a sequence of n + 1 polynomials

Tn(λ), Tn−1(λ), · · · , T0(λ) according to the following formal definition:

Tn(λ) = D(λ) + D∗(λ), Tn−1(λ) = [D(λ) − D∗(λ)]/(λ − 1),

Tk−2(λ) = λ−1[δk(λ + 1)Tk−1(λ) − Tk(λ)], k = n, n − 1, . . . , 2,
(6)

where δk = Tk(0)/Tk−1(0). The recursion requires the normal conditions Tn−i(0)
�= 0, i = 0, 1, . . . , n. The construction is interrupted when a Tk(0) = 0 occurs,
and in [4], such singular cases can be classified into two types. The following
theorem will be used to analyze the stability and chaotic behaviors of a discrete
system, showing that there is no need to consider such singular cases. The proofs
of Theorem 4 can be found in [4,15].

Theorem 4. All zeros of D(λ) are IUC (or OUC) if and only if the normal
conditions Tn−i(0) �= 0, i = 0, 1, . . . , n hold and νn = Var{Tn(1), . . . , T0(1)} = 0
(or νn = n).

Semi-algebraic Systems for Marotto’s Theorem. In the previous subsec-
tion, we have explained how to formulate critical algebraic criterion for all zeros
of a given polynomial to be OUC. Based on this work, we will deduce the critical
algebraic conditions for analysing Marotto’s theorem.

Let
Ā(λ) = λn + . . . + ā1λ + ā0 (7)

Algebraic Analysis of Bifurcations and Chaos 175

be the characteristic polynomial of
(
f ′(x̄)

)T

f ′(x̄), where āi = āi(µ, x̄),

i = 0, . . . , n − 1. According to Eq. (6) we can associate with Ā(λ) a sequence
{T̄i(λ)}ni=0 which can be used to detect eigenvalue assignment. More precisely,
we can use the following theorem to analyze the chaotic behavior of system (2).

Theorem 5. [15] The general n-dimensional discrete system (2) is chaotic in
the sense of Marotto if one of the following semi-algebraic systems has at least
one real solution:

Ψj :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̄ − f(µ, x̄) = 0, fm(x0) − x̄ = 0,

(−1)i+j−1T̄n−i(1)|x̄ > 0, i = 0, . . . , n,

(−1)i+j−1T̄n−i(1)|x0 > 0, i = 0, . . . , n,

T̄n−i(0)|x0 �= 0, T̄n−i(0)|x̄ �= 0, i = 0, . . . , n,

x0 �= x̄, |f ′(xk)| �= 0, k = 1, . . . ,m,

(8)

where j = 1, 2, µ and x̄ are respectively the parameters and fixed point of system
(2) and m (≥2) is a given positive integer number.

In Theorem 5, what we want to find are the conditions on the parameters
µ for each of the semi-algebraic system (8) to have at least one real solution.
There exist algebraic methods based on Gröbner bases, triangular decomposi-
tion, quantifier elimination, real solution classification, and discriminant varieties
which can be used to solve such semi-algebraic systems.

3 Experiments

In this section, we first present the analysis of stability, bifurcations and chaos for
a generalized Mira 2 map as an illustration of our algebraic approach explained
above, and then study the stability, bifurcations and chaos of a 3D Hénon-
like map of degree 2 and report some results on Tinkerbell map. Finally, we
formulate a problem about planar quadratic maps based on our experiments. All
the experiments were made in Maple 17, running under Windows 10 Professional
Edition on a Inter(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 Ghz with 8G
RAM.

3.1 Illustrative Example

In this subsection, we consider the following generalized Mira 2 map which takes
the form {

xn+1 = Axn + Cyn,

yn+1 = x2
n + Byn,

(9)

where A > 1, B �= 1 and C are nonzero real numbers. Mira 2 map [C = 1,
yn+1 = x2

n + B] was first introduced in [21], and many details on the basin
bifurcations are shown in [16].

176 B. Huang and W. Niu

We first detect the fixed points of (9) by using the following algebraic system
{

P1 = Ax + Cy − x = 0, P2 = x2 + By − y = 0,

A > 1, B �= 0, C �= 0, B − 1 �= 0.
(10)

Note that the Jacobian matrix f ′(x̄) of map (9) evaluated at the fixed point

x̄ = (x, y) is given by f ′(x̄) =
(

A C
2x B

)

, and the characteristic polynomial of

the matrix f ′(x̄) can be written as A(λ) = λ2 − (A + B)λ + AB − 2Cx.
To analyze the stability of each fixed point, we first use Theorem 4

together with Eq. (6) for the polynomial A(λ) to obtain inequality polynomi-
als T2(1), . . . , T0(1) and T2(0), . . . , T0(0), and then reduce the problem to that
of solving the following semi-algebraic system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = Ax + Cy − x = 0, P2 = x2 + By − y = 0,

T2(1) = 2AB − 4Cx − 2A − 2B + 2 > 0, (or − T2(1) > 0),
T1(1) = −2AB + 4Cx + 2 > 0, (or − T1(1) > 0),
T0(1) = 2AB − 4Cx + 2A + 2B + 2 > 0, (or − T0(1) > 0),
T2(0) = AB − 2Cx + 1 �= 0, T1(0) = −AB + 2Cx + 1 �= 0,

T0(0) = 2AB − 4Cx + 2A + 2B + 2 �= 0,

A − 1 > 0, B �= 0, C �= 0, B − 1 �= 0.

(11)

The above semi-algebraic systems (10) and (11) may be solved by using the
method of Yang and Xia [30] for real solution classification (implemented as a
Maple package DISCOVERER by Xia), or the method of discriminant varieties
of Lazard and Rouillier [19] (implemented as a Maple package DV by Moroz
and Rouillier). Firstly, we list the results on the classification for the number of
(stable) fixed points.

(a) System (9) always has two fixed points when [A > 1, BC �= 0, B − 1 �= 0].
(b) When [B − 1 < 0, 0 < AB − 2A− 2B +3, AB − 3A− 3B +1 < 0] system (9)

has one stable fixed point; system (9) cannot have two stable fixed points.

Next we determine necessary bifurcation conditions on parameters A, B and
C for system (9) to have certain type of bifurcations. For the Neimark-Sacher
bifurcation, the problem may be formulated as that of detecting the conditions
for the following semi-algebraic system to have at least one real solution:

⎧
⎪⎨

⎪⎩

P1 = Ax + Cy − x = 0, P2 = x2 + By − y = 0, −AB + 2Cx + 1 = 0,
AB − 2Cx − A − B + 1 > 0, AB − 2Cx + A + B + 1 > 0,

AB − 2Cx + 1 > 0, A − 1 > 0, BC �= 0, B − 1 �= 0.

Solving the above system by using DISCOVERER, we find that system (9)
may undergo a Neimark-Sacher bifurcation if the condition [B2 + 2B − 7 <
0, AB − 2A − 2B + 3 = 0] holds. In a similar way, we obtain the necessary

Algebraic Analysis of Bifurcations and Chaos 177

condition [B2 + 2B − 7 < 0, AB − 3A − 3B + 1 = 0] for the period doubling
bifurcation to occur, and no stationary bifurcation occurs for this system.

Finally, we determine the conditions on A, B and C under which the fixed
point x̄ of system (9) is a snapback repeller.

Due to the Marotto’s Theorem, we need to find one point x0 = (x0, y0) in a
repelling neighbourhood Br′(x̄) such that x0 �= x̄, fm(x0) = x̄ and |f ′(xk)| �= 0
(1 ≤ k ≤ m) hold for some positive integer m. Here, we consider the map f2

especially. Note the characteristic polynomial of the matrix
(
f ′(x̄)

)T

f ′(x̄) can

be written as Ā(λ) = λ2 − (A2 + B2 + C2 + 4x2)λ + A2B2 − 4ABCx + 4C2x2.
Then for this polynomial Ā(λ) we can obtain the inequality polynomials

T̄2(1), . . ., T̄0(1) and T̄2(0), . . . , T̄0(0) in Theorem 5 by using Eq. (6).
More precisely, using Theorem 5 we have the following semi-algebraic system

for j = 1, which can be used for analyzing whether system (9) is chaotic or not
in the sense of Marotto:

Ψ1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = Ax + Cy − x = 0, P2 = x2 + By − y = 0,

P3 = A(Ax0 + Cy0) + C(x2
0 + By0) − x = 0,

P4 = (Ax0 + Cy0)2 + B(x2
0 + By0) − y = 0,

T̄2(1)|x̄,x0 > 0, −T̄1(1)|x̄,x0 > 0, T̄0(1)|x̄,x0 > 0,

T̄2(0)|x̄,x0 �= 0, T̄1(0)|x̄,x0 �= 0, T̄0(0)|x̄,x0 �= 0,

x0 �= x̄, |f ′(x1)| = AB − 2C(Ax0 + Cy0) �= 0,

|f ′(x2)| = AB − 2Cx �= 0, A − 1 > 0, BC(B − 1) �= 0,

where

T̄2(1)|x̄ = 2A2B2 − 8ABCx + 8C2x2 − 2A2 − 2B2 − 2C2 − 8x2 + 2,

T̄1(1)|x̄ = −2A2B2 + 8ABCx − 8C2x2 + 2,

T̄0(1)|x̄ = 2A2B2 − 8ABCx + 8C2x2 + 2A2 + 2B2 + 2C2 + 8x2 + 2,

T̄2(0)|x̄ = A2B2 − 4ABCx + 4C2x2 + 1,

T̄1(0)|x̄ = −A2B2 + 4ABCx − 4C2x2 + 1,

T̄0(0)|x̄ = 2A2B2 − 8ABCx + 8C2x2 + 2A2 + 2B2 + 2C2 + 8x2 + 2

with x, y, x0, y0 are the variables and A, B, C are the real parameters.
Solving the semi-algebraic system Ψ1 by using DISCOVERER, we obtain

that the semi-algebraic system Ψ1 when A = 5 has at least one real solution if
and only if one of the following conditions holds:

C1,1 = [0 < R1,1, 0 < R1,2],
C1,2 = [0 < R1,1, 0 ≤ R1,4, R1,5 < 0],
C1,3 = [0 < R1,1, 0 ≤ R1,3, 0 ≤ R1,4, 0 < R1,5],

178 B. Huang and W. Niu

where

R1,1 = 8B2C2 − C4 − 48BC2 − 64B2 + 40C2 + 128B − 64,

R1,2 = 8B2C2 − C4 − 48BC2 − 4B2 + 40C2 − 32B − 64,

R1,3 = 20B2C2 − C4 − 20BC2 − 46B2 − 120C2 + 20B + 96,

R1,4 = 22B2C2 + C4 − 20BC2 + 46B2 − 70C2 − 20B − 96,

R1,5 = 400B4C4 − 40B2C6 + C8 − 800B3C4 + 40BC6 − 1840B4C2

− 4308B2C4 + 240C6 + 2640B3C2 + 4760BC4 + 16B4 + 14080B2C2

+ 14208C4 + 160B3 − 8640BC2 + 1168B2 − 23040C2 + 3840B + 9216.

Similar to the above steps, we can solve and obtain that there is no given
number of real solution(s) for the semi-algebraic system Ψ2 when A = 5. We
remark that the polynomial expressions involved in the analysis are huge, and
Maple was unable to reclaim sufficient memory during a calculation for the three
free parameters A, B and C. From the above analyses, we have the following
theorem.

Theorem 6. The fixed point x̄ is a snapback repeller of system (9) if one of the
conditions: C1,1 or C1,2 or C1,3 is satisfied, and hence system (9) is chaotic in
the sense of Marotto.

Now we take the condition C1,3 to illustrate the parametric region where the
fixed point x̄ is a snapback repeller for a visual understanding on the condi-
tions above. The dotted lines in Fig. 1 are the critical boundaries determined

Fig. 1. Parameter space determined by C1,3 for system (9) is chaotic.

Algebraic Analysis of Bifurcations and Chaos 179

by the polynomials appearing in condition C1,3, and the shadowed region is the
parameter domain where all the inequalities hold.

3.2 Other Models and Remarks

A 3D Hénon-Like Map. The Hénon map [xn+1 = 1+yn−Ex2
n, yn+1 = Dxn],

first introduced in Hénon [12], is a two dimensional and invertible map and is one
of the most known and studied examples of a dynamical system with a strange
attractor. Here we study the following 3D Hénon-like map:

⎧
⎪⎨

⎪⎩

xn+1 = 1 + yn − Ex2
n,

yn+1 = Dxn + Ezn,

zn+1 = −Eyn,

(12)

where E �= 0 and D > 0 are real parameters. We have the following results for
this discrete system.

(a) When [R2,1 < 0], system (12) has no fixed point; when [R2,1 = 0], system
(12) has a unique fixed point; when [0 < R2,1], system (12) has two fixed
points.

(b) When [0 < R2,1, 0 ≤ R2,2, R2,3 < 0], system (12) has two fixed points, of
which one is stable; system (12) cannot have two stable fixed points.

(c) When [−D < 0,D − 1 < 0, R2,3 = 0], system (12) may undergo a period
doubling bifurcation.

(d) When [−D < 0,D −1 < 0, R2,1 = 0], system (12) may undergo a stationary
bifurcation.

(e) When E = 2, system (12) has a snapback repeller if one of the following
conditions holds:

C2,1 = [−D < 0,D − 4 < 0],

C2,2 = [0 < D − 4, 8D4 + 45D3 − 501D2 + 135D + 2475 < 0].

The explicit expressions of R2,i for i = 1, . . . , 3 are as follows:

R2,1 = 4E5 + E4 + 8E3 − 2E2D + 2E2 + D2 + 4E − 2D + 1,

R2,2 = E2 − D + 1,

R2,3 = 4E5 − 3E4 + 8E3 + 6E2D − 6E2 − 3D2 + 4E + 6D − 3.

We remark that when D > 0 there is no Neimark-Sacher bifurcation occur-
ring. Note that the conditions for system (12) to have a snapback repeller at
x̄ = (x, y, z) are obtained by taking E = 2. Because Maple was consuming too
much of the CPU during the calculation for the two free parameters D and E.

180 B. Huang and W. Niu

The Tinkerbell Map. The Tinkerbell map [1,7] is a discrete dynamical system
given by the equations

{
xn+1 = x2

n − y2
n + axn + byn,

yn+1 = 2xnyn + cxn + dyn,
(13)

where a, b, c and d are real parameters. This map has been extensively analyzed
numerically, and has found its place in various applications, for example in an
optical ring phase conjugated resonator [2], in PID controller design [8] and in
pseudo-random number generators [25]. Applying our algebraic approach, we
have the following results for this system.

(a) When [R3,1 > 0], system (13) has two fixed points; when [R3,1 = 0], system
(13) has three fixed points; when [R3,1 < 0], system (13) has four fixed
points. Here

R3,1 = 8a3d− 4a2b2 − 4a2bc− a2c2 − 12a2d2 + 4ab2d + 22abcd + 10ac2d + 6ad3

− 8b3c− 12b2c2 − b2d2 − 6bc3 − 10bcd2 − c4 + 2c2d2 − d4 − 8a3 + 4ab2

− 14abc− 8ac2 + 6ad2 − 2b2d− 2bcd− 14c2d− 2d3 + 12a2 − 6ad− b2

+ 8bc + 11c2 − 6a + 2d + 1.

(b) When b = d = 0, system (13) has one stable fixed point if one of the following
conditions holds
C3,1 = [0 < R3,2, R3,3 < 0, R3,4 < 0, 0 < R3,5, 0 < R3,6, R3,8 ≤ 0],
C3,2 = [0 < R3,2, R3,3 < 0, R3,4 < 0, 0 < R3,5, 0 < R3,6, 0 ≤ R3,8, 0 ≤ R3,9],

...
C3,11 = [0 < R3,2, 0 < R3,3, 0 < R3,4, 0 < R3,5, R3,6 < 0, R3,7 ≤ 0, R3,8 ≤ 0],

and has two stable fixed points if one of the following conditions holds

C3,12 = [0 < R3,2, R3,3 < 0, 0 < R3,5, 0 < R3,6, 0 < R3,4, R3,8 ≤ 0, R3,9 ≤ 0],
C3,13 = [0 < R3,2, 0 < R3,3, 0 < R3,5, 0 < R3,6, R3,10 ≤ 0],

where R3,2 = a + 1, R3,3 = a − 1, R3,4 = a2c2 + c4 + 8a3 + 8ac2 − 12a2 −
11c2 + 6a − 1. The expressions of R3,5, . . . , R3,10 are too long, so we omit
them here.

(c) When b = d = 0, system (13) may undergo a Neimark-Sacher bifurcation if
one of the following conditions holds

C3,14 = [0 < R3,11, R3,12 < 0, 0 < R3,13, 0 < R3,14, R3,15 = 0],
C3,15 = [0 < R3,11, 0 < R3,12, 0 < R3,13, 0 < R3,14, R3,15 = 0],

where
R3,11 = c4 + 29c2 − 1, R3,12 = 4c4 + 113c2 − 1210,

R3,13 = 7c4 + 75c2 + 1521, R3,14 = c8 + 20c6 + 350c4 + 2052c2 + 9,

R3,15 = 2a3c2 + 2ac4 + 18a4 + 15a2c2 − 3c4 − 66a3 − 66ac2 + 65a2 + 61c2

− 24a + 3.

Algebraic Analysis of Bifurcations and Chaos 181

(d) When b = d = 0 and [a + 1 = 0, R3,16 := 3a3c2 + 3ac4 + 32a4 + 31a2c2 −
c4 − 96a3 − 105ac2 − 54a2 +27c2 +135a+81 = 0], system (13) may undergo
a period doubling bifurcation.

(e) When b = 0, system (13) may undergo a stationary bifurcation if one of the
following conditions holds

C3,16 = [0 < d + 1, d − 1 < 0, a − 1 = 0],
C3,17 = [R3,17 < 0, 0 < R3,18, R3,19 = 0],
C3,18 = [0 < R3,17, R3,18 < 0, R3,19 = 0],

where

R3,17 = c4 + 29c2d2 − d4 − 58c2d + 4d3 + 29c2 − 6d2 + 4d− 1,

R3,18 = c4 + 29c2d2 − d4 − 50c2d + 16d3 + 25c2 − 90d2 + 200d− 125,

R3,19 = 8a3d− a2c2 − 12a2d2 + 10ac2d + 6ad3 − c4 + 2c2d2 − d4 − 8a3 − 8ac2

+ 6ad2 − 14c2d− 2d3 + 12a2 − 6ad + 11c2 − 6a + 2d + 1.

(f) System (13) has a snapback repeller if one of the following conditions C3,i

for i = 19, . . . , 25 holds.

Case 1: When a = b = c = 0, we have

C3,19 = [0 < d + 1, 0 < d2 − 2d − 1, 0 < R3,20],

C3,20 = [d + 1 < 0, 0 < d2 − 2d − 1, R3,20 < 0],

C3,21 = [d + 1 < 0, 0 < d2 − 2d − 1, R3,21 < 0, 0 < R3,22],

C3,22 = [0 < d + 1, 0 < d2 − 2d − 1, 0 < R3,21, 0 < R3,22].

Here again we omit the expressions of R3,20, . . . , R3,22 for brevity.

Case 2: When a = c = d = 0, we have

C3,23 = [2b3 − 2b − 1 < 0, 2b3 − 2b + 1 < 0],

C3,24 = [0 < 2b3 − 2b − 1, 0 < 2b3 − 2b + 1].

Case 3: When b = c = d = 0, we have C3,25 = [−1 + 2a > 0].

The computations for these three cases in DISCOVERER took about
154.360, 17141.657 and 60.813 s respectively. We also tried to analyze the case
a = b = d = 0 for system (13) to have a snapback repeller, but Maple was
consuming too much of the CPU during the calculation.

Our experiments demonstrate the feasibility of our algebraic approach for
stability, bifurcations and chaos analysis of discrete dynamical systems. However,
the polynomial expressions involved in the analysis are huge, which makes the
computation very difficult. Some explicit conditions on the parameters for the
bifurcations and chaos can only be obtained under some constrains. So far we can
only deal with systems of low (may less than five) dimensions. Even for the low

182 B. Huang and W. Niu

dimensional systems, the determination of the conditions on all the parameters
involved for the bifurcations and chaos is highly nontrivial. Below we list an
interesting subproblem of our problem in Sect. 1 on the planar quadratic maps
for researchers on related fields.

Problem on Planar Quadratic Maps. Consider the following planar
quadratic map

xn+1 = a1x
2
n + a2xnyn + a3y

2
n + a4xn + a5yn + a6,

yn+1 = b1x
2
n + b2xnyn + b3y

2
n + b4xn + b5yn + b6.

(14)

Let x̄ be a fixed point of this system (if any). Then what are the explicit condi-
tions on the parameters ai and bi for i = 1, . . . , 6 such that

1. x̄ is stable for system (14)?
2. system (14) undergos certain types of bifurcations?
3. x̄ is a snapback repeller of system (14)?

Remark that since many famous and well-studied maps are subclasses of
system (14), such as (generalized) Mira 2 map, (generalized) Hénon map and
Tinkerbell map, now we have obtained partial results for this problem.

4 Discussion

This paper presents an algebraic approach to detect fixed points and to analyze
their stability, bifurcations and chaos for discrete dynamical systems. Illustrative
examples and experiments are provided, showing the feasibility of the proposed
approach. This work extends previous investigations on stability and bifurcations
[20] to more complex dynamics (chaotic behaviors) of discrete systems.

The bifurcation conditions we can derive for discrete dynamical systems are
only necessary ones. How to check the sufficiency of the conditions and how
to determine the type of each stationary bifurcation are questions that remain
for further study. It is of great interest to employ our algebraic approach to
analyze the stability, bifurcations and chaotic behaviors in many different fields
(biology, physics, engineering, etc.). On the other hand, we note that sometimes
it might be very hard to determine the explicit conditions on the parameters
such that the considered discrete systems have stable fixed points (or may have
a certain type of bifurcations or have a snapback repeller). In practical terms,
there exist some values of the parameters that satisfy the required properties.
Advanced techniques for analysing the bistability and oscillations in biological
networks (see [6]) will be studied and integrated into the current approach to
tackle this kind of problems. How to simplify and optimize the steps of symbolic
computations in the current approach is another question worthy of study.

Algebraic Analysis of Bifurcations and Chaos 183

References

1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical
Systems. Springer, Berlin (1996). https://doi.org/10.1007/b97589

2. Aboites, V., Wilson, M., Bosque, L., del Campestre, L.: Tinkerbell chaos in a ring
phase-conjugated resonator. Int. J. Pure Appl. Math. 54(3), 429–435 (2009)

3. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Multidimensional Systems Theory, pp. 184–232. Reidel, Dordrecht (1985)

4. Bistritz, Y.: Zero location with respect to the unit circle of directe-time linear
system polynomials. Proc. IEEE 72(9), 1131–1142 (1984)

5. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

6. Dickenstein, A., Millán, M., Shiu, A., Tang, X.: Multistationarity in structured
reaction networks. Bull. Math. Biol. 81(5), 1527–1581 (2019)

7. Davidchack, R.L., Lai, Y.C., Klebanoff, A., Bollt, E.M.: Towards complete detec-
tion of unstable periodic orbits in chaotic systems. Phys. Lett. A 287(1–2), 99–104
(2001)

8. Coelho, L.S., Mariani, V.C.: Firefly algorithm approach based on chaotic Tinkerbell
map applied to multivariable PID controller tuning. Comput. Math. Appl. 64(8),
2371–2382 (2012)

9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra. 139(1–3), 61–88 (1999)

10. Galor, O.: Discrete Dynamical Systems. Springer, Berlin (2007). https://doi.org/
10.1007/3-540-36776-4

11. Glendinning, P.: Bifurcations of snap-back repellers with application to border-
collision bifurcations. Int. J. Bifurcat. Chaos 20(2), 479–489 (2010)

12. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math.
Phys. 50(1), 69–76 (1976)

13. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J.
Symb. Comput. 24(2), 161–187 (1997)

14. Hong, H., Tang, X., Xia, B.: Special algorithm for stability analysis of multistable
biological regulatory systems. J. Symb. Comput. 70(1), 112–135 (2015)

15. Huang, B., Niu, W.: Analysis of snapback repellers using methods of symbolic
computation. Int. J. Bifurcat. Chaos 29(4), 1950054-1-13 (2019)

16. Kitajima, H., Kawakami, H., Mira, C.: A method to calculate basin bifurcation sets
for a two-dimensional nonivertible map. Int. J. Bifurcat. Chaos 10(8), 2001–2014
(2000)

17. Kaslik, E., Balint, S.: Complex and chaotic dynamics in a discrete-time-delayed
Hopfield neural network with ring architecture. Neural Networks 22(10), 1411–
1418 (2009)

18. Li, C., Chen, G.: An improved version of the Marotto theorem. Chaos Solit. Fract.
18(1), 69–77 (2003)

19. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-
put. 42(6), 636–667 (2007)

20. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models
using algebraic methods. Math. Comput. Sci. 5(3), 247–262 (2011)

21. Mira, C., Barugola, A., Gardini, L.: Chaotic Dynamics in Two-Dimensional Non-
vertible Map. World Scientific, Singapore (1996)

22. Marotto, F.: Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl. 63(1),
199–223 (1978)

https://doi.org/10.1007/b97589
https://doi.org/10.1007/3-540-36776-4
https://doi.org/10.1007/3-540-36776-4

184 B. Huang and W. Niu

23. Marotto, F.: On redefining a snap-back repeller. Chaos Solit. Fract. 25(1), 25–28
(2005)

24. Niu, W., Shi, J., Mou, C.: Analysis of codimension 2 bifurcations for high-
dimensional discrete systems using symbolic computation methods. Appl. Math.
Comput. 273, 934–947 (2016)

25. Stoyanov, B., Kordov, K.: Novel secure pseudo-random number generation scheme
based on two Tinkerbell maps. Adv. Stud. Theor. Phys. 9(9), 411–421 (2015)

26. Sang, B., Huang, B.: Bautin bifurcations of a financial system. Electron. J. Qual.
Theory Differ. Equ. 2017(95), 1–22 (2017)

27. Wu, W.-T.: Mathematics Mechanization. Science Press/Kluwer Academic, Beijing
(2000)

28. Wang, D.: Elimination Methods. Springer, New York (2001). https://doi.org/10.
1007/978-3-7091-6202-6

29. Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension.
Phys. Rev. E. 72(2), 026201-1-4 (2005)

30. Yang, L., Xia, B.: Real solution classifications of parametric semi-algebraic systems.
In: Algorithmic Algebra and Logic-Proceedings of the A3L, pp. 281–289. Herstel-
lung und Verlag, Norderstedt (2005)

https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6

Security and Cryptography

Acceleration of Spatial Correlation Based
Hardware Trojan Detection Using Shared

Grids Ratio

Fatma Nur Esirci(B) and Alp Arslan Bayrakci

Gebze Technical University, Gebze, Turkey
{fesirci,abayrakci}@gtu.edu.tr

Abstract. Due to mostly economic reasons almost all countries includ-
ing the developed ones have to handle integrated circuit designs to a
foreign fab for manufacturing, which raises the security issues like inten-
tional malicious circuit (hardware Trojan) insertion by an adversary. A
previously proposed method to address these security issues detects hard-
ware Trojan using the spatial correlations in accordance with delay based
side channel analysis. However, it is never applied to full circuits and it
requires too many path delay computations to select correlated path
pairs. In this paper, we first apply the method and present the results
for full circuits and then, the method is accelerated by proposing a novel
path selection criterion which avoids the computation of path delays. In
terms of detection success, the resultant method performs similar to the
previous one, but in a much faster fashion.

Keywords: Hardware security · Hardware Trojan · Side channel
analysis · Spatial correlations · Process variations

1 Introduction

The fabrication of chips is a sophisticated process that can only be performed
in state-of-art fabrication facilities. Given this increasingly expanding cost and
complexity of foundries, the semiconductor business model has largely shifted
to a contract foundry business model over the past two decades. For exam-
ple, Texas Instruments and Advanced Micro Devices, two chip making giants
that have traditionally used their in-house facilities for fabricating their chips,
have both in 2010 announced outsourcing most of their sub-45 nm fabrication to
major contract foundries worldwide [15]. One of the most crucial effects of this
compulsory shift is on hardware security. Handling the design to manufacturing
fab and the difficulty of detecting any malicious alteration on the manufactured
chip make the system vulnerable to attacks especially during the manufacturing.
Any such malicious alteration on the circuit is called hardware Trojan (HT). Sev-
eral papers [14] and the IEEE Spectrum magazine articles [1] comprehensively
describe the hardware Trojan threat on security and the difficulty of detection.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 187–201, 2020.
https://doi.org/10.1007/978-3-030-43120-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_15

188 F. N. Esirci and A. A. Bayrakci

Especially, the mission critical circuits such as the ones used for cryptogra-
phy are main targets for such hardware Trojan attacks [5,11]. There are many
different types of proposed hardware Trojans as well as many detection methods
until now [15]. Destructive methods can provide exact results but only for the
investigated chip, by also making the chip useless after the destructive analysis.
It cannot guarantee the authenticity of the remaining chips either. Therefore,
non-destructive methods like side channel analysis are worked on to detect HT in
the chips. Side channel analysis based Trojan detection methods investigates the
measurable side channel signals like delay [13], power [3] and temperature [12] to
reveal any HT existence. Yet, the unavoidable process variations can easily hide
the effect of the inserted Trojan. This makes especially the detection of small
Trojans very hard.

The spatial correlation based HT detection method in [8] claims to detect
even the smallest type of Trojan composed of only one XOR gate under realistic
process variations using delay based HT detection. The method takes advantage
of spatial correlations that are inherently present in manufactured chips. How-
ever, it is not tested on full circuit and also it is computationally complex. In this
paper, we first adapt the method in [8] to full circuits and report the results on
full circuits. Then, we propose using a new criterion, called shared grids ratio,
for the selection of correlated path among numerous candidates. Theoretical
cost analysis of both methods as well as the experimental results are presented
in the paper. The results show that the proposed improvement can speed up the
method about 10 times in correlated path selection on the average, which in turn
accelerates the whole method more than 2 times on the average over benchmark
circuits. And this enhancement comes with almost no cost on the HT detection
capability of the method.

This paper is organized as follows: Sect. 2 gives some background on circuit
representation as graph, delay based HT detection, the effect of variations on
detection and summarizes the spatial correlation based HT detection method
in [8] by separating it into four stages. Section 3 adapts this method to full
circuits and presents the results. A cost analysis for this adaptation is performed
in Sect. 4. Section 5 introduces a new criterion to accelerate the method. The
results and comparisons of both the previous and the new method are explained
in Sect. 6.

2 Preliminaries

2.1 Representation of Circuits

We use graph structure to express digital circuits, where each gate in the circuit
corresponds to a node and each interconnect between two gates corresponds to
an edge of the graph. A path in the circuit starts from a primary input, traverses
through gates (nodes) and ends at a primary output. Any edge of the circuit is
assumed to have the potential of a Trojan circuit insertion.

Acceleration of Spatial Correlation Based Hardware Trojan Detection 189

2.2 Delay Based Trojan Detection

One of the most effective methods in the literature is delay based HT detection,
which is a sub-branch of side channel analysis (SCA). Normally, a smart Tro-
jan is designed to stay at passive state so that it cannot be detected through
conventional functional tests. Yet, at least a tiny part (payload) of the Trojan
must be inserted on a wire in the circuit in order to be able to alter the signal at
that wire when it gets active. Thus, the payload part brings some delay add-on
to the original circuit. The power of delay based detection is due to the fact
that they do not require to make HT active for detection in contrast to func-
tional test based methods. Also they can be applied by widely used feasible delay
tests without destroying the chip in contrast to destructive detection methods.
The success of the Trojan detection based on delay is dependent on Trojan size
because the bigger the Trojan is, the more delay add-on it has. And its main
drawback is the process variations that can easily hide the delay add-on of the
Trojan circuitry.

2.3 Variation Effect and Difficulties

Process variation is due to the nature of the chip manufacturing process. It
is undesirable but inevitable. The circuits are designed according to specific
constraints such as functionality, speed and power consumption. At the post
manufacturing stage, the chip set obtained by manufacturing are examined to see
if they meet these constraints. Yet, due to manufacturing process variations on
circuit components like gate length and threshold voltage, chips do not exactly
meet the same specification but instead each manufactured chip comes with
different properties.

Any realistic variation model must include both inter-die (between chips)
and intra-die (within the chip) variation components. As the integrated circuits
scale down in feature size with developing technology, the effect of intra-die
variation increases. The intra-die variation component inherently exhibits spatial
correlations. As a result of the spatial correlations, the random parameters of
the transistors closer to each other are affected more similar from the variations
when compared with the ones residing far from each other. If the results of a
method are justified by circuit simulations, it is very important to use variation
models that can consider all variation components as well as accurate variation
amounts corresponding to current technology [9].

The main challenge of SCA based detection is to distinguish the HT effect
from the effect of process variations. SCA based detection methods either fail to
use accurate variation models or fail to detect very small Trojans. To overcome
this challenge, we require a method that enables us to get rid of the variation
effect even under the accurate variation model.

The spatial correlation based HT detection method proposed in [8] uses such
a variation model and precise transistor level Spice simulations to justify the
proposed method. It also claims to detect even the smallest type of Trojans. As
opposed to most SCA based methods [15], it can even work in the absence of a

190 F. N. Esirci and A. A. Bayrakci

golden model when only a fraction of the manufactured chips have an inserted
Trojan. Such selective insertion is preferred by the adversary because otherwise
destructive analysis of any chip can easily reveal the Trojan existence. However,
the scalability of the method is unknown as it is not executed on full circuits.
Also, it is computationally very complex to detect a correlated path pair for each
edge (interconnect) in the circuit requiring numerous path delay and correlation
coefficient computations. Next section summarizes this method.

2.4 Review of Spatial Correlation Based HT Detection Method [8]

Getting rid of variation effect is a hard task as the variations neither can be
avoided nor can be exactly measured due their random nature. One technique is
to divide components that are affected from the variations very similar so that
the effect of variations is canceled out [11,16].

Spatial Correlation Based HT Detection [8] extracts correlated paths by tak-
ing advantage of spatial correlations. As any Trojan circuit must be connected
to at least one edge in the circuit, the method traverses all edges in the circuit to
detect whether there is a connected Trojan on that edge. It is composed of the
following stages executed for each edge in the circuit: (i) extraction of one sus-
pected path for each edge, (ii) extraction of correlated path candidates for each
suspected path, (iii) selection of one correlated path among the candidates, (iv)
measurement and division of path delays of suspected and correlated paths. The
first three stages are pre-manufacturing but the last stage is post manufacturing
and must be applied to manufactured chips.

(i) It is easier to detect Trojan using short (small delay) paths in the circuit for
its increased relative effect on delay. Therefore, for each edge e, the shortest
path passing through that edge is selected as the suspected path (P e

susp).
The cost of suspected path extraction is not high as the shortest path is
detected according to the nominal delay values of nodes (logic gates).

(ii) The second stage is the extraction of all possible path candidates which
may be correlated with the suspected path. For that, spatial correlation
information is used. Due to the spatial correlations, a path which has logic
gates residing at very close locations with another path must have correlated
path delays. This means that if one can find a very closely located path for
a suspected path, the ratio of path delays of these two paths can cancel out
the variation component. In this case, any alteration like Trojan insertion
can be easily revealed by detecting the deviation in path delay ratio. In
order to find path candidates correlated with a suspected path, the circuit
is divided into grids (Fig. 3) and then, all paths whose gates are located
either at the same grid or at the adjacent grids of the suspected path are
extracted and collected in correlated path candidates set. At the end, each
suspected path has a corresponding correlated path candidates set.

(iii) At the third stage, first of all, the path delays of all correlated path candi-
dates are computed for all samples (chips). Then, for each path pair consist-
ing of the corresponding suspected path and a correlated path candidate,

Acceleration of Spatial Correlation Based Hardware Trojan Detection 191

the correlation coefficient is computed based on these path delays. The cor-
related path candidate resulting in the best correlation coefficient is nomi-
nated as the correlated path (P e

corr) for the corresponding suspected path
of edge e.

(iv) This is the post manufacturing test stage. The path delays of the suspected
path and the nominated correlated path are measured and divided to cancel
out the variation component, which reveals any HT existence. The compu-
tation of delay ratio for a sample edge e is shown by (1), where d denotes the
path delay. The algorithm is successful in Trojan detection without requiring
golden model if the resultant delay ratios for Trojan-free and Trojan-inserted
samples can be separated from each other.

Re =
d(P e

susp)
d(P e

corr)
(1)

For delay computations above, a delay model called Stochastic Logical
Effort (SLE) and constructed by precise transistor level Spice simulations [4]
is employed. Path delay computation is performed by summing up the individ-
ual delays of gates on the path. Delay of each gate is computed by a fast and
accurate gate delay model called Stochastic Logical Effort (SLE) as shown in
(2). In this equation dr(S) is the delay of a logic gate r for sample S, τ(S) is the
reference inverter delay, pr(S) and gr(S) is the parasitic component and logical
effort for the same chip and hr is the electrical fan-out for gate r. The further
details of the model can be found in [4].

dr(S) = τ(S)(pr(S) + gr(S)hr) (2)

As it is quantified in this paper, one of the most time consuming part in the
algorithm is stage (iii). Considering current deeply integrated circuits with even
millions of gates, a numerous number of path delay and correlation coefficient
computations are required as there may be a plenty of correlated path candidates
considering all edges in the circuit.

3 CCM: Adaptation of the Method in Sect. 2.4 to Full
Circuit

Spatial correlation based HT detection method in [8] is applied only to randomly
selected three edges from each benchmark circuit. The paper also does not devise
any method to discriminate Trojan inserted samples from the Trojan-free ones.
It only reports the number of misclassified samples when the best separating line
between the ratios of Trojan inserted chips and Trojan free ones is assumed. In
the actual case the separation line is unknown.

To compensate these shortcomings, we adapt the algorithm to full circuit.
Instead of randomly selecting just three edges in [8], we assume all edges in a
circuit are suspected for Trojan existence and thus, the algorithm is executed
for all edges in the circuit. Throughout the paper, this method is referred as
Correlation Coefficient based Method (CCM). CCM is a direct adaptation of

192 F. N. Esirci and A. A. Bayrakci

the stages explained in Sect. 2.4. Therefore, it uses correlation coefficients to
eliminate correlated path candidates as stage (iii) of Sect. 2.4 explains. CCM
requires correlation coefficients, as it searches for the path with the highest
correlation coefficient to select the path correlated most with the corresponding
suspected path among the candidates. Then, this path constitutes the path pair
with the suspected path. This pair is used to compute delay ratio shown by (1).

We call an edge to be covered if the samples with a Trojan inserted on that
edge can be detected by the method after post-manufacturing tests (stage (iv)
tests). A Trojan inserted sample is said to be detected if, for that edge, the
resultant delay ratio distributions of all Trojan-free and Trojan-inserted samples
are separate from each other. The two distributions are separate if their 1.5σ
have positive difference. The computation of 1.5σ difference between delay ratios
of Trojan-free and Trojan-inserted samples for an edge e is shown by (3).

Δ1.5σe
= (μR̂e

− 1.5σ̂R̂e
) − (μRe

− 1.5σRe
) (3)

where Δ1.5σe
is the 1.5σ difference for edge e, μRe

and σRe
are mean and standard

deviation of the delay ratios for the Trojan-free samples, μR̂e
and σ̂R̂e

are mean
and standard deviation of the delay ratios for the Trojan-inserted samples. Please
remind that the delay ratio is computed by dividing the delay of the suspected
path to the delay of the corresponding correlated path in the pair (1). Therefore,
if the edge can be covered, this means that the CCM has picked the right path
pair for that edge to detect any Trojan insertion on it.

1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

50

100

150

200

230

Fig. 1. Histogram of ratios without HT (green) and with HT (red) (Color figure online)

For instance, delay ratio distributions for a covered edge from c1908 bench-
mark circuit are plotted in Fig. 1. For that edge, the Trojan-inserted samples
can be easily separated without a need for a golden model. Therefore, this edge
is said to be secured or covered by the method. However, Fig. 2 shows another
edge from c1908, which cannot be covered by the method as the delay ratios of
Trojan-free and Trojan-inserted samples are intermixed into each other resulting
in negative Δ1.5σe

and not possible to be separated if they were not colored.
Table 1 shows the results for CCM. Number of edges in the circuit, the resul-

tant edge coverage and the number of total correlated path candidates are the

Acceleration of Spatial Correlation Based Hardware Trojan Detection 193

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

50

100

150

200

Fig. 2. Histogram of ratios without HT (green) and with HT (red) (Color figure online)

Table 1. Full circuit experimental results for CCM

Benchmark # of edges Edge coverage # of candidates for CCM

432 255 95.7% 36,647

499 296 64.5% 29,320

880 507 94.7% 39,176

1355 856 96.6% 17,200,357

1908 1420 93.4% 5,353,429

2670 1850 95.2% 7,619,334

respective columns of Table 1. The number of <suspected path, correlated path>
pairs is equal to the number of edges, therefore not reported in the table. The
full coverage means that any Trojan inserted on any edge can be detected by the
method. Results show that the coverage is just about 90% on the average over
benchmark circuits in the table. It also shows the number of correlated path can-
didates required for CCM. This makes the stage (iii) of the algorithm explained
in Sect. 2.4 the most unbearable part of the algorithm. Because the path delay
and correlation coefficient for each correlated path candidate are computed in
stage (iii).

Table 2. Time consumption for stages for CCM

Benchmark Run time stage (i) Run time stage (ii) Run time stage (iii)

432 4 s 54 s 110 s

499 7 s 38 s 102 s

880 23 s 180 s 169 s

1355 1.2 m 13.21 h 21.76 h

1908 1.38 m 4.96 h 7.63 h

2670 7.2 m 6.39 h 9.18 h

194 F. N. Esirci and A. A. Bayrakci

Table 2 shows the amount of time consumption for each stage of CCM,
explained in Sect. 2.4 – except for the post-manufacturing stage (stage (iv))
– when applied to full circuits. This table also verifies that the main bottleneck
is stage (iii) for the method.

4 Computational Cost Analysis for CCM

The CCM has the main flaw of computational complexity due to mainly the
stage (iii) computations. Because this stage computes the path delay using (2)
for each sample chip and for each of the extracted correlated path candidates.
Then, using these path delays, the correlation coefficient is computed again for
each candidate. However, the number of correlated path candidates as shown in
Table 1 can get very large with the increasing circuit size or complexity. Besides,
the number of samples must be a big enough number to get accurate results,
which also complicates stage (iii) computations.

The resultant computational cost of stage (iii) is represented by (4). In this
equation, Nsamples represents the number of chips, Ngatesfull is the number
of logic gates in the full circuit, CostSLE is the cost of computing SLE in (2)
(two multiplications and one addition), Ncand is the number of correlated path
candidates, Ngatesavg is the average number of gates over all correlated path
candidates, Costadd is the cost of one addition used in path delay computation.
Costcoeff is the unit cost for correlation coefficient computation. It utilizes arith-
metic operations like addition, division and square root. Lastly Costcomp is the
cost of comparing floating point numbers to find the max.

CostCCMstage(iii) = Nsamples × Ngatesfull × CostSLE+
Ncand × Nsamples × Ngatesavg × Costadd+

Ncand × Nsamples × log (Nsamples) × Costcoeff+
Ncand × Costcomp

(4)

The first row of the equation shows the cost of computing SLE delays for
each gate and for each sample chip, the second row shows the cost of path delay
computations using SLE delays computed in the first row and performed for
each chip and each correlated path candidate. The third row in the equation
shows the correlation coefficient computation using path delays computed in the
second row. The second row and especially the third row constitute the main
source of complexity. The last row is for finding the candidate with the maximum
correlation coefficient.

5 Shared Grids Method (SGM) for Accelerating CCM

When Table 2 is investigated, stage (i), i.e. the suspected path extraction has a
negligible cost. However, stage (iii) is about 1.7 times slower on the average than
even stage (ii), which makes it the most problematic stage of the method.

Acceleration of Spatial Correlation Based Hardware Trojan Detection 195

The cost analysis for stage (iii) is shown by (4). The rows in that equation that
have a factor of (Ncand × Nsamples) are the main source of the cost. Number of
correlated path candidates for each benchmark circuit is shown in Table 1. For
instance c2670 having 1850 edges resulted in more than 7.5 million correlated
path candidates. Considering a thousand samples as we do in this paper, the
factor above becomes about 7.5 billion which is a huge number. In actual case,
the number of samples can be much larger resulting in much higher costs for
stage (iii).

In this section, we propose a much faster method to select the best correlated
path candidate. Due to the spatial correlations, the correlation between two
paths depends on the spatial distance between them. But first of all, let us
detail the actual problem with CCM.

CCM takes advantage of spatial correlation to find the correlated path pairs.
It finds such a pair for each edge in the circuit so that the path delay ratio of
the pair cancels the variation component which reveals any HT existence for the
corresponding circuit edge. For that purpose, at stage (ii) explained in Sect. 2.4,
the correlated path candidates of each suspected path are extracted so that all
of them have their logic gates located very close to the corresponding suspected
path. This closeness is guaranteed by first dividing the circuit into grids as shown
in Fig. 3 and then selecting the paths residing at the same or adjacent grids of
the gates of suspected path. Without loss of generalization let us assume that a
suspected path has all its logic gates located at the dark shaded grids in Fig. 3.
Then, the stage (ii) of CCM collects all correlated path candidates, whose logic
gates are located at either the dark shaded grids or their adjacent grids that are
shaded lightly on the figure.

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

Fig. 3. The division of circuit layout to grids.

Due to the spatial correlation, one expects that all candidates (especially the
ones residing at only dark shaded grids for our example case) must have a good
correlation and hence a good correlation coefficient. In such a case picking just
one correlated path candidate would be fairly enough to have a correlated pair
instead of enumerating all of the candidates for each edge (or suspected path),
and then computing the path delays and correlation coefficients for all of them.

196 F. N. Esirci and A. A. Bayrakci

But when we investigate the candidates, we see that this is not the case. The
different correlation coefficients for all correlated path candidates corresponding
to just one suspected path are shown as an example in Fig. 4. The candidates
are sorted with the ascending coefficient values. For this sample case, some of
the candidates may have very bad correlation coefficients down to 0.75. Please
note that, empirical results show us that the correlation coefficient must have a
value very close to 1 like 0.95 and above in order to be able to cancel the effect
of variations and reveal the existence of Trojans. If the Trojan is as small as
only one logic gate even a correlation coefficient of 0.95 may not be enough for
detection. This necessitates the computation of correlation coefficient for each
correlated path candidate to nominate the one with the largest coefficient as the
correlated path of the pair.

0 20 40 60 80 100 120 140 160 180 200
Correlated Path Candidates

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Fig. 4. CCM values for candidates of correlated path

With a further investigation, the actual reason behind that reveals the fact
that being at even the same grids with the suspected path does not mean to
be highly correlated with it just because the number of shared (common) grids
can be fractionally very low. Without loss of generality, let us assume that the
suspected path has gates distributed to ns different grids and one correlated
path candidate for that suspected path has all its gates located at nc different
grids, where the number of union and intersection of ns and nc grids are denoted
by n∪ and n∩ respectively. The resultant correlation between these two paths
would not be good enough to cancel variation effect if n∩ is much smaller than
n∪. We name the n∩/n∪ ratio as shared grids ratio (SG). Shared grids ratio for a
path pair < Psusp, Picorr > can be computed as shown in (5). i denotes the index
of the correlated path candidate for the suspected path. The correlation between
two paths tends to increase by the increasing shared grids ratio.

SGi =
number of shared grids for < Psusp, Picorr > pair

number of all grids in Psusp ∪ Picorr
(5)

Acceleration of Spatial Correlation Based Hardware Trojan Detection 197

For the acceleration of stage (iii), we propose selecting the correlated path
candidate with largest SG ratio computed by (5) instead of the one with the
largest correlation coefficient. For a sample suspected path, Fig. 5 demonstrates
how correlation coefficient has a rise trend despite some fluctuations while
SG increases. Usage of SG is based on the fact that the more grids the two
paths share, the more spatial correlation they would have, which means better
detection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
SG

0.8

0.85

0.9

0.95

1

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Fig. 5. CCM vs SGM for candidates of correlated path

SG only requires the detection of the number of total grids that both paths
reside at (CostDNM) as well as the grids that are shared by both paths (CostNM).
Then, one division is enough to get SG (Costdiv). No path delays and no costly
correlation coefficient computation are required. Moreover, it is not performed
for each sample as SG does not change from chip to chip. As a result, the new
cost of stage (iii) can be written as shown by (6). Ngridsavg shows the average
number of grids that are occupied by a path pair. It is certain that Ngridsavg
is much smaller than the number of samples. Ncand × Costcomp is for finding the
correlated path candidate i with the maximum SGi similar to (4).

CostSGMstage(iii) = Ncand × Ngridsavg × (CostDNM + CostNM + Costdiv)+
Ncand × Costcomp

(6)

Especially when the denominator of SG equation is a small number, more
than one correlated path candidate can have the largest SG value. In such a
case, the best candidate can be detected by computing path delays for only the
candidates having that largest shared grid ratio. It should be noted that this
cost must be added to (6). But it is difficult to theoretically represent it because
the number of such candidates having the same largest shared grids ratio is
unknown a priori. Yet, we take into account this additional path delay cost for
all experimental results in Sect. 6. Also, Table 3 reports the total number of such
candidate paths as the last column.

198 F. N. Esirci and A. A. Bayrakci

6 Results: Comparison of CCM and SGM

For all experiments in this paper realistic variation model considering both inter-
die and intra-die variations with spatial correlations [2] is employed. The bench-
mark circuits are synthesized for 45 nm open cell library of Nangate [10]. The
most significant random parameters are taken to be transistor channel length
(Leff) and threshold voltage (Vt) as devised in [8]. The 3σ/μ ratio of 12%
and 20% are assumed for Leff and Vt respectively according to the Interna-
tional Technology Roadmap for Semiconductors (ITRS) report [9]. Well known
ISCAS’85 benchmark test circuits [6] are used for the experiments. All com-
putations and simulations are performed on HP z620 workstation with Xeon
E5-2620, six-core, 2-GHz processors and 24 GB of RAM. A very small Trojan
of one XOR gate is employed to test the limits of the proposed method and see
their detection performance.

Table 3. Comparison of CCM with SGM results

Benchmark Edge coverage
for CCM

Edge coverage
for SGM

of candidates
for CCM

of candidates
for SGM

432 95.7% 92.5% 36,647 580

499 64.5% 56.7% 29,320 521

880 94.7% 92.5% 39,176 1782

1355 96.6% 95.8% 17,200,357 102,781

1908 93.4% 91.5% 5,353,429 19,583

2670 95.2% 93.5% 7,619,334 77,390

We compare the correlation coefficient based method (CCM) in Sect. 3 with
shared grid ratio based method (SGM) proposed in Sect. 5. Please remind that a
covered edge means that any Trojan bigger or equal to one XOR gate inserted to
that edge can be detected by the method without requiring golden model. Table 3
shows the comparison results. The first deduction from the table is that both
CCM and SGM can almost cover or secure the whole circuit resulting in about
90% edge coverage. This means that the methods can detect any Trojan inserted
on any place in 90% of the circuit. Excluding c499, which is an obvious outlier,
the edge coverage of SGM even becomes about 93% on the average. In January
2008, Dean Collins, deputy director of DARPA’s Microsystems Technology Office
and manager for the Trust in IC initiative initiates a hardware Trojan detection
contest among three companies: Raytheon, Luna Innovations and Xradia. The
Trojan circuit is inserted by MIT Lincoln Labs. Collins states to IEEE Spectrum
magazine that the goal is a 90% detection rate [1], which confirms the sufficiency
of 90% coverage.

The last two columns shows the number of correlated path candidates that
must be examined for CCM and SGM respectively. The number of candidates
is more than 100 times less for SGM because it eliminates all candidates except

Acceleration of Spatial Correlation Based Hardware Trojan Detection 199

the ones having the largest shared grids (SG) ratio for each suspected path. This
table shows that SGM does not lose accuracy although it performs path delay
computations for a much smaller set of correlated path candidates.

432 499 880 1355 1908 2670

0

5

10

11
10.2 10

8.15 7.9 8.23

Sp
ee
d-
up

Fig. 6. Stage (iii) speed-up of SGM over CCM

432 499 880 1355 1908 2670

0

1

2

3
2.47

2.67

1.98
2.19 2.02 2.06

Sp
ee
d-
up

Fig. 7. Complete speed-up by SGM over CCM

As Table 2 suggests the most time consuming part of the spatial correlation
based HT detection by CCM is stage (iii). This is why SGM is proposed to
speed up that stage. To quantify the speed-up by SGM over CCM at stage (iii)
computations, we have recorded the time required for the computation of stage
(iii) by both methods. Figure 6 plots the resultant stage (iii) speed-up for each
benchmark circuit as a bar graph. SGM accelerates stage (iii) of CCM about 9

200 F. N. Esirci and A. A. Bayrakci

times on the average over test circuits, which is a serious speed improvement.
Please note that all additional path delay computations due to the candidates
shown at the last column of Table 3 are taken into account at the speed-up values
of Figs. 6 and 7.

The resultant speed-up of SGM over CCM considering the total time for all
three stages (from (i) to (iii)) is shown in Fig. 7. When executed on full circuit the
proposed SGM can double the speed of the CCM on the average over benchmark
circuits. More precisely, SGM achieves about 100% speed improvement with
only 3% edge coverage reduction, which shows the efficiency and accuracy of the
proposed method.

7 Discussion and Future Work

The spatial correlation based HT detection proposed in [8] is adapted to full
circuit and for the first time full circuit results are presented in this paper. The
method is accelerated by introducing shared grids ratio instead of correlation
coefficient computation. The computational cost analysis of both methods shows
the efficiency comparison as well as the empirical results, which show that both
methods can secure more than the 90% of the circuit. But usage of shared grids
can increase the speed of the whole method more than twice on the average.

Although the method is applied and tested on combinational circuits, it can
be generalized to sequential circuits by the help of the techniques like enhanced-
scan delay tests [7]. To further accelerate the method, primarily parallelization
by GPU utilization can be used. Because, especially stage (ii) and stage (iii) are
suitable for distributed computation.

The method in this paper is developed with a focus on improving pre-
manufacturing phase and especially to speed up stage (iii). However, due to
stage (iv) i.e. post-manufacturing tests, it may take a lot of time to obtain path-
delay tests. In other words, the aim of this paper is to decrease the required time
to extract path pairs, yet the improvement of stage (iv) requires the extraction
of less number of path pairs, which can be a scope of another paper.

References

1. Adee, S.: The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)
2. Agarwal, A., Blaauw, D., Zolotov, V.: Statistical timing analysis for intra-die pro-

cess variations with spatial correlations. In: Proceedings of the 2003 IEEE/ACM
International Conference on Computer-Aided Design, p. 900. IEEE Computer Soci-
ety (2003)

3. Banga, M., Hsiao, M.S.: A region based approach for the identification of hardware
trojans. In: 2008 IEEE International Workshop on Hardware-Oriented Security and
Trust, pp. 40–47. IEEE (2008)

4. Bayrakci, A.A.: Stochastic logical effort as a variation aware delay model to esti-
mate timing yield. Integr. VLSI J. 48, 101–108 (2015)

Acceleration of Spatial Correlation Based Hardware Trojan Detection 201

5. Bhasin, S., Danger, J.L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware trojan
horses in cryptographic IP cores. In: 2013 Workshop on Fault Diagnosis and Tol-
erance in Cryptography, pp. 15–29. IEEE (2013)

6. Brglez, F.: A neural netlist of 10 combinational benchmark circuits. In: Proceedings
of the IEEE ISCAS: Special Session on ATPG and Fault Simulation, pp. 151–158
(1985)

7. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, vol. 17. Springer, Boston (2004). https://doi.org/10.
1007/b117406

8. Esirci, F.N., Bayrakci, A.A.: Hardware trojan detection based on correlated path
delays in defiance of variations with spatial correlations. In: Proceedings of the Con-
ference on Design, Automation & Test in Europe, pp. 163–168. European Design
and Automation Association (2017)

9. ITRS Commitee: International technology roadmap for semiconductors (ITRS)
2011 report. http://www.itrs2.net/2011-itrs.html

10. Nangate: 45nm open cell library. http://www.nangate.com/
11. Narasimhan, S., et al.: Hardware trojan detection by multiple-parameter side-

channel analysis. IEEE Trans. Comput. 62(11), 2183–2195 (2012)
12. Nowroz, A.N., Hu, K., Koushanfar, F., Reda, S.: Novel techniques for high-

sensitivity hardware trojan detection using thermal and power maps. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 33(12), 1792–1805 (2014)

13. Rai, D., Lach, J.: Performance of delay-based trojan detection techniques under
parameter variations. In: 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, pp. 58–65. IEEE (2009)

14. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detec-
tion. IEEE Des. Test Comput. 27(1), 10–25 (2010)

15. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8080-9

16. Yoshimizu, N.: Hardware trojan detection by symmetry breaking in path delays.
In: 2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 107–111. IEEE (2014)

https://doi.org/10.1007/b117406
https://doi.org/10.1007/b117406
http://www.itrs2.net/2011-itrs.html
http://www.nangate.com/
https://doi.org/10.1007/978-1-4419-8080-9

A Parallel GPU Implementation
of SWIFFTX

Metin Evrim Ulu(B) and Murat Cenk(B)

Middle East Technical University, Ankara, Turkey
evrimulu@gmail.com, mcenk@metu.edu.tr

http://iam.metu.edu.tr

Abstract. The SWIFFTX algorithm is one of the candidates of SHA-
3 Hash Competition that uses the number theoretic transform (NTT).
It has 256-byte input blocks and 65-byte output blocks. In this paper,
a parallel implementation of the algorithm and particular techniques
to make it faster on GPU are proposed. We target version 6.1 of

NVIDIAR©CUDA
TM

compute architecture that employs an ISA (Instruc-
tion Set Architecture) called Parallel Thread Execution (PTX) which
possesses special instrinsics, hence we modify the reference implementa-
tion for better results. Experimental results indicate almost 10x improve-
ment in speed and 5 W decrease in power consumption per 216 hashes.

Keywords: Hash function · SWIFFTX · SHA-3 · NTT · GPU ·
CUDA

1 Introduction

SWIFFT is a collection of compression functions [5,6,12]. The security of it is
based on the computationally hard lattice problems that provides this function
with the property of being provably collision resistant. Therefore, it may be used
in digital signatures and authentication protocols. However, the SWIFFT com-
pression function has some undesirable properties such as linearity and lack of
pseudorandomness. In order to remedy this situation and remove these unde-
sirable properties, a new compression function called SWIFFTX, one of the
candidates of SHA-3 competition, was proposed in [1].

SWIFFTX has 256-byte input blocks and 65-byte output blocks. In the
default configuration, input byte string is shaped as a 32 column matrix where
each column comprises 8 bytes. The initial round first executes a Number Theo-
retic Transform (NTT) on each column and the result is a 64 by 32 matrix. This
matrix is then multiplied by three different constant matrices Ai,∀i ∈ Z, 0 ≤
i < 3 separately. Next, the diagonals of these three matrices are extracted to
form three vectors of dimension 64. These vectors are then translated to byte
strings by a translation algorithm and results are concatenated to form a single
byte string. To provide non-linearity, this byte string is passed through a SBox
before fed into the second round. The second round is similar to the first one
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 202–217, 2020.
https://doi.org/10.1007/978-3-030-43120-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_16

A Parallel GPU Implementation of SWIFFTX 203

yet only a single matrix multiplication is done where constants are provided by
A0. Only 25 columns of A0 are used in matrix multiplication. Finally, there is
a carry propagation operation at the end of the round that assembles the final
byte of the output. In SWIFFTX, arithmetics are carried out in the finite field
of characteristic p = 28+1 = 257. The total number of constants in the matrices
Ai,∀i ∈ Z, 0 ≤ i < 3 is 3NM where N = 64 is the number of rows and M = 32 is
the number of columns. These constants are designed to be random and derived
from the expansion of the transcendental number π via a certain algorithm (see
[6]) in order values to fit into the given field.

Compute Unified Device Architecture (CUDA) is very different from general
purpose architectures such as x86 and AMD64. It has a great number of threads.
A group of 32 threads is called a warp. This is the minimal number of threads
that can be spawned simultaneously. Warps can be arranged to form a block.
Therefore, the number of threads in a block is a multiple of 32. Blocks can also
be arranged to form larger blocks called grids. Blocks and grids can be 1, 2 or
3 dimensional to fit into the requirements of the implementation. In this paper,
we target the GP104 (GP104-400-A1) chip manufactured by NVIDIA R©. This
chip is a member of the sixth generation NVIDIA Pascal

TM
microarchitecture. In

this particular chip, the number of threads in a block is limited to 210 = 1024
threads. A Streaming Multiprocessor (SM) in this chip can run two 1024-thread
blocks simultaneously and there are 20 of them.

In terms of cache, GP104 has 48 KiB Unified Cache and 2 MiB L2 Cache.
In CUDA, Unified Cache can be used for local/global loads/stores. L2 is a little
bit larger and can be employed for caching global loads/stores. There is also
a Texture Cache in Unified Cache which is used for loading constants. Among
others, GP104 has another 96 KiB local fast memory per SM. This memory
is called Shared Memory and it is particularly useful in terms of optimizing
an implementation. Basically, the name shared comes from the fact that this
memory area can be divided into smaller chunks and moreover, can be shared
among a block. Although this region is declared to be fast as registers (2 clocks),
it has a limited size and most of the time, determines the maximum number
of warps that can be spawned simultaneously along with other factors such as
number of registers per block, number of threads per block and number of threads
per multiprocessor.

In this paper, we present an efficient parallel implementation of SWIFFTX
on GPU. In order to obtain high performance, we have optimized memory access
according to memory transaction coalescing rules and optimized arithmetic oper-
ations using intrinsics. These are essential for realization of a fast implementa-
tion. Furthermore, shared memory is used to hold all intermediate values. Rep-
resenting elements of F257 in signed char posed a certain challenge however, this
is resolved by a map and another additional small routine. Moreover, the serial
base 257 to base 256 translation algorithm is parallelized by using a binomial
matrix. Experimental results (Sect. 6) show that our implementation is approxi-
mately 1000 times faster than the single-threaded x86 reference implementation
and 10 times faster than the ported reference implementation. In terms of power

204 M. E. Ulu and M. Cenk

consumption, our implementation performs 5 W better per 216 hashes and 13 W
better per 219 hashes.

The rest of the paper is organized as follows: In Sect. 2, definition of SWIFFT
function and description of SWIFFTX algorithm are given. In Sect. 3, we discuss
the reference x86 implementation. We port this implementation to CUDA with-
out applying a particular optimization, evaluate its characteristics and determine
its performance bottlenecks. In Sect. 4, we implement a parallel version of the
SWIFFTX algorithm. In order to achieve our goal, we investigate further possible
optimizations specific to the given hardware and propose solutions to discords
between hardware and software. In Sect. 5, we discuss further improvements such
as improving cache hits rates and fixing memory bank conflicts. In Sect. 6, we
develop necessary methodology to evaluate two implementation and obtain our
results. These results are mostly GPU specific. The conclusion is presented in
Sect. 7.

2 SWIFFT and SWIFFTX

In this section, we provide a description for the SWIFFT and the SWIFFTX.
Let p = 28 + 1 = 257, N = 64 and M = 32 with 2N | p − 1. These are the
concrete parameters given in [6]. First, we start with a few definitions.

Definition 1. Let n ∈ Z+,X ∈ Fn×n
p ,Y ∈ Fn

p . Define the column operator
Cj : Fn×n

p → Fn
p as Cj(X) = Y where yi = xij, ∀i ∈ Z, 0 ≤ i < n.

Definition 2. Let n ∈ Z+,X ∈ Fn×n
p ,Y ∈ Fn

p be a square matrix. Define the
main diagonal operator D : Fn×n

p → Fn
p as D(X) = Y where yi = xii, ∀i ∈ Z,

0 ≤ i < n.

Definition 3. The Number Theoretic Transform employed in SWIFFT is
defined as NTTN : FN

2 → FN
p where NTTN (u0, . . . , un−1) = (v0, . . . , vn−1),

vj =
∑N−1

i=0 uiω
2ij, ∀j ∈ Z, 0 ≤ j < N , and ω ∈ Fp is the 2N-th root of unity

such that ω2N = 1.

Definition 4. Define the unary operator EM : FN×M
2 → FN×M

p as E(X) =
YX, where Y ∈ FN×N

p with yij = ω2j ∈ Fp, ∀i, j ∈ Z, 0 ≤ i, j < N and ω is
the 2N-th root of unity such that ω2N = 1.

It is now possible to define the first part of the SWIFFT compression function
in terms of the primitives above.

Definition 5. Let U,A ∈ FN×M
p . Define SWIFFT ′ as follows:

SWIFFT ′
M : FN×M

2 × FN×M
p → FN

p

U × A �→ D(VAT)

where C(V)j = NTTN ◦ Cj ◦ EM (U), ∀j ∈ Z, 0 ≤ j < M .

A Parallel GPU Implementation of SWIFFTX 205

The above definition shows how to calculate j-th column of the matrix V
denoted by C(V)j . Finally, V is multiplied by AT and D is applied to obtain
the result.

SWIFFT ′ basically captures the crucial part of the SWIFFT . The rest
deals with the translation of vectors with elements in Fp to vectors with elements
in F2.

Definition 6. Let X ∈ FN
p be a matrix and let N ′ = N/8. Define the map G

as:

G : FN
p → FN ′×N ′

p

X �→ Y

where yij = xi+8∗j, ∀i, j ∈ Z, 0 ≤ i, j < 8.

Definition 7. Let N ′ = N/8. Define the translation map T as:

T : ZN ′
p → ZN ′

256 × Z256

a =
N ′−1∑

i=0

aip
i �→ b =

N ′−1∑

i=0

bi256i × ((a − (a mod 256N
′
)) � N).

The above function basically translates vectors from base 256 to base 257 with
the rightmost component being the carry. It is now possible to define SWIFFT.

Definition 8. Let U ∈ FN×M
p be an input matrix and A ∈ FN×M

p be a constant
matrix. Then, SWIFFTM is defined as:

SWIFFTM : FN×M
2 × FN×M

p → ZN
256 × Z256

U × A �→
N ′−1∑

i=0

π1(ai)256iN
′ ×

∨N ′−1

i=0
π2(ai)2i

where N ′ = N/8, U′ = SWIFFT ′
M (U,A), ai = T ◦ Ci ◦ G(U′) and πj is the

projection operator onto the j-th component.

SWIFFTX employs SWIFFT as a building block. However, there are two
variations. The first round employs SWIFFTM with parameter M = 32 and
the second round sets M = 25 denoted by M ′ in the following definition.

Definition 9. Let X ∈ FN×M
2 be an input matrix and Ai ∈ FN×M

p , ∀i ∈ Z,
0 ≤ i < 3 be three constant matrices. Then, SWIFFTXM is defined as follows:

SWIFFTXM : FN×M
2 → ZN+1

256

X �→ π1(Z) || π2(Z)

where Yi = SWIFFTM (X,Ai), ∀i ∈ Z, 0 ≤ i < 3,U = π1(Y1) || π1(Y2) ||
π1(Y3),
V = π2(Y1) || π2(Y2) || π2(Y3), P = 0 ∈ Z5

256 is a five byte padding,
Z = SWIFFTM ′(SBox(U || V || P),A0), SBox is a lookup operation and
|| is the concatenation operator.

206 M. E. Ulu and M. Cenk

3 The Reference Implementation

Next we continue with the x86 reference implementation included in Cryp-
toStreams [3]. The outline of this implementation is given in Fig. 1. We have
kept the variable names unaltered so that the reader can trace them back to the
source code. Apart from the definition of SWIFFTX in the previous section, this
implementation re-uses the common NTT output for the sake of performance.
Assuming a word is 16-bits, elements of Fp are kept in words. Powers of 64-th
root of unity are centered toward zero in the initialization stage. Moreover, NTT
is performed via a lookup table. Similarly, SBox lookup is done on byte basis.
Translation to base 256 from Fp is done in 6 iterations in a very efficient manner.
Although this implementation is very efficient on x86, it still runs on a single-
thread. We ported this implementation to CUDA without applying any further
optimizations other than migrating constants to the device memory.

ALGORITHM: SWIFFTX

INPUT: uint8_t input[256]; // Input

int16_t A_0[N*M], A_1[N*M], A_2[N*M]; // Constants

OUTPUT: uint8_t output[65]; // Output

int32_t fftOut[N*M]; // NTT Output

int32_t sum[3*N]; // Three vectors of dimension N

uint8_t intermediate[3*N+8]; // Output of the first round

doNTT_32(input, fftOut); // 32 Column NTT

doMultiply_and_Diag_3(fftOut, A_0, A_1, A_2, sum); // Multipl. and Diagonal

doTranslate_3(sum, intermediate); // Translate to base 256

doSBox(intermediate); // Apply SBox

doNTT_25(intermediate, fftOut); // 25 Column NTT

doMultiply_and_Diag_1(fftOut, A_0, sum); // Multipl. and Diagonal

doTranslate(sum, output); // Translate to base 256

Fig. 1. SWIFFTX algorithm

Unlike x86, CUDA architecture provides a high number of registers. The
maximum number of registers per block a CUDA kernel can employ is 255. In
cases where more registers are required, spills occur and load/stores are served
by Unified Cache. The reference implementation is register rich. With a block
size of a warp (32 threads), the compiler decides to use 228 registers (Fig. 2)
for the default optimization level 3 (-O3) although we haven’t forced any loop
to unroll. Since the implementation is for x86, it does not employ any shared
memory.

According to GP104 specification [7], each SM has a 256 KiB register file.
Assuming all 32 bits, a SM can hold up to 65536 registers simultaneously. This
kernel has a block size of 32 (a single warp) and employs 228 registers. A cal-
culation shows, each block requires 7296 registers. Therefore, each SM can run

A Parallel GPU Implementation of SWIFFTX 207

65536/7296 ≈ 8.9 warps. NVIDIA R©Visual Profiler (nvvp, [10]) tells that the
actual value is 8 warps. Moreover, each SM can run 2048 threads or 64 warps
simultaneously, so the utilization is only 12.5%. Contrary to its high register
usage, the kernel still requires an additional 8656 bytes stack frame which fur-
ther slows the execution down.

ptxas info : 16786 bytes gmem

ptxas info : Compiling entry function ’_Z14swifftx_kernelPhS_i’ for ’sm_61’

ptxas info : Function properties for _Z14swifftx_kernelPhS_i

8656 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 228 registers, 340 bytes cmem[0]

Fig. 2. Reference implementation compiler stats

4 A Parallel Implementation

In this section, we present a parallel CUDA implementation of the algorithm.
The outline of our implementation is given in Fig. 3.

We select 64 threads, 2 warps per block. This number matches the number
of rows of constant matrices Ai, ∀i ∈ Z, 0 ≤ i < 3. The details of the proposed
parallel implementation are as follows.

First, we reserve enough shared memory per block for fast access to inter-
mediate values. These intermediate values are NM words for the NTT output
(fftOut[]), 3N words for the diagonals (sum[]) and 3N +8 bytes for the output of
the first round (intermediate[]). In total, (NM)2+(3N)2+(3N+8) = 4680 bytes.
To enable fast access to 256 bytes hash input, at the begining of the kernel, we
copy the input to a shared memory location, specifically, to the space reserved for
the diagonal output. This space will not be used until NTT is completed there-
fore we can use it temporarily. Copy is implemented by pointer dereferencing. A
64-thread block can copy the input in a single step (256 bytes = 64×4 bytes). For
the hash output, only 17 threads are running, the others are idle (17× 4 bytes =
68 bytes > 65 bytes). The input is fetched from memory via 128-byte transac-
tions, obeying the memory coalescing rules. Similarly, the hash output is written
to the device memory via 64-byte transactions almost all the time except the
last 8 bytes.

Now, NTT for a column can be done in 8 steps or strides. Therefore, we
divide the NTT into 8 strides where each stride i is responsible for output row
8k + i,∀k ∈ Z, 0 ≤ k < 8. A 64-thread block can process 8 columns at once and
32 columns in 4 steps. Furthermore, the multiplication at the begining of the
NTT is transformed into a lookup. The size of the lookup table is 256 × 8 × 8
words with values in F257. These values are constant and served by the Texture
Cache. At the end of the NTT, we transpose the output to help the inner product
operation in the next stage. Reduction of the field elements is accomplished by
the following macro:

#define Q REDUCE(a) (((a) & 0xFF) − ((a) � 8))

208 M. E. Ulu and M. Cenk

ALGORITHM: SWIFFTX

INPUT: uint8_t input[256]; // Input

int8_t A_0[N*M], A_1[N*M], A_2[N*M]; // Constants

OUTPUT: uint8_t output[65]; // Output

NUMBER OF THREADS PER BLOCK: 64

__shared__ int16_t S_fftOut[N*(M+2)]; // Adjusted NTT Output

__shared__ int16_t S_sum[3*N+12]; // Adjusted sum output

__shared__ uint8_t S_intermediate[4*N]; // Enlarged intermediate

uint32_t *_input = S_sum;

// Copy input to shared (4-bytes per thread)

doParallel_Copy(input, _input); __syncThreads();

// 32 Column NTT

doParallel_NTT_32((int8_t *)_input, S_fftOut); __syncThreads();

// Multiply and take the diagonal

doParallel_Multiply_and_Diag_3(S_fftOut, A_0, A_1, A_2, S_sum);

__syncThreads();

// Fix leaps

doParallel_Adjust(S_fftOut, S_sum); __syncThreads();

// Translate to base 256

doParallel_Translate_3(S_sum, S_intermediate); __syncThreads();

// Apply SBox

doParallel_SBox(S_intermediate); __syncThreads();

// 25 Column NTT

doParallel_NTT_25(S_intermediate, S_fftOut); __syncThreads();

// Multipl. and Diagonal

doParallel_Multiply_and_Diag_1(S_fftOut, A_0, S_sum); __syncThreads();

// Translate to base 256

doParallel_Translate(S_sum, S_intermediate); __syncThreads();

// Copy results back to device memory

doParallel_Copy(intermediate, output);

Fig. 3. Our proposed parallel SWIFFTX algorithm

Basically, this macro subtracts the 8–15th bits from the 0–7th bits. This reduc-
tion is an instrinsic property of the nega-cyclic field.

We have the NTT output in shared memory. We need to calculate three
diagonals for products AiV

T ,∀i ∈ Z, 0 ≤ i < 3. Although this seems to be
a straightforward calculation, Pascal tuning guide [9] informs that the multi-
plication is a multi-clock operation in GP104 and the compiler can compile a
single multiplication upto 20 instructions. To remedy this situation, we employ
an intrinsic called dp 2a, a two-way dot product. The definition of this operator
is given in Fig. 4 (PTX Manual [8], Section 9).

A Parallel GPU Implementation of SWIFFTX 209

Syntax:

dp2a.mode.atype.btype d, a, b, c;

.atype = .btype = { .u32, .s32 };

.mode = { .lo, .hi };

Description:

Two-way 16-bit to 8-bit dot product which is accumulated

in 32-bit result. Operand a and b are 32-bit inputs. Operand a holds

two 16-bits inputs in packed form and operand b holds 4 byte inputs

in packed form for dot product. Depending on the .mode specified,

either lower half or upper half of operand b will be used for dot

product. Operand c has type .u32 if both .atype and .btype are .u32

else operand c has type .s32 .

Semantics:

d = c;

// Extract two 16-bit values from a 32-bit input and sign or zero extend

// based on input type.

Va = extractAndSignOrZeroExt_2(a, .atype);

// Extract four 8-bit values from a 32-bit input and sign or zero extend

// based on input type.

Vb = extractAndSignOrZeroExt_4(b, .btype);

b_select = (.mode == .lo) ? 0 : 2;

for (i = 0; i < 2; ++i) {

d += Va[i] * Vb[b_select + i];

}

Fig. 4. dp2a two-way dot product-accumulate operator

Now we face the problem that the entries in matrices Ai do not fit into int8 t ’s
(signed char). According to C++11 standard, signed char can hold values from
−128 to 127 if the compiler employs Two’s complement representation. For-
tunately, the CUDA compiler nvcc employs Two’s complement representation;
therefore, we can map our field according to the following function.

f : F257 → Int8

f(a) =

⎧
⎪⎨

⎪⎩

a if 0 ≤ a ≤ 127,

127 if a = 128,

a − 257 otherwise.

This representation is different than the diminished-one number system
employed in [4]. In [4], F257 is considered to be the integers in the range 0 to 256
inclusive and the field is mapped to 8-bits by subtracting 1 from each element
while excluding the zero. The zero case is detected by an additional signal and
handled exclusively. However, in GPU, we have no way of knowing whether a
value is zero or not unless a predicate is executed. Unfortunately, predicates are
sources of divergence therefore very expensive especially in loop bodies, hence
we propose a slightly altered approach by defining the above function f . The
codomain of f is selected to be 8-bit signed char just to make it compatible with

210 M. E. Ulu and M. Cenk

the dp 2a operator. We have determined 23 +128’s in Ai,∀i ∈ Z, 0 ≤ i < 3.
There are nine in A0, seven in A1, and seven in A2. We first replace those values
with +127’s and do the multiplication. After computing the diagonal, we add
missing values by a small routine called doParallel Adjust which only employs
23 of the 64 threads in a block. This calculation is done as follows:

sumj =
∑

i

aji × fftOutij ,

sumj =
∑

i

bji × fftOutij +
∑

i

128 × fftOutij , bij
= 128,

sumj =
∑

i

bji × fftOutij +
∑

i

127 × fftOutij +
∑

i

fftOutij ,

sumj =
∑

i

cji × fftOutij +
∑

i

fftOutij , cij
= 128.

with ∀j ∈ Z, 0 ≤ j < N and ∀i ∈ Z, 0 ≤ i < M . Note that, the rightmost
summation on the last line is the residue that needs to be added to its respective
row j. To keep doParallel Adjust procedure simple, we represent a particular
adjustment in a dword. The first byte is the matrix the entry is in, the second is
the row, the third is the column and the fourth is always zero. The last byte is
kept for the sake of memory alignment. Totally, it consumes 23 × 4 = 92 bytes.

Since dp 2a is a two-way dot product, 32 columns can be processed totally
in 8 calls to variants dp 2a lo and dp 2a hi. Specifically, this means fetching 2
dwords from fftOut, a dword from Ai and computing the dot product twice using
each variant once. This is a prominent improvement over the original iteration
count of 32 and now, the loop can be unrolled without overloading the intruction
fetch queue. Moreover, this approach also halves the memory transaction size
required for fetching the entries in the matrices Ai.

Next step is to translate the diagonal entries in F257 to F256. In the reference
implementation this is done efficiently in 6 iterations. However, each column has
to be processed by a single thread. To make it parallel, we employ the following
binomial matrix:

typedef int8_t swift_int8_t;
swift_int8_t binom1[8*8] = {

1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5, 6, 7,
0, 0, 1, 3, 6, 10, 15, 21,
0, 0, 0, 1, 4, 10, 20, 35,
0, 0, 0, 0, 1, 5, 15, 35,
0, 0, 0, 0, 0, 1, 6, 21,
0, 0, 0, 0, 0, 0, 1, 7,
0, 0, 0, 0, 0, 0, 0, 1,

};

A Parallel GPU Implementation of SWIFFTX 211

This matrix is based on the fact that the equation 257n = (256 + 1)n =∑
i

(
n
i

)
256i holds. Therefore, the elements bij of binom1 are defined as follows:

bij =

{(
j
i

)
if i ≤ j,

0 otherwise,
∀i, j ∈ Z, 0 ≤ i, j ≤ 7.

We compute the product of this binom1 matrix and the vector sum again
using dp 2a operator. Then for 24 columns, we serially propagate carry bits
using only 24 threads. Finally using three threads we propagate three final carry
bytes and write them to the 25-th column.

Next, SBox lookup is done. In SWIFFTX, an 8 by 8 bits SBox is employed to
provide nonlinearity and this table is accessed byte by byte. Inputs and outputs
are 3N + 8 = 204 bytes long. In GP104, shared memory banks are 4-bytes wide.
Processing the input byte by byte therefore creates 4 times more shared memory
write transactions than necessary. Instead, we lookup 4 values, combine them
using logical shifts and write them at once to comply with the physical shared
memory structure. This concludes the first stage of the algorithm.

Second stage starts with a NTT executed on 25 columns. This does not fit
well into our 64-thread per block implementation. We execute three and a half
NTT iterations to process 25 columns. Adjustment is done only on eight values
since the ninth +128 is in column 30. Translation to F256 is applied using the
same technique but this time the output is only 8 + 1 = 9 columns. Finally,
the 65-byte output in the shared memory is written to device memory dword
by dword to comply with the memory transaction coalesing rules. This finalizes
major optimizations done on the algorithm.

5 Further Improvements and Occupancy Analysis

In Pascal microarchitecture, shared memory is divided into 16 banks where each
bank is 4 bytes. This physical constraint leads to conflicts while writing the NTT
output. To overcome this situation, we add two unused rows to the transposed
NTT output and adjust pointer arithmetic accordingly. Now, the NTT output
is (M + 2)N = 34 × 64 words. In pointer arithmetic, multiplication by 34 is
implemented as shift by 5 plus shift by 1. However, this introduces latency when
compared to a single shift. Similarly, we add four rows to sum area, it is 3N +12
words now. Finally, to prevent any other alignment issues, we set the size of the
intermediate area to 4N bytes. Since we copy the input to a shared memory
location at begining of the kernel, we do not face any global memory access
inefficiencies related to the input. Similarly, the output is written directly from
shared memory to the global memory at the end of the kernel therefore it is
efficient. However, the size of the output is 65 bytes. If several thousands of
hashes are calculated in bulk, this leads to an alignment issue for the output
of the consecutive hashes. Therefore, we modify the output size and set it to
72 bytes to prevent any issues of this kind.

Now, NTT lookup table is of size 256 × 8 × 8 words. Each lookup returns
a word. nvvp shows an inefficiency in global load L2 transaction, specifically,

212 M. E. Ulu and M. Cenk

the ideal is 2 but the current is 4 transactions per access. This can be remedied
only if the lookup returns a dword. However, the table size in that case becomes
too large to fit into L2 Cache therefore left unoptimized. Similarly, nvvp shows
an inefficiency of 7.5 to 1 L2 transactions per access while looking up the table
SBox. We have tried to implement the same routine by an 16× 16 bits SBox yet
the speed is reduced, therefore we left it as is.

Finally, we calculate the occupancy. In one hand, nvcc compiler tells that
our kernel employs 48 registers. GP104, register file is 256 KiB, assuming all
4 bytes, there are 65536 registers in total per SM. A thread employs 48 and a
block employs 48 × 64 = 3072 registers. Dividing 65536 by this number leads to
≈ 21.3 block limit. On the other hand, we have the following definitions:

__shared__ int16_t S_fftOut[(M+2)*N];
__shared__ int16_t S_sum[3*N+12];
__shared__ unsigned char S_intermediate[4*N];

Now, S fftOut is (32+2)×64×2 = 4352 bytes, S sum is [(3×64)+12]×2 =
408 bytes and S intermediate is 4 × 64 = 256 bytes. Therefore, Shared Mem-
ory usage is 5016 bytes in total. Dividing the Shared Memory size 96 Kib by
this number leads to ≈ 19.6 blocks. Therefore, our kernel has a block limit of
min(21.3, 19.6) = 19.6. This leads to 19 × 64 = 1216 threads per SM or in other
words we have 1216/2048 = 0.594, 59.4% occupancy per SM.

6 Methodology and Results

All results are obtained on an Intel R©E5410 CPU system where Linux version is
4.14.104, GNU glibc version is 2.27, CUDA version is 10.0 and NVIDIA R©driver
version is 415.27. The method the results are obtained is as follows. Each test
round consists of 214 hashes. First, there is a step to warm the CPU and the
GPU up for 10 rounds. Then, we generate test data for each set of input and
sequencially run the algorithm on CPU, then on the GPU and collect the results.
Generated input data is classified as follows: (i) All zeroes: weight 0/byte, (ii)
All ones: weight 8/byte, (iii) All random: non-constant random weight/byte,
(iv) All random: weight 4/byte.

This classification allows us to see whether or not the Hamming weight of the
input does effect the performance of our kernel. All random data is generated
by glibc random(3). For all random weight 4/byte test, we employ Fisher-Yates
shuffling algorithm [2]. We have generated enough random data for 214 input
blocks (222 bytes) per test round. Furthermore, we set the affinity of the process
via sched affinity(2) to CPU 0 to get consistent results, avoid kernel rescheduling
and cache invalidation.

The results are given in Table 1. These results are acquired using GNU gprof
v2.31.1 and nvprof v10.0.130 profilers. Table 1 shows execution times of differ-
ent implementations. First one is the x86 reference implementation, the second,
GPU ported reference implementation and the last one is our parallel implemen-
tation. These results strongly indicate that the Hamming weight of the input is

A Parallel GPU Implementation of SWIFFTX 213

irrelevant, hence all data in the following tables are collected using non-constant
weight All random data set. Table 2 depicts cache hit rates. Table 3 depicts mem-
ory throughput metrics obtained by the profiler. Figure 5 depicts kernel stall
reasons of implementations. For the reference, test device properties are also
included in Table 6.

Table 1. Experimental results, test round: 214 hashes

IntelR©
Xeon

TM
E5410

reference impl.

NVIDIAR©
GeForce GTX

TM
1080

ported reference impl.

NVIDIAR©
GeForce GTX

TM
1080

our parallel impl.

Unit

All zeroes 3.50× 105 3.76× 103 3.78× 102 µsec

All ones 3.50× 105 3.75× 103 3.78× 102 µsec

All random 3.50× 105 3.77× 103 3.80× 102 µsec

All random weight 4 3.50× 105 3.76× 103 3.80× 102 µsec

Table 1 shows almost 10x increase in speed compared to the ported refer-
ence implementation. Global memory accesses in our implementation are very
efficient. For all random test, nvvp shows global store efficiency of 70.8% and
global load efficiency of 74.7%. The kernel employs a total of 5016 bytes of shared
memory per block. Unfortunately, shared memory efficiency is only 52.2%, nev-
ertheless, it is compensated since it is very fast.

The use of shared memory makes data access very fast. However, it is limited
only upto 96 KiB per SM therefore determines the number of warps spawned
simultaneously. Parallel kernel requires only 48 registers. Decreasing this number
via launch bounds leads to spill loads and stores degrading the performance.
This number is sufficient for 19 warps to be spawned simultaneously. Our kernel
performes L2 Cache hit rate of 33.7% and Unified Cache hit rate of 96.2% in the
very same test (Table 2). These numbers indicate caches are efficiently utilized.
Also, measured occupancy per SM is 57.4%. Since this is above 50%, it is enough
to hide the arithmetic latency of the ALU inside GP104. This is discussed in
detail in [13].

Table 2. Cache hit rates

Metric Description Reference impl. Parallel impl.

tex cache hit rate Unified Cache Hit Rate 67.05% 96.22%

l2 tex hit rate Hit rate at L2 cache for all requests 9.92% 33.75%

from texture cache

global hit rate Hit rate for global load and store 92.77% 92.27%

in unified L1/Tex cache

local hit rate Hit rate for local loads and stores 50.12% 0.00%

214 M. E. Ulu and M. Cenk

Table 3. Memory throughput metrics

Metric Description Reference impl. Parallel impl.

sysmem read throughput System memory read 0.00000B/s 0.00000B/s

sysmem write throughput System memory write 41.824KB/s 475.05KB/s

dram read throughput Device memory read 132.83GB/s 11.888GB/s

dram write throughput Device memory write 70.031GB/s 6.5270GB/s

local load throughput Local memory load 265.30GB/s 0.00000B/s

local store throughput Local memory store 72.083GB/s 0.00000B/s

gld throughput Global load 117.50GB/s 580.49GB/s

gst throughput Global store 8.4957GB/s 4.4536GB/s

shared load throughput Shared memory load 0.00000B/s 1644.9GB/s

shared store throughput Shared memory store 0.00000B/s 914.47GB/s

tex cache throughput Unified cache 327.27GB/s 1101.5GB/s

l2 tex read throughput L2 (Texture Reads) 138.68GB/s 71.209GB/s

l2 tex write throughput L2 (Texture Writes) 80.579GB/s 4.4536GB/s

l2 read throughput L2 (Reads) 139.02GB/s 71.643GB/s

l2 write throughput L2 (Writes) 80.579GB/s 4.4548GB/s

In Table 3, memory throughput metrics are given. First of all, system memory
access is negligible in both kernels since data is copied to the device memory
beforehand. Next, the device memory usage is reduced making it a bottleneck
no more. Since our kernel employs a less number of registers, there is no local load
or store. Global load throughput is increased by five times and stores are reduced
by a half. Similary, it is possible to observe Shared Memory throughput which
makes a big difference in our parallel implementation. Unified Cache throughput
is increased since we instruct the assembler to cache everything via the flag (-
Xptxas -dlcm=ca). This is also the reason for the reductions in L2 throughputs.

Figure 5 depicts the percentage of stall reasons per kernel. In the reference
implementation, kernel stalls 29% due the memory dependences. Also loading
constants from Texture Cache generates a lot of traffic (24%). Moreover, it is
not possible to learn what is included in stall other (29%) so, it is better to keep
it low under normal circumstances. In the parallel kernel, the largest percentage
is owned by the execution dependency. In order to lower this value, it is possible
to unroll loops so that compiler can move instructions around and optimize
execution dependency. However, all of the loops in our kernel other than the one
wrapping the NTT iterations are already unrolled so there is nothing that can
be done. Unrolling that particular loop leads to register spills so we left it as
is. The actual unrolling effect can also be observed by the 18% stall inst fetch
metric. Too much unrolling is likely to overload the instruction fetch queue. In
our case, the above configuration works well. Other metrics are around 10% and
almost equally distributed. This is an indication of a balance between trade-offs.

Additional user-space benchmarking shows that we can calculate 214 hashes
in 420 ms on a single x86 thread. The same can be achieved only in 4 ms on the

A Parallel GPU Implementation of SWIFFTX 215

test device. This data also includes the duration of copying input to the device
memory and getting it back to system memory over PCIe bus. According to these
indicators, the throughput of x86 implementation is 214 × 28 bytes/420ms =
4MiB/420ms ≈ 10MiB/s per thread while the throughput of our CUDA imple-
mentation is 214 × 28 bytes/4ms = 4MiB/4ms ≈ 1GiB/s where 28 bytes is the
hash input block size.

Power consumption metrics have also been collected using nvprof profiler
(Tables 4 and 5). The program is run for only a single test round without a
warmup stage. Collected data shows on adaptive power mode, our board con-
sumes 40 W per test round on Reference Implementation and 35 W on Parallel
Implementation. This suggests our implementation consumes almost 5 W less
on adaptive mode per test round. These values become 56 W to 43 W when test
round hash count is increased to 219. The difference is almost 13 W.

Fig. 5. Kernel stall reasons, reference impl. (left) vs our parallel impl. (right)

Table 4. Ported reference implementation power consumption data

Data/PowerMizer mode Adaptive (Min/Avg/Max) Max. Perf. (Min/Avg/Max) Unit

SM clock 139.00/1313.40/1607.00 1607.00/1607.00/1607.00 MHz

Memory clock 405.00/3789.80/5005.00 4513.00/4709.80/5005.00 MHz

Temperature 51.00/51.56/52.00 53.00/53.00/53.00 C

Power 10039.00/39879.00/53144.00 46522.00/50178.67/53231.00 mW

Fan 0.00/0.00/0.00 0.00/0.00/0.00 %

Table 5. Our parallel implementation power consumption data

Data/PowerMizer mode Adaptive (Min/Avg/Max) Max. Perf. (Min/Avg/Max) Unit

SM clock 139.00/1019.80/1607.00 1607.00/1607.00/1607.00 MHz

Memory clock 405.00/2968.20/5005.00 4513.00/4759.00/5005.00 MHz

Temperature 52.00/52.33/53.00 53.38/53.00/54.00 C

Power 9995.00/34898.33/53135.00 47012.00/49984.00/53718.00 mW

Fan 0.00/0.00/0.00 0.00/0.00/0.00 %

216 M. E. Ulu and M. Cenk

Table 6. Test device properites

Property Value Unit

Name, Brand AsusR©NVIDIA GTX
TM

1080

Architecture NVIDIA Pascal
TM

Total amount of global memory 8120 Mbytes

Number of Stream Multiprocessors 20

Number of cores per SM 128

Total number of cores 2560

GPU/Memory clock 1734 / 5005 MHz

L2 2097152 bytes

Total amount of constant memory 65536 bytes

Total amount of shared memory per block 49152 bytes

Total number of registers available per block 65536

Warp size 32

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block 1024

7 Conclusion

SWIFFTX is one of the lattice based hash function that provides provable col-
lision resistance and pseudo-randomness. In this paper, we have presented an
efficient parallel implementation of SWIFFTX on GPU. Our tests have showed
that the proposed implementation is approximately 1000 times faster than the
single-thread x86 implementation and 10 times faster than the ported reference
implementation. Moreover, the throughput is also increased by 100 times. In
terms of power consumption, our implementation performs 5 W better per 216

hashes and 13 W better per 219 hashes.
It should be noted that there are newer architectures such as Volta and Turing

than Pascal, a member of the sixth generation CUDA. These newer generations
have higher memory bandwidth and more computation capabilities. Further-
more, the technology called Independent Thread Scheduling (ITS) is built into
those new architectures. This technology will probably allow GPU’s to utilize
resources more efficiently in terms of scheduling and synchronization and deliver
more speed and throughput if properly implemented. First idea basically aims
to increase the occupancy. It might be possible to implement a version of the
algorithm that does not employ any shared memory instead, passes data across
threads via Warp Shuffling. Consequently, this new implementation and the one
that uses shared memory can be run simultaneously in the presence of ITS and
hence a higher occupancy will be achieved. On the other hand, this might not
lead to a significant improvement since we are still facing the burden of field
arithmetic assigned to ALU. The second idea might target the time lost during
synchronization. Figure 5 indicates that our kernel is stalled by synchronization
primitives by 11%. This situation might be improved by ITS and defining explicit
memory reads and writes using volatile keyword.

A Parallel GPU Implementation of SWIFFTX 217

References

1. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,
A.: SWIFFTX: a proposal for the SHA-3 standard. In: The First SHA-3 Candidate
Conference (2008)

2. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420
(1964)

3. Centre for Research on Cryptography and Brno Czech Republic Security,
Masaryk University. Tool for generation of data from cryptoprimitives (block and
stream ciphers, hash functions). https://github.com/crocs-muni/CryptoStreams.
Accessed Dec 2018

4. Györfi, T., Cret, O., Hanrot, G., Brisebarre, N.: High-throughput hardware archi-
tecture for the swifft/swifftx hash functions. IACR Cryptology ePrint Archive,
2012:343 (2012)

5. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: 33rd International Colloquium Automata, Languages and Program-
ming, ICALP 2006, Venice, Italy, 10–14 July 2006, Proceedings, Part II, pp. 144–
155 (2006)

6. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

7. NVIDIA: GeForce GTX 1080 Whitepaper. https://international.download.nvidia.
com/geforce-com/international/pdfs/GeForce. Accessed Dec 2018

8. NVIDIA: Parallel Thread Execution ISA. https://docs.nvidia.com/cuda/parallel-
thread-execution/index.html. Accessed Apr 2018

9. NVIDIA: Pascal Tuning Guide. https://docs.nvidia.com/cuda/pascal-tuning-
guide/index.html. Accessed Apr 2018

10. NVIDIA: Visual Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/
index.html. Accessed Apr 2018

11. CUDA NVIDIA: NVIDIA CUDA C programming guide. Nvidia Corporation
120(18), 8 (2011)

12. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, 4–7 March 2006, Proceedings, pp.
145–166 (2006)

13. Volkov, V.: Better performance at lower occupancy. Proc. GPU Technol. Conf. 10,
16 (2010)

https://github.com/crocs-muni/CryptoStreams
https://doi.org/10.1007/978-3-540-71039-4_4
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Computing an Invariant of a Linear Code

Mijail Borges-Quintana1(B), Miguel Ángel Borges-Trenard2,
Edgar Mart́ınez-Moro3(B), and Gustavo Torres-Guerrero1

1 Department of Mathematics, Faculty of Natural and Exact Sciences,
University of Oriente, Santiago de Cuba, Cuba

mijail@uo.edu.cu, gtorresguerrero85@gmail.com
2 Doctorate in Mathematics Education, University Antonio Nariño,

Bogotá, Colombia
borgestrenard2014@gmail.com

3 Institute of Mathematics IMUVa, University of Valladolid,
Valladolid, Castilla, Spain
edgar.martinez@uva.es

Abstract. In this work we present an efficient algorithm that generates
the leader codewords of a linear code in an incremental form. On the
other hand, using the set of leader codewords we define a transformation
that remains invariant only if the codes are equivalent which is used as
a signature for checking the code equivalence problem. An upper bound
on the weight of the codewords is imposed to this algorithm in order
to get a smallest set that can be also used as a signature for the ‘Code
Equivalence Problem’.

Keywords: Leader codewords · Code equivalence · Coset leaders

1 Introduction

In this work we are interested in the mathematical aspects of the set of leader
codewords of a linear code related with two main issues, its computation and
getting a signature for the ‘Code Equivalence Problem’. In [3] this set is defined
for binary codes and it vis given an algorithm for its computation in an incre-
mental form based on the Gröbner representation [9] of the code. The extension
of those results for general linear codes is analyzed in [5].

We formulate a kind of Möller’s algorithm for Gröbner representation tech-
niques that generates the leader codewords in an incremental form. Nevertheless,
we state and proof the correctness of the algorithm without the need of using
Gröbner basis. An upper bound on the weight of the codewords is imposed the
algorithm in order to get only those leader codewords bounded by a given weight.
We also show how can be used a suitable subset of the leader codewords in the
‘Code Equivalence Problem’, i.e. the problem of determining whether two given

E. Mart́ınez-Moro—Partially supported by the Spanish State Research Agency (AEI)
under Grants MTM2015-65764-C3-1, PGC2018-096446-B-C21.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 218–233, 2020.
https://doi.org/10.1007/978-3-030-43120-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_17

Computing an Invariant of a Linear Code 219

linear codes are permutation-equivalent. If they are, we also want to recover
this permutation group. In [10] the authors proved that this problem is not NP-
complete but also that it is at least as hard as the Graph Isomorphism Problem.
On the other hand, the support splitting algorithm [11] solves the computational
version of the problem in polynomial time for all but an exponentially small pro-
portion of the instances. In that paper it is stated that the main difficulty in the
implementation of the algorithm lies in the choice of the invariant since usually
the computation rapidly becomes intractable when its size grows.

Note that the role played by the Gröbner representation in the equivalence of
codes was introduced in [4]. The set of leader codewords proposed in this paper
is a structure which is considerably smaller that the invariant proposed in [4].
Despite of this, this set grows fast as the size of the code increase; so we impose
an upper bound on the weight of the codewords to be included and prove that
is enough to consider this subset of leader codewords as invariant. We use this
subset for finding the permutation between equivalent codes. Note also that it
can be used in any algorithm based on partitions and refinements like those in
[8,11]. In particular, we have adapted the support splitting algorithm by defining
a specific signature corresponding to this subset as invariant.

The structure of the paper is as follows. In Sect. 2 we present some prelim-
inary facts and notations. In Sect. 3 we define the set of leader codewords and
describe the algorithm. Section 4 provides a formal proof that this subset is an
invariant for the code and we show how it can be used for finding the permuta-
tion group between equivalent codes. The algorithm is described and formalized
in Sect. 5. Finally in Sect. 6 we present some experimental results.

2 Preliminaries

2.1 Linear Codes

From now on we shall denote by Fq the finite field with q = pm elements, p a
prime. A linear code C over Fq of length n and dimension k is a k-dimensional sub-
space of Fn

q . We will call the vectors v in Fn
q words and those v ∈ C, codewords.

For every word v ∈ Fn
q its support is defined as supp(v) = {i | vi �= 0} and its

Hamming weight, denoted by wH(v) as the cardinality of supp(v) and the Ham-
ming distance dH(x,y) between two words x, y ∈ Fn

q is dH(x,y) = wH(x − y).
The minimum distance d(C) of a linear code C is defined as the minimum weight
among all nonzero codewords.

The set of words of minimal Hamming weight in all the cosets of Fn
q /C is the

set of coset leaders of the code C in Fn
q and we will denote it by CL(C). CL(y)

will denote the subset of coset leaders corresponding to the coset y+ C. Given a
coset y+C we define the weight of the coset wH(y+C) as the smallest Hamming
weight among all vectors in the coset, or equivalently the weight of one of its
leaders. It is well known that given t = �d(C)−1

2 � where �·� denotes the greatest
integer function then every coset of weight at most t has a unique coset leader.

220 M. Borges-Quintana et al.

2.2 The Weak Order Ideal of the Coset Leaders

Let f(X) be an irreducible polynomial over Fp of degree m and β be a root of
f(X), then any element a ∈ Fq can be represented as a1 + a2β + . . . + amβm−1

with ai ∈ Fp for i ∈ {1, . . . , m}.

Definition 1. We define the generalized support of a vector v = (v1, . . . ,vn) ∈
Fn

q as the support of the nm-tuple given by the concatenations of the p-adic expan-
sion of each component vi = vi1+vi2β+. . .+vimβm−1 of v. That is suppgen(v) =
(supp((vi1 , . . . , vim)) : i = 1, . . . , n), and suppgen(v)[i] = supp((vi1 , . . . , vim)).
We will say that ij ∈ suppgen(v) if the corresponding vij is not zero.

The set Can(Fq, f) =
{
eij = βj−1ei : i = 1, . . . , n; j = 1, . . . ,m

}
represents

the canonical basis of (Fn
q ,+). We state the following connection between Fn

q

and Nnm:
Δ : Fn

q →Nnm

v �→ (ψ(vij) : i = 1, . . . , n, j = 1, . . . ,m),

where the mapping ψ : Fp → N is defined as k · 1Fp
�→ k mod p. On the other

hand we define the mapping ∇ : Nnm → Fn
q as a �→ (am(i−1)+1 + am(i−1)+2β +

. . . + am(i−1)+mβm−1), i = 1, . . . , n.

Definition 2. Given x,y ∈ (Fn
q ,+), x =

∑
i,j xijeij, y =

∑
i,j yijeij, we say

x ⊂ y if ψ(xij) ≤ ψ(yij) for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
The map Δ relates orders on Fn

q with orders on Nnm, and vice versa. An
admissible order on (Nnm,+) is a total order < on Nnm satisfying the following
two conditions

1. 0 < x, for all x ∈ Nnm, x �= 0.
2. If x < y, then x + z < y + z, for all z ∈ Nnm.

In particular, any admissible order on (Nnm,+), (lexicographical, degree lexi-
cographical, degree reverse lexicographical ...) induces an order on (Fn

q ,+). A
representation of a word v as an nm-tuple over N is said to be in standard form
if Δ(∇(v)) = v. We will denote the standard form of v as SF(v, f) (note that
∇(v) = ∇(SF(v, f))). Therefore, v is in standard form if v = SF(v, f) (we will
also say v ∈ SF(Fn

q , f)). In shake of brevity, from now on we will consider the
polynomial f fixed and we will use Can(Fq) and SF(Fn

q) instead of Can(Fq, f)
and SF(Fn

q , f) respectively.

Definition 3. A subset O of Nk is an order ideal if for all w ∈ O and v ∈ Nk

s.t. vi ≤ wi, i = 1, . . . , k, then v ∈ O.

In the same fashion as the previous definition, we say that a subset S of Fn
q

is an order ideal if Δ(S) is an order ideal in Nnm. It is easy to check that an
equivalent definition for the order ideal would be that for all w ∈ S, and for
all ij ∈ suppgen(w), and v ∈ Fn

q s.t. w = v + eij we have v ∈ S. If we change
it slightly and instead of for all ij ∈ suppgen(w) the condition is satisfied at
least for one ij ∈ suppgen(w) we say that the set S is a weak order ideal. More
formally,

Computing an Invariant of a Linear Code 221

Definition 4. A subset S of Fn
q is a weak order ideal if for all w ∈ S \ 0 there

exists a ij ∈ suppgen(w) such that for v ∈ Fn
q with w = v + eij then v ∈ S.

In the above situation we will say that the word w is an ancestor of the word
v, and that v is a descendant of w. In non binary case a coset leader could be an
ancestor of another coset leader or an ancestor of a word at Hamming distance
1 to a coset leader (this last case is not possible in the binary case).

The first idea that allows us to compute incrementally the set of all coset
leaders for a linear code was introduced in [4] using the additive structure of Fn

q

and the set of canonical generators Can(Fq). Unfortunately in [4] most of the
chosen coset representatives may not be coset leaders if the weight of the coset is
greater than t. In order to incrementally generate all coset leaders starting from
0 adding elements in Can(Fq), we must consider words with weight one more
than the previous chosen coset leader (see [5]).

Definition 5. Given ≺1 an admissible order on (Nnm,+) we define the weight
compatible order ≺ on (Fn

q ,+) associated to ≺1 as the ordering given by

1. x ≺ y if wH(x) < wH(y) or
2. if wH(x) = wH(y) then Δ(x) ≺1 Δ(y).

In other words, the words in Fn
q are ordered according their Hamming weights

and the order ≺1 break ties. These class of orders is a subset of the class of
monotone α-orderings in [7]. In fact we will need a little more than monotonicity,
we will also need the following condition: for every pair v,w ∈ SF(Fn

q) such that
v ⊂ w one has that v ≺ w. Note that this last condition is indeed true for a
weight compatible order. In addition, for any weight compatible order ≺ every
strictly decreasing sequence terminates (due to the finiteness of the set Fn

q). In
the binary case the behavior of the coset leaders can be translated to the fact
that the set of coset leader is an order ideal of Fn

2 ; whereas, for non binary
linear codes this is no longer true even if we try to use the characterization of
order ideals given in [6], where order ideals do not need to be associated with
admissible orders.

Definition 6. We define the weak order ideal of the coset leaders of a linear
code C as the set O(C) of elements in Fn

q verifying the following items,

1. 0 ∈ O(C).
2. If v ∈ O(C) and wH(v) = wH (v + C) then

{
v + eij | Δ(v) + Δ(eij) ∈ SF(Fn

q)
} ⊂ O(C).

3. If v ∈ O(C) and wH(v) = wH (v + C) + 1 then
{
v + eij | i ∈ supp(v), Δ(v) + Δ(eij) ∈ SF(Fn

q) , v − vi ∈ CL(C)} ⊂ O(C).

Note that it is clear by items 2 and 3 in the definition above that O(C) is
a weak order ideal. Note also that the definition of the set O(C) also gives an
algorithmic process to built this set, which result very important to construct the
set CL(C) taking into account that CL(C) ⊂ O(C). The following two theorems
show the connections between the set of coset leaders and the weak order ideal
of the coset leaders.

222 M. Borges-Quintana et al.

Theorem 1 (See [5]). Let w ∈ Fn
q . If there exists i ∈ 1, . . . , n s.t. w − wi ∈

CL(C) then w ∈ O(C).

Theorem 2 (See [5]). Let w ∈ Fn
q and w ∈ CL(C) then w ∈ O(C).

3 Leader Codewords of Linear Codes

Definition 7. The set of leader codewords of a linear code C is defined as

L(C) =
{
v1 + eij − v2 ∈ C \ {0} | Δ(v1) + Δ(eij) ∈ SF(Fn

q),
v2 ∈ CL(C) and v1 − v1i ∈ CL(C)

}
.

Note that the definition is a bit more elaborated that the one for binary codes
in [3] due to the fact that in the general case not all coset leaders need to be
ancestors of coset leaders. The name of leader codewords comes from the fact
that one could compute all coset leaders of a corresponding word knowing the set
L(C) adapting [3, Algorithm 3]. Theorem 1 guarantees that w ∈ O(C) provided
that w−wi ∈ CL(C) for some i, then the associated set of leader codewords may
be computed as {w − v : w ∈ O(C), w − wi ∈ CL(C), v ∈ CL(w) and v �= w}.

3.1 Computing Algorithm

In [3] it is presented a Möller’s like algorithm for computing the leader codewords
for binary linear codes. Given a weight compatible ordering ≺, it is introduced
an incremental form of generating the set of leader codewords. The generation
of these elements is based on the construction of an object List (a crucial object
in a Möller-like algorithm). The object List for general linear codes is related
exactly with the computation of the set O(C); i.e. List is the smallest ordered
set of elements in Fn

q verifying the following properties:

1. 0 ∈ List.
2. Criterion 1: If v ∈ List and wH(v) = wH (v + C) then

{
v + eij | Δ(v) + Δ(eij) ∈ SF(Fn

q)
} ⊂ List.

3. Criterion 2: If v ∈ List and wH(v) = wH (v + C) + 1 then
{
v + eij | i ∈ supp(v), Δ(v) + Δ(eij) ∈ SF(Fn

q),

v − vi ∈ CL(C)
} ⊂ List.

Given a weight compatible order ≺ and a linear code C, the algorithm will
incrementally generate all elements in List and also all coset leaders, starting
from the zero codeword in List. Then Theorem 1 guarantees that

w ∈ List provided that w − wi ∈ CL(C) for some i, (1)

and the associated set of leader codewords may be computed as {w − v : v ∈
CL(w) and v �= w}.

Computing an Invariant of a Linear Code 223

3.2 Computing up to a Given Level

Let Q be a set of elements in Fn
q . We will call a level of weight k to the set

Q′ such that Q′ = {v ∈ Q | wH (v) = k} . We can get a partition of the set Q
ordered by the weight of each level 0 ≤ k1 < k2 < . . . < ks. We will refer to the
i-th set Qi in this partition by the level of weight ki of Q and we will denote as
Q[i] to the set of all words up to the level i.

As it was discussed in the previous section, the leader codewords of a linear
code C are generated in an incremental form according to a weight compatible
order, so we can set an upper bound if we only want the leader codewords up to
a given level. The following proposition establishes a connection between the
weight of the elements belonging to List and the weight of their corresponding
leader codewords.

Proposition 1. Let c ∈ L(C) and w ∈ List the least element w.r.t to ≺ such
that c = w − v, w − wi ∈ CL(C) for some i ∈ 1, . . . , n, v ∈ CL(C). Then
2wH(w) − 1 ≤ wH(c).

Proof. Since c = w − v and v ∈ CL(C), we have w ∈ v + C. Then wH(v) ≤
wH(w). If we suppose wH(v) = wH(w) − 2 then c = (wi − v) − (−(w − wi)) =
a − b, where a − ai = −v ∈ CL(C), b = −(w − wi) ∈ CL(C). Now, wH(a) ≤
wH(wi) + wH(v) = wH(w) − 1. This is wH(a) < wH(w) and so a ≺ w. Finally,
by (1), a − ai ∈ CL(C) implies a ∈ List, which is a contradiction because w is
the least element in List to obtain c.

Therefore, wH(v) ≥ wH(w) − 1, from where it is obtained 2wH(w) − 1 ≤
wH(c). �
Remark 1. As a direct consequence of the previous result we have that, in order
to compute all leader codewords up to a weight k, it is enough to stop the
algorithm in the first element of List of weight t such that 2t − 1 > k.

Algorithm 1 below summarizes the aspects discussed above. There are three func-
tions needed to understand the algorithm:

– InsertNexts[t, List] inserts all sums t + eij in List, where Δ(v) + Δ(eij) ∈
SF(Fn

q), keeping the increasing order ≺ in List.
– NextTerm[List] returns the first element from List and deletes it from that

set.
– Member[obj,G] returns the position j of obj in G, if obj ∈ G, and false

otherwise.

Proposition 2. Algorithm1 computes the set of leader codewords of a linear
code C up to a given level.

224 M. Borges-Quintana et al.

Algorithm 1: Computation of the leader codewords up to a given level
input : A weight compatible ordering ≺, a parity check matrix H of a

code C and the level k.
output: L(C)[k].

1 List ← [0]; r ← 0; CL(C) ← ∅; S ← ∅; L(C) ← ∅; k′ ← 0; wk′ ← 0;
wk ← ∞; Stop ← false;

2 while List �= ∅ and Stop �= true do
3 t ← NextTerm[List];
4 if 2wH(t) − 1 ≤ wk then
5 s ← tHT ;
6 j ← Member[s,S];
7 if j �= false then
8 if wH(t) = wH(CL(C)[j][1]) then // Criterion 1 in List
9 CL(C)[j] ← CL(C)[j] ∪ {t};

10 List ← InsertNext[t, List];
11 end if
12 if wH(t) = wH(CL(C)[j][1]) + 1 then // Criterion 2 in

List
13 for i ∈ supp(t) : t − ti ∈ CL(C) do
14 List ← InsertNext[t, List];
15 end for
16 end if
17 for i ∈ supp(t) : t − ti ∈ CL(C) do
18 for t′ ∈ CL(C)[j] and (t �= t′) do
19 if wH(t − t′) > wk′ then
20 k′ ← k′ + 1; wk′ ← wH(t − t′);
21 if k′ = k then // L(C) has reached the level k
22 wk ← wk′ ;
23 end if
24 end if
25 if wH(t − t′) ≤ wk then
26 L(C) ← L(C) ∪ {t − t′};
27 end if
28 end for
29 end for
30 else
31 r ← r + 1; CL(C)[r] ← {t}; S[r] ← s;
32 List = InsertNext[t, List] // Criterion 1 in List;
33 end if
34 else
35 Stop ← true;
36 end if
37 end while
38 return L(C)

Computing an Invariant of a Linear Code 225

Proof (Of Proposition 2). Let us first prove that all the words inserted in List
satisfy the desired properties pointed in Sect. 3.1. By Step 1, 0 ∈ List, verifying
the first property, then in Step 5 the syndrome (an element of the coset) of
t = NextTerm[List] is computed and based on the outcome of Step 6 we have
two possible cases,

1. If j = false then the coset C + t has not yet been considered, therefore it
is created taking t as a representative of minimal weight. Step 32 guarantees
Criterion 1 in the second property.

2. On the other hand, if j �= false, the coset C+tj has been created and in case
of wH(t) = wH (tj) Step 10 guarantees Criterion 1. If wH(t) = wH (tj) + 1
then Step 13 and Step 14 verify Criterion 2 in the third property of List.

Therefore Algorithm 1 constructs List fulfilling the required properties. Further-
more, in List is included the set O(C), then by Theorem2, List contains all
coset leaders, thus Step 9 and Step 31 assure the computation of the whole set of
coset leaders. From Step 19 to Step 24 the algorithm keeps track of the current
level of L(C) and the weight associated with that level. Finally, Step 25 and Step
26 create the set L(C) of leader codewords according to Definition 7. Meanwhile,
the second stop condition of the loop (Step 2) given by Proposition 1 prevents
from continuing when the current weight is greater than the given weight for the
desired level k. �
Of course note that if no level k is specified then Algorithm 1 computes the whole
set of leader codewords.

4 L(C) as an Invariant for Linear Codes

It is clear that if two codes C, C′ are permutation equivalent so that for a given
σ ∈ Sn we have that C′ = σ(C), then L(C′) = σ(L(C)). In [4, Theorem 3] it is
shown that two linear codes are equivalent if their so called Matphi structure are
equivalent. These Matphi structures depend also on the cosets determined by the
codes, but the size of this object is bigger than the set of leader codewords. The
following result establishes that the set of leader codewords is also an invariant.

Theorem 3. Let C, C′ be linear codes and σ ∈ Sn. Then C′ = σ(C) if and only
if L(C′) = σ(L(C)).

Proof. Let C′ = σ(C) for σ ∈ Sn, in order to prove L(C′) = σ(L(C)) it is enough to
prove that σ(L(C)) ⊂ L(C′). Let c ∈ L(C), then c = v1+eij−v2, Δ(v)+Δ(eij) ∈
SF(Fn

q), v2 ∈ CL(C) and v1 − v1i ∈ CL(C). Thus, C′ = σ(C) implies σ(v1) −
σ(v1i) = σ(v1 − v1i) ∈ CL(C′), σ(v2) ∈ CL(C′) and Δ(σ(v1)) + Δ(eσ(i)j) ∈
SF(Fn

q). Then, c′ = σ(c) = σ(v1) + σ(eij) − σ(v2) = σ(v1) + eσ(i)j − σ(v2).
Therefore, c′ ∈ L(C′).

Now, let us suppose that L(C′) = σ(L(C)) and let c ∈ C. In [5] it was proved
that the set L(C) is a test set for C. This means, there exist c1, . . . , ck, ci ∈
LC, i = 1, . . . , k such that c = c1 + . . . + ck. That is, we have

σ(c) = σ(c1) + . . . + σ(ck). (2)

226 M. Borges-Quintana et al.

But σ(ci) ∈ L(C′), i = 1, . . . , k, then, taking into account (2) we obtain σ(c) ∈ C′.
�

Remark 2. A mapping is an invariant for a code means that it remains invariant
under a permutation. The previous theorem shows that the set of leader code-
words L(C) may give a very strong invariant in the sense that it is preserved if
and only if the codes are equivalent. Due to its prohibitive size as the code length
increases we take the subset L(C)[2] and for this we have L(C′)[2] = σ(L(C)[2])
provided that C′ = σ(C).

The following lemma allow us to state Theorem 4 in order to use the set of
leader codewords up to a given level as invariant.

Lemma 1. Let C = 〈B〉 and C′ = 〈B′〉 two codes over Fq with spanning sets B
and B′. If there exists σ ∈ Sn such that B′ = σ(B) then C′ = σ(C).

Proof. Let c′ ∈ C′. Then c′ =
∑

αi∈Fq
αiβ

′
i =

∑
αiσ(βi) = σ (

∑
αiβi) and hence

c′ ∈ σ(C). On the other hand, let c ∈ C. Then c =
∑

αi∈Fq
αiβi and σ(c) =∑

αiσ(βi) =
∑

αiβ
′
i. Therefore σ(c) ∈ C′. �

Theorem 4. Let C and C′ linear codes of Fn
q such that dim(C) = dim(C′) and

k = mins{s ∈ N | C =
〈
L(C)[s]

〉}. For m ≥ k, for any σ ∈ Sn such that
σ

(
L(C)[m]

)
= L(C′)[m] then C′ = σ(C).

Proof. It is a consequence of the fact that L(C)[m] is a spanning set of C for
m ≥ k, Lemma 1 and dim(C) = dim(C′). Note that, by applying the lemma,
C ∼ σ(C). On the other hand, σ(C) is a subspace of C′ of the same dimension of
C′, so σ(C) = C′. �

Note that all codewords of minimum weight are leader codewords. Moreover,
L(C)[1] is exactly this set of codewords. In case of codes that are generated by
this set, k = 1 in Theorem 4 and it is enough to use L(C)[1] to compute the
candidates permutations.

5 Finding the Permutation

The idea of using the subset L(C)[2] of the set L(C) as an invariant can be
applied for finding the permutations between equivalent codes and it can be used
in any algorithm based on partitions and refinements like [8,11]. In particular,
we have specified the algorithm described in [11] by defining a specific signature
corresponding to L(C)[2]. We have changed a little the definition of signature but
keeping the central idea. The construction of the partition and the refinement
process based on the signature follow similar procedures. A description of related
algorithms for code equivalence is done in [12].

Computing an Invariant of a Linear Code 227

5.1 The Proposed Signature

One way of defining signatures for codes is by using an invariant, we are going
to introduce a signature based on the set L(C)[2].

Definition 8 ([11]). A signature S over a set Ω maps a code C of length n and
an element i ∈ In = {1, . . . , n} into an element of Ω and is such that for all
permutations σ ∈ Sn, S(C, i) = S(σ(C), σ(i)).

Let Z[y0, . . . , yn] be the polynomial ring of the n+1 variables y0, . . . , yn over
the integers. We define a signature over Ω = Z[y0, . . . , yn] × Z[y0, . . . , yn] which
depends on the numbers of assignments of positions already done. Note at the
beginning no assignment has been done yet.

Let J ⊂ In, J = {j1, . . . , js} be the assignments of positions we assumed
have been done to the set J ′ ⊂ In, J ′ = {j′

1, . . . , j
′
s}, J may be equal to the

empty set and s = 0. Then for all permutations σ ∈ Sn, such that σ(ji) = j′
i,

i = 1, . . . , s, we define for i ∈ In \ J

SLCs(C, i) = (ai0y0 + . . . + aisy0y1 · · · ys, bi0y0 + . . . + bisy0y1 · · · ys),

where the first component ai0y0 + . . .+aisy0y1 · · · ys stands for the subset L(C)1
of L(C)[2] and the second component bi0y0 + . . . + bisy0y1 · · · ys stands for the
subset L(C)2 of L(C)[2]. Specifically aik, k ∈ 0, . . . , s means that there are aik

elements c ∈ L(C)1 with ci �= 0 and others exactly k positions from J which are
not zero. Similarly, bik, k ∈ 0, . . . , s means that there are bik elements c ∈ L(C)2
with ci �= 0 and other exactly k positions from J which are not zero.

Note that SLCs(C, i) counts the interactions between the position i and the
set of positions J already assigned in the subsets L(C)1 and L(C)2 of L(C)[2]. As
it is expected, for all permutations σ ∈ Sn, such that σ(ji) = j′

i, i = 1, . . . , s,
SLCs(C, i) = SLCs(σ(C), σ(i)) which is guaranteed by Theorem3.

The (C,SLCs)-partition (see [11]) is P(C,SLCs) = {Je : e ∈ Ω}, where
Je = {i ∈ In \ J : SLCs(C, i) = e}. Note that the partition corresponding to a
permutation is such that P(σ(C),SLCs) = {σ(Je) : e ∈ Ω}, for all permutations
σ ∈ Sn, such that σ(ji) = j′

i, i = 1, . . . , s.

5.2 Refining the Partition

Given the linear codes C and C′ and a subset of s positions J already assigned
to J ′, such that SLCi(C, ji+1) = SLCi(C′, j′

i+1), i = 0, . . . , s − 1.
We compute the partitions P(C,SLCs) = {Je : e ∈ Ω} and P(C′,SLCs) =

{J ′
e : e ∈ Ω} and then we take into account that a position from Je must be

transformed into a position of J ′
e, so the next assignment is decided. For example,

we may take the Je1 subset of minimal cardinal and then the position i ∈ Je1 of
minimal absolute value. Once a new position is chosen we select its image j such
that SLCs(C′, j) = SLCs(C, i) and then J = J ∪ {i}, J ′ = J ′ ∪ {j}, s = s + 1.

In this process it is possible to detect some contradictions which means no
permutation will be found by this path. For example, it is clear that the cardinal
of the partitions for C and C′ must be the same, and also | Je |=| J ′

e | for all
e ∈ Ω.

228 M. Borges-Quintana et al.

5.3 Computing Algorithm

Proposition 3. Algorithm2 computes a permutation σ ∈ Sn between the codes
C and C′, that is C′ = σ(C). If no permutation is found then these codes are not
permutation equivalent.

Algorithm 2: Computing the permutation
1 function PermutationEquivCodes

input : C, C′ and a weight compatible ordering ≺
output: A permutation σ ∈ Sn, such that C′ = σ(C)

2 J ← ∅; J ′ ← ∅; s ← 0
3 Compute L(C)[2] and L(C′)[2] using ≺ as described in Section 3
4 FindPermutation(L(C)[2],L(C′)[2], J, J ′, s)
5 if no permutation found then
6 return C, C′ are not permutation equivalent codes
7 end if
8 return σ ← σ(Ji) = J ′

i , i = 1, . . . , n

9 end func

10 function FindPermutation
input : L(C)[2],L(C′)[2] and J, J ′ ⊂ In where s = |J | = |J ′|
output: J, J ′ such that σ(Ji) = J ′

i , i = 1, . . . , n if a permutation is
found. No permutation found is returned otherwise

11 if |J | = n then
12 return J, J ′

13 end if
14 P ← {Je : SLCs(C, i) = e, i ∈ In \ J, e ∈ Ω} // use L(C)[2] as

invariant
15 P ′ ← {J ′

e : SLCs(C′, i) = e, i ∈ In \ J ′, e ∈ Ω} // to compute
SLCs(C, i)

16 if |Je| = |J ′
e| for all Je ∈ P, J ′

e ∈ P ′ then
17 J ← J ∪ {i}, i ∈ Je1 // Je1 , i chosen randomly or by an

heuristic
18 J∗ ← J ′

e1
such that J ′

e1
∈ P ′

19 while no permutation found and J∗ �= ∅ do
20 J ′ ← J ′ ∪ {j}, j ∈ J∗

21 FindPermutation(L(C)[2],L(C′)[2], J, J ′, s + 1)
22 if a permutation were found then
23 return J, J ′

24 end if
25 J ′ ← J ′ \ {j} ; J∗ ← J∗ \ {j}
26 end while
27 J ← J \ {i}
28 end if
29 return no permutation found
30 end func

Computing an Invariant of a Linear Code 229

Proof (Of Proposition 3). It is clear that if there exists a permutation between
two codes C and C′, by Theorem 3, this permutation transforms L(C) into L(C′)
and then defines the same signatures and partitions. Thus one of those permu-
tations will be found by Algorithm2. The process is finite because there is a
finite number of permutations and therefore the process of analyzing different
assignments following the signatures and partitions is finite. �

Note that in Algorithm 2 the function PermutationEquivCodes do the ini-
tializations. Then the sets L(C)[2] and L(C′)[2] are computed (also they can be
loaded from a precomputed database) and then a call to the recursive function
FindPermutation is made which follows a refinement process following an n-ary
tree structure, where a permutation is found when a node of level n is reached.

Finding All the Permutations. Given a linear code C of length n, the sub-
group of all elements σ of Sn such that σ(C) = C is called the permutation
automorphism group of C. Note that if the permutation automorphism group is
nontrivial and if C′ is permutation equivalent to C, then several permutations
could satisfy C′ = σ(C). Algorithm 2 can be easily modified to compute all those
permutations. This can be achieved if a list of pairs J, J ′ is returned instead of
a single pair and before each successful return statement those pairs are added
to this list. An n-ary tree transversal is made, where at each node of level n
one permutation is considered. After that step an expurgation process should
be carried out since some invalid permutations could be introduced because
σ(L(C)[2]) = L(C′)[2] may not be sufficient to guarantee that σ(C) = C′.

Example 1 (Toy Example). Consider the binary codes C = 〈(0, 1, 0, 0, 1),
(1, 1, 0, 1, 0), (0, 1, 1, 0, 0)〉 and C′ = 〈(1, 1, 0, 0, 0), (1, 0, 1, 0, 1), (1, 0, 0, 1, 0)〉 and

L(C)1 = {(0, 1, 1, 0, 0), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1)},

L(C)2 = {(1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1)},

L(C′)1 = {(1, 1, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 1, 0)},

L(C′)2 = {(1, 0, 1, 0, 1), (0, 1, 1, 0, 1), (0, 0, 1, 1, 1)}.

Note that C′ = σ(C) with σ = (1, 3, 4, 5, 2) and thus L(C′)[2] = σ(L(C)[2]). On
the first call to FindPermutation we get

SLC0(C, 1) = (0, 3y0), SLC0(C, 2) = (2y0, y0),
SLC0(C, 3) = (2y0, y0), SLC0(C, 4) = (0, 3y0), SLC0(C, 5) = (2y0, y0),
SLC0(C′, 1) = (2y0, y0), SLC0(C′, 2) = (2y0, y0),
SLC0(C′, 3) = (0, 3y0), SLC0(C′, 4) = (2y0, y0), SLC0(C′, 5) = (0, 3y0).

Now with e1 = (0, 3y0), e2 = (2y0, y0) such that e1, e2 ∈ Ω we get

P(C,SLC0) = {Je1 = {1, 4} , Je2 = {2, 3, 5}} ,

P ′(C′,SLC0) =
{
J ′

e1
= {3, 5} , J ′

e2
= {1, 2, 4}}

.

230 M. Borges-Quintana et al.

At this point is verified that |Je1 | = |J ′
e1

| and |Je2 | = |J ′
e2

| and a coordinate
must be chosen, that is, i ∈ Je such that Je ∈ P. Recall that this can be done at
random or following some heuristics. Let us take the one with minimal cardinal
and the position with minimal absolute value. Then J = J ∪{1} ⇒ J = {1} and
we may try with each element in J ′

e1
, since σ(1) ∈ J ′

e1
provided that SLC0(C, 1) =

SLC0(C′, σ(1)). Starting with the minimum value J ′ = J ′∪{3} ⇒ J ′ = {3}, then
a recursive call is made, meaning that σ(1) = 3. Note that if no permutation is
found through this path, a new selection must be made following a tree structure.
In the new call we get

SLC1(C, 2) = (0, 2y0 + y0y1), SLC1(C, 3) = (0, 2y0 + y0y1),
SLC1(C, 4) = (0, 3y0y1), SLC1(C, 5) = (0, 2y0 + y0y1),
SLC1(C′, 1) = (0, 2y0 + y0y1), SLC1(C′, 2) = (0, 2y0 + y0y1),
SLC1(C′, 4) = (0, 2y0 + y0y1), SLC1(C′, 5) = (0, y0y1),

P(C,SLC1) = {Je1 = {4} , Je2 = {2, 3, 5}} ,

P ′(C′,SLC1) =
{
J ′

e1
= {5} , J ′

e2
= {1, 2, 4}}

,

where J = J ∪ {4} ⇒ J = {1, 4} and J ′ = J ′ ∪ {5} ⇒ J ′ = {3, 5}, meaning that
σ(1) = 3 and σ(4) = 5. Following this refining procedure is obtained J and J ′

such that σ(ji) = j′
i, i = 1, . . . , 5.

6 Experimental Results

The algorithms in this paper were implemented in C++ using the GNU operating
system based gcc compiler and performed using the high performance computing
capabilities provided at University of Oriente, Cuba (http://www.uo.edu.cu). In
Table 1 we show the advantage of choosing the set of leader codewords only up to
the second level. A significant difference can be noticed in the execution time,
since for level 2 there is a relatively slight change as the number of cosets increase,

Table 1. Execution time and number of leader codewords

Codes # Cosets Level 2 All levels

Time (sec.) Num. Time (sec.) Num.

F2 [12, 6, 4] 64 0.0001 28 0.0310 50

F2 [15, 8, 3] 128 0.0001 9 0.1400 127

F2 [18, 10, 3] 256 0.0150 16 0.6560 328

F3 [12, 6, 3] 729 0.0620 16 6.9690 568

F3 [12, 5, 3] 2187 0.0620 12 42.2510 472

F3 [13, 6, 4] 2187 0.1250 28 57.8660 520

F4 [11, 5, 4] 4096 0.2970 42 271.0270 816

F4 [12, 6, 3] 4096 0.4100 15 401.0000 2435

F4 [14, 7, 4] 16384 1.1720 27 10942.7280 4564

http://www.uo.edu.cu

Computing an Invariant of a Linear Code 231

compared with the fast growth in computing the whole set. On the other hand,
the number of leader codewords up to the second level remains stable and much
more smaller (see Fig. 1).

Codes

N
u
m
b
er

of
le
ad

er
co

d
ew

or
d
s

150

300

450

600

750

900

F2 [12, 6, 4]

F2 [15, 8, 3]

F2 [18, 10, 3]

F3 [12, 6, 3]

F3 [12, 5, 3]

F3 [13, 6, 4]

F4 [11, 5, 4]

F4 [12, 6, 3]

F4 [14, 7, 4]

All levels

Level 2

Fig. 1. Number of leader codewords up to the 2nd and all levels

In order to evaluate the performance of the algorithm for finding the permu-
tation between two linear codes, a code is generated first at random and then is
applied a permutation generated at random too. For these two codes we compute
the set of the leader codewords up to the second level, and then, they are used
as input for the algorithm that will give as output the first valid permutation.

Table 2 is shows execution times for the leader codewords up to the second
level, only for the generated code, and in a different column is showed the time

Table 2. Execution time in seconds to find the first permutation between two linear
codes randomly permuted

Codes (C) Cosets L(C)[2] 1st permutation

F2 [15, 7, 3] 256 0.031 0.015

F2 [21, 12, 3] 512 0.093 0.047

F2 [29, 18, 3] 2048 0.328 0.078

F2 [34, 19, 4] 32768 12.688 0.063

F3 [18, 8, 4] 59049 22.891 0.078

F3 [23, 12, 5] 177147 96.395 0.078

F3 [32, 20, 5] 531441 567.770 0.240

F4 [20, 10, 5] 1048576 647.020 0.060

F4 [26, 15, 5] 4194304 3001.800 0.360

F4 [30, 18, 5] 16777216 9402.400 0.140

232 M. Borges-Quintana et al.

Table 3. Execution time in seconds to find all permutations

Codes Permutations First (sec.) All (sec.)

F2 [15, 7, 3] 8 0.015 0.031

F2 [29, 18, 3] 96 0.078 0.265

F2 [21, 12, 3] 144 0.047 0.271

F4 [30, 18, 5] 720 0.140 0.830

F2 [15, 7, 3] 768 0.015 1.218

F3 [18, 8, 4] 1536 0.015 2.828

F3 [23, 12, 4] 3456 0.042 8.636

F2 [34, 19, 4] 4608 0.063 9.000

F4 [30, 18, 5] 10080 0.024 9.376

consumed by Algorithm 1. The codes are generated increasing the number of
cosets as before, but this time these numbers are much more greater, showing
the advantage of using the selected invariant L(C)[2]. Note that the time used by
the algorithm to get the first correct permutation is significantly smaller than
the time spent in computing the invariant.

Finally Table 3 shows the execution times for the algorithm adapted to com-
pute all the permutations and it is compared with the timing of the first permu-
tation obtained. The time for finding the first permutation depends on how the
elements are chosen in each refinement stage. This explain the fluctuating time
according to the increasing number of elements in the permutation group.

Some Comments on Complexity Issues. Authors would like to emphasize
that the main goal of this paper is the study the computation of leader code-
words and the properties related to the permutation equivalent problem from
the mathematical point of view. Some of the experiments are devoted to show
the possibility of using part of the set of leader codewords instead of the whole
set and to compare this two instance.

Algorithm 1 for computing the leader codewords is efficient because its com-
putational complexity is linear on the size of the weak order ideal of the code,
and because of the nature of the leader codewords this can not be improved
much more. Also we adapted the algorithm to compute the set up to a given
weight. Anyway the computation of this set becomes intractable when the code
length increase, particularly, the redundancy of the code (the number of cosets).

On the other hand, we used the SSA Algorithm and we construct with the
leader codewords a signature in order to use the scheme of this algorithm. The
main limitation is the high complexity of computing the invariant, the set of
leader codewords up to a given level. For complexity issues regarding the SSA
Algorithm and other problems related with the code equivalence, we recommend
[13], which examines also complexity issues of SSA, [1] it can be used as a
comparison for works related to this problem, [2], useful reference and a standard
in these works to compare against.

Computing an Invariant of a Linear Code 233

References

1. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group
isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1395–1408. Society for Industrial and Applied
Mathematics (2011)

2. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.:
Error-Correcting Linear Codes: Classification by Isometry and Applications, vol.
18. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31703-1

3. Borges-Quintana, M., Borges-Trenard, M., Márquez-Corbella, I., Mart́ınez-Moro,
E.: Computing coset leaders and leader codewords of binary codes. J. Algebra
Appl. 14(8), 19 (2015)

4. Borges-Quintana, M., Borges-Trenard, M., Mart́ınez-Moro, E.: On a Gröbner bases
structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10(2), 151–
191 (2007)

5. Borges-Quintana, M., Borges-Trenard, M., Mart́ınez-Moro, E.: On the weak order
ideal associated to linear codes. Math. Comput. Sci. 12(3), 339–347 (2018)

6. Braun, G., Pokutta, S.: A polyhedral characterization of border bases. SIAM J.
Discrete Math. 30(1), 239–265 (2016)

7. Helleseth, T., Kløve, T., Levenshtein, V.I.: Error-correction capability of binary
linear codes. IEEE Trans. Inf. Theory 51(4), 1408–1423 (2005)

8. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Inform. Theory 28, 496–511 (1982)

9. Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and
Gröbner Technology. Cambridge University Press, Cambridge (2005)

10. Petrank, E., Roth, R.: Is code equivalence easy to decide? IEEE Trans. Inform.
Theory 43(5), 1602–1604 (1997)

11. Sendier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)

12. Sendier, N., Simos, D.: How easy is code equivalence over Fq? In: International
Workshop on Coding and Cryptography (2013). https://www.rocq.inria.fr/secret/
PUBLICATIONS/codeq3.pdf

13. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its appli-
cation to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38616-9 14

https://doi.org/10.1007/3-540-31703-1
https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf
https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-642-38616-9_14

Generalized Secret Sharing Schemes
Using NµMDS Codes

Sanyam Mehta1 and Vishal Saraswat2(B)

1 Goldman Sachs Services Pvt Ltd, Bangalore, India
sanyam.mehta12@gmail.com

2 Robert Bosch Engineering & Business Solutions Pvt Ltd, Bangalore, India
vishal.saraswat@gmail.com

Abstract. Mehta et al. [11] recently proposed an NMDS code-based
secret sharing scheme having a richer access structure than the tradi-
tional (t, n) threshold secret sharing schemes, and is based on two mutu-
ally nonmonotonic sets of user groups of sizes t and t − 1 respectively,
where n ≥ t > 1 corresponds to the total number of users. We give
a full generalization of their scheme with complete security proofs. We
propose an efficient generalized secret sharing scheme constructed using
NµMDS codes with time complexity of O(n3). The scheme accepts an
access structure constructed using µ + 1 mutually nonmonotonic sets of
user groups with sizes, t, t − 1, . . . , t − µ, respectively, where 1 ≤ µ < t,
and the parameter t defines the threshold such that all user groups of
size greater than t can recover the secret. The proposed secret sharing
scheme is perfect and ideal and has robust cheating detection and cheater
identification features.

Keywords: Secret sharing schemes · Generalized access structure ·
Near MDS codes · Almost MDS codes

1 Introduction

Secret sharing schemes allow a dealer, D, to split a secret s into n shares
s1, . . . , sn and distribute these shares to a set P of n users, P1, . . . , Pn, accord-
ing to an access structure Γ ⊂ 2P such that a subset A ⊆ P of users can form
the secret using their shares if and only if A ∈ Γ . Moreover the secret sharing
scheme is called a (t, n) threshold secret sharing scheme if the access structure
Γ is defined by

A ∈ Γ ⇐⇒ |A| ≥ t ,

for some t ∈ {1, 2, . . . , n}. Otherwise it is called a generalized secret sharing
scheme.

Blakley [2] and Shamir [13] independently proposed secret sharing schemes
in 1979. Shamir’s scheme utilises the standard Lagrange interpolation and linear
algebra whereas Blakley’s scheme uses the concept of intersection of hyperplanes
in finite geometries. Both of these schemes were threshold secret sharing schemes,
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 234–248, 2020.
https://doi.org/10.1007/978-3-030-43120-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_18&domain=pdf
http://orcid.org/0000-0001-7082-9568
https://doi.org/10.1007/978-3-030-43120-4_18

Generalized Secret Sharing Schemes Using NµMDS Codes 235

that is, they restricted users in such a way that if and only if the number of users
exceeds the threshold, they could recover the secret. Ito et al. [8] introduced
the notion of a secret sharing scheme with a generalized access structure. A
generalized access structure consists of arbitrary subsets of users (irrespective of
each subset’s size), who could find the secret. They proposed a scheme in which
the dealer assigned several copies of a (t, n)-threshold secret sharing scheme to
every user. The dealer chooses two positive integers m and t and a prime power
q satisfying t ≤ m < q and

– chooses αt−1 ∈ GF(q) − {0} and α1, . . . , αt−2 from GF(q) and computes
f(x) = s + α1x + α2x

2 + · · · + αt−1x
t−1, where GF(q) is the Galois Field of

order q and f(0) = s ∈ GF(q) is the secret;
– chooses x1, . . . , xm ∈ GF(q) − {0} and computes sj = f(xj) (1 ≤ j ≤ m);
– and finally, assigns a subset Si ⊂ {(x1, s1), . . . , (xm, sm)} to the user Pi,

1 ≤ i ≤ n.

The access structure of this scheme contains all those sets for which the size of
the union of the users’ shares ≥t. In the worst case, the share size is exponential
in the size of the set of users. Benaloh and Leichter [1] proposed a secret sharing
scheme with a generalized access structure which was simpler than that of the Ito
et al.’s scheme [8]. Their construction utilizes the monotonicity property inherent
in secret sharing schemes. They create a composition of multiple schemes with
simple access structures and realize all access structures which can be defined
using a small monotone formula. Although this scheme is simpler and more
efficient than Ito et al.’s scheme [8], the share length is still exponential in the
number of users.

Considering the secret sharing scheme proposed by Shamir once again, note
that although a cheating user can not recover the secret by providing an incorrect
share, but by getting a wrong key, he can misguide the honest users. Various
ways of detecting and correcting the secret have been suggested by scholars.
Some consider that there are only t shareholders for secret recovery and to check
that the shares are not fake, the dealer gives an additional information such as
using some check vectors to which will act like some kind of certificate for each
user. Others have suggested to use error correcting codes where fake shares can
be assumed to be errors and corrected like error correction of codes. Most of
the initial schemes had concerns over cheater detection and identification and
use of trusted third parties (combiners and dealers). Lein et al. [6] proposed a
modification of Shamir’s scheme [13] which allowed for cheater detection and
identification. If m > t users come together, where t is the threshold, then there
are

(
m
t

)
ways for the users to pool their shares and for each such way, a t − 1

degree recovery polynomial can be constructed through interpolation. The orig-
inal polynomial can be then compared with the interpolated polynomial. Users
who could not recover the original polynomial and are in the majority of groups
are marked as possible cheaters and then the shares are corrected recursively
until no cheater is left. This cheater detection and identification algorithm trades
off space and time-complexities for secret recovery.

236 S. Mehta and V. Saraswat

Researchers also observed that instead of using arbitrary matrices, using
linear codes provided the following advantages

– A single generator matrix is sufficient to represent them.
– They enable easy transmission and easier error detection.
– Even though features for cheater detection, identification, and verification

were added, schemes were still efficient.

McEliece and Sarwate [10] constructed a secret sharing scheme from Reed-
Solomon codes and showed it to be essentially the same as the Shamir threshold
scheme [13]. Later, Massey [9] gave a general construction of linear secret sharing
schemes from linear codes (or linear matroids). Blakley and Kabatiansky [3] and
Dijk [4] gave a generalization of Massey’s scheme to multidimensional subspaces
instead of vectors. Pieprzyk and Zhang [12] used Maximum Distance Separa-
ble (MDS) codes to construct a secret sharing scheme in which, an Maximum
Distance Separable matrix G of dimension (t × n) along with a message vector
v of dimension 1 × t is chosen by the dealer. The dealer then finds the desired
codeword by computing v × G. The secret is the first element of the codeword.

It was shown in [9] that the access structure of the resulting secret sharing
schemes is determined by the minimal codewords in the dual code. However,
determining the minimal codewords in a linear code and hence, the access struc-
ture, is hard. Dodunekov [5] proposed using NMDS codes instead of MDS codes
to construct a secret sharing scheme while observing the following advantages:

– They are less space consuming and easier to implement.
– Their access structure is richer than MDS secret sharing.
– The generator matrix of the code is hard to identify by an adversary.
– Shares the same properties of cheating detection and cheater identification

with MDS codes based schemes.

Mehta et al. [11] proposed an NMDS code-based secret sharing scheme having a
richer access structure than the traditional (t, n) threshold secret sharing schemes
and an access structure constructed using two mutually nonmonotonic sets of
user groups having sizes, t and t − 1 respectively, where n corresponds to the
total number of users.

1.1 Our Contribution

We have proposed an efficient generalized secret sharing scheme based on
NμMDS codes. The use of the NμMDS matrices allows us to have authorized
sets of varying sizes thus allowing the scheme to have a generalized and richer
access structure. The proposed secret sharing scheme is perfect and ideal and
has robust cheating detection and cheater identification features. The time com-
plexity for the share distribution and share recovery phases is just O(n3), where
n is the order of users. The proposed scheme has a finer access structure and pro-
vides a direction towards a fully generalized secret sharing scheme. The scheme
constructs the access structure using μ + 1 mutually nonmonotonic sets of user

Generalized Secret Sharing Schemes Using NµMDS Codes 237

groups of sizes, t, t − 1, . . . , t − μ, respectively, where 1 ≤ μ < t, and the param-
eter t defines the threshold such that all user groups of size greater than t can
recover the secret.

2 Preliminaries

We denote the Galois Field, GF(q), of order q where q = pm is a prime power
by Fq. For ai ∈ Fq, 1 ≤ i ≤ n, (a1, . . . , an) denotes a vector in Fn

q . We will also
use the same notation, (a1, . . . , an), to denote to denote a n×1 matrix (column)
over Fq. On the other hand, [a1 a2 . . . an−1 an] denotes a 1×n matrix (row)
over Fq. For vectors vi = (vi1, . . . , vit) ∈ Ft

q, 1 ≤ i ≤ n, [v1 v2 . . . vn−1 vn]
denotes the t × n matrix over Fq formed by considering vi as columns. For a
t × n matrix G over Fq, the ith column of G is denoted G[i] ∈ Ft

q, 0 ≤ i ≤ n.

2.1 Coding Theory

Definition 1. A non-empty subset C of An, where A = {a0, . . . aq−1}, is called
a q-ary block code of length n over A, and a string in C is called a codeword.

Definition 2. The number of positions in which x and y differ is known as
Hamming distance d(x, y) between x and y. The minimum distance of a code C
is defined as

d(C) = min
x�=y∈C

d(x, y) .

Definition 3. A linear code, L, of length n is a linear subspace of Fn
q . If dimen-

sion of L is t then we call it an [n, t]-code (over Fq). Further, if the minimum
distance of L is d then we call it an [n, t, d]-code (over Fq).

Definition 4. The set of non-zero coordinate positions of a codeword c ∈ C is
called its support, Supp(c). The support of a code C, Supp(C), is defined as

Supp(C) = ∪c∈C Supp(c) .

Definition 5. The rth generalized Hamming distance, dr(C), is the cardinality
of the minimum support of an [n, r]-subcode of [n, t]-code C, where, 1 ≤ r ≤ t.

dr(C) = min{|SuppD| : D is [n, r]q subcode of C} .

Remark 1. The Hamming Distance of C d(C) = d1(C).

Definition 6. For an [n, t, d]-code C, the Singleton bound states that the
parameters of C must satisfy

qt ≤ qn−d+1 .

In other words, d ≤ n − t + 1.

238 S. Mehta and V. Saraswat

Definition 7. The rth generalized Singleton bound dr(C) states that

dr(C) ≤ n − t + r where r = 1, 2, . . . , t .

Definition 8. A maximum distance separable (MDS) code is an [n, t]-linear
code which achieves the Singleton bound, that is, it is an [n, t, n − t + 1]-code.

Proposition 1. For an [n, t, d] MDS code L over Fq, let H be any of its parity
check matrix of L and let G = (It | A) be any of its generator matrix in standard
form (ref. Remark 2). Then

1. Any n − t columns of H are linearly independent.
2. Any t columns of G are linearly independent.
3. Any square submatrix of A is non singular.

Definition 9. The class of [n, t]-codes with

d1(C) = n − t

are called almost-MDS (AMDS) codes.

Definition 10. The class of [n, t]-codes with

d1(C) = n − t,

and di(C) = n − t + i, for i = 2, 3, . . . , t,

are called near-MDS (NMDS) codes.

Definition 11. The class of [n, t]-codes with

di(C) = n − t + 2i − μ − 1, for i = 1, 2, . . . , μ

and di(C) = n − t + i, for i = μ + 1, . . . , t,

are called NμMDS codes.

Remark 2. For the purposes of this work, we will assume that the generator
matrices G are in their standard form, that is, G = (It | A), where It is the
identity matrix of size t × t. Moreover, the MDS (or the NμMDS) matrices
correspond to the matrix A.

A detailed characterization of NμMDS codes was provided in [14]. The rele-
vant properties of NμMDS matrices required for this paper are as follows.

Proposition 2 (Properties of NμMDS Codes). The matrix characterization
of an NμMDS code with a generator matrix G is as follows:

1. For all i = 1, 2, . . . , μ,
(i) for i < l ≤ min{di − 1, t}, every (l − 2i + 2 + μ, l) submatrix has rank

≥ (l − i + 1).

Generalized Secret Sharing Schemes Using NµMDS Codes 239

(ii) there exists an l, i < l ≤ min{di, t}, and an (l − 2i + 1 + μ, l) submatrix
with rank equal to (l − i).

2. For all i = μ + 1, . . . , t,
(i) for 1 < l ≤ min{(n − t), (t − μ)}, every (l, l + μ) submatrix has rank l.

Corollary 1 (Properties of NμMDS Matrices.) The standard generator
matrix for an [n, t] NμMDS code has the following properties:

1. Any t − μ + 2i columns of the generator matrix have rank ≥ t − μ + i, where
i = 0, 1, . . . , μ − 1.

2. There exists a set of t − μ + 2i + 1 columns with rank t − μ + i, for i =
0, 1, . . . , μ − 1.

3. Any t + μ columns of the generator matrix have rank t and are linearly inde-
pendent.

2.2 Secret Sharing

Let P = P1, . . . , Pn be a set of n users. We call a subset A of P a group of users.

Definition 12. A collection Γ ⊆ 2P is called monotone if A ∈ Γ and A ⊆ B
then B ∈ Γ .

Definition 13. We call two collections (sets) Gi,Gj ⊆ 2P mutually nonmono-
tonic sets if for all A ∈ Gi, there is no B ∈ Gj, such that B ⊂ A and vice
versa.

Definition 14. Γ ⊆ 2P is called an access structure if it is a monotone collec-
tion such that only the subsets of users in Γ are authorized to recover the secret.
Subsets not in Γ are termed to be unauthorized sets.

Definition 15. A distribution scheme is denoted by Π with S, the domain of
secrets, and R, a set of strings. For a secret t ∈ S and a string r ∈ R sampled
randomly observing Δ, where Δ is the probability distribution on R, a share
vector Π(t, r) = (s1, s2, . . . , sj) is computed and each share sj is communicated
to Pj via a secure channel.

Definition 16. A distribution scheme along with domain of secrets S realizing
access structure Γ is called a secret sharing scheme Σ = 〈Π,Δ〉.

Definition 17. A secret sharing scheme is correct if an authorized subset of
users can always recover the secret. In other words, for any set A ∈ Γ , there
exists a recovery function or algorithm SRA such that for a key k ∈ S,

Pr[SRA(A) is k] = 1 .

Definition 18. If T is the set of all possible shares and S is the set of all possible
secrets, then the information rate ρ of the secret sharing scheme is defined to be

ρ =
log(|S|)
log(|T |) .

240 S. Mehta and V. Saraswat

Definition 19. A secret sharing scheme is ideal if the set of all secrets, S, and
the set of all shares, T , are of same cardinality. That is, a secret sharing scheme
is ideal if its information rate is one.

Definition 20. A secret sharing scheme is perfect if an unauthorized group
of users, C, cannot obtain any information about the secret from their pool of
shares. That is, the probability of C recovering the secret using their pool of shares
is equivalent to the probability of recovering the secret without using their pool of
shares. In other words, for any subset B �∈ Γ , two secrets b and c ∈ S and every
possible share vector 〈sj〉Pj∈B,

Pr[Π(b, r)B = 〈sj〉Pj∈B] = Pr[Π(c, r)B = 〈sj〉Pj∈B]

Definition 21. A secret sharing scheme Σ is said to be linear over Fq if there
exists a vector v = (v0, v1, . . . , vt−1) ∈ Ft

q and a matrix A ∈ Ft×n
q , such that

v × A = (s0, s1, . . . , sn−1) where s0 is the secret and (s1, . . . , sn−1) is the share
vector.

Definition 22. During the secret recovery phase of a secret sharing scheme by
an authorized subset of users Ac, if a user Pi provides a wrong share, ŝi, instead
of the correct one, si, it was assigned by the dealer during the share distribution
phase, then the subset may fail to recover the secret, or worse, recover a wrong
secret. Such a user is called a cheater and detection of occurrence of such an
attack is called cheating detection.

Definition 23. Identification, with negligible error probability ε, of the user(s)
providing wrong inputs while recovering the secret is called cheater identification.

3 Proposed Secret Sharing Scheme

Though the scheme proposed in [11] has a richer access structure than the tradi-
tional (t, n) threshold secret sharing schemes, it only allows an access structure
consisting of two mutually nonmonotonic sets of user groups of sizes, t and t−1,
respectively. We propose a secret sharing scheme which admits a finer access
structure based on μ + 1, 1 ≤ μ ≤ n − t, mutually nonmonotonic sets of user
groups of sizes, t − μ + 1 + i, 1 ≤ i ≤ μ + 1, respectively. The proposed scheme
is based on the properties of NμMDS matrices which allow us to have an access
structure which is richer and independent of the field size.

3.1 Access Structure

The access structure of the proposed secret sharing scheme is definded using the
properties of NμMDS matrices [14] and is a generalization of the one proposed
in [11]. Let

G =
[

G[0] G[1] . . . G[t − 1] G[t] . . . G[n]
]

Generalized Secret Sharing Schemes Using NµMDS Codes 241

be a standard generator matrix of an [n + 1, t, n − t − μ + 2] NμMDS code over
Fq where G[i] ∈ Ft

q, 0 ≤ i ≤ n.
Given a set P of n users, P1, . . . , Pn, we say that the column G[i] corresponds

to the user Pi and we define an access structure Γμ ⊂ 2P consisting of μ + 1
mutually nonmonotonic sets, namely, G0, G1, . . . , Gμ defined as as follows:

1. Gi, i < μ, consists of all (t−μ+i) users whose corresponding columns in G,
along with the first column, form t − μ + i + 1 linearly dependent columns,
and for all A ∈ Gi, there is no B ∈ Gj , j < i, such that B ⊂ A.

2. Gμ consists of all (t) users whose corresponding columns in G are linearly
independent, and for all A ∈ Gμ, there is no B ∈ Gj , j < μ, such that B ⊂ A.

Note that the access structure Γμ as defined above is a generalized access
structure and satisfies the monotonicity property. Thus, the secret sharing
scheme based on Γμ is a generalized secret sharing scheme.

3.2 Share Construction

To compute the n shares of a given secret s0 ∈ Fq, the dealer chooses t−1 random
elements α1, . . . , αt−1 from Fq and computes the codeword (s0, s1, . . . , sn) by
multiplying the generator matrix G by the t-length vector (s0, α1, . . . , αt−1).
That is,

(s0, s1, . . . , sn) = (s0, α1, . . . , αt−1) · G .

The elements si ∈ Fq, 1 ≤ i ≤ n, are the shares of the users P1, . . . , Pn respec-
tively. We say that the first column of G, G[0], corresponds to the secret s0
and the remaining columns G[i], 1 ≤ i ≤ n, correspond to the shares si of the
users Pi.

3.3 Secret Recovery

The secret recovery algorithm SRAμ is similar to the method proposed in [11]
with modifications in the algorithm to allow for recovery of secret by user subsets
of various sizes. Given a set of m users B = {Pj1 , . . . , Pjm

} ∈ Γμ and their
respective shares {sj1 , . . . , sjm

}, SRAμ computes the secret as follows:

1. Construct the matrix

G′ =
[

G[j1] . . . G[jm] G[0]
]

formed by the columns which correspond to the shares of the users and the
column which corresponds to the secret.

2. Row-reduce the matrix G′ to make its first m (or t, whichever is minimum)
rows and columns an identity matrix and denote the last column of this row-
reduced matrix G′ by G[0]′.

3. If m < t, add t − m zeros to construct the pooled codeword

pool = (st0 , st1 , . . . , stm−1 , 0, . . . , 0)

and multiply pool to G[0]′ to obtain the secret.

242 S. Mehta and V. Saraswat

4. Else multiply its sub-codeword (st0 , st1 , . . . , stt−1) to G[0]′ to obtain the
secret.

Here, ti’s correspond to the t (or m) columns forming an identity matrix.

4 Analysis of the Proposed Scheme

Lemma 1. For any (t − μ + 2i + 1) linearly dependent columns of an [n, t, n −
t − μ + 1] NμMDS matrix, G, with rank (t − μ + i) where 0 ≤ i ≤ μ − 1, each of
the remaining n − (t − μ + 2i + 1) columns is linearly independent of them.

Proof. Without loss of generality, suppose the given (t − μ + 2i + 1) linearly
dependent columns with rank (t−μ+1) are G[0], G[1], . . . , G[t − μ + 2i] and let
0 ≤ j ≤ (t − μ + 2i) be such that

G[j] =
t−μ+2i∑

i=0,i �=j

aiG[i], not all ai = 0 .

Now, let G[�] be a column from the remaining n − (t − μ + 2i + 1) columns
of the matrix which is linearly dependent on the given (t − μ + 2i + 1) columns.
That is,

G[�] =
t−μ+2i∑

i=0

biG[i], not all bi = 0 .

Substituting the value of G[j], we get

G[�] =
t−μ+2i∑

i=0,i �=j

(aibj + bi)G[i],

where 0 ≤ j ≤ t − μ + 2i and not all ai = 0 and not all bi = 0. Hence G[�] is a
linear combination of the remaining (t−μ+2i) columns G[i] (0 ≤ i ≤ t−μ+2i,
i �= j).

Since both the columns G[j] and G[�] are a linear combination of remaining
the (t − μ + 2i) columns, it makes the rank of these (t − μ + 2i + 2) columns
less than or equal to (t − μ + i). But, from Property 1 of NμMDS codes, any
(t−μ+2i+2) columns have rank ≥ (t−μ+i+1). Thus, our hypothesis is wrong
and G[�] must be linearly independent of the given (t − μ + 2i + 1) columns.

Proposition 3. There exists a group of (t − μ + 2i + 1) users, 0 ≤ i ≤ μ − 1
which is unauthorized.

Proof. By Lemma 1, for any (t − μ + 2i + 1) linearly dependent columns

{G[j1], G[j2], . . . , G[jt−μ+2i+1]}

Generalized Secret Sharing Schemes Using NµMDS Codes 243

with rank (t−μ+ i), the column G[0] is linearly independent of them. Thus the
secret s0 cannot be recovered using just the shares

{sj1 , sj2 , . . . , sjt−μ+2i+1} .

Hence the users
{Pj1 , . . . , Pjt−μ+2i+1}

form an unauthorized set.

Proposition 4. There exists a group of (t − μ + 2i) users, 0 ≤ i ≤ μ − 1 which
is unauthorized.

Proof. If we take all columns except G[j�], (0 ≤ � ≤ (t − μ + 2i + 1)), from the
previous construction, we will get (t − μ + 2i) linearly dependent columns

{G[j1], . . . , G[j�−1], G[j�+1], . . . , G[j(t−μ+2i+1)]}

with rank (t − μ + i), with the secret’s column G[0] being linearly independent
from these (t − μ + 2i) columns. Thus, the (t − μ + 2i) users

{Pj1 , . . . , Pj�−1 , Pj�+1 , . . . , Pj(t−μ+2i+1)}

form an unauthorized set.

Theorem 1. The proposed secret sharing scheme Σμ is correct.

Proof. Let B ∈ Γμ. Then B is an authorized set and we show that B can correctly
recover the secret. Let sj1 , . . . , sjm

be the shares of the users in B, and s0 be the
secret.

Case 1: B is from Gi, i < μ: Note that, the column G[0] which corresponds to
the secret s0 is linearly dependent on the columns which correspond to the
users in B. Therefore, the algorithm SRAμ can find the coefficients ai’s (by
row-reducing the matrix formed by these columns and the column G[0]) such
that

s0 = a1sj1 + a2sj2 + . . . at−μ+isjt−μ+i

and find the secret s0.
Case 2: B is from Gμ: Since columns which correspond to the users in B are

t linearly independent columns of G, any other column of G, including the
column G[0], must be linearly dependent on them. Thus, the algorithm SRAμ

can find the coefficients ai’s (by row-reducing the matrix formed by these
columns and the column G[0]) such that

s0 = a1sj1 + a2sj2 + . . . atsjt

and find the secret s0.

244 S. Mehta and V. Saraswat

Case 3: B is a superset of a group in Gi or Gμ: If B is a superset of a group
in Gi, the users in B have at least t−μ+ i linearly independent columns in G
with the column G[0] being linearly dependent on them by definition of Gi.
Therefore the algorithm SRAμ, as in Case 1, can find the secret s0. Otherwise,
if B is a superset of a group in Gμ, then we already have t linearly independent
columns in G which correspond to the group in Gμ and the algorithm SRAμ,
as in Case 2, can find the secret s0.

Hence, if B is an authorized set, then Pr[SRAμ(B) = s0] = 1 and hence the secret
sharing scheme Σμ is correct.

Theorem 2. The proposed secret sharing scheme Σμ has perfect privacy.

Proof. Let B be an unauthorized set of m users which try to recover the secret.
Since the secret s0

$← Fq, the probability of randomly guessing the secret is 1/q.
Also, since NμMDS matrices have a high diffusion property, whenever a vector
v ∈ Ft

q is multiplied to its submatrix formed by its m columns, the output
generated is uniformly distributed in Fm

q . Hence, for any share si, 1 ≤ i ≤ n, the
probability of randomly guessing si is 1/q.

Case 1: m ≤ t − μ − 1: Note that, by Property 1 of NμMDS matrices, the
m + 1 ≤ t − μ columns in G which correspond to these m users along with
the column G[0] are linearly independent. Therefore the column G[0] cannot
be obtained as a linear combination of m columns which correspond to these
users, that is, SRAμ(B) �= s0. Thus B will require at least one more correct
share to compute the secret. But the probability of B guessing the correct
secret (or another correct share) is 1/q. Thus the probability of B obtaining
the secret is less than or equal to 1/q.

Case 2: m = t−μ+ i, 0 ≤ i < μ: Since B is unauthorized, it neither belongs in
Gi nor is a superset of a group in Gj , j < i. This implies that the column G[0]
is linearly independent of the columns which correspond to the users in B.
Therefore the column G[0] cannot be obtained as a linear combination of m
columns which correspond to these users, that is, SRAμ(B) �= s0. Thus B will
require at least one more correct share, or replace one of the pooled shares
with a forged share, to compute the secret. But the probability of B guessing
the correct secret (or another correct share) is 1/q. Thus the probability of B
obtaining the secret is less than or equal to 1/q.

Case 3: m = t + i, 0 ≤ i < μ: Since B is unauthorized, it neither belongs in Gμ

nor is a superset of a group in Gj , j ≤ μ. This implies that the columns which
correspond to B are linearly dependent and the column G[0] is independent of
them (rendering any subset of B not a part of Gj). Therefore the column G[0]
cannot be obtained as a linear combination of m columns which correspond
to these users, that is, SRAμ(B) �= s0. Thus B will require at least one more
correct share, or replace one of the pooled shares with a forged share, to
compute the secret. But the probability of B guessing the correct secret (or
another correct share) is 1/q. Thus the probability of B obtaining the secret
is less than or equal to 1/q.

Generalized Secret Sharing Schemes Using NµMDS Codes 245

Note that, on an input of a random set of shares to SRAμ, the probability of
SRAμ generating the correct secret s0 is 1/q. Therefore,

Pr[SRAμ(B) = s0] = Pr[SRAμ(B) = s0]

and hence Σμ has perfect privacy.

Theorem 3. The proposed secret sharing scheme Σμ is ideal.

Proof. Since both the secret and the shares are elements of Fq, the information
rate ρ is

ρ =
log | Fq |
log | Fq | = 1

and hence Σμ is ideal.

Theorem 4. The proposed secret sharing scheme Σμ is a linear secret sharing
scheme.

Proof. By Definition 21 of a linear secret sharing scheme, and by the construction
of the shares as in Subsect. 3.2, it is clear that the proposed secret sharing scheme
is linear.

Proposition 5. The time-complexity for the share construction and the secret
recovery phase of the proposed scheme is O(n3).

Proof. That the complexity of the setup phase is O(n3) is straight forward. We
show that the complexity of the secret reconstruction phase is O(n3).

The Step 2 of Algorithm SRAμ computes the reduced row echelon form of the
matrix G′ constructed in Step 1. Since m ≤ n, G′ is at most a (t × n) matrix.
Since row reduction of a (t × n) matrix can be done in O(t2n) operations and
since t ≤ n, the complexity of this step is O(n3). That is the most complex
step of the code because the remaining steps are linear in the size of the matrix.
Hence, the complexity of the reconstruction phase is O(n3).

4.1 Cheating Detection and Cheating Identification

The proofs in this section Σμ have been adapted from [11]. The following two
lemmas, Lemmas 2 and 3, state standard properties of linear codes which we
will use in this section. We refer the reader to [7] for the proof of Lemma 3.

Lemma 2. Given an [n, t, n − t − μ + 1] NμMDS code and its generator matrix
G, if

(s0, s1, . . . , sn−1) = (α0, α1, . . . , αt−1) · G

and
(ŝ0, ŝ1, . . . , ŝn−1) = (α̂0, α̂1, . . . , α̂t−1) · G

such that
(α0, α1, . . . , αt−1) �= (α̂0, α̂1, . . . , α̂t−1) ,

then
d((s0, s1, . . . , sn−1), (ŝ0, ŝ1, . . . , ŝn−1)) ≥ n − t − μ + 1 .

246 S. Mehta and V. Saraswat

Proof. Since (α0, α1, . . . , αt−1) and (α̂0, α̂1, . . . , α̂t−1) are distinct, they generate
different codewords of the NμMDS code. Hence, they generate different code-
words (s0, s1, . . . , sn−1) and (ŝ0, ŝ1, . . . , ŝn−1) are distinct. Thus, the Hamming
distance between them must be greater than or equal to n − t − μ + 1, the
minimum distance of the code.

Lemma 3. Let C be an [n, t, d] linear code over GF(q). Let Ci be the punctured
code defined by dropping the ith coordinate, 1 ≤ i ≤ n, from the codewords of C.
Then, Ci is an [n − 1, t̃, d̃] code where

– t̃ = t and d̃ = d if C does not have any codeword of weight d with a nonzero
ith coordinate;

– t̃ = t and d̃ = d−1 if d > 1 and C has a codeword of weight d with a nonzero
ith coordinate;

– t̃ = t − 1 and d̃ ≥ d if d = 1, t > 1 and C has a codeword of weight d with a
nonzero ith coordinate.

Theorem 5. The proposed scheme allows cheating detection if the number of
cheaters in a group m users is less than m − t − 1.

Proof. Suppose Pj1 , . . . , Pjm
submit the shares ŝj1 = sj1+δ1, . . . , ŝjm

= sjm
+δm,

δj ∈ GF (q), to the reconstruction algorithm. Then if δi = 0, Pji
is honest, and if

δi �= 0, Pji
is a cheater. Let G′ be the t×m submatrix formed by the m columns

of G indexed by j1, j2, . . . jm. Let

H0 = {(s1, . . . , sm) | (s1, . . . , sm) = (α0, α1, . . . , αt−1) · G′, αi ∈ GF (q)} .

Let s = (sj1 , . . . , sjm
), δ = (δ1, . . . , δm) and ŝ = s + δ = (ŝj1 , . . . , ŝjm

).
By Lemma 3, any two distinct codewords in H0 have a Hamming distance

of at least m − t − 1. Now, if the Hamming weight of δ is less than m − t − 1,
then the Hamming distance between ŝ and s is less than m − t − 1. Thus by
Lemma 2, ŝ ∈ H0 if and only if ŝ = s, that is, when δ = 0. Hence, if the number
of cheating users is less than m − t − 1, cheating by them can be detected.

Theorem 6. The proposed scheme allows cheater identification if the number
of cheaters in a group m users is less than �m−t−1

2 �.
Proof. Let Pji

, 1 ≤ i ≤ m, G′, H0, s, δ and ŝ be as in Theorem 5. Let the
Hamming weight of δ is less than �m−t−1

2 �. Then the Hamming distance d(ŝ, s)
is less than �m−t−1

2 �. For any s̃ �= s ∈ H0, by Lemma 3, d(s, s̃) ≥ m − t − 1.
Hence using the triangle inequality, we get

d(ŝ, s̃) ≥ d(s, s̃) − d(ŝ, s)

≥ (m − t − 1) −
⌊

m − t − 1
2

⌋
=

⌈
m − t − 1

2

⌉
≥

⌊
m − t − 1

2

⌋
= d(ŝ, s) .

Hence, d(ŝ, s) = min{d(ŝ, s̃) | s̃ ∈ H0}. Thus standard error decoding tech-
niques for linear codes can be used to decode ŝ to recover the secret s. Then by
computing δ = ŝ − s, the user Pji

is determined to be a cheater if δi �= 0.
Hence, if the number of cheating users is less than �m−t−1

2 �, the secret can
be reconstructed correctly and all the cheating users can be identified.

Generalized Secret Sharing Schemes Using NµMDS Codes 247

5 Conclusion and Future Work

We have proposed an efficient ideal and perfect generalized secret sharing scheme
based on NμMDS codes with desirable security features of cheating detection
and cheater identification. The use of the NμMDS matrices allows us to have
authorized sets of varying sizes thus allowing the scheme to have a generalized
and richer access structure. The proposed scheme allows an access structure
consisting of μ + 1 mutually nonmonotonic sets of user groups of sizes, t, t −
1, . . . , t − μ, respectively, where 1 ≤ μ < t, where n is the number of users
and the parameter t for the access structure is independent of the field size.
The proposed scheme admits a finer access structure and provides a direction
towards a fully generalized secret sharing scheme. We believe a fully generalized
secret sharing scheme realizing arbitrary access structures should be possible
with almost MDS codes. We are studying the properties of these codes and
working on generating an almost MDS code for any given access structure.

Acknowledgments. The authors acknowledge the support of the Department of
Mathematics, BITS Goa, Indian Institute of Technology, Jammu, and R. C. Bose Cen-
tre for Cryptology and Security, ISI Kolkata.

References

1. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
New York (1990). https://doi.org/10.1007/0-387-34799-2 3

2. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS, pp. 313–317. AFIPS
Press (1979)

3. Blakley, G., Kabatiansky, G.: Generalized ideal secret-sharing schemes and
matroids. Probl. Peredachi Informatsii 33(3), 102–110 (1997)

4. Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–34. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053421

5. Dodunekov, S.: Applications of near MDS codes in cryptography. In: Enhancing
Cryptographic Primitives with Techniques from Error Correcting Codes, NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 23, pp. 81–86. IOS Press (2009)

6. Harn, L., Lin, C.: Detection and identification of cheaters in (t, n) secret sharing
scheme. Des. Codes Cryptograph. 52(1), 15–24 (2009)

7. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge (2010)

8. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–
64 (1989)

9. Massey, J.: Minimal codewords and secret sharing. In: Sixth Joint Swedish-Russian
Workshop on Information Theory, Molle, Sweden, pp. 276–279 (1993)

10. McEliece, R., Sarwate, D.: On sharing secrets and Reed-Solomon codes. Commun.
ACM 24(9), 583–584 (1981)

https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/BFb0053421

248 S. Mehta and V. Saraswat

11. Mehta, S., Saraswat, V., Sen, S.: Secret sharing using near-MDS codes. In: Carlet,
C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS, vol. 11445, pp.
195–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16458-4 12

12. Pieprzyk, J., Zhang, X.-M.: Ideal threshold schemes from MDS codes. In: Lee, P.J.,
Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 253–263. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36552-4 18

13. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
14. Viswanath, G., Rajan, B.S.: Matrix characterization of generalized Hamming

weights. In: IEEE International Symposium on Information Theory, p. 61. IEEE
(2001)

https://doi.org/10.1007/978-3-030-16458-4_12
https://doi.org/10.1007/3-540-36552-4_18

Exploiting Linearity of Modular
Multiplication

Hamdi Murat Yıldırım(B)

Department of Computer Technology and Information Systems,
Bilkent University, 06800 Ankara, Turkey

hmurat@bilkent.edu.tr

Abstract. The XOR⊕ and the addition � operations have been widely
used as building blocks for many cryptographic primitives. These oper-
ations and the multiplication � operation are successively used in the
design of IDEA and the MESH block ciphers. This work presents several
interesting algebraic properties of the multiplication operation. By fix-
ing one operand, we obtain vector valued function gZ on Z

n
2 , associated

with �. In this paper we show that the nonlinearity of gZ remains the
same under some transformations of Z and moreover we give an upper
bound for the nonlinearity of gZ when Z is a power of 2. Under weak-key
assumptions, we furthermore present a list of new linear relations for 1-
round IDEA cipher, some of directly derived and others algorithmically
generated using these relations and known ones. We extend the largest
linear weak key class for IDEA cipher with size 223 to derive such a
class with sizes 224. Under the independent key subblocks (subkeys) and
weak-key assumptions we derive many linear relations for IDEA cipher
using linear relations for 1-round IDEA cipher.

Keywords: IDEA cipher · Nonlinearity · Modular multiplication ·
Boolean functions · Cryptanalysis

1 Introduction

Block ciphers can be used to build other cryptographic primitives such as stream
ciphers, hash functions, message authentication codes and cryptographically
secure pseudorandom number generators. Both block ciphers and stream ciphers
provide confidentiality, which ensures that information is accessible only to those
authorized for access, one of the goals of information security. The addition
modulo 2n (�) and exclusive-OR (XOR) (⊕, bitwise addition on modulo 2)
are operations and have been widely used as building blocks in many cryp-
tosystems: in RC6, Twofish, MARS, FEAL, SAFER as block ciphers and in
ChaCha, Phelix, Snow as stream ciphers. The design of both the International
Data Encryption Algorithm (IDEA) [4], the MESH block ciphers [9], WIDEA [3]
cipher and RIDEA cipher [12] are based on the successive use of these operations
and the multiplication modulo 216 + 1 (�) operation. Extensive survey of such
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 249–269, 2020.
https://doi.org/10.1007/978-3-030-43120-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_19

250 H. M. Yıldırım

block ciphers whose design following the Lai-Massey design paradigm and their
analyses are provided by Nakahara [8]. IDEA was used in Pretty Good Privacy
(PGP), which is a widely used computer program that provides confidentiality,
authentication and data integrity. There are other applications of multiplica-
tion modulo 216 + 1 (�), which are encountered in residue number systems and
Fermat number transform and studies about improving its efficiency [1,6] Some
algebraic properties of the operations �, � and ⊕ have already been exploited
to cryptanalyze the first 2-round of IDEA in [5]. 15 linear relations for 1-round
IDEA cipher, which are derived by considering the linearity of both XOR ⊕ and
the addition � operation and also linearity of the multiplication � for values 0
and 1, are used to derive the linear weak key class for IDEA cipher with size 223

[2]. In this respect, nonlinearity is one of the well-known criterion for evaluating
cryptographic Boolean functions. Note that the nonlinearity of both addition
and multiplication is considered as high because of their polynomial expressions
according to Theorem 3 and 4 in [4]. This is one of the reasons they are used in
IDEA cipher. On the other hand, we consider the widely known and accepted
measurement for nonlinearity based on the Hamming distance presented in [10]
to study the nonlinearity of the multiplication operation. It is proved that this
type of nonlinearity of � is zero for six cases for n ≥ 2 [12].

1.1 Contribution

In this paper we view each operation of IDEA cipher as a vector valued boolean
function from Z

n
2 × Z

n
2 to Z

n
2 . Note that the designer of IDEA cipher just

considers the case n = 16. We fix one operand of each operation to have a vector
valued function from Z

n
2 to Z

n
2 and we use the nonlinearity measurement in [10].

We give an upper bound for its nonlinearity when Z = 2k, 2 ≤ k ≤ �(n − 1)/2�.
This means that the nonlinearity of the operation � is low for small values of
k. In fact, it is expected that the nonlinearity of such building blocks of block
ciphers should be high. In Sect. 3 for the operation �, we construct a family of
transformations that leaves nonlinearity invariant. In Sect. 4, in addition to 15
linear relations holding with probability one for 1-round IDEA cipher given in [2],
we use all cases making nonlinearity of IDEA cipher’s operations zero in order to
derive such extra 39 linear relations. Moreover, we devise an algorithm to derive
201 more such linear relation considering these 54 relations. Section 5 presents
one linear weak key class for IDEA cipher with size 224, which is extended from
a largest linear weak key class for IDEA cipher with size 223 presented in [2] and
a method for 438 linear relations for IDEA cipher considering subkeys chosen
independently and 255 linear relations for 1-round IDEA cipher.

2 Preliminaries

We shall use the following notations throughout the rest of the paper:

• x ⊕ y = x + y (mod 2) for x, y ∈ Z2;
• Z

n
2 = Z2 × . . .×Z2 (n-times) denotes the n-dimensional vector space over Z2;

Exploiting Linearity of Modular Multiplication 251

• When A = (an, an−1, . . . , a1) and X = (xn, xn−1, . . . , x1) ∈ Z
n
2 ,

– A⊕X = (an ⊕ xn, an−1 ⊕ + xn−1, . . . , a1 ⊕ x1).
– the dot product A · X = (

∑n
i=1 aixi) (mod 2) = anxn ⊕ an−1xn−1 ⊕

. . . ⊕ a1x1.
– for λ ∈ Z2, lA ,λ : Z

n
2 → Z2 be the function defined by

lA ,λ(X) = A · X ⊕ λ is called an affine function (respectively linear) if
λ
= 0 (respectively λ = 0).

• A = {lA ,λ | A ∈ Z
n
2 , λ ∈ Z2} denotes the set of all affine functions on Z

n
2 .

• |S| denotes the cardinality of the set S.

It is easy to introduce the addition �, the multiplication � and XOR ⊕ opera-
tions for any positive integer n as functions from Z

n
2 × Z

n
2 → Z

n
2 = Z2 × . . . × Z2

(n-times) as follows:
Let Z2n = {0, 1, . . . , 2n − 1}, Z

∗
2n+1 = {1, 2, . . . , 2n}, and let

v : Z2n → Z
n
2 be a function defined by v(X) = X,

where X = (xn, . . . , x2, x1) is a bit representation of X =
∑n

i=1 xi2i−1 ∈ Z2n

and
d : Z

∗
2n+1 → Z2n be a function defined by d(X) = X if X
= 2n and d(2n) = 0.

With this convention, the addition (mod 2n), �, the multiplication, �,
(mod 2n + 1) and the XOR ⊕ operations produce the three functions f , g
and h : Z

n
2 × Z

n
2 → Z

n
2 :

The addition operation �; f(X,Z) = X � Z = v(X + Z (mod 2n)).
The multiplication operation �; g(X,Z) = X � Z = v(d(d−1(X)d−1(Z)

(mod 2n + 1))), where d−1 is the inverse d.
The XOR operation ⊕; h(X,Z) = X⊕Z = (xn ⊕ zn, xn−1 ⊕ zn−1, . . . ,

x1 ⊕ z1).

Notation: for any Z ∈ Z2n , v(Z) = Z ∈ Z
n
2 , we denote by fZ , gZ and hZ

the following vector valued functions Z
n
2 → Z

n
2 : fZ(X) = f(X,Z), gZ(X) =

g(X,Z) and hZ(X) = h(X,Z).
Let f : Z

n
2 → Z2 be any function and let H(f) denote the Hamming distance

from f to the set of all affine functions A on Z
n
2 . Namely,

H(f) = min{EA ,λ(f) | A ∈ Z
n
2 , λ ∈ Z2}

where EA ,λ(f) = |{X ∈ Z
n
2 | f(X)
= lA ,λ(X) = A · X ⊕ λ}|.

This non-negative integer H(f) attached to f : Z
n
2 → Z2 is called the nonlinear-

ity of f .
It is clear that H(f) = 0 iff f is an affine function. The concept of nonlinearity

of arbitrarily vector function F : Z
n
2 → Z

k
2 was introduced in [10] as follows:

Let F = (fk, . . . , f1), fi : Z
n
2 → Z2, where 1 ≤ i ≤ k.

Definition 1.

N(F) = min
C=(c1,...,ck)∈Zk

2\{0}
{H(C · F = ckfk ⊕ ck−1fk−1 ⊕ . . . ⊕ c1f1)}

Definition 2. Let f be a function from Z
n
2 to Z2. The truth table of f is an

ordered 2n-tuple (f(0), f(1), . . . , f(2n − 1)) ∈ Z
2n

2 , which is denoted by Tf .

252 H. M. Yıldırım

3 Nonlinearity of Multiplication Operation

It is a well-known fact that for every Z ∈ Z2n , the nonlinearity N(fZ) and
N(hZ) of fZ and hZ are equal to 0. However, the nonlinearity N(gZ) of the
vector function gZ is not zero for every Z ∈ Z2n . The following theorem, which
is proved in [12], gives a list of Z values such that N(gZ) is zero.

Theorem 1. For n ≥ 2, the nonlinearity N(gZ) of the vector function gZ(X) =
g(X,Z) is zero for Z = 0, 1, 2, 2n−1, 2n−1 + 1, 2n − 1.

Remark 1. When n ≤ 12, we checked that the values of Z in Theorem 1 were
the only ones for which N(gZ) = 0. It is an open problem whether this is the
case for n > 12.

Using the following proposition, it is enough to calculate N(gZ) for given Z
value to determine one, two or three related values for the vector function of the
multiplication operation having the same nonlinearity.

Proposition 1

(1) For n ∈ Z+ such that gcd(A, 2n + 1) = 1, we have N(gA) = N(gB) when
AB ≡ 1 (mod 2n + 1).

(2) N(gA) = N(gB) when A + B ≡ 0 (mod 2n + 1).
(3) N(g2k) = N(g2s) when k + s = n for k, s ≥ 0.

Proof. For part 1, we have gB(X) = gA−1(X) since AB ≡ 1 (mod 2n + 1).
N(gA) = N((gA)−1) = N(gB) follows from Theorem 1 in [10].

For part 2, the case A = B = 0 is trivial. For other (A,B) pairs, one can use
the obvious relation v−1(gA(X)) + v−1(gB(X)) ≡ 0 (mod 2n + 1) to complete
the proof of this part.

For part 3, for k + s = n, we obtain that 2s(2k + 2(2s)−1) ≡ 2n + 2 ≡ 1
(mod 2n+1). Here (2s)−1 ≡ 2k+2(2s)−1 (mod 2n+1) and we have (2s)−1+2k ≡
0 (mod 2n + 1). By part 2, we get N(g(2s)−1) = N(g2k). From Theorem 1 in
[10], we know that N(g(2s)−1) = N(g2s). This completes the proof. �

Since there is no efficient algorithm to compute N(gZ) in general, we can look
for an upper bound for some values of Z. The following theorem gives a partial
solution to the problem:

Theorem 2. For n ≥ 3 and 2 ≤ k ≤ �(n − 1)/2�, we have N(gZ) ≤ 2k−1 when

(i)Z = 2k and Z = 2n−k.

(ii)Z + 2k ≡ 0 (mod 2n + 1).

(iii)Z2k ≡ 1 (mod 2n + 1).

Proof. Assume that n ≥ 3 and 2 ≤ k ≤ �(n − 1)/2�. For every X ∈ Z
n
2 ,

let g2k(X) = (g2k
(n)(X), . . . , g2k

(2)(X), g2k
(1)(X)), and g2k

(i)(X) be ith

coordinate function of g2k(X).

Exploiting Linearity of Modular Multiplication 253

Since g2(0) = 2n − 1, g2(2n−1) = 0 and g2(2j) is even and g2(2j + 1) is odd
for all j ∈ {1, . . . , 2n−1 −1}, the truth table of g2

(1), Tg2
(1) = S2n , where S2n =

(s2n , . . . , s1) = (1, 0, . . . , 0, 0, 1, . . . , 1) ∈ Z
2n

2 , s2n = 1, s2n−1 = 0, s2n−1+m = 0
and s2n−1−m = 1 for all m ∈ {1, . . . , 2n−1 − 1}. Then the truth table of Tg2k

(1)

becomes (S2n−k+1
, . . . , S2n−k+1

︸ ︷︷ ︸
(2k−1)−times

). Therefore, g
(1)
2 (X) = x1 x2 . . . xn−1 ⊕ xn and

g
(1)

2k
(X) = x1 x2 . . . xn−k ⊕ xn−k+1 according to their truth tables, where xi =

xi ⊕ 1. We know that g
(1)

2k
(X) ⊕ g

(2)

2k
(X) = g

(1)

2k−1(X) since by the proof of
Theorem 1, y2 ⊕ y1 = x1 for g2(X) = Y . The hamming distance between
g
(1)

2k
(X) and xn−k+1 is 2k.
This implies that N(g(1)

2k
(X)) ≤ 2k. By Theorem 12 in [13], 2k ≤

N(g(1)

2k
(X)) since the term x1 . . . xn−k is not properly covered (see Definition

9 in [13]) by any other terms in g
(1)

2k
(X). Then, N(g2k

(1)(X)) = 2k and we get
N(g2k

(1)(X) ⊕ g2k
(2)(X)) = N(g2k−1

(1)(X)) = 2k−1. Hence, N(g2k(X)) ≤
2k−1 by using Definition 1.

The remaining parts of this theorem can be easily proven by Proposition 1.
�

Remark 2. When n ≤ 16, we checked that the upper bound was tight, namely
N(gZ) = 2k−1, for the choices of Z above. It is an open problem whether this is
the case when n > 16.

4 Linear Relations for 1-Round IDEA

4.1 Linear Relations for Operations

For a fixed operation �� ∈ {�,�,⊕} and z ∈ Z2n , we consider mapping
Z

n
2 → Z

n
2 defined by X → X��Z = Y (Z = v(z)).

We have discussed the nonlinearity of this vector valued multiplication func-
tion for some special cases. When �� is the XOR operation ⊕, it is clear that
the dot product is distributive over ⊕, and therefore we get A · (X⊕Z) =
A · X ⊕ A · Z = A · Y, or equivalently

A · X ⊕ A · Y ⊕ A · Z = 0 for every A ∈ Z
n
2 (1)

Similarly for �� = �, it is easy to see that 1 · (X�Z) = 1 ·X ⊕ 1 ·Z = 1 ·Y,
or equivalently

1 · X ⊕ 1 · Y ⊕ 1 · Z = 0 (2)

So for X��Z = Y it makes sense to search relations in the form

A · X ⊕ B · Y ⊕ C · Z ⊕ λ = 0 for some A,B,C ∈ Z
n
2 and λ ∈ Z2. (3)

As it can be seen from the proof of Theorem 1 [12], we get the following linear
relations for every X = v(x) ∈ Z

n
2 such that X�Z = Y:

1 · X ⊕ 1 · Y ⊕ 1 · Z ⊕ 1 = 0 for z ∈ {0, 1} (4)

254 H. M. Yıldırım

3 · X ⊕ 1 · Y ⊕ 1 · Z ⊕ 1 = 0 for z ∈ {2n−1, 2n−1 + 1} (5)

1 · X ⊕ 3 · Y ⊕ 1 · Z = 0 for z ∈ {2, 2n − 1}, (6)

where v(z) = Z.

4.2 A New List of Linear Relations

For 1-round IDEA, 15 linear relations hold with probability one are derived due
to the linearity of operations of IDEA (see equations in 1, 2, 4) in paper [2].
These relations marked by (*) are given in Table 1. Note that for each round of
IDEA, four of the six 16-bit key subblocks Zi’s (i = {1, 4, 5, 6}) are involved by
the multiplication operation �. In order to derive each of these linear relation,
at least one of those key subblocks were restricted to take 0 and 1 (see Example 1
and Table 1). Additional key values, 2, 2n − 1, 2n−1 and 2n−1 + 1, making the
nonlinearity of the vector valued function gz of � zero were discovered in [12].
Similar to the work in paper [2], we take into account 0, 1 or these key values
as round multiplicative keys to derive extra 39 linear relations, which are not
marked by (*) in Table 1. All these 54 linear relations (holding with probability
one) with the related key subblocks restrictions are listed in Table 1. Notice that
each linear relation for 1-round IDEA should be based on linear relations for
the operations used in IDEA cipher. Hence under some round key subblocks
restrictions (weak key assumptions), we can express a linear relation for 1-round
IDEA as:

φ � Z ⊕ ψ � X ⊕ ω � Y ⊕ λ = 0

where Z,X and Y are round key, input and output of 1-round IDEA, respectively
and λ ∈ Z2, φ�Z = φ1 ·Z1 ⊕ . . . ⊕ φ6 ·Z6, ψ �X = ψ1 ·X1 ⊕ . . . ⊕ ψ4 ·X4 and
ω �Y = ω1 ·Y1 ⊕ . . . ⊕ ω4 ·Y4 such that φ = (φ1, . . . ,φ6), ψ = (ψ1, . . . ,ψ4)
and ω = (ω1, . . . ,ω4) for φi, ψi and ωi ∈ Z

16
2 . Here φi,ψi and ωi are masks

for Zi = v(zi),Xi = v(xi) and Yi = v(yi), respectively and xi, yi, zi ∈ Z2n .
For the sake of clarity, let us derive the 24th linear relation in Table 1, one of

15 linear relations found in [2]:

Example 1: Adding first two output of 1-round IDEA, namely Y1 and Y2 (see
Fig. 2 in Appendix A), we have

Y1⊕Y2 = (X1⊕Z1)⊕(X3�Z3)

When Z1 = (0, . . . , 0) or Z1 = (1, . . . , 1), the least significant bit of Y1 =
X1�Z1 is 1 · Y1 = 1 · X1 ⊕ 1 · Z1 ⊕ 1 from the Eq. 4 and the least significant
bit of Y3 = X3�Z3 is 1 · Y3 = 1 · X3 ⊕ 1 · Z3 from the Eq. 2. The addition of
1 · Y1 and 1 · Y2 becomes

1 · Y1 ⊕ 1 · Y2 = 1 · X1 ⊕ 1 · Z1 ⊕ 1 · X3 ⊕ 1 · Z3 ⊕ 1 (7)

When Z1 = (0, . . . , 0) or (1, . . . , 1), one can represent this equation as a linear
relation for 1-round IDEA

(1,0,1,0,0,0) � Z ⊕ (1,0,1,0) � X ⊕ (1,1,0,0) � Y ⊕ 1 = 0

Exploiting Linearity of Modular Multiplication 255

Table 1. List of linear relations for 1-round IDEA given in [2] (indicated by *) and
derived. Here k is a non-negative integer, −1 ≡ 0 mod (216 + 1), −215 ≡ 215 + 1 mod
(216 + 1) and −2 ≡ 216−1 mod (216 + 1).

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

1 * (0, 0,0, 1, 0,1) (0, 0,0, 1) (0,0, 1,0) 0 – – – ∓1 – ∓1 66

2 (0,0, 0, 1,0, 1) (0, 0,0, 3) (0,0, 1,0) 0 – – – ∓215 – ∓1 66

3 * (0, 0,1, 0, 1,1) (0, 0, 1, 0) (1,0, 1,1) 0 – – – – ∓1 ∓1 66

4 (0,0, 2, 0,1, 1) (0, 0,3, 0) (3,0, 1,1) 1 ∓2 – 2k – ∓215 ∓2 48

5 (0,0, 2, 1,1, 1) (0, 2,3, 1) (3,0, 3,3) 1 ∓2 2k 2k ∓2 ∓215 ∓2 31

6 * (0, 0,1, 1, 1,0) (0, 0,1, 1) (1,0, 0,1) 0 – – – ∓1 ∓1 – 66

7 (0,0, 1, 1,1, 0) (0, 0,1, 3) (1,0, 0,1) 0 – – – ∓215 ∓1 – 66

8 * (1, 0,0, 0, 0,1) (0, 1,0, 0) (0,0, 0,1) 1 – – – – – ∓1 82

9 * (1, 0,0, 1, 0,0) (0, 1,0, 1) (0,0, 1,1) 1 – – – ∓1 – – 81

10 (0,2, 0, 1,0, 0) (0, 3,0, 1) (0,0, 3,3) 0 – 2k – ∓2 – – 79

11 (0,1, 0, 1,0, 0) (0, 1,0, 3) (0,0, 3,3) 1 – – – ∓215 – – 81

12 * (0, 1,1, 0, 1,0) (0, 1,1, 0) (1,0, 1,0) 1 – – – – ∓1 – 81

13 * (0, 1,1, 1, 1,1) (0, 1,1, 1) (1,0, 0,0) 1 – – – ∓1 ∓1 ∓1 51

14 (0,1, 1, 1,1, 1) (0, 1,1, 3) (1,0, 0,0) 1 – – – ∓215 ∓1 ∓1 51

15 (0,1, 2, 1,1, 1) (0, 1,3, 1) (3,0, 0,0) 0 – ∓2 2k ∓1 ∓215 ∓2 33

16 * (1, 0,0, 0, 0,1) (1, 0,0, 0) (0,1, 1,1) 1 ∓1 – – – ∓1 ∓1 51

17 (1,0, 0, 0,0, 1) (1, 0,0, 0) (0,3, 1,1) 1 ∓2 – 2k – ∓215 ∓1 49

18 * (1, 0,0, 1, 1,0) (1, 0,0, 1) (0,1, 0,1) 1 ∓1 – – ∓1 ∓1 – 51

19 (1,0, 0, 1,1, 0) (1, 0,0, 3) (0,1, 0,1) 1 ∓1 – – ∓215 ∓1 – 51

20 (1,0, 0, 1,1, 0) (3, 0,0, 1) (0,1, 0,1) 1 ∓215 – – ∓1 ∓1 – 51

21 (1,0, 0, 1,1, 0) (3, 0,0, 3) (0,1, 0,1) 1 ∓215 – – ∓215 ∓1 – 51

22 (1,0, 2, 1,1, 0) (1, 0,2, 1) (0,1, 0,1) 0 ∓2 – 2k ∓1 ∓215 – 49

23 (1,0, 2, 1,1, 0) (1, 0,2, 3) (0,1, 0,1) 0 ∓2 – 2k ∓215 ∓215 – 49

24 * (1, 0,1, 0, 0,0) (1, 0,1, 0) (1,1, 0,0) 1 ∓1 – – – – – 81

25 (1,0, 2, 0,0, 0) (1, 0,3, 0) (3,3, 0,0) 0 ∓2 – 2k – – – 79

26 (1,0, 1, 0,0, 0) (3, 0,1, 0) (1,1, 0,0) 1 ∓215 – – – – – 81

27 * (1, 0,1, 1, 0,1) (1, 0,1, 1) (1,1, 1,0) 1 ∓1 – – ∓1 – ∓1 51

28 (1,0, 1, 1,0, 1) (1, 0,1, 3) (1,1, 1,0) 1 ∓1 – – ∓215 – ∓1 51

29 (1,0, 2, 1,0, 1) (1, 0,3, 1) (3,3, 3,0) 0 ∓2 – 2k ∓1 – ∓1 49

30 (1,0, 2, 1,0, 1) (1, 0,3, 3) (3,3, 3,0) 0 ∓2 – 2k ∓215 – ∓1 49

31 (1,0, 1, 1,0, 1) (3, 0,1, 1) (1,1, 1,0) 1 ∓215 – – ∓1 – ∓1 51

32 (1,0, 1, 1,0, 1) (3, 0,1, 3) (1,1, 1,0) 1 ∓215 – – ∓215 – ∓1 51

33 * (1, 1,0, 0, 1,0) (1, 1,0, 0) (0,1, 1,0) 0 ∓1 – – – ∓1 – 66

34 (1,1, 0, 0,1, 0) (3, 1,0, 0) (0,1, 1,0) 0 ∓215 – – – ∓1 – 66

35 (1,1, 2, 0,1, 0) (1, 1,2, 0) (0,1, 1,0) 1 ∓2 – 2k – ∓215 – 64

36 * (1, 1,0, 1, 1,1) (1, 1,0, 1) (0,1, 0,0) 0 ∓1 – – ∓1 ∓1 ∓1 36

37 (1,1, 2, 1,1, 1) (1, 1,2, 1) (0,1, 0,0) 1 ∓2 – 2k ∓1 ∓215 ∓1 34

38 (1,1, 2, 1,1, 1) (1, 1,2, 3) (0,1, 0,0) 1 ∓2 – 2k ∓215 ∓215 ∓1 34

39 (1,1, 0, 1,1, 1) (3, 1,0, 1) (0,1, 0,0) 0 ∓215 – – ∓1 ∓1 ∓1 36

(continued)

256 H. M. Yıldırım

Table 1. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

40 (1, 1,0, 1,1, 1) (3, 1, 0,3) (0, 1,0, 0) 0 ∓215 – – ∓215 ∓1 ∓1 36

41 (1, 1,0, 1,1, 1) (1, 1, 0,1) (0, 3,0, 0) 0 ∓2 – – ∓1 ∓215 ∓2 34

42 (1, 1,0, 1,1, 1) (1, 1, 0,3) (0, 3,0, 0) 0 ∓2 – – ∓215 ∓215 ∓2 34

43 * (1,1, 1,0, 0, 1) (1, 1, 1,0) (1, 1,0, 1) 0 ∓1 – – – – ∓1 66

44 (1, 1,1, 0,0, 1) (3, 1, 1,0) (1, 1,0, 1) 0 ∓215 – – – – ∓1 66

45 (1, 1,2, 0,0, 1) (1, 1, 3,0) (3, 3,0, 1) 1 ∓2 – 2k – – ∓1 64

46 * (1,1, 1,1, 0, 0) (1, 1, 1,1) (1, 1,1, 1) 0 ∓1 – – ∓1 – – 66

47 (1, 1,1, 1,0, 0) (1, 1, 1,3) (1, 1,1, 1) 0 ∓1 – – ∓215 – – 66

48 (1, 1,1, 1,0, 0) (3, 1, 1,1) (1, 1,1, 1) 0 ∓215 – – ∓1 – – 66

49 (1, 1,1, 1,0, 0) (3, 1, 1,3) (1, 1,1, 1) 0 ∓215 – – ∓215 – – 66

50 (1, 1,2, 1,0, 0) (1, 1, 3,1) (3, 3,1, 1) 1 ∓2 – 2k ∓1 – – 64

51 (1, 1,2, 1,0, 0) (1, 1, 3,3) (3, 3,1, 1) 1 ∓2 – 2k ∓215 – – 64

52 (1, 2,1, 1,0, 0) (1, 3, 1,1) (1, 1,3, 3) 1 ∓1 2k – ∓2 – – 64

53 (1, 2,1, 1,0, 0) (3, 3, 1,1) (1, 1,3, 3) 1 ∓215 2k – ∓2 – – 64

54 (1, 2,2, 1,0, 0) (1, 3, 3,1) (3, 3,3, 3) 1 ∓2 2k 2k ∓2 – – 62

Example 2: From the Table 1, when Zj = v(zj), z1 = ∓2, z4 = ∓215, z5 =
∓215 and z6 = ∓2 for φ = (1,1,0,1,1,1), ψ = (1,1,0,3), ω = (0,3,0,0)
and λ = 0 we have

1 · Z1 ⊕ 1 · Z2 ⊕ 1 · Z4 ⊕ 1 · Z5 ⊕ 1 · Z6 ⊕ 1 · X1 ⊕ 1 · X2 ⊕ 3 · X4 = 3 · Y2

This relation, one of new 39 linear relations derived, is the 42th linear relation
in Table 1.

4.3 New Linear Relations Algorithmically Generated

Let us consider the 35th and the 45th linear relations for 1-round IDEA in Table 1
to obtain a new relation which is not listed in Table 1.

For the 35th linear relation (1,1,2,0) → (0,1,1,0) with key subblocks
restrictions z1 = ∓2, z3 = 2k and z5 = ∓215 and the 45th linear relation
(1,1,3,0) → (3,3,0,1) with restrictions z1 = ∓2, z3 = 2k and z6 = ∓1,
we have two corresponding Eqs. (8) and (9) respectively

1·Z1 ⊕ 1·Z2 ⊕ 2·Z3 ⊕ 1·Z5 ⊕ 1·X1 ⊕ 1·X2 ⊕ 2·X3 ⊕ 1·Y2 ⊕ 1·Y3 ⊕ 1 = 0 (8)

1·Z1 ⊕1·Z2 ⊕2·Z3 ⊕1·Z6 ⊕1·X1 ⊕1·X2 ⊕3·X3 ⊕3·Y1 ⊕3·Y2 ⊕1·Y4 ⊕1 = 0
(9)

Equations (8) and (9) key subblocks restrictions do not give any conflicts and
they can be combined (by adding them in mod 2) to obtain the following linear
relation candidate:

1 · Z5 ⊕ 1 · Z6 ⊕ 1 · X3 ⊕ 3 · Y1 ⊕ 2 · Y2 ⊕ 1 · Y3 ⊕ 1 · Y4 ⊕ 1 = 0 (10)

Exploiting Linearity of Modular Multiplication 257

We have used many inputs for 1-round IDEA to check that linear relation in
(10) holds with probability one under the key subblocks restrictions z1 = ∓2,
z3 = 2k, z5 = ∓215 and z6 = ∓1. In fact, we have observed that only key
restrictions z5 = ∓215 and z6 = ∓1 are enough to make this linear relation
hold with probability one according to our experiments. Hence we have devised
a new algorithm to find new linear relations for 1-round IDEA based on a set of
54 linear relations for 1-round IDEA in Table 1. Considering these known linear
relations, we found additional 201 new linear relations for 1-round IDEA (see
Table 5, Appendix B) using the following algorithm:

Algorithm 1. An algorithm for finding new linear relations for 1-round IDEA
based on existing linear ones:

Let S be the set of linear relations with their key subblocks restrictions.
Step 1 All pair of S whose key subblocks values coincided are chosen.
Step 2 Any chosen pairs are also combined (directly added in mod 2).
Step 3 Each linear relation candidates in Step 2 is tested using 10 million test
vectors to check whether it is a linear relation or not.
Step 4 The ones (i.e. candidate linear relations) passing Step 3 added to S.
Step 5 Previous steps are repeated until there is no increase in the number of
the elements of the set S.
Step 6 Key restrictions of each linear relation in S are checked to remove unnec-
essary restrictions using 50000 test vectors.

We note that the last step has been added as a result of comments provided
by Nakahara [7]. All 54 linear relations in Table 1 can be derived by hand cal-
culation considering all combinations of subblock outputs of 1-round IDEA, Yi

and subblock keys of 1-round IDEA, Zi which give us linear relations for the
operations used in IDEA cipher. By using Algorithm 1, it is possible to obtain
linear relations that can not be derived in this way.

5 Linear Weak Key Classes for IDEA

As indicated in Table 2, three linear relations, namely the 24th, the 33th and
the 12th relations in Table 1 were successively used to find a linear relation
for 8,5-round IDEA holding with probability one [2]. Because of key subblocks
restrictions done in each round, this linear relation is satisfied for all 64-bit
plaintexts provided that ranges of zero key bits’ indices of a 128-bit master key
bits are between 0–25, 29–71, and 75–110. Such key is a member of a class of
weak keys with size 223 since each of the remaining 23 bits of the master key
can take 0 or 1.

Note that this has been the largest known class of weak keys based on a
linear relation for 8,5-round IDEA. Hence this linear relation can be regarded
as the best linear relation for 8,5-round IDEA. Based on this linear relation,
we have found a new class of weak keys with cardinality 224. For this con-
struction, we replace the first round linear relation (1,0,1,0) → (1,1,0,0)
with ({1,3},0,1,0) → (1,1,0,0) (see Table 3). For the former and latter rela-
tions, Z(1)

1 is chosen 0 = (0, . . . , 0) or 1 = (1, . . . , 1) and Z(1)
1 is restricted

258 H. M. Yıldırım

Table 2. Each round linear relation and ranges for indices of zero key bits of IDEA
master key are considered to derive the linear relation (1,0,1,0) → (0,1,1,0) for
8,5-round IDEA satisfied by a linear weak key class with cardinality 223.

Round i Linear relation ψ → ω Z
(i)
1 Z

(i)
5

1 (1,0,1,0) → (1,1,0,0) 0–14 –

2 (1,1,0,0) → (0,1,1,0) 96–110 57–71

3 (0,1,1,0) → (1,0,1,0) – 50–64

4 (1,0,1,0) → (1,1,0,0) 82–96 –

5 (1,1,0,0) → (0,1,1,0) 75–89 11–25

6 (0,1,1,0) → (1,0,1,0) – 4–18

7 (1,0,1,0) → (1,1,0,0) 36–50 –

8 (1,1,0,0) → (0,1,1,0) 29–44 93–107

8,5 (0,1,1,0) → (0,1,1,0) – –

Table 3. Each round linear relation and ranges for indices of zero key bits of IDEA
master key are considered to derive the linear relation ({1,3},0,1,0) → (0,1,1,0) for
8,5-round IDEA satisfied by a linear weak key class with cardinality 224.

Round i Linear relation ψ → ω Z
(i)
1 Z

(i)
5

1 ({1,3},0,1,0) → (1,1,0,0) 1–15 –

2 (1,1,0,0) → (0,1,1,0) 96–110 57–71

3 (0,1,1,0) → (1,0,1,0) – 50–64

4 (1,0,1,0) → (1,1,0,0) 82–96 –

5 (1,1,0,0) → (0,1,1,0) 75–89 11–25

6 (0,1,1,0) → (1,0,1,0) – 4–18

7 (1,0,1,0) → (1,1,0,0) 36–50 –

8 (1,1,0,0) → (0,1,1,0) 29–44 93–107

8,5 (0,1,1,0) → (0,1,1,0) – –

to 0 or 215, respectively. Note that ({1,3},0,1,0) = (1,0,1,0) (respectively
({1,3},0,1,0) = (3,0,1,0)) if Z(1)

1 is equal to 0 (respectively Z(1)
1 = 215).

Therefore, zero key bits’ indices of a 128-bit key are between 1–25, 29–71, and 75–
110. Then linear relation ({1,3},0,1,0) → (0,1,1,0) for the 8,5-round IDEA
holds with probability one (Table 3) and there are 224 such keys. We haven’t dis-
covered other linear relations in Tables 1 and 5 similar to the best linear relation
giving a large class of weak keys because of the following reasons:

– If we compare Table 1 with Table 5 in Appendix B, then it can be seen that for
most cases, linear relations in Table 1 derived in [2] have less key restrictions
than others.

– In Table 1, each of linear relations numbered with 8, 9, 12, 24, 26 has one key
subblock restriction and each of linear relations numbered with 1, 2, 3, 6, 7, 10,

Exploiting Linearity of Modular Multiplication 259

25, 34, 43, 44, 46, 47, 48, 49 has two key subblocks restrictions. There aren’t
any linear relations with one key subblock restriction in Table 5, but there
are linear relations numbered with 98, 125, 159, 185 and 216 having two key
subblocks restrictions in Table 5. In order to find a linear relation for 8,5-round
IDEA providing a large class of weak keys, it is better to use those relations
(with less key subblocks restrictions) listed above. However, it is not possible
to derive such linear relation for 8,5-round IDEA using these relations and
linear relations with key subblocks ∓2 or ∓215 restrictions other than those
derived in [2] in both Tables 1 and 5. Because
(i) we faced with key subblocks restrictions giving conflicts, that is, some

bits of the master 128-bit of IDEA are both 0 and 1 due to key subblocks
restrictions of two linear relations considered for two different rounds,
especially when a key subblock of one linear relation is equal to 0 or 1
and a key subblock of other one is chosen as ∓2 or ∓215;

(ii) we haven’t found successive linear relations for many linear relations with
key subblock restriction like ∓2 or ∓215 while deriving multi round lin-
ear relation. For example, for the 75th linear relation in Table 5, namely
(3,3,0,1) → (2,3,2,2) there aren’t any linear relations whose input
mask is equal to (2,3,2,2) in both Tables 1 and 5.

Because these limitations to derive new linear relations the block cipher,
we assume that key subblocks (subkeys) are independent. Then under weak-
key assumptions we consider each linear relation for 1-round IDEA cipher from
Tables 1 and 5 as two vertices connected by a single edge having a direction. In
this manner we have a directed graph and using suitable functions of Digraph
module from SageMath [11] we find many paths with length 8 and then con-
sider last 0.5 round’s relations in order to get 438 linear relations for 8.5-
round IDEA cipher. In Table 6 (Appendix B), 50 of them with less number
of key bits restriction for the master key, whose size is 832-bits (considering
all 52 16-bit key subblocks) are listed. Note that second relation in this table
(1,1,0,0) −→ (3,1,0,0) is a linear relation for 8.5-round IDEA cipher and
associated with a class of weak keys with the cardinality 2586 whenever key sub-
blocks (subkeys) are chosen independently. Note that the key space with size
2832 is extremely larger than this class.

6 Conclusion

In this paper we give several new properties on the nonlinearity of the multi-
plication operation �. Using its invariance properties, it is possible to calculate
the nonlinearity just for one value of the associated vector function to learn one,
two or three different values giving the same the nonlinearity. Furthermore, we
give an upper bound for its nonlinearity when values are power of two. It is low
for small powers. In fact, it is expected that the nonlinearity of such building
blocks of block ciphers should be high. We devise an algorithm to find a new
set of linear relations for 1-round IDEA using a set of linear relations directly
derived and a set of known linear relations. We present one linear weak key class

260 H. M. Yıldırım

slightly bigger than one known in the literature. Assuming that all key subblocks
are chosen independently, we generate a new set of linear relations for full IDEA
cipher using linear relations for 1-round IDEA. All these findings extend the
related work done by Daemen et al. and they are meaningful to understand how
properties of building components of a cipher are related to its security.

A Appendix: IDEA Block Cipher

The graph of the encryption of IDEA can be seen in Fig. 1. The key scheduling
algorithm and the list of all 16-bit key subblocks (Table 4) are given in Appendix.

A.1 Key Schedule and Decryption Algorithm

For a given 128-bit key, 52 16-bit key subblocks are generated for the encryption.
For the construction of these subblocks, the first step is to partition given 128-bit
key into 8 pieces and assign them as the first 8 key subblocks of the 52 subblocks:
Z(1)

1 ,Z(1)
2 , ..,Z(1)

6 ,Z(2)
1 ,Z(2)

2 , ..,Z(2)
6 , ..,Z(8)

1 ,Z(8)
2 , ..,Z(8)

6 ,Z(9)
1 ,Z(9)

2 ,Z(9)
3 ,Z(9)

4 .
Then the key under the consideration is cyclically shifted to the left by 25

positions. The resulting key block is again partitioned into eight subblocks that
are assigned to the next eight subblock keys. This process is repeated until all
52 subblock keys are derived.

2−8 rounds

Transformation

Output

1 round

X(0)
1 X(0)

2 X(0)
4X(0)

3

Z(1)
1 Z(1)

2 Z(1)
3 Z(1)

4

Z(1)
5

Z(1)
6

Z(9)
1 Z(9)

2 Z(9)
3 Z(9)

4

Y1 Y2 Y3 Y4

Fig. 1. Computational graph for the encryption process of the IDEA cipher

Exploiting Linearity of Modular Multiplication 261

Table 4. 128-bit IDEA master key bits indices starts from 0 and ends with 127 (indexed
left to right). Range of indices of this key used for each of 52 subblock keys generated
by the key scheduling algorithm

r Z1 Z2 Z3 Z4 Z5 Z6

1 0–15 16–31 32–47 48–63 64–79 80–95

2 96–111 112–127 25–40 41–56 57–72 73–88

3 89–104 105–120 121–8 9–24 50–65 66–81

4 82–97 98–113 114–1 2–17 18–33 34–49

5 75–90 91–106 107–122 123–10 11–26 27–42

6 43–58 59–74 100–115 116–3 4–19 20–35

7 36–51 52–67 68–83 84–99 125–12 13–28

8 29–44 45–60 61–76 77–92 93–108 109–124

9 22–37 38–53 54–69 70–85 – –

A.2 The MA-Structure and 1-Round IDEA Cipher

MA−Structure

X1 X2 X4X3

Z1 Z2 Z3 Z4

Z5

Z6

Y1 Y2 Y3 Y4

P Q

T U

1−round IDEA

Fig. 2. Computational graph for the encryption process of 1-round IDEA cipher

Let us denote round key, input and output for the 1-round IDEA block cipher (see
Fig. 2) as Z = (Z1, . . . ,Z6), X = (X1,X2,X3,X4) and Y = (Y1,Y2,Y3,Y4),
where Zi, Xi, Yi ∈ Z

16
2 , respectively. Then we have:

Y1 = (X1 � Z1) ⊕ T. Y2 = (X3 � Z3) ⊕ T. (11)
Y3 = (X2 � Z2) ⊕ U. Y4 = (X4 � Z4) ⊕ U.

262 H. M. Yıldırım

We have the following equations for two input subblocks of the MA-structure P
and Q and two output subblocks of the MA-structure U and T (see Fig. 2):

P = (X1 � Z1) ⊕ (X3 � Z3) and Q = (X2 � Z2) ⊕ (X4 � Z4). (12)
U = (P � Z5) � T and T = [(P � Z5) � Q] � Z6. (13)

It is easy to see that Y1 ⊕ Y2 = P and Y3 ⊕ Y4 = Q.

B Appendix: New Linear Relations for 1-Round IDEA
and 8.5-Round IDEA

Table 5. List of new linear relations for 1-round IDEA, based on linear relations of
Table 1, generated by Algorithm 1. Here k is a non-negative integer, −1 ≡ 0 mod
(216 + 1), −215 ≡ 215 + 1 mod (216 + 1) and −2 ≡ 216 − 1 mod (216 + 1).

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

55 (1,2,2,1,0,0) (1,2,2,1) (3,3,3,3) 0 ∓2 2k + 1 2k + 1 ∓2 – – 62

56 (0,1,0,1,1,1) (0,1,1,1) (3,2,0,0) 1 – – 2k ∓1 ∓215 ∓1 50

57 (1,1,2,1,1,1) (1,1,3,1) (0,3,0,0) 1 ∓1 – 2k + 1 ∓1 ∓1 ∓2 34

58 (0,1,3,1,1,1) (0,1,3,1) (1,2,0,0) 0 – – 2k ∓1 ∓1 ∓2 49

59 (1,1,1,1,1,1) (3,1,0,3) (2,3,0,0) 0 ∓215 – 2k ∓215 ∓215 ∓1 35

60 (1,3,0,1,0,1) (1,3,1,1) (3,1,3,2) 0 ∓2 2k + 1 2k + 1 ∓2 – ∓2 46

61 (0,0,0,0,1,1) (0,0,1,0) (3,2,1,1) 1 – – 2k + 1 – ∓215 ∓1 65

62 (1,1,1,1,1,1) (1,1,0,1) (2,1,0,0) 1 ∓2 – 2k + 1 ∓1 ∓1 ∓2 33

63 (1,0,3,0,1,1) (3,0,2,0) (2,1,1,1) 0 ∓215 – 2k – ∓215 ∓2 49

64 (0,1,2,1,1,1) (0,1,2,1) (3,0,0,0) 1 – – 2k + 1 ∓1 ∓215 ∓2 49

65 (1,2,3,1,1,1) (3,2,3,1) (2,1,2,2) 0 ∓215 2k + 1 2k + 1 ∓2 ∓215 ∓2 32

66 (1,2,2,1,0,0) (1,3,2,1) (3,3,3,3) 1 ∓2 2k 2k + 1 ∓2 – – 62

67 (1,2,3,1,1,1) (1,2,2,1) (2,3,2,2) 1 ∓2 2k + 1 2k ∓2 ∓1 ∓1 32

68 (1,2,3,1,1,1) (1,3,2,1) (2,3,2,2) 0 ∓2 2k 2k ∓2 ∓1 ∓1 32

69 (0,0,2,1,0,1) (0,0,3,1) (0,2,1,0) 1 – – 2k + 1 ∓1 – ∓2 64

70 (0,0,0,1,1,0) (0,0,1,1) (3,2,0,1) 1 – – 2k + 1 ∓1 ∓215 – 65

71 (1,0,3,1,0,1) (3,0,3,3) (1,3,1,0) 0 ∓215 – 2k ∓215 – ∓2 49

72 (1,0,3,1,1,0) (1,0,2,3) (2,3,0,1) 0 ∓2 – 2k ∓215 ∓1 – 49

73 (1,1,3,1,1,1) (1,1,3,1) (2,1,0,0) 0 ∓1 – 2k + 1 ∓1 ∓215 ∓2 34

74 (1,2,1,1,1,1) (3,2,0,1) (2,3,2,2) 1 ∓215 2k + 1 2k + 1 ∓2 ∓215 ∓1 33

75 (1,2,1,1,1,1) (3,3,0,1) (2,3,2,2) 0 ∓215 2k 2k + 1 ∓2 ∓215 ∓1 33

76 (1,2,3,1,1,1) (3,3,3,1) (2,1,2,2) 1 ∓215 2k 2k + 1 ∓2 ∓215 ∓2 32

77 (1,0,1,1,1,0) (3,0,0,3) (2,3,0,1) 0 ∓215 – 2k + 1 ∓215 ∓215 – 50

78 (0,1,2,1,1,1) (0,1,3,3) (3,0,0,0) 0 – – 2k ∓215 ∓215 ∓2 49
(continued)

Exploiting Linearity of Modular Multiplication 263

Table 5. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

79 (1,1,2,1,1,1) (1,1,2,3) (0,3,0,0) 1 ∓1 – 2k ∓215 ∓1 ∓2 34

80 (1,1,1,1,1,1) (1,1,0,1) (2,3,0,0) 1 ∓1 – 2k + 1 ∓1 ∓215 ∓1 35

81 (1,3,1,1,1,0) (1,3,0,1) (2,3,2,3) 1 ∓1 2k + 1 2k ∓2 ∓215 – 48

82 (1,3,3,1,1,0) (1,2,3,1) (2,3,2,3) 0 ∓2 2k 2k + 1 ∓2 ∓1 – 47

83 (1,0,1,0,1,1) (1,0,0,0) (2,1,1,1) 1 ∓2 – 2k – ∓1 ∓2 48

84 (1,1,3,0,1,0) (1,1,2,0) (2,3,1,0) 1 ∓2 – 2k – ∓1 – 64

85 (1,2,2,1,1,1) (1,3,3,1) (0,1,2,2) 0 ∓2 2k 2k + 1 ∓2 ∓215 ∓1 32

86 (1,0,0,1,0,1) (1,0,1,1) (3,1,1,0) 0 ∓2 – 2k + 1 ∓1 – ∓2 48

87 (0,0,2,1,0,1) (0,0,2,3) (0,2,1,0) 1 – – 2k ∓215 – ∓2 64

88 (1,1,2,1,1,1) (3,1,3,1) (0,3,0,0) 1 ∓215 – 2k + 1 ∓1 ∓1 ∓2 34

89 (1,3,0,1,1,0) (1,3,0,1) (0,1,2,3) 1 ∓1 2k + 1 – ∓2 ∓1 – 49

90 (1,3,3,1,0,1) (1,2,2,1) (1,3,3,2) 1 ∓1 2k 2k + 1 ∓2 – ∓2 47

91 (1,1,1,0,1,0) (3,1,0,0) (2,3,1,0) 1 ∓215 – 2k + 1 – ∓215 – 65

92 (1,1,2,1,0,0) (1,1,2,1) (3,3,1,1) 0 ∓2 – 2k + 1 ∓1 – – 64

93 (1,2,3,1,1,1) (1,2,2,1) (2,1,2,2) 1 ∓1 2k + 1 2k ∓2 ∓215 ∓2 32

94 (0,1,3,1,1,1) (0,1,2,3) (1,2,0,0) 0 – – 2k + 1 ∓215 ∓1 ∓2 49

95 (1,2,3,1,1,1) (1,3,2,1) (2,1,2,2) 0 ∓1 2k 2k ∓2 ∓215 ∓2 32

96 (1,1,3,1,1,1) (1,1,3,3) (2,3,0,0) 0 ∓2 – 2k + 1 ∓215 ∓1 ∓1 34

97 (1,0,1,0,1,1) (1,0,0,0) (2,3,1,1) 1 ∓1 – 2k – ∓215 ∓1 50

98 (0,2,0,1,0,0) (0,2,0,1) (0,0,3,3) 1 – 2k + 1 – ∓2 – – 79

99 (0,3,1,1,1,0) (0,2,1,1) (1,0,2,3) 1 – 2k – ∓2 ∓1 – 64

100 (1,1,3,1,1,1) (3,1,3,1) (2,1,0,0) 0 ∓215 – 2k + 1 ∓1 ∓215 ∓2 34

101 (1,3,2,1,0,1) (1,3,3,1) (3,3,3,2) 0 ∓2 2k + 1 2k ∓2 – ∓1 47

102 (1,1,3,1,1,1) (1,1,2,1) (2,3,0,0) 1 ∓2 – 2k ∓1 ∓1 ∓1 34

103 (1,3,1,1,0,1) (1,2,1,1) (1,1,3,2) 0 ∓1 2k – ∓2 – ∓1 49

104 (1,1,2,0,1,0) (1,1,3,0) (0,1,1,0) 1 ∓2 – 2k + 1 – ∓215 – 64

105 (1,1,3,0,0,1) (1,1,2,0) (1,3,0,1) 1 ∓1 – 2k + 1 – – ∓2 64

106 (1,0,1,1,1,0) (1,0,0,1) (2,3,0,1) 1 ∓1 – 2k ∓1 ∓215 – 50

107 (1,1,2,1,1,1) (3,1,2,3) (0,3,0,0) 1 ∓215 – 2k ∓215 ∓1 ∓2 34

108 (1,3,2,1,0,1) (1,2,2,1) (3,3,3,2) 0 ∓2 2k 2k + 1 ∓2 – ∓1 47

109 (1,1,1,1,1,1) (3,1,0,1) (2,3,0,0) 1 ∓215 – 2k + 1 ∓1 ∓215 ∓1 35

110 (1,2,1,1,0,0) (3,2,1,1) (1,1,3,3) 0 ∓215 2k + 1 – ∓2 – – 64

111 (1,3,1,1,1,0) (3,3,0,1) (2,3,2,3) 1 ∓215 2k + 1 2k ∓2 ∓215 – 48

112 (1,3,0,1,0,1) (1,2,1,1) (3,1,3,2) 0 ∓2 2k 2k ∓2 – ∓2 46

113 (1,3,1,1,1,0) (1,2,0,1) (2,3,2,3) 1 ∓1 2k 2k + 1 ∓2 ∓215 – 48

114 (1,2,2,1,1,1) (1,2,3,1) (0,1,2,2) 1 ∓2 2k + 1 2k + 1 ∓2 ∓215 ∓1 32

115 (1,0,2,1,1,0) (1,0,3,3) (0,1,0,1) 0 ∓2 – 2k + 1 ∓215 ∓215 – 49

116 (1,3,3,1,0,1) (3,2,2,1) (1,3,3,2) 1 ∓215 2k 2k + 1 ∓2 – ∓2 47

117 (0,2,0,1,1,1) (0,3,1,1) (3,2,2,2) 1 – 2k 2k + 1 ∓2 ∓215 ∓1 48
(continued)

264 H. M. Yıldırım

Table 5. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

118 (0,3,0,1,0,1) (0,2,0,1) (0,0,3,2) 1 – 2k – ∓2 – ∓1 64

119 (1,1,2,0,0,1) (1,1,2,0) (3,3,0,1) 0 ∓2 – 2k + 1 – – ∓1 64

120 (0,3,0,1,1,0) (0,2,1,1) (3,2,2,3) 1 – 2k 2k ∓2 ∓215 – 63

121 (1,2,3,1,1,1) (3,3,2,1) (2,1,2,2) 0 ∓215 2k 2k ∓2 ∓215 ∓2 32

122 (0,0,2,1,0,1) (0,0,3,3) (0,2,1,0) 1 – – 2k + 1 ∓215 – ∓2 64

123 (1,1,3,1,1,1) (1,1,3,3) (2,1,0,0) 0 ∓1 – 2k + 1 ∓215 ∓215 ∓2 34

124 (1,1,0,0,0,1) (1,1,1,0) (3,1,0,1) 0 ∓2 – 2k – – ∓2 63

125 (0,1,0,0,1,0) (0,1,1,0) (3,2,1,0) 0 – – 2k + 1 – ∓215 – 80

126 (1,0,1,0,1,1) (3,0,0,0) (2,3,1,1) 1 ∓215 – 2k – ∓215 ∓1 50

127 (0,0,3,0,1,1) (0,0,2,0) (1,2,1,1) 1 – – 2k + 1 – ∓1 ∓2 64

128 (1,3,1,1,0,1) (3,2,1,1) (1,1,3,2) 0 ∓215 2k – ∓2 – ∓1 49

129 (1,2,1,1,1,1) (1,2,0,1) (2,1,2,2) 0 ∓2 2k + 1 2k ∓2 ∓1 ∓2 31

130 (1,1,3,0,0,1) (3,1,2,0) (1,3,0,1) 1 ∓215 – 2k + 1 – – ∓2 64

131 (1,0,1,1,1,0) (3,0,0,1) (2,3,0,1) 1 ∓215 – 2k ∓1 ∓215 – 50

132 (1,0,2,0,1,1) (1,0,2,0) (0,3,1,1) 0 ∓1 – 2k – ∓1 ∓2 49

133 (1,0,0,0,1,1) (3,0,0,0) (0,1,1,1) 1 ∓215 – – – ∓1 ∓1 51

134 (1,3,3,1,0,1) (1,2,3,1) (1,3,3,2) 1 ∓1 2k 2k ∓2 – ∓2 47

135 (0,1,0,1,1,1) (0,1,1,3) (3,2,0,0) 1 – – 2k ∓215 ∓215 ∓1 50

136 (1,0,0,1,0,1) (1,0,1,3) (3,1,1,0) 0 ∓2 – 2k + 1 ∓215 – ∓2 48

137 (0,2,0,1,1,1) (0,2,1,1) (3,2,2,2) 0 – 2k + 1 2k + 1 ∓2 ∓215 ∓1 48

138 (1,1,2,1,1,1) (1,1,3,3) (0,3,0,0) 1 ∓1 – 2k + 1 ∓215 ∓1 ∓2 34

139 (1,2,1,1,1,1) (1,3,0,1) (2,1,2,2) 1 ∓2 2k 2k ∓2 ∓1 ∓2 31

140 (0,1,3,1,1,1) (0,1,3,3) (1,2,0,0) 0 – – 2k ∓215 ∓1 ∓2 49

141 (1,3,3,1,0,1) (1,3,2,1) (1,3,3,2) 0 ∓1 2k + 1 2k + 1 ∓2 – ∓2 47

142 (1,1,1,1,1,1) (1,1,0,3) (2,1,0,0) 1 ∓2 – 2k + 1 ∓215 ∓1 ∓2 33

143 (0,1,2,1,1,1) (0,1,2,3) (3,0,0,0) 1 – – 2k + 1 ∓215 ∓215 ∓2 49

144 (1,3,3,1,1,0) (1,3,3,1) (2,3,2,3) 1 ∓2 2k + 1 2k + 1 ∓2 ∓1 – 47

145 (1,2,1,1,1,1) (1,2,0,1) (2,3,2,2) 0 ∓1 2k + 1 2k ∓2 ∓215 ∓1 33

146 (0,3,2,1,0,1) (0,2,2,1) (0,2,3,2) 0 – 2k 2k ∓2 – ∓2 62

147 (1,3,0,1,1,0) (3,3,0,1) (0,1,2,3) 1 ∓215 2k + 1 – ∓2 ∓1 – 49

148 (1,1,2,1,1,1) (1,1,3,1) (0,1,0,0) 1 ∓2 – 2k + 1 ∓1 ∓215 ∓1 34

149 (1,2,3,1,1,1) (3,2,2,1) (2,1,2,2) 1 ∓215 2k + 1 2k ∓2 ∓215 ∓2 32

150 (0,0,0,1,1,0) (0,0,1,3) (3,2,0,1) 1 – – 2k + 1 ∓215 ∓215 – 65

151 (1,3,2,1,1,0) (1,2,2,1) (0,1,2,3) 1 ∓2 2k 2k ∓2 ∓215 – 47

152 (1,1,3,1,1,1) (3,1,3,3) (2,1,0,0) 0 ∓215 – 2k + 1 ∓215 ∓215 ∓2 34

153 (1,1,3,0,0,1) (1,1,3,0) (1,3,0,1) 1 ∓1 – 2k – – ∓2 64

154 (0,3,1,1,1,0) (0,3,1,1) (1,0,2,3) 0 – 2k + 1 – ∓2 ∓1 – 64

155 (1,1,3,1,1,1) (1,1,2,1) (2,1,0,0) 1 ∓1 – 2k ∓1 ∓215 ∓2 34

156 (1,2,1,1,1,1) (1,3,0,1) (2,3,2,2) 1 ∓1 2k 2k ∓2 ∓215 ∓1 33
(continued)

Exploiting Linearity of Modular Multiplication 265

Table 5. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

157 (1,0,1,1,1,0) (1,0,0,3) (2,3,0,1) 1 ∓1 – 2k ∓215 ∓215 – 50

158 (1,1,1,1,1,1) (1,1,0,3) (2,3,0,0) 1 ∓1 – 2k + 1 ∓215 ∓215 ∓1 35

159 (0,1,2,0,0,1) (0,1,2,0) (0,2,0,1) 0 – – 2k – – ∓2 79

160 (1,0,2,0,1,1) (3,0,2,0) (0,3,1,1) 0 ∓215 – 2k – ∓1 ∓2 49

161 (1,0,3,0,1,1) (1,0,3,0) (2,3,1,1) 1 ∓2 – 2k + 1 – ∓1 ∓1 49

162 (1,1,1,0,1,0) (1,1,0,0) (2,3,1,0) 0 ∓1 – 2k – ∓215 – 65

163 (1,2,0,1,1,1) (1,3,0,1) (0,1,2,2) 1 ∓1 2k – ∓2 ∓1 ∓1 34

164 (1,3,1,1,0,1) (1,3,1,1) (1,1,3,2) 1 ∓1 2k + 1 – ∓2 – ∓1 49

165 (1,3,3,1,0,1) (3,2,3,1) (1,3,3,2) 1 ∓215 2k 2k ∓2 – ∓2 47

166 (1,3,3,1,1,0) (1,2,2,1) (2,3,2,3) 1 ∓2 2k 2k ∓2 ∓1 – 47

167 (1,0,3,1,0,1) (1,0,2,1) (1,3,1,0) 0 ∓1 – 2k + 1 ∓1 – ∓2 49

168 (1,0,2,0,1,1) (1,0,3,0) (0,3,1,1) 0 ∓1 – 2k + 1 – ∓1 ∓2 49

169 (1,0,3,1,1,0) (1,0,3,1) (2,3,0,1) 1 ∓2 – 2k + 1 ∓1 ∓1 – 49

170 (1,1,2,1,1,1) (3,1,3,3) (0,3,0,0) 1 ∓215 – 2k + 1 ∓215 ∓1 ∓2 34

171 (1,3,2,1,0,1) (1,3,2,1) (3,3,3,2) 1 ∓2 2k + 1 2k + 1 ∓2 – ∓1 47

172 (1,3,3,1,0,1) (3,3,2,1) (1,3,3,2) 0 ∓215 2k + 1 2k + 1 ∓2 – ∓2 47

173 (1,3,1,1,1,0) (3,2,0,1) (2,3,2,3) 1 ∓215 2k 2k + 1 ∓2 ∓215 – 48

174 (1,1,2,1,0,0) (1,1,2,3) (3,3,1,1) 0 ∓2 – 2k + 1 ∓215 – – 64

175 (0,0,2,0,1,1) (0,0,2,0) (3,0,1,1) 0 – – 2k + 1 – ∓215 ∓2 64

176 (0,3,0,1,0,1) (0,3,0,1) (0,0,3,2) 0 – 2k + 1 – ∓2 – ∓1 64

177 (0,3,0,1,1,0) (0,3,1,1) (3,2,2,3) 0 – 2k + 1 2k ∓2 ∓215 – 63

178 (0,0,3,0,1,1) (0,0,3,0) (1,2,1,1) 1 – – 2k – ∓1 ∓2 64

179 (1,1,3,0,0,1) (3,1,3,0) (1,3,0,1) 1 ∓215 – 2k – – ∓2 64

180 (0,3,2,1,0,1) (0,2,3,1) (0,2,3,2) 0 – 2k 2k + 1 ∓2 – ∓2 62

181 (1,1,3,1,1,1) (1,1,2,3) (2,3,0,0) 1 ∓2 – 2k ∓215 ∓1 ∓1 34

182 (1,2,0,1,1,1) (1,2,0,1) (0,1,2,2) 0 ∓1 2k + 1 – ∓2 ∓1 ∓1 34

183 (1,1,3,1,1,1) (3,1,2,1) (2,1,0,0) 1 ∓215 – 2k ∓1 ∓215 ∓2 34

184 (1,3,2,1,1,0) (1,2,3,1) (0,1,2,3) 1 ∓2 2k 2k + 1 ∓2 ∓215 – 47

185 (1,0,2,0,0,0) (1,0,2,0) (3,3,0,0) 1 ∓2 – 2k + 1 – – – 79

186 (1,0,3,0,1,1) (1,0,3,0) (2,1,1,1) 1 ∓1 – 2k + 1 – ∓215 ∓2 49

187 (0,2,2,1,1,1) (0,2,3,1) (3,0,2,2) 0 – 2k + 1 2k ∓2 ∓215 ∓2 47

188 (1,2,2,1,1,1) (1,3,2,1) (0,3,2,2) 0 ∓1 2k 2k ∓2 ∓1 ∓2 32

189 (1,3,3,1,0,1) (1,3,3,1) (1,3,3,2) 0 ∓1 2k + 1 2k ∓2 – ∓2 47

190 (1,0,2,0,1,1) (1,0,2,0) (0,1,1,1) 0 ∓2 – 2k – ∓215 ∓1 49

191 (1,3,1,1,0,1) (3,3,1,1) (1,1,3,2) 1 ∓215 2k + 1 – ∓2 – ∓1 49

192 (1,0,2,1,0,1) (1,0,2,1) (3,3,1,0) 1 ∓2 – 2k + 1 ∓1 – ∓1 49

193 (1,0,3,1,0,1) (3,0,2,1) (1,3,1,0) 0 ∓215 – 2k + 1 ∓1 – ∓2 49

194 (1,0,2,0,1,1) (3,0,3,0) (0,3,1,1) 0 ∓215 – 2k + 1 – ∓1 ∓2 49
(continued)

266 H. M. Yıldırım

Table 5. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

195 (0,2,2,1,1,1) (0,3,3,1) (3,0,2,2) 1 – 2k 2k ∓2 ∓215 ∓2 47

196 (1,1,2,1,1,1) (1,1,3,3) (0,1,0,0) 1 ∓2 – 2k + 1 ∓215 ∓215 ∓1 34

197 (1,3,2,1,1,0) (1,3,2,1) (0,1,2,3) 0 ∓2 2k + 1 2k ∓2 ∓215 – 47

198 (1,2,0,1,1,1) (1,2,0,1) (0,3,2,2) 0 ∓2 2k + 1 – ∓2 ∓215 ∓2 32

199 (0,2,3,1,1,1) (0,2,2,1) (1,2,2,2) 0 – 2k + 1 2k + 1 ∓2 ∓1 ∓2 47

200 (1,1,3,1,1,1) (1,1,2,3) (2,1,0,0) 1 ∓1 – 2k ∓215 ∓215 ∓2 34

201 (1,0,3,0,1,1) (1,0,2,0) (2,3,1,1) 0 ∓2 – 2k – ∓1 ∓1 49

202 (0,3,2,1,0,1) (0,3,2,1) (0,2,3,2) 1 – 2k + 1 2k ∓2 – ∓2 62

203 (1,2,0,1,1,1) (3,2,0,1) (0,1,2,2) 0 ∓215 2k + 1 – ∓2 ∓1 ∓1 34

204 (1,2,0,1,1,1) (1,3,0,1) (0,3,2,2) 1 ∓2 2k – ∓2 ∓215 ∓2 32

205 (0,2,3,1,1,1) (0,3,2,1) (1,2,2,2) 1 – 2k 2k + 1 ∓2 ∓1 ∓2 47

206 (1,0,3,1,0,1) (1,0,3,1) (1,3,1,0) 0 ∓1 – 2k ∓1 – ∓2 49

207 (1,0,3,0,1,1) (3,0,3,0) (2,1,1,1) 1 ∓215 – 2k + 1 – ∓215 ∓2 49

208 (1,2,2,1,1,1) (1,2,2,1) (0,3,2,2) 1 ∓1 2k + 1 2k ∓2 ∓1 ∓2 32

209 (1,2,3,1,1,1) (1,3,3,1) (2,3,2,2) 1 ∓2 2k 2k + 1 ∓2 ∓1 ∓1 32

210 (1,2,2,1,1,1) (3,3,2,1) (0,3,2,2) 0 ∓215 2k 2k ∓2 ∓1 ∓2 32

211 (1,3,3,1,1,0) (1,3,2,1) (2,3,2,3) 0 ∓2 2k + 1 2k ∓2 ∓1 – 47

212 (1,0,3,1,0,1) (1,0,2,3) (1,3,1,0) 0 ∓1 – 2k + 1 ∓215 – ∓2 49

213 (1,3,3,1,0,1) (3,3,3,1) (1,3,3,2) 0 ∓215 2k + 1 2k ∓2 – ∓2 47

214 (1,2,0,1,1,1) (3,3,0,1) (0,1,2,2) 1 ∓215 2k – ∓2 ∓1 ∓1 34

215 (1,2,2,1,0,0) (1,2,3,1) (3,3,3,3) 1 ∓2 2k + 1 2k ∓2 – – 62

216 (0,1,2,0,0,1) (0,1,3,0) (0,2,0,1) 0 – – 2k + 1 – – ∓2 79

217 (1,2,2,1,1,1) (1,3,3,1) (0,3,2,2) 0 ∓1 2k 2k + 1 ∓2 ∓1 ∓2 32

218 (0,2,1,1,1,1) (0,3,1,1) (1,0,2,2) 0 – 2k – ∓2 ∓1 ∓1 49

219 (1,1,3,0,1,0) (1,1,3,0) (2,3,1,0) 0 ∓2 – 2k + 1 – ∓1 – 64

220 (0,2,1,1,1,1) (0,2,1,1) (1,0,2,2) 1 – 2k + 1 – ∓2 ∓1 ∓1 49

221 (0,0,2,1,0,1) (0,0,2,1) (0,2,1,0) 1 – – 2k ∓1 – ∓2 64

222 (1,0,3,0,1,1) (1,0,2,0) (2,1,1,1) 0 ∓1 – 2k – ∓215 ∓2 49

223 (1,1,3,1,1,1) (3,1,2,3) (2,1,0,0) 1 ∓215 – 2k ∓215 ∓215 ∓2 34

224 (1,3,2,1,1,0) (1,3,3,1) (0,1,2,3) 0 ∓2 2k + 1 2k + 1 ∓2 ∓215 – 47

225 (1,2,3,1,1,1) (1,2,3,1) (2,3,2,2) 0 ∓2 2k + 1 2k + 1 ∓2 ∓1 ∓1 32

226 (0,1,3,1,1,1) (0,1,2,1) (1,2,0,0) 0 – – 2k + 1 ∓1 ∓1 ∓2 49

227 (1,2,3,1,1,1) (1,3,3,1) (2,1,2,2) 1 ∓1 2k 2k + 1 ∓2 ∓215 ∓2 32

228 (1,0,3,1,0,1) (3,0,3,1) (1,3,1,0) 0 ∓215 – 2k ∓1 – ∓2 49

229 (1,0,3,1,1,0) (1,0,2,1) (2,3,0,1) 0 ∓2 – 2k ∓1 ∓1 – 49

230 (1,0,2,1,0,1) (1,0,2,3) (3,3,1,0) 1 ∓2 – 2k + 1 ∓215 – ∓1 49

231 (1,0,3,1,0,1) (3,0,2,3) (1,3,1,0) 0 ∓215 – 2k + 1 ∓215 – ∓2 49

232 (1,2,2,1,1,1) (3,2,2,1) (0,3,2,2) 1 ∓215 2k + 1 2k ∓2 ∓1 ∓2 32

233 (1,0,3,1,1,0) (1,0,3,3) (2,3,0,1) 1 ∓2 – 2k + 1 ∓215 ∓1 – 49
(continued)

Exploiting Linearity of Modular Multiplication 267

Table 5. (continued)

φ ψ ω λ z1 z2 z3 z4 z5 z6 # of free bits

234 (1,2,2,1,1,1) (1,2,3,1) (0,3,2,2) 1 ∓1 2k + 1 2k + 1 ∓2 ∓1 ∓2 32

235 (1,1,2,1,1,1) (1,1,2,1) (0,3,0,0) 1 ∓1 – 2k ∓1 ∓1 ∓2 34

236 (1,3,0,1,1,0) (1,2,0,1) (0,1,2,3) 0 ∓1 2k – ∓2 ∓1 – 49

237 (0,2,3,1,1,1) (0,2,3,1) (1,2,2,2) 0 – 2k + 1 2k ∓2 ∓1 ∓2 47

238 (1,0,2,0,1,1) (1,0,3,0) (0,1,1,1) 0 ∓2 – 2k + 1 – ∓215 ∓1 49

239 (0,2,2,1,1,1) (0,2,2,1) (3,0,2,2) 1 – 2k + 1 2k + 1 ∓2 ∓215 ∓2 47

240 (0,2,2,1,1,1) (0,3,2,1) (3,0,2,2) 0 – 2k 2k + 1 ∓2 ∓215 ∓2 47

241 (0,2,3,1,1,1) (0,3,3,1) (1,2,2,2) 1 – 2k 2k ∓2 ∓1 ∓2 47

242 (1,0,2,1,1,0) (1,0,3,1) (0,1,0,1) 0 ∓2 – 2k + 1 ∓1 ∓215 – 49

243 (1,2,3,1,1,1) (1,2,3,1) (2,1,2,2) 0 ∓1 2k + 1 2k + 1 ∓2 ∓215 ∓2 32

244 (1,0,3,1,0,1) (1,0,3,3) (1,3,1,0) 0 ∓1 – 2k ∓215 – ∓2 49

245 (1,1,0,1,1,1) (1,1,0,3) (0,1,0,0) 0 ∓1 – – ∓215 ∓1 ∓1 36

246 (0,3,2,1,0,1) (0,3,3,1) (0,2,3,2) 1 – 2k + 1 2k + 1 ∓2 – ∓2 62

247 (1,1,3,1,1,1) (1,1,3,1) (2,3,0,0) 0 ∓2 – 2k + 1 ∓1 ∓1 ∓1 34

248 (1,3,2,1,0,1) (1,2,3,1) (3,3,3,2) 1 ∓2 2k 2k ∓2 – ∓1 47

249 (1,2,2,1,1,1) (1,3,2,1) (0,1,2,2) 0 ∓2 2k 2k ∓2 ∓215 ∓1 32

250 (1,2,2,1,1,1) (1,2,2,1) (0,1,2,2) 1 ∓2 2k + 1 2k ∓2 ∓215 ∓1 32

251 (1,2,1,1,0,0) (1,2,1,1) (1,1,3,3) 0 ∓1 2k + 1 – ∓2 – – 64

252 (1,2,2,1,1,1) (3,3,3,1) (0,3,2,2) 0 ∓215 2k 2k + 1 ∓2 ∓1 ∓2 32

253 (1,1,2,1,1,1) (3,1,2,1) (0,3,0,0) 1 ∓215 – 2k ∓1 ∓1 ∓2 34

254 (1,2,2,1,1,1) (3,2,3,1) (0,3,2,2) 1 ∓215 2k + 1 2k + 1 ∓2 ∓1 ∓2 32

255 (1,3,0,1,1,0) (3,2,0,1) (0,1,2,3) 0 ∓215 2k – ∓2 ∓1 – 49

Table 6. 50 linear relations with less number of key bits restriction for 8.5-round
IDEA cipher. Here each row is associated with one such relation, a linear mask for
each round input and one for the last round output, namely ciphertext are provided.
Last column shows the number of key bits from the master key that are not restricted,
that is, each such bit can be either 0 or 1. Note that mask (a,b, c,d) is denoted
by abcd. When 832 − 556 = 276 key bits are restricted according to Tables 1 and
2, twenty second row of this table gives a linear relation for 8.5-round IDEA cipher
involving plaintext bit (0,1,0,0)�(X0

1,X
0
2,X

0
3,X

0
4) = 1 ·X0

2 and ciphertext bits added
(1,2,1,3) � (Y1,Y2,Y3,Y4) = 1 · Y1 ⊕ 2 · Y2 ⊕ 1 · Y3 ⊕ 3 · Y4 (see Sect. 4.2 and
Fig. 1 in AppendixA).

1st

round’s

input

mask

2nd

round’s

input

mask

3rd

round’s

input

mask

4th

round’s

input

mask

5th

round’s

input

mask

6th

round’s

input

mask

7th

round’s

input

mask

8th

round’s

input

mask

Last 0.5

round’s

input

mask

Cipher

text

mask

of

free

key

bits

1 1100 0110 0110 1010 1100 0110 1010 1100 0110 0110 586

2 1010 1100 0110 0110 1010 1100 0110 1010 1100 3100 586

3 1010 1100 0110 0110 1010 1100 0110 1010 1100 1100 586

4 0110 1010 1100 0110 0110 1010 1100 0110 1010 1010 586

5 0110 1010 1100 0110 0110 1010 1100 0110 1010 3010 585

(continued)

268 H. M. Yıldırım

Table 6. (continued)

1st

round’s

input

mask

2nd

round’s

input

mask

3rd

round’s

input

mask

4th

round’s

input

mask

5th

round’s

input

mask

6th

round’s

input

mask

7th

round’s

input

mask

8th

round’s

input

mask

Last 0.5

round’s

input

mask

Cipher

text

mask

of

free

key

bits

6 0100 0001 0010 1011 1110 1101 0100 0001 0010 0010 579

7 1001 0101 0011 1001 0101 0011 1001 0101 0011 0011 577

8 0101 0011 1001 0101 0011 1001 0101 0011 1001 1001 577

9 1001 0101 0011 1001 0101 0011 1001 0101 0011 0013 576

10 0101 0011 1001 0101 0011 1001 0101 0011 1001 3001 576

11 0101 0011 1001 0101 0011 1001 0101 0011 1001 1003 576

12 0100 0001 0010 1011 1110 3101 0100 0001 0010 0010 576

13 0101 0011 1001 0101 0011 1001 0101 0011 1001 3003 575

14 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 562

15 0011 1001 0101 0011 1001 0101 0011 1001 0101 0101 562

16 1111 1111 1111 1111 1111 1111 1111 1111 1111 3111 561

17 1111 1111 1111 1111 1111 1111 1111 1111 1111 1113 561

18 0011 1001 0101 0011 1001 0101 0011 1001 0101 0103 561

19 1111 1111 1111 1111 1111 1111 1111 1111 1111 3113 560

20 1133 0100 0001 0010 3211 1133 0100 0001 0010 0010 557

21 0100 0001 0010 3211 1133 0100 0001 0010 3211 1211 557

22 0100 0001 0010 3211 1133 0100 0001 0010 3211 1213 556

23 3311 1133 3311 1133 3311 1133 3311 1133 3311 1311 545

24 1133 3311 1133 3311 1133 3311 1133 3311 1133 1131 545

25 3311 1133 3311 1133 3311 1133 3311 1133 3311 1313 544

26 1133 3311 1133 3311 1133 3311 1133 3311 1133 3133 544

27 3211 1133 0100 0001 0010 3211 1133 0100 0001 0001 540

28 3211 1133 0100 0001 0010 3211 1133 0100 0001 0003 539

29 0001 0010 3211 1133 0100 0001 0010 3211 1133 1131 539

30 0010 3211 1133 0100 0001 0010 3211 1133 0100 0100 538

31 0001 0010 3211 1133 0100 0001 0010 3211 1133 3133 538

32 1101 0100 0001 0010 1011 1110 1101 0100 0001 0001 534

33 1110 1101 0100 0001 0010 1011 1110 1101 0100 0100 533

34 1101 0100 0001 0010 1011 1110 1101 0100 0001 0003 533

35 0010 1011 1110 1101 0100 0001 0010 1011 1110 1110 533

36 0001 0010 1011 1110 1101 0100 0001 0010 1011 1011 533

37 0010 1011 1110 1101 0100 0001 0010 1011 1110 3110 532

38 0001 0010 1011 1110 1101 0100 0001 0010 1011 3011 532

39 0001 0010 1011 1110 1101 0100 0001 0010 1011 1013 532

40 3101 0100 0001 0010 1011 1110 3101 0100 0001 0001 531

41 0001 0010 1011 1110 1101 0100 0001 0010 1011 3013 531

42 3101 0100 0001 0010 1011 1110 3101 0100 0001 0003 530

43 0010 1011 1110 3101 0100 0001 0010 1011 1110 1110 530

44 0001 0010 1011 3110 1101 0100 0001 0010 1011 1011 530

45 0001 0010 1011 1110 3101 0100 0001 0010 1011 1011 530

46 0010 1011 1110 3101 0100 0001 0010 1011 1110 3110 529

47 0001 0010 1011 3110 1101 0100 0001 0010 1011 3011 529

48 0001 0010 1011 3110 1101 0100 0001 0010 1011 1013 529

49 0001 0010 1011 1110 3101 0100 0001 0010 1011 3011 529

50 0001 0010 1011 1110 3101 0100 0001 0010 1011 1013 529

Exploiting Linearity of Modular Multiplication 269

References

1. Chaves, R., Sousa, L.: Improving residue number system multiplication with more
balanced moduli sets and enhanced modular arithmetic structures. IET Comput.
Digital Tech. 1(5), 472–480 (2007)

2. Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 20

3. Junod, P., Macchetti, M.: Revisiting the IDEA philosophy. In: Dunkelman, O. (ed.)
FSE 2009. LNCS, vol. 5665, pp. 277–295. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03317-9 17

4. Lai, X.: On the Design and Security of Block Cipher. ETH Series in Information
Processing, vol. 1. Hartung-Gorre Verlag, Konstanz (1992)

5. Meier, W.: On the security of the IDEA block cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 32

6. Modugu, R., Choi, M., Park, N.: A fast low-power modulo 2n+1 multiplier design.
In: IEEE Instrumentation and Measurement Technology Conference, I2MTC 2009,
pp. 951–956. IEEE (2009)

7. Nakahara Jr., J.: Personal communication, November 2004
8. Nakahara Jr., J.: Lai-Massey Cipher Designs: History. Design Criteria and Crypt-

analysis. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68273-0
9. Nakahara Jr., J., Rijmen, V., Preneel, B., Vandewalle, J.: The MESH block ciphers.

In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 458–473.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24591-9 34

10. Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-47555-9 8

11. SageMath, the Sage Mathematics Software System (Version 6.7). The Sage Devel-
opers (2015). http://www.sagemath.org

12. Yıldırım, H.M.: Nonlinearity properties of the mixing operations of the block cipher
IDEA. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904,
pp. 68–81. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-
7 5

13. Zhang, X.-M., Zheng, Y., Imai, H.: Duality of Boolean functions and its cryp-
tographic significance. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997.
LNCS, vol. 1334, pp. 159–169. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0028472

https://doi.org/10.1007/3-540-48329-2_20
https://doi.org/10.1007/978-3-642-03317-9_17
https://doi.org/10.1007/978-3-642-03317-9_17
https://doi.org/10.1007/3-540-48285-7_32
https://doi.org/10.1007/3-540-48285-7_32
https://doi.org/10.1007/978-3-319-68273-0
https://doi.org/10.1007/978-3-540-24591-9_34
https://doi.org/10.1007/3-540-47555-9_8
http://www.sagemath.org
https://doi.org/10.1007/978-3-540-24582-7_5
https://doi.org/10.1007/978-3-540-24582-7_5
https://doi.org/10.1007/BFb0028472
https://doi.org/10.1007/BFb0028472

Combinatorics, Codes, Designs and
Graphs

On a Weighted Spin of the Lebesgue
Identity

Ali Kemal Uncu(B)

Austrian Academy of Sciences, Johann Radon Institute for Computational
and Applied Mathematics, Altenbergerstrasse 69, 4040 Linz, Austria

akuncu@risc.jku.at

Abstract. Alladi studied partition theoretic implications of a two vari-
able generalization of the Lebesgue identity. In this short note, we focus
on a slight variation of the basic hypergeometric sum that Alladi studied.
We present two new partition identities involving weights.

Keywords: Lebesgue identity · Generalized Lebesgue identities ·
Heine transformation · Weighted partition identities

1 Introduction

One of the fundamental identities in the theory of partitions and q-series is the
Lebesgue identity:

∑

n≥0

(−aq)n

(q)n
q

n(n+1)
2 =

(−aq2; q2)∞
(q; q2)∞

, (1)

where a and q are variables and the q-Pochhammer symbol is defined as follows

(a)n := (a; q)n :=
n−1∏

i=0

(1 − aqi),

for any n ∈ Z∪{∞}. Some combinatorial implications of this result were studied
by Alladi [3]. In the same paper, he also did a partition theoretic study of a
summation formula due to Ramanujan [5, (1.3.13), p. 13]

∑

n≥0

(−b/a)nanqn(n+1)/2

(q)n(bq)n
=

(−aq)∞
(bq)∞

. (2)

Alladi called this identity and it’s dilated forms Generalized Lebesgue identities.

Research of the author is supported by the Austrian Science Fund FWF, SFB50-07,
SFB50-09 and SFB50-11 Projects.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 273–279, 2020.
https://doi.org/10.1007/978-3-030-43120-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_20

274 A. K. Uncu

We would like to study a similar function that is not directly related to (2)
or that satisfies a summation formula, but that still manifest beautiful relations.
Let a, z and q be variables and define

F(a, z, q) :=
∑

n≥0

(za)n

(q)n(zq)n
znq

n(n+1)
2 . (3)

Looking at F(b, a, q) it is clear that this sum is—so to speak—a sibling of the
Generalized Lebesgue identity (2), and F(−aq, 1, q) is a cousin of the original
Lebesgue identity (1) with an extra q-factorial, 1/(q)n, in the summand. This
extra factor will be the source of the weights in the combinatorial/partition
theoretic study of the identities related to the (3). For other references related
to weighted partition identities of this spirit one can refer to [2,6,12], and in a
wider perspective some other recent weighted partition identities can be found
in [1,7,9].

Before any combinatorial study, we would like to note the following theorem.

Theorem 1. For variables a, z and q, we have

∑

n≥0

(za)n(zqn+1)∞
(q)n

znq
n(n+1)

2 =
∑

n≥0

(−za)n(−zqn+1)∞
(q)n

(−z)nq
n(n+1)

2 . (4)

Please note that the only difference between the left- and right-hand sides of
(4) is z �→ −z. In other words, the object is even in the variable z. In author’s
view, the observed symmetry makes this identity visually highly pleasing.

The following sections are arranged as follows. In Sect. 2, we give a proof
of Theorem 1 and note some Corollaries of this result. In Sect. 3, we study the
partition theoretic interpretations of the results in Sect. 2.

2 Proof of Theorem 1

We require two main ingredients for the proof of (4). First, it is a known fact
that

lim
ρ→∞

(ρ)n

ρn
= (−1)nq

n(n−1)
2 , (5)

and, second, Heine Transformation [10, p. 241, III.2]

∑

n≥0

(a)n(b)n

(q)n(c)n
zn =

(c/b)∞(bz)∞
(c)∞(z)∞

∑

n≥0

(abz/c)n(b)n

(q)n(bz)n

(c

b

)n

(6)

Proof (Proof of Theorem 1). The function F(a, z, q) can be written as the fol-
lowing due to (5):

F(a, z, q) = lim
ρ→∞

∑

n≥0

(za)n(ρ)n

(q)n(zq)n

(
−zq

ρ

)n

.

On a Weighted Spin of the Lebesgue Identity 275

Then we can directly apply the Heine transformation (6), and after tending
ρ → ∞, one gets

F(a, z, q) =
(−zq)∞
(zq)∞

F(a,−z, q). (7)

Multiplying both sides of (7) with (zq)∞, carrying the infinite q-Pochhammers
inside the sums, and doing elementary simplifications in the summand level
finishes the proof.

It is evident that some special cases of (4) (such as (a, z, q) = (q, 1, q)) can
be summed by utilizing simple summation formulas (such as [10, II.2, p. 354]
and shown to be equal to (q2; q2)∞). This is not our motivation. We would like
to look at special cases of (4) to extract some combinatorial information. The
(a, z, q) = (q, 1, q) and (−q, 1, q) cases are presented in Corollary 1.

Corollary 1. Let q be a variable, we have
∑

n≥0

(qn+1)∞q
n(n+1)

2 =
∑

n≥0

(−qn+1)∞
(−q)n

(q)n
(−1)nq

n(n+1)
2 , (8)

∑

n≥0

(−qn+1)∞(−1)nq
n(n+1)

2 =
∑

n≥0

(qn+1)∞
(−q)n

(q)n
q

n(n+1)
2 . (9)

Another interesting corollary can be seen by picking a = z = 1 in (7) and
using Jacobi Triple Product identity [10, p. 239, II.2],

∞∑

n=−∞
znqn2

= (−zq; q2)∞(−q/z; q2)∞(q2; q2)∞. (10)

Corollary 2. We have

∑

n≥1

(−1)nqn2
=

∑

n≥1

(−1)nq
n(n+1)

2

(q)n(1 + qn)
.

Proof. It is clear that only the n = 0 term of the sum on the left-hand side of
(7) is non-zero when a = z = 1, and the total sum on the left hand side is 1:

1 =
(−q)∞
(q)∞

∑

n≥0

(−1)n

(q)n(−q)n
(−1)nq

n(n+1)
2 .

We multiply both sides of this equation by (q)∞/(−q)∞ and observe that

(q)∞
(−q)∞

=
(q; q2)∞(q2; q2)∞

(−q)∞
=

(q; q2)∞(q)∞(−q)∞
(−q)∞

= (q; q2)2∞(q2; q2)∞.

The right-hand side of the last line is the same as the right-hand side of (10)
with z = −1. This yields

∞∑

n=−∞
(−1)nqn2

=
∑

n≥0

(−1)n

(q)n(−q)n
(−1)nq

n(n+1)
2 , (11)

276 A. K. Uncu

where the left-hand side is coming from (10) and the right-hand side is
F(1,−1, q). Splitting the bilateral sum on the left-hand side and using sim-
ple cancellations on (−1)n/(−q)n, using the definition of the q-factorials, on the
right-hand side, we get

1 + 2
∑

n≥1

(−1)nqn2
= 1 + 2

∑

n≥1

(−1)nq
n(n+1)

2

(q)n(1 + qn)
. (12)

This shows claim.

Another proof of this result appears in the author’s joint paper with
Berkovich as Lemma 4.1 [7]. Combinatorial interpretation of this identity was
done by Bessenrodt–Pak [8] and later by Alladi [3].

3 Partition Theoretic Interpretations of Corollary 1

We would like to interpret the identities (8) and (9) as weighted partition identi-
ties. To that end, we need to define what a partition is and some related statistics.
A partition (in frequency notation [4]) is a list of the form

(1f1 , 2f2 , 3f3 , . . .)

where fi ∈ N ∪ {0} and all but finitely many fi are non-zero. When writing
example partitions down, one tends to drop the zero frequency parts to keep the
notation clean.

If none of the frequencies fi are greater than 1, we call these partitions
distinct. One can define the size of a partition π as

|π| =
∑

i≥1

i · fi,

and the sum of all fi is the number of parts in a partition, we denote this by
#(π). The partition with fi ≡ 0 for all i ∈ N is the only partition of 0 with 0
parts.

Let t(π) be the number of non-zero frequencies of a partition π starting from
f1. In other words, one can think of t(π) as the length of the initial frequency
chain. The length of the initial frequency chain seems to be an underutilized
statistic in interpretations of q-series identities, the only other closely related
statistic that the author knows of is used in [7, Thm 3.1]. Let pj(π) be the
maximum index i such that fi ≥ j in π and for all k ≥ i has the property
fk < j, if no positive value satisfies this we define pj(π) = 0. Let rj(π) be the
number of different parts with frequencies ≥ j.

To exemplify the statistics defined, let π = (14, 22, 34, 51, 61) then |π| = 31,
#(π) = 12, t(π) = 3, p1(π) = 6, p2(π) = 3, p3(π) = 3, p4(π) = 3, p5(π) = 0, . . . ,
r1(π) = 5, r2(π) = 3, r3(π) = 2, r4(π) = 2, r5(π) = 0,

With the statistics defined above, one can interpret Corollary 1 as a weighted
partition theorem, where i = 1 corresponds to (8) and i = 2 refers to (9), as
follows.

On a Weighted Spin of the Lebesgue Identity 277

Theorem 2. Let D be the set of distinct partitions and let A be the set of
partitions where all the partitions π ∈ A satisfy p2(π) ≤ t(π). Then for i = 1
and 2, we have ∑

π∈D
wi(π)q|π| =

∑

π∈A
ŵi(π)q|π|, (13)

where

wi(π) =
[
1 − f1

(
1 − (−1)t(π)

2

)]
(−1)i#(π), (14)

ŵi(π) = 2r2(π)

(
(−1)t(π) + (−1)p2(π)

2

)
(−1)(i−1)(r1(π)+t(π)+p2(π)). (15)

We would like to exemplify Theorem 2 with relevant partitions of 6 in Table 1.

Table 1. Partitions of 6 from D and A and the related weights wi and ŵi to exemplify
13.

π ∈ D t(π) w1(π) w2(π) π ∈ A t(π) p2(π) r2(π) ŵ1 r1(π) ŵ2

(61) 0 −1 1 (61) 0 0 0 1 1 −1

(11, 51) 1 0 0 (11, 51) 1 0 0 0 2 0

(21, 41) 0 1 1 (21, 41) 0 0 0 1 2 1

(11, 21, 31) 3 0 0 (12, 41) 1 1 1 −2 2 −2

(11, 21, 31) 3 0 0 0 3 0

(13, 31) 1 1 1 −2 2 −2

(14, 21) 2 1 1 0 2 0

(12, 22) 2 2 2 4 2 4

(16) 1 1 1 −2 1 2

Total: 0 2 0 2

One key observation is that w2(π) = |w1(π)| ≥ 0 for all distinct partitions.
This proves that the series in (9), which is the analytic version of (13) with i = 2,
have non-negative coefficients. We write this as a theorem using an equivalent
form of the left-hand side series of (9).

Theorem 3. We have

(−q; q)∞
∑

n≥0

(−1)nq
n(n+1)

2

(−q, q)n
� 0,

where � 0 is used to indicate that the series coefficients are all greater or equal
than 0.

278 A. K. Uncu

The sum in Theorem 3 is a false theta function that Rogers studied [11].
Although this series has alternating signs, its product with the manifestly posi-
tive factor (−q; q)∞ has non-negative coefficients and the above key observation
is a combinatorial explanation of this fact.

Broadly speaking, connections of false/partial theta functions and their impli-
cations in the theory of partitions have been studied in various places. Interested
readers can refer to [1,6].

Proof (Proof of Theorem 2). This theorem is a consequence of Corollary 1, the
i = 1 and 2 cases correspond to the combinatorial interpretations of (8) and (9),
respectively.

First we focus on the left-hand side summands. For a fixed n and ε1 = ±1,
(ε1qn+1)∞ is the generating function for the distinct partitions πd where every
part is ≥ n + 1 counted with the weight (−ε1)#(πd). We also interpret the
q-factor, εn

2 qn(n+1)/2 as the partition πi = (11, 21, . . . , n1) counted with the
weight εn

2 , where ε2 = ±1. We can combine (add the frequencies of both parti-
tions) πd and πi into a distinct partition π.

In the sum,
∑

n≥0

(ε1qn+1)∞εn
2 q

n(n+1)
2 ,

there are t(π) + 1 possible pairs (πd, πi) that can yield π, and one needs to
count the weights of these accordingly. Note that if t(π) ≥ 1 since π is a distinct
partition f1 = 1. For the total weight of π, one needs to sum from k = 0 to t(π)
of the alternating weights (−ε1)#(π)−kεk

2 :

t(π)∑

k=0

(−ε1)#(π)−kεk
2 .

By reducing the summations of alternating weights, one finds that wi(π) can be
represented as in (14) for i = 1 and 2, where ε1 = ε2 = 1 and ε1 = ε2 = −1,
respectively.

We interpret the right-hand side summand similar to the left-hand side’s
interpretation. For a fixed n, once again the parts (ε1qn+1)∞εn

2 qn(n+1)/2 can be
interpreted as the generating function for the partition pairs (πd, πi) counted by
some weights dependent of ε1 and ε2. The new factor (−q)n/(q)n is the generat-
ing function for the number of overpartitions πo, into parts ≤ n. Overpartitions
are the same as partitions counted with the weight 2r1(π). When we combine πd,
πi and πo, we end up with a partition π where some parts may repeat.

Any repetition of the parts in π comes from the overpartition πo and these
repetitions can only appear for parts ≤ t(π). Note that πi, has a single copy of
every part size up to t(π) and πo may add more occurrences of these parts. This
modifies the overpartition related weight a little and we need to take the first
occurrence of a part for granted. On the other hand, if a part appears more than
once the repetition should be counted with the weight 2r2(π).

On a Weighted Spin of the Lebesgue Identity 279

Here the summation bounds are slightly different than the previous case.
One needs to sum all the possible ε1 and ε2 related weights from k = p2(π) to
t(π). Different than the previous one, #(π) is replaced by the number of non-
repeating parts above the initial chain t(π), which is r1(π)− t(π). Moreover, one
needs to replace k by k − p2(π) to eliminate the effect of the parity of p2(π) on
the alternating sum. Hence, the sum to reduce here is

t(π)∑

k=p2(π)

(−ε1)r1(π)−t(π)−p2(π)−kεk
2 .

These sums, once reduced, can be seen to yield ŵi(π) for i = 1 and 2, where
ε1 = ε2 = −1 and ε1 = ε2 = 1, respectively.

Acknowledgement. The author would like to thank the SFB50-07, SFB50-09 and
SFB50-11 Projects of the Austrian Science Fund FWF for supporting his research.

References

1. Alladi, K.: A partial theta identity of Ramanujan and its number-theoretic inter-
pretation. Ramanujan J. 20, 329–339 (2009)

2. Alladi, K.: Partition identities involving gaps and weights. Trans. Am. Math. Soc.
349(12), 5001–5019 (1997)

3. Alladi, K.: Analysis of a generalized Lebesgue identity in Ramanujan’s Lost Note-
book. Ramanujan J. 29, 339–358 (2012)

4. Andrews, G.E.: The Theory of Partitions. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1998). Reprint of the 1976 Original.
MR1634067 (99c:11126)

5. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook: Part II. Springer, New
York (2009). https://doi.org/10.1007/b13290

6. Berkovich, A., Uncu, A.K.: Variation on a theme of Nathan Fine. New weighted
partition identities. J. Number Theory 176, 226–248 (2017)

7. Berkovich, A., Uncu, A.K.: New weighted partition theorems with the emphasis on
the smallest part of partitions. In: Andrews, G.E., Garvan, F. (eds.) ALLADI60
2016. SPMS, vol. 221, pp. 69–94. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68376-8 6

8. Bessenrodt, C., Pak, I.: Partition congruences by involutions. Eur. J. Comb. 25,
1139–1149 (2004)

9. Dixit, A., Maji, B.: Partition implications of a three-parameter q-series identity.
Ramanujan J. (2019). https://doi.org/10.1007/s11139-019-00177-6

10. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 96. Cambridge Uni-
versity Press, Cambridge (2004)

11. Rogers, L.J.: On two theorems of combinatory analysis and some allied identities.
Proc. Lond. Math. Soc. s2–16(1), 315–336 (1917)

12. Uncu, A.K.: Weighted Rogers-Ramanujan partitions and Dyson Crank. Ramanujan
J. 46(2), 579–591 (2018)

https://doi.org/10.1007/b13290
https://doi.org/10.1007/978-3-319-68376-8_6
https://doi.org/10.1007/978-3-319-68376-8_6
https://doi.org/10.1007/s11139-019-00177-6

Edge-Critical Equimatchable Bipartite
Graphs

Yasemin Büyükçolak1(B) , Didem Gözüpek2 , and Sibel Özkan1

1 Department of Mathematics, Gebze Technical University,
Gebze, Kocaeli, Turkey

{y.buyukcolak,s.ozkan}@gtu.edu.tr
2 Department of Computer Engineering, Gebze Technical University,

Gebze, Kocaeli, Turkey
didem.gozupek@gtu.edu.tr

Abstract. A graph is called equimatchable if all of its maximal match-
ings have the same size. Lesk et al. [6] provided a characterization of
equimatchable bipartite graphs. Since this characterization is not struc-
tural, Frendrup et al. [4] also provided a structural characterization for
equimatchable graphs with girth at least five; in particular, a charac-
terization for equimatchable bipartite graphs with girth at least six. In
this work, we extend the partial characterization of Frendrup et al. [4]
to equimatchable bipartite graphs without any restriction on girth. For
an equimatchable graph, an edge is said to be critical-edge if the graph
obtained by removal of this edge is not equimatchable. An equimatchable
graph is called edge-critical if every edge is critical. Reducing the char-
acterization of equimatchable bipartite graphs to the characterization of
edge-critical equimatchable bipartite graphs, we give two characteriza-
tions of edge-critical equimatchable bipartite graphs.

Keywords: Equimatchable · Bipartite graphs · Edge-critical

1 Introduction

All graphs in this paper are finite, simple, and undirected. For a graph G =
(V (G), E(G)), V (G) and E(G) denote the set of vertices and edges in G, respec-
tively. An edge joining the vertices u and v in G will be denoted by uv. A bipartite
graph G is a graph whose point set V (G) can be partitioned into two subsets V1

and V2 such that every edge of G joins V1 with V2. If |V1| = |V2|, then we say that
G is balanced. For a vertex v in G and a subset X ⊆ V (G), NG(v) denotes the
set of neighbors of v in G, while NG(X) denotes the set of all vertices adjacent
to at least one vertex of X in G. We omit the subscript G when it is clear from
the context. The order of G is denoted by |V (G)| and the degree of a vertex v

This work is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under grant no. 118E799. The work of Didem Gözüpek was supported by
the BAGEP Award of the Science Academy of Turkey.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 280–287, 2020.
https://doi.org/10.1007/978-3-030-43120-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_21&domain=pdf
http://orcid.org/0000-0001-9591-8671
http://orcid.org/0000-0001-8450-1897
http://orcid.org/0000-0002-9547-7375
https://doi.org/10.1007/978-3-030-43120-4_21

Edge-Critical EB-Graphs 281

of G is denoted by d(v). A vertex of degree one is called a leaf and a vertex
adjacent to a leaf is called a stem. For a graph G and U ⊆ V (G), the subgraph
induced by U is denoted by G[U]. The difference G\H of two graphs G and H
is defined as the subgraph induced by the difference of their vertex sets, that
is, G\H = G[V (G)\V (H)]. For a graph G and a vertex v of G, the subgraph
induced by V (G)− v is denoted by G− v for the sake of brevity. We also denote
by G\e the graph G(V,E\{e}). The cycle and complete graph on n vertices are
denoted by Cn and Kn, respectively, while the complete bipartite graph with
partite sets of sizes n and m is denoted by Kn,m. The length of a shortest cycle
in G is called the girth of G. For a graph G, c(G) denotes the number of compo-
nents in G. A set of vertices S of a graph G such that c(G\S) > c(G) is called
a cut-set. A vertex v is called a cut-vertex if {v} is a cut-set. A graph is called
2-connected if its cut-sets have at least 2 vertices.

A matching in a graph G is a set M ⊆ E(G) of pairwise nonadjacent edges of
G. A vertex v of G is saturated by M if v ∈ V (M) and exposed by M otherwise.
A matching M is called maximal in G if there is no other matching of G that
contains M . A matching is called a maximum matching of G if it is a matching
of maximum size. The size of a maximum matching of G is denoted by ν(G). A
matching M in G is a perfect matching if M saturates all vertices in G, that is,
V (M) = V (G). For a vertex v, a matching M is called a matching isolating v if
{v} is a component of G\V (M). A graph G is equimatchable if every maximal
matching of G is a maximum matching, that is, every maximal matching has
the same cardinality. A graph G is randomly matchable if it is an equimatchable
graph admitting a perfect matching. A graph G is factor-critical if G − v has
a perfect matching for every vertex v of G. A factor-critical graph cannot be
bipartite, since if you choose a vertex from the small partite set (or from any
partite set if their cardinalities are equal) there cannot be a perfect matching in
the rest of the graph.

In the literature, the structure of equimatchable graphs are extensively stud-
ied by several authors, see [5,7,9]. In 1984, Lesk et al. [6] formally introduced
equimatchable graphs and provided a characterization of equimatchable graphs
via Gallai-Edmonds decomposition, yielding a polynomial-time recognition algo-
rithm. In [10], Sumner characterized the equimatchable graphs with a perfect
matching, i.e., randomly matchable graphs, whereas the work in [6] provided a
characterization for general equimatchable graphs. Particularly, [6] provided a
characterization of equimatchable bipartite graphs in terms of subsets of neigh-
borhoods of vertices in smaller partite set. Although this characterization is
valid for all equimatchable bipartite graphs, the structure of these graphs is not
completely understood. In 2010, Frendrup et al. [4] gave a structural characteri-
zation of equimatchable graphs with girth at least five. However, the work in [4]
provides a partial characterization for equimatchable bipartite graphs; namely,
a characterization for equimatchable bipartite graphs with girth at least six.

Motivated by lack of a structural characterization for all equimatchable bipar-
tite graphs, we investigate the structure of equimatchable bipartite graphs in
this work. For an equimatchable graph, an edge is said to be critical-edge if the

282 Y. Büyükçolak et al.

graph obtained by removal of this edge is not equimatchable. An equimatchable
graph is called edge-critical if every edge is critical. Notice that each edge-critical
equimatchable bipartite graph can be obtained from some equimatchable bipar-
tite graphs having the same vertex partition by recursively removing non-critical
edges. Conversely, each equimatchable bipartite graph can also be constructed
from some edge-critical equimatchable bipartite graphs by joining some non-
adjacent vertices from different partite sets. Therefore, we focus on the structure
of bipartite edge-critical equimatchable bipartite graphs instead of the structure
of equimatchable bipartite graphs.

In Sect. 2, we provide some structural results for equimatchable bipartite
graphs by using Gallai-Edmonds decomposition. Particularly, we extend the par-
tial characterization of Frendrup et al. [4] to all equimatchable bipartite graphs
without any girth condition. In Sect. 3, we discuss the structure of edge-critical
equimatchable bipartite graphs. We first show that every connected edge-critical
equimatchable bipartite graph is 2-connected. Afterwards, we provide two char-
acterizations for edge-critical equimatchable bipartite graphs.

2 Equimatchable Bipartite Graphs

In this section, we would like to investigate connected equimatchable bipartite
graphs, more simply EB-graphs. Since a graph is equimatchable if and only if all
of its components are equimatchable, it suffices to focus on connected EB-graphs.
In the literature, there exist some characterizations for equimatchable bipartite
graphs. For instance, the characterization of randomly matchable graphs, not
necessarily bipartite, was provided in [10] as follows:

Theorem 1 [10]. A connected graph is randomly matchable if and only if it is
isomorphic to K2n or Kn,n, n ≥ 1.

The following characterization of equimatchable graphs with girth at least five,
not necessarily bipartite, was provided in [4]:

Theorem 2 [4]. Let G be a connected equimatchable graph with girth at least 5.
Then G ∈ F ∪ {C5, C7}, where F is the family of graphs containing K2 and all
connected bipartite graphs with bipartite sets V1 and V2 such that all vertices in
V1 are stems and no vertex from V2 is a stem.

Note here that this characterization is only a partial characterization for EB-
graphs although it completely reveals the structure of EB-graphs with girth at
least six. On the other hand, the work in [6] provides a general characterization
for EB-graphs as follows:

Theorem 3 [6]. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | is
equimatchable if and only if for all u ∈ U , there exists a non-empty X ⊆ N(u)
such that |N(X)| ≤ |X|.

Edge-Critical EB-Graphs 283

The following result is a reformulation of the characterization of EB-graphs in
Theorem 3 by using well-known Hall’s Theorem saying that in a bipartite graph
G = (A ∪ B,E) with |A| ≤ |B|, there exists a matching saturating all vertices
in A if and only if for all subset S ⊆ A, we have |N(S)| ≥ |S|.
Theorem 4 [3]. Let G = (U ∪ V,E) be a connected bipartite graph with
|U | ≤ |V |. Then G is equimatchable if and only if every maximal matching
of G saturates all vertices in U .

Although Theorem 3 provides a complete characterization for EB-graphs, it does
not explicitly reveal the structure of EB-graphs. The lack of structural charac-
terization for all EB-graphs motivated us to study the structure of EB-graphs.

The following well-known structural result, which is called Gallai-Edmonds
decomposition, provides an important characterization for general graphs, not
necessarily bipartite, based on maximum matchings as follows:

Theorem 5 [8]. For any graph G, let D(G) denote the set of vertices which
are exposed by at least one maximum matching of G and A(G) be the vertices
of V (G)\D(G) which are neighbors of at least one vertex of D(G). Let C(G) =
V (G)\(D(G) ∪ A(G)). Then:

1. Every component of the graph G[D(G)] is factor-critical,
2. G[C(G)] has a perfect matching,
3. every maximum matching of G matches every vertex of A(G) to a vertex of

distinct component of G[D(G)].

It is easy to observe that if a graph G admits a perfect matching then C(G) =
V (G), and if G is a connected equimatchable graph with no perfect matching
then C(G) = ∅ and A(G) is an independent set in G.

We focus on the case where G is an equimatchable graph with no perfect
matching and A(G) is nonempty. It can be easily seen that all EB-graphs with no
perfect matching are non-factor-critical; however, all equimatchable non-factor-
critical graphs with no perfect matching are not bipartite. The following result
is not explicitly given in [6], but it is an immediate consequence of Theorems 3
and 4 in [6]:

Lemma 1 [6]. Let G be a connected equimatchable non-factor-critical graph with
no perfect matching. G is bipartite if and only if each component of G[D] is K1.

Corollary 1. Let G be a connected EB-graph with no perfect matching. Then,
C(G) = ∅, and each of D(G) and A(G) are a nonempty independent set.

For the rest of the paper, G = (U ∪ V,E) denotes a connected EB-graph
with |U | < |V |. By Theorem 1, the only connected EB-graph with equal partite
sets is Kn,n where n ≥ 1. The next result shows that the parts U and V of G
correspond to the sets A(G) and D(G), respectively, where C(G) is empty:

Lemma 2. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph and let
(D,A,C) be its Gallai-Edmonds decomposition. Then we have C = ∅, A = U
and D = V .

284 Y. Büyükçolak et al.

Corollary 2. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph.
Then there exists an isolating matching for each v ∈ V and there is no isolating
matching for any u ∈ U .

Corollary 3. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected EB-graph with
Gallai-Edmonds decomposition (D,A,C).

– If G admits a perfect matching, that is, |U | = |V |, then C = V (G), D = ∅
and A = ∅. In particular, G is Kn,n where n ≥ 1.

– If G admits no perfect matching, that is, |U | < |V |, then C = ∅, A = U and
D = V .

The next result extends the characterization of Frendrup et al. [4] to all
EB-graphs by eliminating the girth condition:

Theorem 6. Let G = (U ∪V,E) with |U | < |V | be a connected EB-graph. Then
each vertex u ∈ U satisfies at least one of the followings:

(i) u is a stem in G,
(ii) u is included in a subgraph K2,2 in G.

Proof. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph. Let u ∈ U
and N(u) = {v1, v2, ..., vn} be the set of neighbors of u in V . If one vertex in
N(u) is a leaf in G, then we are done. Assume to the contrary that none of the
vertices in N(u) is a leaf in G. If u is not included in a subgraph K2,2 in G,
then there is no pair of vertices in N(u) having a common neighbor except u. It
implies that there exists a matching isolating u in G. Since it contradicts with
Corollary 2, we deduce that there exists at least one pair, say {v1, v2}, of vertices
in N(u) having a common neighbor except u, say u∗. It follows that the vertices
{u, v1, u

∗, v2} induce a K2,2 in G, as desired. �	
Therefore, an extension of Theorem 2 can be derived as a corollary of Theorem 6
in the following way:

Corollary 4. Let G be a connected EB-graph with girth at least 6. Then G ∈ F ,
where F is the family of graphs containing K2 and all connected bipartite graphs
with bipartite sets V1 and V2 with |V1| ≤ |V2| such that all vertices in V1 are
stems and no vertex from V2 is a stem.

Finally, in Lemma 4, we extend the following known result about the cut
vertices in equimatchable graphs to EB-graphs as in the following way:

Lemma 3 [1]. Let G be a connected equimatchable graph with a cut vertex c,
then each component of G − c is also equimatchable.

Lemma 4. Let G = (U ∪ V,E) with |U | < |V | be a connected EB-graph with a
cut vertex c, then each component of G − c is also an EB-graph. Furthermore,
if H = (UH ∪ VH , EH) with |UH | ≤ |VH | is a component of G − c, then UH ⊆ U
and VH ⊆ V .

The theorem says that for each cut vertex c of G, the components of G − c are
induced EB-subgraphs preserving (U, V)-partitions of G.

Edge-Critical EB-Graphs 285

3 Edge-Critical Equimatchable Bipartite Graphs

The aim of this section is to characterize a generating subclass of EB-graphs,
namely edge-critical EB-graphs. Recall that for an equimatchable graph, an edge
is a critical-edge if the graph obtained by removal of this edge is not equimatch-
able, and an equimatchable graph is edge-critical, if every edge is critical.

For a connected EB-graph G = (U ∪V,E) with |U | < |V |, Theorem 4 implies
that any bipartite supergraph of G obtained by joining some pair of non-adjacent
vertices u ∈ U and v ∈ V of G is also a connected EB-graph with the same vertex
sets U ∪V . Intuitively, we consider EB-subgraphs of G with the same vertex set
U ∪V . In fact, the smallest such EB-subgraph of G is an edge-critical EB-graph
with the same vertex set U ∪ V . It follows that each edge-critical EB-graph
can be obtained from some EB-graphs having the same vertex set by recursively
removing non-critical edges. Therefore, in order to characterize all EB-graphs we
only need to characterize all edge-critical EB-graphs. It means that the class of
edge-critical EB-graphs form a generating subclass of EB-graphs. Since a graph
is equimatchable if and only if each of its components is equimatchable, it suffices
to focus on connected edge-critical EB-graphs. Notice that the complete graph
K2 (or equivalently the complete bipartite graph K1,1) is equimatchable but not
edge-critical.

The following results about edge-critical equimatchable graphs, not neces-
sarily bipartite, are frequently used in our arguments:

Lemma 5 [2]. Let G
= K2 be a connected equimatchable graph. Then ν(G) =
ν(G\e) for every non-critical edge e ∈ E(G).

Lemma 6 [2]. Let G
= K2 be a connected equimatchable graph. Then uv ∈
E(G) is critical if and only if there is a matching of G containing uv and satu-
rating NG\uv({u, v}).

Corollary 5. A connected equimatchable graph G
= K2 is edge-critical if and
only if there is a matching containing uv and saturating N({u, v}) for every
uv ∈ E(G).

Corollary 6. All randomly matchable graphs except K2 are edge-critical.

The next result shows that edge-critical EB-graphs cannot have a cut vertex.

Lemma 7. Let G = (U ∪V,E) with |U | ≤ |V | be a edge-critical EB-graph. Then
G is 2-connected; i.e. G has no cut vertex.

Proof. Let G = (U ∪ V,E) with |U | ≤ |V | be a edge-critical EB-graph. In the
case where |U | = |V |, G is Kn,n for some n ≥ 2 by Corollary 6. It is clear that
Kn,n, n ≥ 2, is 2-connected and we are done. We then suppose that |U | < |V |.
Assume to the contrary that G has a cut vertex c. Let H1, H2, ..., Hk (k ≥ 2) be
connected components of G−c such that di ∈ Hi where d1, d2, ..., dk ∈ N(c) and
i ∈ [k]. By Lemma 4, each Hi is an EB-subgraph preserving (U, V)-partitions of
G where i ∈ [k]. By Lemma 6, for each edge ei = cdi, there exists a matching Mj

286 Y. Büyükçolak et al.

in Hj saturating all vertices in NHj
(c) for j ∈ [k] with j
= i. Then, it follows

that there exists a matching M =
⋃k

l=1 Ml isolating c in G. By Corollary 2, we
have c ∈ V and d1, d2, ..., dk ∈ U . On the other hand, by Lemma6, for each edge
ei = cdi, there also exists a matching M ′

i in Hi saturating all vertices in NHi
(di)

for i ∈ [k]. It is easy to see that each M ′
i is indeed a matching isolating di in Hi

for i ∈ [k]. By Corollary 2, we conclude that di /∈ UHi
, which contradicts with

Lemma 4. �	
The next result provides a characterization for edge-critical EB-graphs as

follows:

Theorem 7. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | is an
edge-critical EB-graph if and only if for every u ∈ U , |N(S)| ≥ |S| holds for any
subset S ⊆ N(u). In particular, the equality holds only for S = N(u).

Proof. Let G = (U ∪V,E) with |U | ≤ |V | be a connected bipartite graph. In the
case where |U | = |V |, by Corollary 6, G is Kn,n for some n ≥ 2. The theorem
holds and we are done. Hence, we then suppose that |U | < |V |.

(⇒) Suppose that G is a edge-critical EB-graph. Assume to the contrary
that there exists u ∈ U such that |N(S)| < |S| holds for some S ⊆ N(u). Since
|N(S)| < |S|, there is no matching saturating all vertices in S. It implies that for
any w ∈ S, there is no matching saturating N({u,w}) and containing uw. By
Lemma 6, the edge uw is not critical, contradicting with G being an ECE-graph.

(⇐) Suppose that for every u ∈ V (G), |N(S)| ≥ |S| holds for any subset
S ⊆ N(u) and the equality holds only for S = N(u). Since S = N(u) satis-
fies |N(S)| = |S|, G is an equimatchable graph by Theorem3. Assume to the
contrary that uv ∈ E(G) is not critical, where u ∈ U and v ∈ N(u); that is,
G\uv is equimatchable. Then, by Theorem 3, there exists X ⊆ NG\uv(u) such
that |NG\uv(X)| ≤ |X|. Note also that X ⊆ NG\uv(u) ⊂ N(u). It follows that
N(X) = NG\uv(X) ≤ |X|. However, since X
= N(u), it contradicts with the
assumption that |N(S)| ≥ |S| holds for any subset S ⊆ N(u) and the equality
holds only for S = N(u). �	

The next theorem provides another characterization for edge-critical EB-
graphs in terms of induced subgraphs as follows:

Theorem 8. A connected bipartite graph G = (U ∪ V,E) with |U | ≤ |V | is
an edge-critical EB-graph if and only if for any u ∈ U , the subgraph H =
(UH ∪VH , EH) of G induced by the vertices N(u) and N(N(u)) is a 2-connected
balanced bipartite subgraph of G with a perfect matching.

Proof. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected bipartite graph.
(⇒) Suppose that G is a edge-critical EB-graph. Let u ∈ U and H be the

subgraph of G induced by the vertices N(u) and N(N(u)). By Theorem 7, we
have |N(u)| = |N(N(u))|, implying that |UH | = |VH |. That is, H is a balanced
bipartite subgraph of G. By Corollary 5, for any neighbor v of u, there exists a
matching containing uv and saturating all other neighbors of u in G. It implies

Edge-Critical EB-Graphs 287

that there exists a perfect matching containing uv in H since H is a balanced
bipartite graph.

Notice that u cannot be nonstem cut vertex because otherwise it contradicts
with the fact that for any neighbor v of u, there exists a perfect matching con-
taining uv in H. By definition of H, u is a dominating vertex in H; that is, u is
adjacent to all vertices of VH . Hence, it is easy to see that H cannot have any
other nonstem cut vertex. We now show that H has no stem cut vertex; that is,
there is no leaf in H. By definition of H, all neighbors of vertices of VH in G are
included in UH . Then there is no leaf in VH since G is 2-connected by Lemma 7.
If there exists a leaf in UH , say u∗, then there exists a stem v∗ in VH such that
u∗v∗ ∈ E(G). By Corollary 5, there exists a matching containing the edge uv∗

and saturating all neighbors of u in G. Note that u∗ has no neighbor in VH other
than v∗ and u is a dominating vertex in H. Hence, there is no such matching
by the cardinalities of VH\v∗ and UH\u since H is a balanced bipartite graph.
Therefore, H is a 2-connected balanced bipartite subgraph of G with a perfect
matching.

(⇐) Suppose that for any u ∈ U , the subgraph H = (UH ∪ VH , EH) of G
induced by the vertices N(u) and N(N(u)) is a 2-connected balanced bipartite
subgraph of G with a perfect matching. Since H is a 2-connected balanced
bipartite graph with a perfect matching, |N(S)| ≥ |S| holds for any subset
S ⊆ N(u) while the equality holds only for S = N(u). Hence, by Theorem 7, we
deduce that G is an edge-critical EB-graph. �	
Corollary 7. Let G = (U ∪ V,E) with |U | ≤ |V | be a connected edge-critical
EB-graph. If H = (UH ∪ VH , EH) is a subgraph of G induced by the vertices
N(u) and N(N(u)) for any u ∈ U , then all vertices in UH\{u} form a C4 with
u.

References

1. Akbari, S., Ghodrati, A.H., Hosseinzadeh, M.A., Iranmanesh, A.: Equimatchable
regular graphs. J. Graph Theory 87, 35–45 (2018)

2. Deniz, Z., Ekim, T.: Critical equimatchable graphs. Preprint
3. Deniz, Z., Ekim, T.: Edge-stable equimatchable graphs. Discrete Appl. Math. 261,

136–147 (2019)
4. Frendrup, A., Hartnell, B., Preben, D.: A note on equimatchable graphs. Australas.

J. Comb. 46, 185–190 (2010)
5. Grünbaum, B.: Matchings in polytopal graphs. Networks 4, 175–190 (1974)
6. Lesk, M., Plummer, M.D., Pulleyblank, W.R.: Equi-matchable graphs. In: Graph

Theory and Combinatorics (Cambridge, 1983), pp. 239–254. Academic Press, Lon-
don (1984)

7. Lewin, M.: M-perfect and cover-perfect graphs. Israel J. Math. 18, 345–347 (1974)
8. Lovász, L., Plummer, M.D.: Matching Theory, vol. 29, Annals of Discrete Mathe-

matics edn. North-Holland, Amsterdam (1986)
9. Meng, D.H.-C.: Matchings and coverings for graphs. Ph.D. thesis. Michigan State

University, East Lansing, MI (1974)
10. Sumner, D.P.: Randomly matchable graphs. J. Graph Theory 3, 183–186 (1979)

Determining the Rank of Tensors in
F2
q ⊗ F3

q ⊗ F3
q

Nour Alnajjarine(B) and Michel Lavrauw(B)

Sabanci University, Istanbul, Turkey
{nour,mlavrauw}@sabanciuniv.edu

Abstract. Let Fq be a finite field of order q. This paper uses the classi-
fication in [7] of orbits of tensors in F2

q ⊗F3
q ⊗F3

q to define two algorithms
that take an arbitrary tensor in F2

q ⊗ F3
q ⊗ F3

q and return its orbit, a
representative of its orbit, and its rank.

Keywords: Tensor rank · Rank distribution · Tensor decomposition

1 Introduction and Preliminaries

The study of tensors of order at least three has been an active area in recent years,
with numerous applications in representation theory, algebraic statistics and
complexity theory [5,6]. For example, the problem of determining the complexity
of matrix multiplication can be rephrased as the problem of determining the
rank of a particular tensor (the matrix multiplication operator). This problem
has only been solved for 2 × 2-matrices (see Strassen and Winograd), and we
refer to [6, Chap. 2, Sect. 4] for more on this topic.

Determining the decomposition of a tensor A is a notoriously hard problem
that arises in many other applications such as psychometrics, chemometrics,
numerical linear algebra and numerical analysis [5]. In many tensor decomposi-
tion problems, the first issue to resolve is to determine the rank of the tensor,
which is not always an easy task.

Let Sym(2) denote the symmetric group of order 2 and V := F2
q ⊗ F3

q ⊗ F3
q,

where Fq is the finite field of order q. Consider then the two natural actions on
V of the group G and its subgroup H, where G ∼= GL(F2

q) × (GL(F3
q) � Sym(2)),

as a subgroup of GL(V) stabilising the set of fundamental tensors in V , and
H ∼= GL(F2

q)×GL(F3
q)×GL(F3

q). In this paper, we study tensors in V under the
action of G to present the algorithms “RankOfTensor” and “OrbitOfTensor”,
which take an arbitrary tensor in V and return its orbit, a representative of its
orbit, and its rank.

We follow the notation and terminology from [8]. Let A be a tensor in V .
The rank of A, Rank(A), is defined to be the smallest integer r such that

A =
r∑

i=1

Ai (1)

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 288–294, 2020.
https://doi.org/10.1007/978-3-030-43120-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_22

Determining the Rank of Tensors in F2
q ⊗ F3

q ⊗ F3
q 289

with each Ai, a rank one tensor in V . Recall that the set of rank one tensors (fun-
damental tensors) in V is the set {v1 ⊗v2 ⊗v3 : v1 ∈ F2

q \{0} , v2, v3 ∈ F3
q \{0}}.

It is clear from this definition that the rank of a tensor is a projective property
in the vector space V . In other words, the rank of A does not change when A
is multiplied by a nonzero scalar. For this reason, to dispose of the unneeded
information, it makes sense to consider the problem of rank and decomposition
in the projective space PG(V).

The Segre Variety. Projectively, the set of nonzero tensors of rank one corre-
sponds to the set of points on the Segre variety S1,2,2(Fq), which is the image of
the Segre embedding σ1,2,2 defined as:

σ1,2,2 : PG(F2
q) × PG(F3

q) × PG(F3
q) −→ PG(V)

(〈v1〉, 〈v2〉, 〈v3〉) 	→ 〈v1 ⊗ v2 ⊗ v3〉.
For any projective point in PG(V), we define its rank to be the rank of any
corresponding tensor.

Contraction Spaces. For A ∈ V , we define the first contraction space of A to
be the following subspace of F3

q ⊗ F3
q:

A1 := 〈u∨
1 (A) : u∨

1 ∈ F2
q
∨〉 (2)

where F2
q
∨ denotes the dual space of F2

q, and where the contraction u∨
1 (A) is

defined by its action on the fundamental tensors as follows:

u∨
1 (v1 ⊗ v2 ⊗ v3) = u∨

1 (v1)v2 ⊗ v3. (3)

Similarly, the second and third contraction spaces, A2 and A3, can be defined.
Note that we are considering in this study the projective subspaces PG(A1),
PG(A2) and PG(A3) of PG(F3

q ⊗ F3
q), PG(F2

q ⊗ F3
q) and PG(F2

q ⊗ F3
q), respec-

tively, where we have PG(F3
q ⊗ F3

q) ∼= PG(8, q) and PG(F2
q ⊗ F3

q) ∼= PG(5, q).
Also, remark that the rank of any contraction coincides with the usual matrix
rank.

Rank Distributions. For 1 ≤ i ≤ 3, define the i-th rank distribution of A, Ri,
to be the 3-tuple whose j-th entry is the number of rank j points in the i-th
contraction space PG(Ai). Consider now the canonical basis of F �

q , {e1, . . . , e�},
for � = 2, 3. We define the canonical basis of V as {ei ⊗ ej ⊗ ek : 1 ≤ i ≤
2 and 1 ≤ j, k ≤ 3}. By writing A ∈ V as A =

∑
Ai,j,kei ⊗ ej ⊗ ek, one can

view A as a 2×3×3 rectangular solid whose entries are the Ai,j,k’s. This solid can
be decomposed into slices that completely determine A. For example, we may
view A as a collection of 2 size 3 × 3 matrices: (A1,j,k), (A2,j,k), which are called
the horizontal slices of A, or a collection of 3 matrices (Ai,1,k), (Ai,2,k), (Ai,3,k)
called the lateral slices of A, or a collection of 3 matrices (Ai,j,1), (Ai,j,2), (Ai,j,3)
called the frontal slices of A.

Proposition 1 (Corollary 2.2 in [8]). Let G1 = GL(F3
q) � Sym(2) and H1 :=

GL(F3
q)×GL(F3

q). Then, two tensors A and C in V are G-equivalent if and only

290 N. Alnajjarine and M. Lavrauw

if A1 is G1-equivalent to C1, if and only if A is H-equivalent to one of {C,CT },
where T is the map on V defined by sending c1 ⊗ c2 ⊗ c3 to c1 ⊗ c3 ⊗ c2 and
expanding linearly.

Theorem 1 (Theorem 3.10 in [8]). There are 21 H-orbits and 18 G-orbits of
tensors in V .

Note that since we are working projectively, the trivial orbit containing the zero
tensor will be ignored.

For the convenience of the reader, we have collected some information from [8]
about each G-orbit in V and their contraction spaces including representatives
of orbits, the tensor rank of each orbit and rank distributions on the webpage
[2], to which we will refer as Table 1.

2 The Algorithms

In this section, we present a GAP function that takes an arbitrary tensor in
V and returns its orbit number (see Table 1) and a representative of its orbit.
The construction of this function is mainly based on the rank distributions of
the projective contraction spaces associated with tensors in V , and the fact that
tensors of the same orbit have the same rank distributions (see Proposition 1).
We follow for this purpose the classification of G-orbits of tensors in V [7] as
summarized in [2].

We start with a series of auxiliary functions that will be needed to construct
our main function. The calling of most of these functions in GAP requires the
usage of the GAP-package FinInG [3,4].

2.1 Auxiliary Functions

1. MatrixOfPoint : turns a point of a projective space into an (m × n)−matrix
containing the coordinates.

2. RankOfPoint : returns the rank of MatrixOfPoint(x,m,n).
3. RankDistribution: returns the rank distribution of a subspace by considering

its points as m × n matrices using the RankOfPoint function.
4. CubicalArrayFromPointInTensorProductSpace: returns the horizontal slices

of a tensor in PG(V) where in our case we have n1 = 2, n2 = 3 and n3 = 3.
Notice that this function depends on how we choose the coordinates.

5. ContractionOfPointInTensorProductSpace: returns the projective contrac-
tion vec∨(point); recall that in our case a point represents a tensor in PG(V).

6. SubspaceOfContractions: returns the projective contraction spaces associ-
ated with a projective point in PG(V).

7. Rank1PtsOftheContractionSubspace: returns the set of rank 1 points of
PG(Ai) using the RankOfPoint function.

8. RepO10odd : returns a representative of o10 if q is odd.
9. AlternativeRepresentationOfFiniteFieldElements: gives an alternative way

of representing finite fields’ elements.

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html

Determining the Rank of Tensors in F2
q ⊗ F3

q ⊗ F3
q 291

10. RepO10even: returns a representative of o10 if q is even.
11. RepO15odd : returns a representative of o15 if q is odd.
12. RepO15even: returns a representative of o15 if q is even.

2.2 OrbitOfTensor

The OrbitOfTensor function takes an arbitrary tensor A in PG(V) and by using
the above auxiliary functions, it calculates the rank distribution of the first
contraction space of A, R1, and compares it with the results in Table 1 to specify
the orbit number containing A. In some cases, R1 is not enough to distinguish
between orbits. For example, orbits o10, o11 and o12 (resp. o6 and o7) have the
same R1. In this case, we calculate R2 and R3 to differentiate among them.
But since the orbits o4, o7 and o11 are the only G-orbits of tensors which split
under the action of H to oi and oT

i [8], we can see that a direct comparison
between R2 and R3 from Table 1 will not be enough to distinguish between o10,
o11 and o12 (resp. o6 and o7). For this reason, we consider (algorithmically) some
extra possible cases of R2 and R3 to insure that if A ∈ oj then AT ∈ oj , where
j ∈ {7, 11} [2]. Notice that, we do not have to do a similar work for o4 since it
is completely determined by R1.

Although rank distributions are sufficient to specify the tensor’s orbit in most
cases, they are not helpful in distinguishing o15 and o16 as they have the same
rank distributions. For this purpose, we use Lemma 1 to distinguish between
them.

Lemma 1. Consider the two G-orbits of tensors in V , o15 and o16. In both
cases PG(A1) is a line with rank distribution [0, 1, q]. Let x2 be the unique rank
2 point on PG(A1) and x1 be a point among the q points of rank 3 on PG(A1).
Then, there exists a unique solid V containing x2 which intersects S3,3(Fq) in a
subvariety Q(x2) equivalent to a Segre variety S2,2(Fq). Furthermore, there is no
rank one point in U \Q(x2) for o16 where U := 〈V, x1〉, and there is one for o15.

Proof. The first result is a direct application of [8, Lemma 2.4]. The second one
uses the two possible cases of having 2 points yi, i = 1, 2 of rank i such that x1

is on the line 〈y1, y2〉 and Q(x2) = Q(y2) or no such points exist, which were
used in [8, Theorem 3.1 case(4)] to define o15 and o16, respectively. ��
For the same reason, we consider the case q = 2 separately. In this case, as R1 is
the same for the orbits o10, o12 and o14, we distinguish between o10 and o14 using
R2. However, as o12 and o14 have the same rank distributions, we differentiate
between them using the geometric description of the second contraction space.
In particular, the difference between o12 and o14 is that for o14 the 3 points of
rank one in the second contraction space (which is a plane) span the space, while
for o12 they do not (see Table 1).

In most of the cases, except for o10, o15 and o17, the orbit representative
is directly deduced from Table 1 and it is defined by its two horizontal slices.

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html

292 N. Alnajjarine and M. Lavrauw

For example, a representative of o11 is e1 ⊗ (e1⊗e1+e2⊗e2)+e2⊗(e1⊗e2+e2⊗e3)
(see Table 1), and this can be represented by its horizontal slices as

⎧
⎨

⎩

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦

⎫
⎬

⎭ .

Representative for o17. We know that the orbit o17 has representatives of
the form e1 ⊗ (e) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ (αe1 + βe2 + γe3)) where
λ3 + γλ2 − βλ + α = 0 for all λ ∈ Fq and e = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 (see
Table 1). Instead of computing these parameters for every q (which would become
computationally infeasible for very large q), we will give an explicit construction
which does not require any computation at all. First, observe that o17 is the
only orbit of lines in PG(F3

q ⊗ F3
q) ∼= PG(8, q) consisting entirely of points of

rank 3 (see [7]). Thus, to obtain a representative for the orbit o17 it suffices to
construct such a line of constant rank 3. In order to do so, consider the cubic
extension Fq3 of Fq as an Fq-vector space W and the set U = {Mα : α ∈ Fq3}
where Mα is the matrix representative of the linear operator on W defined by:
x → αx. Clearly, U is a 3-dimensional Fq-vector space consisting of the zero
matrix and q3 − 1 matrices of rank 3. Any 2-dimensional Fq-subspace of U will
give us a representative of o17. Furthermore, a basis of this subspace gives us
the two horizontal slices of the representative. In particular, we consider the
2-dimensional Fq-subspace generated by the identity matrix and the companion
matrix of the minimal polynomial of a primitive element w of the cubic extension.

Representatives for o10 and o15. By Table 1, we can see that e1 ⊗ (e1 ⊗ e1 +
e2 ⊗e2 +ue1 ⊗e2)+e2 ⊗ (e1 ⊗e2 +ve2 ⊗e1) and e1 ⊗ (e1 ⊗e1 +e2 ⊗e2 +e3 ⊗e3 +
ue1⊗e2)+e2⊗(e1⊗e2+ve2⊗e1) are representatives of o10 and o15 respectively,
where vλ2+uvλ−1 = 0 for all λ ∈ Fq and u, v ∈ F∗

q . Similar to the previous case,
we give an explicit construction of o10, which does not require any computations.
It follows from [9] that o10 has a representative line of constant 2-rank 2 × 2-
matrices, which is an external line to a conic in V3(Fq), where V3(Fq) is the image
of the map ν3 : PG(2, q) → PG(5, q) induced by the mapping sending v ∈ F3

q

to v ⊗ v. Thus, by constructing such a line and taking any 2 points on it, we
obtain the required representative. First, recall that interior points of the conic
(C) : X0X2 − X2

1 = 0 in PG(2, q) are (x, y, z) where xz − y2 are non-squares.
Hence, if q is odd, one can start with a primitive root in Fq (which is a non-square
in Fq). Then, by considering its image under the polarity α associated to (C),
we obtain an external line to (C) in PG(2, q). This line can be seen in PG(8, q)
by embedding PG(2, q) as the set of points with last column and last row equal
to zero. If q is even, a similar argument works. In this case, we can start with the
minimal polynomial of a generator of the multiplicative group of Fq2 to obtain
an irreducible quadratic polynomial over Fq. The coefficients can then be used
as the dual coordinates of a line in PG(2, q) disjoint from the conic consisting
of the points (a2, ab, b2) with (a, b) ∈ PG(1, q). Once we have that line, we can
map it to a line in PG(8, q) by embedding PG(2, q) as the set of points with last

http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html
http://people.sabanciuniv.edu/~mlavrauw/T233/table1.html

Determining the Rank of Tensors in F2
q ⊗ F3

q ⊗ F3
q 293

column and last row equal to zero. Now, by using a representative of o10, we can
find the above u and v, which gives us directly a representative of o15.

2.3 RankOfTensor

The RankOfTensor function takes an arbitrary tensor A in PG(V) and uses
the OrbitOfTensor function to specify the G-orbit of the tensor and returns the
tensor’s rank. The code of all of these functions can be found in [1].

3 Computations and Summary

Example 1. gap> q:=397; sv:=SegreVariety([PG(1,q),PG(2,q),PG(2,q)]);

397

Segre Variety in ProjectiveSpace(17, 397)

gap> m:=Size(Points(sv));

9936552395502

gap> pg:=AmbientSpace(sv);

ProjectiveSpace(17, 397)

gap> n:=Size(Points(pg));

151542321438098147995655901146938756967526078

gap> A:=VectorSpaceToElement(pg,[Z(397)^0,Z(397)^336,Z(397)^339,

Z(397)^37,Z(397)^233,Z(397)^56,Z(397)^268,Z(397)^363,Z(397)^342,

Z(397)^297,Z(397)^146,Z(397)^71,Z(397)^57,Z(397)^84,Z(397)^33,

Z(397)^203,Z(397)^229,Z(397)^191]);

gap> OrbitOfTensor(A)[1]; time;

14

94

gap> RankOfTensor(A);

3

gap> time;

141

gap> NrCombinations([1..m], 3);

163514371865202881474954561407873423500

Summary. The RankOfTensor is an efficient tool to compute tensor ranks of
points in PG(V). Without this algorithm, it is computationally infeasible to do
this. For example, consider q, sv, pg and A from Example 1. The space pg has
n points. Among these we have m points of rank 1, which gives a 38-order of
magnitude number of possible 3-combinations of points of rank 1, which might
generate a plane containing A. This reflects how hard it would be to compute
the rank without this algorithm.

Acknowledgement. The second author acknowledges the support of The Scientific
and Technological Research Council of Turkey, TÜBİTAK (project no. 118F159).

294 N. Alnajjarine and M. Lavrauw

References

1. Alnajjarine, N., Lavrauw, M.: Determining the rank of tensors in F2
q ⊗ F3

q ⊗ F3
q.

http://people.sabanciuniv.edu/mlavrauw/T233/T233 paper.html
2. Alnajjarine, N., Lavrauw, M.: Projective description and properties of the G-orbits

of (2 × 3 × 3)-tensors. http://people.sabanciuniv.edu/mlavrauw/T233/table1.html
3. Bamberg, J., Betten, A., Cara, Ph., Beule, J. De., Lavrauw, M., Neunhöffer, M.:

FinInG: Finite Incidence Geometry: FinInG - a GAP package. http://www.fining.
org. Accessed 31 Mar 2018

4. The GAP Group: GAP Groups, Algorithms, and Programming. https://www.gap-
system.org. Accessed 19 June 2019

5. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

6. Landsberg, J.M.: Tensors: Geometry and Applications: Geometry and Applications,
2nd edn. American Mathematical Society, Providence (2011)

7. Lavrauw, M., Sheekey, J.: Classification of subspaces in F2 ⊗ F3 and orbits in
F2 ⊗ F3 ⊗ Fr. J. Geom. 108(1), 5–23 (2017)

8. Lavrauw, M., Sheekey, J.: Canonical forms of 2× 3× 3 tensors over the real field,
algebraically closed fields, and finite fields. Linear Algebra Appl. 476, 133–47 (2015)

9. Lavrauw, M., Popiel, T.: The symmetric representation of lines in PG (F2
q ⊗ F3

q).
Discrete Math. (to appear)

http://people.sabanciuniv.edu/mlavrauw/T233/T233_paper.html
http://people.sabanciuniv.edu/mlavrauw/T233/table1.html
http://www.fining.org
http://www.fining.org
https://www.gap-system.org
https://www.gap-system.org

Second Order Balance Property
on Christoffel Words

Lama Tarsissi1,2(B) and Laurent Vuillon3

1 LAMA, Université Gustave Eiffel, CNRS, 77454 Marne-la-Vallée, France
2 LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris,

77454 Marne-la-Vallée, France
lama.tarsissi@esiee.fr

3 LAMA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS,
73000 Chambéry, France

laurent.vuillon@univ-smb.fr

Abstract. In this paper we study the balance matrix that gives the
order of balance of any binary word. In addition, we define for Christoffel
words a new matrix called second order balance matrix. This matrix
gives more information on the balance property of a word that codes the
number of occurrences of the letter 1 in successive blocks of the same
length for the studied Christoffel word. By taking the maximum of the
Second order balance matrix we define the second order of balance and
we are able to order the Christoffel words according to these values. Our
construction uses extensively the continued fraction associated with the
slope of each Christoffel word, and we prove a recursive formula based
on fine properties of the Stern-Brocot tree to construct second order
matrices.

Keywords: Balance property · Second order balance property ·
Christoffel words · Stern-Brocot tree · Continued fractions

1 Introduction

Balanced words appear in many developments of combinatorics on words and
the balance property is considered as a fine tool to investigate the structure
of words [16,20]. As a typical example of infinite balanced words, Sturmian
words could be constructed equivalently by discretizations of irrational slope
lines in a square grid [10,29], by billiard words in a square [2,23] or by coding
of irrational rotations on a unit circle with a partition in two intervals [10]. The
finite balanced words are given by discretizations of rational slope lines in a
square grid and have been studied in particular by Christoffel [9]. Interestingly,
finite and infinite balanced words show up in specific optimization problems
[1,25,29] and for example optimal schedules for job-shop problems with two

This work was partly funded by the French Programme d’Investissements d’Avenir
(LabEx Bézout, ANR-10-LABX-58) and ANR-15-CE40-0006.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 295–312, 2020.
https://doi.org/10.1007/978-3-030-43120-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_23

296 L. Tarsissi and L. Vuillon

tasks are exactly given by balanced words [13,18,29]. Furthermore, particular
solutions of job-shop problems with k tasks sharing the same ressource [1] are
given by finite or infinite balanced words on a k−letters alphabet where the
balanced property is checked on each letter of the alphabet [1,22,28]. More
precisely, for k = 2 the solutions of the job-shop problem is coded by an infinite
word which is either a periodic balanced word or an aperiodic balanced word
[13,18]. The situation gets more complicated for k > 2, which leads to the
famous Fraenkel’s conjecture [11,12]. It is restated in combinatorics on words
terms: An infinite word on a k−letters alphabet balanced on each letter of the
alphabet and with all letters frequencies pairwise distinct is given by an infinite
periodic word constructed on an unique period word FRk (up to a permutation of
letter and circular permutation) by the recursive formula FRk = FRk−1kFRk−1

with FR3 = 1213121. Many researchers have worked on the general problem of
infinite balanced words on an alphabet with one letter [15] or equivalently to
cover integers by Beatty sequences [12,26]. The conjecture is proved for k = 3
by Morikawa [19], for k = 4 by Altman, Gaujal and Hordijk [26], for k = 5 and
k = 6 by Tijdeman [28] and for k = 7 by Barat et Varju [14] and the conjecture
is still open for k > 7. Indeed, in order to investigate new discrete tools that
allow us to deeply understand the structure of balanced words, we propose a
second order balance property for Christoffel words that gives a refinement for
the balance property. In fact, we define for Christoffel words a new matrix called
second order balance matrix which gives information on the balance property
of a word that codes the number of 1’s of successive blocks of same length in
the studied Christoffel word. Thus we investigate balance property on successive
blocks instead of balance property on letters for second order balance property.
The main idea, to go further in the resolution of the Fraenkel’s conjecture, is to
consider synchronization of the blocks instead of synchronization of letters and
this is why we introduce the notion of second order of balance.

In Sect. 2, we recall some properties of the Christoffel words. In Sect. 3, we
define the balance matrix which gives information on the number of occurrences
of a given letter in all factors of a given binary circular word. This balance
matrix gives us the order of balance, for binary words. Afterwards, in Sect. 4,
we introduce the second order balance matrix of a given Christoffel word by
computing the balance matrix for the rows of the associated balance matrix. We
show in Sect. 5 that this matrix has many symmetries and is constructed by using
properties of continued fractions and the Stern-Brocot tree. We present in Sect. 6
a recursive construction for the second order balance matrix by considering the
properties of the continued fraction expansion for the slope of each Christoffel
word. Section 7 is left for the perspectives of this work. Remark that all the
proofs can be found on the long version on hal-02433984.

2 Notation and Christoffel Words

Let A be an alphabet of cardinality m, the word w is the concatenation of letters
of this alphabet and we write w ∈ A∗, where A∗ represents the set of all the

Second Order Balance Property on Christoffel Words 297

words formed by the alphabet A. We denote by n = |w| the length of the word
and by |w|a the number of occurrences of the letter a in the word w. The notation
w[i . . . j] refers to the factor of the word w from position i to position j. The
notation wω represents: wω = ww · · · w · · · and named “circular word associated
with w”. By convention, w0 = ε and a word w is said primitive if it is not the
power of a nonempty word. Two words w and w′ are conjugate of order k if and
only if there exist u, v such that |u| = k with w = uv and w′ = vu and we denote:
w ≡k w′. When the exact value of k is not relevant, we simply write w ≡ w′ and
we say that the two words are conjugate. A positive integer p is a period of w
if w[i] = w[i + p]; for all 1 ≤ i ≤ |w| − p. Given a word w = aw′ where a is a
letter, we note a−1w = w′ that is the removal of the letter a at the beginning
of w. If w ends with letter a, then the notation wa−1 is defined accordingly. Let
A = {a0, a1, . . . , am−1} be an alphabet, we let · be the anti-morphism such that:
a0 = am−1, a1 = am−2 . . . ai = am−1−i. A word w ∈ {0, 1}∗ is k−balanced if
and only if for all factors u, v of w, we get: |u| = |v| =⇒ ||u|1 − |v|1|| ≤ k. The
word w is called balanced if k = 1.

Christoffel words [9] have many equivalent definitions and characterizations.
The following geometrical definition is taken from [7] (see [5] for a self-contained
survey). The lower Christoffel path of slope a

b , where a and b are relatively
prime, is the path from (0, 0) to (b, a) in the integer lattice Z × Z that satisfies
the following conditions:

1. The path lies below the line segment that begins at the origin and ends at
(b, a).

2. The region enclosed by the path and the line segment contains no other points
of Z × Z besides those of the path.

We encode the lower Christoffel path (or simply Christoffel word) by means of a
word in the alphabet A using 0 (resp. 1) for any unit horizontal (vertical) step.
We get the Christoffel word of slope a

b denoted: C(a
b), see Fig. 1. Equivalently,

the Christoffel word w = C
(

a
b

)
is obtained by calculating the elements of the

sequence (ri)0≤i≤n, where n = a + b as follows: ri = ia mod n. Each letter,
w[i], ∀ 1 ≤ i ≤ n, of the word w and length n is obtained by computing:

w[i] =
{

0 if ri−1 < ri,
1 otherwise.

Example 1. Let (a, b) = (3, 5), the sequence (ri)0≤i≤8 = (0, 3, 6, 1, 4, 7, 2, 5, 0)
defines the Christoffel word C

(
3
5

)
= 00100101.

3 Balance Matrix

In this section, we introduce a new matrix used to obtain the order of balance
for any binary word in an explicit way. The ith row of the matrix M , M [i], is
seen as a word where each entry of the matrix is a letter. Given a word w ∈ A∗

of length n, we let Sw be the n×n matrix defined by Sw[i, j] = w[j]+ . . . w[i+j]
over the circular word w. By definition, we have that w is δ-balanced if

δ = max
i

(max(Sw[i]) − min(Sw[i])) .

298 L. Tarsissi and L. Vuillon

(0, 0)

(5, 3)

0 0
10 0

10
1

Fig. 1. Illustration of the geometrical definition of Christoffel words. The Christoffel
path goes from (0, 0) to (5, 3) and C

(
3
5

)
= 00100101.

The balance matrix Bw, is defined from Sw by subtracting the minimum value
on each row,

Bw[i, j] = Sw[i, j] − min(Sw[i]).

Obviously, we have that w is (max Bw)-balanced.
It is clear that by construction, if w is not a sequence of 1′s, then the first

row of Bw is equal to w. If k < |w| is a period of wω, again by construction we
have that the row Bw[k] contains only zeros. The converse is also true, an integer
k such that the row Bw[k] contains only zeros is a period of wω. Consequently,
a row of zeros is called a period row. Note that n = |w| is always a period of wω

and therefore we define the matrix Bw as a (n − 1) × n matrix since the n-th
row would not add any information.

For the sake of simplicity, when working with the Christoffel word C
(

a
b

)
, the

balance matrix BC(a
b) is simply denoted B a

b
.

Example 2. Let us consider the rational number 5
2 and n = 7. By writing the

Christoffel word w = C(52) = 0110111, the elements of the balance matrix Bw

and Sw are the following:

Sw =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 1 1 1
1 2 1 1 2 2 1
2 2 2 2 3 2 2
2 3 3 3 3 3 3
3 4 4 3 4 4 3
4 5 4 4 5 4 4
5 5 5 5 5 5 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B 5
2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 1 1 1
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 1 0
0 1 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.1 Properties of the Balance Matrix

In this section, we present some properties of the matrix Bw, where w is a binary
word of length |w| = n, allowing us to restrict the work to the upper half of the
balance matrix since the lower part will be obtained by symmetry.

Definition 1. Two words w and w′ are complementary if w ≡k w′ for some
k. Moreover, a word is said to be autocomplementary if it is complementary to
itself.

Second Order Balance Property on Christoffel Words 299

Example 3. The word w = 0110110010 is an autocomplementary word since we
have: w ≡5 w. While w = 0000100 and w′ = 0111111 are such that w ≡4 w′.

We show some basic combinatorial properties of the matrix Sw that will be
used in a further proof.

Property 1. For any binary word w of length n, and 1 ≤ i ≤ n, the matrix Sw

satisfies:
max Sw[i] + min Sw[n − i] = |w|1, min Sw[i] + max Sw[n − i] = |w|1.

In particular, if w is a 1−balanced Christoffel word, we have:
min Sw[i] + min Sw[n − i] = |w|1 − 1, max Sw[i] + max Sw[n − i] = |w|1 + 1.

By applying the results of Property 1 and the definition of Sw, we can notice
that the lower half of Bw is deduced from its upper half part, as we can see in
Property 2.

Property 2. The balance matrix is such that for all 1 ≤ i < n, Bw[i] ≡n−i

Bw[n − i].

If B a
b

has a middle row, then this row is autocomplementary as we can see in
Example 4.

Corollary 1. If n is an even number, B a
b
[n
2] is an autocomplementary row.

Example 4. Let us consider the rational number 3/7 with n = 10. The balance
matrix B 3

7
shows that B 3

7
[5] is an autocomplementary row.

B 3
7

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1
0 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Remark 1. In the case where a = 1, the balance matrix is such that: B 1
b
[i] =

0(n−i)1i.

3.2 Construction of the Balance Matrix for Christoffel Words

In this section, we are interested in giving a direct construction for the balance
matrix of a Christoffel word, by determining for each row of Bw, the positions
of the letter 1. For that, we start by defining the set of positions for the letter 1
in C(a

b).

300 L. Tarsissi and L. Vuillon

Definition 2. Let w be a Christoffel word of slope a/b. The set of decreasing
positions of w, denoted D(a, b), is the set of the positions of the occurrences of
the letter 1 in w. More formally, D(a, b) = {1 ≤ i ≤ n | w[i] = 1}.
The following theorem is a reformulation of Paquin and Reutenauer’s result ([21],
Corollary 3.2), that describes the set of decreasing positions of a Christoffel word.

Theorem 1. Let α be such that αa ≡ −1 mod n, then the set D(a, b) is:

D(a, b) = {(iα mod n) + 1 | i = 1 . . . a}.

Example 5. Let us consider the rational number a/b = 3/5 with n = 8, α = 5 and
w = 00100101. The set of occurrences of the letter 1 is D(3, 5) = {(5imod 8)+1 |
i = 1 . . . 3} = {3, 6, 8}.

Using Theorem 1, we can conclude that B a
b

and B b
a

are not equal but com-
plementary as Lemma 1 shows.

Lemma 1. The balance matrices B a
b

and B b
a

are conjugate in the sense that:

B a
b
[i] ≡α B b

a
[i] ∀ 1 ≤ i < n; where αa ≡ −1mod n.

For this part, w is a Christoffel word and we give a recursive construction
of Bw by identifying for each row i, the set of positions of the 1′s. This set
is denoted by Di, where for each row i in Bw, Di = {j | Bw[i, j] = 1}, with
n = |w| and 1 ≤ j ≤ n. For any set of integers S and any integer k, we denote
S + k = {a + k | a ∈ S}.

Theorem 2. If a < b then the sets (Di)1≤i≤n−1 are recursively obtained as
follows: D1 = D(a, b) and for each i from 2 to n − 1:

Di =

{
Di−1 ∪ (D1 − (i − 1)mod n) if i /∈ D1

Di−1 ∩ (D1 − (i − 1)mod n) if i ∈ D1

(1)

Example 6. Let us consider the rational number 2/7 mod 9. By calculating the
set of decreasing values for each row of B 2

7
, we get the following matrix:

D1 = {5, 9}
D2 = D1 ∪ {4, 8} = {4, 5, 8, 9}
D3 = D2 ∪ {3, 7} = {3, 4, 5, 7, 8, 9}
D4 = D3 ∪ {2, 6} = {2, 3, 4, 5, 6, 7, 8, 9}
D5 = D4∩{1, 5} = {5} ⇒

D6 = D5 ∪ {4, 9} = {4, 5, 9}
D7 = D6 ∪ {3, 8} = {3, 4, 5, 8, 9}
D8 = D7 ∪ {2, 7} = {2, 3, 4, 5, 7, 8, 9}
D9 = D8 ∩ {1, 6} = {}.

B 2
7
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1
0 0 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 1 1 1 0 0 1 1
0 1 1 1 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Second Order Balance Property on Christoffel Words 301

From this construction, we can get a relation between the number of occur-
rences of 1 in each row of the balance matrix of Christoffel words and the numer-
ator of the slope related to this word.

Lemma 2. For the balance matrix B a
b
, we have: |Di| = i.a mod n, where |Di|

is the cardinal of the set Di.

Note: This Lemma confirms that the period row is made only of zeros since
|Dn| = n.a mod n = 0, hence we have no occurrences for the letter 1 in this row.

4 Second Order Balance Matrix

Let wω be a 1-balanced circular word associated with w; by computing the
balanced property on each row of Bw, we get a refinement of the balanced
property for w. For any factor v of length j, we can find kj or kj +1 occurrences
of the letter 1. The second order balance is the repartition of these blocks in a
binary balanced word. This second order balance is computed via a matrix called
the second order balance matrix. In other words, we are studying the balance of
each row of Bw.

For a pair of integers i, j, where 1 ≤ i, j ≤ |w|−1, we consider the word Bw[i]
and we list all its factors of length j. Among these factors, we choose p, a factor
that maximizes the number of occurrences of the letter 1 and q, a factor that
minimizes it. The entry Uw[i, j] is given by |p|1 − |q|1. Equivalently, if L�(w) is
the restriction of the language of wω to words of length �, then:

Uw[i, j] = max
v∈Lj(Bw[i])

|v|1 − min
v∈Lj(Bw[i])

|v|1.

In other words, we can define the second order balance matrix Uw by:

Definition 3. Let w be a word such that wω is 1-balanced or, equivalently, that
Bw is a binary matrix. The second order balance matrix Uw = (uij)1≤i,j≤n−1

where Uw[i, j] = max(B(Bw[i])[j]).

Definition 4. The second order of balance of a circular 1-balanced word w is
δ2(w) = max(Uw).

Once again, in order to lighten the notation, when working with the Christoffel
word C

(
a
b

)
, the second order balance matrix UC(a

b) is simply denoted U a
b
.

For the rest of the paper, we let w be a Christoffel word of slope a/b and length
n = a+b, such that: w = C(a

b). The second order balance matrix of a Christoffel
word of slope a

b , U a
b
, is of dimension (n − 1) × (n − 1).

Example 7. Let us consider the rational number a
b = 3

7 with n = 10. The balance
matrix B 3

7
was calculated previously and B 3

7
[5] = [0, 0, 1, 1, 0, 1, 1, 0, 0, 1]. By

computing the balance matrix for this word and taking the blocks of length 5 we
get the 5th row of SB 3

7
[5] where the difference between the maximum and the

302 L. Tarsissi and L. Vuillon

minimum values of each row of SB 3
7
[5] determines the entries of U 3

7
[5]. Hence,

with these two blocks 00 11011 001 , we obtain the element U 3
7
[5, 5] = 4 − 1 = 3

as we can see in the following second order balance matrix of 3
7 , where we also

get δ2(C(37)) = 3.

U 3
7

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1
1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Properties of the Matrix U a
b

Now we give some properties of the second order balance matrix in order to
show that U a

b
= U b

a
. Hence, we can restrict our study to the irreducible fractions

a/b with a < b. But before that, we prove the three symmetries that appear in
this matrix. From Sect. 3.1, we have that the rows of the upper half of B a

b
are

complementary to the rows of its lower half, which induces the symmetries in
the matrix U a

b
. More precisely, the second order balance matrix U a

b
of dimension

(n − 1) × (n − 1), has horizontal, vertical and diagonal symmetries. The axis of
symmetry are at position n

2 or between n−1
2 and n+1

2 depending on the parity
of n.

Property 3. For any position (i, j), U a
b
[i, j] = U a

b
[n − i, j] = U a

b
[i, n − j] =

U a
b
[n − i, n − j].

Moreover, U a
b

has an extra diagonal symmetry;

Property 4. For the Christoffel word of slope a/b, we have (U a
b
)T = U a

b
.

After those two properties, we are able to prove that U a
b

= U b
a
.

5 More About Christoffel Words

Let w be a Christoffel word of length at least 2, the standard factorization
is obtained by writing w = (w1, w2) in a unique way, where w1, w2 are two
Christoffel words by [7]. The Christoffel tree is an infinite tree whose vertices are
all the standard factorizations of Christoffel words (see [5], Section 3.2). It uses
the fact that given a standard factorization (w1, w2), the pairs (w1, w1w2) and
(w1w2, w2) are also standard factorizations. Let φ0, φ1 be the two functions from
A∗×A∗ into itself defined by: φ0(w1, w2) = (w1, w1w2);φ1(w1, w2) = (w1w2, w2).
We have that any Christoffel word can be obtained in a unique way by iteration
of these two functions on (0, 1). Consequently, the Christoffel tree is defined as
follows: the root is (0, 1), the Christoffel word of slope 1. Then each node (w1, w2)

Second Order Balance Property on Christoffel Words 303

(0,1)

(0,01)

(0,001)

...
...

(001,01)

...
...

(01,1)

(01,011)

...
...

(011,1)

...
...

Fig. 2. The first levels of the Christoffel tree.

has two sons: φ0(w1, w2) on the left and φ1(w1, w2) on the right. See Fig. 2 for
an illustration.

Definition 5. Let w = C(a
b) be a non-trivial Christoffel word, the directive

sequence of w, denoted Δ(a
b), is the word Δ(a

b) = i1i2 · · · in ∈ A∗ such that
w = (φin ◦ · · · ◦ φi2 ◦ φi1)(0, 1).

Note that a directive sequence Δ(a
b) = i1 · · · in describes the path from the

root of the Christoffel tree to the Christoffel word C(a
b) as follows: at step k, if

ik = 0 then go left, otherwise, if ik = 1 then go right.

5.1 Stern-Brocot Tree and Continued Fractions

In this section, we introduce the Stern-Brocot tree that contains all the reduced
fractions a

b . It was first introduced by a German mathematician Moritz Abraham
Stern and a French clockmaker Achille Brocot in the 19th century [8]. In order
to construct recursively the Stern-Brocot tree, we need to introduce the mediant
of two fractions a

b and c
d , that is a

b ⊕ c
d = a+c

b+d . In addition to that, we have
to define the recursive sequence si, that is obtained from si−1, by completing
with the mediant of each two consecutive fractions in si−1, where s0 is given
by: s0 =

(
0
1 , 1

0

)
. Note that, 1

0 , is considered as a normal fraction: s0 =
(
0
1 , 1

0

)
,

s1 =
(
0
1 , 1

1 , 1
0

)
, s2 =

(
0
1 , 1

2 , 1
1 , 2

1 , 1
0

)
, s3 =

(
0
1 , 1

3 , 1
2 , 2

3 , 1
1 , 3

2 , 2
1 , 3

1 , 1
0

)
.

The mediants added in each new step to the sequence si are the fractions that
appear on the ith level of the Stern-Brocot tree. For example, on the third level,
we have the fractions: 1

3 , 2
3 , 3

2 , 3
1 that are extracted from the sequence s3. We

call consecutive fractions, two fractions that belong to the same set si and are
next to each other, like 1

1 , and 2
1 in s2. Some properties about these consecutive

fractions will be given in the next section. In order to simplify the notation, we
denote a

b ⊕ c
d by a

b
c
d and a

b ⊕ . . . ⊕ a
b repeated p times by (a

b)p. The Christoffel
tree is isomorphic to the Stern-Brocot tree where each vertex of the Christoffel
tree of the form (u,v) is associated to the fraction |uv|1

|uv|0 , see Fig. 3.
The continued fraction of a rational number a

b ≥ 0 is the sequence of integers
a
b = [a0, . . . , az], with a0 ≥ 0; ai ≥ 1 for 1 ≤ i ≤ z and if z ≥ 2 then az ≥ 2.

a

b
= a0 +

1

a1 +
1

· · · + az

.

304 L. Tarsissi and L. Vuillon

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Fig. 3. The first levels of the Stern-Brocot tree.

In the following part, we will explain how to pass from the continued fraction
of a rational number a/b to the Christoffel word of slope a/b. For that, we
introduce the following theorem by Henry J.S in 1876. This theorem gives an
additional characterization for the Christoffel words. In fact, he showed that
the Christoffel word can be obtained by a recursive expression using the partial
denominators of the rational number.

Theorem 3. [27] Let a
b = [a0, a1 . . . , az], a word w = 0u1 is a Christoffel word

of slope a
b if and only if u01 or u10 is equal to sn+1, where sn+1 is defined

recursively by: s−1 = 0, s0 = 1 and sn+1 = san
n sn−1 for all n ≥ 0.

Moreover, in 1987, Berstel introduced, in a report for LITP, the following
relation between the partial denominators of a rational number and two partic-
ular matrices based on the Theorem 2.1 in George Raney’s paper [24] in 1973,

that was published in 1990 [3]. Using the two matrices A =
(1 1
0 1

)
and B =

(1 0
1 1

)
,

and for the particular case of the rational number a/b where a < b, we have:

Proposition 1. [3] For a < b, we associate for the rational number a
b =

[0, a1, a2, . . . , an], the following matrix: M(a
b) = Aa1−1Ba2Aa3 . . . Can−1Dan−1,

where C and D are respectively A,B or B,A depending on the parity of n. We

have: M(a
b).

(1
1

)
=

(b − a
a

)
.

Furthermore, in 1993, Borel and Laubie, followed by de Luca in 1997 then
Berthé, de Luca and Reutenauer in 2008, gave the following theorem, where they
linked these two particular matrices to the Christoffel word of slope a/b. Let the
function Pal be the iterative palindromic closure function defined recursively
in [4] by Pal(ua) = (Pal(u)a)(+) and Pal(ε) = ε, where a is a letter and u a
word and (w)+ is the palindromic closure of w i.e. (w)+ = ww′ with ww′ is the
shortest palindrome having w as a prefix.

Theorem 4. [4,6,7] Let w be a Christoffel word of slope a/b, there exists a
unique word v such that w = 0Pal(v)1, if (w1, w2) is the standard factorization
of w then we define the multiplicative monoid morphism μ : {0, 1}∗ −→ SL2(Z)

such that: μ(0) =
(1 1
0 1

)
= A and μ(1) =

(1 0
1 1

)
= B, where: μ(v) =

(
|w1|0 |w2|0
|w1|1 |w2|1

)

.

Second Order Balance Property on Christoffel Words 305

In [3,5,17,24] we can find results allowing us to write, in an explicit way, the
relation between the continued fraction of a rational number and its directive
sequence as we can see in the following theorem (see [4]).

Theorem 5. Let a
b = [a0, . . . , az], we have: Δ(a

b) = 1a00a11a2 ...paz−1 where
p ∈ {0, 1}. The Christoffel word of slope a/b is written: C

(
a
b

)
= 0w′1, where w′

is a palindrome and w′ = Pal(Δ(a
b)).

6 Recursive Construction of the Second Order Balance
Matrix

Due to the isomorphism and the recursive construction of the Stern-Brocot tree
and the Christoffel tree, we can conclude that there must exist a recursive con-
struction for the second order balance matrix. In order to show and to prove
this recursivity, we let U a

b
where a/b = [a0, . . . , az] = [a0, a1, . . . , az − 1, 1] be

the second order balance matrix of the Christoffel word C
(

a
b

)
. We introduce the

following terminology for some specific rational numbers on the Stern-Brocot
tree and that will be used for the rest of the paper. See Fig. 4 for an illustration.

Definition 6. Given a
b = [a0, . . . , az],

The top branch fraction of a
b , denoted TBF(a

b), is the fraction [a0, . . . , az−1+1],
The first reduced fraction of a

b , denoted FRF(a
b), is the fraction [a0, . . . , az−1],

The first extended fraction of a
b , denoted FEF(a

b), is the fraction [a0, a1, . . . , az+
1],
The first deviation fraction of a

b , denoted FDF(a
b), is the fraction [a0, a1, . . . , az−

1, 2],
The first parallel fraction of a

b , denoted FPF(a
b), is either [a0, a1, . . . , az−1−1, 2]

if az−1 = 1 or [a0, a1, . . . , az−2 + 2] if az−1 = 1.
The second unidirectional father of a

b , denoted SUF(a
b), is either [a0, a1, . . . , az−

2] if az > 2 or [a0, a1, . . . , az−2] if az = 2.

Note that SUF(a
b) is not defined for fractions 1

1 , 1
2 and 2

1 . Using Theorem 5
we can get the directive sequence of each of these fractions.

Example 8. Let a
b = 3

5 = [0, 1, 1, 2], from Definition 6, we get: TBF(3/5) =
2/3, FEF(3/5) = 4/7, FDF(3/5) = 5/8, FPF(3/5) = 1/3 and SUF(3/5) =
1/1. See Fig. 4 for the positions of theses fractions in the Stern-Brocot tree.

General Form of the Second Order Balance Matrix
To construct U a

b
, we start by placing 4 rows of separation that divide the

matrix into 9 blocks. Due to the symmetries proved in Properties 3 and 4, it is
sufficient to know three of these blocks to deduce the others. These blocks are
denoted α, β and γ and are represented in the matrix as follows:

U a
b

=

⎛

⎝
α · ·
γ β ·
· · ·

⎞

⎠ ,

306 L. Tarsissi and L. Vuillon

1
1

2
1

3
1

4
1

5
1

7
2

5
2

8
3

7
3

3
2

5
3

7
4

8
5

4
3

7
5

5
4

1
2

2
3

3
4

4
5

5
7

3
5

5
8

4
7

1
3

2
5

3
7

3
8

1
4

2
7

1
5

Fig. 4. Illustration of the specific rational numbers related to 3/5 = [0, 1, 1, 2] on the
Stern-Brocot tree. We have: TBF(3/5) = 2/3, FRF(3/5) = 1/2, FEF(3/5) = 4/7,
FDF(3/5) = 5/8, FPF(3/5) = 1/3 and SUF(3/5) = 1/1.

In the following section, we show that the blocks α, β, γ are described by the
second order balance matrices of simpler fractions. More precisely, α is deduced
from UTBF(a

b)
while β is given by adding one to each entry of USUF(a

b)
. Finally,

the construction of γ depends on the position of a
b in the Stern-Brocot tree,

where the fraction is, relatively to its father, either a deviation (first deviation
fraction) or an extension (first extended fraction).

6.1 The Construction of Ua
b

In this section, we start to explain how we can obtain the recursive con-
struction of the second order balance matrix of the Christoffel word of slope
a/b = [a0, . . . , az]. Figure 6 displays the rational numbers needed for the con-
struction. Since U a

b
= U b

a
, we reduce the work to the first half of the Stern-Brocot

tree, that contains all the irreducible fractions with a ≤ b. Given a
b = [a0, . . . , az],

we consider separately the cases z < 2 and z ≥ 2.

The Trivial Cases: z ∈ {0, 1}
For z = 0, we have U 0

1
= U 1

0
= [] and U 1

1
= [1]. For z = 1, we have

a
b = [0, a1] which implies that a = 1 and b = a1. In this case, Remark 1, states
that Bw[i] = 0b+1−i1i and from Definition 3, we have: Uw[i, j] = max(BBw[i][j]).
Hence, we consider the first quarter of the matrix Uw which is sufficient from
Properties 3 and 4. Due to the diagonal symmetry, we will consider only j ≤ i
where i, j ≤ n

2 if n is even or i, j ≤ n−1
2 if n is odd.

Proposition 2. If a = 1, then for all j ≤ i and i, j ≤ n
2 we have: U a

b
[i, j] = j.

We can observe that this matrix can also be constructed using a recursive
form where the first (resp. last) row and the first (resp. last) column are all 1’s
and in the middle we have the matrix of SUF(1b) where its elements are increased
by 1 (see Fig. 5).

Second Order Balance Property on Christoffel Words 307

U 1
b
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 .. 1 1
1 1
. .
. .
. U[0,a1−2] + 1 .
. .
1 1
1 1 .. 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 5. The general form of the matrix U 1
b
.

The General Case: z ≥ 2
Now we assume that z ≥ 2, in order to lighten the presentation we define the

following fractions, let: u
v = TBF(a

b), x
y = FRF(a

b), c
d = FDF(u

v), e
f = FPF(c

d),
g
h = SUF(u

v), p
q = TBF(x

y), s
t = FRF(u

v). See Fig. 6 for an illustration of their
relative positions on the Stern-Brocot tree.

s
t

p
q

g
h

x
y

e
f

u
v

c
d

a
b

Fig. 6. Position of the fractions u
v
, x
y
, c
d
, e
f
, g
h
, p
q

and s
t

relatively to a
b
, for the case where

az−1 ≥ 2 and z odd. By definition, we have: a
b

= [a0 . . . , az],
u
v

= [a0 . . . , az−1 + 1],
x
y

= [a0, . . . , az−1],
p
q

= [a0, . . . , az−2 + 1], s
t

= [a0, . . . , az−2],
e
f

= [a0, . . . , az−1 − 1, 2],
c
d

= [a0, . . . , az−1, 2], g
h

= [a0, . . . , az−1 − 1]. With respect to the Farey addition we
have: u

v
= x

y
s
t

and c
d

= x
y

u
v
.

Lemma 3. The Christoffel words of slope a
b , g

h and e
f can be written as follows:

C(a
b) =

(
C(x

y)
)az−1

C(u
v) =

(
C(x

y)
)az

C(s
t), C(x

y) = C(g
h)C(s

t) and C(e
f) =

C(g
h)C(x

y).

Separation Rows. For the rest of this section, the fractions mentioned in Fig. 6
are used to prove the construction of U a

b
. In the following part we prove that

separation rows allow the decomposition of U a
b

into 9 blocks. In Definition 7, we
give a characteristic for the consecutive fractions of each sequence si, used to
construct the Stern-Brocot tree.

308 L. Tarsissi and L. Vuillon

Definition 7. Let a
b and a′

b′ be two consecutive fractions of a certain sequence
si, ∀i > 0. They respect the following relation: a′b − ab′ = 1.

Property 5. Let a
b and a′

b′ be two consecutive fractions in the Stern-Brocot tree,
we have:

(a′ + b′).a = a′.(a + b) − 1.

The proof of this property is obtained by an arithmetic calculation based on
Definition 7.

In the following lemma, we prove that in each U a
b
, we have at least 2 rows

and columns full of 1′s.

Lemma 4. Let k = x + y, for the rational number a
b with n = a + b, we have:

U [i, k] = U [i, n − k] = U [k, j] = U [n − k, j] = 1, ∀ i, j ∈ {1, . . . , n − 1}.

Remark 2. From Lemma 4, we get that the row (respectively column) k and
n − k contain only values of 1′s. Therefore, we define the separation rows to be
between the rows (resp. columns) (k; k+1) and between the rows (resp. columns)
(n − k − 1;n − k) which divide U a

b
into 9 blocks. See Fig. 7.

Now we prove that each block α, β and γ of U a
b

can be decomposed in some
smaller second order balanced matrices. In fact, to construct the matrix U a

b

we first place the rows of separation. This shows that U a
b

is composed of 9
blocks where the three blocks αk×k, β(n−2k−1)×(n−2k−1) and γ(n−2k−1)×k are
constructed while the others are obtained by symmetry.
In the following part, we construct respectively each of the blocks α, γ and β to
get U a

b
.

α-block: Recall that z ≥ 2 and we let for the rest of this section z to be an odd
number where the even case is obtained in a similar way. Let s

t ,
g
h and x

y be the
fractions defined at the beginning of Sect. 6.1. The α-block is formed of k rows
and columns where k = x + y = |FRF(a

b)|.
Lemma 5. The α-block of U a

b
is exactly the first k − 1 rows and columns of the

matrix Uu
v

where u
v = TBF(a

b).

γ-block: The second block of U a
b

is the γ-block of dimension (n−2k−1)×k. This
block is located between the k + 1 and the (n − k − 1)th rows and bounded by
the row of separation at the kth column. This part of the second order balance
matrix admits a recursive form. If we consider the concatenation of matrices as
a vertical stacking, then γ(a

b) is given by

γ
(a

b

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ
(c

d

) [
γ

(u

v

)
γ

(c

d

)]az−2

if az ≥ 3

γ

(
e

f

)
if az = 2

(2)

Second Order Balance Property on Christoffel Words 309

Let a
b
= 5

8
, the 9 blocks are represented as follows:

U 5
8
=

Top left part of U 3
5

Left central part of U 3
4

U 1
2
+ 1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 2 2 1 1 1 1 1
1 2 1 2 1 2 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 1 2 2 1 2 2 1 1
1 1 2 2 1 2 2 1 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 2 1 2 1 2 1
1 1 1 1 1 2 2 1 1 1 1 1
1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 7. The decomposition of the matrix U 5
8

into 9 blocks. We have TBF(5
8
) = 3

5
,

SUF(5
8
) = 1

2
, FPF(5

8
) = 3

4
, x

y
= 2

3
and k = 5.

We mentioned that we are considering the case where z ≥ 2 and with z
an odd value. In fact, the parity of z determines if a/b is a right or left child.
Furthermore, it helps us to know the value of α, where α is the value needed to
obtain D(a, b).

Lemma 6. Let a
b = [a0, . . . , az], and FRF(a

b) = x
y with x + y = k.

The set D(a, b) = {iα + 1 mod n|1 ≤ i ≤ a} where n = a + b has:
{

α = k, if z is even
α = n − k, if z is odd.

In order to prove the construction of the γ−block, we need to introduce some
additional properties of the balance matrix B a

b
used in the technical proof of the

γ−block.

Property 6. Let w = 0x1y such that x, y > 0. For i ≤ x and i ≤ y, we have:
Bw[i] = 0x−i+112 · · · (i − 2)(i − 1) · iy−i+1 · (i − 1)(i − 2) · · · 21.

Lemma 7. Let a
b = [a0, . . . , az] and x

y = FRF(a
b) such that |C(x

y)| = x+y = k.
{

B a
b
[k] = 0α10n−α−1 ; B a

b
[2k] = 0n−2k10k−110k−1if z is odd,

B a
b
[n − k] = 0α10n−α−1 ; B a

b
[n − 2k] = 0n−2k10k−110k−1if z is even.

(3)

The following lemma states the recursive construction of the γ−block in a
formal way.

310 L. Tarsissi and L. Vuillon

Lemma 8. The γ−block is obtained depending on the position of the fraction
in the Stern-Brocot tree.

– If az ≥ 3 then γ
(

a
b

)
is obtained by stacking vertically γ(c

d) over az − 2 copies
of γ(u

v) and γ(c
d).

– Otherwise, if az = 2, then γ
(

a
b

)
is given by the extension of γ(e

f) to the k-th
column of U e

f
.

where u
v = TBF(a

b); c
d = FDF(u

v); e
f = FPF(a

b).

β-block: The β−block is the center of U a
b
, the last block needed to complete

the construction of the second order balance matrix. This block is of dimension
(n − 2k − 1) × (n − 2k − 1) and located between the rows (respectively columns)
k and n − k.

Lemma 9. The β−block of U a
b

is exactly the second order balance matrix of the
fraction ρ

θ = SUF(a
b) in the Stern-Brocot tree where its elements are increased

by 1.

7 Perspectives

In the introduction, we stated that there were connections between the second
order of balance and the Fraenkel conjecture, and we mentioned the importance
of the second order of balance to construct balanced words on a k−letters alpha-
bet. Hence, we have to show some hints on how to use the second order balance
matrix Uw to have new information on the synchronisation of words. Of course
the Fraenkel conjecture is far from being solved because of its own complexity
nevertheless we have built a new tool to synchronize balanced words by consid-
ering synchronization of blocs instead of letters. The following example is based
on the word FR3 = 1213121 on a three letter alphabet, which is obtained from
the synchronization of the 3 Christoffel words of slope 1/6 associated with the
word C3 = ∗ ∗ ∗3 ∗ ∗∗, of slope 2/5 associated with the word C2 = ∗2 ∗ ∗ ∗ 2∗ and
of slope 3/4 associated with the word C1 = 1 ∗ 1 ∗ 1 ∗ 1. Remark that in each
position we have only one value and the other symbols are stars. We are able to
read this synchronization on rows of matrices in Fig. 8:

If we name M a
b

the set of indices of the rows with a maximal values in
U a

b
and m a

b
the set of indices of the rows with minimal values in U a

b
(which

are non previously chosen rows), we could extract the following set of indices:
M 1

6
= {3, 4} and m 1

6
= {1, 6}; M 2

5
= {2, 5} and m 2

5
= {3, 4}; M 3

4
= {3, 4} and

m 3
4

= {2, 5}. We can observe that starting with the elements of the set m 3
4
, if

we double the values and take modulo 7, we get the elements of m 2
5
. The same

note can be also given for the sets m 2
5

and m 1
6
. 2.2 = 4; 5.2 = 10 ≡7 3, where

{3, 4} = m 2
5
. 4.2 = 8 ≡7 1; 3.2 = 6, where {1, 6} = m 1

6
. Except for the rows

1 and 6, we can see the synchronization between the sets m a
b

and M a
b
, more

precisely, if a row appears as a minimum for the set m it appears as a maximum
for the set M , which allows us to read all information for the synchronization in

Second Order Balance Property on Christoffel Words 311

U 1
6
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 2 2 2 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 2 2 2 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, U 2

5
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 1 2 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and U 4
3
= U 3

4
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 2 2 1 1
1 1 2 2 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Fig. 8. The three matrices U 1
6
, U 2

5
and U 3

4
used for the synchronization of the triplet

(1, 2, 4) mod 7.

the second order balance matrix. This will be a keypoint for our next research, in
order to study the synchronization of Christoffel words over a k−letters alphabet
and to try to tackle the Fraenkel’s conjecture.

In addition, many research problems are still open in this study. For example,
how to extend the second order balance matrix construction for a binary word
that are not Christoffel words?

We could also investigate the Stern-Brocot tree in order to find the structure
of infinite paths that minimize the second order balance and find a combinatorial
construction of these paths.

To end the perspectives, we could notice that considering the balance matrix
is equivalent to compute balance property of a given word. This computa-
tion appears in another context in order to compute Parikh vectors that are
k−dimensional vectors defined for a finite word w on a k−letters alphabet. Nev-
ertheless, the computation of the second order balance matrix using Parikh vec-
tors is not straightforward and will be considered in a future article.

References

1. Altman, E., Gaujal, B., Hordijk, A.: Balanced sequences and optimal routing. J.
ACM 47(4), 752–775 (2000)

2. Baryshnikov, Y.: Complexity of trajectories in rectangular billiards. Commun.
Math. Phys. 174(1), 43–56 (1995)

3. Berstel, J.: Tracé de droites, fractions continues et morphismes itérés. In: Mots,
pp. 298–309. Lang. Raison. Calc., Hermès (1990, incollection)

4. Berstel, J., De Luca, A.: Sturmian words, Lyndon words and trees. Theor. Comput.
Sci. 178(1), 171–203 (1997)

5. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words:
Christoffel Words and Repetition in Words, vol. 27, p. 147. American Mathematical
Society, Providence (2008)

6. Berthé, V., De Luca, A., Reutenauer, C.: On an involution of Christoffel words
and sturmian morphisms. Eur. J. Comb. 29(2), 535–553 (2008)

7. Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. de théorie
des nombres de Bordeaux 5(1), 23–51 (1993)

8. Brocot, A.: Calcul des rouages par approximation. Revue chronométrique J. des
horlogers, scientifique et pratique 3, 186–194 (1861)

312 L. Tarsissi and L. Vuillon

9. Christoffel, E.B.: Observatio arithmetica. Annali di Matematica Pura ed Applicata
(1867-1897) 6(1), 148–152 (1873)

10. Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Springer,
Heidelberg (2002). https://doi.org/10.1007/b13861

11. Fraenkel, A.S.: The bracket function and complementary sets of integers. Can. J.
Math. 21, 6–27 (1969)

12. Fraenkel, A.S., Levitt, J., Shimshoni, M.: Characterization of the set of values
f(n) = [na], n = 1, 2, Discrete Math. 2(4), 335–345 (1972)

13. Gaujal, B.: Optimal allocation sequences of two processes sharing a resource. Dis-
crete Event Dyn. Syst. 7(4), 327–354 (1997)

14. Gaujal, B., Varjú, P.P.: Partitioning the positive integers into seven Beatty
sequences. Indag. Math. N.S. 12, 149–161 (2003)

15. Hubert, P.: Suites équilibrées. Theor. Comput. Sci. 242(1), 91–108 (2000)
16. Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics

and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)
17. de Luca, A., Mignosi, F.: Some combinatorial properties of sturmian words. Theor.

Comput. Sci. 136(2), 361–385 (1994)
18. Mairesse, J., Vuillon, L.: Asymptotic behavior in a heap model with two pieces.

Theor. Comput. Sci. 270(1), 525–560 (2002)
19. Morikawa, R.: On eventually covering families generated by the bracket function

IV. Nat. Sci. 25, 1–8 (1985)
20. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J.

Math. 62(1), 1–42 (1940)
21. Paquin, G., Reutenauer, C.: On the superimposition of Christoffel words. Theor.

Comput. Sci. 412(4), 402–418 (2011)
22. Paquin, G., Vuillon, L.: A characterization of balanced episturmian sequences.

Electron. J. Comb. 14(1), R33, 12 (2007)
23. Provençal, X., Vuillon, L.: Discrete segments of Z3 constructed by synchronization

of words. Discrete Appl. Math. 183, 102–117 (2014)
24. Raney, G.N.: On continued fractions and finite automata. Mathematische Annalen

206(4), 265–283 (1973)
25. Sidorov, N.: Optimizing properties of balanced words, pp. 240–246 (2011)
26. Skolem, T.: On certain distributions of integers in pairs with given differences.

Math. Scand. 5, 57–68 (1957)
27. Smith, H.J.S.: Note on continued fractions. Messenger Math. 6, 1–14 (1876)
28. Tijdeman, R.: Fraenkel’s conjecture for six sequences. Discrete Math. 222(1), 223–

234 (2000)
29. Vuillon, L.: Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10(5), 787–805

(2003)

https://doi.org/10.1007/b13861

IPO-Q: A Quantum-Inspired Approach
to the IPO Strategy Used in CA

Generation

Michael Wagner, Ludwig Kampel, and Dimitris E. Simos(B)

SBA Research, 1040 Vienna, Austria
{mwagner,lkampel,dsimos}@sba-research.org

Abstract. Covering arrays are combinatorial structures, that can be
considered generalizations of orthogonal arrays and find application in
the field of automated software testing amongst others. The construc-
tion of covering arrays is a highly researched topic, with existing works
focusing on heuristic, metaheuristic and combinatorial algorithms to suc-
cessfully construct covering arrays with a small number of rows. In this
paper, we introduce the IPO-Q algorithm which combines a recently
introduced quantum-inspired evolutionary algorithm with the widely
used in-parameter order (IPO) strategy for covering array generation.
We implemented different versions of this algorithm and evaluate them,
by means of selected covering array instances, against each other and
against an algorithm implementing the IPO strategy.

Keywords: Covering arrays · Quantum-inspired algorithms · IPO
strategy · Algorithmic generation

1 Introduction

Covering arrays (CAs) are discrete combinatorial structures and can be consid-
ered a generalization of orthogonal arrays. We (informally) introduce binary cov-
ering arrays as binary N × k arrays M = (m1, . . . ,mk), denoted as CA(N ; t, k),
with the property that any array (mi1 , . . . ,mit), with {i1, . . . , it} ⊆ {1, . . . , k},
comprised of any t different columns of M has the property that each binary
t-tuple in {0, 1}t appears at least once as a row. See also [2]. The parameter t is
also called the strength of the CA, N, t and k are called the parameters of the
CA. In the literature CAs are also defined for arbitrary alphabets, however we
restrict our attention to binary CAs in this work. An example of a CA is given
in Example 1.

Alternatively, binary CAs can be defined as binary N × k arrays which rows
cover all binary t-way interactions, where for a given strength t and a number
of columns k, a t-way interaction is a set of t pairs {(p1, v1), . . . , (pt, vt)} with
1 ≤ p1 < p2 < . . . < pt ≤ k, and vi ∈ {0, 1} for all i = 1, . . . , t. As the value k is
usually clear from the context, it is mostly omitted. We say the t-way interaction

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 313–323, 2020.
https://doi.org/10.1007/978-3-030-43120-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_24

314 M. Wagner et al.

{(p1, v1), . . . , (pt, vt)} is covered by an array A, if there exists a row in A that has
the value vi in position pi for all i = 1, . . . , t. Then a CA(N ; t, k) is characterized
by covering all t-way interactions.

Their properties make CAs attractive for application in, amongst others, the
field of automated software testing, serving as key ingredient for the construction
of test sets. The interested reader may have a look at [6]. For practical appli-
cations, it is desired to construct CAs with a small number of rows. This leads
to the formal problem of generating a CA with the smallest possible number
of rows, for a given number of columns. For given values t and k, the smallest
integer N for which a CA(N ; t, k) exists is called covering array number and is
denoted as CAN(t, k). The problem of determining CAN(t, k) remains unsolved
in general (for arbitrary strengths and alphabets), is algorithmically challenging
to solve and is tightly coupled with NP-hard problems, see for example [4] and
references therein.

Example 1. A CA(4; 2, 3) is given by the following array

A =

⎛
⎜⎜⎝
0 0 0
0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎠ . (1)

As can be verified by the reader, when selecting any two columns of A, in the
resulting 4× 2 array, each binary pair appears once as a row. Put differently, each
of the 12 binary 2-way interactions {(1, 0), (2, 0)}, {(1, 0), (2, 1)}, {(1, 1), (2, 0)},
{(1, 1), (2, 1)}, {(1, 0), (3, 0)}, {(1, 0), (3, 1)}, {(1, 1), (3, 0)}, {(1, 1), (3, 1)}, {(2, 0),
(3, 0)}, {(2, 0), (3, 1)}, {(2, 1), (3, 0)} and {(2, 1), (3, 1)}, is covered by the rows
of A.

There exist many algorithmic approaches dedicated to the construction of
CAs with a small number of rows, including, amongst others, greedy heuristics
[5,9] and metaheuristics such as [14] and [15]. For a survey of CA generation
methods, the interested reader may also have a look in [13].

This paper proposes an algorithm for CA generation, that combines the IPO
strategy [9] with the metaheuristic approach introduced in [15], and is struc-
tured as follows. In Sect. 2 we provide the necessary preliminaries for this work.
In Sect. 3 we introduce the IPO-Q algorithm and the different versions of it
considered in this paper. An experimental evaluation is given in Sects. 4 and 5.
Finally, Sect. 6 concludes this paper.

2 Preliminaries

In this section we briefly summarize the main concepts, the IPO strategy and
quantum inspired evolutionary algorithms for CA generation, that will serve as
starting point for our newly introduced IPO-Q algorithm.

A Quantum-Inspired Approach to Extension Strategies for CA Generation 315

2.1 Review of the IPO Strategy

The In-Parameter-Order (IPO) strategy was first introduced in [9] for the gen-
eration of strength t = 2 covering arrays, and was later generalized for higher
strengths [7,8] and arbitrary alphabets. The IPO strategy is the base for CA
generation tools like ACTS [16] or CAgen [10], that are also used in industrial
applications like [3] and [12]. Algorithms implementing the IPO strategy [7,8] are
greedy algorithms that grow CAs in two dimensions, horizontally and vertically.
The input to these algorithms is the desired strength t as well as the number of
columns k and the alphabet of the desired CA.

As we are concerned with binary CAs in this work, the IPO strategy can be
summarized as follows. Starting with the 2t × t array {0, 1}t of all row vectors
over {0, 1} of length t, algorithms implementing the IPO strategy proceed itera-
tively in two phases that alternate each other, the horizontal extension (adding
a column) and the vertical extension (adding rows), until the desired CA with k
columns has been constructed. A schematic overview of this strategy is given in
Fig. 2. In the horizontal extension step the entries of a newly added column are
specified in a greedy manner, maximizing the number of newly covered t-way
interactions in each step. In the vertical extension step additional rows are added
to the array until all t-way interactions are covered, i.e. the array is a covering
array for strength t and the current number of columns.

2.2 Review of the QiEAforCA Algorithm for CA Generation

Recently, a quantum-inspired evolutionary algorithm for covering array construc-
tion (QiEAforCA) was proposed in [15], which we review briefly and gather the
notions necessary for the algorithm introduced in Sect. 3. QiEAforCA takes as
input the parameters N , t and k of a desired CA. The underlying idea is to
consider an N × k array of qubits, which states |0〉 and |1〉 are identified with
the numerical values 0 and 1. Thus, when observing the individual qubits, they
collapse to either state and an N × k array over {0, 1} is attained. To obtain an
actual covering array, the states of the qubits are iteratively evolved.

For classical computational realization, in [15], a reduced qubit representa-
tion is used,

|Ψ〉 = cosΘ |0〉 + sinΘ |1〉 , with Θ ∈ [0,
π

2
],

where the state of a qubit is completely specified by its angle Θ, see Fig. 1a. An
angle of 0◦ corresponds to the state |0〉 and 90◦ to |1〉 respectively. Measurement
of a qubit yields state |0〉 with probability (cosΘ)2 and state |1〉 otherwise. In the
following we use the term qubit synonymous for the reduced qubit representation.

In [15], an initial array of qubits in the state corresponding to an angle of
45◦ is generated, representing a uniform distribution of the possible states, hence
representing a neutral state. The modification of qubits is realized in rounds, until
either a CA is found, or a set number of iterations passed. In each round, a new
candidate solution is generated by measuring every qubit. The resulting array
is evaluated in terms of the number of covered t-way interactions. The best

316 M. Wagner et al.

array over all rounds is stored as base for modification. In contrast to actual
quantum computation, we can preserve the state |Ψ〉 = cosΘ |0〉 + sinΘ |1〉 of
a qubit after measurement. To update the state of a qubit, it gets rotated by
a specific angle towards state |0〉 or |1〉, see also Fig. 1b. The direction of the
rotation is based on the corresponding entry in the current best array. The
qubit rotations serve to guide the search towards a promising subset of the
search space, while the probabilistic nature of the qubit measurement serves as
an exploration mechanism.

Further, the concept of mutation is used as a constraint on the rotation of
qubits, by only allowing them to approach |0〉 or |1〉 up to a certain ε, see again
Fig. 1a. This prevents qubits from completely converging to one of the states |0〉
or |1〉 and thus offers means for individual qubits to escape local minima. For
more details the interested reader is referred to [15].

(a) Qubit Representation
and ε mutation

(b) Qubit Update (c) Qubit Bias

0

1

|ψ

Θ 0

1 |ψ

ε

ε
Θ

Fig. 1. Reduced qubit representation (a) and used update mechanics (b) and (c).

3 IPO-Q: A Quantum-Inspired IPO Algorithm

In this section we introduce the quantum-inspired extension strategy IPO-Q for
CA generation. It combines the IPO strategy with ideas of quantum-inspired
evolutionary algorithms. Like other algorithms implementing the IPO strategy,
IPO-Q consists of horizontal and vertical extension steps. The algorithm acts
on an array of qubits that is iteratively extended. Based on this qubit array, in
each extension step QiEAforCA is used to generate an array optimizing the
number of covered t-way interactions. IPO-Q is given by means of a pseudocode
in Algorithm1 and can be described as follows.

The algorithm starts with a 2t × t array Q0 of qubits in neutral state, from
which an initial binary array is generated, using QiEAforCA. Afterwards, when
in the i-th step a CA was found by QiEAforCA, based on the array of qubits Qi,
IPO-Q enters the horizontal extension step and adds a new column qi+1 of qubits,
yielding Qi+1 = (Qi, qi+1). The newly added qubits in qi+1 are initialized in
neutral state, while the qubits of Qi are biased based on the previously computed

A Quantum-Inspired Approach to Extension Strategies for CA Generation 317

CA. This bias is realized by rotating qubits from the neutral state towards the
state corresponding to the values in the previously found CA. Figure 1c depicts
the resulting qubit array, when biasing the qubits in the first two columns,
colored in red, towards the values given in the first two columns of the CA given
in Eq. (1) and the newly added qubits in neutral state on the right, colored in
blue. Hence, the new qubits are left open for exploration, while the old qubits
are more likely to measure the values of the previous CA with i columns. Then
QiEAforCA is used to maximize the number of covered t-way interactions
based on the array of qubits Qi+1.

If QiEAforCA does not find a CA based upon Qi+1, IPO-Q performs a
vertical extension step. A new row of qubits is added to Qi+1. The new qubits
are initialized in the neutral state, while all other qubits get biased towards the
corresponding value in the previous best solution. Again, QiEAforCA is used
attempting to find a CA based on Qi+1 with the increased number of rows. If it
fails, additional rows are added to Qi+1 one by one, as the process is repeated,
until a CA is found.

Once a CA with (i+1) columns is generated, IPO-Q enters the next horizontal
extension phase. These steps are repeated until a CA with the desired number
of columns is found.

Remark 1. The main advantage of the proposed IPO-Q algorithm in comparison
to the QiEAforCA algorithm, proposed in [15] is that all returned arrays are
CAs. For example, when initializing QiEAforCA with CA parameters N, t, k
where N < CAN(t, k) it is impossible to find a CA, whereas the IPO-Q algo-
rithm, on input t, k, can add additional rows of qubits until a CA can be found.

Algorithm 1. IPO-Q
1: INPUT: k, t, QiEAforCA settings
2: Generate initial 2t × t array using QiEAforCA
3: for i ← t, ..., k do
4: Add new column of qubits in neutral state � Horizontal Extension
5: Bias old qubits towards previous solution
6: Apply QiEAforCA to maximize the number of covered t-way interactions
7: while any t-way interactions are uncovered do
8: Add new row of qubits in neutral state � Vertical Extension
9: Bias old qubits towards previous solution

10: Apply QiEAforCA to maximize the number of covered t-way interactions
11: end while
12: end for
13: return generated CA

New Concepts for IPO-Q. In the following we describe two new realizations of
the concepts of mutation and bias, that adapt to the extension strategy used in
IPO-Q.

318 M. Wagner et al.

First, during our experiments (see Sect. 4), we noticed that constant angles ε
used to implement the concept of mutation negatively affect the solution quality.
Further, once the number of columns k and the number of rows N of the desired
arrays and thus the number of qubits, gets too large, mutation rates that work
well for less columns make the system too unstable. Therefore, in addition to
the mutation types presented in [15], we introduce variable mutation, which
sets the angle for mutation to

ε =

{
g, N × k ≤ 100
100×g
N×k , N × k > 100

(2)

where g is an initial parameter called base mutation.
Second, we introduce a concept further referred to as onion extension. In

this version, the bias of all qubits is increased by a set amount at the beginning
of every horizontal extension step, until the bias reaches 45◦, i.e. the qubits are
fixed to state |0〉 or |1〉. This results in an onion-like structure of the bias values
of qubits in Qi, where “newer” qubits are left more open for exploration, while
“older” qubits allow less exploration.

Q0 Q1 Q2 Q3 Q4

Fig. 2. Onion concept.

Figure 2 illustrates the different bias layers caused
by the onion concept for CA(12; 3, 7). After the initial
CA(8; 3, 3) is generated, IPO-Q performs a horizontal
extension. At the beginning of the extension step, the bias
of the old qubits is increased by a given angle Δb. After-
wards, QiEAforCA is used to find a CA with 4 columns,
resulting in a successful horizontal extension. Hence, the
next horizontal extension step starts and the bias of all
qubits is increased. Note that the bias of the qubits in
Q0 is increased for the second time, therefore its qubits
are biased more towards the previous solution than the
qubits in Q1. If a horizontal extension fails to construct a
CA, the rows added by means of vertical extension have
the same bias as the added column, see e.g. Q2 and Q3.

4 Evaluation of Different Configurations of the IPO-Q
Algorithm

To evaluate the effect of different settings of IPO-Q, we compared the following
selected configurations:

1. Global Mutation eps=0 uses no mutation, i.e. ε = 0◦;
2. Global Mutation eps=5 uses a mutation angle of ε = 5◦, that is applied to

every qubit;
3. Variable Mutation eps=5 uses variable mutation with a base mutation

of g = 5◦, see Eq. (2);
4. Onion eps=10 implements the onion concept with Δb = 2◦, using variable

mutation and a base mutation of g = 10◦.

A Quantum-Inspired Approach to Extension Strategies for CA Generation 319

We compared these configurations by means of computing a CA(N ; 3, k) for
k = 2, . . . , 100 and comparing the resulting values for N . For each configuration,
we conducted five runs for every CA(N ; 3, k) instance and recorded the minimal
number of rows N of the five generated CAs. The results are depicted in Fig. 3,
where the horizontal axis represents the number of columns k and the vertical
axis represents the number of rows N . As one aims to minimize the number of
rows in a CA, smaller values indicate better results.

Fig. 3. Parameter evaluation for IPO-Q on the instance CA(N ; 3, k) (smaller values
are better).

We can see that configuration Global Mutation eps=0 performs worse than
the other configurations for up to k = 30 columns, i.e. it generates CAs with
a higher number of rows, but manages to find acceptable solutions for a higher
number of columns. Interpreting these results, we believe this is due to Global
Mutation eps=0 using no mutation and hence lacking means of exploration to
optimize smaller instances.

Configuration Global Mutation eps=5, on the other hand, finds CAs with
a smaller number of rows compared to Global Mutation eps=0, for k ≤ 30, but
becomes unstable for higher values of k.

Configuration Variable Mutation eps=5 improves on both, Global
Mutation eps=0 and Global Mutation eps=5, for all values of k. This shows
nicely that the concept of variable mutation, decreasing the mutation angles
proportional to the number of qubits N × k, combines the advantages of explo-
ration of small instances (Global Mutation eps=5) and exploitation of previous
solutions for larger instances (Global Mutation eps=0), respectively.

Finally, Onion eps=10 further improves the results of Variable Mutation
eps=5, yielding the best results of the considered IPO-Q configurations. In the
general IPO-Q algorithm approach without the onion concept, due to iterative
horizontal and vertical extension steps, inner parts of the array are optimized

320 M. Wagner et al.

multiple times. While, the concept of variable mutation can only decrease
exploration on a global scale, Onion eps=10 reflects the core idea of the original
IPO strategy, as depicted in [9]. The inner parts of the qubit array, that already
experienced multiple optimization rounds, are fixed by means of increasing the
bias up to 45◦, while the high initial mutation angle of 10◦ allows for exploration
for newly added qubits.

5 Comparison with IPOG-F and Best Known Upper
Bounds for CAN

In a second phase of experimental evaluation, we compared the results of the
IPO-Q algorithm against the best known upper bounds for covering array num-
bers [1] and the numbers provided by NIST [11] using the IPOG-F algorithm.
For that purpose we considered the configuration of IPO-Q, that had the best
performance in the experiments reported in the previous section, i.e. in the fol-
lowing evaluation IPO-Q refers to the Onion eps=10 configuration described
above.

The graphs in Fig. 4 compare the number of rows N of generated CAs, on
the vertical axes, for a given number of columns k, on the horizontal axes. Fur-
thermore, selected numerical values are highlighted in Table 1. For strength two,
IPO-Q consistently finds CAs with less rows and approximates the covering
array number CAN. For higher strengths t, IPO-Q finds smaller CAs for up to
k = 81 columns for strength t = 3 and for up to k = 21 columns for strength
t = 4, see Fig. 4. For higher number of columns, IPOG-F produces better results.
We believe these results reflect the probabilistic nature of the Quantum-inspired
algorithm very well. For small strengths t and number of columns k, IPO-Q can
fully utilize the probabilistic search.

Table 1. Results for selected CAs CA(N ; t, k). Values for upper bounds for covering
array numbers in the column headed by “CAN≤” are taken from [1].

CA IPO-Q IPOG-F CAN≤
CA(N ; 2, 100) 10 13 10
CA(N ; 2, 500) 14 17 10
CA(N ; 2, 1500) 16 20 14
CA(N ; 3, 20) 23 25 18
CA(N ; 3, 50) 34 36 28
CA(N ; 3, 100) 46 45 33
CA(N ; 4, 10) 34 41 24
CA(N ; 4, 20) 66 65 39
CA(N ; 4, 35) 91 85 64

A Quantum-Inspired Approach to Extension Strategies for CA Generation 321

Fig. 4. Comparison of the number of rows of generated CAs by IPO-Q and IPOG-F
with the best known upper bounds for CAN, maintained at [1], denoted as “CAN <=”,
for strengths t = 2, 3, 4 from top to bottom (smaller values are better).

322 M. Wagner et al.

6 Conclusion and Future Work

In this paper we proposed the quantum-inspired IPO extension algorithm IPO-Q,
merging the ideas of the IPO strategy with a quantum inspired evolutionary algo-
rithm for CA computation. We introduced two new concepts, called variable
mutation and onion extension, that improved the performance of IPO-Q in our
evaluation. The experiments further showed, that in some cases IPO-Q can con-
struct CAs with less rows than the well known IPOG-F algorithm. As future
work, we want to generalize the algorithm for higher alphabets as well as mixed
covering arrays.

Acknowledgements. This research was carried out partly in the context of the Aus-
trian COMET K1 program and publicly funded by the Austrian Research Promotion
Agency (FFG) and the Vienna Business Agency (WAW).

References

1. Colbourn, C.J.: Covering Array Tables for t = 2, 3, 4, 5, 6. http://www.public.
asu.edu/~ccolbou/src/tabby/catable.html. Accessed 18 Sept 2019

2. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press,
Boca Raton (2006)

3. Ghandehari, L.S.G., Bourazjany, M.N., Lei, Y., Kacker, R.N., Kuhn, D.R.: Apply-
ing combinatorial testing to the siemens suite. In: 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops, pp. 362–
371, March 2013

4. Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems
for covering arrays. Theor. Comput. Sci. 800, 107–124 (2019)

5. Kleine, K., Simos, D.E.: An efficient design and implementation of the in-
parameter-order algorithm. Math. Comput. Sci. 12(1), 51–67 (2018)

6. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis, London (2013)

7. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: a general strategy
for T-way software testing. In: 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS 2007), pp. 549–
556, March 2007

8. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: effi-
cient test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab.
18(3), 125–148 (2008)

9. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise test-
ing. In: Proceedings Third IEEE International High-Assurance Systems Engineer-
ing Symposium (Cat. No. 98EX231), pp. 254–261, November 1998

10. Wagner, M., Kleine, K., Simos, D.E., Kuhn, R., Kacker, R.: CAgen: a fast combi-
natorial test generation tool with support for constraints and higher-index arrays.
In: 2020 IEEE International Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW) (to appear)

11. NIST: Covering arrays generated by IPOG-F. National Institute of Stan-
dards and Technology. https://math.nist.gov/coveringarrays/ipof/ipof-results.
html. Accessed 18 Sept 2019

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
https://math.nist.gov/coveringarrays/ipof/ipof-results.html
https://math.nist.gov/coveringarrays/ipof/ipof-results.html

A Quantum-Inspired Approach to Extension Strategies for CA Generation 323

12. Smith, R., et al.: Applying combinatorial testing to large-scale data processing at
adobe. In: 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 190–193, April 2019

13. Torres-Jimenez, J., Izquierdo-Marquez, I., Avila-George, H.: Methods to construct
uniform covering arrays. IEEE Access 7, 42774–42797 (2019)

14. Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering arrays
using simulated annealing. Inf. Sci. 185(1), 137–152 (2012)

15. Wagner, M., Kampel, L., Simos, D.E.: Quantum-inspired evolutionary algorithms
for covering arrays of arbitrary strength. In: Kotsireas, I., Pardalos, P., Parsopoulos,
K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 300–316.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34029-2_20

16. Yu, L., Lei, Y., Kacker, R.N., Kuhn, D.R.: ACTS: a combinatorial test generation
tool. In: 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation, pp. 370–375, March 2013

https://doi.org/10.1007/978-3-030-34029-2_20

A Fast Counting Method for 6-Motifs
with Low Connectivity

Taha Sevim , Muhammet Selçuk Güvel , and Lale Özkahya(B)

Department of Computer Engineering, Hacettepe University, Ankara, Turkey
tahasevim231@gmail.com, selcukguvel@gmail.com, laleozkahya@gmail.com

Abstract. A k-motif (or graphlet) is a subgraph on k nodes in a graph or
network. Counting of motifs in complex networks has been a well-studied
problem in network analysis of various real-word graphs arising from the
study of social networks and bioinformatics. In particular, the triangle
counting problem has received much attention due to its significance in
understanding the behavior of social networks. Similarly, subgraphs with
more than 3 nodes have received much attention recently. While there
have been successful methods developed on this problem, most of the
existing algorithms are not scalable to large networks with millions of
nodes and edges.

The main contribution of this paper is a preliminary study that genar-
alizes the exact counting algorithm provided by Pinar, Seshadhri and
Vishal to a collection of 6-motifs. This method uses the counts of motifs
with smaller size to obtain the counts of 6-motifs with low connectivity,
that is, containing a cut-vertex or a cut-edge. Therefore, it circumvents
the combinatorial explosion that naturally arises when counting sub-
graphs in large networks.

Keywords: Social networks · Motif analysis · Subgraph counting

1 Introduction

In social network analysis, any fixed subgraph with k nodes is called a k-motif
(or graphlet) and their analysis has been a useful method to characterize the
structure of real-world graphs. It has observed particularly in social networks,
that some motifs are more common than others, and the structure of the network
is different than the structure of the random graphs [12,18,29]. While knowing
that only the analysis of these subgraphs is not sufficient to understand the
structure of the networks, it has been validated that the motif frequencies provide
substantial information about the local network structure in various domains
[8,9,12]. By counting the number of embeddings of each motif in a network, it is
possible to create a profile of sufficient statistics that characterizes the network
structure [24].

Although there has been significant amount of success and impact on areas
varying from social science to biology, the search for faster and more efficient
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 324–332, 2020.
https://doi.org/10.1007/978-3-030-43120-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_25&domain=pdf
http://orcid.org/0000-0003-2890-344X
http://orcid.org/0000-0003-0668-4354
http://orcid.org/0000-0001-6105-1694
https://doi.org/10.1007/978-3-030-43120-4_25

A Fast Counting Method for 6-Motifs with Low Connectivity 325

algorithms to compute the frequencies of graph patterns continues. The main
reason to study algorithms to count motifs faster is combinatorial explosion. The
running time of algorithms to exactly count k-motifs on the vertex set V is of
the order O(|V |k). The counts of 6-motifs are in the orders of billions to trillions
for graphs with more than a few million edges. Thus, an enumeration algorithm
cannot terminate in a reasonable time. The idea presented in [19] and extended
to 6-motifs here uses a framework of counting with minimal enumeration. The
main contribution of this paper is a preliminary study that genaralizes the exact
counting algorithm provided in [19] to a collection of 6-motifs. To the best of
our knowledge, this is the only study that counts 6-motifs using exact compu-
tation and performs all counts in graphs with millions of edges in minutes. As a
preliminary work, we are able to exactly count the motifs shown in Fig. 2. The
particular reason that this subset of motifs are chosen is that each of them con-
tains a cut-vertex or a cut-edge, that is, removing that vertex or edge makes the
motif disconnected. The main idea is to build a framework to cut each pattern
of 6 nodes into smaller patterns, where each of the patterns contain that par-
ticular cutting subset, also called cut-set. Then, the enumeration is only needed
for these smaller patterns rather than the big pattern. For our purposes, we do
not carry out the enumeration and use the counts for these smaller patterns
obtained in [19].

There are various approximation algorithms [4,14,20,23,31], however the
results they provide are not exact and scalable for counting larger motifs with
more than 4 nodes, whereas the method presented here is also scalable to very
large networks. As presented in Sect. 3, our method is able to count 6-motifs in
Fig. 2 for a network with 3 millions of edges under 5 min. Most of the studies
on counting motifs have been focusing on smaller motifs with size at most 4. In
particular, the count of triangles has been widely studied due to its importance
in the analysis of social networks [28]. These results have been helpful for graph
classification and often used as graph attributes. Another group of recent stud-
ies on subgraph counts are used for detecting communities and dense subgraphs,
such as [2,22,25,27]. More recent algorithmic improvements on counting trian-
gles can be found in [23,26]. Exact and approximate algorithms for computing
the number of non-induced 4-motifs are proposed in [10].

It has been observed that sampling algorithms [4,20,30,31] and randomized
algorithms, such as the color coding method [3,13,32], are not feasible for count-
ing motifs of size larger than 4. One of the most recently developed algorithms
in [5] estimates the number of 7-motifs on a graph with 65M nodes and 1.8B
edges in around 40 min. Exact counting algorithms as in [15,16,31] exist, but
they are very slow and not scalable to large graphs. The recent study in [19]
showed an exact counting technique that counts all patterns with at most 5
vertices on graphs with tens of millions of edges in several minutes.

The main contribution in this paper is to cut each pattern in the chosen col-
lection into smaller patterns and use the enumeration on these smaller patterns
to count the big pattern by using the framework in [19]. Some other algorithms
that used ideas to avoid enumeration can be seen in [1,6,7,11].

326 T. Sevim et al.

2 Methodology

The input graph G = G(V,E) is undirected, where V and E denote the vertex
set and the edge set of G, respectively. A subgraph of G is called induced if all
edges present in the host graph exist as edges in that subgraph. Otherwise, it is
called non-induced. In our counting method, a subgraph means a non-induced
subgraph. We call a triangle with a missing edge a wedge, a K4 with a missing
edge a diamond and a triangle with an edge attached to one of its vertices, a tailed
triangle. In our notation, for each vertex i, we use d(i) and T (i), (resp. T (e))
to denote the degree of i and the number of triangles that contain the vertex i
(resp. edge e), respectively. Similarly, C4(i) (resp. C4(e)) and K4(i) (resp. K4(e))
indicate the number of C4’s and K4’s that contain the vertex i (resp. edge e),
respectively. The number of diamonds, tailed triangles and K4’s in the graph G
are denoted by D(G), TT (G), and K4(G), respectively. The number of wedges
between two vertices i and j and ending at a vertex i are written as W (i, j) and
W (i). The numbers of the 5-motifs given in Fig. 1 are described with N5

i , and
of the ones in Fig. 2 are described with Ni.

Fig. 1. The collection of connected 5-motifs [19].

Fig. 2. The 6-motifs with low connectivity.

A standard method for counting triangles is to enumerate the wedges and
find the triangles by checking whether the missing edge is there or not. By a

A Fast Counting Method for 6-Motifs with Low Connectivity 327

similar idea, the formulation here uses a cut-set, say S, for each motif H, whose
removal disconnects H. Let the components be Ci and let S∪Ci be Hi. There is
some care needed in choosing this cut-set, however in our algorithm it is typically
a vertex or an edge. The count for each possible Hi that contains S is obtained
by the counts of 4-motifs and 5-motifs given in [19]. The collection of 5-motifs
that are used in our counting method can be seen in Fig. 1.

2.1 Main Theorems

The exact computation for the motifs presented in Fig. 2 is obtained in the
following theorems. We refer the reader to [19] for the technical details of the
method used. Here, we briefly discuss two examples to present the general idea
and how we apply it to obtain Theorems 1 and 2.

Theorem 1 (Cut is a vertex).
N1 =

∑
i∈V

(
d(i)
5

)

N2 =
∑

i∈V

(
W (i)
2

)
(d(i) − 2) − N5

7 − N5
2 − 2N5

6 − 2TT (G) − 6D(G)
N9 =

∑
i∈V T (i)

(
d(i)−2

3

)

N11 =
∑

i∈V

(
T (i)
2

)
(d(i) − 4) − N5

11

N12 =
∑

i∈V K4(i)(T (i) − 3) − 2N5
19

N13 =
∑

i∈V K4(i)
(
d(i)−3

2

)

N14 =
∑

i∈V K4(i)(W (i) − 6) − 2N5
19 − 2N5

15

For example, the expression calculating N9 in Theorem 1 has no overcounting
and it considers every vertex as a cut-vertex i and counts by pairing triangles and
the three neighbors attached to i. However, in the calculation of N17, Theorem 2,
we subtract the number of other motifs, counted unnecessarily. Here, the cut-
set is an ordered pair e = <i, j>. One example of overcounting occurs when
the vertices labeled 1 and 3 in Fig. 3 are chosen to be the same, meaning also 5-
motifs with index 10 are counted. Thus, we subtract it twice considering that i is
mapped to the vertices labeled either 1 or 4 (in Fig. 1). Similarly, all subtractions
remove the contributions of overcounting.

Fig. 3. The chosen cut-edge for motif-17.

Theorem 2 (Cut is an edge).
Here, <i, j> indicates an ordered and (i, j) an unordered pair.

328 T. Sevim et al.

N3 =
∑

(i,j)∈E

(
d(i)−1

2

)(
d(j)−1

2

) − N5
6 − D(G)

N4 =
∑

<i,j>∈E

(
d(i)−1

3

)
(d(j) − 1) − 2N5

4

N5 =
∑

(i,j)∈E

(
d(j)−1

2

)
(W (i) − 2) − −2N (5)

7 − 2N (5)
6 − ∑

x∈V

(
d(x)
4

)

N6 =
∑

(i,j)∈E [W (i) − (d(j) − 1)][W (j) − (d(i) − 1)]−2N5
4 −5N5

8 −2N5
7 −2N5

5 −
TT (G) − 3T (G)
N7 =

∑
e=(i,j)∈E (T (i) − T (e))(W (j) − (d(i) − 1)) − 2N5

12 − 4N5
9 − 8D(G)

N8 =
∑

e=<i,j>∈E(T (i) − T (e))
(
d(j)−1

2

) − 2N5
11 − 6K4(G)

N10 =
∑

e=(i,j)∈E(T (i) − T (e))(T (j) − T (e)) − N5
16 − 6K4(G)

N15 =
∑

e∈E

(
K4(e)

2

) − 3N5
20

N16 =
∑

e∈E K4(e)
(
T (e)−2

2

)

N17 =
∑

e=<i,j>∈E(t(i) − t(e))t(e)(d(j) − 2) − 2N5
10 − 12K4(G) − 2N5

16

3 Experimental Results and Conclusions

Experiments are performed on a computer that has 2.7 GHz dual-core Intel Core
i5 processor, 3 MB L3 Cache and 8 GB 1867 MHz LPDDR3 memory. Our count-
ing formulas are implemented with C++ using ESCAPE [19] framework. The
datasets are taken from [17,21].

The input graph G = G(V,E) is undirected and has n vertices and m edges,
where multiple edges and loops are ignored. The input graph is stored as an
adjacency list, where each list is a hash table. Thus, edge queries can be made
in constant time.

Fig. 4. The counts of 6-motifs in the given networks.

A Fast Counting Method for 6-Motifs with Low Connectivity 329

The motifs studied here are not induced, however it is still possible to observe
the behavior of the relationships in the corresponding network by the motif
analysis obtained in Fig. 4. As expected, the most common motif is the 5-star and
the tree motifs occur more frequently. One exception to that is the 5-star with
an edge added. This is not surprising, since this and the 5-star are two graphs,
abundant at the hub vertices with very high degrees in most social networks.
Also, Fig. 4 indicates that when the clique number of a motif is higher, the count
of that motif is less.

In Table 1, the runtimes of the algorithm together with the size of each net-
work are provided. The fourth column shows the runtimes obtained in [19] to
evaluate the counts of motifs with 4 and 5 nodes. The runtime spent only for the
counts of 6-motifs by our algorithm is listed in the last column. The runtimes
to count smaller motifs were predicted for any network in [19]. Similarly, we
obtain predictions using the runtimes in the last column of Table 1, as shown in
Fig. 5. All counts in Theorems 1 and 2 can be computed in time O(n+m), where
n = |V | and m = |E|. As social networks are sparse graphs and |E| = O(n), our
prediction is −0.1476 + 1.6204|E| seconds for any network with |E| edges. As
observed in Table 1, our algorithm is able to execute the counts of all 6-motifs
in Fig. 2 under 20 s, excluding the runtime spent to obtain the counts of smaller
motifs.

Table 1. The runtimes in seconds for the motif counts of various networks

Network |V | |E| 4–5 motifs [19] 6-motif

com-youtube 1.1M 2.9M 168.880 4.896

web-wiki-ch-internal 1.9M 8.9M 2017.165 17.047

web-stanford 281.9K 1.9M 222.296 3.233

tech-as-skitter 1.7M 11.1M 1401.271 15.991

soc-brightkite 56.7K 212.9K 6.629 0.242

tech-RL-caida 190.9K 607.6K 4.719 0.729

flickr 757.2K 1.4M 13.008 1.886

com-amazon 334.8K 925.8K 2.908 1.272

web-google-dir 875.5K 4.3M 63.511 5.589

ia-email-EU-dir 265.0K 364.4K 6.537 0.479

Fig. 5. The prediction of runtimes in seconds.

330 T. Sevim et al.

4 Conclusions

In this study, we presented a preliminary work that genaralizes the exact count-
ing method for motifs of networks in [19] to a collection of 6-motifs with lower
connectivity. We performed experiments to analyze the motif structure in real-
world graphs and analyzed the runtime efficiency for the computations. The idea
of counting 6-motifs by using algorithms based on the enumeration of smaller
motifs results in much shorter runtime compared to other state-of-the-art algo-
rithms. In a future study, we plan to extend this counting method to the remain-
ing connected 6-motifs and use this data to obtain the counts of induced 6-motifs.

Acknowledgements. The research of the third author was supported by the BAGEP
Award of the Science Academy of Turkey.

References

1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting for
large networks. In: 2015 IEEE International Conference on Data Mining, pp. 1–10.
IEEE (2015)

2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

3. Betzler, N., Van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.:
Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 8(5), 1296–1308 (2011)

4. Bhuiyan, M.A., Rahman, M., Rahman, M., Al Hasan, M.: GUISE: uniform sam-
pling of graphlets for large graph analysis. In: 2012 IEEE 12th International Con-
ference on Data Mining, pp. 91–100. IEEE (2012)

5. Bressan, M., Leucci, S., Panconesi, A.: Motivo: fast motif counting via succinct
color coding and adaptive sampling (2019). https://arxiv.org/pdf/1906.01599.pdf

6. Elenberg, E.R., Shanmugam, K., Borokhovich, M., Dimakis, A.G.: Beyond trian-
gles: a distributed framework for estimating 3-profiles of large graphs. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 229–238. ACM (2015)

7. Elenberg, E.R., Shanmugam, K., Borokhovich, M., Dimakis, A.G.: Distributed
estimation of graph 4-profiles. In: Proceedings of the 25th International Conference
on World Wide Web, pp. 483–493. International World Wide Web Conferences
Steering Committee (2016)

8. Faust, K.: A puzzle concerning triads in social networks: graph constraints and the
triad census. Soc. Netw. 32(3), 221–233 (2010)

9. Frank, O.: Triad count statistics. Ann. Discrete Math. 38, 141–149 (1988)
10. Gonen, M., Shavitt, Y.: Approximating the number of network motifs. Internet

Math. 6(3), 349–372 (2009)
11. Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinfor-

matics 30(4), 559–565 (2014)
12. Holland, P.W., Leinhardt, S.: Local structure in social networks. Sociol. Methodol.

7, 1–45 (1976)
13. Hormozdiari, F., Berenbrink, P., Pržulj, N., Sahinalp, S.C.: Not all scale-free net-

works are born equal: the role of the seed graph in PPI network evolution. PLoS
Comput. Biol. 3(7), e118 (2007)

https://arxiv.org/pdf/1906.01599.pdf

A Fast Counting Method for 6-Motifs with Low Connectivity 331

14. Jha, M., Seshadhri, C., Pinar, A.: Path sampling: a fast and provable method
for estimating 4-vertex subgraph counts. In: Proceedings of the 24th International
Conference on World Wide Web, pp. 495–505. International World Wide Web
Conferences Steering Committee (2015)

15. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC
Bioinform. 10(1), 318 (2009)

16. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics
20(11), 1746–1758 (2004)

17. Leskovec, J., Krevl, A.: Stanford large network dataset collection (2014). https://
snap.stanford.edu/data

18. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

19. Pinar, A., Seshadhri, C., Vishal, V.: ESCAPE: efficiently counting all 5-vertex sub-
graphs. In: Proceedings of the 26th International Conference on World Wide Web,
pp. 1431–1440. International World Wide Web Conferences Steering Committee
(2017)

20. Rahman, M., Bhuiyan, M.A., Al Hasan, M.: GRAFT: an efficient graphlet counting
method for large graph analysis. IEEE Trans. Knowl. Data Eng. 26(10), 2466–2478
(2014)

21. Rossi, R., Ahmed, N.: Network data repository (2012). https://networkrepository.
com

22. Sariyuce, A.E., Seshadhri, C., Pinar, A., Catalyurek, U.V.: Finding the hierar-
chy of dense subgraphs using nucleus decompositions. In: Proceedings of the 24th
International Conference on World Wide Web, pp. 927–937. International World
Wide Web Conferences Steering Committee (2015)

23. Seshadhri, C., Pinar, A., Kolda, T.G.: Fast triangle counting through wedge sam-
pling. In: Proceedings of the SIAM Conference on Data Mining, vol. 4, p. 5 (2013)

24. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495 (2009)

25. Tsourakakis, C.: The K-clique densest subgraph problem. In: Proceedings of the
24th International Conference on World Wide Web, pp. 1122–1132. International
World Wide Web Conferences Steering Committee (2015)

26. Tsourakakis, C.E., Kolountzakis, M.N., Miller, G.L.: Triangle sparsifiers. J. Graph
Algorithms Appl. 15(6), 703–726 (2011)

27. Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph
clustering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 1451–1460. International World Wide Web Conferences Steering Com-
mittee (2017)

28. Ugander, J., Backstrom, L., Kleinberg, J.: Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In: Proceedings of the
22nd International Conference on World Wide Web, pp. 1307–1318. ACM (2013)

29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

https://snap.stanford.edu/data
https://snap.stanford.edu/data
https://networkrepository.com
https://networkrepository.com

332 T. Sevim et al.

30. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput.
Biol. Bioinform. (TCBB) 3(4), 347–359 (2006)

31. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioin-
formatics 22(9), 1152–1153 (2006)

32. Zhao, Z., Wang, G., Butt, A.R., Khan, M., Kumar, V.A., Marathe, M.V.: SAHAD:
subgraph analysis in massive networks using hadoop. In: 2012 IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium, pp. 390–401. IEEE (2012)

LaserTank is NP-Complete

Per Alexandersson and Petter Restadh(B)

KTH The Royal Institute of Technology, 100 44 Stockholm, Sweden
per.w.alexandersson@gmail.com, petterre@kth.se

Abstract. We show that the classical game LaserTank is NP-complete,
even when the tank movement is restricted to a single column and the
only blocks appearing on the board are mirrors and solid blocks. We
show this by reducing 3-SAT instances to LaserTank puzzles.

Keywords: NP-completeness · LaserTank · 3-SAT

1 Introduction

From Wikipedia: “LaserTank (also known as Laser Tank) is a computer puzzle
game requiring logical thinking to solve a variety of levels”.1 It was first released
on the Windows platform in 1995, and a similar game was released in 1998 for the
graphing calculator Texas Instruments Ti-83, under the name Laser Mayhem.2
To our knowledge, the complexity of LaserTank has not been studied before,
while several other classical games have been shown to be (co)NP-complete,
NP-hard or PSPACE-complete. For example, Sokoban [3], Tetris [2], Rush Hour
[4], and Minesweeper [5,6] to list a few.

In this short note, we prove the following.

Theorem 1. LaserTank is NP-complete.

It should be noted that one can perhaps apply more general meta-theoretical
approaches for puzzle games and planning games in particular, to prove NP-
completeness. It is likely that the framework by Viglietta [7]—which can be
applied to games such as Boulder Dash, Pipe Mania and Starcraft—can success-
fully be applied to LaserTank as well. We opted for a self-contained hands-on
approach where 3-SAT is reduced to LaserTank. Furthermore, we only use a
small subset of the available pieces in the original game, as well as restrict the
movement of the tank in two directions. These restrictions have the benefit that
they imply that the Laser Mayhem variant is also NP-complete.

1.1 Short Background on 3-SAT

A 3-SAT expression E is a conjunction of clauses, where each clause involves
exactly three distinct literals. A literal is either a boolean variable, or its
1 https://en.wikipedia.org/wiki/LaserTank.
2 https://www.ticalc.org/archives/files/fileinfo/95/9532.html.
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 333–338, 2020.
https://doi.org/10.1007/978-3-030-43120-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_26&domain=pdf
http://orcid.org/0000-0003-2176-0554
http://orcid.org/0000-0002-3411-8766
https://en.wikipedia.org/wiki/LaserTank
https://www.ticalc.org/archives/files/fileinfo/95/9532.html
https://doi.org/10.1007/978-3-030-43120-4_26

334 P. Alexandersson and P. Restadh

negation. The 3-SAT problem states: Determine if E is satisfiable—that is, there
is an assignment of truth values to the variables that makes E true. For example,
E = (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) is such a conjunction, and
the assignment x, z = true, y = false shows that E is satisfiable. Determining
satisfiability of a 3-SAT expression is an NP-complete problem [1].

2 LaserTank

LaserTank is a turn-based single-player puzzle game played on a 2-dimensional
grid (the board), where in each turn, the player either moves the tank, or fires a
laser from the tank. The laser interacts with different pieces on the board, and
the goal is to hit a certain piece with the laser. The pieces3 we use are mirrors
{◺, ◹, ◿, ◸}, solid blocks �, movable blocks �, the tank , and the goal

⊕
.

The tank is the only piece directly controlled by the player, and the laser exits
the tank from the front, which is the pointy end of . In our version, the tank
is restricted to sideways movement only, see Example 1. In our final notes we
explain how we take care of the case where the movement of the tank is not
restricted. The tank can fire a laser from the front. If the laser hits a mirror
on a slanted edge it is reflected. When a mirror is hit on one of the two (non-
reflective) short edges by the laser, the mirror is pushed in the direction of the
laser. A movable block is pushed one step if it is hit by the laser. A movable
block or a mirror is only pushed if the tile directly behind it is empty. The aim
of the puzzle is to hit the goal piece with the laser. The solid blocks do not allow
lasers or the tank to pass through and they do not move when hit by the laser.
The following example shows all game mechanics in action.

Example 1. Here is a small instance of the problem, with a step-by-step solution.
The tank fires a laser which moves a mirror (1), then takes one step sideways,
(2). It then shoots a laser at the movable block (3), and finally moves in position
to have a clear shot of the goal (4).

Our goal is now to construct puzzles which imitates an instance of 3-SAT.
We employ so called gadgets that emulate boolean operations. Below, we let
⤑,

⤑

indicate the inputs to the gadgets (considered as boolean variables), and
{⤑ ∗,

⤑
∗ } indicate inputs that are always available as clear shots from the tank.

The latter are used for producing the output of the gadget.

3 For a complete list of pieces available in the official game, see https://lasertan
ksolutions.blogspot.com/p/in-my-opinionlaser-tank-is-best-logic.html.

https://lasertanksolutions.blogspot.com/p/in-my-opinionlaser-tank-is-best-logic.html
https://lasertanksolutions.blogspot.com/p/in-my-opinionlaser-tank-is-best-logic.html

LaserTank is NP-Complete 335

Fig. 1. The and-gadget, three-or-gadget, literal-gadget, and switch-gadget.

The and Gadget. The configuration in Fig. 1a serves as our and-gadget. We
need to shoot through both A and B in order to allow for A∧B = X as output.
Notice that the two movable blocks can only be moved up, right and down. If
we want the gadget to produce an output through X, all movable blocks must
be moved out of the way. This can only be accomplished if the movable block
must have been moved to the right via activation from both A and B, which
shows that the gadget is indeed an and-gadget. The and-gadget can easily be
generalized to more than two inputs.

The three-or gadget is depicted in Fig. 1b. If either of the inputs A, B or
C are available, then X allows for output. The only way to produce output from
X is to move a ◸ to the same row as X. The ◸ can only be moved into that
row from above and thus we must have some input from A, B or C in order for a
laser to pass out through X. Thus the three-or gadget works the way intended.

The literal gadget is depicted in Fig. 1c. This gadget emulates a literal,
with two different mutually exclusive outputs depending on the choice of value
of the literal. To unlock X as output, fire once through ¬X first. This moves the
movable block out of the way but prevents ¬X from being available as output.
Similarly for ¬X.

The switch gadget is depicted in Fig. 1d. The switch-gadget is our main
building block for encoding an instance of a 3-SAT problem. It allows for the
input X to be available first as output to the right, then redirected down. This
allows X to be used in multiple or-clauses.

Example 2. In the puzzle in Fig. 2, only a single “input”, X, is available. However,
with the switches we can redirect input X to activate the and gadget. Notice the
two ◹ pieces that are required to activate the switches and that the rightmost
switch gadget must be used first in order to solve the puzzle. This is also true
in the general setup, where switches should be used from right to left.

2.1 The Reduction

A 3-SAT expression may now be encoded as a LaserTank puzzle as follows.
There is one literal-gadget for each variable appearing in the expression, a

336 P. Alexandersson and P. Restadh

Fig. 2. Left: A small puzzle showing the use of two switch-gadgets and one and-gadget.
Right: Layout of a general 3-SAT puzzle. Above each or-gadget are three switches,
corresponding to the three literals involved on the or-clause.

three-or-gadget for each or-clause, and a single and-gadget with multiple
inputs is used to bind all together. The puzzle is designed such that the output
of the and-gadget is the only way to hit the goal. The general layout of such a
puzzle is shown in Fig. 2. For each three-or-clause in the 3-SAT expression, three
switches are placed on the board corresponding to the three literals involved. In
other words, the clauses of the 3-SAT expression are encoded via switch-gadgets.
The switches can always be activated via the ◹ pieces at the top of the board
as in Fig. 2. As a concrete example, the expression (A∨B ∨ ¬C)∧ (A∨ ¬B ∨C)
is encoded as the puzzle shown in Fig. 3.

The following lemma shows that solving LaserTank puzzles can be done in
polynomial time with a non-deterministic Turing machine. Hence LaserTank is
in NP.

Lemma 1. A solution consisting of k steps to a LaserTank puzzle on a board of
size n can be verified in time O(kn).

Proof. It is straightforward to show that the laser movement is time-reversible.
This implies that it is impossible for a laser shot by the tank to end up in an
“infinite loop” while being reflected by mirrors. Remember also that the laser
stops as soon as it hits a solid block, a movable block, or moves a mirror. It
follows that after firing the laser, it takes less than 4n steps before the laser finds
its final destination, where n is the number of tiles on the board. Simulating a
sequence of k moves thus requires O(kn) time.

From our construction, it is a straightforward calculation to see that given a
3-SAT expression with V variables and C clauses gives a puzzle contained on a
board with size (7V +9C+4)(7C+10). This is evidently polynomial in the size
of the expression.

LaserTank is NP-Complete 337

Fig. 3. The puzzle corresponding to the expression (A∨B ∨¬C)∧ (A∨¬B ∨C). Note
that if A = true, the expression is satisfied. Thus this particular puzzle can be solved
without deciding truth values for the variables B and C, and the movable blocks in
the B and C variable gadgets do not need to be moved.

Proof (of Theorem 1). A 3-SAT problem can be converted to a LaserTank puzzle
in polynomial time since the board size is a polynomial in the number of variables
and clauses. Furthermore, a solution to such a LaserTank puzzle can easily be
translated back to a solution of the original 3-SAT problem in polynomial time,
by simply performing all the steps and reading how the variable-gadgets have
been used. Note that a LaserTank puzzle solution might not decide the truth
value of some variables (see caption of Fig. 3), in which case, one may simply
let these values be true. Given a solution to the 3-SAT problem we can easily
construct a solution to the corresponding LaserTank instance. Thus the 3-SAT
problem is satisfiable if and only if the corresponding LaserTank puzzle has a
solution. According to Lemma 1, the translation of a puzzle solution to a 3-SAT
solution only requires a polynomial time in the input size (number of steps).
This shows that LaserTank is at least as hard as 3-SAT. Finally, Lemma 1
shows that a solution can be verified in polynomial time and hence LaserTank
is NP-complete.

Notice that in both the and– and literal-gadget, each movable block can
be replaced with a ◸-mirror without changing the behavior of the gadget. Thus
Theorem 1 is valid even in the case when restricting to puzzles without movable
blocks. Furthermore, we can extend Theorem 1 to the case where the tank can
turn and move in all four directions. To do so, we need to make sure the tank
only has access to the same inputs as in the previous setup. This can be done by
inserting additional rows in the puzzle such that every other row is empty, and

338 P. Alexandersson and P. Restadh

then inserting two columns in with the pattern between the initial position
of the tank and the rest of the board. We leave the details to the reader.

Finally, we note that in some variants of LaserTank where the tank may turn
and move in all directions, the goal is not to shoot at a goal but rather move
the tank to the goal. Our construction can also be adapted to this situation, by
blocking off a path (using solid blocks) from the first column to the and-gadget
at the bottom of the instance and remove the mirrors in the and-gadget. Then
the tank can only move through the and-gadget if it has been cleared of movable
blocks, and the setup is now equivalent to our previous setup.

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous System and Software Program (WASP) founded by the Knut and Alice
Wallenberg Foundation.

References

1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158.
ACM, New York (1971). https://doi.org/10.1145/800157.805047

2. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approxi-
mate. Technical report, MIT-LCS-TR-865. MIT, Cambridge (2002). https://arxiv.
org/abs/cs/0210020

3. Dor, D., Zwick, U.: SOKOBAN and other motion planning problems. Comput.
Geom. 13(4), 215–228 (1999). https://doi.org/10.1016/s0925-7721(99)00017-6

4. Flake, G.W., Baum, E.B.: Rush Hour is PSPACE-complete, or “Why you should gen-
erously tip parking lot attendants”. Theor. Comput. Sci. 270(1–2), 895–911 (2002).
https://doi.org/10.1016/s0304-3975(01)00173-6

5. Kaye, R.: Minesweeper is NP-complete. Math. Intell. 22(2), 9–15 (2000). https://
doi.org/10.1007/bf03025367

6. Scott, A., Stege, U., van Rooij, I.: Minesweeper may not be NP-complete but is hard
nonetheless. Math. Intell. 33(4), 5–17 (2011). https://doi.org/10.1007/s00283-011-
9256-x

7. Viglietta, G.: Gaming is a hard job, but someone has to do it!. Theory Comput.
Syst. 54(4), 595–621 (2013). https://doi.org/10.1007/s00224-013-9497-5

https://doi.org/10.1145/800157.805047
https://arxiv.org/abs/cs/0210020
https://arxiv.org/abs/cs/0210020
https://doi.org/10.1016/s0925-7721(99)00017-6
https://doi.org/10.1016/s0304-3975(01)00173-6
https://doi.org/10.1007/bf03025367
https://doi.org/10.1007/bf03025367
https://doi.org/10.1007/s00283-011-9256-x
https://doi.org/10.1007/s00283-011-9256-x
https://doi.org/10.1007/s00224-013-9497-5

Data Modeling and Machine Learning

Improved Cross-Validation for Classifiers
that Make Algorithmic Choices
to Minimise Runtime Without

Compromising Output Correctness

Dorian Florescu and Matthew England(B)

Faculty of Engineering, Environment and Computing, Coventry University,
Coventry CV1 5FB, UK

{Dorian.Florescu,Matthew.England}@coventry.ac.uk

Abstract. Our topic is the use of machine learning to improve soft-
ware by making choices which do not compromise the correctness of the
output, but do affect the time taken to produce such output. We are
particularly concerned with computer algebra systems (CASs), and in
particular, our experiments are for selecting the variable ordering to use
when performing a cylindrical algebraic decomposition of n-dimensional
real space with respect to the signs of a set of polynomials.

In our prior work we explored the different ML models that could
be used, and how to identify suitable features of the input polynomials.
In the present paper we both repeat our prior experiments on prob-
lems which have more variables (and thus exponentially more possible
orderings), and examine the metric which our ML classifiers targets. The
natural metric is computational runtime, with classifiers trained to pick
the ordering which minimises this. However, this leads to the situation
where models do not distinguish between any of the non-optimal order-
ings, whose runtimes may still vary dramatically. In this paper we inves-
tigate a modification to the cross-validation algorithms of the classifiers
so that they do distinguish these cases, leading to improved results.

Keywords: Machine Learning · Cross-validation · Computer algebra ·
Symbolic computation · Cylindrical algebraic decomposition

1 Introduction

1.1 Background and Main Thesis

Machine Learning (ML), that is statistical techniques to give computer systems
the ability to learn rules from data, is a topic that has found great success in a
diverse range of fields over recent years. ML is most attractive when the under-
lying functional relationship to be modelled is complex or not well understood.
With regards to the creation of software itself, while ML has a history of use for
testing and security analysis [26] it is less often used in the actual algorithms.
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 341–356, 2020.
https://doi.org/10.1007/978-3-030-43120-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_27

342 D. Florescu and M. England

On the surface, this would be especially true for software that prizes mathemat-
ical correctness, such as computer algebra systems (CASs). Here, a thorough
understanding of the underlying relationships would seem to be a pre-requisite.

However, CAS developers would acknowledge that their software actually
comes with a range of options that, while having no effect on the correctness of
the end result, can have a great effect on how long it takes to produce the result
and exactly what form that result takes. These choices range from the low level
(in what order to perform a search that may terminate early) to the high (which
of a set of competing exact algorithms to use for this problem instance).

A well-known example is the choice of monomial ordering for a Gröbner Basis.
This choice is actually quite abnormal in that there has been much study devoted
to it and there are some clear pieces of advice to follow (e.g. that degrevlex
ordering is the easiest to compute, and that if a lex ordering is needed it would
be best to first compute a degrevlex basis and then convert). A better example
of the choices we consider would be the underlying variable order that is required
to define any monomial ordering, for which there exists no such clear advice.

In practice these less understood choices are usually either left entirely to
the user, taken by human-made heuristics based on some experimentation (e.g.
[19]), or made according to magic constants where crossing a single threshold
changes system behaviour [11]. Our main thesis is that many of these decisions
could be improved by allowing ML algorithms to analyse the data.

1.2 Outline of the Paper and Contribution

Our experiments concern variable orderings for another prominent symbolic com-
putation algorithm: Cylindrical Algebraic Decomposition (CAD). CAD is an
expensive procedure, with the choice of ordering affecting not only computa-
tion time but often the tractability of even considering a problem. We introduce
the necessary background on CAD and its orderings in Sect. 2. We describe our
prior work using ML to make this choice [23,25,28,29] in Sect. 3 which includes
experimenting with a range of ML models, and developing techniques to gener-
ate suitable features from the input data. This prior work was all conducted on
a large dataset of 3-variable problems (a choice from 6 orderings).

The new contributions of the present paper are two-fold. First, we have
applied our prior methodology to a dataset of 4-variable problems (choice from 24
orderings) and we report on how it handled this increased complexity. Secondly,
we examine and improve the training goal of our ML classifiers. The natural
metric for this problem is runtime, and our old classifiers are trained to pick
the ordering which minimises this for a given CAD input. However, this meant
our training did not distinguish between any of the non-optimal orderings even
though the difference between these could be huge. In Sect. 4 we report on a new
cross-validation approach for our classifiers which aims to make them aware of
these different shades of wrong and thus make choices which reduce the overall
runtime even if the number of problems where the classifiers pick the absolute
best runtime is unchanged.

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 343

In Sects. 5 and 6 we describe the methodology and results respectively for our
new experiments on choosing the variable ordering for 4-variable CAD problems,
both with and without the new cross-validation approach. We also compare
against the best known human-made heuristics.

2 Background on Variable Ordering for CAD

2.1 Cylindrical Algebraic Decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered Rn

space into cells arranged cylindrically : the projections of any pair of cells with
respect to the variable ordering are either equal or disjoint. I.e. the projections
all lie within cylinders over the cells of an induced CAD of the lower dimensional
space. All these cells are (semi)-algebraic meaning each can be described with a
finite sequence of polynomial constraints.

A CAD is usually produced to be truth-invariant for a logical formula, mean-
ing the formula is either true or false on each cell. Such a decomposition can then
be used to analyse the formula, and for example, perform Quantifier Elimination
(QE) over the reals. I.e. given a quantified Tarski formula in prenex normal form
we can find an equivalent quantifier free formula over the reals by building a CAD
for the quantifier-free part of the formula, querying a finite number of sample
points (one from each cell), and then using the corresponding cell descriptions.
For example, QE could transform ∃x, ax2 + bx+ c = 0 ∧ a �= 0 to the equivalent
unquantified statement b2−4ac ≥ 0 by building a CAD of (x, a, b, c). In practice,
the quantifier free equivalent would come as the conjunction of several parts (one
from each cell) which logically simplify to the stated result.

CAD was introduced by Collins in 1975 [16] and works relative to a set of
polynomials. Collins’ CAD produces a decomposition so that each polynomial
has constant sign on each cell (thus truth-invariant for any formula built with
those polynomials). The algorithm first projects the polynomials into smaller and
smaller dimensions; and then uses these to lift − to incrementally build decom-
positions of larger and larger spaces according to the polynomials at that level.
There have been a great many developments in the theory and implementation
of CAD since Collins’ original work which we do not describe here. The collection
[12] summarises the work up to the mid-90s while the second author’s journal
articles [5,21] attempt summaries of CAD progress since in their introduction
and background sections. CAD is the backbone of all QE implementations as
it is the only implemented complete procedure for the problem. QE has numer-
ous applications throughout science and engineering1 [38] which would in turn
benefit from faster CAD. Our work also speeds up independent applications of
CAD, such as reasoning with multi-valued functions [18], motion planning [40],
and identifying multistationarity in biological networks [3,4].

1 Recently even economics too [35,36].

344 D. Florescu and M. England

2.2 Variable Ordering

The definition of cylindricity and both stages of the CAD algorithm are relative
to an ordering of the variables. For example, given polynomials in variables
ordered as xn � xn−1 � . . . ,� x2 � x1 we first project away xn and so on
until we are left with polynomials univariate in x1. We then start lifting by
decomposing the x1-axis, and then the (x1, x2)-plane and so on. The cylindricity
condition refers to projections of cells in Rn onto a space (x1, . . . , xm) where
m < n. As noted above there have been numerous advances to CAD since its
inception but the need for a fixed variable ordering remains.

Depending on the application, the variable ordering may be determined, con-
strained, or free. QE requires that quantified variables are eliminated first and
that variables are eliminated in the order in which they are quantified. How-
ever, variables in blocks of the same quantifier (and the free variables) can be
swapped, so there is partial freedom. In the example discussed in Sect. 2.1 we
may use any variable ordering that projects the quantified variable x first to
perform the QE and discover the discriminant. A CAD for the quadratic poly-
nomial under ordering a ≺ b ≺ c has only 27 cells, but we need 115 for the
reverse ordering.

This choice of variable ordering can have a great effect on the time and
memory use of CAD, and the number of cells in the output (how course or fine the
decomposition is). In fact, Brown and Davenport presented a class of problems
in which one variable ordering gave output of double exponential complexity in
the number of variables and another output of a constant size [10].

Heuristics have been developed to choose a variable ordering, with Dolzmann
et al. [19] giving the best known study. After analysing a variety of metrics they
proposed a heuristic, sotd, which constructs the full set of projection polyno-
mials for each permitted ordering and selects the ordering whose corresponding
set has the lowest sum of total degrees for each of the monomials in each of the
polynomials. The second author demonstrated examples for which that heuristic
could be misled in [6]; and then later showed that tailoring to an implementation
could improve performance [22]. These heuristics all involved potentially costly
projection operations on the input polynomials.

Another human-made heuristic was proposed by Brown in his ISSAC 2004
tutorial notes [9]. This chooses a variable ordering according to the following
criteria, starting with the first and breaking ties with successive ones.

(1) Eliminate a variable first if it appears with the lowest overall individual
degree in the input.

(2) For each variable calculate the maximum total degree (i.e. sum of the indi-
vidual degrees) for the set of terms in the input in which it occurs. Eliminate
first the variable for which this is lowest.

(3) Eliminate a variable first if there is a smaller number of terms in the input
which contain the variable.

The Brown heuristic is far cheaper than the sotd heuristic (because the latter
performs projections before measuring degrees). Surprisingly, our experiments

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 345

on CAD problems in 3-variables all suggest that the Brown heuristic makes
better choices than sotd (even before one considers the time taken to run the
heuristic itself). This counter-intuitive finding does not generalise into our 4-
variable problem set, as discussed later.

3 Prior ML Work on This Problem

3.1 Results from CICM 2014

The first application of ML for choosing a CAD variable ordering was [29] which
used a support vector machine to select which of three human-made heuristics to
follow. The SVM considered 11 simple algebraic features of the input polynomials
(mostly different measures of degree and variable occurrence). The experiments
were on 3-variable CAD problems and although the Brown heuristic was found to
make the best choices on average, the experiments identified substantial subsets
of examples for which each of the three heuristics outperformed the others. The
key conclusion was that the machine learned choice did significantly better than
any one heuristic overall.

3.2 Results from CICM 2019

The present authors revisited these experiments earlier this year in [23]. We used
the same dataset but this time ML was used to predict directly the variable
ordering for CAD, rather than choosing a heuristic. The motivation for picking
a heuristic in [29] was that if the methodology were applied to problems with
more variables it would still mean making a choice from 3 possibilities rather
than an exponentially growing number. However, upon investigation there were
many problems where none of the human-made heuristics made good choices
and so savings could be made by considering all possible orderings2.

In [23] we also considered a more diverse selection of ML methods than
[29]. We experimented with four common ML classifiers: K-Nearest Neighbours
(KNN); Multi-Layer Perceptron (MLP); Decision Tree (DT); and Support Vector
Machine (SVM) with RBF kernel, all using the same set of 11 features from [29].

The results showed that all three of the new models performed substantially
better than the SVM (the only classifier to be tried before); and that all four
classifiers outperformed the human-made heuristics.

2 Of course, this methodology will have to be changed to deal with higher numbers
of variables but since CAD is rarely tractable with more than 5 variables this is
not a particularly pressing concern. We note that there are several meta-algorithms
that may be applicable to sample the possible ordering without evaluating them
all. For example, a Monte Carlo tree search was used in [33] to sample the possible
multivariate Horner schemes and pick an optimal one in the CAS FORM.

346 D. Florescu and M. England

3.3 Results from SC-Square 2019

We next considered how to extract further information from the input data. The
11 features used in [23,29] were inspired by Brown’s heuristic [9] (e.g. measures
of variable degree and frequency of occurrence). In particular, they can all be
cheaply extracted from polynomials.

In [25] a new feature generation procedure was presented, based on the obser-
vation that the original features can be formalised mathematically using a small
number of basic functions (average, sign, maximum) evaluated on the degrees of
the variables in either one polynomial or the whole system. Considering all pos-
sible combinations of these functions led to 78 useful and independent features
for our 3-variable dataset. The experiments were repeated with these, with the
results showing that all four ML classifiers improved their predictions.

Using these new features the choices of the best performing classifier allowed
CAD to solve all problems in the testing set with a runtime only 6% more than
the best possible (i.e. the time taken if the optimal ordering were used for every
problem). Using only the original features, the choices of the best ML classifier
led to 14% more than the minimum runtime. Following the choices of Brown’s
heuristic led to runtimes 27% more than the minimum.

3.4 Related Work on ML for Mathematical Software

The work described above is the only published work on ML for choosing a
CAD variable ordering. There are only a handful of other examples of ML within
CASs: [27,28] on the question of whether to precondition CAD with Gröbner
Bases; [31] on deciding the order of sub-formulae solving for a QE procedure;
and [33] on choosing a multivariate Horner scheme. Other areas of mathemati-
cal software have made more use of ML. For example, in the mathematical logic
community the ML-selected portfolio SAT solver SATZilla [41] is well-known,
while more recently MapleSAT views solver branching as an optimisation prob-
lem to be tackled with ML [34]. There are also several examples of ML within
the automated reasoning community (see e.g. [8,32,39]). A survey on ML for
mathematical software was presented at ICMS 2018 [20].

4 New Cross-Validation Based on Computing Times

4.1 Motivation

In all of the author’s previous ML experiments for CAD [23,25,29], the models
were optimised simply to predict which of the possible variable orderings leads
to the smallest computing time for CAD. This is not an ideal approach:

– First, runtimes for CAD, like all software, will contain a degree of noise from
various hardware and software factors. While it is common for a given CAD
problem to have a wide range of possible runtimes depending on the ordering,
that does not mean that all orderings give runtimes distinct from the others.

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 347

The runtimes commonly appear in clusters. Thus it is often the case that the
smallest runtime be only slightly lower than the second smallest, and that
difference could well be down to noise. Thus when training to target only the
very quickest runtime we risk exaggerating the effects of such noise.

– Second, during training, when a model makes an incorrect prediction this
could mean selecting an ordering that produces a runtime very close to the
optimal or another that is significantly larger. The training would not dis-
tinguish between these cases − there is no distinction between picking an
“almost good” ordering and a “very bad” ordering. However, from the point
of view of a user judging these selections there is a big difference!

One of the traditional metrics used to evaluate an ML classifier is accuracy,
defined as the number of test examples for which the classifier makes the correct
choice. In our context, correct means picking the optimal variable ordering from
the n! possibilities. We recognised that for our application this definition of
accuracy is not sufficient to judge the classifiers and so in our prior work we
also presented the total CAD runtime for the testing set when using the variable
orderings of a classifier (which we referenced in the summary above).

The anonymous referees of our earlier papers commented that perhaps accu-
racy could be redefined into something more appropriate for our application.
For example, judge a classifier as being correct for a problem instance if it picks
an ordering which produces a runtime within x% of the minimum runtime that
can be achieved for that instance3. This led us to consider whether the training
algorithms could be adapted to take account of this more nuanced definition of
accuracy. We decided to introduce this in the stage of the methodology where
cross-validation is used for hyperparameter selection: a single technique that is
used for all of the different ML classifiers we work with.

4.2 Traditional ML Cross-Validation

We describe first the typical procedure of cross-validation used when preparing
a ML classifier which sets the parameters and hyperparameters of a model.

The parameters are variables that can be fine-tuned so that the prediction
error reaches a local or global minimum in the parameter space. For example,
the weights in an artificial neural network or the support vectors in an SVM.
The hyperparameters are model configurations selected before training. They are
often specified by the practitioner based on experience or a heuristic, e.g. the
number of layers in a neural network or the value of k in a k-nearest neighbour
model. The connection between the hyperparameters and the model prediction
is more complex, and thus, typically, these are tuned using grid search in the
hyperparameter space to minimise the prediction error.

To prevent the situation where the model returns poor results on new datasets
not used in training, also known as overfitting, the hyperparameters and param-
eters are tuned on different datasets. The typical approach is cross-validation.

3 In Sect. 5 we use x = 20 but we are still debating the most appropriate value.

348 D. Florescu and M. England

In G-fold cross-validation (see for example the introduction of [1]), the data
is split into G groups of equal size M :

D1 =
{

f (k1
1), . . . ,f (kM

1)
}

... (1)

DG =
{

f (k1
G), . . . ,f (kM

G)
}
,

where each group entry is a vector of features for a problem instance:

f (km
g) =

[
f
(km

g)

1 , . . . , f
(km

g)
nf

]
, g = 1, . . . , G, m = 1, . . . ,M.

Each entry in such a vector is a scalar number and nf denotes the number of
features we derive for each instance. See [25] for details of the features we use
and how they are generated from the polynomials.

Let c(k
m
g) denote the target class corresponding to data point f (km

g). An ML
classifier with parameters θ is modelled as a function Mθ : Rnf → {1, 2, . . . , nc},
where nc denotes the number of classes. In our context the number of classes is
the number of CAD variable orderings acceptable for the underlying application.

Typically, the classifier also depends on a number of hyperparameters that
can each take a finite number of values. Here, we will denote by H the number of
all possible hyperparameter combinations, such that Mθ

h, h = 1, . . . , H, denotes
the classifier with parameters θ and hyperparameters defined by index h. The
typical cross-validation procedure trains the parameters θ of classifiers

{Mθ
h

}H

h=1
on each combination of G − 1 data groups in (1), adding up to G · H models.

Let ĉ
(km

g)

h denote Mθg

h

(
f (km

g)
)
, the class prediction of a classifier whose

parameters were trained on the dataset D1 ∪ · · · ∪ Dg−1 ∪ Dg+1 ∪ · · · ∪ DG.
Then the optimal hopt is computed by maximising the following quantity:

hopt = argmax
h

(
1
G

G∑
g=1

scoregh

)
, (2)

where scoregh = score
(
ĉ
(km

g)

h , c(k
m
g)

)
, and score(·, ·) denotes the F1-score of group

G for the model prediction [15]. In other words, the typical cross-validation
procedure identifies the hyperparameters that maximise the performance of the
model at predicting the very best ordering. I.e. it does not take into account the
actual computing time of the prediction − just whether it was the quickest.

4.3 Adapted ML Cross-Validation

Our change to the cross-validation procedure is to instead calculate hopt as

hopt = argmax
h

(
1
G

G∑
g=1

−ctimegh

)
, (3)

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 349

where ctimegh = 1
M

∑
m ctime

(
kmg , ĉ(k

m
g)

)
, and ctime

(
kmg , ĉ(k

m
g)

)
denotes the

recorded time for computing CAD on data point f (km
g) using the variable order-

ing given by class prediction ĉ(k
m
g). By evaluating the computing time for all data

points, this cross-validation method penalises the variable orderings leading to
very large computing times, but does not penalise the ones close to the opti-
mum. Thus we do not expect the change to affect how often a classifier chooses
the optimal ordering, but it should improve the choices made in cases where the
optimum is missed.

5 ML Experiment Methodology

We describe a ML experiment to choose the variable ordering for CAD. The
methodology used is similar to that of our recent paper [25] except that (a) we
use a dataset of 4-variable problems instead of 3-variable ones; and (b) we ran
the classifiers with both the original and the adapted cross-validation procedure.

5.1 Problem Set

We are working with the nlsat dataset4 produced to evaluate the work in [30],
thus the problems are all fully existentially quantified. Although there are CAD
algorithms that reduce what is being computed based on the quantification struc-
ture (e.g. Partial CAD [17]), the conclusions we draw are likely to generalise.

We selected the 2080 problems with 4 variables, meaning each has a choice of
24 different variable orderings. We extracted only the polynomials involved, and
randomly divided into two datasets for training (1546) and testing (534). Only
the former is used to tune the ML model parameters and hyperparameters.

5.2 Software

We work with the CAD routine CylindricalAlgebraicDecompose: part of the
RegularChains Library for Maple. It builds decompositions first of Cn before
refining to a CAD of Rn [2,13,14]. We ran the code in Maple 2018 but used
an updated version of the RegularChains Library (http://www.regularchains.
org). Brown’s heuristic and the features for ML were coded in the sympy package
v1.3 for Python 2.7. The sotd heuristic was implemented in Maple as part of
the ProjectionCAD package [24]. Training and evaluation of the ML models was
done using the scikit-learn package [37] v0.20.2 for Python 2.7. In order to
implement our adapted cross-validation procedure we had to rewrite a number
of the standard commands within the package to both use the redefined hopt in
(3), and to access the data it requires during the cross-validation.

4 Freely available from http://cs.nyu.edu/∼dejan/nonlinear/.

http://www.regularchains.org
http://www.regularchains.org
http://cs.nyu.edu/~dejan/nonlinear/

350 D. Florescu and M. England

5.3 Timings

Each individual CAD was constructed by a Maple script called separately from
Python (to avoid any Maple caching of results). The target variable ordering
for ML was defined as the one that minimises the computing time for a given
problem. All CAD function calls included a time limit. For the training dataset
an initial time limit of 16 s was used, which was doubled if all orderings timed out
(a target variable ordering could be assigned for all problems using time limits
no bigger than 32 s). The problems in the testing dataset were all processed with
a single larger time limit of 64 s for all orderings, with any problems that timed
out having their runtime recorded as 64 s.

5.4 Computing the Features

We computed algorithmically the set of features for 4 variables {f (i)}nf

i=1 where
nf = 1440, using the procedure introduced in [25].

Given the set of problems {Pr1, . . . ,PrN}, N = 1546, some of the features
f (i) turn out to be constant, i.e. f (i)(Pr1) = f (i)(Pr2) = · · · = f (i)(PrN). Such
features will have no benefit for ML and are removed. Further, other features
may be repetitive, i.e. f (i)(Prn) = f (j)(Prn),∀n = 1, . . . , N, and are merged
into one single feature. After this step, we are left with 105 features.

5.5 ML Models

We choose commonly used deterministic ML models for this experiment (for
details on the methods see e.g. the textbook [1]).

– The K-Nearest Neighbours (KNN) classifier [1, §2.5].
– The Decision Tree (DT) classifier [1, §14.4].
– The Multi-Layer Perceptron (MLP) classifier [1, §2.5].
– The Support Vector Machine (SVM) classifier with Radial Basis Function

(RBF) kernel [1, §6.3].

We fixed the RBF kernel for SVM as it was found to produce better results than
other basis functions for a similar problem of learning from algebraic features in
[7], and including basis choice in cross-validation creates a much larger search
space.

Each model was trained using grid search 3-fold cross-validation, i.e. the set
was randomly divided into 3 and each possible combination of 2 parts was used to
tune the model parameters, leaving the last part for fitting the hyperparameters
with cross-validation, by optimising the average F-score. Grid searches were
performed for an initially large range for each hyperparameter; then gradually
decreased to home into optimal values. The optimal hyperparameters selected
during cross-validation are in Table 1.

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 351

Table 1. The ML hyperparameters optimised on the training dataset using the stan-
dard cross-validation (CV) routine and the new CV routine.

Model Hyperparameter Value (standard CV) Value (new CV)

Decision
Tree

Criterion
Maximum tree depth

Entropy
6

Gini impurity
14

K-Nearest
Neighbours

Train instances weighting
Algorithm
Number of neighbours

Inversely proportional
to distance
Ball Tree
13

Inversely proportional
to distance
Ball Tree
14

SVM Regularization para. C
Basis para. γ

2.41
0.0097

1.66
0.0097

Multi-Layer
Perceptron

Hidden layer size
Activation function
Regularization para. α

18
Hyperbolic Tangent
1 · 10−4

17
Identity
1 · 10−4

5.6 Evaluating the ML Models and Human-Made Heuristics

The ML models will be compared on two metrics: Accuracy, defined as the
percentage of problems where a model’s predicted variable ordering led to a
computing time closer than 20% of the time it took the optimal ordering; and
Time defined as the total time taken to evaluate all problems in the test set
using that model’s predictions for variable ordering. We note that Accuracy is
defined differently in our prior work [23,25] where we measured only how often
a heuristic picked the very best ordering.

We will also test the two best-known human constructed heuristics [9,19]
described in Sect. 2.2. Unlike the ML models, these can end up predicting several
variable orderings (when they cannot discriminate). In practice if this were to
happen the heuristic would select one randomly (or perhaps lexicographically),
however that final pick is not meaningful. To accommodate this we evaluate
these heuristics as follows:

– For each problem, the prediction accuracy of such a heuristic is judged to be
the percentage of its predicted variable orderings that are also target orderings
(i.e. within 20% of the minimum). The average of this percentage over all
problems in the testing dataset represents the prediction accuracy.

– Similarly, the computing time for such methods is assessed as the average
computing time over all predicted orderings, and it is this that is summed up
for all problems in the testing dataset.

6 Experimental Results

The results are presented in Table 2. Each ML model appears twice in the top
table via its acronym with each of the following appended:

−O: for one trained with the original (and typical) ML cross-validation method
based on (2) as was used in our prior work [23,25].

352 D. Florescu and M. England

−N: for one trained by the new cross-validation approach described in Sect. 4.3
which is based on computing time as in (3).

The bottom table details the two human-constructed heuristics along with
the outcome of a random choice between the 24 orderings. We might expect a
random choice to be correct once in 24 times of the time but it is higher as for
some problems there were multiple variable orderings with equally fast timings.

The minimum total computing time, achieved if we select an optimal ordering
for every problem, is 2, 177 s. This is what would be achieved by the Virtual Best
Heuristic. Choosing at random would take 8, 291 s, almost 4 times as much. The
maximum time, if we selected the worst ordering for every problem (the Virtual
Worst Heuristic), is 22, 735 s. The Decision Tree model trained with the new
cross validation achieved the shortest time of all with 3, 627 s, 67% more than
the minimal possible.

The recorded time taken by each model to make a prediction, which is
included in the timings reported in Table 2, varied greatly between ML and
the heuristics. The prediction time for the heuristics was 286 s for sotd and 23 s
for Brown. In contrast, the total time taken by the ML to make predictions was
less than one second for all models.

6.1 Results of New Cross-Validation Method

For each ML model the performance when trained with the new cross-validation
was better (measured using either of our metrics) than when trained with the
original procedure. The scale of the improvement varied: the timings of the
decision tree reduced by 9.8% but those of the KNN classifier only by 1.6%.

Thus we can conclude the new methodology to be beneficial. However, we
note that it is still the case that our two metrics do not agree on the best model:
DT-N achieved the lowest times but KNN-N the highest accuracy. The latter is
better at picking a good (within 20% of the minimal) ordering but when it fails
to do so it makes mistakes of greater magnitude. So there is scope for further
work to make our ML models take into account the full range of possibilities. It
may be that this requires a tailored approach to the training of parameters in
each different classifier.

Table 2. Performance on the testing dataset of the ML classifiers (using both the
standard and new cross-validation routines), the human-made heuristics, and a random
choice. The virtual best and worst solvers show the range of possibilities.

DT-O DT-N KNN-O KNN-N MLP-O MLP-N SVM-O SVM-N
Accuracy 51.7% 54.3% 53.9% 54.5% 53.6% 56.9% 53.9% 54.9%
Time (s) 4, 022 3, 627 3, 808 3, 748 3, 972 3, 784 3, 795 3, 672

Virtual Best Virtual Worst random Brown sotd

Accuracy 100% 0% 17.0% 20.1% 47.8%
Time (s) 2, 177 22, 735 8, 291 8, 292 4, 348

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 353

6.2 Comparison of Brown and Sotd on the 4-Variable Dataset

Of the two human-made heuristics, Brown performed far worse than sotd. This
is the opposite of the findings in [23,25,29] for 3-variable problems. This is
not necessarily in conflict: the added information taken by sotd will grow in
size exponentially with the variables, and thus we would expect the predictive
information it carries to be more valuable. However, the cost of sotd will also
be increasing rapidly denting this value. The time taken by sotd to make all the
predictions is 286 s, while the time for Brown is less than 10% of that at 23 s.
For this dataset at least, it is well worth paying the price of sotd as the savings
over Brown’s heuristic are far more substantial.

6.3 Value of ML on the 4-Variable Dataset

All heuristics (ML and human-made) are further away from the optimum on
this 4-variable dataset than they were on the three variable one, to be expected
given we are choosing from 24 rather than 6 orderings. Our best performing
model achieves timings 67% greater than the minimum (it was 6% for 3-variable
problems). However, the best human-made heuristic had timings 98% greater.

In fact, every ML model outperformed both the human constructed heuris-
tics in regards to both metrics, and when using either the original or the new
cross-validation approach. So we can easily conclude that our ML methodology
generalises to 4-variable problems. However, it is also clear that there is much
scope for future improvement.

7 Summary

We have demonstrated that our methodology of ML for choosing a CAD variable
ordering may be applied to 4-variable problems where it continues its dominance
over human-made heuristics. We have also presented an addition to the ML
training methodology to better reflect our application domain and demonstrated
the benefit of this experimentally. This new methodology could be applied to any
ML application which seeks to make a choice to minimise computational runtime.

Acknowledgements. This work is funded by EPSRC Project EP/R019622/1:
Embedding Machine Learning within Quantifier Elimination Procedures.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
2. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,

D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS,
vol. 8660, pp. 44–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10515-4 4

https://doi.org/10.1007/978-3-319-10515-4_4
https://doi.org/10.1007/978-3-319-10515-4_4

354 D. Florescu and M. England

3. Bradford, R., et al.: A case study on the parametric occurrence of multiple steady
states. In: Proceedings of the 2017 ACM International Symposium on Symbolic
and Algebraic Computation, ISSAC 2017, pp. 45–52. ACM (2017). https://doi.
org/10.1145/3087604.3087622

4. Bradford, R., et al.: Identifying the parametric occurrence of multiple steady states
for some biological networks. J. Symb. Comput. 98, 84–119 (2020). https://doi.
org/10.1016/j.jsc.2019.07.008

5. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. J. Symb. Comput. 76, 1–35 (2016).
https://doi.org/10.1016/j.jsc.2015.11.002

6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 19–34. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39320-
4 2

7. Bridge, J.: Machine learning and automated theorem proving. Technical report.
UCAM-CL-TR-792, University of Cambridge, Computer Laboratory (2010)

8. Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem prov-
ing. J. Autom. Reason. 53, 141–172 (2014). https://doi.org/10.1007/s10817-014-
9301-5

9. Brown, C.: Companion to the tutorial: cylindrical algebraic decomposition. Pre-
sented at ISSAC 2004 (2004). http://www.usna.edu/Users/cs/wcbrown/research/
ISSAC04/handout.pdf

10. Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical
algebraic decomposition. In: Proceedings of the 2007 International Symposium
on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60. ACM (2007).
https://doi.org/10.1145/1277548.1277557

11. Carette, J.: Understanding expression simplification. In: Proceedings of the 2004
International Symposium on Symbolic and Algebraic Computation, ISSAC 2004,
pp. 72–79. ACM (2004). https://doi.org/10.1145/1005285.1005298

12. Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts & Monographs in Symbolic Computation. Springer, New York
(1998). https://doi.org/10.1007/978-3-7091-9459-1

13. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical
algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathe-
matics, pp. 199–221. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43799-5 17

14. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of the 2009 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pp.
95–102. ACM (2009). https://doi.org/10.1145/1576702.1576718

15. Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on
Message Understanding (MUC4 1992), pp. 22–29. Association for Computational
Linguistics (1992). https://doi.org/10.3115/1072064.1072067

16. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17.
Reprinted in the collection [12]

17. Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quanti-
fier elimination. J. Symb. Comput. 12, 299–328 (1991). https://doi.org/10.1016/
S0747-7171(08)80152-6

https://doi.org/10.1145/3087604.3087622
https://doi.org/10.1145/3087604.3087622
https://doi.org/10.1016/j.jsc.2019.07.008
https://doi.org/10.1016/j.jsc.2019.07.008
https://doi.org/10.1016/j.jsc.2015.11.002
https://doi.org/10.1007/978-3-642-39320-4_2
https://doi.org/10.1007/978-3-642-39320-4_2
https://doi.org/10.1007/s10817-014-9301-5
https://doi.org/10.1007/s10817-014-9301-5
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(08)80152-6

Improved Cross-Validation for Classifiers that Make Algorithmic Choices 355

18. Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the
presence of complex numbers, functions with branch cuts etc. In: 14th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing, SYNASC 2012, pp. 83–88. IEEE (2012). http://dx.doi.org/10.1109/SYNASC.
2012.68

19. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Pro-
ceedings of the 2004 International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC 2004, pp. 111–118. ACM (2004). https://doi.org/10.1145/1005285.
1005303

20. England, M.: Machine learning for mathematical software. In: Davenport, J.H.,
Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 165–
174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8 20

21. England, M., Bradford, R., Davenport, J.: Cylindrical algebraic decomposition
with equational constraints. J. Symb. Comput. (2019). https://doi.org/10.1016/j.
jsc.2019.07.019

22. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable order-
ing for truth-table invariant cylindrical algebraic decomposition by incremental
triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol.
8592, pp. 450–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44199-2 68

23. England, M., Florescu, D.: Comparing machine learning models to choose the
variable ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady,
E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 93–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 7

24. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular chains
library to build cylindrical algebraic decompositions by projecting and lifting. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 69

25. Florescu, D., England, M.: Algorithmically generating new algebraic features of
polynomial systems for machine learning. In: Abbott, J., Griggio, A. (eds.) Pro-
ceedings of the 4th Workshop on Satisfiability Checking and Symbolic Computa-
tion (SC2 2019). No. 2460 in CEUR Workshop Proceedings (2019). http://ceur-
ws.org/Vol-2460/

26. Ghaffarian, S., Shahriari, H.: Software vulnerability analysis and discovery using
machine-learning and data-mining techniques: a survey. ACM Comput. Surv. 50(4)
(2017). https://doi.org/10.1145/3092566

27. Huang, Z., England, M., Davenport, J., Paulson, L.: Using machine learning to
decide when to precondition cylindrical algebraic decomposition with Groebner
bases. In: 18th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2016), pp. 45–52. IEEE (2016). https://doi.org/
10.1109/SYNASC.2016.020

28. Huang, Z., England, M., Wilson, D., Bridge, J., Davenport, J., Paulson, L.: Using
machine learning to improve cylindrical algebraic decomposition. Math. Comput.
Sci. 13(4), 461–488 (2019). https://doi.org/10.1007/s11786-019-00394-8

29. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Daven-
port, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI),
vol. 8543, pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08434-3 8

http://dx.doi.org/10.1109/SYNASC.2012.68
http://dx.doi.org/10.1109/SYNASC.2012.68
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-319-96418-8_20
https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-030-23250-4_7
https://doi.org/10.1007/978-3-662-44199-2_69
http://ceur-ws.org/Vol-2460/
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1145/3092566
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1007/s11786-019-00394-8
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-319-08434-3_8

356 D. Florescu and M. England

30. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

31. Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders for
real quantifier elimination of non-prenex formulas. In: Kotsireas, I.S., Rump, S.M.,
Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 236–251. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32859-1 21

32. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39634-2 6

33. Kuipers, J., Ueda, T., Vermaseren, J.: Code optimization in FORM. Comput. Phys.
Commun. 189, 1–19 (2015). https://doi.org/10.1016/j.cpc.2014.08.008

34. Liang, J.H., Hari Govind, V.K., Poupart, P., Czarnecki, K., Ganesh, V.: An empir-
ical study of branching heuristics through the lens of global learning rate. In:
Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 119–135. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 8

35. Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z.: Non-linear
real arithmetic benchmarks derived from automated reasoning in economics. In:
Bigatti, A., Brain, M. (eds.) Proceedings of the 3rd Workshop on Satisfiability
Checking and Symbolic Computation (SC2 2018). No. 2189 in CEUR Workshop
Proceedings, pp. 48–60 (2018). http://ceur-ws.org/Vol-2189/

36. Mulligan, C.B., Davenport, J.H., England, M.: TheoryGuru: a mathematica pack-
age to apply quantifier elimination technology to economics. In: Davenport, J.H.,
Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 369–
378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8 44

37. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011). http://www.jmlr.org/papers/v12/pedregosa11a.html

38. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 295–301.
Springer, Heidelberg (2006). https://doi.org/10.1007/11870814 25

39. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In:
Empirically Successful Automated Reasoning in Large Theories (ESARLT 2007),
CEUR Workshop Proceedings, vol. 257, p. 14. CEUR-WS (2007). http://ceur-ws.
org/Vol-257/

40. Wilson, D., Davenport, J., England, M., Bradford, R.: A “piano movers” problem
reformulated. In: 15th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, SYNASC 2013, pp. 53–60. IEEE (2013). http://
dx.doi.org/10.1109/SYNASC.2013.14

41. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008). https://doi.org/
10.1613/jair.2490

https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1007/978-3-319-66263-3_8
http://ceur-ws.org/Vol-2189/
https://doi.org/10.1007/978-3-319-96418-8_44
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/11870814_25
http://ceur-ws.org/Vol-257/
http://ceur-ws.org/Vol-257/
http://dx.doi.org/10.1109/SYNASC.2013.14
http://dx.doi.org/10.1109/SYNASC.2013.14
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

A Numerical Efficiency Analysis
of a Common Ancestor Condition

Luca Carlini1,4(B), Nihat Ay1,2,3, and Christiane Görgen1

1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
{carlini,ay,goergen}@mis.mpg.de
2 Santa Fe Institute, Santa Fe, USA

3 Faculty of Mathematics and Computer Science, University of Leipzig,
Leipzig, Germany

4 Università degli Studi di Genova, Genoa, Italy

Abstract. The aim of this paper is to understand if the sufficient condi-
tion for the existence of a common ancestor for some variables in a larger
graph discovered by Steudel and Ay is worth checking. The goodness of
this criterion will be tested with a numerical method.

Keywords: Causality · Entropy · Graphical models · Information
theory · Statistical model

1 Introduction

In this paper we provide an in-depth analysis of an example of Steudel and Ay’s
result on common ancestors [1]. We want to estimate the volume of a region
of interest, this is the set of probability distributions which satisfy a sufficient
condition for the existence of a common cause of some variables. This region has
an interpretation in terms of causality [2]. In fact, if the volume of this portion
of our statistical model is large, then it will be possible to detect the existence
of a common ancestor between some variables in a graph using this criterion.
This method could be very useful because it links observed variables to the
underlying causal structure. In practice it is most often impossible to observe
the whole network, so it is essential to take as much information as possible from
the observed variables exclusively.

At first we restrict ourselves to the most simple case considering three vari-
ables, as we can see in Fig. 1(b), and, in a second step, we will repeat the analysis
for four and five variables. We can see the general case with k observed variables
in Fig. 1(a). Moreover, the method could be used to distinguish between the
situation in Fig. 1(b), with a common cause of all the three variables, and the
situation in Fig. 1(c), with common causes of two of the variables.

Supported by ERASMUS+.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 357–363, 2020.
https://doi.org/10.1007/978-3-030-43120-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_28

358 L. Carlini et al.

W

X1 X2 . . . Xk

(a) The most general case,
k observed random variables
with one common ancestor.

W

X

Y

Z

(b) The special case
k = 3, key example
of this paper.

W1

W2

W3

X

Y

Z

(c) Pairwise interaction
between three random
variables.

Fig. 1. Causal graphical models with interactions of different orders.

2 Background

In this section we present the main result we are interested in and we describe
the geometrical and algebraic aspects of the configuration seen in Fig. 1(b), the
key example of this paper.

Theorem 1 (Lower bound on entropy of common ancestors [1]).
Let X1, . . . , Xn be all the variables associated to a DAG G, denote the

observed variables Xi1 , . . . , Xik , and let c ∈ {1, . . . , k − 1} be a constant. If

Ic(Xi1 , . . . , Xik) =
k∑

j=1

H(Xij) − c · H(Xi1 , . . . , Xik) > 0, (1)

then there are c + 1 nodes Xij1 , . . . , Xijc+1 among the observed variables which
have a common ancestor.

Here, H(Xij) is the Shannon entropy of Xij and H(Xi1 , . . . , Xik) is the entropy
of the joint variables Xi1 , . . . , Xik [3]. This method provides a sufficient condition
for the existence of a common ancestor, not a necessary one: the aim of the paper
is to test the goodness of this criterion. In particular, at the beginning we restrict
ourselves to the most simple configuration, described in Fig. 1(b). The first model
to be analysed consists of all joint distributions over (X,Y,Z,W) for four binary
random variables X,Y,Z,W that are Markov to the DAG seen in Fig. 1(b). We
have 24 = 16 possible outcomes and a corresponding 15-dimensional simplex of
probability vectors. Also, there are 7 parameters: one is P (W = 0) and the other
six are the conditional probabilities of X, Y and Z being in state 0 given W is
in state 0 and 1, respectively.

Henceforth we denote by θ0 the probability of W = 0, by θ1, θ2 and θ3 the
probability of, respectively, X, Y and Z being in state 0 given W = 0 and by θ4,
θ5, θ6 the probability of, respectively, X, Y and Z being in state 0 given W = 1.

Yet, to simplify the problem and to exploit some particular properties that
will be used later, we fix θ0 = P (W = 0) = 1/2; we now have 6 parameters. In
this case, the sufficient condition for a common ancestor of all the three variables
seen in Theorem 1 is:

A Numerical Efficiency Analysis of a Common Ancestor Condition 359

M

Ic

Mc

Fig. 2. A statistical model M inside a probability simplex, intersected with the region
Ic where (2) is true. Our numerical approach calculates an estimate of the volume of
the intersection Mc. See Table 2 for the results.

H(X) + H(Y) + H(Z) − 2H(X,Y,Z) > 0. (2)

In Fig. 2 we can see a representation of our problem. We have two sets inside
a probability simplex. M is the statistical model, this is the set of points such
that the probability distribution of the variables factorizes as follows:

P (X = x, Y = y, Z = z,W = w) = P (W = w)P (X = x|W = w)

· P (Y = y|W = w)P (Z = z|W = w), ∀ (x, y, z, w) ∈ {0, 1}4,
where we have fixed θ0 = P (W = 0) = 1/2.

Table 1. For (θ1, . . . , θ6) we associate a joint probability distribution P (X, Y, Z, W).
Note that θ0 = P (W = 0) = 1/2.

w x y z P (W = w, X = x, Y = y, Z = z)

0 0 0 0 θ0 · θ1 · θ2 · θ3
0 0 1 0 θ0 · θ1 · (1 − θ2) · θ3
0 0 0 1 θ0 · θ1 · θ2 · (1 − θ3)

0 0 1 1 θ0 · θ1 · (1 − θ2) · (1 − θ3)

0 1 0 0 θ0 · (1 − θ1) · θ2 · θ3
0 1 1 0 θ0 · (1 − θ1) · (1 − θ2) · θ3
0 1 0 1 θ0 · (1 − θ1) · θ2 · (1 − θ3)

0 1 1 1 θ0 · (1 − θ1) · (1 − θ2) · (1 − θ3)

1 0 0 0 (1 − θ0) · θ4 · θ5 · θ6
1 0 1 0 (1 − θ0) · θ4 · (1 − θ5) · θ6
1 0 0 1 (1 − θ0) · θ4 · θ5 · (1 − θ6)

1 0 1 1 (1 − θ0) · θ4 · (1 − θ5) · (1 − θ6)

1 1 0 0 (1 − θ0) · (1 − θ4) · θ5 · θ6
1 1 1 0 (1 − θ0) · (1 − θ4) · (1 − θ5) · θ6
1 1 0 1 (1 − θ0) · (1 − θ4) · θ5 · (1 − θ6)

1 1 1 1 (1 − θ0) · (1 − θ4) · (1 − θ5) · (1 − θ6)

360 L. Carlini et al.

This is the set of points which reflect the configuration seen in Fig. 1(b),
meaning that X,Y,Z,W are Markov to that DAG G and X, Y and Z have a
common cause W . More precisely, M is defined as the image of φ, where φ is a
map from the six-dimensional hypercube Θ = [0, 1]6 to the fifteen-dimensional
simplex �15 such that:

φ : Θ → �15

(θ1, . . . , θ6) �→ (s1, . . . , s16),

where s1, . . . , s16 are the probabilities of the sixteen states computed as in the
second column of Table 1, this is as the product of the marginals given the
parent W .

Moreover, Ic is the set of probability distributions for which the ancestor
condition (1) is fulfilled. In particular,

Ic = {p ∈ �15

∣∣ H(X) + H(Y) + H(Z) − 2H(X,Y,Z) > 0, w.r.t. p},

where p = (p1, . . . , p16).
Lastly, Mc is the intersection of M and Ic, which is the set of probability

distributions that are in the model and for which the ancestor condition holds.
We are interested in this region. We give an estimation of the volume of Mc in
terms of sample proportion, in the sense that we will randomly generate data
points over the model M, then we will check which samples in M fulfil the
ancestor condition, these are the data points in Mc. The volume of this region
is simply the number of samples in Mc divided by the number of samples in M.

3 Examples

In this section we present some examples in which we will test the ancestor
condition. In particular, we consider deterministic systems and the parametric
objects related to them. Consider the variable X and the ancestor W . There are
four different deterministic maps from W to X, W → X:

1. The fid map, this is X is the copy of W . So, when W is in state 0, also X is in
state 0 and when W is in state 1, X is in state 1: {0 �→ 0, 1 �→ 1}. In terms of
conditional probabilities, this can be expressed as θ1 = P (X = 0|W = 0) = 1
and θ4 = P (X = 0|W = 1) = 0;

2. The frev map, this is X is the reversal of W , in the sense that when W
is in state 0, X is in state 1 and when W is in state 1, X is in state 0:
{0 �→ 1, 1 �→ 0}. In terms of conditional probabilities, this can be expressed
as θ1 = P (X = 0|W = 0) = 0 and θ4 = P (X = 0|W = 1) = 1;

3. The f=0 map, this is X is deterministically 0. Whenever W is in state 0 or in
state 1, X is in state 0: {0 �→ 0, 1 �→ 0}. In terms of conditional probabilities,
this can be expressed as θ1 = P (X = 0|W = 0) = 1 and θ4 = P (X = 0|W =
1) = 1;

4. The f=1 map, this is X is deterministically 1, which is analogous to the
previous situation.

A Numerical Efficiency Analysis of a Common Ancestor Condition 361

There is a one-to-one correspondence between the extreme points of the six-
dimensional hypercube [0, 1]6, the parameter set, and the triplets (f1, f2, f3),
where fi ∈ {fid, frev, f=0, f=1}, for i = 1, 2, 3. For instance, the triplet
(fid, fid, fid) corresponds to the copy vertex (1, 1, 1, 0, 0, 0) ∈ [0, 1]6.

Now, consider three fid maps from W to X, Y and Z. We are going to show
that in this vertex of the hypercube the ancestor condition holds. In fact,

P (X = 0) = P (X = 0|W = 0)P (W = 0) + P (X = 0|W = 1)P (W = 1)
= 1 · 1/2 + 0 · 1/2 = 1/2 = P (Y = 0) = P (Z = 0);

H(X) = P (X = 0) ln (1/P (X =0)) + P (X = 1) ln (1/P (X =1))
= 1/2 ln(2) + 1/2 ln(2) = ln(2) = H(Y) = H(Z).

Lastly, the joint entropy of X, Y and Z is

H(X,Y,Z) =
1∑

i,j,k=0

P (X = i, Y = j, Z = k) ln (1/P (X = i,Y = j,Z = k))

= P (X = 0, Y = 0, Z = 0) ln (1/P (X =0,Y =0,Z =0))
+ P (X = 1, Y = 1, Z = 1) ln (1/P (X =1,Y =1,Z =1))
= 1/2 ln(2) + 1/2 ln(2) = ln(2).

Thus, the ancestor condition holds, since

H(X) + H(Y) + H(Z) − 2H(X,Y,Z) = ln(2) + ln(2) + ln(2) − 2 ln(2) = ln(2).

Moreover, we can notice that if we consider two fid maps and one f=0 or f=1

map the condition does not hold, since the entropy of the last variable is 0.

4 Numerical Sampling

In this section we explain the technique we have used to compute the volume
we are interested in by sampling uniformly from the six-dimensional hypercube.
For 0 < r ≤ 1, we consider the hypercube [1 − r, 1]3 × [0, r]3, which contains the
copy vertex (1, 1, 1, 0, 0, 0) and whose image through the map φ defines a subset
of the model M, as we can see in Fig. 3.

For each value of r, we consider the area around the copy vertex of the
hypercube [1 − r, 1]3 × [0, r]3 and we sample uniformly from this area. Then, we
count how many data points fulfil the ancestor condition. When r is equal to 1,
we have a uniform sampling over the hypercube. We can see how the proportion
of samples which satisfy the ancestor condition changes for different values of
r in Fig. 4. When r becomes bigger, the proportion of data points for which
the ancestor condition holds decreases (up to r = 0.5). In the next section we
present the results we obtained by sampling uniformly 109 data points for r = 1,
this is from the full hypercube, and for different values of k, this is the number
of variables in the system.

362 L. Carlini et al.

Fig. 3. 2-dimensional representa-
tion of the area around the copy
vertex for different values of r.

Fig. 4. Percentage of samples fulfilling the
ancestor condition for different values of r.

5 Discussion

We have repeated the same passages seen in Sect. 4 adding one and two variables
in the system, in order to analyse if the ancestor condition is able to detect the
existence of a common ancestor of three out of four and five variables. More
precisely, we have considered two models: the first one consists of all joint dis-
tributions over (X,Y,Z, U,W) for five binary variables X,Y,Z, U,W which are
Markov to the DAG in Fig. 1(a), for k = 4, while the second one consists of all
joint distributions over (X,Y,Z, U, V,W) for six binary variables X,Y,Z, U, V,W
which are Markov to the DAG in Fig. 1(a), for k = 5.

Looking at Table 2, we observe that the volume of Mc is extremely small.

Table 2. Results of the numerical analysis for c = 2. For each experiment, the sample
size is 109.

Number of variables Percentage of samples in Mc

k = 3 0.0000275%

k = 4 0.0000234%

k = 5 0.0000124%

We can give three possible interpretations for this. It is possible that most of
the probability distributions in the simplex can be described through the causal
graphical model in Fig. 1(c). Consequently, the volume of the probability distri-
butions which can be modeled with the DAG in Fig. 1(b) would be really small.
In this case, it would be impossible to detect the existence of a common ancestor
between three variables with the condition discovered by Steudel and Ay.

On the other hand, there could be a problem related to the method, which
means that the common ancestor condition is too strict to detect the existence
of a common ancestor and we would need better estimates of the quantities we
are considering.

A Numerical Efficiency Analysis of a Common Ancestor Condition 363

Lastly, another sampling approach could provide a different result. For exam-
ple, it would be possible to sample uniformly from the simplex with respect to
the Fisher metric employing methods from algebraic statistics [4] and informa-
tion theory [5], instead of sampling uniformly from the hypercube. Moreover, an
analytical approach could produce a more precise estimate of the volume of the
region of interest, implementing methods from measure theory and mathematical
analysis.

This paper opens the doors to other possible developments. For example,
studying the extension of the volume of probability distributions which can be
described with pairwise interactions in the simplex compared to the volume of
probability distributions which can be modeled with the configuration we have
studied in this paper would clarify if the first interpretation is correct.

Moreover, considering more complicated graphs with a larger number of vari-
ables and/or with nodes having more states could state if the second interpreta-
tion is the right one, since the models we have studied represent a very small set
of all the possible systems. Thus, it is possible that in higher dimension and/or
considering variables with a larger number of states the ancestor condition would
be able to detect the existence of a common ancestor.

References

1. Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. Entropy
17(4), 2304–2327 (2015)

2. Pearl, J.: Causality. Models, Reasoning, and Inference, 2nd edn., xx+464 pp. Cam-
bridge University Press, Cambridge (2009). ISBN 978-0-521-89560-6, 0-521-77362-8

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn., xxiv+748
pp. Wiley, Hoboken (2006). ISBN 978-0-471-24195-9, 0-471-24195-4

4. Collazo, R.A., Görgen, C., Smith, J.Q.: Chain Event Graphs. Chapman and
Hall/CRC Computer Science and Data Analysis Series, xx+233 pp. CRC Press,
Boca Raton (2018). ISBN 978-1-4987-2960-4

5. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. EMGFASMSM,
vol. 64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56478-4. xi+407
pp. ISBN 978-3-319-56477-7, 978-3-319-56478-4

https://doi.org/10.1007/978-3-319-56478-4

Optimal Transport to a Variety

Türkü Özlüm Çelik1(B), Asgar Jamneshan3, Guido Montúfar1,3,
Bernd Sturmfels1,2, and Lorenzo Venturello1

1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
Tuerkue.Celik@mis.mpg.de

2 University of California at Berkeley, Berkeley, USA
3 University of California at Los Angeles, Los Angeles, USA

Abstract. We study the problem of minimizing the Wasserstein dis-
tance between a probability distribution and an algebraic variety. We
consider the setting of finite state spaces and describe the solution
depending on the choice of the ground metric and the given distribu-
tion. The Wasserstein distance between the distribution and the variety
is the minimum of a linear functional over a union of transportation
polytopes. We obtain a description in terms of the solutions of a finite
number of systems of polynomial equations. The case analysis is based
on the ground metric. A detailed analysis is given for the two bit inde-
pendence model.

Keywords: Algebraic statistics · Linear programming · Optimal
transport estimator · Polynomial optimization · Transportation
Polytope · Triangulation · Wasserstein distance

1 Introduction

Density estimation in statistics is the problem of learning a hypothesis density
ν based on samples x1, . . . , xN ∈ Ω from an unknown density μ. A standard
approach to solving this problem is to define a statistical model M of candidate
hypotheses, and then select a density from M that minimizes some type of dis-
tance to the empirical distribution μ̄ = 1

N

∑
i δxi

. An example of this is the maxi-
mum likelihood estimator [16, Chapter 7], which minimizes the Kullback-Leibler
divergence between μ̄ and M. This estimator selects ν ∈ M by maximizing the
log-likelihood

∑N
i=1 log ν(xi).

When the sample space Ω is a metric space, optimal transport defines a dis-
tance between probability distributions [17]. The corresponding estimator selects
ν ∈ M so that it assigns a high probability to points x that are close, but not
necessarily equal, to samples xi. In contrast to the maximum likelihood esti-
mator, this incorporates the metric on Ω. One key advantage of this is that
distances between distributions are well defined even when they have disjoint
supports. The minimum Wasserstein distance estimator plays an important role
in machine learning applications.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 364–381, 2020.
https://doi.org/10.1007/978-3-030-43120-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_29

Optimal Transport to a Variety 365

The key disadvantage of the optimal transport distance is that it is defined as
the solution to an optimization problem. Thus, computing the minimum Wasser-
stein distance estimator requires solving a double minimization problem. In a few
special cases, the Wasserstein distance can be given by a formula, e.g. in the case
of two Gaussian distributions. However, for general ground distances and distri-
butions, a closed formula is not available. The standard methods for numerical
computation of the Wasserstein distance between two distributions have super
cubic complexity in the size of the distributions [11]. Therefore, much work has
been devoted to developing fast methods for optimal transport [12]. An impor-
tant advance has been the introduction of entropy regularized optimal transport
and iterative computations with a Sinkhorn algorithm [5], which allows for a
cheaper computation and has increased the applicability of optimal transport.

In large scale problems, the exact Wasserstein distance and the minimum
distance estimator remain out of reach. A very successful and popular model
for obtaining implicit generative models is the Wasserstein generative adver-
sarial network [2]. This is based on the Kantorovich dual formulation of the
Wasserstein-1 distance, as a difference of expectation values of an optimal dis-
criminative function. Training (i.e. fitting the parameters of the model) is based
on estimating the expectations by sample averages, approximating the discrimi-
nator by a neural network, and following the negative gradient of the estimated
distance with respect to the model parameters.

A number of works address the statistical complexity of estimating the opti-
mal transport cost. The asymptotic behavior of the minimum Wasserstein dis-
tance estimator was studied in [3] and [4]. The convergence of the empirical
distribution for increasing sample size was studied in [18].

Specifying a model beforehand allows us to focus the search for a hypothesis,
reducing statistical and computational complexity. In many cases the model is
given in terms of a parametrization with a small number of parameters, thus pro-
viding a compact representation of hypotheses. It can also be specified in terms
of properties of interest, such as conditional independence relations. This view
is taken in algebraic statistics [16]. When the model is an exponential family (a
toric variety), maximum likelihood estimation is a convex optimization problem.
For some exponential families, such as decomposable hierarchical models, the
maximum likelihood estimator can be written explicitly (e.g. [16, Chapter 7]).
Recent work characterizes such cases where the solution is rational [7]. Closed
formulas are also known for some latent variable graphical models [1,14].

The present study is cast on the discrete side of algebraic statistics [16]. In
our setting, the model M is an algebraic variety inside a probability simplex.
We wish to understand fundamental properties of the minimum Wasserstein dis-
tance estimator for M. What is the structure of the function that computes the
Wasserstein distance between a given data distribution and a point in M? How
does it change depending on the ground metric that is laid on the sample space?
How does it change depending on the data distribution? How does it depend on
the model? Is the minimizer unique, or are there finitely many minimizers? Can
we obtain a closed formula?

366 T. Ö. Çelik et al.

The optimal transport distance between two points in our simplex is the solu-
tion to a linear program over a transportation polytope. The optimal transport
distance between a distribution and M is the minimum of a linear functional
over an infinite union of transportation polytopes. Our aim is to understand the
combinatorics and geometry of this parametric linear program.

This article is organized as follows. Section 2 recalls the definition of the
Wasserstein distance. It also provides the relevant background in linear pro-
gramming, geometric combinatorics, and commutative algebra. A key insight is
that the given metric on Ω induces a regular triangulation of a product of two
simplices (cf. Theorem 1), and this induces a mixed polyhedral subdivision of
one simplex when μ is fixed. Section 3 presents our algorithm for computing the
Wasserstein distance from a distribution μ to a model M in the probability sim-
plex. The main subroutine is the optimization of linear functions over the pieces
of M that arise from the mixed subdivision.

We illustrate Algorithm 2 by working out the geometry for the discrete
ground metric on three states. This is illustrated in Fig. 1. In Sect. 4 we focus on
the case of primary interest, namely when the model M is an algebraic variety.
Here the minimum Wasserstein distance estimator is a piecewise algebraic func-
tion. We show how each piece can be represented by the hypersurface that is dual
to M in the sense of projective geometry. In Sect. 5 we undertake a detailed case
study. Namely, we determine the minimum Wasserstein estimator of a discrete
independence model.

2 Geometric Combinatorics of the Wasserstein Distance

Let Δn−1 = {(p1, . . . , pn) ∈ Rn
≥0 :

∑n
i=1 pi = 1} denote the simplex of probabil-

ity distributions on the set [n] = {1, 2, . . . , n}. We fix a symmetric n × n matrix
d = (dij) with nonnegative entries. In our application, the pair ([n], d) will be
a finite metric space, so we have dii = 0 and dik ≤ dij + djk for all i, j, k. We
identify Δn2−1 with the set of nonnegative n×n matrices whose entries sum to 1.

Fix two distributions μ, ν ∈ Δn−1. The associated transportation polytope is

Π(μ, ν) =
{

π ∈ Δn2−1 :
n∑

i=1

πij = μj for all j and
n∑

j=1

πij = νi for all i
}
.

(1)
Thus, Π(μ, ν) is the set of nonnegative n × n-matrices with prescribed row and
column sums. This polytope has dimension (n − 1)2, provided μ, ν ∈ int(Δn−1),
and it is simple if μ, ν are generic.

We consider the linear programming problem on the transportation polytope
Π(μ, ν) with cost matrix d. This is known as the transportation problem for
(μ, ν, d). The optimal value of this linear program is known as the Wasserstein
distance between μ and ν with respect to d. Thus, the Wasserstein distance is

W (μ, ν) = min
π∈Π(μ,ν)

∑

1≤i,j≤n

dijπij . (2)

Optimal Transport to a Variety 367

We are interested in the following parametric version of this linear program-
ming problem. We fix any subset M of the model Δn−1. This set is our statistical
model. The Wasserstein distance between a given distribution μ and the model
M with respect to the metric d is defined to be

W (μ,M) = min
ν∈M

min
π∈Π(μ,ν)

∑

1≤i,j≤n

dijπij . (3)

Computing this quantity amounts to solving a nested optimization problem.
Namely, we are minimizing the cost function d over the set

⋃
ν∈M Π(μ, ν). The

constraint set can be thought of as a bundle of transportation polytopes over
the model M. Our goal is to understand its geometry.

The 2n linear constraints that define the transportation polytope Π(μ, ν) can
be written as Aπ = (μ1, . . . , μn, ν1, . . . , νn)T for a certain matrix A ∈ {0, 1}2n×n2

of rank 2n− 1. The columns of this matrix are the vertices of the product of the
standard simplices Δn−1 × Δn−1 ⊂ Rn × Rn.

Example 1. Let n = 4. The polytopes Π(μ, ν) are 9-dimensional for μ, ν ∈
int(Δ3). They are the fibers of the linear map Δ15 → Δ3 × Δ3 given by the
matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Fix a generic matrix d ∈ Rn2
. The optimal bases of our linear program (2),

as the distributions μ, ν range over the simplex Δn−1, are the maximal simplices
σ in a triangulation Σd of the (2n − 2)-dimensional polytope Δn−1 × Δn−1.
Combinatorially, such a basis σ consists of the edges in a spanning tree of the
complete bipartite graph on [n]× [n]. Let Aσ be the submatrix of A given by the
columns that are indexed by σ. For (μ, ν) ∈ Δn−1 ×Δn−1, there exists a unique
column vector πσ such that Aσ · πσ = (μ, ν)T . Note that the coordinates of πσ

are linear functions in (μ, ν).
Let π̃σ denote the matrix in Rn2

that agrees with πσ in all coordinates in σ
and is zero in all other coordinates. Then π̃σ is the optimal vertex of Π(μ, ν) for
all pairs (μ, ν) in the simplex σ. On that σ, the Wasserstein distance between
our two distributions is given by the linear function

(μ, ν) �→ W (μ, ν) =
∑

1≤i,j≤n

dij · (π̃σ)ij . (4)

This allows us to remove the inner optimization when solving (3). For each sim-
plex σ ∈ Σd, our task is to minimize the linear function (4) over the intersection

368 T. Ö. Çelik et al.

(μ × M) ∩ σ. Among these optimal solutions, one for each simplex σ ∈ Σd, we
then select the solution with the smallest optimal value. This is the geometric
idea behind the algorithm that will be presented in the next section.

We now shift gears and we discuss the study of triangulations of Δn−1×Δn−1.
This is a rich subject in geometric combinatorics, with numerous connections
to optimization, tropical geometry, enumerative combinatorics, representation
theory, commutative algebra, and algebraic geometry. The triangulations which
appear in our context are called regular triangulations [6, Chapter 2]. There are
various different approaches for computing these objects. The one we favor here
is based on commutative algebra. Namely, we represent our objects as initial
ideals of the ideal of 2 × 2-minors of an n × n-matrix of unknowns. In the
language of algebraic geometry, these are the toric degenerations of the Segre
variety Pn−1 × Pn−1 in its embedding in the matrix space Pn2−1.

In the rest of this section we present relevant definitions and results. We
refer to [10,15] for an extensive treatment of the subject. Fix the polynomial
ring R = K[yij : 1 ≤ i, j ≤ n] over a field K. We identify nonnegative integer
vectors α ∈ Nn×n with monomials yα =

∏n
i=1 y

αi,j

ij . Let d ∈ Rn×n and I an
ideal in R. Consider any polynomial f =

∑
α∈Nn×n cαyα ∈ I. The initial form

of f is defined to be ind(f) =
∑

d·α=d cαyα with d = max{d · α : cα �= 0} where
· denotes the standard dot product. The initial ideal of I with respect to the
weight matrix d is the following ideal in R:

ind(I) := 〈 ind(f) : f ∈ I 〉.

For a generic choice of d, this is a monomial ideal, i.e. ind(I) can be generated
by monomials. In this case, we can compute (in a computer algebra system) a
corresponding reduced Gröbner basis {g1, g2, . . . , gr} of I. The initial monomials
ind(g1), . . . , ind(gr) are minimal generators of ind(I).

The connection to regular triangulations arises when I is a toric ideal IA.
This works for any nonnegative integer matrix A, but we here restrict ourselves
to the matrix A whose columns are the vertices of Δn−1 × Δn−1, as in Example
1. The toric ideal associated to A is the determinantal ideal

IA := 〈 yu+ − yu−
: u ∈ ker(A) 〉 = 〈 2 × 2-minors of the n × n matrix (yij)〉.

The regular polyhedral subdivisions of the product of simplices are encoded by
the initial ideals of the ideal IA.

Theorem 1 (Sturmfels’ Correspondence). [6, Theorem 9.4.5] There is a
bijection between regular subdivisions of Δn−1×Δn−1 induced by d and the ideals
ind(IA). Moreover, ind(IA) is a monomial ideal if and only if the corresponding
subdivision of Δn−1 × Δn−1 is a triangulation.

Since the matrix A is totally unimodular [15, Exercise (9), page 72], all initial
monomial ideals ind(IA) are squarefree [15, Corollary 8.9]. The desired triangu-
lation Σd is the simplicial complex whose Stanley-Reisner ideal equals ind(IA).

Optimal Transport to a Variety 369

This means that the set F(Σd) of its maximal simplices in the triangulation is
read off from the prime decomposition of the squarefree monomial ideal:

ind(IA) =
⋂

σ∈F(Σd)

〈 yij : ij /∈ σ 〉. (5)

For a first illustration see [15, Example 8.12], where it is shown that the diagonal
initial ideal of the determinantal ideal IA corresponds to the staircase triangu-
lation of the polytope Δn−1 × Δn−1.

From the perspective of optimal transport, what has been accomplished so
far? We wrote the Wasserstein distance between two distributions locally as a
linear function. This is the function in (4). The region σ inside Δn−1 × Δn−1

on which this formula is valid is a simplex. The set of these simplices is the
triangulation Σd. The algebraic recipe (5) serves to compute this. Thus, the
associated primes of ind(IA) are the linear formulas for the Wasserstein distance.

Remark 1. If the matrix d is special then ind(IA) may not be a monomial ideal.
This happens for the discrete metric on [n] when n ≥ 4. In such a case, we break
ties with a term order to get a triangulation. Geometrically, this corresponds
to replacing d by a nearby generic matrix dε. However, since the optimal value
function of a linear program is piecewise linear and continuous, the limit of the
optimal values for dε as ε → 0 is the optimal value for d.

The discussion above is concerned with the piecewise-linear structure of the
Wasserstein distance W (μ, ν) when d is fixed and μ, ν vary. The story becomes
more interesting when we allow the matrix d to vary over Rn2

. This brings us to
the theory of secondary polytopes. Two generic matrices d and d′ are considered
equivalent if their triangulations coincide: Σd = Σd′ . The equivalence classes are
open convex polyhedral cones that partition Rn2

. This partition is the secondary
fan of our product of simplices. This fan is the normal fan of the secondary
polytope Σ(Δn−1 × Δn−1), which is the Newton polytope of the product of all
subdeterminants (all sizes) of the matrix (yij).

For a given generic matrix d, its equivalence class (a.k.a. secondary cone)
can be read off from the reduced Gröbner basis {g1, g2, . . . , gr} of IA with
respect to d. The Gröbner basis elements are binomials gi = yu+

i − yu−
i , where

u1, u2, . . . , ur ∈ Zn2
. Then the desired secondary cone equals
{

d ∈ Rn2
: d · ui > 0 for i = 1, 2, . . . , r

}
. (6)

Example 2. Let n = 3 and fix the discrete metric d ∈ {0, 1}3×3, which has
dii = 0 and dij = 1 if i �= j. This matrix looks special but it is actually generic.
The corresponding Gröbner basis equals

{ y12y21 − y11y22, y12y23 − y13y22, y12y31 − y11y32, y13y21 − y11y23, y13y31
−y11y33, y13y32 − y12y33, y21y32 − y22y31, y23y31 − y21y33, y23y32 − y22y33 }.

The initial monomials are underlined, so the secondary cone is defined by

d12 + d21 > d11 + d22, d12 + d23 > d13 + d22, . . . , d23 + d32 > d22 + d33.

370 T. Ö. Çelik et al.

For any matrix in that secondary cone in R3×3, the initial monomial ideal equals

ind(IA) =
〈y12, y13, y21, y23〉 ∩ 〈y12, y13, y23, y32〉 ∩ 〈y12, y13, y31, y32〉

∩ 〈y12, y21, y31, y32〉 ∩ 〈y13, y21, y23, y31〉 ∩ 〈y21, y23, y31, y32〉. (7)

This encodes the six 4-simplices that form the triangulation Σd of Δ2 × Δ2.

3 An Algorithm and the Geometry of Triangles

We next present our algorithm for computing the Wasserstein distance to a
model, W (μ,M). Here the model M is any subset of Δn−1. Our only assumption
is that we have a subroutine for minimizing a linear function over intersections
of μ × M with subpolytopes σ of Δn−1 × Δn−1. The case of primary interest,
when M is an algebraic variety, will be addressed in the next section. We begin
by giving an informal summary. The precise version appears in Algorithm 2.

Algorithm 1. A friendly description of the steps in Algorithm 2
Input: An n × n matrix d = (dij), a model M ⊂ Δn−1, and a

distribution μ ∈ Δn−1.
Steps 1-3: Compute the triangulation of the polytope Δn−1 × Δn−1 that
is given by d.
Step 4: Incorporate μ and express matrix entries as linear functions in
ν ∈ M.
Step 5: For each piece, minimize a linear function over the relevant part
of the model M.
Steps 6-7: The smallest minimum found in Step 5 is the Wasserstein
distance W (μ,M).

The first step in our algorithm is the computation of the regular triangulation
Σd. This is done using the algebraic method described in Sect. 2. As before, IA

denotes the ideal of 2 × 2 minors of an n × n matrix of unknowns y = (yij).
The computation of Σd is a preprocessing step that depends only on d. Once the
triangulation is known, we can use it to treat different models M and different
distributions μ, by starting from Step 5 of Algorithm 2.

There are two sources of complexity in Algorithm 2. First, there is the sub-
routine in Step 5, where we minimize a linear function over the model M, subject
to nonnegativity constraints that specify (μ × Δn−1) ∩ σ. When M is a semi-
algebraic set, this is a polynomial optimization problem. For an introduction to
current methods see [9]. In Sect. 4 we disregard inequality constraints and focus
on the case when the model M is a variety. Here the complexity is governed
by the algebraic degree, which refers to the number of complex critical points.
The other source of complexity is combinatorial, and it is governed by the num-
ber of maximal simplices in the triangulation of Δn−1 × Δn−1. This number is
independent of the triangulation. We have

|F(Σd)| =
(

2n − 2
n − 1

)

= O
(
4nn−1/2

)
. (8)

Optimal Transport to a Variety 371

The second equation rests on Stirling’s formula. This exponential complexity
can be reduced when we deal with specific finite metric spaces. Namely, if d is a
symmetric matrix with very special structure, then Σd will not be a triangulation
but a coarser subdivision with far fewer cells than

(
2n−2
n−1

)
. This structure can be

exploited systematically, in order to gain a reduction in complexity.

Algorithm 2. Computing the Wasserstein distance to a model
Input: An n × n matrix d = (dij), a model M ⊂ Δn−1, and μ ∈ Δn−1.
Output: The Wasserstein distance W (μ,M) and a point in M that

attains this distance.
Step 1: Compute the initial ind(IA) for the ideal IA of 2 × 2-minors.
Step 2: If ind(IA) is not a monomial ideal, then redo Step 1 with a
nearby generic matrix.
Step 3: Compute the set F(Σd) of maximal simplices in Σd using (5).
Step 4: For every σ ∈ F(Σd), compute the matrix π̃σ whose entries are
linear in ν ∈ M.
Step 5: For every σ ∈ F(Σd), compute the minimum of the linear
function in (4) over the intersection (μ × M) ∩ σ.
Step 6: Choose the minimum value among the optimal values in Step 5.
Step 7: Output this value and ν∗ ∈ M satisfying W (μ, ν∗) = W (μ,M).

Example 3. Consider the discrete metric d ∈ {0, 1}n×n, which has dii = 0 and
dij = 1 if i �= j. The subdivision Σd of Δn × Δn has 2n − 2 maximal cells. So,
it is not a triangulation for n ≥ 4. Combinatorially, Σd is dual to the zonotope
that is obtained by taking the Minkowski sum of n line segments in Rn−1. This
follows from the identification of triangulations of products of simplices with
tropical polytopes. The tropical polytope representing the discrete metric is the
(n− 1)-dimensional pyrope; see [8, Equation (4)]. For instance, consider the case
n = 4: the 3-dimensional pyrope is the rhombic dodecahedron, which has 14
vertices, 24 edges, and 12 facets [8, Figure 4].

In the remainder of this section we offer a detailed illustration of Algorithm
2 in the case n = 3. We fix the discrete metric d as in Examples 2 and 3, and
we take M to be the independence model for two identically distributed binary
random variables. This is the image of the parametrization

ϕ : [0, 1] → Δ2 , p �→ (
p2, 2p(1 − p), (1 − p)2

)
. (9)

Thus M = image(ϕ) is a quadratic curve inside the triangle Δ2. This curve is
known as the Hardy-Weinberg curve in genetics and it is shown in Fig. 1.

Fix the distribution μ = (1/2, 1/7, 5/14). This is marked in Fig. 1. The
Wasserstein distance between μ and M is attained at p∗ = 1/

√
2. It equals

W (μ,M) =
√

2 − 8/7 = 0.2713564195... = W (μ, ν∗).

The corresponding optimal distribution ν∗ in the model M equals

(ν∗
1 , ν∗

2 , ν∗
3) =

(
(p∗)2, 2p∗(1−p∗), (1−p∗)2

)
=

(
0.5, 0.4142135..., 0.0857864...

)
.

372 T. Ö. Çelik et al.

An optimal transportation plan is this matrix with given row and column sums:
()π11 0 0 ν∗

1

π21 π22 π23 ν∗
2

0 0 π33 ν∗
3

1
2

1
7

5
14

(10)

This solution was found using Algorithm 2. Steps 1, 2 and 3 were already
carried out in Example 2. In Step 4, we translate each prime component in (7)
into a 3 × 3 matrix π̃σ whose entries are linear forms. For instance, the third
component in (7) corresponds to the matrix in (10) with

π11 = ν1, π21 = μ1 − ν1, π22 = μ2, π23 = μ3 − ν3, π33 = ν3.

We substitute μ =
(
1
2 , 1

7 , 5
14

)
and ν =

(
p2, 2p(1−p), (1−p)2

)
into these six 3×3

matrices π̃σ. As σ runs over F(Σd), we obtain six feasible regions (μ×Δ2)∩σ in
the ν-triangle Δ2. These are the triangles and the rhombi in Fig. 1. On each of
these cells, the objective function π12 +π13 +π21 +π23 +π31 +π32 is a quadratic
function in p. This quadric appears in the leftmost column of the table below,
along with the feasible region restricted to the curve M. The third and fourth
column list the optimal solutions that are computed in Step 5.

Fig. 1. The model M is the curve, here shown in the triangle μ × Δ2. It intersects
five of the six cells that are obtained by restricting the 4-simplices σ in F(Σd) from
Δ2 × Δ2 to that triangle. The Wasserstein distance from μ to the curve M is attained
by a point, labeled ν∗, that lies at the intersection of two cells. (Color figure online)

The i-th row of this table corresponds to the cell labeled i. In Step 6 of our
algorithm, we identify cells 3 and 4 as those that attain the minimum value. In
Step 7 we recover the optimal solution ν∗. The optimal point is marked by ν∗

in Fig. 1. The geometric fact that the minimum is attained on the intersection
of two cells corresponds to the algebraic fact that π21 = 0 in (10).

It is instructive to draw the balls in the Wasserstein metric around the point
μ in Fig. 1. For small radii, these balls are regular hexagons whose sides are

Optimal Transport to a Variety 373

Objective function Feasible region Solution p Minimum value

p2 − 2p + 9/14 0 ≤ p ≤ (1−
√

5
7)

2

(1−
√

5
7)

2
1/14 +

√
5/7/2

−p2 + 1/2
(1−

√
5
7)

2
≤ p ≤ 1 − √

5/14 1 − √
5/14 2

√
5/14 − 6/7

−2p2 + 2p − 1
7

1 − √
5/14 ≤ p ≤ √

1/2
√

1/2
√
2 − 8/7

−p2 + 2p − 9/14
√

1/2 ≤ p ≤ (1+
√

5
7)

2

√
1/2

√
2 − 8/7

2p2 − 2p + 1
7

Null set Infeasible

p2 − 1/2
(1+

√
5
7)

2
≤ p ≤ 1

(1+
√

5
7)

2
−1/14 +

√
5/7/2

parallel to the three distinguished directions. As the radius increases, some sides
of these hexagons exit the triangle. For instance, the ball around μ that contains
optimal point ν∗ its boundary is a non-regular hexagon containing region 5. The
boundary in each of the other regions is obtained by drawing a line segment
parallel to the opposite direction. For instance, in region 3, we draw a horizontal
segment starting at ν∗ until it hits region 2, and then we continue the boundary
with a 60◦ turn to the right.

4 Parametric Linear Optimization over a Variety

A key step in Algorithm 2 is the repeated solution of linear optimization problems
over appropriate subsets of the model M. We now assume that M is an algebraic
variety in Δn−1 ⊂ Rn, i.e. M consists of the nonnegative real solutions of a
system of polynomials f1, f2, . . . , fk ∈ R[x1, . . . , xn]. We tacitly assume that
f1 = x1 + · · · + xn − 1 is the linear equation that cuts out the probability
simplex. We write X for the complex algebraic variety in Cn defined by the same
equations. Let X̄ denote the closure of X in the complex projective space Pn.

When computing the Wasserstein distance from μ to the model M with
respect to d, we must minimize a linear function over M subject to nonnegativity
constraints that specify (μ × Δn−1) ∩ σ. Here σ runs over all maximal simplices
in the triangulation Σd of Δn−1 × Δn−1. Let us assume for simplicity that the
minimum is attained at a smooth point of X that is in the relative interior of
(μ × Δn−1) ∩ σ. The case when this hypothesis is violated can be modelled by
adding additional linear constraints fi = 0. We can phrase our problem as a
parametric optimization problem:

minimize c1x1 + · · · + cnxn subject to x ∈ M = X ∩ Δn−1. (11)

Here c1, . . . , cn are parameters. In our applications, these ci will be functions
in the entries dij of the metric d and in the coordinates μk of the given point
μ ∈ Δn−1. But, for now, let us treat the ci as unknowns. The optimal value of
the problem (11) is a function in these unknowns:

c∗
0 = c∗

0(c1, . . . , cn).

374 T. Ö. Çelik et al.

By [13, Section 3], the optimal value function c∗
0 : Rn → R is an algebraic func-

tion in the n parameters c1, . . . , cn. This means that there exists a polynomial
Φ(c0, c1, . . . , cn) in n + 1 variables such that Φ(c∗

0, c1, . . . , cn)=0. The degree of
Φ in its first argument c0 measures the algebraic complexity of our optimization
problem (11). We call this number the Wasserstein degree of our model M. We
shall describe the Wasserstein degree geometrically and offer some bounds.

Following [13, Section 3], we consider the projective variety X̄∗ that is dual to
the variety X̄. The dual variety X̄∗ lives in the dual projective space Pn, and it
parametrizes hyperplanes in the ambient projective space of X̄ that are tangent
to X̄. This dual variety X̄∗ is typically a hypersurface, regardless of what the
codimension of X is. In particular, it is a hypersurface when X is compact in
Rn. If X is irreducible then the hypersurface X̄∗ is defined by a unique (up to
scaling) irreducible homogeneous polynomial in n + 1 unknowns c0, c1, . . . , cn.
The degree of this hypersurface is the degree of X̄∗. The following result is a
direct consequence of [13, Theorem 3.2].

Theorem 2. The polynomial Φ(−c0, c1, . . . , cn) is the defining equation of the
hypersurface X̄∗ that is dual to the projective variety X̄ that represents the model
M in Δn−1. Hence the Wasserstein degree of M is the degree of Φ in its first
argument. This is generically equal to the degree of X̄∗.

For many natural classes of varieties X̄, there are known formulas for the
degree of the dual X̄∗. This includes general complete intersections and deter-
minantal varieties. The case of a hypersurface appears in [13, Example 2.7]. It
serves as an illustration of our algebraic view on the problem (11).

Corollary 1. Suppose that the model M is a hypersurface, namely, it is the
zero set in the simplex Δn−1 of a general polynomial of degree m. Then the
Wasserstein degree of M equals m(m − 1)n−2.

For instance, we have n = m = 2 for the Hardy-Weinberg curve (9), so this
has Wasserstein degree 2. This reflects the fact that the optimal value

√
2 − 8/7

is an algebraic number of degree 2.

Example 4. If M is a general curve of degree 3 in the triangle Δ2 then its
Wasserstein degree equals 6. Such an elliptic curve does not permit a rational
parametrization, so we will have to consider (11) as a constrained optimization
problem. For a concrete example consider the curve

x3
1 + x3

2 + x3
3 = 4x1x2x3.

Let c∗
0 be the minimum of c1x1 + c2x2 + c3x3 over this curve in Δ2. This is

an algebraic function of degree 6. Its minimal polynomial Φ(−c0, c1, c2, c3) is a
homogeneous sextic. Namely, we have

Optimal Transport to a Variety 375

Φ = c
6
0 + (2c1 + 2c2 + 2c3)c

5
0 − (65c

2
1 − 70c1c2 − 70c1c3 + 65c

2
2 − 70c2c3 + 65c

2
3)c

4
0

+ (208c
3
1 − 442c

2
1c2 − 442c

2
1c3 − 442c1c

2
2 + 2048c1c2c3 − 442c1c

2
3 + 208c

3
2 − 442c

2
2c3

− 442c2c
2
3 + 208c

3
3)c

3
0

− (117c
4
1 − 546c

3
1c2 − 546c

3
1c3 + 1994c

2
1c

2
2 − 1024c

2
1c2c3 + 1994c

2
1c

2
3 − 546c1c

3
2 − 1024c1c

2
2c3

− 1024c1c2c
2
3 − 546c1c

3
3 + 117c

4
2 − 546c

3
2c3 + 1994c

2
2c

2
3 − 546c2c

3
3 + 117c

4
3)c

2
0

− (162c
5
1 − 288c

4
1c2 − 288c

4
1c3 + 606c

3
1c

2
2 − 1152c

3
1c2c3 + 606c

3
1c

2
3 +606c

2
1c

3
2 +352c

2
1c

2
2c3

+352c
2
1c2c

2
3 +606c

2
1c

3
3

− 288c1c
4
2 − 1152c1c

3
2c3 + 352c1c

2
2c

2
3 − 1152c1c2c

3
3 − 288c1c

4
3 +162c

5
2 − 288c

4
2c3 +606c

3
2c

2
3

+606c
2
2c

3
3 − 288c2c

4
3

+ 162c
5
3)c0 − 27c

6
1 + 288c

4
1c2c3 − 202c

3
1c

3
2 − 202c

3
1c

3
3 − 176c

2
1c

2
2c

2
3 +288c1c

4
2c3 +288c1c2c

4
3

− 27c
6
2 − 202c

3
2c

3
3 − 27c

6
3.

For any given c1, c2, c3, the optimal value is obtained by solving Φ = 0 for c0.

As we said earlier, in our application in Step 5 of Algorithm 2, the ci depend
on the matrix d and the distribution μ. We can thus consider the function that
measures the Wasserstein distance:

Rn2 × Δn−1 → R , (d, μ) �→ c∗
0(d, μ) = Wd(μ,M).

Our discussion establishes the following result about this function which depends
only on M.

Corollary 2. The Wasserstein distance is a piecewise algebraic function of d
and μ. Each piece is an algebraic function whose degree is bounded above by the
degree of the hypersurface dual to M.

5 The Wasserstein Estimator of an Independence Model

In this section we present our solution to the problem that started this project.
The task is to compute the Wasserstein estimator for the independence model on
two binary random variables. Here n = 4 and M is the variety of 2 × 2 matrices
of rank 1. This has the parametric representation

(
x1 x2

x3 x4

)

=
(

pq p(1 − q)
(1−p)q (1−p)(1−q)

)

, where (p, q) ∈ [0, 1]2.

Equivalently, M is the quadratic surface {x1x4 = x2x3} in the tetrahedron Δ3.
Our underlying metric space Ω is the square {0, 1}2 with its Hamming dis-

tance. We identify Ω with the set [4] = {1, 2, 3, 4} as indicated above. The ground
metric is represented by the matrix

d =

1 2 3 4
⎡

⎢
⎣

⎤

⎥
⎦

0 1 1 2 1
1 0 2 1 2
1 2 0 1 3
2 1 1 0 4

376 T. Ö. Çelik et al.

Given two points μ, ν in Δ3, the transportation polytope Π(μ, ν) consists of
all nonnegative 4 × 4 matrices π with row sums ν and column sums μ. It usu-
ally is simple and has dimension 9. The Wasserstein distance between the two
distributions equals W (μ, ν) = minπ∈Π(μ,ν)

∑
1≤i,j≤4 dijπij .

What we are interested in is the minimum Wasserstein distance from μ to
any point ν in the independence model M. This parametric linear optimization
problem can be described as follows:

⎡

⎢
⎣

⎤

⎥
⎦

π11 π12 π13 π14 pq
π21 π22 π23 π24 p(1 − q)
π31 π32 π33 π34 (1 − p)q
π41 π42 π43 π44 (1 − p)(1 − q)
μ1 μ2 μ3 μ4

Here the marginal μ = (μ1, μ2, μ3, μ4) is fixed. The model M is parametrized by
the points (p, q) in the square [0, 1]2. The Wasserstein distance between μ and
ν = ν(p, q) is a continuous function on that square. The minimum value of that
function is the desired Wasserstein distance W (μ,M).

Fig. 2. Left: The graph of the distance function [0, 1]2 → R, (p, q) �→ W (μ, ν(p, q)) for
μ = 1

10
(1, 4, 4, 1). Right: The independence model M inside the tetrahedron Δ3. Color

corresponds to the Wasserstein distance to the target distribution μ, shown as a thick
dot. The function has two global minimizers over M. (Color figure online)

Our task is to minimize the function in Fig. 2 over the square. We see that
this function is piecewise algebraic (cf. Corollary 2). Each piece is either a linear
function or a quadratic function. The case distinction arises from the induced
polyhedral subdivision of the 6-dimensional polytope Δ3 × Δ3. This subdivi-
sion is not a triangulation, but, following Step 2 in Algorithm 2, we replace
it with a nearby triangulation. That triangulation has 20 maximal simplices,

Optimal Transport to a Variety 377

as seen in (8). These are the 20 cases in Fig. 2. The graph of our function is
color-coded according to these cases.

The triangulation of Δ3 × Δ3 restricts to a mixed subdivision of the tetra-
hedron μ × Δ3. That subdivision consists of 20 = 4 + 12 + 4 cells, namely
4 tetrahedra, 12 triangular prisms, and 4 parallelepipeds. After removing the 4
tetrahedra, which touch the vertices of μ×Δ3, we obtain a truncated tetrahedron
which is subdivided into 16 cells. Such a subdivision is shown in Fig. 3.

Fig. 3. A mixed subdivision of a truncated tetrahedron into 16 = 12 + 4 cells.

The restriction of the mixed subdivision of μ×Δ3 divides our model M into
regions. On each of these regions, the Wasserstein distance function ν �→ W (μ, ν)
is given by a linear functional, as explained in Step 4 of Algorithm 2. The surface
and this function are depicted in Fig. 2 (right).

The two images in Fig. 2 convey the same information. The piecewise linear
function on the quadratic surface in Δ3 restricts to a piecewise quadratic function
on the square [0, 1]2 under the parametrization of the surface. However, the color
coding in the two diagrams is different. The colors in the left image in Fig. 2 show
the pieces, while the right one displays a heat map. Namely, the colors here
represent values of the function M → R, ν �→ W (μ, ν). The two darkest points
attain the minimum value W (μ,M). The white curve segments on the surface
M are the boundaries between the various pieces. Each piece is the intersection
of M with one of the polytopes in the mixed subdivision in Fig. 3.

We now discuss the computations that led to these results and pictures. The
triangulation of Δ3 × Δ3 and the resulting mixed subdivision of μ × Δ3 are
computed in Steps 1–3 of Algorithm 2. These geometric objects are encoded
algebraically, namely in the decomposition (5) of the ideal

378 T. Ö. Çelik et al.

indε (IA) = 〈y11, y12, y14, y31, y32, y34, y41, y42, y44〉 ∩ 〈y11, y13, y14, y21, y23, y24, y41, y43, y44〉 ∩
〈y12, y13, y14, y23, y24, y31, y32, y34, y42〉 ∩ 〈y12, y13, y14, y23, y24, y32, y34, y42, y43〉 ∩
〈y12, y13, y14, y21, y23, y24, y32, y34, y43〉 ∩ 〈y13, y21, y23, y24, y31, y32, y41, y42, y43〉 ∩
〈y21, y23, y24, y31, y32, y34, y41, y42, y43〉 ∩ 〈y12, y21, y23, y31, y32, y34, y41, y42, y43〉 ∩
〈y13, y14, y21, y23, y24, y32, y34, y41, y43〉 ∩ 〈y14, y21, y23, y24, y31, y32, y34, y41, y43〉 ∩
〈y12, y13, y21, y23, y31, y32, y41, y42, y43〉 ∩ 〈y12, y13, y14, y21, y23, y32, y41, y42, y43〉 ∩
〈y11, y13, y14, y21, y23, y24, y32, y41, y43〉 ∩ 〈y13, y14, y21, y23, y24, y32, y41, y42, y43〉 ∩
〈y12, y13, y14, y23, y32, y34, y41, y42, y43〉 ∩ 〈y12, y14, y23, y31, y32, y34, y41, y42, y43〉 ∩
〈y12, y13, y14, y21, y23, y24, y31, y32, y34〉 ∩ 〈y12, y14, y21, y23, y24, y31, y32, y34, y41〉 ∩
〈y11, y12, y14, y23, y31, y32, y34, y41, y42〉 ∩ 〈y12, y14, y23, y24, y31, y32, y34, y41, y42〉.

Step 4 of Algorithm 2 translates each of these 20 minimal primes into a 4 × 4-
matrix in the variety of that prime whose nonzero entries are linear forms in μi

and νj . For instance, the second prime gives

π̃σ =

⎡

⎢
⎢
⎣

0 ν1 0 0
0 ν2 0 0

μ1 μ2−ν1−ν2−ν4 μ3 μ4

0 ν4 0 0

⎤

⎥
⎥
⎦ . (12)

The dot product of d and π̃σ gives the Wasserstein distance on the piece labeled
Case 2 in Fig. 2:

d · π̃σ = μ1 + 2μ2 + μ4 − ν1 − 2ν2−ν4 = μ2 − μ3 − ν2 + ν3 = μ2 − μ3 − p + q.

Hence Case 2 is linear in p, q. The region in the square for this case is defined
by the requirement that the entries of the matrix π̃σ are between 0 and 1. We
only need to consider the entry in the third row and second column:

0 ≤ μ2 − ν1 − ν2 − ν4 = (1 − p)q + μ2 − 1 ≤ 1.

In Fig. 2 the graph of μ2 − μ3 − p + q on this region is labeled Case 2.

Table 1. Algebraic analysis of the Wasserstein distance function shown in Fig. 2.

Case Objective Function Feasible Region, 0 ≤ ∗ ≤ 1 Solution Minimum Value Subdivision

Quadratic pieces

10 2pq − p − q + μ2 + μ3

q − μ1 − μ3

μ3 − (1 − p)q
(1 − p)(1 − q) − μ4

(μ1
μ1+μ3

, μ1 + μ3)
(μ2

μ2+μ4
, μ1 + μ3)

(μ1 + μ2,
μ3

μ3+μ4
)

1 − √
μ3,

√
μ3

)

− μ1
μ1+μ3

+ μ1 + μ2
μ2

μ2+μ4
− μ1 − μ2

μ3
μ3+μ4

− μ1 − μ3

2
√

μ3(1 − √
μ3) − μ1 − μ4

[∗ ∗ ∗ 0
0 ∗ 0 0
0 0 ∗ 0
0 ∗ 0 ∗

]

18 2pq − p − q + μ2 + μ3

pq − μ1

μ2 − p(1 − q)
μ1 + μ3 − q

(
μ1 + μ2,

μ1
μ1+μ2

)
(

μ2
μ2+μ4

, μ1 + μ3

)
(μ1

μ1+μ3
, μ1 + μ3)

(
√

μ2, 1 − √
μ2)

− μ1
μ1+μ2

+ μ1 + μ3
μ2

μ2+μ4
− μ1 − μ2

− μ1
μ1+μ3

+ μ1 + μ2

2
√

μ2(1 − √
μ2) − μ1 − μ4

[∗ 0 ∗ 0
0 ∗ 0 0
0 0 ∗ 0
0 ∗ ∗ ∗

]

12 −2pq + p + q − μ2 − μ3

μ1 − pq
p(1 − q) − μ2

q − μ1 − μ3

(μ1 + μ2,
μ1

μ1+μ2
)

(μ1
μ1+μ3

, μ1 + μ3)
(μ2

μ2+μ4
, μ1 + μ3)

(
√

μ1,
√

μ1)

μ1
μ1+μ2

− μ1 − μ3
μ1

μ1+μ3
− μ1 − μ2

− μ2
μ2+μ4

+ μ1 + μ2

2
√

μ1(1 − √
μ1) − μ2 − μ3

[∗ 0 0 0
0 ∗ 0 ∗
∗ 0 ∗ ∗
0 0 0 ∗

]

15 −2pq + p + q − μ2 − μ3

μ1 + μ3 − q
(1 − p)q − μ3

μ4 − (1 − p)(1 − q)

1 − √
μ4, 1 − √

μ4

)
(

μ1
μ1+μ3

, μ1 + μ3

)
(
μ1 + μ2,

μ3
μ3+μ4

)
(

μ2
μ2+μ4

, μ1 + μ3

)

2
√

μ4(1 − √
μ4) − μ2 − μ3

μ1
μ1+μ3

− μ1 − μ2

− μ3
μ3+μ4

+ μ1 + μ3

− μ2
μ2+μ4

+ μ1 + μ2

[∗ 0 0 0
∗ ∗ 0 ∗
∗ 0 ∗ 0
0 0 0 ∗

]

Optimal Transport to a Variety 379

Table 2. Algebraic analysis of the Wasserstein distance function shown in Fig. 2.

Case Objective Function Feasible Region, 0 ≤ ∗ ≤ 1 Solution Minimum Value Subdivision

First affine piece

2 −p + q + μ2 − μ3 (1 − p)q + μ2 − 1 (1 − √
1 − μ2,

√
1 − μ2) 2

√
1 − μ2 + μ2 − μ3 − 1

[
0 ∗ 0 0
0 ∗ 0 0
∗ ∗ ∗ ∗
0 ∗ 0 0

]

9 −p + q + μ2 − μ3

μ1 + μ3 − (1 − p)q
q − μ1 − μ3

(1 − p)q − μ3

(1 − p)(1 − q) − μ4

(
μ2

μ2+μ4
, μ1 + μ3

)
(1 − √

μ3,
√

μ3)(
μ1

μ1+μ3
, μ1 + μ3

)
(
μ1 + μ2,

μ3
μ3+μ4

)

− μ2
μ2+μ4

+ μ1 + μ2

2
√

μ3 + μ2 − μ3 − 1
− μ1

μ1+μ3
+ μ1 + μ2

μ3
μ3+μ4

− μ1 − μ3

[∗ ∗ 0 0
0 ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗

]

13 −p + q + μ2 − μ3

μ2 − p
(1 − p)q − μ1 − μ3

1 − μ2 − (1 − p)q

(1 − √
μ1 + μ3,

√
μ1 + μ3)(

μ2,
μ1+μ3

μ1+μ3+μ4

) 2
√

μ1 + μ3 + μ2 − μ3 − 1
μ1+μ3

μ1+μ3+μ4
− μ3

[
0 ∗ 0 0
0 ∗ 0 0
∗ 0 ∗ ∗
0 ∗ 0 ∗

]

14 −p + q + μ2 − μ3

p − μ2

μ2 − p(1 − q)
μ1 + μ2 − p

μ4 − (1 − p)(1 − q)

(
μ1 + μ2,

μ3
μ3+μ4

)
(
μ1 + μ2,

μ1
μ1+μ2

)
(

μ2
μ2+μ4

, μ1 + μ3

)
μ3

μ3+μ4
− μ1 − μ3

μ1
μ1+μ2

− μ1 − μ3

− μ2
μ2+μ4

+ μ1 + μ2

[∗ ∗ 0 0
0 ∗ 0 0
∗ 0 ∗ ∗
0 0 0 ∗

]

Second affine piece

1 p − q − μ2 + μ3 p(1 − q) + μ3 − 1 (
√

1 − μ3, 1 − √
1 − μ3) 2

√
1 − μ3 − μ2 + μ3 − 1

[
0 0 ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ 0

]

16 p − q − μ2 + μ3

q − μ3

μ3 − (1 − p)q
μ1 + μ3 − q

μ4 − (1 − p)(1 − q)

(
μ1 + μ2,

μ3
μ3+μ4

)
(

μ1
μ1+μ3

, μ1 + μ3

)
(

μ2
μ2+μ4

, μ1 + μ3

)
− μ3

μ3+μ4
+ μ1 + μ3

μ1
μ1+μ3

− μ1 − μ2
μ2

μ2+μ4
− μ1 − μ2

[∗ 0 ∗ 0
∗ ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗

]

19 p − q − μ2 + μ3

p(1 − q) − μ1 − μ2

μ3 − q
1 − μ3 − p(1 − q)

(
√

μ1 + μ2, 1 − √
μ1 + μ2)(

μ1+μ2
μ1+μ2+μ4

, μ3

) 2
√

μ1 + μ2 − μ2 + μ3 − 1
μ1+μ2

μ1+μ2+μ4
− μ2

[
0 0 ∗ 0
∗ ∗ 0 ∗
0 0 ∗ 0
0 0 ∗ ∗

]

20 p − q − μ2 + μ3

μ1 + μ2 − p(1 − q)
p(1 − q) − μ2

p − μ1 − μ2

(1 − p)(1 − q) − μ4

(
μ1 + μ2,

μ3
μ3+μ4

)
√

μ2, 1 − √
μ2

)
(
μ1 + μ2,

μ1
μ1+μ2

,
)

(
μ2

μ2+μ4
, μ1 + μ3

)

− μ3
μ3+μ4

+ μ1 + μ3

2
√

μ2 − μ2 + μ3 − 1
− μ1

μ1+μ2
+ μ1 + μ3

μ2
μ2+μ4

− μ1 − μ2

[∗ 0 ∗ 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 ∗ ∗

]

Third affine piece

3 −p − q + μ1 − μ4 + 1
p(1 − q) − μ2

μ1 + μ2 − p
μ3 − (1 − p)q

(
μ1 + μ2,

μ1
μ1+μ2

)
(
μ1 + μ2,

μ3
μ3+μ4

) − μ1
μ1+μ2

+ μ1 + μ3

− μ3
μ3+μ4

+ μ1 + μ3

[∗ 0 0 0
∗ ∗ 0 0
0 0 ∗ 0
∗ 0 ∗ ∗

]

4 −p − q + μ1 − μ4 + 1
p(1 − q) − μ2

(1 − p)q − μ3

(1 − p)(1 − q) − μ4

(
γ+, 1 − μ2

γ+

)
1 − √

μ4, 1 − √
μ4

)
(

μ2
μ2+μ4

, μ1 + μ3

)
(
μ1 + μ2,

μ3
μ3+μ4

)

−γ+ + μ2
γ+ + μ1 − μ4

2
√

μ4 + μ1 − μ4 − 1
− μ2

μ2+μ4
+ μ1 + μ2

− μ3
μ3+μ4

+ μ1 + μ3

[∗ 0 0 0
∗ ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗

]

5 −p − q + μ1 − μ4 + 1
(1 − p)q − μ3

μ1 + μ3 − q
μ2 − p(1 − q)

(
μ1

μ1+μ3
, μ1 + μ3

)
(

μ2
μ2+μ4

, μ1 + μ3

) − μ1
μ1+μ3

+ μ1 + μ2

− μ2
μ2+μ4

+ μ1 + μ2

[∗ 0 0 0
0 ∗ 0 0
∗ 0 ∗ 0
∗ ∗ 0 ∗

]

17 −p − q + μ1 − μ4 + 1
μ1 − pq

μ2 − p(1 − q)
μ3 − (1 − p)q

(
γ−, μ3

1−γ−

)
(

μ1
μ1+μ3

, μ1 + μ3

)
(
μ1 + μ2,

μ1
μ1+μ2

)
−γ− − μ3

1−γ− + μ1 − μ4 + 1
− μ1

μ1+μ3
+ μ1 + μ2

− μ1
μ1+μ2

+ μ1 + μ3

[∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
∗ ∗ ∗ ∗

]

Fourth affine piece

6 p + q − μ1 + μ4 − 1
μ2 − p(1 − q)
p − μ1 − μ2

(1 − p)q − μ3

(
μ1 + μ2,

μ3
μ3+μ4

)
(
μ1 + μ2,

μ1
μ1+μ2

) μ3
μ3+μ4

− μ1 − μ3
μ1

μ1+μ2
− μ1 − μ3

[∗ ∗ 0 ∗
0 ∗ 0 0
0 0 ∗ ∗
0 0 0 ∗

]

7 p + q − μ1 + μ4 − 1
μ2 − p(1 − q)
μ3 − (1 − p)q

μ4 − (1 − p)(1 − q)

(
γ+, μ3

1−γ+

)
(

μ2
μ2+μ4

, μ1 + μ3

)
(
μ1 + μ2,

μ3
μ3+μ4

)
γ+ + μ3

1−γ+ − μ1 + μ4 − 1
μ2

μ2+μ4
− μ1 − μ2

μ3
μ3+μ4

− μ1 − μ3

[∗ ∗ ∗ ∗
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

]

8 p + q − μ1 + μ4 − 1
μ3 − (1 − p)q
q − μ1 − μ3

p(1 − q) − μ2

(
μ2

μ2+μ4
, μ1 + μ3

)
(

μ1
μ1+μ3

, μ1 + μ3

) μ2
μ2+μ4

− μ1 − μ2
μ1

μ1+μ3
− μ1 − μ2

[∗ 0 ∗ ∗
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗

]

11 p + q − μ1 + μ4 − 1
pq − μ1

p(1 − q) − μ2

(1 − p)q − μ3

(
γ−, μ3

1−γ−

)
√

μ1,
√

μ1

)
(
μ1 + μ2,

μ1
μ1+μ2

)
(

μ1
μ1+μ3

, μ1 + μ3

)

γ− + μ3
1−γ− − μ1 + μ4 − 1

2
√

μ1 − μ1 + μ4 − 1
μ1

μ1+μ2
− μ1 − μ3

μ1
μ1+μ3

− μ1 − μ2

[∗ 0 0 ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗

]

γ+ := (1 + m2 − m3)/2 +
√

(1 + m2 − m3)2/4 − m2 and γ− := (1 + m2 − m3)/2 − √
(1 + m2 − m3)2/4 − m2

380 T. Ö. Çelik et al.

We analyze all 20 components of ind(IA) in this manner, and we record the
result in the first two columns of Tables 1 and 2. The rightmost column gives the
support of the corresponding vertex of the transportation polytope. For instance,
the matrix in the first row of the table shows the support of π̃σ in (12).

The third column of the table contains all candidates for the optimal point
ν∗ expressed as an algebraic function in the four coordinates of μ. Each of the
20 cases has one or several candidate solutions, listed in the third and forth
columns of the table. Which of the candidates is the actual solution can be
determined in terms of further case distinctions on μ, which we omit in the table.
The smallest solution among all cases for a given μ is the desired Wasserstein
distance W (μ, ν∗) = W (μ,M). Note that these expressions involve a square
root, so the Wasserstein degree of the independence surface M equals two, as
predicted by Corollary 1.

6 Conclusion

In this paper, we developed mathematical foundations for computing the Wasser-
stein distance between a point and an algebraic variety in a probability simplex.
Our next goal is to develop a practical algorithm that scales beyond toy prob-
lems. We also plan to answer the questions raised in the introduction, such as
characterizing scenarios when the minimizer is unique.

Acknowledgments. GM has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant no 757983).

References

1. Allman, E., et al.: Maximum likelihood estimation of the latent class model through
model boundary decomposition. J. Algebraic Stat. 34, 51–84 (2019)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875
3. Bassetti, F., Bodini, A., Regazzini, E.: On minimum Kantorovich distance estima-

tors. Stat. Probab. Lett. 76, 1298–1302 (2006)
4. Bernton, E., Jacob, P., Gerber, M., Robert, C.: On parameter estimation with the

Wasserstein distance. Inf. Infer. J. IMA 8(4), 657–676 (2019)
5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In:

Advances in Neural Information Processing Systems, Proceedings NIPS 2013, pp.
2292–2300 (2013)

6. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms
and Applications, Algorithms and Computation in Mathematics, vol. 25. Springer-
Verlag, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12971-1

7. Duarte, E., Marigliano, O., Sturmfels, B.: Discrete statistical models with rational
maximum likelihood estimator. arXiv:1903.06110

8. Kulas, K., Joswig, M.: Tropical and ordinary convexity combined. Adv. Geom. 10,
333–352 (2010)

9. Lasserre, J.: An Introduction to Polynomial and Semi-Algebraic Optimization,
Texts in Applied Mathematics. Cambridge University Press, Cambridge (2015)

http://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-642-12971-1
http://arxiv.org/abs/1903.06110

Optimal Transport to a Variety 381

10. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts
in Mathematics, vol. 227. Springer-Verlag, New York (2005). https://doi.org/10.
1007/b138602

11. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE
12th International Conference on Computer Vision, pp. 460–467, September 2009

12. Peyre, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach.
Learn. 11, 355–607 (2019)

13. Rostalski, P., Sturmfels, B.: Dualities in convex algebraic geometry. Rendiconti di
Matematica 30, 285–327 (2010)

14. Seigal, A., Montúfar, G.: Mixtures and products in two graphical models. J. Alg.
Stat. 9, 1–20 (2018)

15. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series,
vol. 8. American Mathematical Society, Providence (1996)

16. Sullivant, S.: Algebraic Statistics. Graduate Studies in Math. American Mathe-
matical Society, Providence (2018)

17. Villani, C.: Optimal Transport: Old and New. Grundlehren Series, vol. 338.
Springer Verlag, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

18. Weed, J., Bach, F.: Sharp asymptotic and finite-sample rates of convergence of
empirical measures in Wasserstein distance. arXiv:1707.00087

https://doi.org/10.1007/b138602
https://doi.org/10.1007/b138602
https://doi.org/10.1007/978-3-540-71050-9
http://arxiv.org/abs/1707.00087

SFV-CNN: Deep Text Sentiment Classification
with Scenario Feature Representation

Haoliang Zhang1,3(B), Hongbo Xu1, Jinqiao Shi2, Tingwen Liu1, and Jing Ya1(B)

1 Institute of Information Engineering CAS, Beijing 100093, China
evercristee@163.com, yajing@iie.ac.cn

2 Beijing University of Posts and Telecommunications, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we present a deep learning approach to represent the
scenario-related features of a sentence for text classification, and also demon-
strate an interesting application which shows the nearest scenarios for a sentence.
In order to improve the performance of text classification, it is necessary to make
them be aware of the scenario switching at the background of the texts.We propose
a CNN based sentiment analysis model named SFV-CNN for sentence classifica-
tion. The proposed model can be improved by assigning suitable window for each
scenario corpus in scenario word embedding training. Our experiments demon-
strate that SFV-CNN brings an improvement in accuracy and also shows more
obvious advantages when test on datasets across scenarios.

Keywords: Text classification · Sentiment analysis · Deep learning · Natural
language processing · Word embedding

1 Introduction

Word embedding is used to transform text data from abstract symbols to a set of word
vectors that contain a certain implicit semantic information [1, 2]. With the help of
this method, it becomes possible for us to make use of CNN model in training text
data just like processing images. Kim [3] introduced CNN method into the field of
natural language processing, proposed the TextCNN model and achieved remarkable
experimental results. Zhang [4] made full experiments on sensitivity of TextCNNmodel.
Zhang [5] and Marinho [6] researched on text classification based on CNN Method at
Character Level. Johnson [13] and Conneau [14] have discussed the effect of increasing
network depth on improving the text categorization ability of CNN network. And there
were many excellent works focused on combining CNN with RNN, LSTM, Attention
mechanism and other methods to explore their improving effect [7–12, 15–17]. It is also
a practical way to improve CNN based text classification model by making the word
embedding carry more semantic information [24, 25]. A large number of studies have
proved that word embedding, as a text information representation method, can reflect
some grammatical features to a certain extent, such as co-occurrence relation of words.

© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 382–394, 2020.
https://doi.org/10.1007/978-3-030-43120-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_30

SFV-CNN: Deep Text Sentiment Classification 383

Therefore, we can conclude that word embedding plays an important role in enabling
CNNmodel to capture the semantic features from texts directly just like extracting image
features.

However, the word embeddings also have their inherent limitations that some impor-
tant semantic information hidden in text can be intuitively perceived by human, but it
is difficult to be captured and quantified by word embeddings. For example, in different
scenarios, the same words may contain different semantics, and the similar semantics
can also be expressed in different language styles. The changes of sentence style caused
by the scenario switching can hardly be noticed by a single word embedding, because
the differences among scenarios are invisible to it.

In the training process of word embedding, the grammatical and semantic relations
among words are all mined within the limited range of the training corpus which is col-
lected froma specified scenario such aswiki, news, etc. In otherwords, eachword embed-
ding can only be bound to a single Scenario and can only see inside of the binding sce-
nario, so the word embedding is destined to be blind of the differences among Scenarios,
no matter how big the corpus is and no matter how many different kinds of sentences in
it. Some research work has begun to focus on studying the fusion effect of cross-domain
word embeddings [19–21, 23–26] and transfer learning on multi-datasets [18, 22].

We believe that studying the features of sentence styles in specific scenarios is of
great significance to improving text classifiers, and especially to enhancing text sentiment
classification effectiveness. To achieve this goal, we propose a Scenario Feature Vector
(SFV) model to quantify the scenario-related implicit expression features, demonstrate
its ability to distinguish the scenario-related differences among texts. Finally, we use this
model to improve the CNN based classifier and propose SFV-CNN model for sentiment
classification. Experiments show that this method can bring about improvement in accu-
racy of text sentiment classification. And we find that our model has more outstanding
performance in the task of sentiment classification on cross-domain data.

2 Method

2.1 Expressive Grammar Plane Concept

Sentence grammar is the basic way in which it is structured and in different scenarios
texts are structured differently about the grammatical styles and expressive habits. For
example, “I forgot to list the coffee.” and “Coffee not listed.” have similar meanings
while the first sentence is probably a sentence in one’s blog, and the second sentence
is more like a short message on Twitter. Essentially, this formal difference reflects the
implicit changes that take place at the background of grammar, which are influenced by
many indescribable factors, such as the object of expression, the application environment
and the interactive limits.We define the indescribable characteristics of this grammatical
style and habit as Grammatical Expressive Feature (GEF).

To facilitate our discussion, we propose a concept of Expressive Grammar Plane
(EGP) on which place we project the GEF of sentences. To demonstrate the concept, we
might as well assume that the X-axis represents the degree of how it is relevant to some
professional fields, and the Y-axis of the plane represents the degree of normalization

384 H. Zhang et al.

of sentences. If we make the texts from several typical scenarios distribute in this plane,
we may see the condition similar to Fig. 1(a) based on our intuitive experience.

First, we suppose that the texts from the same scenario will be centrally distributed in
a certain specific region on EGP. This is mainly due to the usage of the same vocabulary
and idioms in specific fields, as well as similar grammatical requirements and other
constraints to the texts from the same Scenario. Therefore, we draw different regions
to represent the centralized distribution of the text corpora from different scenarios and
show their relative positions. These regions have not only overlapping areas, but also
independent parts that make them can be distinguished.

Second, there should not be strict boundaries among the scenario text’s regions on
EGP, mainly because the commonly used sentences are frequently used in all scenarios,
take “Thank you very much!” for example.

Last, in a certain period of time, the relative relationship among these corpora from
different scenarios is relatively stable, because the emergence of new words and the
change of expression habits are relatively slow processes.

Fig. 1. (a) Expressive Grammar Plane. Texts from different scenarios are distributed on the this
conceptual plane formed by X-axis and Y-axis. For demonstration, we suppose X-axis represents
the usage of professional terms and Y-axis represents the normalization degree. (b) Position of
Target Sentence (TS) can be evaluated by its distances to the grammatical gravity center (GGC)
of regions corresponding to Scenario Corpora.

Based on the above description, we can conclude that although the sentences’ dis-
tribution is very complex, if the scenario corpus is regarded as a whole, the grammatical
features of scenario corpora can be steadily distinguished at the top level. We assume
that there is a grammatical gravity center (GGC) for each region on EGP, which rep-
resents the overall GEF of scenario corpus. In this way, the grammatical differences of
scenario corpora can be measured relatively by their GGC distances. Therefore, we can
also regard EGP as a platform for grammatical relational computing.

2.2 Scenario Features Vectors

It is a hard mission to quantify and measure the grammatical features of text directly. For
example, we can distinguish the GEF differences between the two sentences, “GitHub

SFV-CNN: Deep Text Sentiment Classification 385

makes it easy to scale back on context switching.” and “dude u totally poachedmy joke”,
that whose content is more professional and whose expression style is less formal, but
we can hardly evaluate the degree of their differences accurately with numbers. While,
the previous discussion of Expressive Grammar Plane (EGP) may provide a practicable
inspiration for the solution.

If the GGC of each Scenario Text Set is regarded as an anchor point on EGP, shown
in Fig. 1(b), then we can use the distance between the target sentence (TS) and the GGC
of scenario corpus (CF, CN, CL, CT, CM) as one of the indicators of the target text’s
position on EGP, that is, the GEF of the target text. We arrange the target text’s Scenario
Distances in a certain order to form a vector {dTS,CF, dTS,CM, dTS,CT, dTS,CN, dTS,CL},
and we define this vector as the Scenario Feature Vector (SFV) of the target text.

Scenario Similarity Computing Method. Scenario Feature Vectors (SFV) provides a
framework for the quantitative representation of grammatical features. For the compu-
tation of SFV elements, we propose a Scenario Similarity Computing Method (SSCM)
based on word embedding model.

Suppose S is a scenario such as twitter or wiki, Cs is the text corpus from S, Es ∈
Rd is the word embedding trained by Cs, we define Es as Scenario Word Embedding
(SWE). W = {w1,w2…wn} is the target text made up of words wi (i ∈ [1,n]). Set wi (i ∈
[1,n]) as central word and we use Context(wi) to represent the context of wi. Context(wi)
and wi form the local text Li

Li = wi ∪ Context(wi) (1)

Given wi and context(wi), we calculate their co-occurrence probability yi by making
use of Es, and we define yi as Scenario Grammatical Similarity (SGS).

yi = p(wi|Context(wi),Es) (2)

Suppose thatWord Embedding contains the unique grammatical features of different
scenarios, therefore, yi can vary for the same Li as compute with different Es. The bigger
yi is, Li is more similar to current scenario S, meanwhile the shorter Scenario Distance
is on EGP.

WeemployCBOWmodel based onNegtiveSampling to trainScenarioWordEmbed-
dings, by using word2vec toolkit. The training objective of the model is to maximize the
g(w) function, and the expression is as follows:

g(w) = σ
(
xTwθw

) ∏
u∈NEG(w)

[
1 − σ

(
xTwθu

)]
(3)

Where σ
(
xTwθw

)
denotes the probability of w occurring as central word when given

the context Context(w), and σ
(
xTwθu

)
denotes the probability that the central word is not

w when the context is Context(w). The result of maximizing g(w) is that words conform
to the grammatical habits of S achieve greater chances of appearing in the position of the
central word, and contrarily minimizing the probability of words that do not conform.
We quote the first half of g(x), and define it as the scenario similarity of the local text L,
the expression is as follows:

y = p(w|Context(w), Es), σ
(
xTwθw

s

)
(4)

386 H. Zhang et al.

where θw
s ∈ Rm (m is the size of the word vector) is the auxiliary vector for word w, xw

is the sum of word vectors of the words in Context(w).

xw =
∑

u∈context(w)
v(u) (5)

where v(u) denotes the word vector of u, which is one of Context(w).
The target text W = {w1,w2…wn} derives its local texts {L1,L2…Ln} as the input

of the computation, therefore, we define the Scenarios Similarity of W as the average of
{y1,y2…yn}, represented as y.

y =
∑n

i=1
yi/n (6)

Usage of Scenario Feature Vector. We choose 5 typical corpora as Scenarios Corpus,
including financial news (FN), movie subtitles (MS), twitter (TW), comprehensive news
(NW) and literary works (LR), and use the CBOW model based on Negative Sampling
to train the scenario word embeddings corresponding to the above five scenario corpora.
Afterwards, we generate scenario feature vectors for the target text, as shown in Fig. 2.

Fig. 2. An application of SFV model for finding the nearest scenario for a sentence. The left
column is the interface of the application, the right column is the heat map for the results. First
sentence is judged to be nearest to financial news scenario with a similarity of 0.2613, and the
second phrase is nearest to literature scenario with a similarity of 0.2652.

According to Fig. 2, we can find some interesting effects of the SFV based applica-
tion, we input a short phrase such as “stocks closed sharply lower on Tuesday falling for
a second day” in the command line, and get a Sentence SFV {0.2613, 0.0743, 0.1315,
0.2062, 0.1339}, which means the sentence has the highest similarity of 0.2613 to FN
(financial) scenario, followed by NW (news) scenarios with 0.2062, and the local text
of “stock” has the highest similarity value 0.6006. This result is consistent with our
subjective judgment, because the discussion of stock-related content should be closer to

SFV-CNN: Deep Text Sentiment Classification 387

financial scenarios according to our common sense. Think, people should seldomdiscuss
stock related contents in life without the relevant scenarios of the financial business.

In addition, we input a short sentence “on the sky a brooding gloom in sun-shine a
lurid glare”, and get a SFV result {0.1073, 0.0612, 0.0785, 0.1536, 0.2652}, according
to this result, LR (Literature) is the nearest scenario with a similarity of 0.2652, and
the local text corresponding to “Lurid” and “glare” contributes most to the result in
sentences. This result also conforms to our experience and common sense well.

2.3 Text Sentiment Classification

The expressive style of sentences in practice is flexible, it can vary with the change
of scenarios diversely. In order to better understand the text semantics, people need to
grasp the context information related to the scenario. Similarly, the machine also needs
to know the context information related to the scenario. For this purpose, we propose a
CNN based text classification model enhanced by Scenario Feature Vector (SFV-CNN),
and apply it to text sentiment classification tasks. In this way, the text categorization
model can learn the text features at a deeper level under the condition of perceiving the
context features. The structure of the model is shown in Fig. 3.

SFV Creator

I
Like
This

Movie
Very
Much

!

Word Vector SFV

Senario Word
Embeddings

FN
MS

TW
NW LR

+

Convolution

Concat

Max Pooling Softmax

Concatenation

Fig. 3. Structure of SFV-CNN model. The input of the model consists of two parts, the first part
is the word vectors queried from the pretrained word embeddings and the second part is the SFV
vectors calculated through the SFV Creator module by use of Scenario Word Embeddings.

We use the pretrained word vectors from word2vec as the generic word embedding,
and train another five Scenario Word Embeddings(SWE) separately with 5 typical sce-
nario corpora extracted from open datasets, listed as {FN, MS, TW, NW, LR}. SFV
vectors for input sentences are generated at the run time through the SFV Creator mod-
ule. A new SFV vector will be generated for the same word as its context changes,
and this characteristic is the key point that make the classifier understand the switching
of scenario. Our experiments show that the classification ability of convolution neural
network has been improved.

388 H. Zhang et al.

3 Experiments

3.1 Data Set

We used a total of 8 public datasets and the word2vec vectors. Among them, 5 datasets
are used for unsupervised training of Scenario Word Embedding (SWE), 1 for super-
vised training of CNN based Sentiment Classification Model, and 2 for validating the
classification effect across datasets.

SWETrainingDatasets: (1)Financial News: United States Financial News articles
from news publishers such as Bloomberg.com, CNBC.com, reuters.com, wsj.com, for-
tune.com [29]. (2)OpenSubtitles: This is a collection of English dialogue text extracted
from the subtitles of movies. [30, 31] (3) Twitter Corpus: The corpus of Twitter (700k
lines)which is shared by [32], odd lines are tweets, even lines are corresponding response
tweets. (4) Comprehensive News: We used the News Crawl: articles from 2012 cor-
pus, monolingual language training data of English which is provided by WMT 2014
[33]. The article texts are extracted from various online news publications. (5) Litera-
ture Corpus: Classic Literature in ASCII, which contains many English literary works
stored in ASCII text files, is an open dataset from Kaggle [34]. Each book is stored in
a single ASCII text file. There are fictional and non-fictional 2 kinds of works, and we
used the fictional files for training.

MR: Sentence polarity dataset which we used for sentiment classifier model training
[27], and it is also used by [1, 4].

Pretrained Word Vectors: Commonly used word2vec vectors trained on Google
News dataset which is about 100 billion words [28].

Cross-Validation Datasets: (1) Kaggle Movie Review: This dataset Contains the
sentimental sentences from the Rotten Tomatoes dataset and is provided by Kaggle
net [35]. We extracted the sentences with Sentiment Tag 0 and 1 as negative, 3 and
4 as positive, and used the modified dataset for validating our model’s adaptability
across datasets. (2) Sentiment140: It is a popular dataset used for sentiment analysis of
tweet [36]. There are three types of polarity label in the dataset (negative, neutral and
positive), and we extracted the negative and positive sentences out to form a new dataset
for validating our model’s adaptability across scenarios.

3.2 Experimental Setup

For we mainly aim at verify the promoting effectiveness brought by SFV on the CNN
based text classification models, we didn’t pay more attention to fine-tune the param-
eter settings of CNN. The general settings of convolutional neural network of each
investigated model in our experiments are as shown in Table 1.

The specific settings of each model are described as follows.
CNN-Rand: The model uses random numbers to initialize word vectors, which will

be optimized during the model training process. The dimension of word vectors is set
to 300, same as the other models.

https://www.Bloomberg.com
https://www.CNBC.com
https://www.reuters.com
https://www.wsj.com
https://www.fortune.com

SFV-CNN: Deep Text Sentiment Classification 389

Table 1. General settings for CNN based model.

Description Values

Input word vector Google word2vec

Dimension of word vector 300

Filter region size (3,4,5)

Feature maps 128

Activation function ReLU

Pooling Max_pooling

Dropout rate 0.5

L2 norm constraint 0

CNN-WV: The 300-dimensional word embedding trained by Word2vec is used for
transfer input words into word vectors, and the words which are not covered by word
embedding are initializedby randomnumbers andfine-tunedduring the classifier training
process.

SFV-CNN-WV(n): SFV-CNN model that use pretrained word vectors to initialize
input words. SFV Creator module will generate SFV vector for each word and concate-
nate it to the tail of word vector to form a 305-dimensional vector as input data. The
word vectors will be fine-tuned in the training process, while the SFV vectors remain
unchanged. The “n” of the model name represents the window size setting of SWE.

SFV-CNN-Rand(n): SFV-CNN model that initialize the input word vectors with
random numbers and concatenate word vector and SFV vector together to form a 305-
dimensional vector for classifier training. The word vectors are fine-tuned and the SFV
vectors remain unchanged during the training process.

In addition, to verify if the window size setting for training SWE has a great influ-
ence on the Feature Capturing ability of SFV model, we conducted an experiment to
compare the SFV-CNN models using SWE that trained with different window size, and
the optional settings of window size include (3, 4, 5, 6, 7, 8, 9).

3.3 Results and Discussion

The first two experiments aim at validating the improvement effects brought by SFV,
including the improvement of training efficiency, the improvement of accuracy, and the
enhancement of adaptability on cross-scenario dataset. The purpose of the last experi-
ment is to explore the influence brought about by window size setting of SWE on the
SFV-CNN model.

Classifier Training on MR Dataset. We trained the four categorization models men-
tioned above with MR data. Among them, we set a default window size of SWE to 6
for SFV-CNN-Rand and SFV-CNN-WV model, so if we didn’t mention explicitly the
window size setting is always 6 for SFV-CNN model. (1) SFV-CNN models learn more
quickly. ComparedwithCNN-Rand, as shown in Fig. 4(a), SFV-CNN-Rand has a steeper

390 H. Zhang et al.

Fig. 4. Training curves forCNNbased sentiment classificationmodels. (a)Comparing the training
process of our model and CNN based model under the same condition with randomly initialized
word vectors. (b) Comparing the training process of our model and CNN based model with
pretrained word vectors.

training curve at the begging and achieves a quite good accuracy at about 1300 steps,
while CNN-Rand at about 1600 steps. SFV-CNN-WV achieves a fairly good accuracy at
about 500 steps, 100 steps less than CNN-WV, as shown in Fig. 4(b). (2) SFV-CNNmod-
els are more accurate. As the accuracy scores listed in Table 2, we find that SFV-CNN
models achieve higher accuracy scores with both randomly initialized word vectors or
pretrained word vectors. The experiments demonstrate that SFV can bring about obvious
improvements to CNN based sentiment classification models.

Validation Across Dataset and Scenario. We saved the trained classification models
for each 300 steps in the training process of all thesemodels, and conducted cross-dataset
and cross-scenario sentiment classification experiments for the purpose of comparing
their adaptiveness.We verifymodels by another open dataset, KaggleMR,which is from
the same scenario as MR belongs to. In addition, Twitter sentiment analysis datasets are
selected to verify the cross-scenario adaptability of our model (Fig. 5).

Compared with CNN-Rand, the accuracy of SFV-CNN-Rand(6) is quite higher in
the tests with both Kaggle-MR and Sentiment140 datasets. Especially in the test with
sentiment140, our model is 3.31% points higher than that of CNN-Rand, as listed in
Table 2; the accuracy of SFV-CNN-WV(6) is higher than that of CNN-WV by 0.26%
points with KaggleMR data, and 1.51% points higher when test with Sentiment 140 data
set. The results prove that our model can obviously improve the adaptability of CNN
based sentiment classification model.

The Influence of SWE’s Window Size. In the above experiments, we use the SWE
trained with default window size settings. Considering the sensitivity of this parameter
to the ability of extracting textual features, we conducted this experiment for the purpose
of finding the best SWEwindow size.With the optional window settings {3,4,5,6,7,8,9},
we train 7 SWE for SFV Creator, generate the SFV vectors and train classifiers corre-
spondingly. The resulting accuracy of SFV-CNN models with different windows are
shown in Table 2.

SFV-CNN: Deep Text Sentiment Classification 391

Fig. 5. Validate ourmodel across dataset and Scenario. (a) (b) ourmodelwith randomly initialized
word vectors compared to the corresponding CNN based model on adaptability. (c) (d) our model
with pretrained word vectors compared to the corresponding CNN based model on adaptability.

Table 2. The results of our model obtained by evaluating on different data sets.

Model MR Kaggle MR Sentiment140

CNN-Rand 72.70 77.34 56.83

SFV-CNN-Rand(6) 74.58 78.80 60.14

CNN-WV 75.52 79.37 58.23

SFV-CNN-WV(6) 76.64 79.63 59.74

SFV-CNN-Rand(3) 74.11 78.10 59.02

SFV-CNN-Rand(4) 73.36 78.68 59.38

SFV-CNN-Rand(5) 75.61 78.77 58.95

SFV-CNN-Rand(7) 74.20 79.33 59.19

SFV-CNN-Rand(8) 72.98 78.97 58.69

SFV-CNN-Rand(9) 74.30 78.63 56.46

SFV-CNN-WV(3) 74.95 79.92 59.17

SFV-CNN-WV(4) 75.42 79.50 58.87

SFV-CNN-WV(5) 75.52 79.52 59.82

SFV-CNN-WV(7) 75.80 79.39 59.23

SFV-CNN-WV(8) 76.98 79.56 59.65

SFV-CNN-WV(9) 75.33 79.79 59.97

392 H. Zhang et al.

Fig. 6. The influence of SWE’s window size. (a) (b) Our model with word vectors randomly
initialized show different effects with SWE’s window size changing in range of (3,4,5,6,7,8,9) on
the Kaggle MR dataset and especially Sentment140 dataset. (c) (d) Our models initialized with
pretrainedword vectors show different effects with SWE’s window size changing on the validation
on Kaggle MR and Sentment140 datasets.

As shown in Fig. 6, differences brought by window size settings are not obvious
for the tests on Kaggle MR dataset, but they are comparatively obvious when tested on
sentiment140 dataset. The experimental results show that the change of window size
has an important influence on the effectiveness of sentiment classification models, but it
does not show obvious linear relations with the window setting. This may because that
the corpus of specific scenario may have its own fitting window size, if we set the same
window size for all SWEs, then the gains and losses offset each other to varying degrees,
so it turns out to be somewhat chaotic and irregular in figures. In any case, it has been
proved that windows have a great impact on classifiers.

4 Conclusions

In the present work we have proposed the method of quantifying grammatical features
of corpus binding to a specific scenario, and apply it to sentiment classification model,
and proposed SFV-CNNmodel. Our results demonstrate the improvement effect brought
about by SFV, including the efficiency of model training, the accuracy of model and the
adaptability in scenario transferring. Although SFV model is proved to be an effective
method for extracting scenario related features, and fitting for enhancing CNN network,
we aware that SFV’s ability can be further improved.We have some choices for improve-
ment. (1) Study on the optimal parameters for training of SWE. (2) Try to calculate SFV
withmore advancedword vector models such as BERT, because thesemodels are proved

SFV-CNN: Deep Text Sentiment Classification 393

to be so smart that they may have a deeper understanding of human language. (3) Well
reprocessed corpora have great potential to enlarge SFV’s ability to quantify semantic
information.

Acknowledgments. This work was supported by The National Key Research and Development
Program of China 2016YFB0801003.

References

1. Mikolov,T., et al.:Distributed representations ofwords andphrases and their compositionality.
In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26,
pp. 3111–3119. Curran Associates, Inc., Harrahs and Harveys, Lake Tahoe (2013)

2. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML,
pp. 1188–1196 (2014)

3. Kim, Y.: Convolutional neural networks for sentence classification. http://arxiv.org/abs/1408.
5882 (2014)

4. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv preprint arXiv:1510.03820 (2015)

5. Zhang, X., et al.: Character-level convolutional networks for text classification. http://arxiv.
org/abs/1509.01626 (2015)

6. Marinho, W., et al.: A compact encoding for efficient character-level deep text classification.
In: IJCNN, pp. 1–8. IEEE (2018)

7. Er, M.J., et al.: Attention pooling-based convolutional neural network for sentence modelling.
Inf. Sci. 373, 388–403 (2016)

8. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment
treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642 (2013)

9. She, X., Zhang, D.: Text classification based on hybrid CNN-LSTM hybrid model. In: ISCID,
no. 2, pp. 185–189. IEEE (2018)

10. Chen, N., Wang, P.: Advanced combined LSTM-CNN model for twitter sentiment analysis.
In: CCIS, pp. 684–687. IEEE (2018)

11. Pontes, E.L., et al.: Predicting the semantic textual similarity with siamese CNN and LSTM.
CoRR. abs/1810.10641 (2018)

12. Wang, J., et al.: Dimensional sentiment analysis using a regional CNN-LSTM model. In:
ACL, no. 2. The Association for Computer Linguistics (2016)

13. Johnson, R., Zhang, T.: Convolutional neural networks for text categorization: shallow word-
level vs. deep character-level. ArXiv, abs/1609.00718 (2016)

14. Conneau, A., et al.: Very deep convolutional networks for natural language processing. CoRR.
abs/1606.01781 (2016)

15. Guo, L., Zhang, D., Wang, L., Wang, H., Cui, B.: CRAN: a hybrid CNN-RNN attention-
based model for text classification. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157,
pp. 571–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_42

16. Liang, B., et al.: Context-aware embedding for targeted aspect-based sentiment analysis.
In: Korhonen, A. et al. (eds.) ACL, no. 1, pp. 4678–4683. Association for Computational
Linguistics (2019)

17. Zhang, L., et al.: Deep learning for sentiment analysis : a survey. arXiv:1801.07883 cs, stat.
(2018)

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1510.03820
http://arxiv.org/abs/1509.01626
https://doi.org/10.1007/978-3-030-00847-5_42
http://arxiv.org/abs/1801.07883

394 H. Zhang et al.

18. Dong, X., de Melo, G.: A Helping hand: transfer learning for deep sentiment analysis. In:
Gurevych, I., Miyao, Y. (eds.) ACL, no. 1, pp. 2524–2534. Association for Computational
Linguistics (2018)

19. Sarma, P.K., et al.: Domain adapted word embeddings for improved sentiment classification.
In: Gurevych, I., Miyao, Y. (eds.) ACL, no. 2, pp. 37–42. Association for Computational
Linguistics (2018)

20. Wu, F., et al.: Active sentiment domain adaptation. In: Barzilay, R., Kan, M.-Y. (eds.) ACL,
no. 1, pp. 1701–1711. Association for Computational Linguistics (2017)

21. Helmy, A.A., et al.: An innovative word encoding method for text classification using
convolutional neural network. CoRR. abs/1903.04146 (2019)

22. Barnes, J., et al.: Bilingual sentiment embeddings: joint projection of sentiment across lan-
guages. In: Gurevych, I., Miyao, Y. (eds.) ACL, no. 1, pp. 2483–2493. Association for
Computational Linguistics (2018)

23. Shi, B., et al.: Learning domain-sensitive and sentiment-aware word embeddings. CoRR.
abs/1805.03801 (2018)

24. Wang, P., et al.: Semantic expansion using word embedding clustering and convolutional
neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)

25. Gultepe, E., et al.: Latent semantic analysis boosted convolutional neural networks for
document classification. In: BESC, pp. 93–98. IEEE (2018)

26. Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional
neural networks. In: Mihalcea, R., et al. (ed.) HLT-NAACL, pp. 103–112. The Association
for Computational Linguistics (2015)

27. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In: ACL, pp. 115–124 (2005)

28. Pretrained word embedding download page. https://code.google.com/p/word2vec/. Accessed
10 Sep 2019

29. Financial articles webpage. https://www.kaggle.com/jeet2016/us-financial-news-articles.
Accessed 20 Sep 2019

30. Opensubtitles Homepage. http://www.opensubtitles.org. Accessed 20 Sep 2019
31. Lison, P., Tiedemann, J.: OpenSubtitles2016: extracting large parallel corpora frommovie and

TV subtitles. In: Calzolari, N., et al. (ed.) LREC. European Language Resources Association
(ELRA) (2016)

32. Twitter Corpus download page. https://github.com/Marsan-Ma-zz/chat_corpus. Accessed 20
Sep 2019

33. News articles download page. http://www.statmt.org/wmt14/training-monolingual-news-
crawl. Accessed 20 Sep 2019

34. Literature works corpus download page. https://www.kaggle.com/mylesoneill/classic-
literature-in-ascii. Accessed 20 Sep 2019

35. Movie Review corpus download page. https://www.kaggle.com/c/sentiment-analysis-on-
movie-reviews/data. Accessed 20 Sep 2019

36. Go, A. et al.: Twitter sentiment classification using distant supervision. Processing, pp. 1–6
(2009)

https://code.google.com/p/word2vec/
https://www.kaggle.com/jeet2016/us-financial-news-articles
http://www.opensubtitles.org
https://github.com/Marsan-Ma-zz/chat_corpus
http://www.statmt.org/wmt14/training-monolingual-news-crawl
https://www.kaggle.com/mylesoneill/classic-literature-in-ascii
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews/data

Reinforcement Learning Based Interactive
Agent for Personalized Mathematical

Skill Enhancement

Muhammad Zubair Islam , Kashif Mehmood , and Hyung Seok Kim(B)

Department of Information and Communication Engineering, Sejong University,
Seoul 05006, Republic of Korea

m.zubair_islam@outlook.com, kashif.mehmood224@gmail.com,

hyungkim@sejong.ac.kr

Abstract. Traditional intelligent systems recommend a teaching sequence to indi-
vidual students without monitoring their ongoing learning attitude. It causes frus-
trations for students to learn a new skill and move them away from their target
learning goal. As a step to make the best teaching strategy, in this paper a Person-
alized Skill-Based Math Recommender (PSBMR) framework has been proposed
to automatically recommend pedagogical instructions based on a student’s learn-
ing progress over time. The PSBMR utilizes an adversarial bandit in contrast to
the classic multi-armed bandit (MAB) problem to estimate the student’s ability
and recommend the task as per his skill level. However, this paper proposes an
online learning approach to model a student concept learning profile and used the
Exp3 algorithm for optimal task selection. To verify the framework, simulated stu-
dents with different behavioral complexity have been modeled using the Q-matrix
approach based on item response theory. The simulation study demonstrates the
effectiveness of this framework to act fairly with different groups of students to
acquire the necessary skills to learn basic mathematics.

Keywords: Skill monitoring tool · Adversarial bandit · Recommendation
system · Personalized learning model · Simulated learner

1 Introduction

With the increase in the world population, it is common in schools, colleges, and uni-
versities to teach several hundreds of students only with one teacher and thus quality
education becomes one of themain problems. This teaching scenariomakes personalized
teaching even more challenging and eventually, students fail to reach their full potential
due to lack of personalized tasks as per their competency level. So, for a teacher, it is
highly difficult to give special assistance to each student at an individual level due to lim-
ited time and learning resources. A substantial amount of scientific research [1] proves
that personalized teaching is a promising approach to increase the learning potential
of students. There is a strong need to develop an effective automatic teaching system
that can be used to accommodate the needs of students. The need to develop such a

© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 395–407, 2020.
https://doi.org/10.1007/978-3-030-43120-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_31&domain=pdf
http://orcid.org/0000-0001-5488-5121
http://orcid.org/0000-0001-6805-9306
https://doi.org/10.1007/978-3-030-43120-4_31

396 M. Z. Islam et al.

system has become a reality with the expansion of existing algorithms offered for the
scheduling problem. With the development of the competency-based intelligent sys-
tem, it is possible to study the personal academic attributes from a student’s knowledge
and make recommendations proportional to proficiency level. The recent studies [2]
in competency-based recommender systems cover collaborative filtering, content-based
and hybrid approaches, the using student’s academic characteristics (performance, expe-
rience, degree of achievement) history. However, utilizing these techniques in a real-time
learning environment without historical traces of new students raise some issues like the
cold-start problem [2, 3]. In [2, 4] authors present a hybrid technique using the ontolog-
ical domain representation for adaptive learning to avoid these disadvantages. However,
it is also based on the student’s historical parameters such as schooling, learning, and
proficiency level.

In order to overcome the existing challenges, a PSBMR framework has been pro-
posed. It measures the student’s competency level in real-time using an online estimation
approach [5] to recommend the task as per the student’s attribute. The framework esti-
mates the student skill level based on their responses to the proposed task, without using
any other information or student’s academic historical data. To estimate the knowledge
attributes of a student, the PSBMR makes a concept learning skill profile for each indi-
vidual student. Therefore, the use of this system enables learners to learn at their own
pace. In contrast, the existing systems such as [6, 7] use expert algorithmExp4 and Fuzzy
linguistic approach respectively. This paper utilizes the Exp3 algorithm [8] to recom-
mend the optimal tasks to the student. The Exp4 and Exp3 are the exponential-weighting
algorithms used for handling exploration and exploration dilemma [8] in bandit prob-
lems [5]. A bandit problem is like a game between the learner and the environment
in which the learner plays an action and the environment then gives the reward to the
learner against played action. The main contribution of this work can be summarized as
follows.

• The student’s behavior has been modeled as a student profile to understand the
student’s existing academic skills in real-time.

• The task and student skill relationships are characterized by M-matrix. It is utilized
to update and estimate the student profile information.

• An exponential-weight algorithm Exp3 is utilized successfully to recommend the
optimal task with fast running time and the ability to handle large numbers of actions
as compared to the Exp4.

• The accuracy analysis of the proposed PSBMR using the population of simulated
students is performed.

The structure of the remaining paper is organized as follows. Section 2 conducts an
overview of the related work. In Sect. 3, a system model for recommendation strategy is
formulated, and systemmodules overview is performed. Section 4 presents the proposed
schema for the student profile model and the technique to acquire that profile. An algo-
rithm for choosing an optimal task for PSMBR is proposed. Section 5 demonstrates the
experiment to assess the performance of the proposed framework using virtual students’
implementation. Finally, Sect. 6 concludes this paper and describes future work.

Reinforcement Learning Based Interactive Agent 397

2 Related Works

There are various approaches found in the available literature to create competency-based
recommendation systems [2]. It is difficult to apply traditional recommender approaches
in many educational scenarios where the learning potential of the student changes over
time. Several studies have focused on these challenges, along with studies on knowl-
edge and the performance factor tracing approach [9]. These psychometric measurement
approaches such as multidimensional item response theory (MIRT) [10] and diagnostic
classification models (DCM) [11] are being used to assess the student’s behavior by tak-
ing into account the student’s knowledge. These models are mostly used for measuring
latent variables of the students for binary responses in adaptive recommendation systems.
The basic components of a competency-based recommender system are described along
with a method to model student competency. Different approaches have been proposed
to create a student model in various works including [7, 12]. In [7] a fuzzy linguistic
approach is used to express the achievement of the student in each competency and
also shows that it is insufficient to express student competency using numeric values.
In contrast to the [7], the proposed model utilized a continuous number between [0,1]
to represent students’ acquired skill levels (e.g., 0.3 means 30% acquired and 0 means
nothing acquired) as a student profile. Similarly, [12] propose amathematical framework
based on psychometric assessment of the learner by using a Markov decision process
(MDP) for the adaptive learning system. The proposed model in [12], recommends the
learning material to the learner associated with each skill level using different optimal
strategies like c-μ rule and Gittins index. The author formulates the recommendation
strategies as a stochastic problem by assuming the fixed procedures in the learning pro-
cess, whereas, the PSBMR formulate it as a non-stochastic problem and not used fixed
learning procedures.

In [6] a tutoring model for optimal teaching sequence for individual students using
MAB is proposed. It uses expert knowledge for exploration and exploitation trade-off
to find a possible set of actions for a personalized task selection. It utilizes the expert
algorithm Exp4 to select an optimistic action for each activity. However, it is difficult
to apply the Exp4 within a real-time environment when numerous actions and experts
corresponding to each activity are used [5, 8]. The work in [13] also used expert advice
to employ teaching strategies for personalized instructions. In contrast, the proposed
approach in this paper utilizes the Exp3 algorithm which does not rely on expert advice
for the optimization of the task corresponding to each action for personalization.

3 System Model

The proposed PSBMR framework consists of three components for a recommenda-
tion strategy, including student profile module, learning measurement module and task
selection strategy module as shown in Fig. 1.

3.1 Student Profile Module

The student profile module is used to manage the student’s real-time learning outcomes
such as competency and learning level and thus student characteristics store into the

398 M. Z. Islam et al.

Fig. 1. Recommendation strategy modules.

M-matrix using the Q-matrix representation. In the Q-matrix representation, the matrix
Q(M × N) is anM byN dimension matrix with entries, each row represents the number of
questions and each column is equal to the required competencies for the corresponding
questions respectively [14]. The Q-matrix is used to understand student performance
by representing the relationship between questions and their required concepts. In this
context, the proposed framework creates an M(A x C) matrix similar to the Q-matrix
whereas it represents a student progress level into numeric values. The M(A x C) matrix
represents the relationship between the task set A and competency set C as shown in
Fig. 2. Each task from A = (a1, a2, a3 , am) has a relation with competency
set C = (ca1 , c

a
2 , c

a
3 , can) and the numeric values corresponding to each task

and competency pair represent the estimated skill level (ESL) of a student. Therefore, a
student profile is represented by the skill level of each task ai , belonging to the compe-
tency level c j acquired by the student. For example, the cell (a1, c2) shows that a student
has achieved 20% for a task a1 with difficulty as well as competency level c2. The profile
module utilizes a student answer (right or wrong) corresponding to the task to store the
student’s learning progress.

3.2 Learning Measurement Module

The learning measurement module is used to understand and estimate the student learn-
ing skills as well as characterize the learning material. This module defines a set of
values required to acquire a specific task associated with proficiency levels. This mod-
ule represents the required skill level (RSL) to solve each task and it is indexed by
(ai , c j) as represented in Fig. 2. Here (1) is used to define independent RSL to each

Reinforcement Learning Based Interactive Agent 399

Fig. 2. A systematic overview of the PSBMR framework.

task in the learning material automatically and the parametric value RSL(ai ,C j) shows
the required competency level against the proposed task which is used to estimate the
student’s current ESL.

RSL(ai ,C j) =
(
Tj × (Ti + 1)

len(A)

)
−

(
Tj × Ti
len(A)

)
, (1)

where Tj is the required conceptual understanding of the chosen task as a columnnumber,
Ti is the proposed task rownumber in thematrix dimension and len(A) is the total number
of tasks in the learning material. When the task is recommended by the recommendation
strategy to a student, then it receives the right or wrong answer from a student as a
response. The learning module helps to estimate the student performance through the
corresponding parameter value RSL(ai ,C j) of the proposed task. The learning module
assesses the student at every task and assigns the reward to each individual student as
per his progress in learning material. The reward function is a core component of the
learning module and its computational interface is depicted in (2) and (3) respectively

R(ai ,C j) = max
{(
RSL(ai ,C j) − ESL(ai ,C j)

)
, 0

}
, (2)

400 M. Z. Islam et al.

R(ai ,C j) = min
{(
RSL(ai ,C j) − ESL(ai ,C j)

)
, 0

}
, (3)

where R(ai ,Cj) is the reward belonging to the progress of the student if a task ai is
recommended with competency cj. Hence, Eqs. (2) and (3) cover both cases when a
student’s answer either right or wrong. Here (2) is used to measure the reward for the
right answer and (3) is used for the calculation of the wrong answer to the proposed
task. With the describing parametric values in (1), (2) and (3) it is possible to update and
estimate the learning attributes for each student. Therefore, the ESL of a student for any
recommended task during learning time is updated as follows

ESL(ai ,C j) = ESL(ai ,C j) + ηR(ai ,C j), (4)

where η is the weight representing the student learning speed, which depends on the stu-
dent’s skill improvement from the learning material. It is used to determine the reward
preference, smaller the value more reward means an easy task to learn. The best setting
fitting value means the recommendation of the task for a better outcome in the learn-
ing process. The expression (4) shows that the performance of the student depends on
receiving rewards of the recommended task which is further used to motivate as well as
increase the learning proficiency. Therefore, (4) shows that a student can get progress
only if he gives the correct answer to the difficult task rather than his previous estimated
competency level.

3.3 Task Selection Model

The core component of the proposed framework is a recommendation strategy. The task
selection module is used to select the optimal strategy to recommend the task based on
ESL as per the student profile attributes. However, the selection of an optimal task from
the task pool A is very challenging due to the dimensionality problem [15]. In order to
overcome these challenges, the PSBMR framework is formulated under the adversarial
bandit problem and the Exp3 algorithm is utilized for optimization and dimensionality
reduction. Figure 2, shows an overview of the recommendation strategy on how to
estimate and update the student profile.

4 Proposed Methodology

4.1 Concept of Adversarial Bandits

The concept of the multi-armed bandit is used for algorithms that make decisions under
uncertainty over time. Mostly, it is investigated in stochastic scheduling and decision-
making problems. In bandit problem, the player decides which action to take to play
in a sequence to get maximum reward. In the MAB model, an agent selects any arm
from (K ≥1) at each time step (t ∈ T) to play and gain some reward (x ∈ R) with
a certain probability P ∈ [0, 1]. The MAB is an efficient online estimation approach
allowing the strategy to train the algorithm in online fashion when it receives new data
points to find the optimal action to make the best decision [16]. A variant of the MAB
framework with a non-statistical assumption about the reward generation process rather

Reinforcement Learning Based Interactive Agent 401

than predefined fixed distribution is known as an adversarial or non-statistical bandit
[17, 18]. In the adversarial model, rewards are selected by an adversary as per-play with
unbounded computational power from a bounded range. This problem is related to the
unknown repeated matrix game in learning to play problem. In the proposed framework,
the student’s progress only depends on the ESL after learning the specific mathematical
task. It also has random distributions for task selection to train the student on multiple
mathematical tasks. It represents the non-stochastic environment of the proposed frame-
work. Therefore, the proposed PSBMR has been formulated under the non-stochastic
bandit problem to train the students under online fashion. Another interesting point to
build the PSBMR using adversarial bandit is that task recommendation only depends on
the existing knowledge attributes of the student, not on academic historical traces.

4.2 Adversarial Bandit Solution Using the Exp3 Algorithm

For the adversarial bandit problem, the Exp3 is a very simple and powerful algorithm. It
is based on theHedge algorithm [19] which is used to solve exploration and exploitation
trade-off in the MAB problem. It can be described as follows

E
[
x̂i (t)|i1, . . . , it−1

] = E
[
pi · xi

pi (t)
+ (1 − pi (t)) · 0

]
. (5)

The Exp3 draws an action it from (1 ≤ i ≤ K) in each round t with probability
distribution p and obtain an actual reward xi (t). Here in (5), E

[
x̂i (t)|i1, . . . , it−1

]
rep-

resents the estimated reward corresponding action it taken in each round t . The reward

estimation process E
[
pi .

xi
pi (t)

+ (1 − pi (t)).0
]
shows that for the observed arms the

Exp3 estimates the reward by dividing the actual reward with probability and assign
zero rewards to the unobserved arms. The probability pi is the mixture of uniform and
weighted distribution probability for each arm defined as

pi,t = (1 − ϒ)wi,t + ϒ

K
i = 1, 2, . . . , K . (6)

where ϒ ∈ [0, 1] is an exploration parameter for action i . It is used to estimate the time
taken by the algorithm for decision-making to select an action i . (1 − ϒ) is equal to
the remaining time taken by an algorithm to calculate the weight wi distribution of the
actual reward x(t).wi is the exponential weight of the action taken by the corresponding
arm of the bandit described as follows

wi(t+1) = wi (t).exp

(
ϒ.x̂(t)
pi (t).K

)
. (7)

The Exp3 algorithm consists of two parts, and one is used for the calculation of
uniform probability to pull the good arm and the second part is used to keep a list of
weights for each pulled arm in each round and update it. In the PSBMR, the Exp3 selects
a task from set A as per drawn action according to the probability distribution p. The
Exp3 generates the pulled arm reward R̂ by dividing the actual gain to the probability

402 M. Z. Islam et al.

of the chosen action, which is equal to the estimated reward as in (5). The process of
estimating the expected rewards for the Exp3 in PSBMR can be defined as follows

R̂ j (i) =
{

R j (i)
p j (i)

, j = i

0, j �= i
, (8)

where R j (i) indicates the student reward R(ai ,C j) as described in (2) and (3). p j (i) is
known as the uniform probability distribution of the proposed task. The pseudo-code
of the PSBMR framework for the selection and recommendation of the optimal task is
depicted in Fig. 3.

Fig. 3. Pseudo-code for the PSBMR framework.

Reinforcement Learning Based Interactive Agent 403

5 Performance Evaluation and Results

This section demonstrates the performance of the proposedMABbased framework using
simulated students’ implementation [20, 21]. There are different approaches to create a
simulation environment to train students [22]. In this study, a student model is devel-
oped to create virtual student profiles with different learning complexity. Each virtual
student has been created with different aptitude levels for each learning skill attribute.
For this experiment, two groups of simulated students (above and below average), 100
mathematical tasks and 6 skill level attributes for each task have been used. Each of the
competencies has a value between 0 and 1. Specifically, the simulation depicted in this
section is aimed to evaluate the correctness of the proposed model and compare it with
the baseline model designed by an educational expert for this problem.

5.1 Simulation Environment

In order to evaluate the proposed framework, two different groups of virtual students
Q-students and P-students were created to check how well the framework is capable
of recommending a task for each individual student. The population of above-average
students Q have different learning rates and different maximum competency levels for
each task set for all students. While the population of below-average students P have a
limitation to use the task set and have specific competency levels for the task for each
student. Both groups of simulated students have been recommendedwith the same learn-
ing material, basic algebra questions. For the modeling of simulated students, success
probability for each task and a good schema for ESL evaluation is needed. The success
probability to solve the tasks is modeled using the concept of Item Response Theory
(IRT) [22] can be written as follows

p(success) =
∏m

i, j=1

[
δ(a)

1 + exp
(
α + β

(
RSL(ai ,C j) − ESL(ai ,C j)

))
]1/m

, (9)

where α and β are the constants that allow tuning the success probability. α and β

describes the probability of success to the student competency as per required compe-
tency of the task and the rate of the drop or rise in the probability of success respectively.
The function δ is used to define two different groups of students Q and P. For the popu-
lation of Q-students δ(a) = 1, meaning that these students have the capability to solve
all the tasks. The δ(a) = 0 for P-students, represent limited skills to solve the tasks. The
evolution schema for the profile is very simple the student just makes progress when he
gets success in any task and his estimated competency level in the profile model is lower
than the parametric value RSL as described in (4).

5.2 Baseline Method

To compare the performance of the PSBMR with the expert teacher teaching sequence
a predefined expert sequence (PES) has been designed as a baseline method. The PES
is designed by a mathematics subject expert to perform the recommendation according

404 M. Z. Islam et al.

to predefined expert advice. The expert teacher defined a sequence of tasks according to
the difficulty level. A student starts with the first task and moves to the next target as per
the defined sequence after succeeding in the proposed task. To design expert sequence,
the idea has been borrowed from [6] along with the numerical setting of the difficulty
levels for each task.

5.3 Experimental Results

The combination of graphs and empirical values are used to show that the proposed
framework is capable of providing the optimal incremental tasks to train the student
according to the student’s learning attributes. An experimental study has been conducted
to examine the learning progress of the student in the knowledge competency against
the proposed task for PSBMR and PES model, as depicted in Fig. 4. For the PES, a
task is chosen for the next recommendation as per defined hierarchy chain. In Fig. 4,
it can be seen that there is no progress in the student’s knowledge attributes during
complex levels after a certain point by using the PES. The reason for this problem is that
the PES imposed the same skill hierarchy structure for each individual student without
estimating a student’s existing understanding level. To cope with this challenge, the
proposed schema develops a relationship between learning material and students’ skill
level to understand their learning concept level. So, that each task is a pair of question and
skill attribute which has been recommended to the student by the PSBMR. In this way,
the PSBMR not only selects the optimal task but also proposes the task by considering
the student specific competency level. Therefore, the PSBMR optimal design based on
the learning material and the student’s profile has outperformed the PES strategy, with
more competencies for each task for each individual student.

Fig. 4. Automatic recommendation of the task as per student skill level by PSBMR and PES.

Figure 5, illustrates the number of failures during task recommendations made by
PSBMRand PES for the population of P andQ students. The experiment has been carried
out with the following parametric values. Case-I: above-average students (δ(a) = 1, T
= 50 rounds over 100 iterations, Number of students = 50, Number of tasks = 100).

Reinforcement Learning Based Interactive Agent 405

Case-II: below-average students (δ(a) = 0, T = 50 rounds over 100 iterations, Number
of students= 50, Number of tasks= 100). The rating parameters have been usedwith the
following valuesα = 1.38, β = 8. The parameters are used to define the different ability
levels of simulated students. At the initial, the proposed framework had understood the
pattern for estimating the unknown parameters of the student profile model. It is the
reason for the high number of failures at the beginning of the results.

Fig. 5. The average number of failures for above and below average students.

In the first scenario, as depicted in Fig. 5(a), the average number of errors made by
PSBMR and PES for Q students are shown. Based on the simulation results, it can be
seen that the proposed model is capable of adapting that learning material which meets
the ongoing learning skills, therefore, students make fewer errors during the learning
process. As the number of task recommendations increased, the error of the PSBMR
decreased and it made the framework more adaptive for each individual student. In the
second scenario, as shown in Fig. 5(b), the analysis shows that the PSBMR slightly
improved the learning progress of the P rather than Q students. The specific reason
for this improvement can be explained as the above-average students already had a
good opportunity to solve the task while the below-average students had limited ability
to accomplish the tasks. This analysis makes a sense, that PSBMR recommended the
task according to the ESL of the students and potentially motivates the below-average
student to learn.Whereas, the PEShad recommended the task according to the predefined
hierarchy of difficulties for all students. Hence, the PES created frustration for students
and the students did not perform better in the learning environment. Thus, the overall
experimental study shows that the proposed framework is useful to train the students
who are getting bored and discouraged with mathematical studies. The proposed model
not only recommends the trusted and optimal task using the individual profile model
as well as helping the students to motivate by removing their disappointment towards
mathematics. These findings show that the student’s skill level progression in the learning
subject could be improved by providing an optimal personalized learning task.

406 M. Z. Islam et al.

6 Conclusion and Future Works

In this paper, a Personalized Skill-Based Math Recommendation (PSBMR) framework
is proposed in which a non-stochastic problem known as an adversarial bandit problem
along with the exponential-weight Exp3 is analyzed. The aim of this recommender
system is to automatically estimate the current skill level of the student and recommend
the task similar to the expert sequence design to motivate and maximize the student
learningoutcomes.Theproposed framework is illustrated as a set of optimal actionvalues
proportional to the distribution probability and estimated reward functions obtained by
the implementation of the multi-armed bandit concept. Simulation studies validate the
optimistic nature of the PSBMR framework to recommend the mathematical task. As
future work, it would be a direction to explore more advanced techniques to model
the student skills and learning material in order to compare with expert sequence and
baseline methods. A second direction is to evaluate the proposed system in the real-life
educational scenario with real students to check the ability of the system in real-life
applications.

Acknowledgment. This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. 2019R1A4A1023746, No.
2019R1F1A1060799).

References

1. Miliband, D.: Personalised Learning: Building a New Relationship with Schools, Speech to
the North of England Education Conference, Belfast, January 2004

2. Yago, H., Clemente, J., Rodriguez, D.: Competence-based recommender systems: a system-
atic literature review. Behav. Inf. Technol. 37(10–11), 958–977 (2018)

3. Ricci, F., Rokach,L., Shapira,B.: Introduction toRecommender SystemsHandbook. In:Ricci,
F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

4. Zaphiris, P., Ioannou, A. (eds.): LCT 2015. LNCS, vol. 9192. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20609-7

5. Slivkins, A.: Introduction to Multi-Armed Bandits, April 2019. arXiv:1904.07272v3
6. Clement, B., Roy, D., Oudeyer, P.-Y., Lopes, M.: Online optimization of teaching sequences

with multi-armed bandits. In: 7th International Conference on Education Data Mining,
London, UK (2014)

7. Serrano-Guerrero, J., Romero, F.P., Olivas, J.A.: Hiperion: a fuzzy approach for recom-
mending educational activities based on the acquisition of competencies. Inf. Sci. (NY) 248,
114–129 (2013)

8. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit
problem. SIAM J. Comput. 32(1), 48–77 (2003)

9. Wang,Y.,Heffernan,N.:Extendingknowledge tracing to allowpartial credit: using continuous
versus binary nodes. In: Lane, H.C., Yacef, K.,Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS
(LNAI), vol. 7926, pp. 181–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39112-5_19

10. Reckase,M.D.:Multidimensional ItemResponseTheoryModels. Springer,NewYork (2009).
https://doi.org/10.1007/978-0-387-89976-3

https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-3-319-20609-7
http://arxiv.org/abs/1904.07272v3
https://doi.org/10.1007/978-3-642-39112-5_19
https://doi.org/10.1007/978-0-387-89976-3

Reinforcement Learning Based Interactive Agent 407

11. Rupp, A.A., Templin, J.L.: Unique characteristics of diagnostic classification models: a
comprehensive review of the current state-of-the-art. Meas. Interdiscip. Res. Perspect. 6(4),
219–262 (2008)

12. Chen, Y., Li, X., Liu, J., Ying, Z.: Recommendation system for adaptive learning. Appl.
Psychol. Meas. 42(1), 24–41 (2018)

13. Koedinger, K.R., Brunskill, E., Baker, R.S., Mclaughlin, E.A., Stamper, J.: New potentials for
data-driven intelligent tutoring system development and optimization. AI Mag. 34(3), 27–41
(2013)

14. Leighton, J.P., Gierl, M.J., Hunka, S.M.: The attribute hierarchy method for cognitive
assessment: a variation on Tatsuoka’s rule-space approach. J. Educ. Meas. 41(3), 205–237
(2004)

15. Nino-Mora, J.: Stochastic scheduling. In: Floudas, C.A., Pardalos, P.M. (Eds.) Encyclopedia
of Optimization, pp. 3818–3824 (2009)

16. Burtini, G., Loeppky, J., Lawrence, R.: A Survey of Online Experiment Design with the
Stochastic Multi-Armed Bandit. arXiv:1510.00757v4

17. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino: the
adversarial multi-armed bandit problem. In: Proceedings of Annual Symposium Foundations
of Computer Science, Milwaukee, WI, pp. 322–331 (1995)

18. Lattimore, T., Szepesvá, C.: Bandit Algorithms. Cambridge University Press, Cambridge
(2018). Draft of 28th July, Revision 1016

19. Schapire, R.E., Freund, Y.: A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

20. Mertz, Jr., J.: Using a simulated student for instructional design. In: Proceedings of the Seventh
World Conference on Artificial Intelligence in Education (1995)

21. Beck, J.: Modeling the student with reinforcement learning. Paper presented at the 6th Annual
Conference on User Modelling, Sardina, Italy (1997)

22. Meneghetti, D.D.R., Junior, P.TA.: Application and Simulation of Computerized Adaptive
Tests Through the Package catsim (2017). arXiv:1707.03012v2

http://arxiv.org/abs/1510.00757v4
http://arxiv.org/abs/1707.03012v2

Common Vector Approach Based Image
Gradients Computation for Edge Detection

Sahin Isik(B) and Kemal Ozkan

Computer Engineering Department, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
sahini@ogu.edu.tr

Abstract. In this study, the concept of Common Vector Approach (CVA) is
adopted for image gradients computation in terms of revealing edgemaps stated on
images. Firstly, noise stated on image is smoothed by Gaussian filtering, secondly
gradient map computation using CVA is carried out, then the angle and direction
maps are obtained from the gradient map and lastly peak points are selected and
a smart routing procedure is performed to linking them. With an unusual method-
ology, the derivatives of image through vertical and horizontal directions have
obtained by utilizing the CVA, which is the crucial step and gained the novelty to
this work. To compare results objectively, we have judged the performance with
respect to a comparison metric called ROC Curve analysis. As a contribution to
the edge detection area, CVA-ED presents satisfactory results and edge maps pro-
duced can be used in the tasks of object tracking, motion estimation and image
retrieval.

Keywords: Edge detector · Common vector approach · Edge gradient map

1 Introduction

In computer vision applications, edge detection is a process to determine the typical
characteristics of objects situated on image. Themain purpose of edge detectionmethods
is to identify where the brightness of the local area changes significantly. Since impacts
of edge detection affect the success on object tracking [1], motion estimation [2], image
retrieval [3] tasks, studies on edge detection constitute a crowded set in the literature of
image processing. It means that if the edges of an image identified accurately, then the
outline of an object such as geometrical shape information and other basic properties
can be simultaneously measured with respect to segmented regions.

Although there is not yet certain rule index to judge performance of edge detection,
but in general, it is agreed that edge segments should be thin, well-localized, non-jittered
andone-pixelwide for a good edgedetector.Beside, a proposedmethodon edgedetection
should be preserving all detailed information such as sharp discontinuities, junctions,
corners etc., of the processed image. For this purpose, a vast number of edge detectors
used gray level variation of pixels and employs the first and second order derivatives
of image. However, since the derivative process is sensitive to noise due to sources
including electronic, semantic and digitization/quantization impacts, so a jagged form

© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 408–421, 2020.
https://doi.org/10.1007/978-3-030-43120-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_32&domain=pdf
http://orcid.org/0000-0003-1768-7104
http://orcid.org/0000-0003-2252-2128
https://doi.org/10.1007/978-3-030-43120-4_32

CVA Based Image Gradients Computation for Edge Detection 409

can be occurring in obtained edge map. To alleviate such problems, firstly, the image is
generally smoothed with a filter. However, sharp discontinuities corresponding to edges
can be also suppressed because of this smoothing.Moreover, each one of themost widely
used differential operators such as Sobel [4], Roberts [5], Prewitt [6] and Scharr [7] are
useful particular tasks since the edge segments obtained by them are in a different form.

In the literature, numerous studies on edge detection methods [3, 8–14] have been
proposed in the past decades. The history of edge detection methods begins with the
study of Marr-Hildreth [15], called the zero crossing of Laplacian edge detector, which
is a gradient based operator and considers the step difference in the intensity of the image
as representing with the second derivative by the zero crossing. As an interesting point
of this operator, with endorsement from biological vision systems, paved the way of
new approaches in field of edge detection. Therefore, the most of gradient based edge
detectors had been inspired by study of Marr-Hildreth. Unfortunately, the drawbacks of
developed operators are returning false edges corresponding to the local minima of the
gradientmagnitude and giving poor localization at curved edges. Afterwards, Canny [16]
introduced a new approach in which an objective function is developed to be optimized
for accurate edge localization andminimizingmultiple responses to a single edge. Due to
advantages such as fast, reliable, robust and generic, it is widely accepted as an optimal
edge detector in industry. However, because of the parameters, Canny’s algorithm is
more sensitive to weak edges, resulting in a corrupted edge map and accuracy is not
satisfactory. Therefore, some algorithms [11, 17, 18] have been proposed to improve the
localization and quality of edge maps obtained by the Canny operator.

Because of the short-sight ideas of the traditional edge detectors such as discontinues
in edge segments, thick edges and being resistless to noise, recently, some new studies
in this area emerged. In [10], a new edge segment detection algorithm was presented,
so called Edge Drawing (ED), in which, firstly a set of anchor edge points is computed
in processed image and then connecting these anchor points by drawing edges between
them. This algorithm generates the high quality edge maps and runs faster than the
widely known fastest edge detection algorithms. However, since this edge detector con-
nects anchor points by one pixel one, the edges obtained from this algorithm is sensitive
to noise and natural deformations can be occurred in an image. Also in [8], a differ-
ent algorithm has been presented based on the hybrid of gradients and zero crossings
obtained by convolving the image with the corresponding operators. In related algorithm
the least squares support vector machine (LS-SVM) with a typical and most frequently
experimented kernel function, called the Gaussian radial basis function, is carried out
to reveal edge maps. In a different approach, Discrete Cosine Transform (DCT) method
[9] applied to extract edges from local features. A DCT basis images was used to gen-
erate gradient basis images corresponding to different operators including “Roberts”,
“Prewitt” and “Sobel”. Subsequently, edge map of each block were calculated using
DCT coefficients. However, edges obtained from last two methods are not thin and seem
sensitive to noise. Recently, a different paradigm of unsupervised edge detection [12] is
introduced by improving the hysteresis thresholding that utilized on the computational
edge detection approach of Canny. As a contribution of work, a new post-processing
step of non-maximal suppression has presented in order to attain the good edge points

410 S. Isik and K. Ozkan

and ignore the other ones. Moreover, the author emphasized that it is possible to drop the
idea of using the two-threshold hysteresis that operated on Canny algorithm, by using
only a unique predefined threshold.

Technically, the performance of an edge detection algorithm depends on the utilized
gradient extraction technique or thresholding scheme. One can say that a developed
method, which depends on only utilized thresholding scheme, may be not suitable for
all image types.With a different point of view,we have focused on the gradient extraction
by employing a new gradient extraction technique. With this aim, we have developed
a new edge detection method based on the common vector approach (CVA), called
CVA-ED, in where, firstly the noise situated on image is smoothed by Gaussian filtering
in order to reduce noise, secondly gradient map computation by using CVA is carried
out, then the angle and direction maps are obtained from the gradient map and lastly
peak points are selected and a smart routing procedure is performed to linking them.
Contrary to ordinary, the derivatives of image through vertical and horizontal directions
are obtained by utilizing the CVA, which is gained the novelty to this paper. When the
proposed methods on the edge detection area are considered, this idea is a new approach
in terms of edge detection procedure. Our experimental results on numerous experiments
indicate that CVA-ED, as a new edge detection method, exhibits great performance and
the obtained edge maps can be used with a purpose of image matching or compression
task.

The remaining parts of the paper are arranged as follows. Section 2 reviews CVA
method and presents how this method adopted to our work. Also smoothing with Gaus-
sian filter is mentioned in Subsect. 2.1, the gradient map computation by using CVA
is introduced in Subsect. 2.2, the procedure for extraction of peak points is explained
in Subsect. 2.3 and the connection of peak points by the smart routing procedure is
illustrated on Subsect. 2.4. Moreover, the Sect. 3 displays our edge detection results
compared with the results of [12]. Finally, a conclusion is touched in Sect. 4.

2 Common Vector Approach Based Edge Detection

Essentially, the stages involved in CVA-ED method can be summarized with following
steps:

i. Suppression of noise by Gaussian filtering.
ii. Gradient map computation using CVA.
iii. Extraction of peak points.
iv. Connection of peak points by the smart routing procedure.

2.1 Suppression of Noise by Gaussian Filtering

Themain idea behind the image smoothing is reducing or removing the details including
noise, outliers and sharp transitions, while preserving the more meaningful information
containing in the image. For this purpose, the gray image should be smoothed with
Gaussian low-pass filter in order to suppress noise. For all results given in this paper,
a rotationally symmetric Gaussian low pass filter of size 5 with standard deviation 1 is
carried out as a pre-processing step of edge detection.

CVA Based Image Gradients Computation for Edge Detection 411

2.2 Gradient Map Computation Using CVA

The CVA is a subspace-based recognition method that gives satisfactory results in voice
and pattern recognition tasks [19]. Let suppose that we have given m samples in Rn

corresponding to the any class (image blocks, {�ai }mi=1). It is possible to represent each
�ai vector as the sum of

�ai = �acom + �ai,di f f . (1)

A common vector (�acom) is what is left when the differences between feature vectors
are removed from class members, and it is invariant throughout the class, whereas �ai,di f f
is called the remaining vector, represent the particular trends of this particular sample.
There are two cases inCVAwhere the number of vectors is either sufficient or insufficient,
which are the cases as the feature vector dimension is lower or higher than the number
of vectors, respectively.

The sufficient data case occurs when the dimension of the vectors in a class (i)
is less than the number of vectors. In this case, the common vector of a class can be
obtained by calculating the eigenvalues and eigenvectors of covariance matrix related to
the given class [20]. Moreover, in sufficient data case, the eigenvectors span the entire
difference space and an indifference subspace does not exist. Therefore, the common
vector becomes �0. In this case, �acom can be estimated by ordering the eigenvalues of
n x n covariance matrix and the smallest k eigenvalues build the indifference subspace(
B⊥)

. Since indifference subspace B⊥ and difference subspace (B) are orthogonal, the
remained (n− k) eigenvalues can be used to construct the difference vector by projection
of the data onto the difference subspace (B). In this study, the blocks of the processed
image are gathered to provide the insufficient data case due to �acom does not exist in
sufficient data case.

Let the vector dimension and the number of vectors are defined as n and m, respec-
tively, in an Rn vector space. To obtain the common and difference vectors of a block as
formed from the neighborhoods of the i, j point, the required steps are explained with
following steps.

block =

⎡

⎢⎢⎢
⎢⎢
⎣

Ii−2, j−2 Ii−2, j−1 Ii−2, j Ii−2, j+1 Ii−2, j+2

Ii−1, j−2 Ii−1, j−1 Ii−1, j Ii−1, j+1 Ii−1, j+2

Ii, j−2 Ii, j−1 Ii, j Ii, j+1 Ii, j+2

Ii+1, j−2 Ii+1, j−1 Ii+1, j Ii+1, j+1 Ii+1, j+2

Ii+2, j−2 Ii+2, j−1 Ii+2, j Ii+2, j+1 Ii+2, j+2

⎤

⎥⎥⎥
⎥⎥
⎦

(2)

In Eq. (2), a block is given in order to explain the common vector procedure. To
compute the common and difference gradients in vertical direction, each column is
considered as a vector. If our aim is to obtain horizontal gradient map, then each row
vector is processed. Suppose that, we want to construct common and difference vectors
in vertical direction. It clearly appears in the Eq. (2) that the dimension of a vector (n)
is 5 and the number of vectors (m) is 5. Therefore, the insufficient data case is occurred
as n >= m.

412 S. Isik and K. Ozkan

�a1 = [
Ii−2, j−2 Ii−1, j−2 Ii, j−2 Ii+1, j−2 Ii+2, j−2

]T

�a2 = [
Ii−2, j−1 Ii−1, j−1 Ii, j−1 Ii+1, j−1 Ii+2, j−1

]T

�a3 = [
Ii−2, j Ii−1, j Ii, j Ii+1, j Ii+2, j

]T

�a4 = [
Ii−2, j+1 Ii−1, j+1 Ii, j+1 Ii+1, j+1 Ii+2, j+1

]T

�a5 = [
Ii−2, j+2 Ii−1, j+2 Ii, j+2 Ii+1, j+2 Ii+2, j+2

]T

(3)

In insufficient data case, the common vector of a class can be obtained either with
eigenvalues and eigenvectors of the covariance matrix related to vectors or Gram-
Schmidt orthogonalization procedure. In this study, we have carried out the Gram-
Schmidt orthogonalization procedure to obtain the common and difference vectors. An
example is illustrated for explaining the calculation process of common and difference
gradient maps through the horizontal direction by taking the 5 row vectors given in
Eq. (2).

To make data as normalized and centered on the coordinate system, the mean is

subtracted from each vectors. Thus, each vectors have zero mean (ai = ai − 1
5

5∑

i=1
ai).

Then the difference set is constructed by subtracting each vectors (ai (i = 1, . . . ,m))
from a predefined reference vector, which is shown in Eq. (4). Also, it has been noted
that selection of any vector as reference, produce the same common vector and does not
affect expected result [19].

�b1 = �a2 − �a1, �b2 = �a3 − �a1, �b3 = �a4 − �a1, �b4 = �a5 − �a1 (4)

Let B denotes the subspace spanned by vectors of difference set; B =
span

{�b1, �b2, �b3, �b4
}
refers to the difference space of given vectors. As shown in Eq. (5),

the orthonormal space is formed with Gram-Schmidt orthogonalization procedure by
using the basis vectors of difference space;

�d1 = �b1, �z1 = �d1∥
∥
∥ �d1

∥
∥
∥

�d2 = �b2− < �b2, �z1 > �z1, �z2 = �d2∥
∥
∥ �d2

∥
∥
∥

�d3 = �b3− < �b3, �z1 > �z1− < �b3, �z2 > �z2, �z3 = �d3∥
∥
∥ �d3

∥
∥
∥

�d4 = �b4− < �b4, �z1 > �z1− < �b4, �z2 > �z2− < �b4, �z3 > �z3, �z4 = �d4∥
∥
∥ �d4

∥
∥
∥

(5)

Finally, the projection of any given vector �ai into the obtained orthonormal basis
vectors can be computed as shown in Eq. (6). The projection process indicates the
difference vector of related processed block.

ādi f f =
m−1∑

k=1

< �ai , �zk > �zk . (6)

CVA Based Image Gradients Computation for Edge Detection 413

To compute the horizontal gradient map, the procedure that is given from Eq. (3) to
Eq. (6) is repeated for all 5× 5blocks in a processed image. Likewise, the sameprocedure
is illustrated to extract vertical gradient map. Finally the horizontal and vertical gradient
maps are combined to attain a single gradient map, which exhibits the edge strength in
a given image. In case of gradient map computation over blocks, the overlapping with
weighted averaging is considered by taking the recommendation in [21] into account.

The utilized algorithm for gradient extraction can be summarized as;

Algorithm: Single gradient map with CVA
1. Take 5x5 blocks are taken from the input image
2. Subtracting reference one from each vectors in order to obtain the difference

set.
3. Obtaining orthonormal vectors spanning difference subspace of processed

block by applying Gram–Schmidt orthogonalization process onto the differ-
ence set of that block.

4. Calculating the difference vector for processed block by taking projection of
a randomly chosen vector onto the basis returned from Gram–Schmidt or-
thogonalization process of that block.

5. Repeat, the same procedure to obtain a single gradient map
6. by utilizing the concept of CVA onto all remaining blocks.

2.3 Extraction of Peak Points

While the derivative of image in horizontal direction indicates horizontal gradient image,
the derivative of image in vertical direction refers to vertical gradient image. In this
study, the CVA is employed to acquire derivative of the image through horizontal and
vertical direction. This is the most crucial step for proposed algorithm and considered
as a novel aspect in edge detection area. Similar to traditional methods, the gradient of
image is computed by sum of absolute value of horizontal and vertical gradient image.
Once the vertical and horizontal gradients obtained, the angle image, which contains the
directions of each pixels in edge segment, is computed by dividing vertical gradients
with horizontal one. Based upon the angle image, the direction image is computed in
order for the computation of further steps including computation of peak points and
connecting them with a smart routing algorithm.

To extract peak points for edge linking, the non-maximal suppression (NMS)method
[16] has been carried out for the suppression of the local non-maxima of the magnitude
image, in the study of Canny. After applied NMS, only the most powerful edge segments
retained and rest of them has suppressed. This is resulting in a single pixel wide edge
segment,which is often necessary for application of subsequent algorithms.However, the
non-maximum suppression also generates quite a large number of edges. To overcome
this problem, Canny proposed the two-threshold hysteresis in order to filter the output
of the edge response.

Similarly, in this study, an optimal thresholding criteria has performed in order to
suppress some pixels, which are less than a specified threshold, as a newNMSprocedure.

414 S. Isik and K. Ozkan

Technically, the threshold value is determined by using the Otsu’s method [22] which
is named after its inventor Nobuyuki Otsu in 1979. It is an optimal threshold method
as aimed in finding the optimal value for the global thresholding. Otsu’s method selects
the threshold value by minimizing the intra-class variance or maximizing inter-class
variance. The main idea under the algorithm is that the image to be thresholded contains
bi-modal histogram (two groups of pixels). With this respect, the optimum threshold
for two groups of pixels has computed with Otsu’s methodology. Then, foreground and
background has separated by the thresholding operation. Hence, their combined spread
(intra-class variance) becomes minimal. The ratio of between class variance dividing by
global variance gives the threshold value. Moreover, the detailed information about the
implementation of the algorithm can be analyzed in referred paper [22]. To obtain the
binary image map, the edge pixels are determined with rules given in Eq. (7).

∀(i, j), I (i, j) = no_edge i f

⎧
⎨

⎩

I (i, j) < Otsu_Threshold
I (i, j) < I

(
i + nx , j + ny

)

I (i, j) < I
(
i − nx , j − ny

) (7)

∀(i, j), I (i, j) = edge otherwise

where −1 ≤ ni ≤ 1, i = x, y. In the Eq. (7), sign of nx and ny is taken according to the
edge direction at the pixel location.

a b c d

Fig. 1. Connection proceeding; (a) East-West, (b) North-South, (c) Northeast-Southwest and (d)
Northwest-Southeast.

2.4 Connection of Peak Points

To improve the quality of the edge maps produced by traditional edge detectors, many
post-processing techniques [17, 23–25] have been proposed. As noted in previous steps,
the obtained gradient image, peak points and directions of pixels should be carried out in
the operation of connecting pixel points. To bind the pixels one by one, a smart connec-
tion procedure is performed by inspiring from the idea behind the ED algorithm [10]. As
demonstrated inFig. 1, four directions have considered as east/west, northeast/southwest,
north/south and northwest/southeast, respectively. The smart routing process works as
follows; initially a peakpoint is chosen anddirectionof the edgepassing through this peak
point is determined. In case of linking peak points, four directions are considered as;

i. If the direction of edge falls east or west held on the peak point, the algorithm starts
the connection process by proceeding to the east and to the west (refer to Fig. 1(a).

ii. If the direction of edge is north or south held on the peak point, the algorithm starts
the connection process by proceeding to the north and to the south (refer to Fig. 1(b).

CVA Based Image Gradients Computation for Edge Detection 415

iii. If the direction of edge is northwest or southeast held on the peak point, the algorithm
starts the connection process by proceeding to the northwest and to the southeast
(refer to Fig. 1(c).

iv. If the direction of edge is northeast or southwest held on the peak point, the algorithm
starts the connection process by proceeding to the northeast and to the southwest
(refer to Fig. 1(d).

(a) Original image, (b) CVA-ED’s edge map (c) Peak points. (d) Linking peaks

Fig. 2. An illustration of the result of smart routing procedure.

During a move, only three immediate neighbors are considered and the one having
the maximum gradient value is picked. We move out the edge area when two distinct
conditions are occurred:

i. The gradient value of the current pixel is less than a predetermined threshold value,
ii. Or, in case of the algorithm hits a previous picked point.

To demonstrate how proposed method extracts the well-localized and non-jittered
edges in a given region; the proposed algorithm is executed on a real and the result is
given in Fig. 2. A part of iron image is cropped to give insights into the performance
of CVA-ED, which includes the thin and continuous edges. It is clearly seen that the
CVA-ED reveals the well linked lines and preserve the structural form of edge map and
robust to extract well localized and contiguous edges.

Unlike the traditional methods which compute the gradient map by taking the deriva-
tive as pixel by pixel without considering the edge status of neighboring pixels (vectors),
in the context of CVA-EDmethod, the neighbor pixels have taking into account in terms
of overcome the noise coming from different sources. For this purpose, the CVA is
carried out for each block, so that the edges are stored in the difference vector, ādi f f ,
after obtaining the common features from the original data of block. One can clearly
observe that the quality of edge segments obtained from connection of peak points give
satisfactory results.

416 S. Isik and K. Ozkan

3 Experiments and Results

Although an abundance of work on different methodology for edge detection has been
proposed, but a solid method for the performance evaluation of developed edge detectors
have not been generally accepted in the edge detection literature. The possible strategies
to measure the performance of edge detectors would be probability of false alarms,
probability of missed edges, errors of estimation in the edge angle, localization errors,
the tolerance to distorted edges, corners and junctions. In a referred study [26], the
published methods for edge detector performance evaluation was categorized into two
fields including “theoretical” and “analytical”; ground truth required or not required.
However, some proposed methods are subjective and there is not an objective method
in terms performance evaluation of edge detectors.

Moreover, the human evaluation on edge detector output is widely accepted by
researchers. In addition to this, in a variety of proposed edge comparison methods,
visual rating which reports the perceived quality of the edges for identifying an object
are employed to construct ground truth images which consist of different segments with
different numbers specified by reader subjectively. Furthermore, it is generally accepted
that different edge detectors would be better suitable for different tasks.

Although a crowded set of gradient extraction methods appears on edge detection
literature, but making a comparison with widely known ones can be considered as suf-
ficient in terms usability and effectiveness. In case of performance evaluation, we have
judged the performance of proposed method versus to Ray edge detector. The reason
for comparing our results with only Ray edge detector can be attributed to the page
limitation, where there is no enough space to expand the comparison stage.

3.1 Performance Evaluation in Terms of Objective Measures

In this stage, we have focused on the evaluation of the performance for the proposed edge
detector by judging the performance with respect to a comparison metric called ROC
Curve analysis. For all of the experiments, 60 real images have carried out to investigate
the capability of CVA for edge detection. To judge the performance, outputs of proposed
method are presented and a direct comparison with a recently published [12], Ray’s edge
detector method, is commented by using the public available database of ROC curves
which contains 60 real images, 50 of general objects and 10 of aerial scenes and their
manually specified ground-truth segmentation data. The real images and their specified
ground truths are available in the website of [27]. Noting that all experiments given in
this work were executed on same hardware (Intel core i5-2400 with 3.10 GHz CPU and
4 GB memory) with software implemented on the Matlab.

Asmentioned above the ROC curve [23] for a given edge detector can be constructed
from true positive and false positive edge pixels which are obtained from the comparison
of detected edge pixels to the specified ground truth. The segmented regions and edge
pixels included in ground truth (GT) havedistinctmeanings, i.e. the blackpixels represent
the edges, and gray represents no edges and white represents “don’t care”. The areas,
which are not classified neither by edge detector nor by GT, are called “don’t care”
regions. If a detector reports an edge pixel within a specified tolerance or a pixel is
reported as edge by either of the two, it is counted as a true positive (TP). If an edge

CVA Based Image Gradients Computation for Edge Detection 417

Table 1. Obtained objective values from 10 aerial images.

Image Ray’s edge Proposed

AR F AR F

Average 1.38 0.28 1.72 0.37

Table 2. Obtained objective values from 50 object images.

Image Ray’s edge Proposed

AR F AR F

Average 1.13 0.20 1.39 0.31

pixel is decided as “edge” in GT, but coincide with no edge in edge detector it is counted
as a false positive (FP). No any count is taken for “don’t care” regions, which are marked
with white color. The points that are non-edge in GT and also coincide with non-edge
points in the detector output are called true negatives (TN). Points that were decided
“non-edge” in GT and coincide with edge detector are reported as false negatives (FN).
In case of TP and FN, the percent rate is derived in terms of total edge pixels in GT, for
the FP and TN, the percent rate is obtained in terms of corresponding total pixels in the
image. The accuracy rate of the edge detector is computed by comparing the rates of TP
and TN against to the rates of FP and FN. The accuracy rate (AR) is computed by using
the following formula.

AR = (T P + T N)
/
(FP + FN) (9)

Additionally, the F-measure (F) values of both proposed and compared methods are
obtained. Generally, F is used to crosscheck the accuracy by considering the precision
p and recall r to compute score. In the context of F, while 1 indicates high score, the
zero (0) refers to worst score. The traditional F is the harmonic mean of precision and
recall and computed by the formula of;

F = 2x (precision x recall)/(precission + recall) (10)

By observing the average F values, we can see that the proposed method is superior
to other method. For the objects images, the obtained best F values are 0.43, 0.42 and
0.41 from the images, 43, 138 and Pitcher, respectively. Moreover, in case of aerial
images, the best F value is reaching 0.52 for the Series image. Moreover, while with
the proposed method it is able to obtain the overall F values as 0.37 and 0.31, but the
other method yields 0.28 and 0.20, for the real and aerial images, given in Tables 1 and
2, respectively. The results unveil the evidence of good quality for proposed method.

418 S. Isik and K. Ozkan

In addition to F-measure, the goodness of the edge detector has analyzed by using the
accuracy rate, where the high value for TP and TN against the low value for FP and FN
indicates the robustness of an edge detector. The quantitative measurements and success
rates obtained to compare the edge maps, which are presented in Tables 1 and 2. For
each table, the result in the last row indicates the average value of each given column.
The highest accuracy rates are achieved with valuable scores of 2.12, 2.05 and 1.95
which means that the performance proposed edge detector is more better than [12] when
conducting on the such images, namely 110, Block and 126, respectively. Moreover,
when the overall accuracy rates are considered in case of aerial images, for the best
performance, while the proposed method yields 1.72 success rate, but the compared one
exhibits 1.38 accuracy rate which indicates the evidence of superiority of the proposed
method against Ray’s edge detector.

3.2 Performance Evaluation in Terms of Subjective Measures

Moreover, some subjective outputs are presented in Fig. 3 in terms of visually evaluation.
A synthetic image, named 103, and an aerial image, named Mainbuilding, are used in
case performance comparison. The edge maps of compared edge detector are taken from
the original paper of the Ray’s edge detector [12]. While the third row presents the edge
maps obtained from the compared edge detector, the fourth row shows the edge maps of
proposed edge detector. At a glance, it can be seen that the some details of images are
hidden in edge maps of Ray’s edge detector. On the other hand, CVA-ED’s edge maps
are very clean consisting of contiguous, well localized and more apparent. By inspecting
the Fig. 3, we can see that the proposed edge detector can produce more clear lines.

Furthermore, the performance of our edge detector could be improved by illustrating
a post-processing procedure, i.e. eliminating some edge segments that lower than a
minimum length. However, the parameter tuning is not needed for the proposed method
and it is aimed at as a parameter free edge detector. We believes that the success rate of
proposed method comes from modification of some crucial steps such as the smoothing
the noise with an ideal Gaussian filter (5 × 5), employing the CVA in terms of the
gradient computation, which is the vital point and gaining the novelty to this experiment
and lastly the idea under the ED method [10] is employed to link the edge pixel as
dot to dot procedure after a smart thinning procedure. Hence, thin, contiguous and
well-localized edges are obtained as shown in Fig. 3.

CVA Based Image Gradients Computation for Edge Detection 419

Fig. 3. The visual performance comparison with Ray’s edge detector (Third row) and CVA-ED
(Fourth row).

4 Conclusion

We have proposed a new image’s gradients computation method by using the CVA,
which has been used in the literature for some pattern recognition tasks. It is obviously
seen that the proposed method presents the better edge map results than the Ray’s
work [12] when conducting on given images. Moreover, the value of threshold directly
affects the performance of edge detector, it would be better if we used the local adaptive
thresholding. However, for optimal threshold selection, Otsu’s method is able to extract
the well-localized and continuous edges. Although the elapsed running time for the

420 S. Isik and K. Ozkan

CVA-EDmethod is between 8 and 9 s without optimizing the executed Matlab code, but
this duration will be improved by investigating newways as implementing the algorithm
on new platforms with different programming languages, i.e., OPENCV and C++, or
after optimizing the Matlab code. As a future work, an image matching and registration
method is aimed to develop by extracting the corner points and features from the edge
maps responded from CVA-ED.

References

1. Kim, T., Lee, S., Paik, J.: Combined shape and feature-based video analysis and its application
to non-rigid object tracking. IET Image Process. 5, 87–100 (2011)

2. Paul, A., Wu, J., Yang, J.-F., Jeong, J.: Gradient-based edge detection for motion estimation
in H. 264/AVC. IET Image Process. 5, 323–327 (2011)

3. Singh, C., Pooja: Local and global features based image retrieval system using orthogonal
radial moments. Opt. Lasers Eng. 50, 655–667 (2012)

4. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. A Talk at the
Stanford Artificial Project, pp. 271–272 (1968)

5. Roberts, L.:Machine perception of three dimensional solids. In: Tippet, J., et al. (eds.) Optical
and Electro-Optical Information Processing. MIT Press, Cambridge (1965)

6. Prewitt, J.M.: Object Enhancement and Extraction. Academic Press, New York (1970)
7. Scharr, H.: Optimal operators in digital image processing (2000)
8. Peng, W., Qichao, C.: A novel SVM-based edge detection method. Phys. Procedia 24, 2075–

2082 (2012)
9. Qian, Z., Wang, W., Qiao, T.: An edge detection method in DCT domain. Procedia Eng. 29,

344–348 (2012)
10. Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis.

Commun. Image Represent. 23, 862–872 (2012)
11. Li, B., Söderström, U., Ur Réhman, S., Li, H.: Restricted hysteresis reduce redundancy in

edge detection. J. Signal Inf. Process. 4, 158–163 (2013)
12. Ray,K.:Unsupervised edgedetection andnoise detection froma single image. PatternRecogn.

46, 2067–2077 (2013)
13. Flores-Vidal, P.A., Olaso, P., Gómez, D., Guada, C.: A new edge detection method based on

global evaluation using fuzzy clustering. Soft. Comput. 23, 1809–1821 (2019)
14. Kimia, B.B., Li, X., Guo, Y., Tamrakar, A.: Differential geometry in edge detection: accurate

estimation of position, orientation and curvature. IEEE Trans. Pattern Anal. Mach. Intell. 41,
1573–1586 (2018)

15. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. BBiol. Sci. 207, 187–217
(1980)

16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8, 679–698 (1986)

17. Wong, Y.-P., Soh, V.C.-M., Ban, K.-W., Bau, Y.-T.: Improved canny edges using ant colony
optimization. In: 2008 Fifth International Conference on Computer Graphics, Imaging and
Visualisation, CGIV 2008, pp. 197–202. IEEE (2008)

18. Bernal, J.: Linking Canny edge pixels with pseudo-watershed lines (2010)
19. Gulmezoglu, M.B., Dzhafarov, V., Keskin, M., Barkana, A.: A novel approach to isolated

word recognition. IEEE Trans. Speech Audio Process. 7, 620–628 (1999)
20. Gülmezoğlu, M.B., Dzhafarov, V., Edizkan, R., Barkana, A.: The common vector approach

and its comparison with other subspace methods in case of sufficient data. Comput. Speech
Lang. 21, 266–281 (2007)

CVA Based Image Gradients Computation for Edge Detection 421

21. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-
domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

22. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man
Cybern. 9, 62–66 (1979)

23. Shih, F.Y., Cheng, S.: Adaptive mathematical morphology for edge linking. Inf. Sci. 167,
9–21 (2004)

24. Jevtić, A., Melgar, I., Andina, D.: Ant based edge linking algorithm. In: 2009 35th Annual
Conference of IEEE Industrial Electronics, IECON 2009, pp. 3353–3358. IEEE (2009)

25. Rahebi, J., Elmi, Z., Shayan,K.:Digital image edge detection using an ant colony optimization
based on genetic algorithm. In: 2010 IEEEConference onCybernetics and Intelligent Systems
(CIS), pp. 145–149. IEEE (2010)

26. Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust visual method for assessing the
relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
19, 1338–1359 (1997)

27. Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical ROC
curves. Comput. Vis. Image Underst. 84, 77–103 (2001)

Optimizing Query Perturbations
to Enhance Shape Retrieval

Bilal Mokhtari1(B), Kamal Eddine Melkemi2, Dominique Michelucci3,
and Sebti Foufou3,4

1 Laboratory of Applied Mathematics LMA, University of Biskra, BP 145 RP,
07000 Biskra, Algeria

bilal.mokhtari@univ-biskra.dz
2 Department of Computer Science, University of Batna 2, 05000 Batna, Algeria
3 Laboratoire d’Informatique de Bourgogne, EA 7534, Université de Bourgogne,

BP 47870, 21078 Dijon Cedex, France
4 New York University of Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE

Abstract. 3D Shape retrieval algorithms use shape descriptors to iden-
tify shapes in a database that are the most similar to a given key shape,
called the query. Many shape descriptors are known but none is perfect.
Therefore, the common approach in building 3D Shape retrieval tools is
to combine several descriptors with some fusion rule. This article pro-
poses an orthogonal approach. The query is improved with a Genetic
Algorithm. The latter makes evolve a population of perturbed copies of
the query, called clones. The best clone is the closest to its closest shapes
in the database, for a given shape descriptor. Experimental results show
that improving the query also improves the precision and completeness
of shape retrieval output. This article shows evidence for several shape
descriptors. Moreover, the method is simple and massively parallel.

Keywords: Computer vision · 3D Shape matching and recognition ·
Shape Retrieval · Shape Descriptors · Cloning · Genetic Algorithms

1 Introduction

Shape Retrieval computes which shapes in a database resemble the most to
a given key shape Q, called the query [41]. Shapes are polyhedra with trian-
gular faces. Output should be accurate (no false positive) and complete (no
omitted solution). Basically, the shape retrieval algorithm computes off-line a
shape descriptor, intuitively a signature or a feature vector, for each shape in
the database. They do not depend on queries. It also computes on-line the shape
descriptor of the query Q. Each shape descriptor induces a dissimilarity measure,
or distance for short. For example, if the shape descriptor is an histogram, the dis-
similarity measure can be the Chi-squared distance, the Kullback-Leibler diver-
gence, the Hellinger distance, etc. Then, the algorithm computes this induced
distance between Q and each shape in the database. Finally, the algorithm out-
puts the m (we use m = 11) shapes with the smallest dissimilarity to the query Q.
c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 422–437, 2020.
https://doi.org/10.1007/978-3-030-43120-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_33

Optimizing Query Perturbations to Enhance Shape Retrieval 423

Several shape descriptors have already been proposed in the literature, but
none achieves satisfying retrieval results with all kinds of shapes [8,10,12,14,
19,20]. The classical approach to solve this issue is to combine several shape
descriptors using some fusion rules [1,4,6,25,27].

This article proposes to solve the problem by improving the query shape
itself. Our approach is therefore orthogonal to the classical approaches, which
use only one query at a time, and (a fusion of) many shape descriptors.

To improve the query, we propose a genetic algorithm (GA) [21,23,33,36]
called GA-SR: Genetic Algorithm for 3D Shape Retrieval. GA-SR makes evolve
a population of perturbed copies of the query shape. Perturbed copies are called
clones. The fittest clone Q∗ is the clone the closest to its m closest shapes
M(Q∗,D) in the database, for a given shape descriptor and its induced distance
D. The m closest shapes to Q are the m closest shapes to the fittest clone.

All shapes in the database, query Q and its clones are (generically non con-
vex) polyhedra with triangular faces. Q and all its clones share the same topology,
i.e., the same incidence relations between vertices, edges and faces. The sole dif-
ference between Q and any one of its clones is that the 3D coordinates of some
vertices of Q are weakly perturbed. The perturbation is small enough, in order
for the query and its clones to have similar appearance for the human eye.

Improving the query also improves the precision (no false positive) and com-
pleteness (no forgotten solution) of shape retrieval, regardless of the used shape
descriptor and its induced dissimilarity measure. This article shows evidences
for several shape descriptors: VND (Vertex Normal Descriptor), DMC (Discrete
Mean Curvature), LSD (Local Shape Descriptor), and TD (Temperature Distri-
bution).

Shapes in the database are usually classified into several classes or clusters to
facilitate the work of classical shape retrieval methods [1,5,6]. In opposite, GA-
SR does not need to know the class of shapes in the database. This information
is only needed for measuring and comparing performances of GA-SR [19,23,26,
27,32,38,42].

The rest of this paper is organized as follows. Section 2 presents the
background. Section 3 details GA-SR. Section 4 presents experimental results.
Section 5 concludes.

2 Background and Principles

2.1 Improvement of Shape Retrieval

Several efforts have already been conducted to improve shape retrieval [37,43,
50]. Most of improvement methods are based on fusion of shape descriptors
and their related dissimilarity measures. Chahooki et al. [6] proposed a method
to fuse contour and region-based features for improving the retrieval precision.
Akgül et al. proposed a fusion-based learning algorithm [1], which combines
dissimilarity measures operating on different shape features. It computes their
optimal combination by minimizing the empirical ranking risk criterion. Other
fusion methods exist [7,27].

424 B. Mokhtari et al.

Improving pre-existing shape descriptors also improves shape retrieval out-
put. For example, Bronstein and Kokkinos [3] present a scale-invariant version
of the heat kernel descriptor previously proposed by Sun et al. [42]. Ling and
Jacobs [28] aim to make the shape context descriptor by Sun et al. invariant
to articulation: they replace the Euclidean distance by the inner (also called
geodesic) distance to build a shape context descriptor. Other methods [51] for
improving shape retrieval associate the database with a graph whose nodes are
the database shapes. Therefore, the distance between shapes is defined as the
length of the geodesic path in the graph associated to the database. A learning
method permits to improve dissimilarity measure using graph transduction.

The concept of perturbation has been used as a successful strategy to improve
many algorithms [15,16,22,29,46,49].

For example, Thompson and Flynn [46] extract the iris from an image by
finding circular boundaries that approximate the circle surrounding the iris. A
perturbation is performed by changing the values of one or more parameters of
the method.

Stochastic arithmetic is another field which uses random perturbations to
improve the robustness of numerical computations [49].

In Computational Geometry, small random perturbations of geometric data
remove all degeneracies such as, in 2D, three collinear points or four co-cyclic
points [15,16,22]. Perturbation greatly simplifies geometric algorithms, because
only a small number of generic cases needs to be considered, while the number
of degenerate cases increases exponentially with the geometric dimension of the
problem.

In Stochastic Resonance, perturbation enhances the transmission of informa-
tion and the detection of low signals [11,40].

In Machine Learning, several works [13,24] recently showed that noisy com-
putations improve associative memories.

More recently, a face recognition system [30] is enhanced by using landmark
perturbation technique that sweeps more landmarks, which improves faces com-
parison.

Yin et al. [52] establish connections between evolutionary algorithms and
stochastic approximations.

In this wake, Vaira and Kurasova [48] use a genetic algorithm based on ran-
dom insertion heuristics for the vehicle routing problem with constraints.

Ernest et al. [17] use GA and Genetic Fuzzy trees to compute deterministic
fuzzy controllers, for autonomous training and control of squadron of unmanned
combat aerial vehicles.

GAs have been used for solving complex optimization problems [34,35]. GAs
have been also used as a powerful strategy to improve the precision in Informa-
tion Retrieval Systems [18] and in Web Retrieved Documents [45].

GAs have been also used in Computer Vision and Graphics for measuring
similarity of visual data, and in CBIR (Content-Based Image Retrieval). Syam
and Rao [44] propose a GA-based similarity measure for CBIR: the GA integrates
distinct image features in order to find images that are most similar to a given

Optimizing Query Perturbations to Enhance Shape Retrieval 425

query image. Aparna [2] proposes a GA-based CBIR method to merge similarity
scores: it computes the adequate weight associated with each similarity measure.
Chan and King [7] combine different shape features: a GA computes suitable
weights for considered features.

Several fitness functions have been used for information retrieval involving
GAs. Thada and Jaglan [45] give a comparative study of similarity coefficients
used to find the best fitness function, in order to find the most relevant text
documents for a set of given keywords. Fan et al. [18] computes the best fitness
function with a GA for information retrieval.

2.2 Shape Descriptors

Shape descriptor represents an essential ingredient for measuring the similarity
of shapes. For a polyhedric shape with vertices V , it consists in calculating a
signature for some of its vertices. It can be for all vertices in V , or for a strict
subset of V refereed to by feature vertices.

Several researches have been conducted to propose discriminant shape
descriptors [8,10,12,14,20].

We have considered several shape descriptors selected from different cate-
gories, such as Vertex Normal-based Descriptor VND [47], Local Shape Descrip-
tor LSD [26], Temperature Distribution TD [19], and a Discrete Mean Curvature
DMC [32]. The GA-SR methods based on these descriptors are referred as GA-
VND, GA-LSD, GA-TD, and GA-DMC, respectively. We have selected these
descriptors for their simplicity and efficiency. GA-SR improves all these shape
descriptors, in terms of recall-precision curves. Other descriptors can be used.

The Vertex Normal-Based Descriptor (VND). The VND [47] descriptor
is simple and fast. It considers the normal vector at vertices. The normal vector−→
N at a vertex v is the average of normal vectors in the 1-star of the vertex:

−→
N (v) =

1
l

∑
αf

−→
Nf (1)

where l is the number of faces surrounding the vertex v, and αf is the ratio area
of the face f to the total area of the 1-star. The normal vector

−→
Nf of a face f

with three points p1, p2 and p3, is given by:

−→
Nf = (p2 − p1) × (p3 − p1) (2)

pi = (xi, yi, zi), i = 1, 2, 3, and × stands for the cross product. The orientation
of

−→
Nf does not matter. Let F be the subset of feature vertices n(F) = 3000.

Then the descriptor VND of a vertex v in F is given by:

V ND(v) =
‖−→
N (v)‖2

∑
v′∈F ‖−→

N (v′)‖2
(3)

426 B. Mokhtari et al.

Discrete Mean Curvature (DMC). The Discrete Mean Curvature [32] of a
vertex v is given by:

DMC(v) =
1
4

d∑

i=1

li(π − βi) (4)

where d is the degree of vertex v, βi the internal dihedral angle (in radians)
between two consecutive faces around the vertex v, and li the length of the edge
common to those faces.

Local Shape Distribution (LSD). The LSD descriptor [26] extracts n ran-
dom vertices (n = 3000), and characterizes each sample vertex v in terms of
Euclidean distances to all other points belonging to its neighborhood. The neigh-
borhood is a spherical region centered at point v. The LSD descriptor associates
to each region a histogram of Euclidean distances between the point v and points
in its neighborhood.

To compute the similarity between two shapes A and B, a complete bipartite
graph g is built as follows: the first set of vertices of g is given by the regions of
A, the second set is given by the regions of B. The cost of an edge (a, b) between
two regions in g is the Chi-squared distance between the a histogram and the b
histogram. By definition, the distance between A and B is the smallest cost of
perfect matchings in g. This method does not only compute a distance between
two shapes A and B, but it also matches regions in A with regions in B.

The Temperature Distribution (TD). The temperature distribution [42]
simulates the heat diffusion process on the surface of a model, which starts at a
vertex, and goes through other vertices over time.

The temperature distribution descriptor [19] of a vertex is represented as the
average of temperatures measured on all vertices in the surface of the model,
after applying a unit heat at that vertex. The average temperature for a vertex
v, at heat dissipation time t, is given by:

TD(v) =
1

n − 1

∑

w,w �=v

∑

i

e−λit φi(v) . φi(w) (5)

where n is the number of vertices (usually n ≈ 3400), t = 50 is a constant,
and λi is the ith eigenvalue (sorted in decreasing order) of the Laplacian of the
underlying graph of the mesh, and φi its ith eigenvector. In practice, only few
eigenvectors are used, four in our experiments.

The distribution of the average temperature values is then represented by
means of a histogram. The distance between two shapes is the L2-norm computed
from their histograms.

TD descriptor is invariant to isometric transformations like pose changes,
and robust against noise and geometric textures like bumps. However, TD is
improved by GA-SR.

Optimizing Query Perturbations to Enhance Shape Retrieval 427

2.3 Shape Similarity and Statistical Distances

There are many statistical distances to calculate dissimilarity between two
shapes represented as distributions (histograms): Kullback-Leibler divergence,
Hellinger distance, Bhattacharyya distance, Chi-squared distance, Ln norm, etc.
In this work, we have used some of these distances to measure the dissimilarity
of shapes based on each of the used descriptors. We have used Chi-squared dis-
tance [39] for VND, LSD and DMC, and L2-norm for TD [9], in accordance to
their experiments. Note that the number of drawers of histograms of compared
shapes is b ≈ √

n (b ≈ 50). In the rest of this paper, D(A,B) refers to the
distance between two shapes A and B.

3 GA-SR: Genetic Algorithm for Shape Retrieval

3.1 Notations and Definitions

All shapes i.e., the query, its clones, and shapes in the database, are polyhedra
with triangular faces. A polyhedron is represented with a geometric part V
and a topologic part F . V is an array of the 3D coordinates of vertices of the
polyhedron: Vi = (xi, yi, zi) ∈ R3. Coordinates are floating point numbers. F is
an array of triangular faces: Fk = (ak ∈ N, bk ∈ N, ck ∈ N), where ak, bk, ck are
the indices in array V of the vertices composing face Fk. ak, bk, ck are typically
ordered counterclockwise, seen from outside the polyhedron. For convenience, a
scaling normalization is applied to all polyhedra, so that the sum of all triangles
areas equals one (one square meter, say).

A query and all its clones have the same topologic part F . However, the
geometric parts are different. Let Q = shape(V,F) be the query shape. Let
Q′ = shape(V′,F) be a clone of Q. The geometric part V ′ of Q′ is defined as:

V ′ := V + P, ||P ||∞ ≤ ε, ||P ||0 = μ = �ρn	 (6)

where Pi = (xi, yi, zi) ∈ [−ε, ε]3 is a perturbation vector, ε ∈ R+ the noise
threshold, n the number of vertices. P is the unknown of our problem.

||P ||∞ ≤ ε is imposed to guarantee the perturbation is small. This constraint
is compatible with GA cross-over. Typically, ε is between 0.002 (2 mm) and 0.06
(6 cm). The optimal values of ε for VND, TD, DMC, and LSD are respectively
0.0074, 0.0022, 0.0562, and 0,0005.

Moreover, we impose that P is sparse. Let ρ be the probability for a vertex
to be ε-perturbed. In practice, ρ = 1/4. The number of perturbed vertices is
μ = �ρn	, with n the number of vertices. The number of perturbed vertices is
the same for all clones of a query. This constraint is sometimes written ||v||0 = μ,
where |.|0 is a pseudonorm i.e., ||v||0 is the number of non zero coordinates of v.

Clones are not re-normalized. It is assumed that the perturbation size is
less than the Least Feature Size of shapes, so perturbations do not introduce
self-intersections or other geometric inconsistencies.

Let M(Q,D) or M(Q) be the set of the m = 11 shapes in the database which
are the closest to Q, according to the dissimilarity measure D.

428 B. Mokhtari et al.

Let q be a shape, typically a clone of Q or Q itself. Its fitness f(q) or f(q,D)
is the averaged distance between q and shapes in M(q,D) defined as:

f(q,D) := (1/m)
∑

b∈M(q,D)

D(q, b) (7)

We are looking for the perturbation P such that the clone q = shape(V +P, F)
is the closest to its m most similar shapes in the database, i.e., such that f(q,D)
is minimal. For convenience, pose g(P) := f(shape(V + P, F),D). Then the
problem becomes: find the optimal or a good enough perturbation X which
minimizes g(X) with ||X||∞ ≤ ε, ||X||0 = μ:

X∗ = argmin g(X), ||X||∞ ≤ ε, ||X||0 = μ (8)

3.2 Sensitivity to Perturbations and Discretization Artifacts

Shape descriptors are very sensitive to noise, i.e., small random perturbations
and artifacts due to discretization. This sensitivity, which can be seen as a short-
coming of shape descriptors, is illustrated in Fig. 1: it shows for several shape
descriptors the distance curves between a model David1 and clones of a model
David2. David1 and David2 are two statues of David, in different poses. Let
V2, F2 be the geometry and the faces of David2. Let P2 be the normalized direc-
tion of some perturbation vector: ||P2||∞ = 1 for simplicity. Each curve in Fig. 1
shows the curve d(t) = D(David1, shape(V2+tP2, F2)), with t sampled in [0., 0.1].
t is on the horizontal axis, and d(t) on the vertical axis. d(0) is not zero: it is the
distance between David1 and David2. It depends on the used descriptor. d(t)
quickly falls below d(0) for tiny values of t in [0, 0.006], then slowly increases
until t = 0.01 or 0.07 depending on the used shape descriptor, and finally quickly
increases. For t ∈ (0., 0.01] or (0., 0.07] depending on the used shape descriptor,
all d(t) are below d(0) for this random perturbation direction P2. These distance
curves are rough or noisy. This is due to discretization artifacts. When it is possi-
ble, increasing n, the number of samples or feature vertices, and thus increasing
the ratio n/b yield to smoother curves. Anyway, this noise does not jeopardize
GA-SR, so it is useless to try to reduce it.

These features can be reproduced and more easily understood in the much
simpler context of 1D shapes, see Fig. 2. A 1D shape is a continuous and derivable
function from [0, 1] to [0, 1], for convenience. For discretization, the interval [0, 1]
is divided into n intervals, with n = 250 or 5000 in Fig. 2. Each function f is
discretized with a vector F such that F [i] = f(i/n), i ∈ [0, n]. The distance
between two 1D shapes f1 with vector F1 and f2 with vector F2 is the Chi-
squared distance between their histograms H(F1) and H(F2) with b = 50 buckets
per histogram (this is the value used in references). The example in Fig. 2 uses 1D
shapes f1(x) = L(a1, x) and f2(x) = L(a2, x), where L(a, x) = ax(1 − x) is the
Logistic map, and a1 = 0.7 and a2 = 0.75. Visually, f1 and f2, or their respective
vectors F1 and F2, are very close, but the Chi-squared distance between their
histograms is 0.16 or 0.17 (the possible maximal value in 1). Figure 2 shows that

Optimizing Query Perturbations to Enhance Shape Retrieval 429

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

t

d
(t
)

VND

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2

9 · 10−2

9.5 · 10−2

0.1

0.11

t

d
(t
)

VND

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

2.5 · 10−2

3 · 10−2

3.5 · 10−2

4 · 10−2

t

d
(t
)

TD

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2

9 · 10−2

9.5 · 10−2

0.1

0.11

t

d
(t
)

TD

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

3 · 10−2

3.5 · 10−2

4 · 10−2

t

d
(t
)

DMC

4 · 10−24.5 · 10−25 · 10−25.5 · 10−26 · 10−26.5 · 10−27 · 10−2
2.7 · 10−2

2.8 · 10−2

2.9 · 10−2

3 · 10−2

t

d
(t
)

DMC

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

t

d
(t
)

LSD

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

t

d
(t
)

LSD

Fig. 1. The impact of perturbation parameter t (horizontal axis) applied on the clones
of David2 model, using VND, TD and DMC descriptors in term of distance (vertical
axis) to David1 model. Distances are computed between a model David1 and clones
of David2. Values of graphs of the left column are picked with a step of 0.0001 in the
interval [0, 0.1], and those of the right column are picked with the step in the intervals
[0, 0.01], [0, 0.01], [0.04, 0.07], and [0, 0.01].

clones of F2 are closer to F1. Each point (x, y) of a curve in Fig. 2 is (x = t, y =
χ2(H(F1),H(F2(t)))) and F2(t) = F2 + tP2, where P2 is a random perturbation
vector. Three random perturbation vectors P2 were tried. For all of them, some

430 B. Mokhtari et al.

clone of F2 is better than the query F2, i.e., closer to F1. With n = 5000, curves
are smoother than with n = 250.

0.2 0.4 0.6 0.8

0.2

0.6

0.2 0.4 0.6 0.8

0.2

0.6

0.2 0.4 0.6 0.8

0.2

0.6

0.8

0.6

0.4

0.2

0.2
0.4
0.4 0.6 0.8 t 0.2 0.4 0.6 0.8 t0.2 0.4 0.6 0.8 t0.2 0.4 0.6 0.8 t

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 t

Fig. 2. Distance curves between F1 and clones of F2. Left: n = 250 samples. Right:
n = 5000 samples. The height of the horizontal line is 0.17, the Chi-squared distance
between F1 and F2 histograms. Many clones of F2 are closer to F1 than F2 itself.

3.3 The Genetic Algorithm

GA-SR is a genetic algorithm. Let Q be the query, and D be the shape descrip-
tor and its induced distance. GA-SR makes evolve a population P of K = 15
clones during G = 20 iterations, from generation P0 to PG. The first population
P0 contains Q and K − 1 mutants. Next populations are generated with GA
operators: crossover and mutation. Equation (7) defines the fitness of a clone q:
the closest to the set M(q,D) of its most similar shapes in the database, the
fittest. Figure 3 shows the evolution of the fitness value of the best clone at each
generation of the GA. The best solution of the GA corresponds to the minimal
fitness value, in this case at the fourteenth generation.

The genotype of a clone is an unsorted array of its μ perturbed vertices:
(i, xi, yi, zi), where i is the index of the perturbed vertex, and (xi, yi, zi) the 3D
coordinates of the vertex after perturbation. The tuple (i, xi, yi, zi) is called a
gene in the GA parlance. It is easy to obtain vertex coordinates of the clone
from the vertex coordinates of the query and from the genotype.

Each clone in the first population P0 is generated with mutations of the
query. Let V, F be the geometric and topologic parts of Q. The μ genes of each
clone are generated as follows. μ distinct vertex indices in 1, . . . n are picked at
random. Let i be one of these integers. Let Vi = (xi, yi, zi) be the 3D coordinates
of vertex Vi of Q. The gene is (i, xi + εR(), yi + εR(), zi + εR()) where function
R() returns a pseudorandom floating point value uniformly distributed in the
interval [−1, 1].

Optimizing Query Perturbations to Enhance Shape Retrieval 431

0 5 10 15 20
0.25

0.3

0.35

0.4

generations

f
it
n
es
s(
Q

∗)

GA-VND

Fig. 3. Evolution of the fitness of the best clone among generations.

For each population Pg, g = 0, . . . G, the fitness function (see Eq. 7) of every
clone is computed. To renew the population, standard genetic operators are
applied to selected parents to generate new clones: there is no elitism, so the curve
in Fig. 3 is not monotonous. More precisely, K/2 pairs of clones are selected using
the fitness-proportionate selection rule (also called the roulette-wheel selection).
Each selected pair generates two new clones with a standard crossover operation
between the two genotypes. These two new clones replace their parents in the
next generation.

The standard crossover between a first genotype G1 = L1R1 (L for left, R for
right) and a second genotype G2 = L2R2 gives two genotypes L1R2 and L2R1,
where lengths of L1, L2 are equal. Any classical crossover operator can be used.
Some vertices may be perturbed several times, without hindering GA-SR.

Mutation is an important operator in evolutionary algorithms. Each gen-
erated clone is subject to a post-mutation: with probability 0.01, each gene
(i, xi, yi, zi) is changed to (j, xj + εx, yj + εy, zj + εz), where j is selected ran-
domly and εx, εy, εz are pseudo random values uniformly distributed in [−ε, ε].

4 Experiments

4.1 Databases Used

We used the databases TOSCA [53] and SHREC’11 [26]. TOSCA contains 148
3D models (eg. Cats, Centaurs, Dogs, Wolves, Horses, Lions, Gorillas, Sharks,
Female and Male figures). The models are distributed into 10 categories including
a variety of poses. SHREC’11 contains about 600 non-rigid 3D objects classi-
fied into different groups of models, each of which contains approximately the
same number of models. In both databases, 3D models are represented as tri-
angular meshes stored in ASCII files in .off format (Object File Format). The
name of each file implicitly gives the class (e.g., Cats, Dogs, etc), which permits
measurement of performances of retrieval algorithms.

432 B. Mokhtari et al.

4.2 Tests and Results

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

Recall

P
re
ci
si
on

VND
GA-VND

Smooth-VND

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Recall
P
re
ci
si
on

LSD
GA-LSD

Smooth-LSD

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

Recall

P
re
ci
si
on

TD
GA-TD

Smooth-TD

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

DMC
GA-DMC

Smooth-DMC

Fig. 4. Averaged 11-point precision-recall curves of random queries of the TOSCA
database using original descriptors (blue), Smooth-based descriptors (violet) and the
GA-based descriptor (red). (Color figure online)

The output quality of shape retrieval algorithms is measured with precision-recall
curves. They account both for precision and completeness. They are drawn with
the 11-point interpolated average precision algorithm by Manning et al. [31]. It
is the reason why we use m = 11. The higher the precision-recall curve, the
better the retrieval.

Figures 4 for TOSCA and Fig. 5 for SHREC’11 show the precision-recall
curves of descriptors VND, LSD, DMC, and TD compared to their GA counter-
parts. Clearly, GA-SR significantly improves all these descriptors.

To show the effectiveness of our method, we compare it to the following
existing methods: D2 [38], MDS−ZFDR [27], GPS [42], and GT [51]. Comparison
results are illustrated in plots of Fig. 6. GA-SR shows better performance.

Optimizing Query Perturbations to Enhance Shape Retrieval 433

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
on

VND
GA-VND

Smooth-VND

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

LSD
GA-LSD

Smooth-LSD

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

Recall

P
re
ci
si
on

TD
GA-TD

Smooth-TD

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

Recall

P
re
ci
si
on

DMC
GA-DMC

Smooth-DMC

Fig. 5. Averaged 11-point precision-recall curves of random queries of the SHREC’11
database using original descriptors (blue), Smooth-based descriptors (violet) and the
GA-based descriptor (red). (Color figure online)

Smoothing of a query shape is another possible way to improve shape
retrieval. To smooth a shape, all its vertices are smoothed (without any con-
straint regarding the order). Let v be a vertex, let g be the barycentre of its
neighbors. Then v′, the corresponding smoothed vertex, is defined using (9).

v′ := smooth(v) := αv + (1 − α)g (9)

where α is a parameter in [0, 1]. Then D′, the smoothed distance for D in VND,
LSD, DMC, TD, is (10):

D′ := D(smooth(A), smooth(B)) (10)

where smooth(.) is the smoothing operator. Smoothing reduces noise and irreg-
ularities, so intuitively, we expect smoothing to reduce distances: D′(A,B) ≤
D(A,B). Smoothing is simple and fast, in particular faster than GA-SR.
Figures 4 for TOSCA and Fig. 5 for SHREC’11 show the precision-recall curves
for VND, LSD, DMC, TD, their smoothed counterparts, and their GA counter-
parts. Clearly, cloning achieves better retrieval results than smoothing.

434 B. Mokhtari et al.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

GA-VND
GA-LSD
GA-TD
GA-DMC

MDS−ZFDR
D2
GPS
GT

Fig. 6. Comparing results of GA-SR with other methods proposed in the literature.
Curves are plotted according to results reported on the SHREC’11 database.

Finally, GA-SR is compatible with fusion: let D1, . . . Ds be s shape descrip-
tors and their induced distances. Then define their fusion distance D with:
D(A,B) := min(D1(A,B), . . . Ds(A,B)) (or any other fusion rule), and use this
distance D with GA-SR. We compared GA-SR and SR with this min-merged
shape descriptor, and here too, GA-SR improves SR. No figure is provided for
conciseness.

5 Conclusion

Shape descriptors are very sensitive to small perturbations. This shortcom-
ing is also an opportunity for improving shape retrieval. GA-SR achieves bet-
ter results than previous classical retrieval methods, and better results than
smoothing. Other shape descriptors are easily taken into account. GA-SR is sim-
ple and massively parallel. It needs no machine learning, no deep learning, no
supervision.

References

1. Akgül, C.B., Sankur, B., Yemez, Y., Schmitt, F.: Similarity score fusion by ranking
risk minimization for 3D object retrieval. In: Proceedings of the 1st Eurographics
Conference on 3D Object Retrieval, pp. 41–48. Eurographics Association (2008)

2. Aparna, K.: Retrieval of digital images based on multi-feature similarity using
genetic algorithm. Int. J. Eng. Res. Appl. (IJERA) 3(4), 1486–1499 (2013)

3. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid
shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1704–1711. IEEE (2010)

4. Bu, S., Cheng, S., Liu, Z., Han, J.: Multimodal feature fusion for 3D shape recog-
nition and retrieval. IEEE MultiMedia 21(4), 38–46 (2014)

Optimizing Query Perturbations to Enhance Shape Retrieval 435

5. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of
semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal.
Mach. Intell. 29(3), 394–410 (2007)

6. Chahooki, M., Charkari, N.M.: Shape retrieval based on manifold learning by fusion
of dissimilarity measures. IET Image Process. 6(4), 327–336 (2012)

7. Chan, D.Y.-M., King, I.: Genetic algorithm for weights assignment in dissimilarity
function for trademark retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.)
VISUAL 1999. LNCS, vol. 1614, pp. 557–565. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48762-X 69

8. Chang, M.C., Kimia, B.B.: Measuring 3D shape similarity by graph-based match-
ing of the medial scaffolds. Comput. Vis. Image Underst. 115(5), 707–720 (2011).
Special issue on 3D Imaging and Modelling

9. Chang, S.K., Wong, Y.: Ln norm optimal histogram matching and application to
similarity retrieval. Comput. Graph. Image Process. 13(4), 361–371 (1980)

10. Chao, M.W., Lin, C.H., Chang, C.C., Lee, T.Y.: A graph-based shape matching
scheme for 3D articulated objects. Comput. Animation Virtual Worlds 22(2–3),
295–305 (2011)

11. Chapeau-Blondeau, F., Rousseau, D.: Raising the noise to improve performance in
optimal processing. J. Stat. Mech. Theory Exp. 2009(01), P01003 (2009)

12. Chen, D.Y., Ouhyoung, M.: A 3D object retrieval system based on multi-resolution
Reeb graph. In: Computer Graphics Workshop, pp. 16–20 (2002)

13. Chen, H., Varshney, L.R., Varshney, P.K.: Noise-enhanced information systems.
Proc. IEEE 102(10), 1607–1621 (2014)

14. Coifman, R., et al.: Geometric diffusions as a tool for harmonic analysis and struc-
ture definition of data: diffusion maps. Proc. Nat. Acad. Sci. 102(21), 7426–7431
(2005)

15. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computa-
tional Geometry. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-
04245-8

16. Emiris, I.Z., Canny, J.F.: A general approach to removing degeneracies. SIAM J.
Comput. 24(3), 650–664 (1995)

17. Ernest, N., Cohen, K., Kivelevitch, E., Schumacher, C., Casbeer, D.: Genetic fuzzy
trees and their application towards autonomous training and control of a squadron
of unmanned combat aerial vehicles. Unmanned Syst. 3(03), 185–204 (2015)

18. Fan, W., Gordon, M.D., Pathak, P.: A generic ranking function discovery frame-
work by genetic programming for information retrieval. Inf. Process. Manage.
40(4), 587–602 (2004)

19. Fang, Y., Sun, M., Ramani, K.: Temperature distribution descriptor for robust 3D
shape retrieval. In: 2011 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 9–16. IEEE (2011)

20. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and
similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

21. Goldberg, D.E., et al.: Genetic Algorithms in Search Optimization and Machine
Learning, vol. 412. Addison-Wesley, Reading (1989)

22. Hoffmann, P.H.C.M., Revol, W.L.N. (eds.): Reliable Implementation of Real Num-
ber Algorithms: Theory and Practice. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85521-7

23. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor (1975)

https://doi.org/10.1007/3-540-48762-X_69
https://doi.org/10.1007/3-540-48762-X_69
https://doi.org/10.1007/978-3-662-04245-8
https://doi.org/10.1007/978-3-662-04245-8
https://doi.org/10.1007/978-3-540-85521-7
https://doi.org/10.1007/978-3-540-85521-7

436 B. Mokhtari et al.

24. Karbasi, A., Salavati, A.H., Shokrollahi, A., Varshney, L.R.: Noise facilitation in
associative memories of exponential capacity. Neural Comput. 26(11), 2493–2526
(2014)

25. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

26. Li, B., et al.: SHREC’12 track: generic 3D shape retrieval. In: 3DOR, pp. 119–126
(2012)

27. Li, B., Godil, A., Johan, H.: Hybrid shape descriptor and meta similarity generation
for non-rigid and partial 3D model retrieval. Multimedia Tools Appl. 72(2), 1531–
1560 (2014)

28. Ling, H., Jacobs, D.W.: Using the inner-distance for classification of articulated
shapes. In: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2005, vol. 2, pp. 719–726. IEEE (2005)

29. Luo, J., Gu, F.: An adaptive niching-based evolutionary algorithm for optimizing
multi-modal function. Int. J. Pattern Recognit. Artif. Intell. 30(03), 1659007 (2016)

30. Lv, J.J., Cheng, C., Tian, G.D., Zhou, X.D., Zhou, X.: Landmark perturbation-
based data augmentation for unconstrained face recognition. Signal Process. Image
Commun. 47, 465–475 (2016)

31. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

32. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry
operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visual-
ization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-662-05105-4 2

33. Miranda, V., Ranito, J., Proenca, L.M.: Genetic algorithms in optimal multistage
distribution network planning. IEEE Trans. Power Syst. 9(4), 1927–1933 (1994)

34. Misevičius, A.: Experiments with hybrid genetic algorithm for the grey pattern
problem. Informatica 17(2), 237–258 (2006)

35. Misevičius, A., Rubliauskas, D.: Testing of hybrid genetic algorithms for structured
quadratic assignment problems. Informatica 20(2), 255–272 (2009)

36. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

37. Mohamad, M.S., Deris, S., Illias, R.M.: A hybrid of genetic algorithm and support
vector machine for features selection and classification of gene expression microar-
ray. Int. J. Comput. Intell. Appl. 5(01), 91–107 (2005)

38. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM
Trans. Graph. (TOG) 21(4), 807–832 (2002)

39. Pele, O., Werman, M.: The Quadratic-Chi histogram distance family. In: Daniilidis,
K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 749–762.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9 54

40. Rousseau, D., Anand, G., Chapeau-Blondeau, F.: Noise-enhanced nonlinear detec-
tor to improve signal detection in non-Gaussian noise. Signal Process. 86(11),
3456–3465 (2006)

41. Safar, M.H., Shahabi, C.: Shape Analysis and Retrieval of Multimedia Objects,
vol. 23. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0349-1

42. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale
signature based on heat diffusion. In: Computer Graphics Forum, pp. 1383–1392.
Wiley Online Library (2009)

43. Super, B.J.: Retrieval from shape databases using chance probability functions
and fixed correspondence. Int. J. Pattern Recognit. Artif. Intell. 20(08), 1117–
1137 (2006)

https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1007/978-3-642-15552-9_54
https://doi.org/10.1007/978-1-4615-0349-1

Optimizing Query Perturbations to Enhance Shape Retrieval 437

44. Syam, B., Rao, Y.: An effective similarity measure via genetic algorithm for content
based image retrieval with extensive features. Int. Arab J. Inf. Technol. (IAJIT)
10(2), 143–151 (2013)

45. Thada, V., Jaglan, V.: Comparison of Jaccard, Dice, Cosine similarity coefficient
to find best fitness value for web retrieved documents using genetic algorithm. Int.
J. Innov. Eng. Technol. 2(4), 202–205 (2013)

46. Thompson, J., Flynn, P.: A segmentation perturbation method for improved iris
recognition. In: 2010 Fourth IEEE International Conference on Biometrics: Theory
Applications and Systems (BTAS), pp. 1–8, September 2010

47. Thürrner, G., Wüthrich, C.A.: Computing vertex normals from polygonal facets.
J. Graph. Tools 3(1), 43–46 (1998)

48. Vaira, G., Kurasova, O.: Genetic algorithm for VRP with constraints based on
feasible insertion. Informatica 25(1), 155–184 (2014)

49. Vignes, J.: A stochastic arithmetic for reliable scientific computation. Math. Com-
put. Simul. 35(3), 233–261 (1993)

50. Wong, W.T., Shih, F.Y., Su, T.F.: Shape-based image retrieval using two-level
similarity measures. Int. J. Pattern Recognit. Artif. Intell. 21(06), 995–1015 (2007)

51. Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph
transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS,
vol. 5305, pp. 788–801. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88693-8 58

52. Yin, G., Rudolph, G., Schwefel, H.P.: Establishing connections between evolution-
ary algorithms and stochastic approximation. Informatica 6(1), 93–117 (1995)

53. Young, S., Adelstein, B., Ellis, S.: Calculus of nonrigid surfaces for geometry
and texture manipulation. IEEE Trans. Visual Comput. Graphics 13(5), 902–913
(2007)

https://doi.org/10.1007/978-3-540-88693-8_58
https://doi.org/10.1007/978-3-540-88693-8_58

Authorship Attribution by Functional
Discriminant Analysis

Chahrazed Kettaf(B) and Abderrahmane Yousfate

Laboratoire de Mathématiques, Djillali Liabes University, Sidi Bel Abbes, Algeria
kchahrazed8@gmail.com, yousfate@univ-sba.dz

Abstract. Recognizing the author of a given text is a very difficult
task that relies on several complicated and correlated criterias. For this
purpose, several classification methods are used (neuronal network, dis-
criminant analysis, SVM...). But a good representation of the text that
keeps the maximum of the stylistic information is very important and
has a considerable influence on the result. In this paper, we will tackle
the problem of the authorship attribution for very long texts using the
discriminant analysis extended to the functional case after presenting the
texts as elements of a separable Hilbert space.

Keywords: Authorship attribution · Textmining · Big textual data ·
Discriminant analysis · Funtional classification · Functional data
analysis

1 Introduction

Textual data is the major part of the data on computers (information, course,
article, contract, CV,...), Textmining aims to explore this data to extract or
retrieve information, synthesize, translate... which induces, as in datamining,
the use of new statistical tools including data analysis, neural networks, SVM...

Before applying any of these tools, the textual data must go through a pre-
processing step. This step is essential and greatly influences the quality of the
results. Moreover, it depends on several factors including: the format of the texts
(article, CV, book,... etc), the language and the nature of the problem (thematic
classification, search for information, identification of the author,... etc.), which
makes it too difficult. The authorship attribution is very important in several
fields (crime, plagiarism [21],...), It depends on the preferred vocabulary of the
author, the length of the sentences, the genre of the author’s works (theater,
poem, narrative text...). In order to identify the style of the author, we must
have a method that keeps the maximum of this author’s stylistic information. In
this article, we present a new method of representation of texts by functions. By
applying the functional discriminant analysis (FDA) to these functional data,
we will show that this method is adapted to the problem of identification of the
author and gives extremely interesting results.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 438–449, 2020.
https://doi.org/10.1007/978-3-030-43120-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_34

Authorship Attribution by Functional Discriminant Analysis 439

2 Related Work

Previous author attribution studies have proposed various descriptors to quantify
the style of writing, called style markers, under different criterias [6,7].

The current functions of text representation for stylistic purposes focus
mainly on lexical, character, syntactic, semantic and application-specific require-
ments for measuring them. The vast majority of the author’s attribution studies
are (at least partially) based on lexical characteristics to represent the style.

The simplest approach to represent texts is the vectors of words frequen-
cies. The text is thus considered as a set of words each having a frequency of
occurrence without taking into account the contextual information.

However, there is a significant difference in the classification of text based on
the style: the importance of function words (determiners, conjunctions, prepo-
sitions, pronouns, auxiliary verbs, modals, qualifiers and question words) wich
are among the best elements of discrimination between authors, because they
are used in a largely unconscious by the authors and are independent of the sub-
ject. Thus, they are able to capture the stylistic choices of the author through
different themes [8,9].

2.1 Character Features

According to this family of measures, a text is considered as a simple succes-
sion of characters. Thus, various levels of character measures can be defined,
including alphabetic characters, numbers, uppercase and lowercase characters,
punctuation characters,... [2,10]. This type of information is readily available
for any natural language and any corpus. It has been proven very useful for
quantifying the writing style [5].

Kjell [3] used the bigrams and trigrams characters to discriminate the “Fed-
eralist Papers”. Forsyth and Holmes [11] found that bigrams and the variable
length character n-grams yield better results than lexical descriptors in several
text categorization tasks, including author attribution. Similarly, a compara-
tive study of different lexical descriptors and characters on the same evaluation
corpus [5] showed that the n-gram characters were the most effective measures.

This method is well adapted to long and short corpus, Posadas-Durán,
Gómez-Adorno and Sidorov [18] use it for short corpus.

2.2 Lexical Features

The simplest lexical representation of texts has been introduced in the context
of the vector model, it is called “bag of words”. Texts are simply transformed
into vectors, each component of which represents a term. C term is in general:

– the lexical stem of the word rather than the entire word. Several algorithms
have been proposed to substitute words by their root; one of the best known
is Porter’s algorithm.

440 C. Kettaf and A. Yousfate

– The lemma: for that we use the grammatical analysis to replace the verbs
by their infinitive form and the nouns by their singular form. Lemmatization
is therefore more complicated to implement than the search for stems, since
it requires a syntactic analysis of the texts. An efficient algorithm based on
decision trees, named TreeTagger [19], has been developed for the English,
French, German and Italian languages.

A recent study by Akimushkin, Amancio, Oliveira is based on lexical descriptors
(words) to author attribution problem [20].

2.3 Syntaxic Features

The idea is that authors tend to use similar syntactic structures unconsciously.
Therefore, syntactic information is considered to be more reliable for identifying
author with respect to lexical information. The extraction of the syntax measure
is a language dependent procedure. Baayen, van Halteren, and Tweedie [12] were
the first to use syntactical measures for author attribution. Similarly, Gamon
[13] uses the output of a parser to measure the frequencies of the rewriting of
syntactic rules.

2.4 Semantic Features

The NLP (Natural Language Processing) tools are successfully applied to low-
level tasks, seen previously, unfortunately, more complex tasks such as full
parsing, semantic analysis and pragmatic analysis can not yet be satisfacto-
rily addressed by these tools. As a result, very few attempts have been made to
exploit high-level descriptors for stylistic purposes. Gamon [13] used a tool to
produce semantic dependency graphs.

McCarthy, Lewis, Dufty and McNamara [14] describe another approach for
extracting semantic measures. Based on WordNet [15], they estimated the infor-
mation of synonyms and hyperonyms of words, as well as the identification of
causal verbs.

A very important method of exploiting semantic information has been
described by Argamon et al. [17]. Inspired by the theory of Systemic Functional
Grammar (SFG), they defined a set of features that associate certain words or
phrases with semantic information.

2.5 Application-Specific Features

Application-specific metrics can be defined to better represent the nuances of
style in a given text domain such as e-mail messages and online forum posts.

Structural measures include the use of greetings and goodbyes in messages,
types of signatures, the length of the paragraph,... [2,10].

Although these measures need to be defined manually, they can be very
effective when it comes to certain types of texts.

Authorship Attribution by Functional Discriminant Analysis 441

2.6 Selection and Extraction of Features

Attribution studies of the author often combine several types of descriptors such
as lexical descriptors and characters. In general, the descriptors chosen by these
methods are examined individually on the basis of the authors’ discrimination
against a given corpus [16]. However, some descriptors that seem unimportant
when examined independently may be useful in combination with other descrip-
tors. Descriptors should be carefully selected according to the authors’ universal
properties to avoid dependence on a specific learning corpus.

3 Functional Discriminant Analysis (FDA)

Like most standard statistical models, discriminant analysis has been extended
to the functional case. Preda [1], proposes an application of the PLS regres-
sion ((Partial Least Square) as part of the discriminant analysis. A penalization
approach of the covariance operator has been successfully applied to Discrimi-
nant Analysis by Hastie et al. [4]. In what follows, we present the principle of
functional discriminant analysis.

Data
We have a set of individuals (n random functions) X = {Xt}t∈T also noted

X(., t) ∈ L2(Ω) which means that
∫

Ω

Xt(w)2P(dw) < ∞, and a qualitative

variable Y , with q modalities (variable to explain).
The variable Y generates a partition {Ωi, i = 1, ..., q} of the Omega set of

individuals.

Goal. As in the multidimensional case, functional discriminant analysis has two
goals:

Description: Search among all the possible PCAs one whose graphical rep-
resentation of individuals discriminates at best the q classes generated by the
variable Y .
Decision: Assign a new individual to one of the q modalities of the variable Y .

Let Γ (s, t) = cov(Xs,Xt) =
∫

Ω

Xt(ω)Xs(ω)Pd(ω)

The application Γ is called covariance operator.
Let V be the total covariance matrix such that Vs,t = cov(Xs,Xt).
The functional expectation of the set Omega is X̃ ∈ L2(Ω) where

X̃(ω) =
∫

Ω

Xt(ω)dP(ω)

Let Vg,t,s be the inter-class covariance matrix such that Vg,t,s =

cov(X̃t, X̃s) =
∫

Ω

X̃t(ω)X̃s(ω)Pd(ω).

442 C. Kettaf and A. Yousfate

The solution is to maximize inter-class variance and minimize intra-class
variance: {

max
‖u‖V

〈V −1Vgu, u〉V

〈u, u〉V = 1

Using schwartz inequality, we obtain:

〈V −1Vgu, u〉H′ ≤ ‖V −1Vg‖‖u‖
The maximum is reached for V −1Vgu = λu.

u1 is the argument of the solution (1), which is the eigenvector of V −1Vg asso-
ciated with the highest eigenvalue λ1. the other arguments of the solution are
obtained by iteration with V orthonormality.

4 Functional Representation of Texts

4.1 Preliminary Processing of Texts

– Segmentation: this task consists of dividing the text into a series of tokens
(words), for that we used as separators: the space character, the different
punctuation characters and the line break.

– Lemmatization: each word in the text is replaced by its lemma using Tree-
tagger software.

– Elimination of unnecessary punctuation characters: all punctuation
characters have been removed except those at the beginning and the end of
the sentence: dot ‘.’, Dash ‘-’, exclamation point ‘!’ and the question mark
‘?’, however no function word is eliminated.

4.2 Transformation of Texts into Functions

– Quantifying words: at the beginning the code of a word is equal to its
frequency of appearance in all the learning texts.

C(M) =
n∑

i=1

F (M)Ti

where C(M) is the code of the word M , n is the number of learning texts
and F (M)Ti

is the number of appearance of the word M in the text Ti.
It may be that after this coding, k different words have the same code if
their frequencies of appearance in the learning texts are equal, to remedy this
problem, we must distinguish the codes by adding a weak term to differentiate
them.
Let gη be the set of words whose frequency of occurrence of each word Mi ∈
gη i = 1...k equals η with k the cardinality of gη.

C(Mi) = η + (i − 1)/(2.k)

Authorship Attribution by Functional Discriminant Analysis 443

Fig. 1. Curves representing two different texts

Note that the union of sets gη is a partition of the set of words.
Since the set of word codes will represent the values that the functions take
(stochastic processes), they must be correctly positioned on the y-axis. We
have, then, transformed the set of codes obtained in the previous step C
into a new set C ′ so that the highest codes are positioned at the center of
the interval [ymin, ymax], such that ymin ≤ max Xi(t){i=1...n} ≤ ymax, thus
forming a Gaussian distribution,

– Representation by transition between words: after having correctly
coded the words of the learning texts, each of these texts Ti is represented by
a curve taking the code values of its words in the order of their appearance
in the text.

Xi(l) = Ci(Ml) pour l = 0, ..., L(Ti) − 1

where L(Ti) is the length (number of words) of the text Ti and Ci(Ml) the
code of the lth word in the text Ti. The Fig. 1 represents the curves obtained
by a b-spline smoothing of two different texts.

4.3 Advantages

This representation is very interesting and is well adapted to the problem of
identifying the author by the fact that:

– it keeps the order of the words in the sentence, so it keeps contextual infor-
mation unlike the wordbag representation.

– it keeps the preferred vocabulary information (a word with the code y is very
used by the author if the curve X(t) takes the value y quite often).

– does not require a reduction of the dimension, since the texts are represented
as elements of the hilbert space (infinite dimension).

– takes into account the length of the sentences: since we have kept the punc-
tuation characters of beginning and end of sentence (‘-’, ‘.’, ‘?’, ‘!’), then if a
curve often takes one of the values of the codes of these words, it means that
this text contains short sentences and vice versa.

444 C. Kettaf and A. Yousfate

Fig. 2. Curves representing two texts: narrative in blue and theatrical in red (Color
figure online)

– it keeps the genre of the text information, for example in a theatrical text,
the sentences are quite short, begin with a dash ‘-’ and end with one of the
characters (‘.’, ‘?’, ‘!’), on the other hand in a narrative text, we usually find
long sentences, the dash ‘-’, ‘?’ and ‘!’ are rare. For example, we chose a part
of the book “Il ne faut jurer de rien” written by “ALFRED DE MUSSET”
and part of the book “L’Éranger” of “ALBERT CAMUS”, the first text is
theatrical, the second is narrative. The Fig. 2 presents the curves of these two
texts. It is clear that a graphical representation of these two texts by curves
contains a big part of discrimination.

5 Experimentation

5.1 Presentation of the Used Corpus

The Table 1 presents the set of frensh texts constituting the corpus of learning
and test used, the number of authors is 09, the total number of texts is 561,
the size of each text is 4500 words. The Texts are downloaded from Gutenberg
library.

5.2 Results

After representing the 561 texts of the array (Table 1) by functions (belong to
separable Hilbert space), we chose the statistical method: functional discriminant
analysis to discriminate them and assign an anonymous text to its author.

Authorship Attribution by Functional Discriminant Analysis 445

Table 1. Table presenting the corpus used.

Author Work title Size of the plain

text (MB)

Number of

texts

ALEXANDRE

DUMAS

La dame aux camelias, la dame de

monsoreau v.3, la reine margot tome i,

la tulipe noire, le capitaine pamphile,

le vicomte de bragelonne t3, les

quarante-cinq - tome ii

3.79 119

ALFERD DE

MUSSET

CROISILLES, EMMELINE,

FREDERIC et BERNERETTE,

histoire dun merle blanc, il ne faut

jurer de rien, la mouche, le fils du

titien, les caprices de MARIANNE, les

deux mâıtresses, l’habit vert, mimi
pinson, PIERRE et CAMILLE,
premières poésies, secret de
JAVOTTE

1.65 62

ANDRE GIDE ISABELLE, la porte etroite, la
symphonie pastorale, les caves du
vatican, les nourritures terrestres,
l’immoraliste, si le grain ne meurt

1.92 63

ALBERT
CAMUS

CALIGULA, l’etranger, l’homme
révolte, la peste

1.41 34

GUSTAVE
FLAUBERT

éducation sentimentale, Hérodias, la
légende de saint julien l’hospitalier,
madame BOVARY, mémoires d’un
fou, SALAMMBO, un coeur simple, la
tentation de saint ANTOINE, le
candidat

2.66 76

HONORE DE
BALZAC

la bourse, le chef d’oeuvre inconnu, le
contrat de mariage, l’élixir de longue
vie, l’Enver de l’histoire
contemporaine, les chouans, mémoires
de deux jeune maries, peau de
chagrin, père GORIOT, recherche de
l’absolu, traite des excitants
modernes, une passion dans le désert

3.69 80

JEAN JACK
ROUSSEAU

discours sur l’économie politique,
discours sur l’inégalité, les confessions,
le promeneur solitaire

3.37 14

VICTOR
HUGO

CLAUDE GUEUX, l’ane, le dernier
jour d’un condamne, les châtiments,
les contemplations, les feuilles
d’automne, les misérables - tome II -
cosette, les orientales, les rayons et les
ombres, notre dame de paris,
quatre-vingt-treize

3.90 89

VOLTAIRE CANDIDE, la pucelle d’Orléans, le
monde comme il va, lettres

philosophiques, l’homme aux quarante
écus, Micromégas

0.69 24

446 C. Kettaf and A. Yousfate

Fig. 3. Graphical representation of functions with decomposition into 560 b-spline basis
functions

Fig. 4. Result of the LDA on the b-spline basis functions decomposition coefficients

5.3 Decomposition into Basis Functions

To implement the FDA, we proceeded to decomposition into basic functions.
The Fig. 3 shows all the learning functions in the form of decomposition into
b-spline basis functions.

5.4 Application of the Discriminant Analysis on the Coefficients

The Fig. 4 shows the result of the discrimination on the obtained coefficients of
the decomposition.

5.5 Result of the Classic LDA on the Same Texts

To show the interest of passing from the finite dimension to the infinite dimen-
sion, we applied the LDA (Linear Discriminant Analysis) on the same texts using
finite dimension vectors representation (see the Fig. 5, The number of variables
is equal to 1000).

Authorship Attribution by Functional Discriminant Analysis 447

Fig. 5. Result of the discrimination using LDA in finite dimension

5.6 Evaluation of the Classification

Table 2 shows the evaluation of the classification quality of the discriminant
analysis in the functional and multi-dimensional case on the same learning and
test data.

For this we used 14-cross validation. The set of functions representing the
texts is thus divided into 14 subsets. 13 subsets are used for learning while the
14th is the test subset. By iterrating 14 times. We chose 14-cross validation
because all classes have a cardinality greater than or equal to 14.

Table 2. Comparative table of evaluation of the classification using FDA and LDA
methods by 14-cross validation

Correctly assigned Incorrectly assigned

FDA 87.14% 12.86%

LDA 7.011% 92.989%

6 Conclusion

LDA is a simple and highly effective supervised classification method. The exten-
sion of this method to the functional case makes it possible to exploit the infor-
mation presented by a functional random variable along its entire trajectory.
Despite its simplicity, the method of text representation by transition between
words has the advantage of keeping a lot of stylistic information and not requir-
ing a prior reduction of the dimension. The results of the experiment, showed
that the application of functional LDA to the identification of the author made
it possible to discriminate perfectly the classes, in addition this approach gave
a very interesting results when the assignment of new texts.

448 C. Kettaf and A. Yousfate

References

1. Preda, C.: L’approche PLS pour l’analyse de données fonctionnelles. Bull. Soc. Sci.
Méd. 2, 171–185 (2006)

2. Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification
of online messages: writing style features and classification techniques. J. Am. Soc.
Inf. Sci. Technol. 57, 378–393 (2006)

3. Kjell, B.: Discrimination of authorship using visualization. Inf. Process. Manage.
30, 141–150 (1994)

4. Hastie, T., Ruja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Stat.
23, 73–102 (1995)

5. Grieve, J.: Quantitative authorship attribution: an evaluation of techniques. Lit.
Linguist. Comput. 22, 251–270 (2007)

6. Holmes, D.I.: Authorship attribution. Comput. Humanit. 28, 87–106 (1994)
7. Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Automatic text categorization in

terms of genre and author. Comput. Linguist. 26, 471–495 (2000)
8. Burrows, J.F.: Word patterns and story shapes: the statistical analysis of narrative

style. Lit. Linguist. Comput. 2, 61–70 (1987)
9. Argamon, S., Levitan, S.: Measuring the usefulness of function words for author-

ship attribution. In: Proceedings of the Joint Conference of the Association for
Computers and the Humanities and the Association for Literary and Linguistic
Computing (2005)

10. de Vel, O., Anderson, A., Corney, M., Mohay, G.: Mining e-mail content for author
identification forensics. ACM SIGMOD Rec. 30, 55–64 (2001)

11. Forsyth, R., Holmes, D.: Feature-finding for text classification. Lit. Linguist. Com-
put. 11, 163–174 (1996)

12. Baayen, R., van Halteren, H., Tweedie, F.: Outside the cave of shadows: using
syntactic annotation to enhance authorship attribution. Lit. Linguist. Comput.
11, 121–132 (1996)

13. Gamon, M.: Linguistic correlates of style: authorship classification with deep lin-
guistic analysis features. In: Proceedings of the 20th International Conference on
Computational Linguistics (2004)

14. McCarthy, P.M., Lewis, G.A., Dufty, D.F., McNamara, D.S.: Analyzing writ-
ing styles with Coh-Metrix. In: Proceedings of the Florida Artificial Intelligence
Research Society International Conference (2006)

15. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

16. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

17. Argamon, S., Whitelaw, C., Chase, P., Hota, S.R., Garg, N., Levitan, S.: Stylistic
text classification using functional lexical features. J. Am. Soc. Inform. Sci. Technol.
58, 802–822 (2007)

18. Posadas-Durán, J.P., Gómez-Adorno, H., Sidorov, G.: Application of the dis-
tributed document representation in the authorship attribution task for small cor-
pora. Soft Comput. 21, 627–639 (2017). American Society for Information Science
and Technology

19. Schmidt, H.: Probabilistic part-of-speech tagging using decision trees (1994)

Authorship Attribution by Functional Discriminant Analysis 449

20. Akimushkin, C., Amancio, D.R., Oliveira, O.N.: On the role of words in the network
structure of texts: application to authorship attribution. Phys. A (2017). https://
doi.org/10.1016/j.physa.2017.12.054

21. Stamatatos, E., Koppel, M.: Plagiarism and authorship analysis: introduction to
the special issue (2016). http://www.jstor.org/stable/41486024

https://doi.org/10.1016/j.physa.2017.12.054
https://doi.org/10.1016/j.physa.2017.12.054
http://www.jstor.org/stable/41486024

Tools and Software Track

An Overview of Geometry Plus
Simulation Modules

Angelos Mantzaflaris(B)

Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur, Nice, France
angelos.mantzaflaris@inria.fr

Abstract. We give an overview of the open-source library “G+Smo”.
G+Smo is a C++ library that brings together mathematical tools for
geometric design and numerical simulation. It implements the relatively
new paradigm of isogeometric analysis, which suggests the use of a unified
framework in the design and analysis pipeline. G+Smo is an object-
oriented, cross-platform, fully templated library and follows the generic
programming principle, with a focus on both efficiency and ease of use.
The library aims at providing access to high quality, open-source software
to the community of numerical simulation and beyond.

Keywords: C++ · B-splines · NURBS · Isogeometric analysis ·
Geometric design

1 Introducing Isogeometric Analysis

Isogeometric analysis suggests the use of common spline basis for geometric mod-
eling and finite element analysis of a given model. Engineering process begins
with designers encapsulating their concepts on the computer using Computer
Aided Design (CAD) software. With the finite element analysis (FEM) technol-
ogy, the CAD model must be first meshed before any numerical simulation can
be performed on it. The mesh generation results in a piecewise linear approx-
imation of the original model, that both increases the data volume and intro-
duces unwanted approximation errors in the geometric description. Moreover,
the mesh generation phase involves tedious manual work for producing finite
element meshes that are suitable for analysis. Last but not least, the results of
the analysis should be projected back to the original CAD model, for allowing
the designer to update it accordingly. The data transfer between models suitable
for design (CAD) and analysis (FEM) poses a severe problem in industry today.

To address these issues Hughes and co-workers introduced in [4] an analysis
framework which is based on NURBS (Non-Uniform Rational B-Splines), which
is standard technology employed in CAD systems. They propose to keep the
exact CAD geometry by NURBS surfaces, and apply numerical simulation using
the same NURBS as basis functions for the analysis [2].

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 453–456, 2020.
https://doi.org/10.1007/978-3-030-43120-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_35

454 A. Mantzaflaris

2 General Concept of the Library

The design and software development philosophy of G+Smo was triggered by
the observation that simply augmenting existing libraries for geometric design
or numerical analysis will not succeed, since the implementation of isogeometric
methods requires a fundamentally new approach to unlock the full set of benefits
of the isogeometric paradigm.

The goal of G+Smo is to realize the seamless integration of Finite Element
Analysis (FEA) and Computer-aided design (CAD) with open-source code from
and to the isogeometric analysis community.

Three general guidelines have been set for the development process. Firstly,
we promote both efficiency and ease of use; secondly, we ensure code quality
and cross-platform compatibility and, thirdly, we always explore new strategies
better suited for isogeometric analysis before adopting FEA practices.

G+Smo is an object-oriented, templated C++ library, that implements a
generic concept for IgA, based on abstract classes for geometry map, discretiza-
tion basis, assemblers, solvers etc. It makes use of object polymorphism and
inheritance techniques in order to support a variety of different discretization
bases, namely B-spline, Bernstein, NURBS bases, hierarchical and truncated
hierarchical B-spline bases of arbitrary polynomial order. The library was first
announced in the extended abstract [5], a more detailed description is contained
in [6].

3 Open-Source License

The library is licensed under the Mozilla Public License v2.0 (MPL). The MPL is
a simple copy-left license. The MPL’s “file-level” copy-left is designed to encour-
age contributors to share their modifications with the library, while still allowing
them to combine the library with code under other licenses (open or proprietary)
with minimal restrictions. The latest revision can be downloaded from GitHub:
https://github.com/gismo.

4 Modules

The library is partitioned into smaller entities, called modules. Examples of
available modules include the dimension-independent NURBS module, the data
fitting and solid segmentation module, the PDE discretization module and the
adaptive spline module, based on hierarchical splines of arbitrary dimension and
polynomial degree.

At the present point, the B-spline, Bernstein, NURBS bases, and also the
truncated and non-truncated hierarchical B-spline bases (cf. [3]) are in a stable
and functional state, for general dimension. From the simulation side, isoge-
ometric simulation algorithms with the Galerkin approach, notably over non-
conforming multi-patch physical domains are implemented and in a stable state.
A module treating a large class of linear and non-linear elasticity problems was

https://github.com/gismo

An Overview of Geometry Plus Simulation Modules 455

also released recently [7]. A module dedicated to isogeometric multigrid solvers
on multipatch domains is also available [8].

Another interesting module is the assembler module based on expression tem-
plates, which are a powerful C++ technique for the development of user-friendly
and versatile code. They have the advantage of bringing the implementation of
a numerical method much closer to the mathematical notation. This allows the
easy formation of isogeometric Galerkin matrices using a high-level language,
without sacrificing efficiency.

The library takes advantage of modern, efficient move semantics, which are
available in recent C++ versions, for more efficiency and cleaner code.

5 Code Management and Documentation

In order to deliver a successful library, quality of the code needs to be assured. To
this end, the CMAKE cross-platform compilation system is used in the library,
which allows for seamless installation of the library on different platforms. More-
over Jenkins and a CDASH testing servers are in place for executing regular
nightly builds, memory checks and unit-tests on different platforms (Windows,
Linux and MacOSX). Documentation is done mostly in the form of in-source
text, using Doxygen as well as in the Wiki pages http://gs.jku.at/gismo. The
documentation is currently available online in the form of HTML pages to all
the users, and is updated regularly, as we actively continue adding new material,
see https://gismo.github.io.

6 Third-Party Dependencies

Apart from the C++ Standard Library, we use open-source third party soft-
ware for common tasks, for example the Eigen (http://eigen.tuxfamily.org) lin-
ear algebra library for (sparse) matrices and linear algebra computations, as
well as tools for argument parsing, input and output of XML formatted files, the
openNurbs library for reading Rhino’s 3DM commercial CAD format (https://
www.rhino3d.com/opennurbs), Trilinos (https://trilinos.github.io) for high per-
formance solvers etc.

7 Plugins and Extensions

Concerning plugins, visualization and user interfaces, we developed a plug-in of
G+Smo for the Axl geometric modeling platform ([1], http://axl.inria.fr. This
provides an interactive GUI (graphical user interface) that allows the user to
manipulate multi-patch geometries by their control points and work with compli-
cated CAD models. Nevertheless, our primary approach to visualization is based
on the well-established Paraview software (https://www.paraview.org/)and has
been enhanced, e.g., with trimmed surface visualization, gradient fields and
absolute error plots, etc. Another connection has been setup with Siemens’

http://gs.jku.at/gismo
https://gismo.github.io
http://eigen.tuxfamily.org
https://www.rhino3d.com/opennurbs
https://www.rhino3d.com/opennurbs
https://trilinos.github.io
http://axl.inria.fr
https://www.paraview.org/

456 A. Mantzaflaris

Parasolid geometric CAD kernel (https://www.plm.automation.siemens.com),
which is widely used in industry. Currently, this allows us to exchange data
and to use the advanced modeling utilities available in Parasolid from within
G+Smo.

Acknowledgement. G+Smo is jointly developed by several contributors at the
Johannes Kepler University, at the RICAM Institute of the Austrian Academy of
Sciences (in the frame of the Austrian Science Fund NFN project S117) at INRIA
and at the Department of Applied Mathematics of TU Delft (The Netherlands). More
contributions have been made by developers from other institutions. The full list of
contributors is available at https://github.com/gismo/gismo/wiki/About--G-Smo.

References

1. Christoforou, E., Mantzaflaris, A., Mourrain, B., Wintz, J.: Axl, a geometric modeler
for semi-algebraic shapes. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J.
(eds.) ICMS 2018. LNCS, vol. 10931, pp. 128–136. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96418-8 16

2. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of
CAD and FEA. Wiley, Chichester (2009)

3. Giannelli, C., Juettler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Speh, J.: THB-
splines: an effective mathematical technology for adaptive refinement in geometric
design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365
(2016). http://dx.doi.org/10.1016/j.cma.2015.11.002

4. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng.
194(39–41), 4135–4195 (2005). http://dx.doi.org/10.1016/j.cma.2004.10.008

5. Juettler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry +
simulation modules: Implementing isogeometric analysis. Proc. Appl. Math. Mech.
14(1), 961–962 (2014). http://dx.doi.org/10.1002/pamm.201410461

6. Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinu-
ous galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric
Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23315-4 1

7. Shamanskiy, A., Simeon, B.: Isogeometric simulation of thermal expansion for twin
screw compressors. IOP Conf. Ser.: Mater. Sci. Eng. 425, 012031 (2018). https://
doi.org/10.1088/1757-899x/425/1/012031

8. Takacs, S.: Fast multigrid solvers for conforming and non-conforming multi-patch
isogeometric analysis, arXiv preprint https://arxiv.org/abs/1902.01818 (2019)

https://www.plm.automation.siemens.com
https://github.com/gismo/gismo/wiki/About--G-Smo
https://doi.org/10.1007/978-3-319-96418-8_16
https://doi.org/10.1007/978-3-319-96418-8_16
http://dx.doi.org/10.1016/j.cma.2015.11.002
http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1002/pamm.201410461
https://doi.org/10.1007/978-3-319-23315-4_1
https://doi.org/10.1088/1757-899x/425/1/012031
https://doi.org/10.1088/1757-899x/425/1/012031
https://arxiv.org/abs/1902.01818

DD-Finite Functions Implemented in Sage

Antonio Jiménez-Pastor(B)

Johannes Kepler University, Altenbergerstr. 69, 4020 Linz, Austria
ajpastor@risc.uni-linz.ac.at

https://www.dk-compmath.jku.at/people/antonio

Abstract. We present here the Sage package dd functions which pro-
vides symbolic features to work with DD-finite functions, a natural exten-
sion of the class of holonomic or D-finite functions, on the computer. Clo-
sure properties, composition of DD-finite functions and sequence extrac-
tion are key features of this package. All these operations reduce the
problem to linear algebra computations where classical division-free algo-
rithms are used.

Keywords: Holonomic · D-finite · Generating functions · Closure
properties · Formal power series

1 Introduction

A formal power series f(x) =
∑

n≥0 anxn is called D-finite, if it satisfies a linear
differential equation with polynomial coefficients [7,11]. Many generating func-
tions of combinatorial sequences are of this type as well as the most commonly
used special functions [1,2,9]. These objects can be represented in finite terms
using a defining differential equation and sufficiently many initial values.

We recently extended this class to a wider set of formal power series that
satisfy linear differential equations with D-finite coefficients, and call them DD-
finite [4]. There were several implementations of D-finite functions in several
computer algebra systems [6,8,10], but here we present the first implementation
for DD-finite functions with a Sage package including all the closure properties
and operations that have been proven for DD-finite functions.

The finiteness of the representation for D-finite functions allows to finitely
represent DD-finite functions, with a defining differential equation and initial
conditions. A difference between our package and other implementations is that
ours handle mainly particular solutions of differential equations, making the ini-
tial conditions an important point of our implementation. This leads to two
different steps while manipulating DD-finite functions: computing the final dif-
ferential equation and computing the initial data required for the specific object.
More details on the structure we used can be found in Sect. 2.

This author was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK15.

c© Springer Nature Switzerland AG 2020
D. Slamanig et al. (Eds.): MACIS 2019, LNCS 11989, pp. 457–462, 2020.
https://doi.org/10.1007/978-3-030-43120-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43120-4_36&domain=pdf
https://doi.org/10.1007/978-3-030-43120-4_36

458 A. Jiménez-Pastor

The package ore algebra [6] has implemented the differential operators com-
putations for D-finite functions and the package presented here uses it by default.
If the user desires to avoid the package ore algebra, or it is not installed, a dif-
ferent implementation [3] is automatically provided. Such implementation is used
by default with DD-finite functions.

At the time of writing, the package described in this document is still under
construction and has not been added to the official Sage distribution. Readers
who want to try it are invited to download and install the current version from
the public git distribution using the command

sage -pip [--user] install git+https://github.com/Antonio-JP/dd functions.git

and are encouraged to send bug reports, feature requests or other comments. If
the user has not a Sage installation available, it is still possible to test a demo
of the package, using Binder, from the personal webpage of the author.

Once installed, the user can start using the package typing the following
command on Sage:
sage: from ajpastor.dd_functions import *

All the features of the package (structures for our objects, arithmetic oper-
ations over them, built-in examples, tests, etc.) can be used without further
configuration. More details on how to build the structures and the examples
available can be found in Sects. 2 and 3.

2 Data Structure

Although the main goal of our package is to manipulate DD-finite functions, the
theory can be stated in a more general setting that is covered by our implemen-
tation as well. For further details, see [4].

Definition 1. Let R be a non-trivial differential subring of K[[x]] and R[∂] the
ring of linear differential operators over R. We call f ∈ K[[x]] differentially
definable over R if there is a non-zero operator A ∈ R[∂] that annihilates f ,
i.e., A·f = 0. By D(R) we denote the set of all f ∈ K[[x]] that are differentially
definable over R.

Differentially definable functions are implemented using the Parent-Element
model of Sage and our Parent structure is included in the categories framework,
allowing the user to have an extended coercion system. With this, the user have
a more natural management of the differentially definable functions.

2.1 The Parent Structure: DDRing

The structure DDRing describes the sets of differentially definable functions.
Thus, they are built from any ring structure in Sage, R. Following the Parent-
Element model of Sage, DDRing is a parent class that will include as element any
differentially definable function over R.

DD-Finite Functions Implemented in Sage 459

To create a DDRing, the user has to provide the base ring R for the coefficients
of the differential operators with a derivation. There are several optional inputs
that allow more flexibility and a wider use of the structure, such as different
derivations or adding parameters. For more information, use DDRing?.

This structure is only used to create differentially definable functions and to
cast other elements (if possible). It is also used to compute a common parent
(pushout) for two different elements, which allows the user to compute more
easily with these objects.

Several DDRings are defined by default:

– DFinite: the ring of D-finite functions (R = Q[x]),
– DDFinite: the ring of DD-finite functions (R = D(Q[x])),
– DFiniteP: the ring of D-finite functions with a parameter P (R = Q(P)[x]).
– DFiniteI: the ring of D-finite over the Gaussian rationals (R = Q(i)[x]).

2.2 The Element Structure: DDFunction

The class DDFunction is the Element class of DDRing and represents a differen-
tially definable function within a particular DDRing.

A DDFunction is always included in a DDRing so, for creating a new one, the
method element from the corresponding DDRing must be used. Any DDFunction
is represented using a linear differential equation and some initial values, so
the user must provide two lists to create a DDFunction: a list [r0, . . . , rd] with
coefficients for the differential equation and a list [a0, . . . , an] with initial values
for the function:

([r0, . . . , rd], [a0, . . . , an]) �→
{

rdf
(d)(x) + · · · + r0f(x) = 0,

f(0) = a0, . . . , f
(n)(0) = an.

The method element also checks that the coefficients ri are in the appropriate
ring R and that the initial conditions ai are elements of the field where the
function f(x) is considered and are valid for the equation defined by the list
[r0, . . . , rd].

If not enough initial conditions ai are provided, the object will represent all
the solutions to the given differential equation with the given initial conditions.
This makes the creation of objects flexible but some features (such as composi-
tion) are not available unless enough initial data is provided.

3 Selected Methods and Main Features

3.1 Utility Methods

There are several methods that allow the user to extract information or manip-
ulate a DDFunction.

– equation: the differential operator that defines the function.
– getInitialValue: the value of the nth derivative of the function at x = 0.

460 A. Jiménez-Pastor

– getSequenceElement: the value of the nth coefficient of the formal power
series.

– getOrder: the order of the differential operator defining the function.
– min coefficient: the first non-zero coefficient of the formal power series.
– zero extraction: the order of the formal power series and the DDFunction

defined after factoring the maximal power of x possible.
– change init values: returns a new DDFunction with the same differential

equation and some different initial conditions given as parameters.

3.2 Operational Methods

Differentially definable functions satisfy several closure properties. They are
closed under addition, multiplication, differentiation and integration [4]. The
user can also compute the division [4] and composition [5] whenever those oper-
ations are defined as formal power series.

– Addition: add or simply +
– Multiplication: mult or simply *
– Difference: sub or simply -
– Division: div or simply /
– Exponentiation: pow or simply ^
– Derivation: derivative.
– Integration: integrate. The value at x = 0 can be specified. By default, it

is 0.
– Composition: compose or the magic method call .

The implementations are based on linear algebra computations. Namely, com-
puting nullspaces for matrices where the coefficients are elements of the base ring
R. These linear algebra operations are usually carried by standard algorithms on
Sage, although for DD-finite functions, i.e., when the coefficients of the matri-
ces are D-finite functions, we have implemented a specialized version of Bareiss’
algorithm. For further details, see [3].

Several algebraic properties has also been proven (see [5,7]) for DDFunctions
and they can also be computed with our package using the following methods:

– DAlgebraic: given an algebraic equation of f(x) over a field F , it computes
its representation as an element of D(F).

– diff to diffalg: given a DDFunction, computes a differentially algebraic
equation (i.e., a non-linear differential equation).

3.3 Built-in Functions of the Package

Aiming for a more user friendly interface, we provide a set of examples of D-
finite and DD-finite functions that can be easily called and built from Sage
once the package is loaded. Some of these functions are elementary as the expo-
nential function (Exp) or trigonometric functions (Sin, Cos, Tan); some are

DD-Finite Functions Implemented in Sage 461

special functions as the Bessel functions (BesselD), hypergeometric pFq func-
tions, solutions to the Riccati differential equation (RiccatiD), the Mathieu
functions (MathieuD) or some generating functions for combinatorial sequences
(FibonacciD, CatalanD).

All implemented functions can be checked in Sage by typing ddExamples?.
This command displays the documentation for the ddExamples file where all
these built-in functions are explained with extended details. Also, check the
online documentation for a web view of the built-in examples and all the details
of the implementation.

3.4 Proving Identities with the Package

With the built-in examples and the operations included on the package the user
can check and prove equality of expressions (using either the Python syntax ==
or the method equals of the DDFunction class).

We offer two examples proving some trigonometric identities to show how to
use the package to prove identities:
sage: x = DFiniteI.variables ()[0]# Getting ’x’
sage: I = DFIniteI.base (). base (). gens ()[0]# Getting ’I’
sage: (Exp(I*x) + Exp(-I*x))/2 == Cos(x)
True

Similar syntax can be used also with DD-finite elements:
sage: t = Tan(x)# Getting the ’tan(x)’ function
sage: %time t.derivative () == 1 + t^2
CPU times: user 2.82 s, sys: 117 ms, total: 2.94 s
Wall time: 2.78 s
True

4 Conclusion

The Sage package dd functions provides a functional-focused implementation of
differentially definable functions for arbitrary differential rings. In particular, it
can be used for working with regular D-finite functions and DD-finite functions.

This package can be used to prove symbolically identities between DD-finite
functions and to obtain and handle combinatorial sequences that are out of the
D-finite scope.

Closure properties, such as addition, multiplication and exponentiation can
be performed by the package, as well as other operations such as composition
or division. It also provides several methods to convert algebraic functions to
DDFunction and to compute a non-linear equation with polynomial coefficients
for any differentially definable function.

Further work will be carried into this package adding more features, applying
the standard Sage conventions for names through the whole package and, in last
stage, pushing the package into the official Sage distribution. Readers can check
the public GitHub project and documentation to get information about the new
changes and features.

462 A. Jiménez-Pastor

References

1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathemat-
ics and Its Applications. Cambridge University Press, Cambridge (1999)

2. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions.
Release 1.0.16 of 2017–09-18. http://dlmf.nist.gov/

3. Jiménez-Pastor, A., Pillwein, V.: Algorithmic arithmetics with DD-finite functions.
In: Carlos, A. (ed.) Proceedings of the 2018 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2018, pp. 231–237. ACM, New York
(2018). https://doi.org/10.1145/3208976.3209009

4. Jiménez-Pastor, A., Pillwein, V.: A computable extension for D-finite functions:
DD-finite functions. J. Symb. Comput. 94, 90–104 (2019). https://doi.org/10.
1016/j.jsc.2018.07.002

5. Jiménez-Pastor, A., Pillwein, V., Singer, M.F.: Some structural results on Dn-
finite functions. Technical report, Doctoral Program Computational Mathematics,
Preprint series (2019, submitted to journal)

6. Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage. In: Gutierrez,
J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials. Lecture
Notes in Computer Science, pp. 105–125. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-15081-9 6

7. Kauers, M., Paule, P.: The Concrete Tetrahedron: Symbolic Sums, Recurrence
Equations, Generating Functions, Asymptotic Estimates, 1st edn. Springer, Vienna
(2011). https://doi.org/10.1007/978-3-7091-0445-3

8. Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D.
thesis, RISC-Linz, Johannes Kepler University (2009). http://www.risc.uni-linz.
ac.at/research/combinat/software/HolonomicFunctions/

9. Rainville, E.D.: Special Functions, 1st edn. Chelsea Publishing Co., Bronx (1971)
10. Salvy, B., Zimmermann, P.: GFUN: a Maple package for the manipulation of gen-

erating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2),
163–177 (1994)

11. Stanley, R.P.: Differentiably finite power series. Eur. J. Comb. 1(2), 175–188 (1980).
https://doi.org/10.1016/S0195-6698(80)80051-5

http://dlmf.nist.gov/
https://doi.org/10.1145/3208976.3209009
https://doi.org/10.1016/j.jsc.2018.07.002
https://doi.org/10.1016/j.jsc.2018.07.002
https://doi.org/10.1007/978-3-319-15081-9_6
https://doi.org/10.1007/978-3-319-15081-9_6
https://doi.org/10.1007/978-3-7091-0445-3
http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/
http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/
https://doi.org/10.1016/S0195-6698(80)80051-5

Author Index

Ablinger, Jakob 42
Akoglu, Tulay Ayyildiz 3
Alexandersson, Per 333
Alnajjarine, Nour 288
Ay, Nihat 357

Bayrakci, Alp Arslan 187
Borges-Quintana, Mijail 218
Borges-Trenard, Miguel Ángel 218
Büyükçolak, Yasemin 280

Camargos Couto, Ana C. 80
Carlini, Luca 357
Çelik, Türkü Özlüm 364
Cenk, Murat 202
Corless, Robert M. 80

Diatta, Sény 16
Drămnesc, Isabela 153

England, Matthew 341
Esirci, Fatma Nur 187

Florescu, Dorian 341
Foufou, Sebti 422
Fukasaku, Ryoya 10

Görgen, Christiane 357
Gözüpek, Didem 280
Güvel, Muhammet Selçuk 324

Huang, Bo 169

Imbach, Rémi 122
Isik, Sahin 408
Islam, Muhammad Zubair 395

Jamneshan, Asgar 364
Jebelean, Tudor 153
Jeffrey, David J. 80
Jiménez-Pastor, Antonio 457

Kampel, Ludwig 313
Kettaf, Chahrazed 438
Kim, Hyung Seok 395

Lai, Jiahua 138
Lavrauw, Michel 288
Ledoux, Viviane 35
Levin, Alexander 64
Linder, David 80
Liu, Tingwen 382
Luan, Qi 89, 105

Mantzaflaris, Angelos 453
Martínez-Moro, Edgar 218
Mehmood, Kashif 395
Mehta, Sanyam 234
Melkemi, Kamal Eddine 422
Michelucci, Dominique 422
Mokhtari, Bilal 422
Montúfar, Guido 364
Moreno Maza, Marc 80
Moroz, Guillaume 16, 35
Mou, Chenqi 138

Nabeshima, Katsusuke 10, 48
Niu, Wei 169

Özkahya, Lale 324
Ozkan, Kemal 408
Özkan, Sibel 280

Pan, Victor Y. 89, 105, 122
Pouget, Marc 16

Restadh, Petter 333

Saraswat, Vishal 234
Sato, Yosuke 10
Sekigawa, Hiroshi 10

Sevim, Taha 324
Shi, Jinqiao 382
Simos, Dimitris E. 313
Sturmfels, Bernd 364
Svadlenka, John 89
Szanto, Agnes 3

Tajima, Shinichi 48
Tarsissi, Lama 295
Torres-Guerrero, Gustavo 218

Ulu, Metin Evrim 202
Uncu, Ali Kemal 273

Venturello, Lorenzo 364
Vuillon, Laurent 295

Wagner, Michael 313

Xu, Hongbo 382

Ya, Jing 382
Yıldırım, Hamdi Murat 249
Yousfate, Abderrahmane 438

Zhang, Haoliang 382
Zhao, Liang 89

464 Author Index

	Preface
	Organization
	Contents
	Algorithms and Foundations
	Certified Hermite Matrices from Approximate Roots - Univariate Case
	1 Introduction
	2 Preliminaries
	2.1 Hermite Matrices
	2.2 Rational Number Reconstruction

	3 Construction and Certification of Hermite Matrices
	4 Example
	References

	On Parametric Border Bases
	1 Introduction
	2 Preliminary
	2.1 Comprehensive Gröbner System
	2.2 Border Bases in Parametric Polynomial Rings

	3 Properties of Parametric Border Bases
	4 Stability of Parametric Border Basis
	5 Conclusion and Remarks
	References

	Reliable Computation of the Singularities of the Projection in R3 of a Generic Surface of R4
	1 Introduction
	2 Preliminaries
	2.1 Regular, Critical and Singular Points
	2.2 Transversality and Genericity

	3 Generic Properties of Projected Surfaces
	4 Computing the Singularities of the Projected Surface
	4.1 Systems Encoding Singularities
	4.2 Regularity
	4.3 Ball System
	4.4 Algorithm

	5 Example
	5.1 Whitney Umbrella
	5.2 Large Polynomials

	6 Conclusion
	7 Appendix: Proof of Lemma 1
	References

	Evaluation of Chebyshev Polynomials on Intervals and Application to Root Finding
	1 Introduction
	2 Evaluation of Chebyshev Polynomials on Intervals
	2.1 Forward Error Analysis
	2.2 Backward Error Analysis

	3 Application to Root Finding
	References

	Proving Two Conjectural Series for (7) and Discovering More Series for (7)
	1 Introduction
	2 Proof of the Conjectures
	3 More Identities
	References

	Generalized Integral Dependence Relations
	1 Introduction
	2 Preliminaries
	2.1 Solving Extended Ideal Membership Problems
	2.2 Algebraic Local Cohomology and Standard Bases

	3 Generalized Integral Dependence Relations
	4 Parametric Cases
	References

	Hilbert-Type Dimension Polynomials of Intermediate Difference-Differential Field Extensions
	1 Introduction
	2 Preliminaries
	3 Dimension Polynomials of Intermediate Difference-Differential Fields. The Main Theorem
	4 Type and Dimension of Difference-Differential Field Extensions
	5 Multivariate Dimension Polynomials of Intermediate difference-Differential Field Extensions
	References

	Comprehensive LU Factors of Polynomial Matrices
	1 Introduction
	2 Preliminaries
	3 Comprehensive LU Method
	4 Implementation in Maple
	4.1 Efficiency

	5 Conclusion
	References

	Sublinear Cost Low Rank Approximation via Subspace Sampling
	1 Introduction
	2 Four Known Subspace Sampling Algorithms
	3 Deterministic Error Bounds for Sampling Algorithms
	3.1 Deterministic Error Bounds for Range Finder
	3.2 Deterministic Impact of Pre-multiplication on the Errors of LRA

	4 Accuracy of Sublinear Cost Dual LRA Algorithms
	4.1 Errors of Range Finder for a Perturbed Factor-Gaussian Input
	4.2 Output Errors of Range Finder Near a Matrix with a Random Singular Space
	4.3 Impact of Pre-multiplication in the Case of Gaussian Noise

	5 Multiplicative Pre-processing for LRA
	A Background on Matrix Computations
	A.1 Some Definitions
	A.2 Auxiliary Results
	A.3 Gaussian and Factor-Gaussian Matrices of Low Rank and Low Numerical Rank
	A.4 Norms of a Gaussian Matrix and Its Pseudo Inverse

	B Small Families of Hard Inputs for Sublinear Cost LRA
	References

	CUR LRA at Sublinear Cost Based on Volume Maximization
	1 Introduction
	2 Background: CUR LRA
	3 Background: Matrix Volumes
	3.1 Definitions and Hadamard's Bound
	3.2 The Impact of Volume Maximization on CUR LRA

	4 C-A Iterations
	5 CUR LRA by Means of C-A Iterations
	5.1 Volume of the Output of a C-A Loop
	5.2 From Maximal Volume to Maximal r-Projective Volume
	5.3 Complexity and Accuracy of a Two-Step C-A Loop

	6 CUR LRA of SPSD Matrices: Two Main Results
	7 Proof of Main Result 1
	8 Complexity Analysis
	A Small Families of Hard Inputs for Sublinear Cost LRA
	B Definitions for Matrix Computations and a Lemma
	C The Volume and r-Projective Volume of a Perturbed Matrix
	D The Volume and r-Projective Volume of a Matrix Product
	References

	New Practical Advances in Polynomial Root Clustering
	1 Introduction
	1.1 Previous Works
	1.2 Solving the LCP

	2 Counting the Number of Roots in a Well Isolated Disc
	2.1 Approximation of the 0-th Power Sum of the Roots in a Disc
	2.2 Black Box for Evaluating a Polynomial on an Oracle Number
	2.3 The P*-test

	3 Using the P*-test in a Subdivision Framework
	3.1 An Approximate P*-test
	3.2 Using the P* and P*"0365P*-test in a Subdivision Framework

	4 Clustering Roots of Polynomials with Real Coefficients
	5 Numerical Results
	6 Future Works
	References

	On the Chordality of Simple Decomposition in Top-Down Style
	1 Introduction
	2 Preliminaries
	2.1 Triangular and Simple Systems
	2.2 Subresultant Regular Subchains
	2.3 Chordal Graphs and Polynomial Sets

	3 Reformulation of Wang's Algorithm for Simple Decomposition in Top-Down Style
	4 Decomposition Tree of Wang's Algorithm for Simple Decomposition in Top-Down Style
	5 Chordality of Polynomial Sets in Wang's Algorithm for Simple Decomposition in Top-Down Style
	6 Concluding Remarks
	References

	Automatic Synthesis of Merging and Inserting Algorithms on Binary Trees Using Multisets in Theorema
	1 Introduction
	2 Proof–Based Synthesis
	2.1 Context
	2.2 Special Inference Rules and Strategies

	3 Experiments
	3.1 Synthesis of Merging on Non–sorted Binary Trees
	3.2 Synthesis of Merging on Sorted Binary Trees

	4 Conclusions and Further Work
	References

	Algebraic Analysis of Bifurcations and Chaos for Discrete Dynamical Systems
	1 Introduction
	2 Algebraic Criteria for Stability, Bifurcations and Chaos
	2.1 Stability Analysis of Fixed Points
	2.2 Bifurcation Analysis
	2.3 Snapback Repeller and Marotto's Theorem

	3 Experiments
	3.1 Illustrative Example
	3.2 Other Models and Remarks

	4 Discussion
	References

	Security and Cryptography
	Acceleration of Spatial Correlation Based Hardware Trojan Detection Using Shared Grids Ratio
	1 Introduction
	2 Preliminaries
	2.1 Representation of Circuits
	2.2 Delay Based Trojan Detection
	2.3 Variation Effect and Difficulties
	2.4 Review of Spatial Correlation Based HT Detection Method ch15esirci

	3 CCM: Adaptation of the Method in Sect.2.4 to Full Circuit
	4 Computational Cost Analysis for CCM
	5 Shared Grids Method (SGM) for Accelerating CCM
	6 Results: Comparison of CCM and SGM
	7 Discussion and Future Work
	References

	A Parallel GPU Implementation of SWIFFTX
	1 Introduction
	2 SWIFFT and SWIFFTX
	3 The Reference Implementation
	4 A Parallel Implementation
	5 Further Improvements and Occupancy Analysis
	6 Methodology and Results
	7 Conclusion
	References

	Computing an Invariant of a Linear Code
	1 Introduction
	2 Preliminaries
	2.1 Linear Codes
	2.2 The Weak Order Ideal of the Coset Leaders

	3 Leader Codewords of Linear Codes
	3.1 Computing Algorithm
	3.2 Computing up to a Given Level

	4 L(C) as an Invariant for Linear Codes
	5 Finding the Permutation
	5.1 The Proposed Signature
	5.2 Refining the Partition
	5.3 Computing Algorithm

	6 Experimental Results
	References

	Generalized Secret Sharing Schemes Using NMDS Codes
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Coding Theory
	2.2 Secret Sharing

	3 Proposed Secret Sharing Scheme
	3.1 Access Structure
	3.2 Share Construction
	3.3 Secret Recovery

	4 Analysis of the Proposed Scheme
	4.1 Cheating Detection and Cheating Identification

	5 Conclusion and Future Work
	References

	Exploiting Linearity of Modular Multiplication
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	3 Nonlinearity of Multiplication Operation
	4 Linear Relations for 1-Round IDEA
	4.1 Linear Relations for Operations
	4.2 A New List of Linear Relations
	4.3 New Linear Relations Algorithmically Generated

	5 Linear Weak Key Classes for IDEA
	6 Conclusion
	A Appendix: IDEA Block Cipher
	A.1 Key Schedule and Decryption Algorithm
	A.2 The MA-Structure and 1-Round IDEA Cipher

	B Appendix: New Linear Relations for 1-Round IDEA and 8.5-Round IDEA
	References

	Combinatorics, Codes, Designs and Graphs
	On a Weighted Spin of the Lebesgue Identity
	1 Introduction
	2 Proof of Theorem 1
	3 Partition Theoretic Interpretations of Corollary 1
	References

	Edge-Critical Equimatchable Bipartite Graphs
	1 Introduction
	2 Equimatchable Bipartite Graphs
	3 Edge-Critical Equimatchable Bipartite Graphs
	References

	Determining the Rank of Tensors in Fq2Fq3Fq3
	1 Introduction and Preliminaries
	2 The Algorithms
	2.1 Auxiliary Functions
	2.2 OrbitOfTensor
	2.3 RankOfTensor

	3 Computations and Summary
	References

	Second Order Balance Property on Christoffel Words
	1 Introduction
	2 Notation and Christoffel Words
	3 Balance Matrix
	3.1 Properties of the Balance Matrix
	3.2 Construction of the Balance Matrix for Christoffel Words

	4 Second Order Balance Matrix
	5 More About Christoffel Words
	5.1 Stern-Brocot Tree and Continued Fractions

	6 Recursive Construction of the Second Order Balance Matrix
	6.1 The Construction of Uab

	7 Perspectives
	References

	IPO-Q: A Quantum-Inspired Approach to the IPO Strategy Used in CA Generation
	1 Introduction
	2 Preliminaries
	2.1 Review of the IPO Strategy
	2.2 Review of the QiEAforCA Algorithm for CA Generation

	3 IPO-Q: A Quantum-Inspired IPO Algorithm
	4 Evaluation of Different Configurations of the IPO-Q Algorithm
	5 Comparison with IPOG-F and Best Known Upper Bounds for CAN
	6 Conclusion and Future Work
	References

	A Fast Counting Method for 6-Motifs with Low Connectivity
	1 Introduction
	2 Methodology
	2.1 Main Theorems

	3 Experimental Results and Conclusions
	4 Conclusions
	References

	LaserTank is NP-Complete
	1 Introduction
	1.1 Short Background on 3-SAT

	2 LaserTank
	2.1 The Reduction

	References

	Data Modeling and Machine Learning
	Improved Cross-Validation for Classifiers that Make Algorithmic Choices to Minimise Runtime Without Compromising Output Correctness
	1 Introduction
	1.1 Background and Main Thesis
	1.2 Outline of the Paper and Contribution

	2 Background on Variable Ordering for CAD
	2.1 Cylindrical Algebraic Decomposition
	2.2 Variable Ordering

	3 Prior ML Work on This Problem
	3.1 Results from CICM 2014
	3.2 Results from CICM 2019
	3.3 Results from SC-Square 2019
	3.4 Related Work on ML for Mathematical Software

	4 New Cross-Validation Based on Computing Times
	4.1 Motivation
	4.2 Traditional ML Cross-Validation
	4.3 Adapted ML Cross-Validation

	5 ML Experiment Methodology
	5.1 Problem Set
	5.2 Software
	5.3 Timings
	5.4 Computing the Features
	5.5 ML Models
	5.6 Evaluating the ML Models and Human-Made Heuristics

	6 Experimental Results
	6.1 Results of New Cross-Validation Method
	6.2 Comparison of Brown and Sotd on the 4-Variable Dataset
	6.3 Value of ML on the 4-Variable Dataset

	7 Summary
	References

	A Numerical Efficiency Analysis of a Common Ancestor Condition
	1 Introduction
	2 Background
	3 Examples
	4 Numerical Sampling
	5 Discussion
	References

	Optimal Transport to a Variety
	1 Introduction
	2 Geometric Combinatorics of the Wasserstein Distance
	3 An Algorithm and the Geometry of Triangles
	4 Parametric Linear Optimization over a Variety
	5 The Wasserstein Estimator of an Independence Model
	6 Conclusion
	References

	SFV-CNN: Deep Text Sentiment Classification with Scenario Feature Representation
	1 Introduction
	2 Method
	2.1 Expressive Grammar Plane Concept
	2.2 Scenario Features Vectors
	2.3 Text Sentiment Classification

	3 Experiments
	3.1 Data Set
	3.2 Experimental Setup
	3.3 Results and Discussion

	4 Conclusions
	References

	Reinforcement Learning Based Interactive Agent for Personalized Mathematical Skill Enhancement
	1 Introduction
	2 Related Works
	3 System Model
	3.1 Student Profile Module
	3.2 Learning Measurement Module
	3.3 Task Selection Model

	4 Proposed Methodology
	4.1 Concept of Adversarial Bandits
	4.2 Adversarial Bandit Solution Using the Exp3 Algorithm

	5 Performance Evaluation and Results
	5.1 Simulation Environment
	5.2 Baseline Method
	5.3 Experimental Results

	6 Conclusion and Future Works
	References

	Common Vector Approach Based Image Gradients Computation for Edge Detection
	1 Introduction
	2 Common Vector Approach Based Edge Detection
	2.1 Suppression of Noise by Gaussian Filtering
	2.2 Gradient Map Computation Using CVA
	2.3 Extraction of Peak Points
	2.4 Connection of Peak Points

	3 Experiments and Results
	3.1 Performance Evaluation in Terms of Objective Measures
	3.2 Performance Evaluation in Terms of Subjective Measures

	4 Conclusion
	References

	Optimizing Query Perturbations to Enhance Shape Retrieval
	1 Introduction
	2 Background and Principles
	2.1 Improvement of Shape Retrieval
	2.2 Shape Descriptors
	2.3 Shape Similarity and Statistical Distances

	3 GA-SR: Genetic Algorithm for Shape Retrieval
	3.1 Notations and Definitions
	3.2 Sensitivity to Perturbations and Discretization Artifacts
	3.3 The Genetic Algorithm

	4 Experiments
	4.1 Databases Used
	4.2 Tests and Results

	5 Conclusion
	References

	Authorship Attribution by Functional Discriminant Analysis
	1 Introduction
	2 Related Work
	2.1 Character Features
	2.2 Lexical Features
	2.3 Syntaxic Features
	2.4 Semantic Features
	2.5 Application-Specific Features
	2.6 Selection and Extraction of Features

	3 Functional Discriminant Analysis (FDA)
	4 Functional Representation of Texts
	4.1 Preliminary Processing of Texts
	4.2 Transformation of Texts into Functions
	4.3 Advantages

	5 Experimentation
	5.1 Presentation of the Used Corpus
	5.2 Results
	5.3 Decomposition into Basis Functions
	5.4 Application of the Discriminant Analysis on the Coefficients
	5.5 Result of the Classic LDA on the Same Texts
	5.6 Evaluation of the Classification

	6 Conclusion
	References

	Tools and Software Track
	An Overview of Geometry Plus Simulation Modules
	1 Introducing Isogeometric Analysis
	2 General Concept of the Library
	3 Open-Source License
	4 Modules
	5 Code Management and Documentation
	6 Third-Party Dependencies
	7 Plugins and Extensions
	References

	DD-Finite Functions Implemented in Sage
	1 Introduction
	2 Data Structure
	2.1 The Parent Structure: DDRing
	2.2 The Element Structure: DDFunction

	3 Selected Methods and Main Features
	3.1 Utility Methods
	3.2 Operational Methods
	3.3 Built-in Functions of the Package
	3.4 Proving Identities with the Package

	4 Conclusion
	References

	Author Index

