Chapter 2 ®)
IR-Varieties Check for

In the introduction to Chapter | we warned the reader that our category of real
algebraic varieties was insufficient for certain purposes. In this chapter we introduce
complex varieties with a conjugation map, which Atiyah [Ati66] calls “real spaces”.

In this introduction we will assume for simplicity that our varieties are projective.
Let X C P"*(C) be a complex algebraic set defined by real homogeneous equations.
The set V. C P"(R) of real solutions to these equations, which is simply X N P"(R),
is then a real algebraic set. Both X and V are sometimes called real varieties in
the literature, depending on the type of problem being studied. It is tempting to
distinguish the objects V and X by calling V areal algebraic variety (as in Chapter 1)
and X an algebraic variety defined over R. Some authors make this distinction—see
[BK99, Hui95] for example—but not all—see [Sil89, DIK00] for example. It is fairly
common to consider that a “real algebraic variety” and an “algebraic variety defined
over R” are the same thing, namely a complex algebraic variety which has a set of
real defining equations, or alternatively, a complex variety stable under conjugaison.

In practice we can mostly specify which point of view we are using on a case
by case basis, since many problems require just one point of view or the other.
Occasionally, however, we will need to jump between definitions in the course of a
single argument. We have chosen to call a pair of a complex algebraic variety and
a conjugation map an algebraic R-variety (see Definition 2.1.10) and reserve the
expression real algebraic variety for algebraic subsets of P"(R). Note that the “real
varieties” defined in [Sil89, 1.2] and [DIKO0O] are our R-varieties.

This chapter deals with R-varieties and their relationship with the real algebraic
varieties defined in the previous chapter. After defining R-varieties and studying their
main properties in Section2.1, we explain to what extent an R-variety determines a
real algebraic variety in Section2.2. In the subsequent section we will consider the
following question: given a real algebraic variety, does it determine an R-variety?
We end Section2.2 with a summary of the logical relations between real algebraic
varieties, R-varieties and schemes over R, achieving thereby one of the goals stated
in the Introduction. The final part of this chapter deals with refinements and conse-
quences of this theory. Section 2.5, which is technically difficult and can be skipped
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66 2 R-Varieties

on first reading, deals with sheaves and bundles, Section 2.6 deals with divisors and
Section 2.7 deals with R-plane curves.

2.1 Real Structures on Complex Varieties

In this section we introduce complex varieties to the study of real varieties. The
following example illustrates their usefulness: further on, Example 2.1.29 illustrates
the usefulness of abstract real structures on complex varieties.

Example 2.1.1 (Continuation of Example 1.5.20) Let us return to the real irre-
ducible algebraic variety F := Z(x? 4+ y?) C A?>(R) which is an isolated point
(0, 0). Consider the algebraic set X := Z¢(x? 4+ y?) € A?(C) which is a reducible
complex curve. The restriction of o : (x, y) — (X, ¥) to X is an involution sending
X toitself: its set of fixed points is F = X7 = {(0, 0)}. The complex algebraic curve
X has a unique real point. The point (0, 0) is the intersection of the two irreducible
components Z¢(x —iy) and Z¢(x + iy) and it is the only real point of X. We have
dim X = 1 and dim F = 0.

Going further, consider the variety V := Z(x? 4+ y> — z) C A3(R) and the mor-
phism 7: V — A'(R), (x, y, z) +> z. For any zo € A'(R) the fibre 7' (z0) is an
algebraic subset of the affine plane Z((z — zp)) ~ A2(R). If 7o > 0, ' (z0) is a
non singular real curve; 7 ~'(0) ~ F on the other hand is a point and for all zy < 0,
77 1(z0) is empty. Consider ¥ := Zc (x> + y?> —z) C A*(C) and ¢: ¥ — AN(C),
(x,y,2) +> z. For any zq the preimage 7o !(z0) is an algebraic subset of the affine
plane Z((z — z¢)) > A?(C). Consider a point zo € A'(R) ¢ A'(C). If zo > 0 then
e !(z0) is a non singular complex curve whose real locus is a non singular real curve.
If zg = O then g (0) ~ X is a singular complex curve whose real locus is a point.
If zo < O then 7 !(z0) is a non singular complex curve whose real locus is empty.

The complex variety Y provides a deeper understanding of this example. The real
variety V can be recovered as the set of fixed points of the involution defined by
complex conjugation on C*. More generally, we will seek to imitate the standard
conjugation map. On A" (C) = C" we denote by o := o~ the involution

o { AOC) — A
N,z — @ T -

In particular, for any z € C, o41(z) = z. Similarly, on P"(C) we denote by op :=
opn the standard conjugation map

) P"(C) — P"(C)
oe- (p:xp: - ix)H— Xo:X1:- X,

We can recover R” C C" as the set of fixed points of ox» and the real projec-
tive plane P"(R) C P"(C) as the set of fixed points of op:. We will generalise this
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situation to an arbitrary (algebraic or analytic) complex variety. In other words, we
will introduce real structures (analogues of o, and op) on complex varieties: see
Definition2.1.10 for more details. We note immediately that for general X C C”" it
is not enough to consider the restriction of o to X for two reasons. Firstly, we have
to require that this restriction induces a morphism from X to X (i.e. oa(X) C X).
Secondly, a given complex variety X can have several different real forms (see Def-
inition2.1.13) corresponding to different real structures. In other words, there are
pairs of complex varieties X; and X, defined by real polynomials which are iso-
morphic as complex varieties but do not have an isomorphism defined over R: see
Example 2.1.29 for an example.

Let f be a holomorphic function (such as a polynomial) defined in a neighbour-
hood of zg = (ZO,lv ey ZO,n) eC" by

f@) = Z ar(z1 — 200" .. (20 — z0.0)™

keNn

There is then a conjugate holomorphic function of f, denoted ¢ f, defined in a
neighbourhood of Zg = (Zo.1, - . -, Z0.0) € C" by

@)=Y @ -z . (@ — o)

keNn

or in other words ? f = f o o4 = o1 0 f o opn. If F is a subset of C” defined by
the vanishing of the functions fi, ..., f then

F:={zeC'lop(z) € F}

is the set of common zeros of the functigns “fi,...,7 fi. Itfollows thatif F C A"(C)
is a complex algebraic affine set then F C A"(C) is also a complex algebraic affine
set.

Remark 2.1.2 Note that “ f and f are not the same thing. If f is a holomorphic
function then @ f is also holomorphic whereas f = o o f anti-holomorphic. Passing
from f to ? f simply involves conjugating coefficients. If f is a polynomial then 7 f
is also a polynomial, unlike f. The coefficients of the polynomial f are real if and

only if 7 f = f.
Exercise 2.1.3 (Sheaf on a conjugate algebraic set)

1. Let O be the sheaf of regular functions on A" (C) (resp. P"(C)). We define a sheaf
70 on A" (C) (resp. P"(C)) by setting

oWy ={"f1 feo} .

for every open set U in A" (C) (resp. P"*(C))
Prove that° O = O.
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2. Let F C A"(C) be an affine algebraic set. The sheaf of regular functions on F
is denoted O and the sheaf of regular functions on F is denoted O (These are
sheaves deduced from O: equipped with these sets, F and F are sub-varieties of
A" (C)—see Definition 1.3.7 and Example 1.3.8).

Prove that if F = F then °Op = (°O)p is a sheaf on F which is equal to O
by the above. We then say that OF is an R-sheaf: see Definition2.2.1 for more
details.

Proposition 2.1.4 Let X C A"(C) be an algebraic set. The restriction of opn to X
is an involution of X if and only if X can be defined by real polynomials.

Let X C P"(C) be an algebraic set. The restriction of opn to X is an involution of
X if and only if X can be defined by real homogeneous polynomials.

Proof If X = Z(Py, ..., P;) then by definition we have that X = ZCPy,...,° P)
and the restriction o |x is an endomorphism of X if and only if X = X. Suppose
that X = X. We then have that Z(Py,..., P)=Z(CPy,...," P) = Z(3(P| +
“P),....3(Pl+°P), (P —°P)), ..., (P, —°P)). The proposition follows
on noting that for any polynomial P with complex coefficients the polynomials
%(P +?P) and 2—11 (P — ? P) have real coefficients. The converse is immediate.
Similarly, if X is a projective algebraic variety defined in P (C) by homogeneous

polynomial equations
Pl(ZO""vzn) = =PI(Z09""ZV!)=07

then the variety X defined by ®*' P(zg, ..., 2,) = --- = "+ Py(20, ..., 2) =0
is an algebraic subvariety of P"(C). It is easy to check that if P is a homogeneous
polynomial then %(P +?P) and %(P — 9 P) are homogenous polynomials The
restriction of op to X is therefore an endomorphism of X if and only if X can be
defined by real homogeneous polynomials. (I

Before generalising the above to abstract varieties we need the following defini-
tion.

Definition 2.1.5 Let £ be a sheaf of complex functions over a topological space X.
The anti-sheaf L of L is defined over any open set U in X by

LWU):={f:=onof|feLl).

More generally, let X be a topological space and let £ be a sheaf of maps to crt
We define the sheaf £ over any open set U of X by

LWU) :={f=omof|feLll).

INote that £ is no longer a sheaf of rings, but a sheaf of vector spaces.
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Definition 2.1.6 Let (X, Ox) be a complex algebraic variety (resp. a complex ana-
lytic space”). The conjugate variety (resp. the conjugate analytic space) of X is
defined to be the topological space X equipped with the anti-sheaf of Oy

X :=(X,0Ox).
Exercise 2.1.7 If F is the subset of C" defined by the vanishing of functions
fir--., fi then F :={z € C"|opn(z) € F} is the vanishing locus cithe functions
“fls--s  fio If F C A"(C) is a complex affine algebraic set then F is a complex

affine algebraic set and o, induces an isomorphism of varieties from (F, OF) to the
conjugate variety (F, OF).

Let (X, Ox) and (Y, Oy) be complex algebraic varieties (resp. complex analytic
spaces). In particular, Ox and Oy are sheaves of complex valued functions. Recall
that a map ¢: X — Y is regular (resp. holomorphic) if and only if it is continuous
and for any function f € Oy (V) the function f o ¢ belongs to Ox (@~ "(V)). (See
Definition 1.3.4).

Definition 2.1.8 A map ¢: (X, Ox) — (Y, Oy) is anti-regular (resp. anti-
holomorphic) if and only if it is continuous and for every open set V in ¥ and
every function f € Oy (V) the function f o ¢ belongs to Ox (¢~ (V).

Remark 2.1.9 If X is a complex algebraic variety (resp. complex analytic space)
and Oy is its sheaf of regular functions (resp. holomorphic functions) the anti-sheaf
Oy is the sheaf of anti-regular (resp. anti-holomorphic) functions. A continuous
map ¢: X — Y is anti-regular (or anti-holomorphic) from (X, Ox) to (Y, Oy) if
and only if it is regular (or holomorphic) when considered as a map from (X, Ox)
to the conjugate variety (¥, Oy)—see Exercise2.1.7.

As promised in the introduction, we now generalise the involutions o and op
to complex varieties. (We invite the reader to compare this definition with Atiyah’s
“real structures on a bundle” in [Ati66].)

Definition 2.1.10 (Real structure) A real structure on a complex algebraic variety
(resp. complex analytic space) X is an anti-regular (resp. anti-holomorphic) global
involution o on X.

Examples 2.1.11 (Basic examples)

1. o4 on A"(C);
2. op on P*(C);
3. (x:y) = (=y:%) on P/(C).

2In complex analytic geometry the term variety is usually only used for non singular complex
analytic spaces see Appendix D.
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Definition 2.1.12 (R-variety) In short, we will say that a pair (X, o) is an R-variety
if X is a complex variety and o is a real structure on X. If necessary we will specify
whether (X, o) is an algebraic R-variety or analytic R-variety. On occasion we will
wish to authorise our analytic varieties to be singular: we will then call them analytic
R-spaces.

Definition 2.1.13 An R-variety (X, o) is also called a real form of the complex
variety X.

Example 2.1.14 Real forms of Lie groups provide a rich family of examples. See
[MT86] for more details.

Remark 2.1.15 Generalising R-varieties to complex analytic varieties is particu-
larly useful when studying real K3 surfaces (Definition4.5.3), 2-dimensional com-
plex R-toruses (Definition4.5.22), real elliptic surfaces (Definition4.6.1) and real
Moishezon varieties (Definition 6.1.4).

Remark 2.1.16 Let (X, o) be an R-variety and let U C X be an open affine set.
The set o (U) is then also an open affine set, since o is a homeomorphism. Moreover,
if o: U - A"(C) is an embedding of U as an affine algebraic variety of ideal I =
(P,...,P) CC[Xy,....X,]thenogopoo: o(U) — A"(C) is an embedding
of o (U) as an affine variety of ideal °1 = (° Py, ...,° P;) C C[Xy, ..., X,].

Definition 2.1.17 A pair (Y, t) is an R-subvariety of (X, o) ifandonly if ¥ C X
is a complex subvariety of X and T = oy.

By definition, an R-variety (X, o) is quasi-affine (resp. affine, resp. quasi-
projective, resp. projective) if the complex variety X has a regular embedding
¢: X — A"(C) (resp. ¢: X — A"(C) with closed image, resp. ¥ : X — P"(C),
resp. ¥ : X — P"(C) with closed image). The central question is whether there is
always a regular embedding such that p oo = 04 0 ¢ (resp. Y oo =opo ). In
other words, is (X, o) isomorphic as a R-variety to a R-subvariety of (A" (C), oa)
(resp. (P"(C), op))? The answer to this question is yes: this is one of the main results
of the theory. Any quasi-projective R-variety can be defined by equations with real
coefficients: see Theorem2.1.33.

The well known identification (see [Ser56] for more details) of a complex projec-
tive algebraic variety with an analytic variety is compatible with its real structure.

Proposition 2.1.18 Let X be a complex projective algebraic variety. The variety X
then has a real structure if and only if there is an anti-holomorphic involution on the
analytic space underlying X.

Proof Let X" be the underlying analytic space of X, by which we mean that X" is
the set X with its Euclidean topology and the sheaf O’}( of holomorphic functions
associated to the sheaf Ox. If X is projective then the conjugate variety X is also
projective. Let o : X" — X" be an anti-holomorphic involution and let v : X" —
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X" be the canonical map induced by the identity on topological spaces. The map
o o X" — X" isholomorphic and X is projective so by Serre’s GAGA theorems
[Ser56] it is regular for the Zariski topology. In other words, o : X — X is an anti-
regular involution. (]

Consider X C P*(C) and let ¥: X — PV (C) be a morphism of complex vari-
eties. We denote by 71 := op o ¢ o op.

Proposition 2.1.19 (Conditions for the existence of a real structure) If a complex
quasi-projective variety X C P"(C) has a real structure then there is an isomorphism
Y X — X satisfying ° ¥ o = idy.

Proof 1f o is a real structure on X then we simply set ¢ := & = op o 0. We then
have that ' =6 ! o op~! = & 0 op. Moreover, Y = op o ¥ o op = op o (op ©
o) o 0p = 0 0 Op. O

Remark 2.1.20 We insist on the fact that a real structure o is an involution (i.e.
o oo = id). The following example by Shimura [Shi72a, p. 177] (see also [Sil92,
p. 152]) shows that a complex variety can be isomorphic to its conjugate without
having a real structure! (The variety in question has an anti-isomorphism or order 4
but no anti-isomorphism of order 2.)

Exercise 2.1.21 (Curves without real structures) Let m be an odd number; let ag € R
be a real number and let a € C\ R, k =1, ..., m be non real complex numbers.
Consider the curve Cy, q,....a, Which is the projective completion (i.e. the Zariski
closure of the image of the affine curve under the inclusion j: A’(C) — P*(C)—
see Lemma 1.2.43 and Exercise 1.2.44) of the affine plane curve of equation

m
y2 — aoxm + Z (akmerk + (_1)kaxmfk) )
k=1

1. Prove that the curve Cy 4.4, IS isomorphic to its conjugate via the map

91 (x,3) = (=1, Ly) for (x, y) # (0,0) and ¢ (0,0) = (0, 0).

Prove that ¢ induces an anti-isomorphism of Cy, 4,.....a, 0f order 4.

3. Assume that the number ay, the numbers a; and the numbers ay are all alge-
braically independent over Q.

N

(a) Prove that the only automorphisms of Ciy q,...q, are the identity and
p:(x,y) — (x,—y). (Use Exercise 1.2.80(3a).)
(b) Deduce that C,, 4. . 4, has no real structure.

See Section 5.5 and [KK02, Theorem 5.1] for examples of complex surfaces with
no real structure, or even with no anti-automorphism.

Definition 2.1.22 The real locus, or real part of an R-variety (X, o) is the set of
fixed points X° := {x € X | o (x) = x} of the real structure. By analogy with the set
of real points of a scheme defined over R the set of fixed points of ¢ is often denoted
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X(R) = X°

when there is no possible confusion.

Remark 2.1.23 Obviously, if (Y, t) is an R-subvariety of (X, o) then Y(R) C
X(R).

Examples 2.1.24 (Real loci of Examples2.1.11)
1. A*(R);

2. P'(R);
3. .

Definition 2.1.25 Let (X, o) and (Y, t) be R-varieties. A morphism of R-varieties
(or regular map of R-varieties) (X, o) — (Y, 7) is amorphism of complex varieties
¢: X — Y which commutes with the real structures

Vx e X, ¢(0(x)) =1(px)) .

Remark 2.1.26 R-varieties (X, o) and (Y, t) are therefore isomorphic if and only

if there is an isomorphism X Ly of complex varieties commuting with the real
structures. Indeed, if ¢ : X — Y commutes with the real structuresi.e.p oo =t 0 ¢
then ¢~': Y — X is a morphism of R-varieties; for any y € ¥ and x = ¢~ !(y)
welhave that 9 (o (¢~ () = ¢(0 (x)) = t(p(x)) = t(y) and hence o' (9~ (y)) =
o~ (T(¥)).

Definition 2.1.27 Let (X,o0) and (Y, t) be R-varieties. A rational map of
R-varieties (X, 0) --» (Y, 7) is a rational map of complex varieties

p: X --»Y
which commutes with the real structures
Vx € dom(p) C X, ¢(o(x)) = t(p(x)) .
Remark 2.1.28 Denoting the Galois group by G := Gal(C|R), the involution o
(resp. 7) equips X (resp. Y) with a G-action. A regular map of R-varieties (X, o) —
(Y, 7) is then by definition a G-equivariant regular map of complex varieties. Sim-

ilarly, a rational map of R-varieties is a G-equivariant rational map of complex
varieties.

If X is a projective algebraic variety defined in some P"(C) by homogeneous
polynomial equations

Pi(zo,...,20) == Pi(z0,...,2,) =0,
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then, as we have seen above, the variety X has areal structure induced by op : P*(C) —
P*(C) if and only if we can assume the polynomials P; have real coefficients, or in

other words if the homogeneous ideal generated by the P;s has a system of generators

with real coefficients. If this is the case then the real locus of the R-variety (X, op|x)

is simply X (R) = X N P"(R). Similarly, if X is an affine algebraic variety defined
in A"(C) by polynomial equations

Pl(Zla"'vzn)="'=PI(Z15"'7Z}‘!)=07

then o4 : A"(C) — A"(C) induces a real structure on the complex variety X if and
only if we can assume the polynomials P; have real coefficients and in this case the
real locus of the R-variety (X, o4|x) is given by

X([R) = X NA"R) .

Note that the variety X may however have other real structures than the restriction
of op or o,.

Example 2.1.29 (Two distinct real structures on the same complex variety) Consider
the affine algebraic plane curve C C A?(C) determined by the equation y> = x* — x.
As this equation has real coefficients, the conjugation o restricted to C yields a real
structure. If we set 0 := o4 |c then (C, 07) is an R-variety whose set of real points
C(R) = Z (y* — x(x — D(x + 1)) N A*(R) has two connected components in the
Euclidean topology—see Figure 2.1.

Now let us consider o, the restriction to C of the anti-regular involution
A%(C) — A2(Q), (x, y) — (—x,1y). We check that 0, (C) C C so the pair (C, 07)
is an R-variety whose real structure is not induced by o,. Let C’ be the curve of
equation y? = x3 4+ x in A?(C) end let ¢ be a square root of —i, {? = —i. The mor-
phism ¢: A%2(C) — A%(C), (x, y) > (ix, ¢y) is an automorphism of A?(C) whose

Fig.21 C:y =x(x —D(x+1)
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Fig.2.2 C':y> =x(x —i)(x +1)

restriction ¢|¢c: C — C’ is an isomorphism of complex varieties. Set 6’ := ¢|c o
05 0 9! the R-curves (C, 0») and (C’, o) are then isomorphic. Itis easy to check
that 0’ = o |¢'. The set of real points C'(R) = Z (y2 —x(x —i)x+ i)) N A%2(R)
has only one connected components—see Figure2.2. The R-varieties (C, o1) and
(C, 07) are therefore not isomorphic by Proposition 2.1.38 below.

In the above example, the abstract R-variety (C, 0,) isisomorphic to the R-variety
(C’', o) whose real structure is induced by the real structure on the surrounding space.
The fact that there is always an R-subvariety of some A” isomorphic to a given affine
abstract R-variety is guaranteed by the fundamental Theorem 2.1.30 below. We insist
on the fact that the isomorphism of complex varieties C — C’ is not always induced
by an automorphism of the surrounding space.

Theorem 2.1.30 (Real embedding of an affine R-variety) Let (X, o) be an algebraic
R-variety. If the complex variety X is affine, X — A™(C) then there is an affine
algebraic set F C A"(C) such that o5 (F) C F and there is an isomorphism of R-
varieties

(F,onlp) >~ (X,0) .

In particular, the ideal Z(F) is generated by real polynomials or in other words
there is an ideal I C R[X}, ..., X,,] such that Z(F) = I¢ and .A(X) is isomorphic
to A(F) = R[Xy, ..., Xu1/I) ®r C.

Remark 2.1.31 Note that n # m in general.
This theorem is a reformulation—modulo Lemma A.7.3—of the following result.

Lemma 2.1.32 Let (X, o) be an affine algebraic R-variety. There is then a real affine
algebraic set V.C A"(R) with defining ideal I = Z(V) C R[X\, ..., X,,] such that
the R-algebra A(V) = R[X\, ..., X,1/1 is isomorphic to the R-algebra of affine
invariant coordinates A(X)? ={f € AX) |°f = f} of X.
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Proof The above result is a special case of the scheme-theoretic result stating that
there is an equivalence between the data of an affine scheme X over C with a real
structure o and the data of a real scheme X, namely that if X = Spec A then Xy =
Spec A?. See Section 2.4 for more details. (]

Theorem 2.1.33 (Real embedding of a quasi-projective R-variety) Let (X, o) be
an algebraic R-variety. If the complex algebraic variety X is projective (resp. quasi-
projective), X < P™(C) then there is a projective (resp. quasi-projective) algebraic
set F C P"(C) such that op(F) C F and there is an isomorphism of R-varieties

(F,op|lp) = (X,0) .

Remark 2.1.34 We insist on the fact that, as in the affine case, n # m in general.

Proof The above statement is a special case of the scheme-theoretic statement that
there is an equivalence between the data of a quasi-projective scheme X over C
with a real structure o and the data of a real scheme X such that Xo = X/{(o). See
Section 2.4 for more details. O

Like many other authors, Silhol [Sil89] states the above result as a special
case of a general result of the Galois descent theory developed first by Weil
[Wei56, Theorem 7] then Grothendieck [Gro95, Théoréme 3]. See also Borel-Serre
[BS64, Proposition 2.6, p. 129]. We give an alternative Proof of Theorem?2.1.33 in
Section 2.6, namely Theorem 2.6.44.

In Example2.1.29, o4 and 04 (x, ¥) — (=X, iy) are distinct real structures on
A?(C). The R-varieties (AZ(C), O'A) and (Az (©), O'A/), however, are isomorphic via
the map ¢: (x, y) — (ix, ¢y). In this situation we say that the real structures are
equivalent.

Definition 2.1.35 Two real structures o and t on a complex variety X are equivalent
if they are conjugate under an automorphism of the complex variety X or in other
words if there is an automorphism ¢ of X such that

o:go_lotogo

In other words, o and t are equivalent if there is an isomorphism of R-varieties,
p: (X,0) = (X, 1).

Remark 2.1.36 Two real forms (see Definition2.1.13), (X, o) and (X, ) of a com-
plex variety X are isomorphic if and only if the real structures o and t are equivalent.

Example 2.1.37 Itis proved in [Kam75] that all real structures on the affine complex
plane are equivalent.

We recall that for any R-variety (X, o) we define #m¢(X?) = #mo(X (R)) to be
the number of connected components of the real locus in the Euclidean topology.
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Proposition 2.1.38 (Real locus and isomorphism) An isomorphism of R-varieties
¢: (X,0) — (Y, 1) induces a homeomorphism between X° and Y'* in the Euclidean
topology. In particular

#10(X%) = #m0(Y") orin other words #my(X (R)) = #my(Y (R)) .

Proof Start by noting that for a any given real structure the Euclidean topology on the
real locus is simply the topology induced by the Euclidean topology on the complex
variety. As ¢ is a homeomorphism for the Euclidean topology (see Exercise 1.4.4)
and commutes with the real structures, it induces a bijection X° — Y between the
fixed loci which is a homeomorphism. (]

Corollary 2.1.39 (Real locus and equivalence) Let o and t be real structures on a
complex variety X. If o and t are equivalent then X° and X* are homeomorphic for
the Euclidean topology and in particular

#710(X%) = #mo(XT) .

Proof The real structures o and t are equivalent so there is an isomorphism of
R-varieties ¢: (X,0) — (X, 7). U

Example 2.1.40 (Two real forms on the same complex variety) We return to the two
complex algebraic curves C and C’ studied in Example2.1.29 whose equations in
A%(C) are y? = x> — x and y?> = x* + x respectively. It is easy to check that the set
of real points of C(R) C A%(R) has two connected components, see Figure 2.1, and
that the set of real points of C’(R) C A?(R) has only one connected component, see
Figure 2.2. In particular, by Proposition 2.1.38, the R-curves (C, o}) and (C, 0,) are
not isomorphic.

The complex variety C therefore has two non-equivalent real structures o) =
ople: (x,y) = (X,5) and 02 = ¢ ooulc o gle: (x,y) = (=X, iy). It is
interesting to note that these non equivalent real structures are restrictions of real
structures o and ¢! 0 o4 0 ¢ on A%(C) which are equivalent by definition.

Remark 2.1.41 (Non-standard real structure on the projective line) We have already
met the antipodal map on the Riemann sphere:

op’: PH(C) — P'(C), (x0:x1) — (=X : Xp)

which is a real structure on IP!'(C) whose set of fixed points is empty and which is
therefore not equivalent to op.

Exercise 2.1.42 (Real structures on a complex torus) Find four pairwise non-
equivalent real structures on P'(C) x P'(C). (There are in fact exactly four classes
of real structures on P' (C) x P'(C).)
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Remark 2.1.43 Until recently it was not known whether the number of equivalence
classes of real structures on a given complex variety was finite. See [DIK00, Appendix
D] for a review of this question.

In [Les18], John Lesieutre constructs a variety of dimension 6 with a discrete
automorphism group which cannot be generated by a finite number of generators
and which has infinitely many non-isomorphic real forms. In [DO19], Dinh and
Oguiso use different methods to construct examples of projective varieties of any
dimension greater than one with non-finitely automorphism generated group. Their
work also provides examples of real varieties of any dimension greater than one with
infinitely many non-isomorphic real forms. In [DFM 18], Dubouloz, Freudenburg
and Moser—Jauslin construct affine rational varieties with infinitely many pairwise
non-isomorphic real forms in every dimension > 4.

Surprisingly, this finiteness question is still open for rational surfaces. See Benz-
erga’s work [Benl6a, Ben16b, Benl7] for the most recent results on this question.

2.2 R-Varieties and Real Algebraic Varieties

For a given quasi-projective R-variety (X, o) we seek to define a sheaf of regu-
lar functions on X (R) with which X (R) becomes a real algebraic variety as in
Definition 1.3.9. By Theorem 2.1.33 and Exercise 2.1.3 the structural sheaf satisfies
?0Ox = Oy, which justifies the following definition. Recall that a real structure is a
Zariski homeomorphism and in particular if U is open in X then sois o (U). Let £
be a sheaf of C"-valued functions. For any open set U in X and any map f € L(U)
we denote by ® f: o(U) — C" the map f oo =0y o f oo. We then have that
? f € L(o(U)) which generalises the notion of conjugate function introduced at the
beginning of Section2.1.

Definition 2.2.1 Let (X, o) be an R-variety and let £ be a sheaf of C"-valued func-
tions. The sheaf ? £ defined on any open set U of X by

LU ={f1] feLloW)}.

is a sheaf on X called the conjugate sheaf. We say that L is an R-sheaf if and only
if 2 £ = L. Note that this is required to be an equality, not an isomorphism.

From a cohomological point of view, the sheaves £ and ? L are similar. (See
[Liu02, Section 5.2] for an introduction to sheaf cohomology.) In particular, we have
the following proposition.

Proposition 2.2.2 Let (X, o) be an R-variety and let L be a coherent sheaf (Defi-
nition C.6.7) of C"-valued functions. We then have that

dime H*(X,° L) = dimec H*(X, L) .
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Proof See [Sil89, 1.(1.9)]. O

Let (X, 0) be a quasi-projective R-variety. We saw above that the sheaf of C-
algebras Oy is an R-sheaf: “Ox = Oy. In particular, for any open set U in X, the
morphism

Ox(U) — Ox(o(U))
fo—°f

is a ring isomorphism.

Remark 2.2.3 We can prove more: this map is an anti-isomorphism of C-algebras.
Let us prove anti-linearity: for any A € C and for any regular function f on U we
have that > (Af) = Af oo = A(f o 0) = A(° f).

If A is an R-algebra equipped with a G-action, where G := Gal(C|R), and o is the
corresponding involution of A then we denote by A® := A = {a € A | 0(a) = a}
the sub-algebra of invariants of A (see Definition A.7.2).

Let (X, o) be an R-variety. A subset U C X is said to be invariant if and only if
o (U) = U. Any such subset inherits a G-action: since o is a homeomorphism, for
any open set U in X the intersection U N o (U) is an invariant open set in X. For any
invariant open set U we say that a local section f over U is invariant if° f = f.Let
F be an R-sheaf of functions on X. We denote by Fx ) the sheaf of its restrictions to
X (R), see Definition C.1.6 and by Fy. () its invariant subset. We apply this definition
to Oy, which is an R-sheaf of functions on X, and obtain a sheaf

(OX)g(]R) = ((OX)X(R))G

of real-valued functions on X (R). It takes some work to prove that these functions
are R-valued, since a priori they are C-valued—see below for the proof.

Let us describe the local sections of this new sheaf. Let 2 C X (R) be an open
subset in the induced topology. We check first that any f € (Ox)g(R)(Q) is R-

valued. As f is invariant, for any x € 2 we have that f(x) = (° f)(x) = f(o(x))
and since x is a point in X (R) we have that o (x) = x so f(x) € R. By definition of
(Ox)x () there is an open neighbourhood U C X of x and an element g € Ox (U)
such that g|yne = fluna- Replacing U by U N o (U) and g by %(g + %g) we get an
element g € (Ox(U )¢ such that gluna = flung- In other words, the local sections
of (Ox)g(R) over an open set 2 in X (R) are as follows.

O0Sw @ ={f: Q- R|VxeQ,
3U open invariant neighbourhood of x in X and

3g € (Ox(U))° | glune = fluna} -

We invite the reader to compare the following theorem with Theorem 2.1.30.
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Theorem 2.2.4 Let F C A"(C) be a complex affine algebraic set such that T(F) is
generated by polynomials with real coefficients. In particular, F(R) := F N A" (R)
is a real algebraic affine set.

If F(R) is dense in F with respect to the Zariski topology then

Or@® =~ (OF)$m -

Proof Letl C R[X4,..., X,]beanidealandlet F = Z¢(I) C A*(C) be the com-
plex algebraic set whose ideal is Z(F) = I¢ and whose sheaf of regular functions
is Of. The set F(R) = F N A"(R) = Zr(/) C A"(R) is then a real algebraic set
whose sheaf of regular functions will be denoted by Or ). By hypothesis F is sta-
ble under 0. By Proposition C.3.12 these sheaves are isomorphic if and only if their
stalks are isomorphic.

Let Q@ C F(R) be a Zariski open subset in A"(R) and let f be an element of
Orm®)(£2). Passing to a smaller open set if necessary, we can assume that on Q
f= g where p, g are polynomials with real coefficients and ¢ does not vanish at
any point of Q. There is then an open set U of F in A"(C) on which g does not
vanish and hence f € Opr)(€2) can be extended to a regular function fc € O (U)
such that ? fc = fc. As F(R) is dense in F, the germ of the extension fc of f is
uniquely determined by the germ of f. It follows that Op g, ~ (O F)g(]R)' (]

Theorem 2.2.4 motivates our next definition.

Definition 2.2.5 Let (X, o) be an R-variety. We say that (X, o) has enough real
points if and only if X (R) is Zariski-dense in X.

Exercise 2.2.6 Let I C R[X,,..., X,] be a radical ideal and let F = Z¢(1) C
A" (C) be the associated complex algebraic set as in Definition 1.2.12. Let (F, op|F)
be the associated affine R-variety.

1. Provethat the R-variety (F, oa|F) has enough real points ifand only if T(Z (1)) C
IinR[Xy,..., X,]

2. Prove that the R-variety (F, op|r) has enough real points if and only if I is a
real ideal, see DefinitionA.5.14.

Exercise 2.2.7 Prove that the R-variety (F = Z¢c(x* + y?), oa|r)—which has a
non-empty real locus—does not have enough real points. (See Example2.1.1). Fur-
ther prove that Opmwy # (Op)g(R).

Theorem2.2.9 below characterises those R-varieties that have enough real points.
In particular, any irreducible non singular R-variety with non-empty real locus has
enough real points.

Lemma 2.2.8 Let (X, o) be an algebraic R-variety, let a € X (R) be a real point
and let m, be the maximal ideal of the local ring Ox ,. We then have that

dim¢ ma/mi = dimR((ma/mi)G) .
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Proof As a is real o induces an anti-linear involution on Oy , and by Lemma A.7.3
there is a basis of m, /mﬁ whose elements are all o-invariant. O

Theorem 2.2.9 (Density of the real locus in the complex variety)

1. The space A" (R) is dense in A" (C) for the Zariski topology.

2. Let V.C A"(C) be an irreducible affine algebraic set whose ideal I = Z(V)
is generated by polynomials with real coefficients. The real locus V(R) =V N
A"(R) is Zariski dense in V if and only if it contains at least one non singular
point of V.

3. Let (X, o) be an algebraic R-variety. The real locus X (R) is Zariski dense in
every irreducible component Z of X containing a non singular real point if

and only if X (R) is not contained in the singular locus of X. In other words,
————Zar

X(R) NZ=Zifandonly if (Reg Z) N X (R) is non empty.

Corollary 2.2.10 Let (X, o) be an algebraic R-variety. If the complex variety X is
irreducible and non singular and if X (R) # @ then (X, o) has enough real points,

or in other words X(R)Zar =X.
The behaviour of the Euclidean topology is very different.

Proposition 2.2.11 The real locus X (R) of an algebraic R-variety (X, o) is closed
in X for the Euclidean topology.

Proof The real structure o is continuous for the Euclidean topology and the real
locus X(R) = {x € X | x = o(x)} is therefore closed in X because the Euclidean
topology is Hausdorff. (]

Proof of Theorem 2.2.9 1. We reuse the argument of Proposition 1.5.29. Assume
for the moment that we have proved that if a polynomial function vanishes on all real
affine points then it is identically zero—this will be proved below by induction on
the dimension. If Z(I) is a closed subset of A”(C) containing A" (R) then for any
f € I the function f vanishes on every point of A”(R) and by assumption f is the
zero polynomial. It follows that I = (0) and Z(1) = A"(C).

Let us now prove that for any n, any polynomial vanishing on all real affine
points is identically zero. For n = 1, the result is immediate. Suppose thatn > 1 and
the induction hypothesis holds for n — 1. Let f € C[X{, ..., X,] be a polynomial
function vanishing on R”. We can write

FXL X)) =X £ XY + X (XD + -+ fo(X)

where X' = (X, ..., X,—1),d =deg fandVi =0, ...,d, f; € C[Xy,..., Xu_1].

For any X’ € R"~! the function X, — f(X’, X,,) vanishes at every real point so
f(X’, X,) is the zero polynomial for any fixed X’. It follows that the polynomial
functions f; vanish for every real X’ € R"~! and are therefore identically zero by
the induction hypothesis.
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2. As V isirreducible in A" (C), I = Z(V) is a prime ideal in C[ X1, ..., X, ] and
Ir .= I NR[Xy,..., X,]isaprimeideal in R[ X, ..., X, ] (LemmaA.2.9). We then
have that V = Z¢(Igr) and V(R) = Z(Ig). Set d = dimc V: by the Nullstellensatz
(Corollary A.5.13), we have that dim / = d (see Definition 1.5.9) and dim Ig = d
by Lemma 1.5.15. Note that a priori dimg V (R) is not necessarily equal to d: see
Example 1.5.20 or 2.2.15.

We now use the fact that there is a non singular point a = (aj, ..., a,) €
(Reg V) N A"(R). By Remark 1.5.28, V is a differentiable submanifold of dimension
2d < 2n at a or in other words there is a Euclidean neighbourhood W of a in C"
such that W N V is a Euclidean neighbourhood of a in V of real dimension 2d and
W N V(R) is a Euclidean neighbourhhood of a in V (R) of real dimension d (take an
open chart (W, ¢) where W = o (W) and justify that ¢ can be chosen G-equivariant
using Lemma A.7.3 if necessary). The subvariety V (R) is therefore a submanifold
of real dimension d at a. The real algebraic set V (R) then has Zariski dimension d
by Proposition 1.5.29, or in other words the dimension of the ideal Z(V (R)) is equal
to d. There is therefore a length d chain of prime ideals in R[ X1, ..., X,] contain-
ing Z(V(R)). As Z(V(R)) D Ir by definition if Z(V (R)) were different from I
we would get a chain of length d 4 1 of prime ideals containing I, contradicting
the fact that dim /g = d. It follows that Z(Z(Ig)) = Ir and hence V(R) = V by
2.2.6(1).

3. We can assume that X is irreducible. By definition of a algebraic variety, X can
be covered by open affine subsets. By hypothesis we can therefore chose an open
affine subset U in X such that U N X (R) is not contained in the singular locus of
X (and in particular, U is not empty and since X is irreducible, U is Zariski-dense).
Replacing U by U N o (U) if necessary we can assume that U is stable under o. As
U is affine (see Exercise 1.3.15(4)) the R-variety (U, o|y) is isomorphic to an affine
R-variety (V, oaly) C (A"(C), o) by Theorem2.1.30 so we now simply apply (2)
to this affine R-variety. V N A"(R) is dense in V N A"(C) = V and we note that
UNX@M) = ¢ ' (VNA"(R)) for any R-isomorphism ¢: U — V. O

Example 2.2.12 (Reducible, singular, non empty and non dense) We return to
Example 1.5.20. Consider the reducible affine algebraic R-variety

(V,0) := (Ze(x* + y*), oalv)

whose real locus is the isolated point a = (0, 0). By definition we have that

Clx.y . . .
Oy, = ((xgi;l)(o ) whence dim Oy, =dimOf , =1 et dimgmy,/mj , =

dimg ((my 4 /m%,.a)G) = 2, illustrating the fact that a is a real singular point of
the 1-dimensional complex variety. A contrario we have that dim Oy &), = dimg
MyRy,a/ m%, (®).« = 0 illustrating the fact that the real algebraic variety {a} is a zero-
dimensional non singular variety.

Example 2.2.13 (Irreducible, singular, dense) We return to Example 1.5.21. Con-
sider the affine algebraic R-curve
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Fig. 2.3 V(R) = {y? — x2(x —2) = 0} C A%(R)

(V,0) := (Zc(y* = x*(x — 2)), o4ly)

whose real locus is shown in Figure 2.3. The Zariski closure in A%(C) of the “branch”
RegV)NVR)=VR)N{x > 1}is V.

Remark 2.2.14 The point (0, 0) is not, however, contained in the Euclidean closure
of the branch V(R) N {x > 1}.

Example 2.2.15 (Irreducible, singular, non empty and non dense) This is an exam-
ple of an irreducible singular algebraic set V whose real locus is neither empty nor
Zariski dense in V. Consider

Px,y)=((x+i)2+yY = D((x =i +y =) +x>=
2yt 4yt =4yt 44457

which is a polynomial in R[x, y]. The set V := Z¢(P) C A%(C) is an irreducible
algebraic set and its real locus contains exactly two points. Indeed, let P (x, y) =
P(x,y) —x? and set V; := Z(P;). If (x,y) is a real point of V; then y’> =
1 —(x+i)?ory?>=1-(x—i)% As x and y are real, x must be identically zero
s0 y = ++/2 and V;(R) = {(0, v/2), (0, —+/2)}. We will now prove that we also
have that V(R) = {(0, v/2), (0, —+/2)}. Note that if P(x, y) = 0 for some real x
then this implies that P;(x, y) = x* 4+ 2x%y? 4+ y* — 4y? + 4 is a negative or zero
real number. Considering P; as a degree 2 polynomial in the variable ¥ = y? with
coefficients in R[x] we see that its discriminant is equal to —4x2.Tf x is non zero then
this discriminant is strictly negative so for real x and y, P(x, y) = 0 if and only if
P (x, y) = 0. We leave it as an exercise for the reader to show that P is irreducible,
a long but unsurprising calculation. (We constructed the polynomial P by starting
from the polynomial P; and looking for a perturbation of P; preserving the two real
points in V|, whose existence is guaranteed by Brusotti’s Theorem 2.7.10.).
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Exercise 2.2.16 Construct a similar example from the example given in
Remark 1.2.31(2).

Theorem 2.2.17 Let (X, o) be a quasi-projective algebraic R-variety. If the variety
(X, 0) has enoughreal points, or in other words if X (R) is Zariski dense in X, then the
real locus equipped with the restriction of the structural sheaf, (X ®R), (O X)g(R))’

is a real algebraic variety as in Definition 1.3.9.

Proof This follows easily from Theorem2.1.33 and the projective analogue of The-
orem2.2.4. (]

Corollary 2.2.18 Let (X, o) be a quasi-projective algebraic R-variety. If the com-
plexvariety X is irreducible and non singular and X (R) # & then (X(R), (Ox)g(R)>

is a real algebraic variety.
Proof See Corollary?2.2.10. (]

The following proposition justifies the introduction of a third type of morphism
between R-varieties, somewhere between regular maps Definition 2.1.25 and rational
maps Definition2.1.27.

Proposition 2.2.19 Let (X, o) and (Y, ) be R-varieties with enough real points
and let

v (X,0)--+ (Y, 1)

be a rational map of R-varieties. If the domain of W contains the real locus
X (R), then  induces by restriction a regular map of real algebraic varieties

(X®). ©0§w) = (Y®). O ).
Proof See Exercise2.2.26(2). O
Definition 2.2.20 Let (X, o) and (Y, 7) be R-varieties.

A rational R-regular map or real morphism

Vi (X,0)--» (Y, 1)

is a rational map of R-varieties such that X (R) C dom(y).

Remark 2.2.21 A morphism of R-varieties is of course always a rational R-regular
map but the converse is false.

Proposition 2.2.22 Let (X, o) and (Y, T) be quasi-projective R-varieties. Suppose
that these varieties have enough real points. The following then hold.

1. A rational R-regular map of R-varieties (X, o) --+ (Y, t) induces a regular map
of real algebraic varieties

(X®), (0x)§®) = (YR), Op)fg) -
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2. Conversely, any regular map of real algebraic varieties

(X®R), (005 ®) = Y®R), (Oy)fm)

is the restriction of an R-regular rational map v : (X,0) --+ (¥, 7).
3. Any rational map of R-varieties (X, o) --+ (Y, t) induces a rational map of real
algebraic varieties

(XR). (O0)§@) - (Y®), On)fw) -

4. Conversely, any rational map

(X®R), (O0)Fw) — (YR), (Or)fz)
is the restriction of a rational map (X, o) --+ (¥, 7).
Proof Left for the reader as an exercise. O

Remark 2.2.23 We insist on (2) in the above proposition: the complex extension of
areal regular map is not generally regular. The map (x, y) > m from A’ (R) to
A!(R) is a regular map of real algebraic varieties but does not extend to a morphism
of R-varieties.

Remark 2.2.24 The “isomorphisms” corresponding to R-regular rational maps are
the R-biregular birational maps. Note that it is important the map be both birational
and R-biregular: blowing up a real point (or in other words, contracting a (—1)-
real curve) on an R-surface (see Definition4.1.26 for more details) is an R-regular
birational map but it is not R-biregular.

Definition 2.2.25 Let (X, o) and (Y, 7) be R-varieties.
A R-biregular birational map or real isomorphism

v:(X,0)--» (Y, 1)

is a birational map of R-varieties inducing a biregular map of real algebraic varieties

(XR), (O0)§@) = (Y®), (Onfm) -

Exercise 2.2.26 (UseExercises 1.2.56and 1.3.25)Let F} C A"(C)and F, C A" (C)
be affine algebraic sets stable under o so that (F1, oa|r,) and (F, op|F,) are affine
R-varieties and let ¢ : F| --+ F, be a rational map of complex varieties.

1. Prove that ¢ is a morphism of R-varieties if and only if there are polynomial
functions fi, ..., fu € Rlx1, ..., x,] such that for any point (x1, ..., x,) € F,

(p(-xlv “wxn) = (fl(-xlv wan)’-"vfm(xlv-usxn)) .
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In this case, F1 C dom(p) and ¢: Fy — F, is a morphism of complex varieties.

2. Prove that ¢ is an R-regular birational map if and only if there are polynomial
functions g1, ..., 8m € Rlx1,...,x,]and hy, ..., hy € R[xq, ..., x,] such that
foreverypoint (x1,...,x,) € FI(R), hi(x1, ..., x,) Z0, ..., hp(Xx1,...,%,) #
0 and

g1(xy, ..., xn) gm(X1, ..., x,)
‘p(xlw--axn): .

hl(xlw”vxn)’.”’ hm(xlwn’-xn)

In this case F1(R) C dom(p) and if Fy and F, have enough real points then
olr®: FiR) — F>(R) is a regular map of real algebraic varieties with the
induced structure.

2.2.1 Non Singular R-Varieties

A non singular complex variety of complex dimension # is naturally a real differential
manifold of dimension 2n with the Euclidean topology. For example, for any non
singular projective algebraic variety X C PY (C) we have that X inherits a differential
submanifold structure from P¥ (C). If X is stable under op and X (R) # & then X (R)
is areal algebraic variety by Corollary 2.2.18. The variety X (R) inherits a Euclidean
topology from PV (R) (the same as in Definition 1.4.1) and can be thought of as a
differential submanifold of PV (R).

Proposition 2.2.27 Let (X, o) be an R-variety. If the complex variety X is non
singular and has complex dimension n then the set X with its Euclidean topology
is a differential manifold of real dimension 2n. If moreover X (R) # & then the set
X (R) with its euclidean topology is a differentiable manifold of real dimension n.

We invite the reader to compare this result with Remark 1.5.28. We recall that
under the hypotheses of the above proposition, X (R) is Euclidean closed but Zariski
dense in X. See Corollary2.2.10 and Proposition2.2.11 for more details.

Proof As we have seen above, as Oy is an R-sheaf, the morphism

Ox(U) — Ox(a(U))
fo—f

is a ring isomorphism for any open set U in X. As the variety X is non singular
and of dimension n we can find a local system of parameters {¢, }.cx—see Defini-
tion 1.5.47. Exercise 1.5.48 tells us that in terms of local coordinates we get a set of
systems (U,, ¢,) where ¢, : U, — C" is analytic and on refining this open cover
using Euclidean open sets we can assume that Vx € X, Uy () = 0(Uy) and

Vx e X, U((px) = @Yo (x) - (21)

where ? (p,) = op 0@, 00.
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Itfollows thatif (zy, . .., z,)x is asystem of local coordinates satisfying (2.1), then
the system (M(z1), I(z1), .- ., R(zn), I(z,))x 1s a system of real local coordinates
for the manifold structure, equivalent to the complex local system of coordinates
(21> ZLs v+ > Zns Zn)-

The real structure o then transforms (z1, z1, . . . , Zn, Zn)x INtO

(Z_l’ Z]a -"757 Zn)a(x) .

In particular, if x € X(R) is a non singular point of X then by (2.1), ?(¢y) =
@5 (x) = @x from which it follows that op 0 ¢, = ¢, oo andif y € U, N X (R) then
©x(¥) = ¢, (¥). The local coordinates of a real point are therefore real and the restric-
tion of ¢, to X(R) induces a system of real smooth (and in fact analytic) local
coordinates (9(z;), ..., R(z,)) on X (R) in a neighbourhood of x.

Alternatively, we can bypass the first part of this argument by using Lemma?2.2.8.
Let x be a real point of X: there is then a system of local parameters which is
invariant under o. By Exercise 1.5.48 we can derive from this an invariant system of
local coordinates. U

The underlying 2n-dimensional manifold structure on the non singular complex
variety X is not only orientable (since a holomorphic change of coordinate map
has a positive determinant), but also oriented. Any isomorphism R?* ~ C" yields
an orientation on R?" by pull back and the complex structure on X yields such an
isomorphism. (See Exercise B.5.11 for more details).

Proposition 2.2.28 Let (X, o) be a non-singular R-variety. The real structure o is
a diffeomorphism of the 2n-dimensional oriented manifold X which preserves the
orientation if n is even and reverses it otherwise.

Proof This follows immediately from the previous proof. The map o takes
(215205 - -+ Zns Zn)x 1O (Z1, 215 - - - s Zns Zn)o(x)» SO the determinant of its differential
is (—1)". O

2.2.2 Compatible Atlas

Exercise 2.2.29 If X is a non singular complex analytic variety of dimension n we
can reframe the definition of the conjugate variety using a maximal atlas (U;, ¢;);
determining the complex structure on X: the complex structure of the conjugate
variety (X, Oy) is given by the atlas (U;, oan 0 ¢;);.

Definition 2.2.30 A compatible atlas on a smooth analytic R-variety (X, o) of
dimension n is an atlas A = {(U;, ¢; : U; — C")}; on the complex analytic vari-
ety X satisfying the following conditions. (Recall that “¢; = o 0 ¢; 0 0.)

1. The atlas is globally stable for the real structure, or in other words
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Ui, ) € A = (0(U),¢i) € A;

2. U, NX(R) # @then U; = o(U;) and % ¢; = ¢;;
3. IfU; N X(R) = @ then U; N o (Uj) = &.
Exercise 2.2.31 Give a compatible atlas for (P'(C), op).

Proposition 2.2.32 Every smooth analytic R-variety has a compatible atlas.

Proof This follows from the existence of local systems of parameters satisfying
2.1). O

2.3 Complexification of a Real Variety

We have seen that the real locus of an R-variety is a real algebraic variety whenever
it is Zariski dense. In this section we will study the converse: given a real algebraic
variety V, is there an R-variety whose real locus is isomorphic to V?

Let K be a field and let L D K be an extension of K. The set A"(K) is then a
subspace of A"(L) and P"(K) is a subset of P"(L).

Definition 2.3.1 (Revisions of Definition1.2.12) Let F C A"(K) be an algebraic
setover K of ideal I = Z(F) C K[X}, ... X,]. We define the algebraic set F; over
L to be the set Z; (I) of zeros of I in A" (L):

FL = ZL(I) C A”(L) .

Similarly, if ' C P"(K) is a projective algebraic set of homogeneous ideal I =
I(F) C K[Xp, ... X,] then we define an algebraic set

FL = ZL(]) C Pn(L) .

More generally, if U = F \ F’ C A"(K) is a quasi-affine set and I = Z(F) C
K[(Xi,...,X,JandI' =Z(F') C K[X4, ..., X,] are the associated ideals then we
can define a quasi-affine set

Up:=F \F, =2Z2.(D\Z2.(I') CAY(L) .

And finally if U = F \ F' C P"(K) is a quasi-projective algebraic set and

I =1Z(F)CK[Xg,...,X,]and I' =Z(F') C K[Xy, ..., X,] are the associated

homogeneous ideals then we define a set

Up:=F \F, =Z,(D\ Z.(')CP'(L).
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Any real algebraic set (which here will be assumed affine to simplify the nota-
tion) F C R" with vanishing ideal I := Z(F) C R[X}, ..., X,,] is therefore natu-
rally associated to a complexification F¢ := Z¢(Z(F)) = Zc (1) C C" which is just
the set of complex common zeros of the real polynomials vanishing on F. Note that the
ideal 7 is made up of polynomials with real coefficients whereas Fc C C" is a set of
complex points. As Fg is defined by polynomials with real coefficients, o5 (Fc) C Fc
and the restriction o of the standard real structure o : (x1, ..., Xx,) —= (X1, ..., X,)
to Fg is areal structure with which (F¢, o) is an R-variety. Our initial real algebraic
variety can be recovered as the set of fixed points of F' = (F)°.

The above construction depends heavily on the equations defining F'. The follow-
ing definition enables us to consider abstract complexifications, by which we mean
complexifications which are independent of a particular embedding into affine or
projective space, or alternatively independent of a choice of equations.

Definition 2.3.2 Let (V, Oy) be a real algebraic variety. A pair ((X,0), j) is a
complexification of V if (X, o) is an R-variety with enough real points and j: V —
X is an injective map inducing an isomorphism of real algebraic varieties

(V.0y) = (XB), (Ox)w) -

A complexification ((X, o), j) of areal algebraic variety V is quasi-projective (resp.
non singular) if X is a quasi-projective (resp. non singular) complex variety.

Let ((X,0), j) be a complexification of a real algebraic variety V and let
¥: (X,0) --+» (Y, 7) be an R-biregular birational map. It is easy to check that
((Y, ©), ¥ o j)is then a complexification of V. Indeed, since X (R) is dense in X and
Y is birational the set Y (R) = ¥ (X (R)) is dense in Y. The following proposition
establishes the converse.

Proposition 2.3.3 Let V be a real algebraic variety and let (X, o), j) be a com-
plexification of V. Then for any complexification (X', o'), j') of V, there is a unique
R-biregular birational map V. (X, o) --+ (X', 0’), X(R) C dom () such that the
following diagram commutes.

X---—-- > X
J
Vv

Proof We start by proving the proposition in the case where V, X and X’ are affine.
The uniqueness of the map for affine varieties will then enable us to glue complex-
ifications and R-biregular birational maps on open affine subsets of V to prove the
general result. By hypothesis the morphism 2 = j' o j~': X(R) — X'(R) is an iso-
morphism of real algebraic varieties. By the solution to Exercise 1.2.56(2), there is

a morphism defined on an open neighbourhood of X (R) in X extending j’ o j~!.
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As X (R) is dense in X, the rational map ¥ : (X, o) --» (X', ¢’) induced by this
extension is an R-biregular birational map uniquely determined by j' o j~!. O

Proposition 2.3.4 Any real affine algebraic set has an affine complexification. Any
real projective algebraic set has a projective complexification.

Proof Let X C A"(R) be a real affine algebraic set and let I = 7(X) C R[X],
..., X,] beits ideal. The set X is then the set of real zeros of Z(7) C A"(R) and the
Zariski closure, X¢ of X in A"(C) is the set of complex zeros Z¢ (1) C A"(C) by
Remark 1.2.13. By construction the R-variety (Xc, oa|x.) has enough real points;
denoting by j: X <> Xc the inclusion map, the pair ((Xc, oalx.), j) is then an
affine complexification of X. Similarly, if X C P"(R) is a real projective alge-
braic set and I = Z(X) C R[Xy, ..., X,] is its homogeneous ideal then we take
Zc(I) C P*(C), the set of complex zeros of 1. ([l

Remark 2.3.5 We have seen that any real projective variety is also affine, and there-
fore has an affine complexification.
A complex projective algebraic variety is not generally affine, so a projective
R-variety is not typically affine, and neither is a projective complexification.
Certain real affine algebraic varieties also have projective complexifications, and
these will be studied in Theorem 2.3.7 below.

Remark 2.3.6 Let X be aquasi-projective real algebraic variety with X = V \ W C
P*"(R). Let Iy C R[Xy, ..., X,] be the homogeneous ideal of V and let Iy C
R[Xp, ..., X,] be the homogeneous ideal of W. The set Vo = Z¢(Iy) is a projective
complexification of V by the above and W¢ = Z¢(Iy) is a projective complexifica-
tion of W. The variety X¢ = V¢ \ W is therefore a quasi-projective complexifica-
tion of X.

We recall Definition 1.4.11 which states that a real algebraic variety is complete
if and only if it is compact for the Euclidean topology.

Theorem 2.3.7 Any non singular complete real affine algebraic variety has a non
singular projective complexification.

Before proving this theorem we state some very useful lemmas concerning bira-
tional morphisms of R-varieties. Let (X, o) be an R-variety and let x € X (R) be
a real point. We denote by C, the connected component of X (R) containing x.
Throughout this section, connected means connected in the Euclidean topology.

Lemma 2.3.8 Let (X, o) be an R-variety and let x € X (R) N Reg X be a regular
real point. The Euclidean connected component C,, C X (R) is not then contained
in any strict Zariski closed subset of X.

Proof By Proposition 1.5.29, x has a connected Euclidean open neighbourhood U C
X (R) homeomorphic to a non empty subset of R” where n is the Zariski dimension
of X at x. As U C C, and any strict Zariski closed subset of X is of strictly positive
codimension the result follows. O
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Lemma 2.3.9 Letg: (Y, 1) — (X, 0) be a birational morphism of R-varieties and
let Z C Y be the smallest Zariski closed subset such that ¢|y\z is an isomorphism
onto its image. Consider a point y € Y (R) NReg Y : the connected Euclidean com-
ponent Cyyy is not then contained in ¢(Z).

Proof AscodimZ > 0,C, N (Y \ Z) # @by Lemma?2.3.8. It follows that ¢ (C,) N
(X \ ¢(Z)) # @ and as the image of a connected subset under a continuous map is
still connected, ¢(Cy) C Cy(y) and hence Cy(y) N (X \ 9(2)) # @. O

Proposition 2.3.10 Let (X, 0) be an R-variety and let ¢: (Y, 1) - (X,0) be a
resolution of singularities of X. Suppose that the connected component of a real
singular point x € X(R) is contained in the singular locus C, C Sing X. We then
have that "' (x) N Y (R) = @.

Proof By Theorem 1.5.51, Sing X is a strict Zariski closed subset of X. The result

then follows from Lemma 2.3.9 applied to Z = 7 ~!(Sing X) using Definition 1.5.53.
0

Proof of Theorem 2.3.7 Let V be anon singular real affine algebraic variety which is
compact for the Euclidean topology. By Proposition2.3.4, V has an affine complexifi-
cation ((X, o), j). By Theorem?2.2.9, X (R) ~ V does not meet Sing X. We consider
a projective completion (X', o’) of (X, o): in particular, X is a subvariety of X’ and
o = o¢’|x. By Hironaka’s resolution of singularities Theorem 1.5.54 there is a non sin-
gular projective R-variety (Y, ) and a birational morphism : (¥, t) — (X', ¢’) of
R-varieties which is anisomorphismon 7 ~! (Reg X') — Reg X’. As X (R) C Reg X,
the restriction of the composition (Y, 7) — (X, o) to X (R) is an isomorphism.

As V is compact, X (R) is also compact, so it is closed in X’(R) for the Euclidean
topology. It follows that for every x € X'(R) \ X (R) there is an inclusion C, C
X'(R) \ X (R) and Proposition2.3.10 tells us that 7 ~'(X'(R) \ X(R)) N Y (R) = @.
We can therefore conclude that ((Y, 7), (7T|y(]R))_l o j) is a non singular projective
complexification of V. ]

Remark 2.3.11 In the above proof, X'(R) \ X (R) may be non empty. In Exam-
ple 2.6.38, examined in detail below, we consider the set

W= Z(16(x} 4+ x3) — (x7 + x5 +x3 +3)) C A’(R) .
and the projective complexification given by
We i= Z (16(x} +x3) — (7 + 23 +x7 +3x2)?) C P3(C) .

The R-variety (VT/C, op|y,.) contains real points that do not belong to the torus
of revolution W¢(R) = W. Indeed, if x12 + x% < 16 then the point

(0 TX] Xy \/4 ()cl2 +x§ — ()cl2 + x%)) belongs to WC(R) \ We(R). The R-

morphism ¢/ : P!1(C) x P'(C) — Wc is a resolution of singularities of WC.
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We use the above results to prove Theorem 1.5.55 for R-varieties.

Theorem 2.3.12 Let ¢: (Y, 1) — (X, 0) be a birational morphism of non singular
R-varieties. If the real loci X (R) et Y (R) are compact for the Euclidean topology
then they have the same number of connected components.

#1o (Y (R)) = #mo(X(R)) .

Proof Let Z C Y be the smallest Zariski closed subset such that ¢|y\z is an iso-
morphism onto its image. The map ¢ is continuous for the Euclidean topology so
#mo(Y (R)) > #79(X (R)). To prove the opposite inequality, assume there are two dis-
tinct connected components Y; and ¥, in Y (R) such that ¢ (Y;) N ¢(Y>) is non empty.
Let U be an open Euclidean neighbourhood of x € ¢(Y}) N ¢(Y>) in X (R). We then
have that U N¢(Y;) # @ and U N @(Y») # @. Indeed fori = 1,2, o~ (U) N Y; is
a non empty open space in Y (R) and as Y is non singular ¢~'(U) N Y; \ Z is non
empty by Lemma?2.3.8. As X is non singular we can assume that U is homeomorphic
to a non empty open set in R”, where 7 is the dimension of X, which by the above
is cut into two disjoint parts by the algebraic subset ¢ (Z). The codimension of ¢ (Z)
is at least two because ¢ is a birational morphism (see [Sha94, 11.4.4, Theorem 2]
for example) which contradicts the fact that ¢(Z) disconnects the open set U. This
yields a contradiction. (|

The behaviour of an R-variety away from its real points is often irrelevant for the
study of the real locus X (R)—but not always. We saw in Remark2.3.11 an example
where we needed to consider the non real points of the complex variety.

Definition 2.3.13 A quasi-algebraic affine or projective set U over K is said to
be geometrically irreducible if the set Ux (see Definition2.3.1) defined over the
algebraic closure K of K is irreducible.

A quasi-projective algebraic set V over K, is said to be geometrically irreducible
if the image U of V under embedding into a projective space over K is geometrically
irreducible. Under these circumstances the image under any projective embedding
of V is geometrically irreducible by Exercise 2.3.14.

An R-variety (X, o) is said to be irreducible if and only if X is irreducible as a
complex variety.

Exercise 2.3.14 Check that if ¢: V — PN(K) and ¢': V. — PN (K) are two
projective embeddings of V then ¢(V) is irreducible if and only if ¢'(V)x is
irreducible.

Proposition 2.3.15 Let K be a field.

1. An algebraic set over K which is geometrically irreducible is irreducible.

2. An algebraic variety over K which is geometrically irreducible is irreducible.

3. A real algebraic variety V is geometrically irreducible if and only if it has an
irreducible complexification.
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4. Let (X, o) be a quasi-projective algebraic R-variety with enough real points.
We then have that (X, o) is irreducible if and only if the real algebraic variety

(X (R), (O Xﬁ(R)) is geometrically irreducible.
Proof Left as an exercise for the reader. O

Remark 2.3.16 Recall that by Corollary2.2.10 the real locus of a non singular
irreducible algebraic R-variety is Zariski dense whenever it is non empty.

Exercise 2.3.17 (Review of Example2.1.7)

1. The real algebraic set F = Z(x* + y?) C A*(R) is geometrically irreducible.

2. Onthe other hand, the R-variety (V, o), where V = Z¢ (x> + y2) € A*(C) and
o = oaly, is not irreducible.

3. This appears to contradict the fact that V° = F—what is happening?

2.3.1 Rational Varieties

Definition 2.3.18 (Rational R-varieties)

1. An R-variety (X, o) of dimension n is rational (or R-rational) if it is birationally
equivalent to the R-variety (P"(C), op), or in other words if there is a birational
map of R-varieties (X, o) --» (P"(C), op).

2. An R-variety (X, o) of dimension n is geometrically rational (or C-rational)
if and only if the complex variety X is rational, or in other words if there is a
birational map of complex varieties X --» P"(C).

Remark 2.3.19 We invite the reader to compare this definition with Definition 1.3.37
in the first chapter. Note that “geometric” irreducibility and rationality behave dif-
ferently: a geometrically irreducible variety is irreducible, whereas a rational variety
is geometrically rational.

Proposition 2.3.20 Any R-rational R-variety is C-rational

Remark 2.3.21 The converse of the above proposition is false, an example being
given by P!(C) with its anti-holomorphic involution z > —%. See Remark2.1.41
for more details. Chapter4 contains many 2-dimensional examples.

Proposition 2.3.22 Let (X, o) be a quasi-projective non singular R-variety. If
(X, 0) is R-rational and has non zero dimension then X (R) is connected and non

empty.

Proof This follows from Theorem2.3.12 since P"(R) is connected and non empty
forall n > 0. U
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2.4 R-Varieties, Real Algebraic Varieties and Schemes
Over R—a Comparison

This section reviews the various types of R-varieties met so far and the logical
relationships between them. We have identified two different types of real variety:
real algebraic varieties and R-varieties. In total, there are five different incarnations
of real algebraic varieties:

1. The real locus of a set of real equations.

2a. A complex variety defined by equations with real coefficients.

2b. A complex variety with an anti-regular involution.
These last two cases of special complex varieties are equivalent if we make the
extra assumption that the variety is quasi-projective.

3a. A scheme defined over R.

3b. A scheme defined over C with a real structure.
Once again, these last two cases are equivalent if we make the assumption that
the scheme is quasi-projectif.

At the end of the day, the last four definitions are all equivalent for quasi-projective
varieties and only the first is different. A variety of type (1) can be thought of as the
germ of a variety of type (2a) in a neighbourhood of the real locus.

Moreover, any such variety has two topologies and two associated structures

e Zariski topology and algebraic variety structure.
e Euclidean topology and analytic variety structure.

There is a dictionary translating algebraic structures into underlying analytic
structures. For example, the (anti)-regular maps become (anti)-holomorphic. This
“translation” is not however an equivalence unless the variety is projective. See
Appendix D.5 for more details.

Let us examine these structures in more detail.

1. (Section 1.3) A real algebraic variety (resp. complex algebraic variety) is a
topological space X with a subsheaf Oy of the sheaf of functions with a finite
covering of affine open sets U, by which we mean that (U, Ox|y) is isomorphic
to the zero set Z(I) C A"(R) of an ideal I C R[Xy, ..., X,] with the sheaf
of functions which are locally rational fractions without real poles (resp. the
set of zeros Z(I) C A"(C) of an ideal I C C[X,, ..., X,,] with the sheaf of
functions which are locally rational functions without poles). Varieties X and Y
are isomorphic if and only if there exists a biregular map X — Y.

2. (Section2.1) An R-variety (X, o) is a complex variety X with an anti-regular
involution (or in other words a real structure) o. The R-varieties (X, o) and
(Y, 7) are isomorphic if there is a biregular isomorphism of complex varieties
that commutes with the real structure. The varieties (X, o) and (Y, t) are bira-
tionally R-biregularly isomorphic if there is a birational map ¢ : X --» Y com-
muting with real structure such that X (R) C dom(g) and ¥ (R) C dom(p~").
(Section2.3) A complexification of a real algebraic variety V is an R-variety
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(X, o) with enough real points whose real locus X (R) is isomorphic to V as a
real algebraic variety.

(a) (Section2.1) Any quasi-projective R-variety can be realised as a variety
defined by real coefficients (as can its principal sheaves, see Section2.5).

(b) (Section2.2) A quasi-projective R-variety with enough real points induces
by restriction a real algebraic variety structure on its real locus. A morphism
of quasi-projective R-varieties with enough real points induces a regular
map of real algebraic varieties.

(c) (Section2.3) Conversely, any quasi-projective real algebraic variety has a
complexification which is an R-variety with enough real points. Any mor-
phism of quasi-projective real algebraic varieties can be extended to a ratio-
nal R-regular map of R-varieties.

(d) (Section2.3) Two R-varieties which are complexifications of isomorphic
real algebraic varieties are birationally R-isomorphic but not generally iso-
morphic.

. This paragraph requires some knowledge of schemes—see [Duc14] or [Liu02]

for more details. See also [Ben16b, Section 3.1] for a more specific discussion
of realisations of schemes over R. We leave it is an exercise for the reader to
check the claims made below.

A scheme over a field K (or a K-schema) is a scheme X with a scheme mor-
phism (called the structural map) X — Spec K . Throughout this paragraph, we
assume X is of finite type over K (or in other words that X is covered by a finite
number of spectra of finitely generated K -algebras). Two R-schemes X and Y are
birationally R-biregularly isomorphic if there is a birational map ¢ : X --+ Y of
R-schemes such that ¢ is regular at every R-rational point of X and ¢~ is regular
at every R-rational point of Y. Let X be a scheme over C equipped with an invo-
lution o lifting complex conjugation o = Spec(z — z): Spec C — Spec C:
we call such an involution a real structure on X . If X is quasi-projective then by
[BS64, Proposition 2.6] there is ascheme Z = X /(o) over R and an isomorphism
of C-schemes ¢: X — Z xgpecr Spec C such that o = o 'o(id X0g)oQ.
Moreover, the pair (Z, ¢) is uniquely determined by the pair (X, o) up to R-
isomorphism. For example if X = Spec A is affine then Z = Spec A°.
Implicitly, most types of algebraic varieties used in this book are different man-
ifestations of R-schemes of finite type.

(a) The set X (R) of R-rational points of a scheme X over R with the restriction
of the structural sheaf is a real algebraic variety. A morphism of R-schemes
induces a morphism of real algebraic varieties.

(b) Conversely, any quasi-projective real algebraic variety can be obtained as
the set of R-rational points of a scheme X over R. Any morphism of quasi-
projective real algebraic varieties can be extended to an R-regular map of
schemes over R.
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(c) Any two schemes over R whose real loci are isomorphic as real algebraic
varieties are birationally R-biregularly isomorphic.

(d) Let Z be a scheme of finite type over R. We can associate to it the following
R-variety: X is the topological space of C-rational points of the C-scheme
Z xspecr Spec C, The pair (X, o) is the R-variety obtained on equipping X
with the real structure o := id x Spec(z — 7). We denote by X (R) the set
of closed points fixed by o. If Z(R) is the set of R-rational points of the
R-scheme Z then X (R) = Z(R). A morphism of schemes over R induces a
morphism of R-varieties.

(e) Conversely, if (X, o) is an R-variety then there is a C-scheme Z such that
Z(C) = X, [Har77, 11.2.6] and there is an involutive morphism o;: Z —
Z lifting o5 : Spec C — Spec C such that o7|z) = 0. As we have seen
above, if X is quasi-projective then (Z, o) corresponds to an R-scheme. A
morphism of R-varieties induces a morphism of schemes over R.

2.4.1 Real Forms of a C-Scheme

By the above, Definition2.1.13 can be reformulated scheme theoretically as follows.

Definition 2.4.1 A real form of a scheme X over C is a scheme X, over R whose
complexification Xo Xspecr Spec C is isomorphic to X.

2.4.2 Notations X, X (R), X(C), X¢, XRr

We now briefly discuss the various notations the reader may meet in the literature.

As in scheme theory, where by abuse of notation the structural morphism Z —
Spec R is often omitted, the abbreviation X for the R-variety (X, o) is often used.
Consequently, the notation X¢ for the variety X is often used to emphasise the fact
that we are concentrating on the complex variety and “forgetting” o. Some authors,
particularly of the Russian school, use the notation X¢ or CX for the complex locus
and Xy or RX for the real locus of R-varieties.

Remark 2.4.2 In case that wasn’t confusing enough, there is another object called
X in the literature, constructed using extension of scalars. In the embedded case,
it simply means separating the real and imaginary parts of the equations of a com-
plex variety. From the scheme point of view this corresponds to taking the scheme
morphism Spec C — Spec R associated to the inclusion R < C and compose maps
X — Spec C — Spec R to see that a scheme over C is necessarily a scheme over R.
For example, if X C A”"(C) is defined by r equations

{Pi(zlv‘-'azl’l) ZO}i:]
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then X C A”(R) is defined by the 2r equations

{R(P (1 +iy1s ..o X0 +iyy) =0),
S(P(xy +iyis ... X +iye) =0},

Let X be an algebraic variety defined over C which for simplicity we will assume
to be non singular. Consider the product variety Z := X x X with the anti-regular
involution oz: (x, y) — (¥, x). The set of real points of the R-variety (Z, o) is
then a real algebraic variety as in Definition 1.3.9, homeomorphic in the Euclidean
topology to the topological manifold underlying the complex variety X. Some authors
use Xg = Z(R) to denote this underlying real algebraic variety.

2.5 Coherent Sheaves and Algebraic Bundles

We will now generalise the above constructions to certain sheaves and vector bundles
needed in the development of the theory.

2.5.1 Coherent R-Sheaves

Let (X, o) be an R-variety, let £ be a quasi-coherent sheaf of Ox-modules (see Theo-
rem C.7.3) and let U be an open affine set in X. The space of sections M := L(o (U))
is then an Ox (o (U))-module. We define an Ox (U)-module M by equipping the
group M with the following Oy (U)-twisted action.

(ffm)y—°f-m (2.2)

where

(ffm)+— f-m
denotes the Ox (o (U))-action on M.

Definition 2.5.1 Let (X, o) be an R-variety and let £ be a quasi-coherent sheaf of
Ox-modules. The conjugate sheaf ° L is the sheaf of Ox-modules defined over U by
declaring ° L(U) to be the twisted Oy (U)-module ° M. We say that L is an R-sheaf
if and only if £ = ? L. This is required to be an equality, not simply an isomorphism.

Remark 2.5.2 These definitions generalise Definition2.2.1. Indeed, for any open
set U in X, there is an equality of Oy (U)-modules *L(U) = L(o(U)) provided
the right hand side is equipped with the twisted action (2.2). In particular, if £ is a
sheaf of C"-valued functions then *L(U) ={° f | f € L(o(U))}. Moreover, L is
an R-sheaf if and only if £(U) = L(U) for any open set U in X.
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Our definition of an R—sheaf is motivated by the following result which explicits
the relationship between R-sheaves on an R-variety (X, o) and sheaves of invariant
functions. A priori an R-sheaf is only a sheaf which is globally fixed by o.

Lemma 2.5.3 Let (X, 0) be a quasi-projective R-variety and let L be a quasi-
coherent sheaf of Ox-modules. If L is an R-sheaf then there is a quasi-coherent
sheaf of Ox-modules Ly such that for any open affine subset U C X,

LWUNoW)) ~Ly(UNoU)@rC

andV f € Lo(UNo((U)),° f = f. When this is the case we will say that f has real
coefficients.

Proof Recall that by definition o is a homeomorphism for the Zariski topology on X
and in particular if U is a Zariski open setin X then the intersection U N o (U) is also
Zariski open. Moreover, by Exercise 1.3.15(4), the openset U N o (U) is affine. It will
therefore be enough to prove the result for an affine R-variety so by Theorem?2.1.33
we may assume we are in the case where X C A"(C) and Z(X) C R[Xy, ..., X,].
Under these hypotheses we have that o = o |x and

Ox(X) = AX) = R[Xy, ..., X,1/Z(X)) ®r C .

Let M be the A(X)-module of global sections of the Ox-module £(X). By hypoth-
esis, o induces a Galois action on M for which, on equipping the subgroup of fixed
points M with its natural A(X (R))-module structure, we have that

M = M @ 4x®) (AXR)) @ C) .

We then simply define L, to be the sheaf associated to the .A(X (R))-module M©.
See Definition C.7.2 for more details, O

We will make intensive use of coherent R-sheaves, particularly invertible sheaves,
see Definition C.5.8. These are in bijective correspondence with line bundles, see
Corollary 2.5.13.

Let (X, Ox) be an affine real or complex algebraic variety and let F be a quasi-
coherent sheaf. The set of global sections I'(X, F) is then a I'(X, Ox)-module. If
F is locally free then this module is projective, by which we mean that it is a direct
summand of a free I' (X, Ox)-module, see Definition A.4.6.

The next lemma requires us to generalise Definition C.7.2. Let M be a I' (X, Ox)-
module and let Ox ®r(x,0,) M be the sheaf of Oyx-modules associated to the
presheaf U = Ox(U) ®rx,04) M. If (X, Ox) is a complex variety then Ox (U) =
I'(X, Ox) s for any pri~ncipa1 open set U = D(f) and Ox ®r(x.0,) M can be iden-
tified with the sheaf M of Definition C.7.2. In particular, (Ox Qrix.0n M ) ) =
M(U) = M/ for any principal open set U = D(f). If (X, Ox) is a real variety
then for any open set U in X, Ox(U) can be identified with the inductive limit

li_n)lp(fDU I'(X, Ox) s of the localisations I'(X, Ox) ; where f runs over the set of
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regular functions which do not vanish on any point of U and (Ox ®r(x,0,) M) (U) ~
—>D(f)dU -

The special case of locally free finitely generated sheaves leads us directly to
vector bundles.

Lemma 2.5.4 Let (X, Ox) be a real or complex affine algebraic variety. Let F be a
sheaf of finitely generated locally free Ox-modules. The I' (X, Ox)-module T' (X, F)
of global sections of F is then projective and finitely generated. Conversely, let
M be a projective finitely generated T' (X, Ox)-module. The associated O x-module
Ox ®rx.0y) M is then finitely generated and locally free.

Proof Left as an exercise for the reader. ]

If (X, Ox) is a complex variety then every locally free finitely generated Ox-

module F is equal to the sheaf I' (X, F) associated to its I' (X, Ox)-module I' (X, F)
of global sections.

Proposition 2.5.5 If (X, Ox) is a complex affine algebraic variety then the map
M +— M yields a bijective correspondence between finitely generated projective
I'(X, Ox)-modules and finitely generated locally free Ox-modules.

Proof See [Har77, Corollary I1.5.5]. ]

On the other hand, as the following example shows, if (X, Oyx) is a real affine
variety then there are finitely generated locally free sheaves which are not associated
to I'(X, Ox)-modules.

Example 2.5.6 Based on [BCR9S8, Example 12.1.5], see also [FHMM 16, Example
5.35].
Let P € R[x, y] be the polynomial defined by

P(x,y) = =12+ y2

which has exactly two real zeros, ag = (0, 0) and a; = (1, 0). Set U; = R?\ {g;} for
i = 0, 1. The Zariski open subsets Uy and U; form an open covering of A%(R). We
define a locally free coherent rank 1 sheaf F by gluing the sheaves Op2(r)ly, and
On2w)yly, over Uy N U, using the transition function vo; = P on Uy N U;. In other
words, two sections 5o € Op2g)ly, (Vo) and 51 € Op2wyly, (V1) on the Zariski open
sets Vp and V; are glued together if and only if ;57 = s over Vo N V.

The Oj2w)-module F is not generated by its global sections because any global
section s of F vanishes at a;. Indeed, the restriction s; of s to U; is a regular function
on U; for i =0, 1. The gluing condition is ¥g;s; = so on Uy N U;. Set s; = g;/ h;
where g;, h; € R[x, y], with h; # 0 at every point on U; and g;, h; coprime for
i = 0, 1. The gluing condition implies that Phog; = goh; on R?. As P is irreducible
and & (ap) # 0 the polynomial P divides g or in other words there is an A € R* such
that go = APg; and h; = A~'hg. In particular go(a;) = 0 and hence s(a;) = 0. It
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follows that the quasi-coherent sheaf F on A%(R) is not generated by global sections.
A fortiori, there is no I'(A%(R), Oa2(w))-module whose associated sheaf is F.

Note that the module of global sections I'(A?(R), F) is isomorphic to
['(A2(R), Op2®)) = R(R?) via the map (so, 51) > 51 = & since by = A~ hg does
not vanish at any point of R2.

2.5.2 Algebraic Vector Bundles

Definition 2.5.7 Let (X, Ox) be an algebraic variety over a field K. A rank r pre-
algebraic vector bundle over X is a K-vector bundle (E, i), see Definition C.3.5,
where E is an algebraic variety over K, w: E — X is a regular map and the home-
omorphisms v, : 7' (U;) S U x K" are biregular maps. More generally, a pre-
algebraic vector bundle has constant rank on every connected component of X.

Remark 2.5.8 On an affine real algebraic variety the vector bundles defined above
are called pre-algebraic in [BCR98] but algebraic in the previous version [BCR87].

Consider a pre-algebraic (resp. rank r) vector bundle on X. Its sheaf of algebraic
local sections is then naturally equipped with a Ox-module structure which is locally
free (resp. of rank r).

Proposition 2.5.9 Let (X, Oyx) be an algebraic variety over a base field K. There is
a bijective correspondence between the class of finitely generated locally free (resp.
of rank r) coherent sheaves on X and isomorphism classes of pre-algebraic (resp.
rank r) vector bundles on X.

Proof See [BCR98, Proposition 12.1.3]. O

If (X, Oy) is a complex variety, pre-algebraic bundles are well behaved, as we
saw in Proposition2.5.5. If (X, Oy) is a real variety, the pre-algebraic line bundle
associated to the sheaf F of Example2.5.6 is not generated by its global sections,
illustrating the fact that on a real variety the notion of pre-algebraic vector bundles
is not particularly useful and motivating thereby the following definition.

Definition 2.5.10 A pre-algebraic vector bundle (E, ) on an affine real algebraic
variety X is said to be algebraic if it is isomorphic to a pre-algebraic subbundle of a
direct sum of structural sheaves. Similarly, a finitely generated locally free sheaf is
said to be algebraic if its associated vector bundle is algebraic.

Remark 2.5.11 (Real and complex bundles)

1. Proposition2.5.5 implies that any pre-algebraic vector bundle on an affine com-
plex algebraic variety is algebraic.

2. On areal affine algebraic variety the vector bundles defined above were said to be
algebraic in [BCRI8, Definition 12.1.6] but were strongly algebraic in [BCR87].
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Definition 2.5.12 A rank one algebraic vector bundle is called a line bundle.

Corollary 2.5.13 Let (X, Ox) be a real or complex algebraic variety. There is
a bijective correspondence between isomorphism classes of invertible algebraic
sheaves on X and (algebraic) line bundles on X.

Proof This follows immediately from Proposition2.5.9. |

Theorem 2.5.14 Let (X, Ox) be a real affine algebraic variety and let (E, ) be a
pre-algebraic vector bundle on X. The bundle E is then algebraic if and only if there is
a finitely generated projective I' (X, Ox)-module M such that the T' (X, Ox)-module
of algebraic sections of (E, i) is isomorphic to the I' (X, Ox)-module Ox ®rx,0y)
M.

Proof See [BCR98, Theorem 12.1.7]. O

As in [Hui95], we see that Definition2.5.10 of “nice” vector bundles on a real
algebraic variety V, which may initially seem unnatural, simply says that “nice”
vector bundles are precisely those that can be obtained by restricting an R-vector
bundle on some complexification (X, o) of V.

Let (X, o) be a quasi-projective algebraic R-variety with enough real points
(see Definition2.2.5 and Theorem2.2.9) and let £ be a finitely generated locally
free R-sheaf. It is immediate that the restriction Lo|x ) of the sheaf £, defined in
Lemma?2.5.3 is a finitely generated locally free sheaf on the real algebraic variety

(X®). O0m)-

Theorem 2.5.15 Let (X, 0) be a quasi-projective algebraic R-variety with enough
real points and let L be a finitely generated locally free R-sheaf. The finitely generated

locally free sheaf Lo|x ) on the real algebraic variety (X R), (OX)Q(H@) is then

algebraic.

Corollary 2.5.16 Let (X, o) be a quasi-projective algebraic R-variety with enough
real points and let (E, ) be a topological vector bundle on the real algebraic variety

(X®). 00w
The vector bundle (E, i) is then algebraic if and only if there is a pre-algebraic

R-vector bundle (€, 1) on (X, o) whose restriction (£|xw), Nl x®r)) is isomorphic to
(EQC,mC).

Remark 2.5.17 In other words, a topological R-vector space E on a real affine
algebraic variety V is algebraic if and only if tensoring with C yields the restriction
to V of an algebraic C-vector bundle £ equipped with a real structure on some
complexification V¢ of V.
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2.6 Divisors on a Projective R-Variety

This section draws on [Liu02, Chapter 7], where the interested reader will find all
the proofs left out below. A handful of statements and proofs in this section require
some knowledge of sheaf cohomology, for which we also refer to [Liu02, Section
5.2].

2.6.1 Weil Divisors

Definition 2.6.1 Let X be a quasi-projective irreducible normal complex algebraic
variety (Definition 1.5.37). This is not the weakest possible hypothesis we could
make: everything that follows holds on any variety thatis non singular in codimension
1.

e A prime divisor on X is an irreducible closed subvariety of X of codimension 1.
A Weil divisor on X is a codimension 1 cycle, i.e. a finite formal sum of prime
divisors with integer coefficients’

D= Z asA, ay € 7Z almost all zero.

A prime Weil
divisor on X

e Let D = ) a,Abeadivisor. For any prime divisor A in X, the integer a4 is called
the multiplicity, denoted mult, (D), of D along A.
The support of a divisor is the subvariety

Supp D = |_| A.
aA;EO

If all the coefficients vanish, i.e. Supp D = &, we write D = 0.
e If all the coefficients are positive or zero D is said to be effective and we write
D > 0.

We denote by Z' (X) we set of all Weil divisors on X. By definition, Z'(X) is the
free abelian group generated by prime divisors.

Example 2.6.2 1. If X is a curve then the prime divisors on X are the points of X.
We define the degree of a Weil divisor Y ;_, a; D; to be the sum of the coefficients

degD = iai .
i=1

30r in other words—zero except for a finite number of them.
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2. If X is a projective surface then the prime divisors on X are the irreducible curves
in X. There is then no intrinsic definition of the degree of a divisor but we can
define the degree with respect to a choice of very ample divisor or projective
embedding.

3. If X =P" then prime divisors are irreducible hypersurfaces. The degree of a
hypersurface D; is then well-defined (it is the degree of a polynomial generating
the principal ideal Z(D;), see [Har77, Chapitre I]) and the degree of a Weil divisor
31, a;D; € Z'(P") is defined by

deg D = ZaidegDi .

i=1

If f e K(X)*=C(X)* is a rational function not identically zero (see Defini-
tion 1.2.69 and Remark1.2.74) and A is a prime divisor we define the multiplicity
multy (f) of f along A as follows:

e mults(f) = k > 01if f vanishes along A to order k;

e mult,(f) = —k if f has a pole of order k along A (i.e. if % vanishes along A to
order k;

e mult,(f) = 0 in all other cases.

We can associate to any rational function f € K (X)* a divisor div(f) € Z'(X)
defined by
div(f):= > mults(f)A.

A prime Weil
divisor in X

Note that div(f) € Z'(X) since mult, ( f) vanishes for almost all prime divisors A.
Such divisors are called principal divisors. Since div(fg) = div(f) + div(g) the set
of such divisors is a subgroup P(X) in Z!(X).

Exercise 2.6.3 Prove that for any rational function f on P" we have that

deg(div(f)) = 0.

Definition 2.6.4 Two divisors D, D’ on a variety X are said to be linearly equivalent
if D — D’ is a principal divisor. We denote by D ~ D’ the equivalence relation thus
defined and by

Cl(X) := Z'(X)/P(X) = Z'(X)/~

the group of divisors modulo linear equivalence.

Exercise 2.6.5 Prove that the group CI(IP") is isomorphic to 7. and it is generated
by the linear class of the divisor 1 H associated to a hyperplane H C P".

Example 2.6.6 Let C beaprojective plane curve of degree d—see Definition 1.6.1—
and let L be a line in P?(C). The curve C is then linearly equivalent to d times the
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line L. In particular, any projective conic (see Exercise 1.2.68) is linearly equivalent
to the double line 2L.

2.6.2 Cartier Divisors

Let X be an algebraic variety, let U C X be an open subset and let f € K(U)* be
a rational function which is not identically zero on U. By definition there is then a

dense open subset V C U such thatVp € V, f(p) = % for some g, h € Ox (V).

Definition 2.6.7 A Cartier divisor (or locally principal divisor) on an algebraic
variety X is a global section of the quotient sheaf arising from the following exact
sequence of multiplicative sheaves

1 — Oy — My — M3/O0y — 1 (2.3)

where O% is the sheaf of regular functions that do not vanish at any point and M7
is the sheaf of rational functions that are not identically zero*. We denote by

Div(X) := T'(X, M%/O%)
the group of Cartier divisors. The group law on Div(X) is abelian and is written

additively.

Definition 2.6.8 A Cartier divisor is said to be principal if it is associated to a
global rational function. We say that two divisors D and D, are linearly equivalent
if Dy — D, is principal. We then write D; ~ D, as for Weil divisors. The subgroup
of Div(X) of principal divisors is isomorphic to P(X) and we denote by

CaCl(X) := Div(X)/P(X) = Div(X)/~

the group of Cartier divisors modulo linear equivalence.

Proposition 2.6.9 Let X be an algebraic variety. The group CaCl(X) is a subgroup
of the cohomology group H' (X, O%).

Proof We consider the long exact sequence associated to the short exact

sequence (2.3). Part of this long exact sequence is given by HO(X, M) ER

HO(X, M5 /0%) LN H' (X, O%). By definition, the image of HO(X, M%) under
f is the group of principal divisors so g induces an inclusion

CaCl(X) — H'(X, 0% . O

40f course, M (X) = K(X)*. The notation My, chosen to emphasise the fact that the corre-
sponding analytic sheaf is the sheaf of meromorphic functions, is used to avoid confusion with the
canonical sheaf Kx. See Definition 2.6.26 for more details.
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Let D = (U;, fi); € Div(X) be a Cartier divisor described with respect to an open
covering {U;}; of X. There are therefore germs of regular functions g;, h; € Ox(U;)
such that

-1
8i 8j *
fi == and —<—> e Ox(U; NU;j).
h; hi \h; X !

Let D be a Cartier divisor on X. For any prime divisor A on X we define the
multiplicity mult4 (D) of D on A as follows. If D is represented by (U;, fi)ics then
we set multy (D) = mult,(f;): since by hypothesis % is nowhere vanishing, the

value mult 4 (D) does not depend on i. If a Cartier divisor D is represented by data
(Ui, fi)ier then we associate to it a Weil divisor

[D] := Z mult, (D)A.

A prime divisor
on X

The map Div(X) — Z'(X), D + [D] thus defined is a group morphism.

Proposition 2.6.10 Let X be an irreducible complex variety.

1. If X is normal then the map Div(X) — Z'(X), D — [D]is injective and induces
an injective morphism
CaCl(X) — CI(X) .

2. If X is non singular then D +— [ D] is an isomorphism
Div(X) ~ Z'(X)

and the induced morphism
CaCl(X) ~ CI(X)

is an isomorphism.

Proof See [Har77,11.6]. O

2.6.3 Line Bundles

We recall that an (algebraic) complex line bundle is an algebraic vector bundle of
fiber C as in Definition 2.5.7. We further remark that over C, any pre-algebraic vector
bundle is algebraic, as in Remark2.5.11(1). The sheaf of sections of such a bundle
is an invertible sheaf, see DefinitionC.5.8, and the correspondence thus induced
between isomorphism classes of line bundles and invertible sheaves is one-to-one,
see Proposition2.5.9.
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To any Cartier divisor D represented by (U;, f;); we can associate the sub-sheaf
Ox (D) C My definedby Ox (D)|y, = fi_1 Ox|y,. The sheat Ox (D) is an invertible
sheaf over X. By abuse of notation we will also denote by Ox (D) the associated
line bundle. More explicitly, the line bundle Ox (D) is given by the data of the
open cover {U;}ic; of X and the transition functions f;;: U; N U; — C* where
fij = filunu, © ffl lu;nu,-  The total space of the bundle is the quotient of the
disjoint union L; (U; x C) by the equivalence relation (x, z) ~ (x, fjx(x)z) for any
pair of open sets U}, Uy containing x. This quotient is well defined because these
functions satisfy the cocycle condition:

ﬁk:ﬁjfjk sur U,-ﬂUjﬂUk Vi,j,k.

By construction, D is effective if and only if Ox(—D) C Ox. If U is an open
subset of X then Ox (D)|y = Oy (D]y).

Definition 2.6.11 The line bundle Oy (D) is the line bundle associated to D.

We denote by Pic(X) the Picard group of line bundles modulo isomorphism
with group operation given by tensor product and by p: Div(X) — Pic(X) the map
associating to a divisor D the isomorphism class of the line bundle Ox (D).

Proposition 2.6.12 Ler X be a complex algebraic variety. The Picard group Pic(X)
is isomorphic to the cohomology group H' (X, O%).

Proof See [Har77, 111, Exercise 4.5] or [GH78, Section 1.1] for an analytic version
of this theorem. O

Example 2.6.13 Consider X = P". By Exercise 2.6.5, the group CI(IP") is isomor-
phic to Z and it is generated by the class of a hyperplane H C P". The Picard group
Pic(P") is therefore isomorphic to Z and has a natural generator, namely the line bun-
dle associated to H. By convention, we denote this line bundle by Op« (1) := Op: (H).
The other generator of Pic(P") is its dual bundle, denoted Op: (—1) := Op« (1)".

By extension, we write Op: (k) := Op: (1) and Op: (—k) := Op: (—1)®F for any
positive integer k. In particular, Op: (0) = Opx. It follows that the line bundle asso-
ciated to the divisor k H is Opx (k) for any k € Z. See [Ser55a, Chapitre I1I, Section
2] for the original construction of the sheaves O (k).

Definition 2.6.14 The line bundle Op: (1) is called Serre’s twisting sheaf and the
line bundle Opn (—1) is called the tautological bundle. See SectionF.1 for a direct
construction of this bundle.

Exercise 2.6.15 Consider an integer d>1. Prove that the vector space TI' (P",
Op(dH)) of global sections of the line bundle Op:(d) is exactly the space of degree

d homogeneous polynomials in n + 1 variables. Deduce that dim H° (IF’", O]’g,(d)) =
n+d

(2

Proposition 2.6.16 Let X be an irreducible quasi-projective complex algebraic

variety.
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1. Forany Dy, D, € Div(X) we have that
p(D1+ D2) = Ox(D1) ® Ox(D») .
2. The map p: Div(X) — Pic(X) induces an isomorphism
CaCl(X) ~ Pic(X) .

Proof See [Har77,11.6]. O

By abuse of notation we will often write D € Pic(X) for the linear class of a
divisor D € Div(X).

Corollary 2.6.17 Let X be a non singular irreducible quasi-projective complex
algebraic variety. There are isomorphisms

CI(X) ~ CaCl(X) ~ Pic(X) ~ Div(X)/P(X) .

Definition 2.6.18 Let D be a divisor on an algebraic variety X. The linear system
| D] is the set of effective divisors which are linearly equivalent to D. We identify this
set with the projectivisation of the complex vector space H(X, Ox(D)) of global
sections of Ox (D).

We have that H(X, Ox(D)) = {f € K(X)* | D + (f) > 0} U {0}. If this com-
plex vector space is of finite dimension then any basis {sg, . .., sy} of H(X, Ox(D))
is a set of global rational functions on X which enables us to defined a rational map

. {X --» P(H(X, Ox(D))) = P¥(C)
LR [N (so(x) -+ :sy(x)) .

Remark 2.6.19 The map ¢ depends on a choice of basis for H(X, Ox (D)) and
is only determined by D up to automorphism of P(H°(X, Ox(D))).

Definition 2.6.20 A divisor D on a variety X is very ample if the rational map ¢p
is a morphism embedding X in P(H°(X, Ox(D))). A divisor D is ample if one of
its multiples mD, m > 1, is very ample.

Likewise, an invertible sheaf £ is very ample if it is associated to a very ample
divisor £ = Ox (D), and it is ample if LZ" is very ample for some m > 1.

Proposition 2.6.21 An abstract algebraic variety (constructed by “gluing together”
affine algebraic varieties as in Definition 1.3.1) is projective if and only if it has an
ample divisor.

Proof Suppose that D is an ample divisor on X. There is then a multiple m D,
m > 1, which is very ample and the associated morphism ¢,,p embeds X as a closed
subvariety of projective space. Conversely, let X be a projective algebraic variety and
letg: X — PV be an embedding. For any hyperplane H in PV the divisor ¢*(H) is
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a very ample divisor on X (or in terms of line bundles, ¢*(Opn (1)) is very ample on
X). The divisor ¢*(H) is the divisor of the hyperplane section of X relative to the
embedding ¢. (]

Definition 2.6.22 A divisor D on an algebraic variety X (which we will assume
complete in order to be sure that the maps ¢,,p exist) is big if there exists an
m > 0 for which the dimension of the image of the rational map ¢,p: X --»
P(H®(X, Ox(mD))) is maximal, or in other words, if

dim ¢,,p(X) =dim X .
Likewise, a line bundle £ is big if for some m > 0 we have that
Qrem (X) =dimX .

Example 2.6.23 1. Any ample line bundle is of course big.
2. The pull back of an ample line bundle along a generically finite map is a big line
bundle. See [Laz04, Section 2.2] for more details.

Theorem 2.6.24 If X is a normal variety (which is the case in particular, for any
non singular variety) then a line bundle L is big if and only if there is some m > 0
for which the rational map @ren: X --+ P(H(X, Ox(mD))) is birational onto its
image.

Proof This result follows from the existence of the litaka fibration. See [Laz04,
Section 2.2] for more details. U

Remark 2.6.25 The bigness of a line bundle is invariant under birational transfor-
mations.

If X is a non singular quasi-projective complex algebraic variety then the sheaf of
regular differential forms (see [Liu02, Chapter 6] or [Har77, I1.8] for regular differen-
tial forms and Definition D.3.2 for holomorphic differential forms) of degree 1 on X,
denoted Qy := QY. is a locally free finitely generated sheaf. The associated vector
bundle, also denoted 2x, has rank equal to the dimension of X and its determinant
bundle det Qx is a line bundle.

Definition 2.6.26 Let X be a non singular quasi-projective complex algebraic vari-
ety. The canonical bundle on X is the complex line bundle defined by

n
’CX = detQX = /\QX .
The canonical divisor of X denotes any divisor associated to the canonical bundle

Ox(Kx) =Kx .
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It is customary to talk about “the” canonical divisor, even though such divisors
are only defined up to linear equivalence.

Exercise 2.6.27 Prove that Kpn is isomorphic to the line bundle Opn(—n — 1).

Exercise 2.6.28 (See [CM09, Theorem 4.3]) Let X be a non singular projective
variety. Prove that ifHO(X, Ox(—Kx)) # 0 and HO(X, Q;) =0 then H'(X, Q;
(Kx)) =0.

Using Serre duality (Theorem D.2.5) deduce that

H*(X,0x) =0
where Oy is the tangent bundle.

Definition 2.6.29 A non singular projective variety X is said to be of general type
if its canonical bundle Ky is big.

2.6.4 Galois Group Action on the Picard Group

Let (X, o) be an R-surface: we denote by o the involution induced on the divisor
group of X. If D =) n;D; is a Weil divisor on X then oD := ) n;o(D;). If
D = (U, f;); is a Cartier divisor on X then o D = (¢(U;),° fi);. If £ is a line
bundle on X with cocycle (Uj;, gi;) then the conjugate sheaf (Definition2.5.1) © L is
the line bundle on X of cocycle (o (U;;), 7 gij).

Proposition 2.6.30 Letr X be projective. If D is a Cartier divisor and Ox (D) is the
associated invertible sheaf then

Ox (o D) =7 (Ox(D)).

Conversely, if L is an invertible sheaf on X, D is a divisor associated to L and
D’ is a divisor associated to ° L then D' ~ o D.

Proof Let D = (U, f;); be a Cartier divisor. The sheaf Ox (D) is determined by
the cocycle (gi))ij = (4);;. Indeed, T'(U, Ox(D)) = {f € Ox(U) | (f) + D > 0},
Let (s;); be a family of local sections of Ox (D). We then have that

Vi, j, S = &ijSj - (24)

By definition of the conjugate sheaf, (°s;); is a family of local sections of the
sheaf 7 (Ox (D)) and by (2.4) we have that

Vi, j,aSi = agl‘jUSj . (25)
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The proof follows on noting that Ox (o D) is determined by the cocycle (? g;;)i; =
)i O
fj J

Proposition 2.6.31 Let D be a divisor invariant under (X, o). There is then a
basis {so, ..., sy} of the complex vector space H*(X, Ox(D)) = {f € K(X)* |
D + (f) = 0} U {0} consisting of invariant functions °s; = s;,i =0, ..., N.

Proof Follows immediately from LemmaA.7.3. (]

Theorem 2.6.32 Let (X, o) be an irreducible non singular complex projective alge-
braic R-variety. If X (R) # @ then for any divisor D linearly equivalent to o (D)
there is a divisor D' linearly equivalent to D such that D' = o (D'). In other words,’

Div(X)%/P(X)¢ = Pic(X)° .
Proof See [Sil89, pp. 19-20]. O

Example 2.6.33 (Div(X)%/P(X)¢ # Pic(X)¢) The example of the conic X in P2
of equation xZ + x? + x3 = 0 shows that when X (R) = &, Pic(X)“ can be larger
than Div(X)¢ /P (X)¢. In this example, Pic(X)® = Pic(X) = Z which is generated
by a point, but all the invariant divisors are of even degree and there is an exact
sequence

0 — Div(X)?/P(X)’ — Pic(X)¢ — Z/27 — 0 .

Up till now we have studied the Picard group of linear divisor classes. We now
present another group of divisor classes, the Néron—Severi group.

Definition 2.6.34 Let X be anon singular complex projective variety and let Pic® (X)
be the connected component of Pic(X) containing the identity (Pic®(X) is the Picard
variety of X, see Definition D.6.6). The Néron—Severi group NS(X) is the group of
components of Pic(X):

0 — Pic®(X) —> Pic(X) —> NS(X) > 0.

Two divisors in the same class in the Néron Severi group are said to be alge-
braically equivalent.

Theorem 2.6.35 (Néron—Severi theorem) Let X be a non singular complex pro-
Jjective variety. The group NS(X) is then finitely generated.

Proof See [GH78, IV.6, pp. 461-462]. [l

3Scheme-theoretically, if X is a scheme defined over R satisfying the hypotheses of the theorem
then Pic(X) = Pic(X¢)C.

6See [GH78, II1.5] for an explanation of this term. The term “numerically equivalent” is also
common in the literature: see [Ful98, Section 19.3] for more details.
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Definition 2.6.36 Let X be a non singular complex projective variety. The rank
of the Neron—Severi group p(X) := rk NS(X) = rk(Pic(X)/ Pic’ (X)) is called the
Picard number of X. Let (X, o) be a non singular projective R-variety. If X (R) is
non empty then the real Picard number of (X, o) is the rank of the real Néron—Severi

group pr(X) = rk(Pic(X)G/Pico(X)G).

Proposition 2.6.37 Let X be a non singular complex projective variety such that
q(X) = dim H' (X, Ox) = 0. We then have that

NS(X) ~ Pic(X) .

Proof 1t follows from the exact sequence (D.3) following Proposition D.6.7 that if
g(X) = 0 then the group Pic®(X) is trivial. O

2.6.5 Projective Embeddings

We have seen that any compact real affine algebraic variety has a projective com-
plexification. The aim of this section is to study these projective models using ample
divisors.

Example 2.6.38 (R-embedding of the product torus)  This example draws on
[BCR98, Example 3.2.8]. Let V be the product torus V := Z (1> + u?> — 1) x
Z (v +w?—1) CA*(R) x A*(R) and let W be the quartic torus in R} _
obtained by rotating the circle of centre (2, 0) and radius 1 in the (xi, x3) plan

around the x3 axis
W= Z(16(x{ + x3) — (x] +x; +x3 +3)") C A’(R) .

Both of these real algebraic sets are diffeomorphic to the torus with the Euclidean
topology V ~ W ~ S! x S!.
Consider W as a subset of P?(R) via the inclusion R} C P*(R)ux,:x,:x, - The
polynomial map
Q: \% — w
tu,v,w)y— 1:tQ4+v):u+v):w)

is bijective and its inverse ¢ ~': W — V,
gy oy 2.2
@~ (xo s x1 txp 1 x3) = (x1X0/ 0, X2X0/ P, (p — 2X3) /XG5 X3/X0)
where p = (x7 4 x5 + x§ + 3x3) /4, is aregular map of real algebraic varieties since
W N {xo =0} = 2.

The map ¢ is therefore an isomorphism of real algebraic varieties and the algebras
R (V) and R(W) are isomorphic by Corollary 1.3.20: the algebras P (V) and P(W),
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however, are different, since the first is regular, unlike the second. Consider the
projective complexifications of the toruses V and W: V¢ ~ P!(C) x P'(C) for the
first and the singular quartic hypersurface

We = Z(16(x? + x3) — (2 4+ x3 + x2 +3x2)?) Cc P*(C) .
for the second. The map ¢ is then the restriction of a birational map of R-varieties
¥: P'(C) x P1(C) » We

which is a resolution of singularities of WC.

Note that v is a morphism of R-varieties but 1/ ~! is only a rational map. Note
also that as VT’C is a quartic in IP*(C) which is birational to P! (C) x P'(C) it must be
singular. Indeed, P'(C) x P!(C) is a rational surface whereas a non singular quartic
in P3 is a non rational surface (called a K3 surface, see Definition4.5.3). The R-
surfaces (P!(C) x P(C), op x op) and (Wc, op|,) are birationally equivalent but
not isomorphic.

2.6.6 Review of Theorem 2.1.33

We have seen that a variety X embedded in P*(C) and stable by the conjugation op
has a natural real structure o induced by op. Note that if X is a projective complex
variety with a real structure o then its image under an arbitrary projective embed-
ding is not always stable under op, but we can always find a real embedding by
Theorem2.6.44 below. We will give a proof of this theorem based on the Nakai—
Moishezon criterion. Of course, Theorem 2.6.44 implies Theorem2.1.33 for which
we have only provided a reference for the proof. In what follows, up to and including
the proof of Theorem2.6.44, we will not use Theorem 2.1.33.

The key fact to remember is that if X is a complex projective variety then for any
real structure o on X the R-variety (X, o) has an equivariant embedding in projective
space.

2.6.7 Nakai-Moishezon Criterion

See [Har77, Appendix A, p. 424] for the definition and main properties of intersection
theory on varieties of arbitrary dimension. If the global variety has areal structure then
this intersection theory is compatible with the real structure. If r is the dimension of
anon singular variety Y and Dy, D», ..., D, are divisors on Y then their intersection
product (D; - D, - - - D,) belongs to Z and only depends on the linear class of the
divisors D;. In particular, if the D;s are hypersurfaces meeting transversally then
(Dy - Dy --- D,) is equal to the number of points in the intersection of the D;s.
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Theorem 2.6.39 (Nakai—Moishezon criterion) Let D be a Cartier divisor on a
complex projective algebraic variety X. The divisor D is then ample on X if and
only if for any irreducible subvariety Y C X of dimension r we have that

(Dly)" > 0.

Proof See [Har77, Appendix A, Theorem 5.1, p. 434], for example. The above
statement also holds for singular X, but requires a modified intersection theory. See
[Kle66, Ful98] for more details. O

Corollary 2.6.40 (Nakai—Moishezon criterion for surfaces) A divisor D on a non
singular irreducible complex projective algebraic surface X is ample if and only if
(D)?> > 0and D - C > 0 for any irreducible curve C in X.

Proof Simply set Y = X in the general criterion to obtain (D)? > 0 and for any
irreducible curve C C X, D - C > 0. O

Definition 2.6.41 A divisor D on a variety X is nef (for numerically eventually
free’) if for any irreducible subvariety ¥ C X of dimension r we have that

(Dly)" 20.
Similarly, a line bundle £ is nef if and only if it is associated to a nef divisor
L = Ox(D).
Remark 2.6.42 Any ample bundle is of course nef.

Proposition 2.6.43 Let X be a complex projective variety with a real structure o.
There is then an ample divisor D such that D = o D.

Proof Let H be an ample divisor on X. For any irreducible subvariety Y C X of
dimension r the conjugate subvariety oY is irreducible and of dimension r and by
the Nakai—-Moishezon criterion (Theorem 2.6.39) we have that (H|,y)" > 0. Since
the real structure is involutive, (o H)|y = o (H|,y) and since the real structure is
compatible with the intersection product we get that ((c H)|y)" = (H|,y)" > 0. By
the Nakai—Moishezon criterion, o H is ample, as is

D:=H+oH.

O

Theorem 2.6.44 Let (X, o) be an algebraic R-variety. If the complex algebraic
variety X is quasi-projective then there is an R-embedding

7If the linear system |m D] is free for some m > O (eventually free), then D is nef. The incorrect
interpretation numerically effective often appears in the literature, but considering (—1)-curves—
see Definition4.3.2—we see that a divisor can be effective without being either nef or linearly
equivalent to a nef divisor.
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¢ (X,0) = (PY(C), 0p) .

Proof We start by assuming X is projective, so by Proposition2.6.43, there is an
ample divisor Dy and a positive integer m such that D = m D is very ample on
X and satisfies 0 D = D. By Proposition2.6.31, there is a basis {sg,..., sy} of
H(X, Ox(D)) such that °s; = s5;,i =0, ..., N. As the divisor D is very ample,
the map

) {X -3 ]PN(C)
PP x ke (s0x) 1o sy ()

is a morphism which induces an isomorphism of R-varieties

(X,0) = (pp(X), ople,x)) -

Now consider a quasi-projective variety U = X \ Y, where X is a projective R-
variety and Y C X is aclosed R-subvariety of X. We have just proved the existence of
an R-embedding; ¢: (X, 0) — (P (C), op): in particular, ¢ is a homeomorphism
onto its image ¢(X \ ¥Y) = ¢(X) \ ¢(Y) and ¢ therefore induces an embedding of
U as a quasi-projective algebraic set

U, oly) = (@X)\ oY), oplexnem)) -

2.6.8 Degree of a Subvariety of Projective Space

Classically, we define the degree of a subvariety of PV using its Hilbert polynomial
[Har77, Section 1.7] and only subsequently prove that this definition is equivalent to
the definition given below.

Definition 2.6.45 (Degree of a subvariety of projective space) The degree of an n
dimensional subvariety X of PV is the degree of the O-cycle D := (H - X) obtained
on intersecting X with a general codimension n projective subspace H in PV.

There is a hidden difficulty in the above definition, namely finding the coefficients
of the O-cycle D := (H - X) for an arbitrary X. See the section preceding [Har77,
Theorem 7.7, p. 53] for more details. If X is complex and non singular then by
Bertini’s Theorem D.9.1 if we choose a sufficiently general H then the O-cycle D is
the sum of all points in H N X.

Definition 2.6.46 (Complex degree) The complex degree of a complex projec-
tive algebraic variety is the smallest degree of any of its embeddings in a complex
projective space PV (C).
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Definition 2.6.47 (Real degree) Let (X, o) be a projective R-variety. The real
degree of (X, o) is the smallest degree of a real embedding in projective space
(PN (), op).

The real degree exists by Proposition2.6.43. As any real embedding is also a
complex embedding, the real degree is not smaller than the complex degree. The
minimal degree of a complex projective embedding is frequently strictly smaller
than the minimal degree of a real projective embedding. The simplest example is
that of conic without real points, whose complex degree is 1 but whose real degree
is 2. Let X be the projective plane curve defined by the equation x> 4+ y? +z> = 0
with the restriction of 0. The curve X is isomorphic as an abstract complex curve
to the curve P!(C) and has degree 1 embeddings—namely lines—in every P"(C).
None of these embeddings can be real because any embedding as an R-line has real
points. The following proposition generalises this principle.

Proposition 2.6.48 Let X C P"(C) be a algebraic subvariety, stable under op. If
the degree of X is odd then X (R) # @.

Proof We can assume that r := n — dim X > 0. Let H be a projective subspace of
dimension r in P" which is not contained in X. By hypothesis, the degree of the
0-cycle D := (H - X) is odd. In particular, the real part of D has odd degree and its
support consists of an odd number of points so it is non empty. a

2.7 R-Plane Curves

We end this chapter by applying the above theory to plane curves. We refer to
Section 1.6 of the first chapter for the general definitions. Bézout’s theorem on plane
curves, given in Chapter 1, is here applied to R-curves. It will be generalised to curves
on other surfaces in Chapter 4.

Theorem 2.7.1 (Bézout’s theorem for R-plane curves) Let C| and C, be projective
plane R-curves of degrees dy and d, respectively

1. If Cy and C, have no common component then
(C1-Cy) =did, .
2. If the intersection C1(R) N C,(R) is finite then
(Ci(R) - C2(R)) < did> .
3. If moreover the branches of C1 and C, are transverse at every point then the

number of intersection points #(C1(R) N C2(R)) is congruent modulo 2 to the
product d,d,.
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Proof We simply defined the intersection multiplicity modulo 2 ata pointa € A”(R)
of two affine plane R-curves C; and C; of equations P;(x, y) and P,(x, y) to be

(Cy - Co)¥ = dimg Op2r) o/(P1, P) mod 2 ;
and the intersection number modulo 2 to be

(Cy - CZ)R = Z (Cy - Cz)ﬂj mod 2 .
aeC(R)NC,(R)

We then apply Theorem 1.6.16 to the complex curves C; and C,. ]

We recall the genus formula proved in Chapter I, Theorem 1.6.17. If C is a non
singular irreducible projective plane curve of genus g = g(C) then

_d-DHd=-2
g=——7 -

The real locus of a non singular projective R-curve is a compact differentiable
variety of dimension 1. It is therefore homeomorphic to a finite union of disjoint
embedded circles.

Theorem 2.7.2 (Harnack 1876) Let (C, o) be a non singular projective plane R-
curve of degree d. Let s be the number of connected components of C(R). We then

have that d-1)d-2

s<¥+l=g(€)+l. (2.6)
Remark 2.7.3 Further on we will give an elementary proof of this inequality based
on Bézout’s theorem. It is useful to note that the number of connected components
of a plane curve of degree d is bounded above by W + 1 even when C is
singular. First of all, it is enough to prove the result when C is irreducible. If not, C
is defined by a product of polynomials of degrees d; and d,, so thatd = d; + d; and

(d1—1)2(d1—2)+1+(d2—1)2(d2—2)+1< (d—l)z(d—2)+

1.

We then show that we can assume that C(R) contains at least one component of
dimension 1 using Brusotti’s Theorem2.7.10 as in Corollary 3.3.20. The proof then
follows the proof for the smooth case given below, see [BR90, Second proof of 5.3.2].

Remark 2.7.4 More generally, for any non singular projective R-curve(C, o) (note
that C is not assumed to be plane), we have that s < g(C) + 1, where g(C) is the
genus of the topological surface C. We will give two proofs of this in Chapter 3 and
Corollary 3.3.7. We will also see in Chapter 3 that this inequality can be generalised
to higher dimension using Smith theory.
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Lemma 2.7.5 There is a real projective curve of degree d which passes through any
given set of (dgz) —1=3(d+2)d+ 1) — 1 points in P*(R).

Proof The number of degree d monomials in three variables is (d’;z). We deduce
from this a bijection between the set of degree d curves in the real projective plane
and a real projective space of dimension %(d +2)d+1)— 1. O

Proposition 2.7.6 For any point p € RP?,
T (RP?, p) ~ 7, .

Proof Consider RP? as the quotient of S? by the antipodal map. (]

Definition 2.7.7 A simple closed curve in the real projective space is an oval if it is
homotopic to 0 and a pseudo-line if it is not homotopically trivial.

Lemma 2.7.8 (Ovals and pseudo-lines) Let (C, o) be a non singular projective
plane R-curve of degree d.

1. Ifd is even all the connected components of C(R) are ovals.

2. If d is odd then one connected component of C(R) is a pseudo-line and all the
others are ovals.

3. Any curve meets any oval in an even number of intersection points, counted with
multiplicity.

Proof The proof is left as an exercise. Use Bézout’s theorem. O

Proof of Theorem 2.7.2 Suppose that d > 2. We argue by contradiction: suppose
that I is a non singular irreducible plane R-curve of degree d whose real locus
has at least g(d) + 1 connected components. Let 7 = g(d) + 1 and 2, ..., ), be
ovals in I"(R): there is at least one other component in I'(R). Choose %d da-1-1
points on I'(R). Since %d(d —1)—12> g(d) + 1forany d > 2 we can choose one
point on each of the ovals €2, . .., €, and the other points on some other connected
component of I'(R). Consider an R-curve A of degree d — 2 passing through these
%d (d — 1) — 1 points. The curves I' and A have no common components because
I' is irreducible and the degree of A is d — 2. By Bézout’s theorem, the number of
intersection points of I' with A counted with multiplicity is less than or equal to
d(d —2).If A meets an oval €2; with multiplicity 1 then A meets €2; at some other
point, so that I" - A > %d(d — 1) —1+g(d) +1=(d—1)? which is larger than
d(d — 2). The theorem follows. O

The bound (2.6) is optimal: Harnack’s bound is realised for any degree d:

Proposition 2.7.9 For any d € N* there is a non singular projective plane R-curve
(C, o) of degree d whose real locus C(R) contains s = W + 1 connected
components.

Proof See [BCRO98, pp. 287-288] or [BRI0, 5.3.11] for Harnack’s construction. [
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The constructions of the curves described above often use explicit deformations
of reducible curves. We can often prove the existence of configurations of ovals of
given degree without explicit constructions using Brusotti’s useful theorem.

Theorem 2.7.10 (Brusotti’s theorem) Let C C P%(R) be a degree d real plane curve
whose singularities are ordinary double points. Suppose given a local deformation
of each of the ordinary double points. There is then a deformation of the curve C in
the space of real curves of degree d which realises each of the local deformations.

Proof See [BR90, Section 5.5]. [l

As well as (2.6) which gives a bound on the number of connected components,
we have restrictions on the positions of ovals of plane R-curves.

Definition 2.7.11 The complement RPP? \ © of a oval in the real projective plane
has two connected components. One of these is diffeomorphic to the disc and is
called the interior of the oval, and the other is diffeomorphic to a Moebius band.
We say that another oval is contained in 2 if it is contained in its interior. An oval
component of a real curve is said to be empty if it does not contain any other oval
component. A family F is said to be a nest of ovals if and only if it is totally ordered
by inclusion.

Definition 2.7.12 An oval is said to be positive (or even) if it is contained in an even
number of ovals and negative (or odd) otherwise.®

Theorem 2.7.13 (Petrovskii’sinequalities) Let (C, o) be anon-singular projective
plane R-curve of even degree d = 2k. Let p be the number of even ovals of C(R)
and let n be the number of negative ovals. We then have that

3 3
p-n<gdd=2)+1=k(k=1+1;
3 3
—p<2dd—2)=2k(k—1).
n-PS3 ( ) > ( )

See [Pet33, Pet38] or [Arn71]. In Chapter3, Theorem3.3.14 we prove these
inequalities using double covers.

Corollary 2.7.14 Let (C, o) be a non singular projective plane R-curve of even
degree d = 2k. Let p be the number of positive ovals of C(R) and n be the number
of negative ovals. Then we have that

7 9 3 7 9
< -k —Zk+ = ; <-kP—Zk+1.
Ps gk o gty TSy gkt

Proof For any curve of even degree d = 2k, Harnack’s inequality (2.6) gives p +
n < 2k? — 3k 4 2. Adding with the Petrovskii inequalities yields the desired result.
O

8See [Pet38, p. 190] for a justification of this terminology.
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Remark 2.7.15 (Ragsdale’s conjecture) A famous, but incorrect, conjecture by
Ragsdale [Rag06] states that p and n actually satisfy the inequalities p < 3k(k -
D+1,etn < k(k — 1). We will come back to this conjecture in Chapter 3, at the
end of Section 3.5.

When the curve does not have any nest of ovals, all ovals are positive and Petro-
vskii’s first inequality gives us the following.

Corollary 2.7.16 Let C be a non singular projective plane R-curve of even degree
d = 2k without a nest of ovals. The number of ovals s .= #my(C (R)) is then bounded
by

3
s < Sktk—1)+1.

Corollary 2.7.17 The maximal even degree d curves, by which we mean the curves
with the maximal number of connected components in their real locus, namely
W + 1, (see Definition3.3.10) have at least one nesting from degree 6
onwards.

2.8 Solutions to exercises of Chapter 2

2.1.31.Let U beanopensetin A" (C) and consider f €  O(U). By definition there is
a function g € O(o,(U)) such that f =g so f =goou: U — Cis regular and
hence f € O(U). The opposite inclusion O(U) C “O(U) is proved by a similar
argument.

2. Apply Definition 1.3.7 to the sheaf O and the subspace F to get the sheaf
?Op. If U is an open subset of F then U is an open set of F and hence of F by
hypothesis. A function f: U — C belongs to *Op(U) if and only if for any point
x in U there is a neighbourhood V of x in A"(C) and a function g € “O(V) such
that g(y) = f(y) forany y € V N U. By the previous question g € O(V) and hence
°0Of = Op.

2.1.7 The sets F and F are subsets of A" (C) and O = (Opn)F (see Definition 1.3.7).
The restriction o4 : F — F is clearly bijective. Moreover, o is continuous since if
Z = Z(I)isaZariski closed subset of F defined by anideal 7 in C[ X}, ..., X,,] then
on"N(Z)=0a(Z)=Z = Z(CI) where °I := {f1 f € I}. Finally, oAlF induces
an isomorphism of rlnged spaces (see Exercise C.5.3) (F, OF) — (F, Op) because
if U is an open subset of F then o (U) is an open subset of F andif f € OF(U) then
fooa: oa(U) — Cisregular or in other words f o op € OF(O'A(U)) Indeed, as
fe (’)F(U ) there is a function fy € Op(U) such that f = f, and it follows that
foon= fooou =7 fy. As fyisregular on U, ? f; is regular on o4 (U).
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2.1.21 1. Recall that if C is the zero locus of a polynomial P then C is the
zero locus of 7 P. A straightforward calculation shows that (¢ o ¢)(x, y) = (x, y)
so ¢ is an involutive automorphism of A?(C) and in particular ¢~' = ¢. Now

consider P(x, y) = y* — apx™ — Y (axx™™ 4+ (=1)*@x™~*). On substituting

2

P(p(x,y)) we obtain —2 +ao— + Y (@ + (—D*@r =) and hence
—x*"P(p(x, y)) =" P(x, y). _

2. Set T = o, o ¢. We then have that t(x,y) = (—%, —%) et (toT)(x,y) =
()C ’ _)’) .

3a. Restricting the projection (x, y) — x we exhibit the curve C := Cy, 4,.....q, aS
a degree 2 covering of P! (C). Its function field C(C) is therefore a degree two exten-
sion of C(x) = C(P'(C)). Moreover, there is a one-to-one correspondence between
automorphisms of C and automorphisms of the field C(C).” The two elements of the
automorphism group of the extension C(C)|C(x) are represented by id¢ and p. Any
automorphism of C(C) therefore induces an automorphism of Frac (C[x, y]/(P)).
If the coefficients of the one-variable polynomial P (x, y) — y? are independent over
Q then the only non trivial automorphism is represented by p.

3b. By Proposition2.1.19, if C has a real structure then there is an isomorphism
between C and C satisfying ®v o ¢ = id¢.

its conjugate are g and ¢': (x, y) = (—1, —Ly), but g 0 % = (¢') o ("*(¢)) =
p #idc,,, .- It follows that if ag, a,, ax are independent over Q then the curve
Cin.a.....a,, has no real structure.

2.1.42 We have two non-equivalent real structures on P!(C):
op: (X 1 x1) > (Xo @ X1)

et
op': (X0 1 x1) > (—X7 @ Xo)

which give rise to three non-equivalent structures on P'(C) x P'(C): the involution
op x op whose fixed locus is the torus T2 = S' x S' and the involutions op X op’
and op’ x op’ whose fixed loci are empty.

The fourth structure is ((x : y), (z : 1)) — ((Z 01, (x: i)) whose fixed locus is
the sphere S?.

9 As an automorphism of C is also a birational transformation of C we simply apply Theorem 1.3.30
which states there is a one-to-one correspondence between automorphisms of C(C) and birational
transformations of C. The stronger correspondence used in this proof relies on the fact that C is a
smooth projective curve.
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2.2.6 1. We have that F(R) = Z(I) and F(R) = Zc(Z(F (R))).

If Z(Z(I)) C I then Zc(Z(F(R))) 2 Z¢(I) or in other words F(R) 2 F so
F(R) is dense in F.

If F(R) is dense in F then Z¢(Z(F(R))) = F = Z¢(I). As the ideal [ is rad-
ical the ideal Ic = I ®g(x,...x,) C[X1, ..., X,] is also radical. It follows by the
Nullstellensatz that Z¢ (F(R)) C I and hence Z(F(R)) C 1.

2. This follows immediately from (1) using Theorem A.5.15.

2.2.7 Set I = (x% 4 y?): we then have that F = Z¢(I) = {x £ iy = 0} and the real
locusis F(R) = Z(1) ={(0,0)}and Z(Z(1)) = (x,y) C I inR[Xy, ..., X,].
We set a = (0, 0). On the one hand, Opw) . = (R[x,y] =R and on the

) MER),a

G
otherhand (OF|rmw)), = OF, = <( (fz[iiz]) )mm) D R since the class of the poly-
nomial x modulo (x? 4+ y?) belongs to Og,a since its coefficients are real.

2.2.26 1. ¢ is a morphism of R-varieties if and only if

e ¢ is an morphism of complex varieties and
® 9ooplp, =0alp, 0.

By Exercise 1.2.56 the first condition is equivalent to the existence of poly-

nomial functions fi,..., fi, € Clxy, ..., x,] such that for every (xi,...,x,) €
Fi,o(x1,....,x) = (filx1, ...y, X)), ooy fu(x1, ..., x,)). The second condition is
equivalent to

(p(x_la'~-7-x_n) :(p(-xla"'axn) )
which simply means that for every (x;, ..., x,) € Fiandeveryi =1...m,

fi G X)) = filxr oo xa)

ie.foreveryi = 1...m,° f; = f; or in other words f; has real coefficients.
2. ¢ is an R-regular rational map if and only if

@ is a rational map of R-varieties;
Fi(R) C dom(g).

In other words, ¢ is an R-regular rational map if and only if

@ is a rational map of complex varieties
® gooplp =0alR, 093
Fi(R) C dom(g).

By Exercise 1.3.25, the first condition is equivalent to the existence of polynomial
functions g1, ..., gn € Clxy,...,x,]and hy, ..., h,, € Clxy, ..., x,] such that for
any (xp, ..., x,) € dom(p),

gl(xls“-v-xn) gm(-xlv-nsxn)
Ox1, ..., X)) = .

hl(xlau-vxn)’.”’ hm(X1,...,xn)
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The map g is therefore an R-regular rational map if and only if g; and %; have

real coefficients and the functions /4; do not vanish at any point of F;(R).

2.2.31 The usual atlas is a compatible atlas because the functions defining the open

sets have real coefficients. We set

Uy := {(x0 : x1) € P1(C) | x9 # 0}

and

. X1
(x0 : x1) —> o

{ U() — C
%o -

Similarly, set U; := {(xo : x1) € PY(C) | x # 0} and

{ U1 — C
@1

(xo @ x1) > ;C—?

We then have that

o O’(Uo) 2) U() ﬁ) (C E) (C
Yo: —_— = X1 X
(x0 : x1) —> (X0 : X1) —> %r—) X—(‘)

and
_— u, — C
P (o x) — o

2.3.14 Use Exercise 1.2.56(3) to write the isomorphism

g oplig/ (V) = o(V)

1

in homogeneous coordinates then check that ¢’ o ¢~ extends to an isomorphism

(Vg = ¢ (Vg
2317 1. Z(F) = (x,y) so Fc = {(0, 0} is a complexification of F which is irre-
ducible so F is geometrically irreducible.

2.V =Zcx +iy)U Zc(x —iy).

3. The R-variety (V, o) does not have enough real points so it is not a complexi-
fication of F.

2.6.15 See [Ser55a, Chapitre III, Section 2] if necessary.

2.6.27 To simplify notation we will prove this result only for n = 2. Take a system
of linear homogeneous coordinates (xo : x; : xp) and let Uy := P2\ Z(xx) be the
standard open affine set defined by x; 7# 0. Consider U, with its coordinates u, u,.
Sections of /Cp2 on Uy are all of the form p(u;, uz) du; A duy. We will calculate the
poles and zeros of the section du; A du, outside of U,. There is only one divisor
outside of Uy, namely xo = 0, so it is enough to check the multiplicity along this
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divisor. We will calculate in U; with coordinates vy, v, such that (1 : u; : uy) = (vg :

1: vy). In other words, u; = # and u, = Z—g, from which we get that
1 vodvy — v d 1
du; Aduy, = <——2 dvo) VAN <OU2—22UO> =——= dvg A dv, .
Vo Yo Yo

This form therefore has a pole of order 3 along vy = 0 as claimed.

2.6.28 Since H(X, Ox(—Kyx)) # 0, there is an effective divisor C linearly equiva-
lent to —Ky.
There is an exact sequence

0—> Ox(=C) > Ox - Oc—0
which on tensorising with Q} gives us
0 — QL (Kx) — Q% — Qlc =0
whose initial terms in the long exact sequence are
0— H(X, Q% (Kx) — H'(X,Q}) — ---
and the conclusion follows because H°(X, Q&) =0.

For the second question simply note that ®y is the dual of Q; and apply Theo-
remD.2.5.
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