
Chapter 2
R-Varieties

In the introduction to Chapter1 we warned the reader that our category of real
algebraic varietieswas insufficient for certain purposes. In this chapter we introduce
complex varieties with a conjugation map, which Atiyah [Ati66] calls “real spaces”.

In this introduction we will assume for simplicity that our varieties are projective.
Let X ⊂ P

n(C) be a complex algebraic set defined by real homogeneous equations.
The set V ⊂ P

n(R) of real solutions to these equations, which is simply X ∩ P
n(R),

is then a real algebraic set. Both X and V are sometimes called real varieties in
the literature, depending on the type of problem being studied. It is tempting to
distinguish the objects V and X by calling V a real algebraic variety (as in Chapter1)
and X an algebraic variety defined over R. Some authors make this distinction—see
[BK99, Hui95] for example—but not all—see [Sil89, DIK00] for example. It is fairly
common to consider that a “real algebraic variety” and an “algebraic variety defined
over R” are the same thing, namely a complex algebraic variety which has a set of
real defining equations, or alternatively, a complex variety stable under conjugaison.

In practice we can mostly specify which point of view we are using on a case
by case basis, since many problems require just one point of view or the other.
Occasionally, however, we will need to jump between definitions in the course of a
single argument. We have chosen to call a pair of a complex algebraic variety and
a conjugation map an algebraic R-variety (see Definition 2.1.10) and reserve the
expression real algebraic variety for algebraic subsets of P

n(R). Note that the “real
varieties” defined in [Sil89, I.2] and [DIK00] are our R-varieties.

This chapter deals with R-varieties and their relationship with the real algebraic
varieties defined in the previous chapter. After definingR-varieties and studying their
main properties in Section2.1, we explain to what extent an R-variety determines a
real algebraic variety in Section2.2. In the subsequent section we will consider the
following question: given a real algebraic variety, does it determine an R-variety?
We end Section2.2 with a summary of the logical relations between real algebraic
varieties, R-varieties and schemes over R, achieving thereby one of the goals stated
in the Introduction. The final part of this chapter deals with refinements and conse-
quences of this theory. Section2.5, which is technically difficult and can be skipped
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66 2 R-Varieties

on first reading, deals with sheaves and bundles, Section2.6 deals with divisors and
Section2.7 deals with R-plane curves.

2.1 Real Structures on Complex Varieties

In this section we introduce complex varieties to the study of real varieties. The
following example illustrates their usefulness: further on, Example2.1.29 illustrates
the usefulness of abstract real structures on complex varieties.

Example 2.1.1 (Continuation of Example1.5.20) Let us return to the real irre-
ducible algebraic variety F := Z(x2 + y2) ⊂ A

2(R) which is an isolated point
(0, 0). Consider the algebraic set X := ZC(x2 + y2) ⊂ A

2(C) which is a reducible
complex curve. The restriction of σ : (x, y) �→ (x, y) to X is an involution sending
X to itself: its set of fixed points is F = Xσ = {(0, 0)}. The complex algebraic curve
X has a unique real point. The point (0, 0) is the intersection of the two irreducible
components ZC(x − iy) and ZC(x + iy) and it is the only real point of X . We have
dim X = 1 and dim F = 0.

Going further, consider the variety V := Z(x2 + y2 − z) ⊂ A
3(R) and the mor-

phism π : V → A
1(R), (x, y, z) �→ z. For any z0 ∈ A

1(R) the fibre π−1(z0) is an
algebraic subset of the affine plane Z((z − z0)) � A

2(R). If z0 > 0, π−1(z0) is a
non singular real curve; π−1(0) � F on the other hand is a point and for all z0 < 0,
π−1(z0) is empty. Consider Y := ZC(x2 + y2 − z) ⊂ A

3(C) and πC : Y → A
1(C),

(x, y, z) �→ z. For any z0 the preimage π−1
C

(z0) is an algebraic subset of the affine
plane Z((z − z0)) � A

2(C). Consider a point z0 ∈ A
1(R) ⊂ A

1(C). If z0 > 0 then
π−1
C

(z0) is a non singular complex curve whose real locus is a non singular real curve.
If z0 = 0 then π−1

C
(0) � X is a singular complex curve whose real locus is a point.

If z0 < 0 then π−1
C

(z0) is a non singular complex curve whose real locus is empty.

The complex variety Y provides a deeper understanding of this example. The real
variety V can be recovered as the set of fixed points of the involution defined by
complex conjugation on C

3. More generally, we will seek to imitate the standard
conjugation map. On A

n(C) = C
n we denote by σA := σAn the involution

σA :
{

A
n(C) −→ A

n(C)

(z1, . . . , zn) �−→ (z1, . . . , zn) .

In particular, for any z ∈ C, σA1(z) = z. Similarly, on P
n(C) we denote by σP :=

σPn the standard conjugation map

σP :
{

P
n(C) −→ P

n(C)

(x0 : x1 : · · · : xn) �−→ (x0 : x1 : · · · : xn) .

We can recover R
n ⊂ C

n as the set of fixed points of σAn and the real projec-
tive plane P

n(R) ⊂ P
n(C) as the set of fixed points of σPn . We will generalise this
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situation to an arbitrary (algebraic or analytic) complex variety. In other words, we
will introduce real structures (analogues of σA and σP) on complex varieties: see
Definition2.1.10 for more details. We note immediately that for general X ⊂ C

n it
is not enough to consider the restriction of σA to X for two reasons. Firstly, we have
to require that this restriction induces a morphism from X to X (i.e. σA(X) ⊂ X ).
Secondly, a given complex variety X can have several different real forms (see Def-
inition2.1.13) corresponding to different real structures. In other words, there are
pairs of complex varieties X1 and X2 defined by real polynomials which are iso-
morphic as complex varieties but do not have an isomorphism defined over R: see
Example2.1.29 for an example.

Let f be a holomorphic function (such as a polynomial) defined in a neighbour-
hood of z0 = (z0,1, . . . , z0,n) ∈ C

n by

f (z) =
∑
k∈Nn

ak(z1 − z0,1)
k1 . . . (zn − z0,n)

kn .

There is then a conjugate holomorphic function of f , denoted σ f , defined in a
neighbourhood of z0 = (z0,1, . . . , z0,n) ∈ C

n by

σ f (z) =
∑
k∈Nn

ak(z1 − z0,1)
k1 . . . (zn − z0,n)

kn

or in other words σ f = f ◦ σAn = σA1 ◦ f ◦ σAn . If F is a subset of C
n defined by

the vanishing of the functions f1, . . . , fk then

F := {z ∈ C
n|σAn (z) ∈ F}

is the set of common zeros of the functions σ f1, . . . , σ fk . It follows that if F ⊂ A
n(C)

is a complex algebraic affine set then F ⊂ A
n(C) is also a complex algebraic affine

set.

Remark 2.1.2 Note that σ f and f are not the same thing. If f is a holomorphic
function then σ f is also holomorphicwhereas f = σA ◦ f anti-holomorphic. Passing
from f to σ f simply involves conjugating coefficients. If f is a polynomial then σ f
is also a polynomial, unlike f . The coefficients of the polynomial f are real if and
only if σ f = f .

Exercise 2.1.3 (Sheaf on a conjugate algebraic set)

1. LetO be the sheaf of regular functions on A
n(C) (resp. Pn(C)). We define a sheaf

σO on A
n(C) (resp. P

n(C)) by setting

σO(U ) := {
σ f | f ∈ O(U )

}
.

for every open set U in A
n(C) (resp. P

n(C))
Prove that σO = O.
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2. Let F ⊂ A
n(C) be an affine algebraic set. The sheaf of regular functions on F

is denotedOF and the sheaf of regular functions on F is denoted OF (These are
sheaves deduced fromO: equipped with these sets, F and F are sub-varieties of
A

n(C)—see Definition1.3.7 and Example1.3.8).
Prove that if F = F then σOF := (σO)F is a sheaf on F which is equal to OF

by the above. We then say that OF is an R-sheaf: see Definition2.2.1 for more
details.

Proposition 2.1.4 Let X ⊂ A
n(C) be an algebraic set. The restriction of σAn to X

is an involution of X if and only if X can be defined by real polynomials.
Let X ⊂ P

n(C) be an algebraic set. The restriction of σPn to X is an involution of
X if and only if X can be defined by real homogeneous polynomials.

Proof If X = Z(P1, . . . , Pl) then by definition we have that X = Z(σ P1, . . . , σ Pl)
and the restriction σA|X is an endomorphism of X if and only if X = X . Suppose
that X = X . We then have that Z(P1, . . . , Pl) = Z(σ P1, . . . , σ Pl) = Z( 12 (P1 +
σ P1), . . . ,

1
2 (Pl + σ Pl),

1
2i (P1 − σ P1), . . . ,

1
2i (Pl − σ Pl)). The proposition follows

on noting that for any polynomial P with complex coefficients the polynomials
1
2 (P + σ P) and 1

2i (P − σ P) have real coefficients. The converse is immediate.
Similarly, if X is a projective algebraic variety defined in P

n(C) by homogeneous
polynomial equations

P1(z0, . . . , zn) = · · · = Pl(z0, . . . , zn) = 0 ,

then the variety X defined by σ
An+1 P1(z0, . . . , zn) = · · · = σ

An+1 Pl(z0, . . . , zn) = 0
is an algebraic subvariety of P

n(C). It is easy to check that if P is a homogeneous
polynomial then 1

2 (P + σ P) and 1
2i (P − σ P) are homogenous polynomials The

restriction of σP to X is therefore an endomorphism of X if and only if X can be
defined by real homogeneous polynomials. �

Before generalising the above to abstract varieties we need the following defini-
tion.

Definition 2.1.5 Let L be a sheaf of complex functions over a topological space X .
The anti-sheaf L of L is defined over any open set U in X by

L(U ) := { f := σA ◦ f | f ∈ L(U )} .

More generally, let X be a topological space and let L be a sheaf of maps to C
n .1

We define the sheaf L over any open set U of X by

L(U ) := { f := σAn ◦ f | f ∈ L(U )} .

1Note that L is no longer a sheaf of rings, but a sheaf of vector spaces.
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Definition 2.1.6 Let (X,OX ) be a complex algebraic variety (resp. a complex ana-
lytic space2). The conjugate variety (resp. the conjugate analytic space) of X is
defined to be the topological space X equipped with the anti-sheaf of OX

X := (X,OX ) .

Exercise 2.1.7 If F is the subset of C
n defined by the vanishing of functions

f1, . . . , fk then F := {z ∈ C
n|σAn (z) ∈ F} is the vanishing locus of the functions

σ f1, . . . , σ fk . If F ⊂ A
n(C) is a complex affine algebraic set then F is a complex

affine algebraic set and σA induces an isomorphism of varieties from (F,OF ) to the
conjugate variety (F,OF ).

Let (X,OX ) and (Y,OY ) be complex algebraic varieties (resp. complex analytic
spaces). In particular, OX and OY are sheaves of complex valued functions. Recall
that a map ϕ : X → Y is regular (resp. holomorphic) if and only if it is continuous
and for any function f ∈ OY (V ) the function f ◦ ϕ belongs to OX (ϕ−1(V )). (See
Definition1.3.4).

Definition 2.1.8 A map ϕ : (X,OX ) → (Y,OY ) is anti-regular (resp. anti-
holomorphic) if and only if it is continuous and for every open set V in Y and
every function f ∈ OY (V ) the function f ◦ ϕ belongs to OX (ϕ−1(V )).

Remark 2.1.9 If X is a complex algebraic variety (resp. complex analytic space)
andOX is its sheaf of regular functions (resp. holomorphic functions) the anti-sheaf
OX is the sheaf of anti-regular (resp. anti-holomorphic) functions. A continuous
map ϕ : X → Y is anti-regular (or anti-holomorphic) from (X,OX ) to (Y,OY ) if
and only if it is regular (or holomorphic) when considered as a map from (X,OX )

to the conjugate variety (Y,OY )—see Exercise2.1.7.

As promised in the introduction, we now generalise the involutions σA and σP

to complex varieties. (We invite the reader to compare this definition with Atiyah’s
“real structures on a bundle” in [Ati66].)

Definition 2.1.10 (Real structure) A real structure on a complex algebraic variety
(resp. complex analytic space) X is an anti-regular (resp. anti-holomorphic) global
involution σ on X .

Examples 2.1.11 (Basic examples)

1. σA on A
n(C);

2. σP on P
n(C);

3. (x : y) �→ (−y : x) on P
1(C).

2In complex analytic geometry the term variety is usually only used for non singular complex
analytic spaces see AppendixD.
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Definition 2.1.12 (R-variety) In short, we will say that a pair (X, σ ) is an R-variety
if X is a complex variety and σ is a real structure on X . If necessary we will specify
whether (X, σ ) is an algebraic R-variety or analytic R-variety. On occasion we will
wish to authorise our analytic varieties to be singular: we will then call them analytic
R-spaces.

Definition 2.1.13 An R-variety (X, σ ) is also called a real form of the complex
variety X .

Example 2.1.14 Real forms of Lie groups provide a rich family of examples. See
[MT86] for more details.

Remark 2.1.15 Generalising R-varieties to complex analytic varieties is particu-
larly useful when studying real K3 surfaces (Definition4.5.3), 2-dimensional com-
plex R-toruses (Definition4.5.22), real elliptic surfaces (Definition4.6.1) and real
Moishezon varieties (Definition6.1.4).

Remark 2.1.16 Let (X, σ ) be an R-variety and let U ⊂ X be an open affine set.
The set σ(U ) is then also an open affine set, since σ is a homeomorphism. Moreover,
if ϕ : U → A

n(C) is an embedding of U as an affine algebraic variety of ideal I =
(P1, . . . , Pl) ⊂ C[X1, . . . , Xn] then σA ◦ ϕ ◦ σ : σ(U ) → A

n(C) is an embedding
of σ(U ) as an affine variety of ideal σ I = (σ P1, . . . , σ Pl) ⊂ C[X1, . . . , Xn].
Definition 2.1.17 A pair (Y, τ ) is an R-subvariety of (X, σ ) if and only if Y ⊂ X
is a complex subvariety of X and τ = σ |Y .

By definition, an R-variety (X, σ ) is quasi-affine (resp. affine, resp. quasi-
projective, resp. projective) if the complex variety X has a regular embedding
ϕ : X ↪→ A

n(C) (resp. ϕ : X ↪→ A
n(C) with closed image, resp. ψ : X ↪→ P

n(C),
resp. ψ : X ↪→ P

n(C) with closed image). The central question is whether there is
always a regular embedding such that ϕ ◦ σ = σA ◦ ϕ (resp. ψ ◦ σ = σP ◦ ψ). In
other words, is (X, σ ) isomorphic as a R-variety to a R-subvariety of (An(C), σA)

(resp. (Pn(C), σP))? The answer to this question is yes: this is one of the main results
of the theory. Any quasi-projective R-variety can be defined by equations with real
coefficients: see Theorem2.1.33.

The well known identification (see [Ser56] for more details) of a complex projec-
tive algebraic variety with an analytic variety is compatible with its real structure.

Proposition 2.1.18 Let X be a complex projective algebraic variety. The variety X
then has a real structure if and only if there is an anti-holomorphic involution on the
analytic space underlying X.

Proof Let Xh be the underlying analytic space of X , by which we mean that Xh is
the set X with its Euclidean topology and the sheaf Oh

X of holomorphic functions
associated to the sheaf OX . If X is projective then the conjugate variety X is also
projective. Let σ : Xh → Xh be an anti-holomorphic involution and let ψ : Xh →
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Xh be the canonical map induced by the identity on topological spaces. The map
σ ◦ ψ : Xh → Xh is holomorphic and X is projective so by Serre’sGAGA theorems
[Ser56] it is regular for the Zariski topology. In other words, σ : X → X is an anti-
regular involution. �

Consider X ⊂ P
n(C) and let ψ : X → P

N (C) be a morphism of complex vari-
eties. We denote by σψ := σP ◦ ψ ◦ σP.

Proposition 2.1.19 (Conditions for the existence of a real structure) If a complex
quasi-projective variety X ⊂ P

n(C) has a real structure then there is an isomorphism
ψ : X → X satisfying σψ ◦ ψ = idX .

Proof If σ is a real structure on X then we simply set ψ := σ = σP ◦ σ . We then
have that ψ−1 = σ−1 ◦ σP

−1 = σ ◦ σP. Moreover, σψ = σP ◦ ψ ◦ σP = σP ◦ (σP ◦
σ) ◦ σP = σ ◦ σP. �

Remark 2.1.20 We insist on the fact that a real structure σ is an involution (i.e.
σ ◦ σ = id). The following example by Shimura [Shi72a, p. 177] (see also [Sil92,
p. 152]) shows that a complex variety can be isomorphic to its conjugate without
having a real structure! (The variety in question has an anti-isomorphism or order 4
but no anti-isomorphism of order 2.)

Exercise 2.1.21 (Curveswithout real structures) Letm be an odd number, let a0 ∈ R

be a real number and let ak ∈ C \ R, k = 1, . . . ,m be non real complex numbers.
Consider the curve Cm,a0,...,am which is the projective completion (i.e. the Zariski
closure of the image of the affine curve under the inclusion j : A

2(C) ↪→ P
2(C)—

see Lemma1.2.43 and Exercise1.2.44) of the affine plane curve of equation

y2 = a0x
m +

m∑
k=1

(
akx

m+k + (−1)kakx
m−k

)
.

1. Prove that the curve Cm,a0,...,am is isomorphic to its conjugate via the map
ϕ : (x, y) �→ (− 1

x ,
i
xm y) for (x, y) 	= (0, 0) and ϕ(0, 0) = (0, 0).

2. Prove that ϕ induces an anti-isomorphism of Cm,a0,...,am of order 4.
3. Assume that the number a0, the numbers ak and the numbers ak are all alge-

braically independent over Q.

(a) Prove that the only automorphisms of Cm,a0,...,am are the identity and
ρ : (x, y) �→ (x,−y). (Use Exercise1.2.80(3a).)

(b) Deduce that Cm,a0,...,am has no real structure.

See Section5.5 and [KK02, Theorem 5.1] for examples of complex surfaces with
no real structure, or even with no anti-automorphism.

Definition 2.1.22 The real locus, or real part of an R-variety (X, σ ) is the set of
fixed points Xσ := {x ∈ X | σ(x) = x} of the real structure. By analogy with the set
of real points of a scheme defined over R the set of fixed points of σ is often denoted
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X (R) := Xσ

when there is no possible confusion.

Remark 2.1.23 Obviously, if (Y, τ ) is an R-subvariety of (X, σ ) then Y (R) ⊂
X (R).

Examples 2.1.24 (Real loci of Examples2.1.11)

1. A
n(R);

2. P
n(R);

3. ∅.

Definition 2.1.25 Let (X, σ ) and (Y, τ ) be R-varieties. A morphism of R-varieties
(or regular map of R-varieties) (X, σ ) → (Y, τ ) is a morphism of complex varieties
ϕ : X → Y which commutes with the real structures

∀x ∈ X, ϕ(σ (x)) = τ(ϕ(x)) .

Remark 2.1.26 R-varieties (X, σ ) and (Y, τ ) are therefore isomorphic if and only

if there is an isomorphism X
ϕ� Y of complex varieties commuting with the real

structures. Indeed, if ϕ : X → Y commutes with the real structures i.e. ϕ ◦ σ = τ ◦ ϕ

then ϕ−1 : Y → X is a morphism of R-varieties; for any y ∈ Y and x = ϕ−1(y)
we have that ϕ(σ(ϕ−1(y))) = ϕ(σ(x)) = τ(ϕ(x)) = τ(y) and hence σ(ϕ−1(y)) =
ϕ−1(τ (y)).

Definition 2.1.27 Let (X, σ ) and (Y, τ ) be R-varieties. A rational map of
R-varieties (X, σ ) ��� (Y, τ ) is a rational map of complex varieties

ϕ : X ��� Y

which commutes with the real structures

∀x ∈ dom(ϕ) ⊂ X, ϕ(σ (x)) = τ(ϕ(x)) .

Remark 2.1.28 Denoting the Galois group by G := Gal(C|R), the involution σ

(resp. τ ) equips X (resp. Y ) with a G-action. A regular map of R-varieties (X, σ ) →
(Y, τ ) is then by definition a G-equivariant regular map of complex varieties. Sim-
ilarly, a rational map of R-varieties is a G-equivariant rational map of complex
varieties.

If X is a projective algebraic variety defined in some P
n(C) by homogeneous

polynomial equations

P1(z0, . . . , zn) = · · · = Pl(z0, . . . , zn) = 0 ,
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then, aswehave seen above, the variety X has a real structure inducedbyσP : P
n(C) →

P
n(C) if and only if we can assume the polynomials Pi have real coefficients, or in

other words if the homogeneous ideal generated by the Pi s has a system of generators
with real coefficients. If this is the case then the real locus of the R-variety (X, σP|X )

is simply X (R) = X ∩ P
n(R). Similarly, if X is an affine algebraic variety defined

in A
n(C) by polynomial equations

P1(z1, . . . , zn) = · · · = Pl(z1, . . . , zn) = 0 ,

then σA : A
n(C) → A

n(C) induces a real structure on the complex variety X if and
only if we can assume the polynomials Pi have real coefficients and in this case the
real locus of the R-variety (X, σA|X ) is given by

X (R) = X ∩ A
n(R) .

Note that the variety X may however have other real structures than the restriction
of σP or σA.

Example 2.1.29 (Twodistinct real structures on the same complex variety) Consider
the affine algebraic plane curveC ⊂ A

2(C) determined by the equation y2 = x3 − x .
As this equation has real coefficients, the conjugation σA restricted to C yields a real
structure. If we set σ1 := σA|C then (C, σ1) is an R-variety whose set of real points
C(R) = Z (

y2 − x(x − 1)(x + 1)
) ∩ A

2(R) has two connected components in the
Euclidean topology—see Figure2.1.

Now let us consider σ2, the restriction to C of the anti-regular involution
A

2(C) → A
2(C), (x, y) �→ (−x, i y). We check that σ2(C) ⊂ C so the pair (C, σ2)

is an R-variety whose real structure is not induced by σA. Let C ′ be the curve of
equation y2 = x3 + x in A

2(C) end let ζ be a square root of −i , ζ 2 = −i . The mor-
phism ϕ : A

2(C) → A
2(C), (x, y) �→ (i x, ζ y) is an automorphism of A

2(C) whose

−1 10

Fig. 2.1 C : y2 = x(x − 1)(x + 1)



74 2 R-Varieties

Fig. 2.2 C ′ : y2 = x(x − i)(x + i)

restriction ϕ|C : C → C ′ is an isomorphism of complex varieties. Set σ ′ := ϕ|C ◦
σ2 ◦ ϕ−1|C ′ : theR-curves (C, σ2) and (C ′, σ ′) are then isomorphic. It is easy to check
that σ ′ = σA|C ′ . The set of real points C ′(R) = Z (

y2 − x(x − i)(x + i)
) ∩ A

2(R)

has only one connected components—see Figure2.2. The R-varieties (C, σ1) and
(C, σ2) are therefore not isomorphic by Proposition2.1.38 below.

In the above example, the abstract R-variety (C, σ2) is isomorphic to theR-variety
(C ′, σ ′)whose real structure is induced by the real structure on the surrounding space.
The fact that there is always anR-subvariety of someA

n isomorphic to a given affine
abstractR-variety is guaranteed by the fundamental Theorem 2.1.30 below.We insist
on the fact that the isomorphism of complex varieties C → C ′ is not always induced
by an automorphism of the surrounding space.

Theorem 2.1.30 (Real embedding of an affineR-variety)Let (X, σ ) be an algebraic
R-variety. If the complex variety X is affine, X ↪→ A

m(C) then there is an affine
algebraic set F ⊂ A

n(C) such that σA(F) ⊂ F and there is an isomorphism of R-
varieties

(F, σA|F ) � (X, σ ) .

In particular, the ideal I(F) is generated by real polynomials or in other words
there is an ideal I ⊂ R[X1, . . . , Xn] such that I(F) = IC and A(X) is isomorphic
to A(F) = (R[X1, . . . , Xn]/I ) ⊗R C.

Remark 2.1.31 Note that n 	= m in general.

This theorem is a reformulation—modulo LemmaA.7.3—of the following result.

Lemma 2.1.32 Let (X, σ )be anaffine algebraicR-variety. There is then a real affine
algebraic set V ⊂ A

n(R) with defining ideal I = I(V ) ⊂ R[X1, . . . , Xn] such that
the R-algebra A(V ) = R[X1, . . . , Xn]/I is isomorphic to the R-algebra of affine
invariant coordinates A(X)σ = { f ∈ A(X) | σ f = f } of X.
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Proof The above result is a special case of the scheme-theoretic result stating that
there is an equivalence between the data of an affine scheme X over C with a real
structure σ and the data of a real scheme X0, namely that if X = Spec A then X0 =
Spec Aσ . See Section2.4 for more details. �

Theorem 2.1.33 (Real embedding of a quasi-projective R-variety) Let (X, σ ) be
an algebraic R-variety. If the complex algebraic variety X is projective (resp. quasi-
projective), X ↪→ P

m(C) then there is a projective (resp. quasi-projective) algebraic
set F ⊂ P

n(C) such that σP(F) ⊂ F and there is an isomorphism of R-varieties

(F, σP|F ) � (X, σ ) .

Remark 2.1.34 We insist on the fact that, as in the affine case, n 	= m in general.

Proof The above statement is a special case of the scheme-theoretic statement that
there is an equivalence between the data of a quasi-projective scheme X over C

with a real structure σ and the data of a real scheme X0 such that X0 = X/〈σ 〉. See
Section2.4 for more details. �

Like many other authors, Silhol [Sil89] states the above result as a special
case of a general result of the Galois descent theory developed first by Weil
[Wei56, Theorem 7] then Grothendieck [Gro95, Théorème 3]. See also Borel–Serre
[BS64, Proposition 2.6, p. 129]. We give an alternative Proof of Theorem2.1.33 in
Section2.6, namely Theorem2.6.44.

In Example2.1.29, σA and σA
′ : (x, y) �→ (−x, i y) are distinct real structures on

A
2(C). The R-varieties

(
A

2(C), σA

)
and

(
A

2(C), σA
′), however, are isomorphic via

the map ϕ : (x, y) �→ (i x, ζ y). In this situation we say that the real structures are
equivalent.

Definition 2.1.35 Two real structures σ and τ on a complex variety X are equivalent
if they are conjugate under an automorphism of the complex variety X or in other
words if there is an automorphism ϕ of X such that

σ = ϕ−1 ◦ τ ◦ ϕ

In other words, σ and τ are equivalent if there is an isomorphism of R-varieties,
ϕ : (X, σ ) → (X, τ ).

Remark 2.1.36 Two real forms (see Definition2.1.13), (X, σ ) and (X, τ ) of a com-
plex variety X are isomorphic if and only if the real structures σ and τ are equivalent.

Example 2.1.37 It is proved in [Kam75] that all real structures on the affine complex
plane are equivalent.

We recall that for any R-variety (X, σ ) we define #π0(Xσ ) = #π0(X (R)) to be
the number of connected components of the real locus in the Euclidean topology.
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Proposition 2.1.38 (Real locus and isomorphism) An isomorphism of R-varieties
ϕ : (X, σ ) → (Y, τ ) induces a homeomorphism between Xσ and Y τ in the Euclidean
topology. In particular

#π0(X
σ ) = #π0(Y

τ ) or in other words #π0(X (R)) = #π0(Y (R)) .

Proof Start by noting that for a any given real structure the Euclidean topology on the
real locus is simply the topology induced by the Euclidean topology on the complex
variety. As ϕ is a homeomorphism for the Euclidean topology (see Exercise1.4.4)
and commutes with the real structures, it induces a bijection Xσ → Y τ between the
fixed loci which is a homeomorphism. �

Corollary 2.1.39 (Real locus and equivalence) Let σ and τ be real structures on a
complex variety X. If σ and τ are equivalent then Xσ and X τ are homeomorphic for
the Euclidean topology and in particular

#π0(X
σ ) = #π0(X

τ ) .

Proof The real structures σ and τ are equivalent so there is an isomorphism of
R-varieties ϕ : (X, σ ) → (X, τ ). �

Example 2.1.40 (Two real forms on the same complex variety) We return to the two
complex algebraic curves C and C ′ studied in Example2.1.29 whose equations in
A

2(C) are y2 = x3 − x and y2 = x3 + x respectively. It is easy to check that the set
of real points of C(R) ⊂ A

2(R) has two connected components, see Figure2.1, and
that the set of real points of C ′(R) ⊂ A

2(R) has only one connected component, see
Figure2.2. In particular, by Proposition2.1.38, the R-curves (C, σ1) and (C, σ2) are
not isomorphic.

The complex variety C therefore has two non-equivalent real structures σ1 =
σA|C : (x, y) �→ (x, y) and σ2 = ϕ−1|C ′ ◦ σA|C ′ ◦ ϕ|C : (x, y) �→ (−x, i y). It is
interesting to note that these non equivalent real structures are restrictions of real
structures σA and ϕ−1 ◦ σA ◦ ϕ on A

2(C) which are equivalent by definition.

Remark 2.1.41 (Non-standard real structure on the projective line)Wehave already
met the antipodal map on the Riemann sphere:

σP
′ : P

1(C) → P
1(C), (x0 : x1) �→ (−x1 : x0)

which is a real structure on P
1(C) whose set of fixed points is empty and which is

therefore not equivalent to σP.

Exercise 2.1.42 (Real structures on a complex torus) Find four pairwise non-
equivalent real structures on P

1(C) × P
1(C). (There are in fact exactly four classes

of real structures on P
1(C) × P

1(C).)
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Remark 2.1.43 Until recently it was not known whether the number of equivalence
classes of real structures on a given complex varietywasfinite. See [DIK00,Appendix
D] for a review of this question.

In [Les18], John Lesieutre constructs a variety of dimension 6 with a discrete
automorphism group which cannot be generated by a finite number of generators
and which has infinitely many non-isomorphic real forms. In [DO19], Dinh and
Oguiso use different methods to construct examples of projective varieties of any
dimension greater than one with non-finitely automorphism generated group. Their
work also provides examples of real varieties of any dimension greater than one with
infinitely many non-isomorphic real forms. In [DFM18], Dubouloz, Freudenburg
and Moser–Jauslin construct affine rational varieties with infinitely many pairwise
non-isomorphic real forms in every dimension ≥ 4.

Surprisingly, this finiteness question is still open for rational surfaces. See Benz-
erga’s work [Ben16a, Ben16b, Ben17] for the most recent results on this question.

2.2 R-Varieties and Real Algebraic Varieties

For a given quasi-projective R-variety (X, σ ) we seek to define a sheaf of regu-
lar functions on X (R) with which X (R) becomes a real algebraic variety as in
Definition1.3.9. By Theorem2.1.33 and Exercise2.1.3 the structural sheaf satisfies
σOX = OX , which justifies the following definition. Recall that a real structure is a
Zariski homeomorphism and in particular if U is open in X then so is σ(U ). Let L
be a sheaf of C

n-valued functions. For any open set U in X and any map f ∈ L(U )

we denote by σ f : σ(U ) → C
n the map f ◦ σ = σA ◦ f ◦ σ . We then have that

σ f ∈ L(σ (U )) which generalises the notion of conjugate function introduced at the
beginning of Section2.1.

Definition 2.2.1 Let (X, σ ) be an R-variety and let L be a sheaf of C
n-valued func-

tions. The sheaf σL defined on any open set U of X by

σL(U ) := {σ f | f ∈ L(σ (U ))} .

is a sheaf on X called the conjugate sheaf. We say that L is an R-sheaf if and only
if σL = L. Note that this is required to be an equality, not an isomorphism.

From a cohomological point of view, the sheaves L and σL are similar. (See
[Liu02, Section 5.2] for an introduction to sheaf cohomology.) In particular, we have
the following proposition.

Proposition 2.2.2 Let (X, σ ) be an R-variety and let L be a coherent sheaf (Defi-
nitionC.6.7) of C

n-valued functions. We then have that

dimC Hk(X, σL) = dimC Hk(X,L) .
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Proof See [Sil89, I.(1.9)]. �

Let (X, σ ) be a quasi-projective R-variety. We saw above that the sheaf of C-
algebras OX is an R-sheaf: σOX = OX . In particular, for any open set U in X , the
morphism

OX (U ) −→ OX (σ (U ))

f �−→ σ f

is a ring isomorphism.

Remark 2.2.3 We can prove more: this map is an anti-isomorphism of C-algebras.
Let us prove anti-linearity: for any λ ∈ C and for any regular function f on U we
have that σ (λ f ) = λ f ◦ σ = λ( f ◦ σ) = λ(σ f ).

If A is anR-algebra equippedwith aG-action, whereG := Gal(C|R), and σ is the
corresponding involution of A then we denote by AG := Aσ = {a ∈ A | σ(a) = a}
the sub-algebra of invariants of A (see DefinitionA.7.2).

Let (X, σ ) be an R-variety. A subset U ⊂ X is said to be invariant if and only if
σ(U ) = U . Any such subset inherits a G-action: since σ is a homeomorphism, for
any open setU in X the intersectionU ∩ σ(U ) is an invariant open set in X . For any
invariant open setU we say that a local section f overU is invariant if σ f = f . Let
F be anR-sheaf of functions on X . We denote byFX (R) the sheaf of its restrictions to
X (R), see DefinitionC.1.6 and byFG

X (R) its invariant subset. We apply this definition
to OX , which is an R-sheaf of functions on X , and obtain a sheaf

(OX )GX (R) := (
(OX )X (R)

)G
of real-valued functions on X (R). It takes some work to prove that these functions
are R-valued, since a priori they are C-valued—see below for the proof.

Let us describe the local sections of this new sheaf. Let � ⊂ X (R) be an open
subset in the induced topology. We check first that any f ∈ (OX )GX (R)(�) is R-

valued. As f is invariant, for any x ∈ � we have that f (x) = (σ f )(x) = f (σ (x))
and since x is a point in X (R) we have that σ(x) = x so f (x) ∈ R. By definition of
(OX )X (R) there is an open neighbourhood U ⊂ X of x and an element g ∈ OX (U )

such that g|U∩� = f |U∩�. ReplacingU byU ∩ σ(U ) and g by 1
2 (g + σ g)we get an

element g ∈ (OX (U ))G such that g|U∩� = f |U∩�. In other words, the local sections
of (OX )GX (R) over an open set � in X (R) are as follows.

(OX )GX (R)(�) = {
f : � → R | ∀x ∈ �,

∃U open invariant neighbourhood of x in X and

∃g ∈ (OX (U ))G | g|U∩� = f |U∩�

}
.

We invite the reader to compare the following theorem with Theorem2.1.30.
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Theorem 2.2.4 Let F ⊂ A
n(C) be a complex affine algebraic set such that I(F) is

generated by polynomials with real coefficients. In particular, F(R) := F ∩ A
n(R)

is a real algebraic affine set.
If F(R) is dense in F with respect to the Zariski topology then

OF(R) � (OF )GF(R) .

Proof Let I ⊂ R[X1, . . . , Xn] be an ideal and let F = ZC(I ) ⊂ A
n(C) be the com-

plex algebraic set whose ideal is I(F) = IC and whose sheaf of regular functions
is OF . The set F(R) = F ∩ A

n(R) = ZR(I ) ⊂ A
n(R) is then a real algebraic set

whose sheaf of regular functions will be denoted by OF(R). By hypothesis F is sta-
ble under σA. By PropositionC.3.12 these sheaves are isomorphic if and only if their
stalks are isomorphic.

Let � ⊂ F(R) be a Zariski open subset in A
n(R) and let f be an element of

OF(R)(�). Passing to a smaller open set if necessary, we can assume that on �

f = p
q where p, q are polynomials with real coefficients and q does not vanish at

any point of �. There is then an open set U of F in A
n(C) on which q does not

vanish and hence f ∈ OF(R)(�) can be extended to a regular function fC ∈ OF (U )

such that σ fC = fC. As F(R) is dense in F , the germ of the extension fC of f is
uniquely determined by the germ of f . It follows that OF(R) � (OF )GF(R). �

Theorem2.2.4 motivates our next definition.

Definition 2.2.5 Let (X, σ ) be an R-variety. We say that (X, σ ) has enough real
points if and only if X (R) is Zariski-dense in X .

Exercise 2.2.6 Let I ⊂ R[X1, . . . , Xn] be a radical ideal and let F = ZC(I ) ⊂
A

n(C) be the associated complex algebraic set as in Definition1.2.12. Let (F, σA|F )

be the associated affine R-variety.

1. Prove that theR-variety (F, σA|F )has enough real points if andonly ifI(Z(I )) ⊂
I in R[X1, . . . , Xn].

2. Prove that the R-variety (F, σA|F ) has enough real points if and only if I is a
real ideal, see DefinitionA.5.14.

Exercise 2.2.7 Prove that the R-variety (F = ZC(x2 + y2), σA|F )—which has a
non-empty real locus—does not have enough real points. (See Example2.1.1). Fur-
ther prove that OF(R) 	= (OF )GF(R).

Theorem2.2.9 below characterises thoseR-varieties that have enough real points.
In particular, any irreducible non singular R-variety with non-empty real locus has
enough real points.

Lemma 2.2.8 Let (X, σ ) be an algebraic R-variety, let a ∈ X (R) be a real point
and let ma be the maximal ideal of the local ring OX,a. We then have that

dimC ma/m
2
a = dimR((ma/m

2
a)

G) .
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Proof As a is real σ induces an anti-linear involution onOX,a and by LemmaA.7.3
there is a basis of ma/m

2
a whose elements are all σ -invariant. �

Theorem 2.2.9 (Density of the real locus in the complex variety)

1. The space A
n(R) is dense in A

n(C) for the Zariski topology.
2. Let V ⊂ A

n(C) be an irreducible affine algebraic set whose ideal I = I(V )

is generated by polynomials with real coefficients. The real locus V (R) = V ∩
A

n(R) is Zariski dense in V if and only if it contains at least one non singular
point of V .

3. Let (X, σ ) be an algebraic R-variety. The real locus X (R) is Zariski dense in
every irreducible component Z of X containing a non singular real point if
and only if X (R) is not contained in the singular locus of X. In other words,

X (R)
Zar ∩ Z = Z if and only if (Reg Z) ∩ X (R) is non empty.

Corollary 2.2.10 Let (X, σ ) be an algebraic R-variety. If the complex variety X is
irreducible and non singular and if X (R) 	= ∅ then (X, σ ) has enough real points,

or in other words X (R)
Zar = X.

The behaviour of the Euclidean topology is very different.

Proposition 2.2.11 The real locus X (R) of an algebraic R-variety (X, σ ) is closed
in X for the Euclidean topology.

Proof The real structure σ is continuous for the Euclidean topology and the real
locus X (R) = {x ∈ X | x = σ(x)} is therefore closed in X because the Euclidean
topology is Hausdorff. �

Proof of Theorem 2.2.9 1. We reuse the argument of Proposition1.5.29. Assume
for the moment that we have proved that if a polynomial function vanishes on all real
affine points then it is identically zero—this will be proved below by induction on
the dimension. If Z(I ) is a closed subset of A

n(C) containing A
n(R) then for any

f ∈ I the function f vanishes on every point of A
n(R) and by assumption f is the

zero polynomial. It follows that I = (0) and Z(I ) = A
n(C).

Let us now prove that for any n, any polynomial vanishing on all real affine
points is identically zero. For n = 1, the result is immediate. Suppose that n > 1 and
the induction hypothesis holds for n − 1. Let f ∈ C[X1, . . . , Xn] be a polynomial
function vanishing on R

n . We can write

f (X ′, Xn) = Xd
n fd(X

′) + Xd−1
n fd−1(X

′) + · · · + f0(X
′)

where X ′ = (X1, . . . , Xn−1), d = deg f and ∀i = 0, . . . , d, fi ∈ C[X1, . . . , Xn−1].
For any X ′ ∈ R

n−1 the function Xn �→ f (X ′, Xn) vanishes at every real point so
f (X ′, Xn) is the zero polynomial for any fixed X ′. It follows that the polynomial
functions fi vanish for every real X ′ ∈ R

n−1 and are therefore identically zero by
the induction hypothesis.
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2. As V is irreducible in A
n(C), I = I(V ) is a prime ideal in C[X1, . . . , Xn] and

IR := I ∩ R[X1, . . . , Xn] is a prime ideal inR[X1, . . . , Xn] (LemmaA.2.9).We then
have that V = ZC(IR) and V (R) = Z(IR). Set d = dimC V : by the Nullstellensatz
(CorollaryA.5.13), we have that dim I = d (see Definition1.5.9) and dim IR = d
by Lemma1.5.15. Note that a priori dimR V (R) is not necessarily equal to d: see
Example1.5.20 or 2.2.15.

We now use the fact that there is a non singular point a = (a1, . . . , an) ∈
(Reg V ) ∩ A

n(R). ByRemark1.5.28, V is a differentiable submanifold of dimension
2d � 2n at a or in other words there is a Euclidean neighbourhood W of a in C

n

such that W ∩ V is a Euclidean neighbourhood of a in V of real dimension 2d and
W ∩ V (R) is a Euclidean neighbourhhood of a in V (R) of real dimension d (take an
open chart (W, ϕ) whereW = σ(W ) and justify that ϕ can be chosen G-equivariant
using LemmaA.7.3 if necessary). The subvariety V (R) is therefore a submanifold
of real dimension d at a. The real algebraic set V (R) then has Zariski dimension d
by Proposition1.5.29, or in other words the dimension of the ideal I(V (R)) is equal
to d. There is therefore a length d chain of prime ideals in R[X1, . . . , Xn] contain-
ing I(V (R)). As I(V (R)) ⊃ IR by definition if I(V (R)) were different from IR
we would get a chain of length d + 1 of prime ideals containing IR, contradicting
the fact that dim IR = d. It follows that I(Z(IR)) = IR and hence V (R) = V by
2.2.6(1).

3. We can assume that X is irreducible. By definition of a algebraic variety, X can
be covered by open affine subsets. By hypothesis we can therefore chose an open
affine subset U in X such that U ∩ X (R) is not contained in the singular locus of
X (and in particular, U is not empty and since X is irreducible, U is Zariski-dense).
Replacing U by U ∩ σ(U ) if necessary we can assume that U is stable under σ . As
U is affine (see Exercise1.3.15(4)) the R-variety (U, σ |U ) is isomorphic to an affine
R-variety (V, σA|V ) ⊂ (An(C), σA) by Theorem2.1.30 so we now simply apply (2)
to this affine R-variety. V ∩ A

n(R) is dense in V ∩ A
n(C) = V and we note that

U ∩ X (R) = ϕ−1(V ∩ A
n(R)) for any R-isomorphism ϕ : U → V . �

Example 2.2.12 (Reducible, singular, non empty and non dense) We return to
Example1.5.20. Consider the reducible affine algebraic R-variety

(V, σ ) := (ZC(x2 + y2), σA|V )

whose real locus is the isolated point a = (0, 0). By definition we have that

OV,a =
(

C[x,y]
(x2+y2

)
(0,0)

whence dimOV,a = dimOG
V,a = 1 et dimC mV,a/m

2
V,a =

dimR((mV,a/m
2
V,a)

G) = 2, illustrating the fact that a is a real singular point of
the 1-dimensional complex variety. A contrario we have that dimOV (R),a = dimR

mV (R),a/m
2
V (R),a = 0 illustrating the fact that the real algebraic variety {a} is a zero-

dimensional non singular variety.

Example 2.2.13 (Irreducible, singular, dense) We return to Example1.5.21. Con-
sider the affine algebraic R-curve
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0 2

Fig. 2.3 V (R) = {y2 − x2(x − 2) = 0} ⊂ A
2(R)

(V, σ ) := (ZC(y2 − x2(x − 2)), σA|V )

whose real locus is shown in Figure2.3. The Zariski closure inA
2(C) of the “branch”

(Reg V ) ∩ V (R) = V (R) ∩ {x > 1} is V .

Remark 2.2.14 The point (0, 0) is not, however, contained in the Euclidean closure
of the branch V (R) ∩ {x > 1}.
Example 2.2.15 (Irreducible, singular, non empty and non dense) This is an exam-
ple of an irreducible singular algebraic set V whose real locus is neither empty nor
Zariski dense in V . Consider

P(x, y) = ((x + i)2 + y2 − 1)((x − i)2 + y2 − 1) + x2 =
x4 + 2x2y2 + y4 − 4y2 + 4 + x2

which is a polynomial in R[x, y]. The set V := ZC(P) ⊂ A
2(C) is an irreducible

algebraic set and its real locus contains exactly two points. Indeed, let P1(x, y) =
P(x, y) − x2 and set V1 := Z(P1). If (x, y) is a real point of V1 then y2 =
1 − (x + i)2 or y2 = 1 − (x − i)2. As x and y are real, x must be identically zero
so y = ±√

2 and V1(R) = {(0,√2), (0,−√
2)}. We will now prove that we also

have that V (R) = {(0,√2), (0,−√
2)}. Note that if P(x, y) = 0 for some real x

then this implies that P1(x, y) = x4 + 2x2y2 + y4 − 4y2 + 4 is a negative or zero
real number. Considering P1 as a degree 2 polynomial in the variable Y = y2 with
coefficients inR[x]we see that its discriminant is equal to−4x2. If x is non zero then
this discriminant is strictly negative so for real x and y, P(x, y) = 0 if and only if
P1(x, y) = 0. We leave it as an exercise for the reader to show that P is irreducible,
a long but unsurprising calculation. (We constructed the polynomial P by starting
from the polynomial P1 and looking for a perturbation of P1 preserving the two real
points in V1, whose existence is guaranteed by Brusotti’s Theorem 2.7.10.).
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Exercise 2.2.16 Construct a similar example from the example given in
Remark1.2.31(2).

Theorem 2.2.17 Let (X, σ ) be a quasi-projective algebraic R-variety. If the variety
(X, σ )has enough real points, or in otherwords if X (R) is Zariski dense in X, then the

real locus equipped with the restriction of the structural sheaf,
(
X (R), (OX )GX (R)

)
,

is a real algebraic variety as in Definition1.3.9.

Proof This follows easily from Theorem2.1.33 and the projective analogue of The-
orem2.2.4. �

Corollary 2.2.18 Let (X, σ ) be a quasi-projective algebraic R-variety. If the com-

plex variety X is irreducible andnon singular and X (R) 	= ∅ then
(
X (R), (OX )GX (R)

)
is a real algebraic variety.

Proof See Corollary2.2.10. �

The following proposition justifies the introduction of a third type of morphism
betweenR-varieties, somewhere between regularmapsDefinition2.1.25 and rational
maps Definition2.1.27.

Proposition 2.2.19 Let (X, σ ) and (Y, τ ) be R-varieties with enough real points
and let

ψ : (X, σ ) ��� (Y, τ )

be a rational map of R-varieties. If the domain of ψ contains the real locus
X (R), then ψ induces by restriction a regular map of real algebraic varieties(
X (R), (OX )GX (R)

)
→

(
Y (R), (OY )GY (R)

)
.

Proof See Exercise2.2.26(2). �

Definition 2.2.20 Let (X, σ ) and (Y, τ ) be R-varieties.
A rational R-regular map or real morphism

ψ : (X, σ ) ��� (Y, τ )

is a rational map of R-varieties such that X (R) ⊂ dom(ψ).

Remark 2.2.21 Amorphism of R-varieties is of course always a rational R-regular
map but the converse is false.

Proposition 2.2.22 Let (X, σ ) and (Y, τ ) be quasi-projective R-varieties. Suppose
that these varieties have enough real points. The following then hold.

1. A rationalR-regular map ofR-varieties (X, σ ) ��� (Y, τ ) induces a regular map
of real algebraic varieties

(
X (R), (OX )GX (R)

) → (
Y (R), (OY )GY (R)

)
.
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2. Conversely, any regular map of real algebraic varieties

(
X (R), (OX )GX (R)

) → (
Y (R), (OY )GY (R)

)

is the restriction of an R-regular rational map ψ : (X, σ ) ��� (Y, τ ).
3. Any rational map of R-varieties (X, σ ) ��� (Y, τ ) induces a rational map of real

algebraic varieties

(
X (R), (OX )GX (R)

)
���

(
Y (R), (OY )GY (R)

)
.

4. Conversely, any rational map

(
X (R), (OX )GX (R)

)
���

(
Y (R), (OY )GY (R)

)

is the restriction of a rational map (X, σ ) ��� (Y, τ ).

Proof Left for the reader as an exercise. �

Remark 2.2.23 We insist on (2) in the above proposition: the complex extension of
a real regular map is not generally regular. The map (x, y) �→ 1

x2+y2+1 fromA
2(R) to

A
1(R) is a regular map of real algebraic varieties but does not extend to a morphism

of R-varieties.

Remark 2.2.24 The “isomorphisms” corresponding to R-regular rational maps are
the R-biregular birational maps. Note that it is important the map be both birational
and R-biregular: blowing up a real point (or in other words, contracting a (−1)-
real curve) on an R-surface (see Definition4.1.26 for more details) is an R-regular
birational map but it is not R-biregular.

Definition 2.2.25 Let (X, σ ) and (Y, τ ) be R-varieties.
A R-biregular birational map or real isomorphism

ψ : (X, σ ) ��� (Y, τ )

is a birational map of R-varieties inducing a biregular map of real algebraic varieties

(
X (R), (OX )GX (R)

) �−→ (
Y (R), (OY )GY (R)

)
.

Exercise 2.2.26 (UseExercises1.2.56 and1.3.25)Let F1 ⊂ A
n(C)and F2 ⊂ A

m(C)

be affine algebraic sets stable under σA so that (F1, σA|F1) and (F2, σA|F2) are affine
R-varieties and let ϕ : F1 ��� F2 be a rational map of complex varieties.

1. Prove that ϕ is a morphism of R-varieties if and only if there are polynomial
functions f1, . . . , fm ∈ R[x1, . . . , xn] such that for any point (x1, . . . , xn) ∈ F1,

ϕ(x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .
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In this case, F1 ⊂ dom(ϕ) and ϕ : F1 → F2 is a morphism of complex varieties.
2. Prove that ϕ is an R-regular birational map if and only if there are polynomial

functions g1, . . . , gm ∈ R[x1, . . . , xn] and h1, . . . , hm ∈ R[x1, . . . , xn] such that
for every point (x1, . . . , xn) ∈ F1(R), h1(x1, . . . , xn) 	= 0, . . . , hm(x1, . . . , xn) 	=
0 and

ϕ(x1, . . . , xn) =
(
g1(x1, . . . , xn)

h1(x1, . . . , xn)
, . . . ,

gm(x1, . . . , xn)

hm(x1, . . . , xn)

)
.

In this case F1(R) ⊂ dom(ϕ) and if F1 and F2 have enough real points then
ϕ|F1(R) : F1(R) → F2(R) is a regular map of real algebraic varieties with the
induced structure.

2.2.1 Non Singular R-Varieties

Anon singular complex variety of complex dimension n is naturally a real differential
manifold of dimension 2n with the Euclidean topology. For example, for any non
singular projective algebraic variety X ⊂ P

N (C)wehave that X inherits a differential
submanifold structure fromP

N (C). If X is stable under σP and X (R) 	= ∅ then X (R)

is a real algebraic variety by Corollary2.2.18. The variety X (R) inherits a Euclidean
topology from P

N (R) (the same as in Definition1.4.1) and can be thought of as a
differential submanifold of P

N (R).

Proposition 2.2.27 Let (X, σ ) be an R-variety. If the complex variety X is non
singular and has complex dimension n then the set X with its Euclidean topology
is a differential manifold of real dimension 2n. If moreover X (R) 	= ∅ then the set
X (R) with its euclidean topology is a differentiable manifold of real dimension n.

We invite the reader to compare this result with Remark1.5.28. We recall that
under the hypotheses of the above proposition, X (R) is Euclidean closed but Zariski
dense in X . See Corollary2.2.10 and Proposition2.2.11 for more details.

Proof As we have seen above, as OX is an R-sheaf, the morphism

OX (U ) −→ OX (σ (U ))

f �−→ σ f

is a ring isomorphism for any open set U in X . As the variety X is non singular
and of dimension n we can find a local system of parameters {ϕx }x∈X—see Defini-
tion1.5.47. Exercise1.5.48 tells us that in terms of local coordinates we get a set of
systems (Ux , ϕx ) where ϕx : Ux → C

n is analytic and on refining this open cover
using Euclidean open sets we can assume that ∀x ∈ X,Uσ(x) = σ(Ux ) and

∀x ∈ X, σ (ϕx ) = ϕσ(x) . (2.1)

where σ (ϕx ) = σA ◦ ϕx ◦ σ .
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It follows that if (z1, . . . , zn)x is a systemof local coordinates satisfying (2.1), then
the system (�(z1),�(z1), . . . ,�(zn),�(zn))x is a system of real local coordinates
for the manifold structure, equivalent to the complex local system of coordinates
(z1, z1, . . . , zn, zn).

The real structure σ then transforms (z1, z1, . . . , zn, zn)x into

(z1, z1, . . . , zn, zn)σ(x) .

In particular, if x ∈ X (R) is a non singular point of X then by (2.1), σ (ϕx ) =
ϕσ(x) = ϕx from which it follows that σA ◦ ϕx = ϕx ◦ σ and if y ∈ Ux ∩ X (R) then
ϕx (y) = ϕx (y). The local coordinates of a real point are therefore real and the restric-
tion of ϕx to X (R) induces a system of real smooth (and in fact analytic) local
coordinates (�(z1), . . . ,�(zn)) on X (R) in a neighbourhood of x .

Alternatively, we can bypass the first part of this argument by using Lemma2.2.8.
Let x be a real point of X : there is then a system of local parameters which is
invariant under σ . By Exercise1.5.48 we can derive from this an invariant system of
local coordinates. �

The underlying 2n-dimensional manifold structure on the non singular complex
variety X is not only orientable (since a holomorphic change of coordinate map
has a positive determinant), but also oriented. Any isomorphism R

2n � C
n yields

an orientation on R
2n by pull back and the complex structure on X yields such an

isomorphism. (See ExerciseB.5.11 for more details).

Proposition 2.2.28 Let (X, σ ) be a non-singular R-variety. The real structure σ is
a diffeomorphism of the 2n-dimensional oriented manifold X which preserves the
orientation if n is even and reverses it otherwise.

Proof This follows immediately from the previous proof. The map σ takes
(z1, z1, . . . , zn, zn)x to (z1, z1, . . . , zn, zn)σ(x), so the determinant of its differential
is (−1)n . �

2.2.2 Compatible Atlas

Exercise 2.2.29 If X is a non singular complex analytic variety of dimension n we
can reframe the definition of the conjugate variety using a maximal atlas (Ui , ϕi )i
determining the complex structure on X: the complex structure of the conjugate
variety (X,OX ) is given by the atlas (Ui , σAn ◦ ϕi )i .

Definition 2.2.30 A compatible atlas on a smooth analytic R-variety (X, σ ) of
dimension n is an atlas A = {(Ui , ϕi : Ui → C

n)}i on the complex analytic vari-
ety X satisfying the following conditions. (Recall that σϕi = σA ◦ ϕi ◦ σ .)

1. The atlas is globally stable for the real structure, or in other words
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(Ui , ϕi ) ∈ A =⇒ (σ (Ui ),
σ ϕi ) ∈ A ;

2. If Ui ∩ X (R) 	= ∅ then Ui = σ(Ui ) and σ ϕi = ϕi ;
3. If Ui ∩ X (R) = ∅ then Ui ∩ σ(Ui ) = ∅.

Exercise 2.2.31 Give a compatible atlas for (P1(C), σP).

Proposition 2.2.32 Every smooth analytic R-variety has a compatible atlas.

Proof This follows from the existence of local systems of parameters satisfying
(2.1). �

2.3 Complexification of a Real Variety

We have seen that the real locus of an R-variety is a real algebraic variety whenever
it is Zariski dense. In this section we will study the converse: given a real algebraic
variety V , is there an R-variety whose real locus is isomorphic to V ?

Let K be a field and let L ⊃ K be an extension of K . The set A
n(K ) is then a

subspace of A
n(L) and P

n(K ) is a subset of P
n(L).

Definition 2.3.1 (Revisions of Definition1.2.12) Let F ⊂ A
n(K ) be an algebraic

set over K of ideal I = I(F) ⊂ K [X1, . . . Xn]. We define the algebraic set FL over
L to be the set ZL(I ) of zeros of I in A

n(L):

FL := ZL(I ) ⊂ A
n(L) .

Similarly, if F ⊂ P
n(K ) is a projective algebraic set of homogeneous ideal I =

I(F) ⊂ K [X0, . . . Xn] then we define an algebraic set

FL := ZL(I ) ⊂ P
n(L) .

More generally, if U = F \ F ′ ⊂ A
n(K ) is a quasi-affine set and I = I(F) ⊂

K [X1, . . . , Xn] and I ′ = I(F ′) ⊂ K [X1, . . . , Xn] are the associated ideals then we
can define a quasi-affine set

UL := FL \ F ′
L = ZL(I ) \ ZL(I

′) ⊂ A
n(L) .

And finally if U = F \ F ′ ⊂ P
n(K ) is a quasi-projective algebraic set and

I = I(F) ⊂ K [X0, . . . , Xn] and I ′ = I(F ′) ⊂ K [X0, . . . , Xn] are the associated
homogeneous ideals then we define a set

UL := FL \ F ′
L = ZL(I ) \ ZL(I

′) ⊂ P
n(L) .
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Any real algebraic set (which here will be assumed affine to simplify the nota-
tion) F ⊂ R

n with vanishing ideal I := I(F) ⊂ R[X1, . . . , Xn] is therefore natu-
rally associated to a complexification FC := ZC(I(F)) = ZC(I ) ⊂ C

n which is just
the set of complex commonzeros of the real polynomials vanishingon F .Note that the
ideal I is made up of polynomials with real coefficients whereas FC ⊂ C

n is a set of
complex points.As FC is defined by polynomialswith real coefficients,σA(FC) ⊂ FC

and the restriction σ of the standard real structure σA : (x1, . . . , xn) �→ (x1, . . . , xn)
to FC is a real structure with which (FC, σ ) is an R-variety. Our initial real algebraic
variety can be recovered as the set of fixed points of F = (FC)σ .

The above construction depends heavily on the equations defining F . The follow-
ing definition enables us to consider abstract complexifications, by which we mean
complexifications which are independent of a particular embedding into affine or
projective space, or alternatively independent of a choice of equations.

Definition 2.3.2 Let (V,OV ) be a real algebraic variety. A pair ((X, σ ), j) is a
complexification of V if (X, σ ) is an R-variety with enough real points and j : V →
X is an injective map inducing an isomorphism of real algebraic varieties

(V,OV )
�−→ (X (R), (OX )GX (R)) .

A complexification ((X, σ ), j) of a real algebraic variety V is quasi-projective (resp.
non singular) if X is a quasi-projective (resp. non singular) complex variety.

Let ((X, σ ), j) be a complexification of a real algebraic variety V and let
ψ : (X, σ ) ��� (Y, τ ) be an R-biregular birational map. It is easy to check that
((Y, τ ), ψ ◦ j) is then a complexification of V . Indeed, since X (R) is dense in X and
ψ is birational the set Y (R) = ψ(X (R)) is dense in Y . The following proposition
establishes the converse.

Proposition 2.3.3 Let V be a real algebraic variety and let ((X, σ ), j) be a com-
plexification of V . Then for any complexification ((X ′, σ ′), j ′) of V , there is a unique
R-biregular birational map ψ : (X, σ ) ��� (X ′, σ ′), X (R) ⊂ dom(ψ) such that the
following diagram commutes.

X
ψ

X ′

V

j
j ′

Proof We start by proving the proposition in the case where V , X and X ′ are affine.
The uniqueness of the map for affine varieties will then enable us to glue complex-
ifications and R-biregular birational maps on open affine subsets of V to prove the
general result. By hypothesis the morphism h = j ′ ◦ j−1 : X (R) → X ′(R) is an iso-
morphism of real algebraic varieties. By the solution to Exercise1.2.56(2), there is
a morphism defined on an open neighbourhood of X (R) in X extending j ′ ◦ j−1.
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As X (R) is dense in X , the rational map ψ : (X, σ ) ��� (X ′, σ ′) induced by this
extension is an R-biregular birational map uniquely determined by j ′ ◦ j−1. �

Proposition 2.3.4 Any real affine algebraic set has an affine complexification. Any
real projective algebraic set has a projective complexification.

Proof Let X ⊂ A
n(R) be a real affine algebraic set and let I = I(X) ⊂ R[X1,

. . . , Xn] be its ideal. The set X is then the set of real zeros ofZ(I ) ⊂ A
n(R) and the

Zariski closure, XC of X in A
n(C) is the set of complex zeros ZC(I ) ⊂ A

n(C) by
Remark1.2.13. By construction the R-variety (XC, σA|XC

) has enough real points;
denoting by j : X ↪→ XC the inclusion map, the pair

(
(XC, σA|XC

), j
)
is then an

affine complexification of X . Similarly, if X ⊂ P
n(R) is a real projective alge-

braic set and I = I(X) ⊂ R[X0, . . . , Xn] is its homogeneous ideal then we take
ZC(I ) ⊂ P

n(C), the set of complex zeros of I . �

Remark 2.3.5 We have seen that any real projective variety is also affine, and there-
fore has an affine complexification.

A complex projective algebraic variety is not generally affine, so a projective
R-variety is not typically affine, and neither is a projective complexification.

Certain real affine algebraic varieties also have projective complexifications, and
these will be studied in Theorem2.3.7 below.

Remark 2.3.6 Let X be a quasi-projective real algebraic varietywith X = V \ W ⊂
P
n(R). Let IV ⊂ R[X0, . . . , Xn] be the homogeneous ideal of V and let IW ⊂

R[X0, . . . , Xn] be the homogeneous ideal ofW . The set VC = ZC(IV ) is a projective
complexification of V by the above andWC = ZC(IW ) is a projective complexifica-
tion of W . The variety XC = VC \ WC is therefore a quasi-projective complexifica-
tion of X .

We recall Definition1.4.11 which states that a real algebraic variety is complete
if and only if it is compact for the Euclidean topology.

Theorem 2.3.7 Any non singular complete real affine algebraic variety has a non
singular projective complexification.

Before proving this theorem we state some very useful lemmas concerning bira-
tional morphisms of R-varieties. Let (X, σ ) be an R-variety and let x ∈ X (R) be
a real point. We denote by Cx the connected component of X (R) containing x .
Throughout this section, connected means connected in the Euclidean topology.

Lemma 2.3.8 Let (X, σ ) be an R-variety and let x ∈ X (R) ∩ Reg X be a regular
real point. The Euclidean connected component Cx ⊂ X (R) is not then contained
in any strict Zariski closed subset of X.

Proof ByProposition1.5.29, x has a connected Euclidean open neighbourhoodU ⊂
X (R) homeomorphic to a non empty subset of R

n where n is the Zariski dimension
of X at x . AsU ⊂ Cx and any strict Zariski closed subset of X is of strictly positive
codimension the result follows. �
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Lemma 2.3.9 Let ϕ : (Y, τ ) → (X, σ ) be a birational morphism of R-varieties and
let Z ⊂ Y be the smallest Zariski closed subset such that ϕ|Y\Z is an isomorphism
onto its image. Consider a point y ∈ Y (R) ∩ Reg Y : the connected Euclidean com-
ponent Cϕ(y) is not then contained in ϕ(Z).

Proof As codim Z > 0,Cy ∩ (Y \ Z) 	= ∅ by Lemma2.3.8. It follows that ϕ(Cy) ∩
(X \ ϕ(Z)) 	= ∅ and as the image of a connected subset under a continuous map is
still connected, ϕ(Cy) ⊂ Cϕ(y) and hence Cϕ(y) ∩ (X \ ϕ(Z)) 	= ∅. �

Proposition 2.3.10 Let (X, σ ) be an R-variety and let ϕ : (Y, τ ) → (X, σ ) be a
resolution of singularities of X. Suppose that the connected component of a real
singular point x ∈ X (R) is contained in the singular locus Cx ⊂ Sing X. We then
have that ϕ−1(x) ∩ Y (R) = ∅.

Proof By Theorem1.5.51, Sing X is a strict Zariski closed subset of X . The result
then follows fromLemma2.3.9 applied to Z = π−1(Sing X) usingDefinition1.5.53.
�

Proof of Theorem 2.3.7 Let V be a non singular real affine algebraic variety which is
compact for theEuclidean topology.ByProposition2.3.4,V has an affine complexifi-
cation ((X, σ ), j). By Theorem2.2.9, X (R) � V does not meet Sing X .We consider
a projective completion (X ′, σ ′) of (X, σ ): in particular, X is a subvariety of X ′ and
σ = σ ′|X . ByHironaka’s resolution of singularitiesTheorem1.5.54 there is a non sin-
gular projective R-variety (Y, τ ) and a birational morphism π : (Y, τ ) → (X ′, σ ′) of
R-varietieswhich is an isomorphismonπ−1(Reg X ′) → Reg X ′. As X (R) ⊂ Reg X ,
the restriction of the composition (Y, τ ) → (X, σ ) to X (R) is an isomorphism.

As V is compact, X (R) is also compact, so it is closed in X ′(R) for the Euclidean
topology. It follows that for every x ∈ X ′(R) \ X (R) there is an inclusion Cx ⊂
X ′(R) \ X (R) and Proposition2.3.10 tells us that π−1(X ′(R) \ X (R)) ∩ Y (R) = ∅.
We can therefore conclude that ((Y, τ ), (π |Y (R))

−1 ◦ j) is a non singular projective
complexification of V . �

Remark 2.3.11 In the above proof, X ′(R) \ X (R) may be non empty. In Exam-
ple2.6.38, examined in detail below, we consider the set

W := Z(16(x21 + x22 ) − (x21 + x22 + x23 + 3)2) ⊂ A
3(R) .

and the projective complexification given by

ŴC := Z (
16(x21 + x22 ) − (x21 + x22 + x23 + 3x20 )

2) ⊂ P
3(C) .

The R-variety (ŴC, σP|ŴC
) contains real points that do not belong to the torus

of revolution WC(R) = W . Indeed, if x21 + x22 � 16 then the point(
0 : x1 : x2 :

√
4
√

(x21 + x22 ) − (x21 + x22 )

)
belongs to ŴC(R) \ WC(R). The R-

morphism ψ : P
1(C) × P

1(C) → ŴC is a resolution of singularities of ŴC.
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We use the above results to prove Theorem1.5.55 for R-varieties.

Theorem 2.3.12 Let ϕ : (Y, τ ) → (X, σ ) be a birational morphism of non singular
R-varieties. If the real loci X (R) et Y (R) are compact for the Euclidean topology
then they have the same number of connected components.

#π0(Y (R)) = #π0(X (R)) .

Proof Let Z ⊂ Y be the smallest Zariski closed subset such that ϕ|Y\Z is an iso-
morphism onto its image. The map ϕ is continuous for the Euclidean topology so
#π0(Y (R)) � #π0(X (R)). To prove the opposite inequality, assume there are twodis-
tinct connected components Y1 and Y2 in Y (R) such that ϕ(Y1) ∩ ϕ(Y2) is non empty.
LetU be an open Euclidean neighbourhood of x ∈ ϕ(Y1) ∩ ϕ(Y2) in X (R). We then
have that U ∩ ϕ(Y1) 	= ∅ and U ∩ ϕ(Y2) 	= ∅. Indeed for i = 1, 2, ϕ−1(U ) ∩ Yi is
a non empty open space in Y (R) and as Y is non singular ϕ−1(U ) ∩ Yi \ Z is non
empty by Lemma2.3.8. As X is non singular we can assume thatU is homeomorphic
to a non empty open set in R

n , where n is the dimension of X , which by the above
is cut into two disjoint parts by the algebraic subset ϕ(Z). The codimension of ϕ(Z)

is at least two because ϕ is a birational morphism (see [Sha94, II.4.4, Theorem 2]
for example) which contradicts the fact that ϕ(Z) disconnects the open set U . This
yields a contradiction. �

The behaviour of an R-variety away from its real points is often irrelevant for the
study of the real locus X (R)—but not always. We saw in Remark2.3.11 an example
where we needed to consider the non real points of the complex variety.

Definition 2.3.13 A quasi-algebraic affine or projective set U over K is said to
be geometrically irreducible if the set UK (see Definition2.3.1) defined over the
algebraic closure K of K is irreducible.

A quasi-projective algebraic set V over K , is said to be geometrically irreducible
if the imageU of V under embedding into a projective space over K is geometrically
irreducible. Under these circumstances the image under any projective embedding
of V is geometrically irreducible by Exercise2.3.14.

An R-variety (X, σ ) is said to be irreducible if and only if X is irreducible as a
complex variety.

Exercise 2.3.14 Check that if ϕ : V → P
N (K ) and ϕ′ : V → P

N ′
(K ) are two

projective embeddings of V then ϕ(V )K is irreducible if and only if ϕ′(V )K is
irreducible.

Proposition 2.3.15 Let K be a field.

1. An algebraic set over K which is geometrically irreducible is irreducible.
2. An algebraic variety over K which is geometrically irreducible is irreducible.
3. A real algebraic variety V is geometrically irreducible if and only if it has an

irreducible complexification.
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4. Let (X, σ ) be a quasi-projective algebraic R-variety with enough real points.
We then have that (X, σ ) is irreducible if and only if the real algebraic variety(
X (R), (OX )GX (R)

)
is geometrically irreducible.

Proof Left as an exercise for the reader. �

Remark 2.3.16 Recall that by Corollary2.2.10 the real locus of a non singular
irreducible algebraic R-variety is Zariski dense whenever it is non empty.

Exercise 2.3.17 (Review of Example2.1.1)

1. The real algebraic set F := Z(x2 + y2) ⊂ A
2(R) is geometrically irreducible.

2. On the other hand, theR-variety (V, σ ), where V := ZC(x2 + y2) ⊂ A
2(C) and

σ = σA|V , is not irreducible.
3. This appears to contradict the fact that V σ = F—what is happening?

2.3.1 Rational Varieties

Definition 2.3.18 (Rational R-varieties)

1. AnR-variety (X, σ ) of dimension n is rational (orR-rational) if it is birationally
equivalent to the R-variety (Pn(C), σP), or in other words if there is a birational
map of R-varieties (X, σ ) ��� (Pn(C), σP).

2. An R-variety (X, σ ) of dimension n is geometrically rational (or C-rational)
if and only if the complex variety X is rational, or in other words if there is a
birational map of complex varieties X ��� P

n(C).

Remark 2.3.19 Weinvite the reader to compare this definitionwithDefinition1.3.37
in the first chapter. Note that “geometric” irreducibility and rationality behave dif-
ferently: a geometrically irreducible variety is irreducible, whereas a rational variety
is geometrically rational.

Proposition 2.3.20 Any R-rational R-variety is C-rational

Remark 2.3.21 The converse of the above proposition is false, an example being
given by P

1(C) with its anti-holomorphic involution z �→ − 1
z̄ . See Remark2.1.41

for more details. Chapter4 contains many 2-dimensional examples.

Proposition 2.3.22 Let (X, σ ) be a quasi-projective non singular R-variety. If
(X, σ ) is R-rational and has non zero dimension then X (R) is connected and non
empty.

Proof This follows from Theorem2.3.12 since P
n(R) is connected and non empty

for all n > 0. �
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2.4 R-Varieties, Real Algebraic Varieties and Schemes
Over R—a Comparison

This section reviews the various types of R-varieties met so far and the logical
relationships between them. We have identified two different types of real variety:
real algebraic varieties and R-varieties. In total, there are five different incarnations
of real algebraic varieties:

1. The real locus of a set of real equations.
2a. A complex variety defined by equations with real coefficients.
2b. A complex variety with an anti-regular involution.

These last two cases of special complex varieties are equivalent if we make the
extra assumption that the variety is quasi-projective.

3a. A scheme defined over R.
3b. A scheme defined over C with a real structure.

Once again, these last two cases are equivalent if we make the assumption that
the scheme is quasi-projectif.

At the end of the day, the last four definitions are all equivalent for quasi-projective
varieties and only the first is different. A variety of type (1) can be thought of as the
germ of a variety of type (2a) in a neighbourhood of the real locus.

Moreover, any such variety has two topologies and two associated structures

• Zariski topology and algebraic variety structure.
• Euclidean topology and analytic variety structure.

There is a dictionary translating algebraic structures into underlying analytic
structures. For example, the (anti)-regular maps become (anti)-holomorphic. This
“translation” is not however an equivalence unless the variety is projective. See
AppendixD.5 for more details.

Let us examine these structures in more detail.

1. (Section1.3) A real algebraic variety (resp. complex algebraic variety) is a
topological space X with a subsheaf OX of the sheaf of functions with a finite
covering of affine open setsU , by which we mean that (U,OX |U ) is isomorphic
to the zero set Z(I ) ⊂ A

n(R) of an ideal I ⊂ R[X1, . . . , Xn] with the sheaf
of functions which are locally rational fractions without real poles (resp. the
set of zeros Z(I ) ⊂ A

n(C) of an ideal I ⊂ C[X1, . . . , Xn] with the sheaf of
functions which are locally rational functions without poles). Varieties X and Y
are isomorphic if and only if there exists a biregular map X → Y .

2. (Section2.1) An R-variety (X, σ ) is a complex variety X with an anti-regular
involution (or in other words a real structure) σ . The R-varieties (X, σ ) and
(Y, τ ) are isomorphic if there is a biregular isomorphism of complex varieties
that commutes with the real structure. The varieties (X, σ ) and (Y, τ ) are bira-
tionally R-biregularly isomorphic if there is a birational map ϕ : X ��� Y com-
muting with real structure such that X (R) ⊂ dom(ϕ) and Y (R) ⊂ dom(ϕ−1).
(Section2.3) A complexification of a real algebraic variety V is an R-variety
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(X, σ ) with enough real points whose real locus X (R) is isomorphic to V as a
real algebraic variety.

(a) (Section2.1) Any quasi-projective R-variety can be realised as a variety
defined by real coefficients (as can its principal sheaves, see Section2.5).

(b) (Section2.2) A quasi-projective R-variety with enough real points induces
by restriction a real algebraic variety structure on its real locus. A morphism
of quasi-projective R-varieties with enough real points induces a regular
map of real algebraic varieties.

(c) (Section2.3) Conversely, any quasi-projective real algebraic variety has a
complexification which is an R-variety with enough real points. Any mor-
phism of quasi-projective real algebraic varieties can be extended to a ratio-
nal R-regular map of R-varieties.

(d) (Section2.3) Two R-varieties which are complexifications of isomorphic
real algebraic varieties are birationally R-isomorphic but not generally iso-
morphic.

3. This paragraph requires some knowledge of schemes—see [Duc14] or [Liu02]
for more details. See also [Ben16b, Section 3.1] for a more specific discussion
of realisations of schemes over R. We leave it is an exercise for the reader to
check the claims made below.

A scheme over a field K (or a K -schema) is a scheme X with a scheme mor-
phism (called the structural map) X → Spec K . Throughout this paragraph, we
assume X is of finite type over K (or in other words that X is covered by a finite
number of spectra of finitely generated K -algebras). TwoR-schemes X andY are
birationally R-biregularly isomorphic if there is a birational map ϕ : X ��� Y of
R-schemes such that ϕ is regular at everyR-rational point of X and ϕ−1 is regular
at every R-rational point of Y . Let X be a scheme over C equipped with an invo-
lution σ lifting complex conjugation σ ∗

A
= Spec(z �→ z̄) : SpecC → SpecC:

we call such an involution a real structure on X . If X is quasi-projective then by
[BS64, Proposition2.6] there is a scheme Z = X/〈σ 〉overR and an isomorphism
of C-schemes ϕ : X → Z ×SpecR SpecC such that σ = ϕ−1 ◦ (id×σ ∗

A
) ◦ ϕ.

Moreover, the pair (Z , ϕ) is uniquely determined by the pair (X, σ ) up to R-
isomorphism. For example if X = Spec A is affine then Z = Spec Aσ .
Implicitly, most types of algebraic varieties used in this book are different man-
ifestations of R-schemes of finite type.

(a) The set X (R) of R-rational points of a scheme X over R with the restriction
of the structural sheaf is a real algebraic variety. A morphism of R-schemes
induces a morphism of real algebraic varieties.

(b) Conversely, any quasi-projective real algebraic variety can be obtained as
the set of R-rational points of a scheme X over R. Any morphism of quasi-
projective real algebraic varieties can be extended to an R-regular map of
schemes over R.
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(c) Any two schemes over R whose real loci are isomorphic as real algebraic
varieties are birationally R-biregularly isomorphic.

(d) Let Z be a scheme of finite type over R. We can associate to it the following
R-variety: X is the topological space of C-rational points of the C-scheme
Z ×SpecR SpecC, The pair (X, σ ) is the R-variety obtained on equipping X
with the real structure σ := id×Spec(z �→ z̄). We denote by X (R) the set
of closed points fixed by σ . If Z(R) is the set of R-rational points of the
R-scheme Z then X (R) = Z(R). A morphism of schemes over R induces a
morphism of R-varieties.

(e) Conversely, if (X, σ ) is an R-variety then there is a C-scheme Z such that
Z(C) = X , [Har77, II.2.6] and there is an involutive morphism σZ : Z →
Z lifting σ ∗

A
: SpecC → SpecC such that σZ |Z(C) = σ . As we have seen

above, if X is quasi-projective then (Z , σZ ) corresponds to an R-scheme. A
morphism of R-varieties induces a morphism of schemes over R.

2.4.1 Real Forms of a C-Scheme

By the above, Definition2.1.13 can be reformulated scheme theoretically as follows.

Definition 2.4.1 A real form of a scheme X over C is a scheme X0 over R whose
complexification X0 ×SpecR SpecC is isomorphic to X .

2.4.2 Notations X, X (R), X (C), XC, XR

We now briefly discuss the various notations the reader may meet in the literature.
As in scheme theory, where by abuse of notation the structural morphism Z →

SpecR is often omitted, the abbreviation X for the R-variety (X, σ ) is often used.
Consequently, the notation XC for the variety X is often used to emphasise the fact
that we are concentrating on the complex variety and “forgetting” σ . Some authors,
particularly of the Russian school, use the notation XC or CX for the complex locus
and XR or RX for the real locus of R-varieties.

Remark 2.4.2 In case that wasn’t confusing enough, there is another object called
XR in the literature, constructed using extension of scalars. In the embedded case,
it simply means separating the real and imaginary parts of the equations of a com-
plex variety. From the scheme point of view this corresponds to taking the scheme
morphism SpecC → SpecR associated to the inclusionR ↪→ C and compose maps
X → SpecC → SpecR to see that a scheme over C is necessarily a scheme over R.
For example, if X ⊂ A

n(C) is defined by r equations

{
Pi (z1, . . . , zn) = 0

}
i=1,...,r
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then XR ⊂ A
2n(R) is defined by the 2r equations

{�(Pi (x1 + iy1, . . . , xn + iyn) = 0),

�(Pi (x1 + iy1, . . . , xn + iyn) = 0
}
i=1,...,r .

Let X be an algebraic variety defined over C which for simplicity we will assume
to be non singular. Consider the product variety Z := X × X with the anti-regular
involution σZ : (x, y) �→ (y, x). The set of real points of the R-variety (Z , σZ ) is
then a real algebraic variety as in Definition1.3.9, homeomorphic in the Euclidean
topology to the topologicalmanifold underlying the complex variety X . Some authors
use XR = Z(R) to denote this underlying real algebraic variety.

2.5 Coherent Sheaves and Algebraic Bundles

Wewill now generalise the above constructions to certain sheaves and vector bundles
needed in the development of the theory.

2.5.1 Coherent R-Sheaves

Let (X, σ ) be anR-variety, letL be a quasi-coherent sheaf ofOX -modules (see Theo-
remC.7.3) and letU be an open affine set in X . The space of sectionsM := L(σ (U ))

is then an OX (σ (U ))-module. We define an OX (U )-module σ M by equipping the
group M with the following OX (U )-twisted action.

( f,m) �→ σ f · m (2.2)

where
( f,m) �→ f · m

denotes the OX (σ (U ))-action on M .

Definition 2.5.1 Let (X, σ ) be an R-variety and let L be a quasi-coherent sheaf of
OX -modules. The conjugate sheaf σL is the sheaf ofOX -modules defined overU by
declaring σL(U ) to be the twistedOX (U )-module σ M . We say that L is an R-sheaf
if and only ifL = σL. This is required to be an equality, not simply an isomorphism.

Remark 2.5.2 These definitions generalise Definition2.2.1. Indeed, for any open
set U in X , there is an equality of OX (U )-modules σL(U ) = L(σ (U )) provided
the right hand side is equipped with the twisted action (2.2). In particular, if L is a
sheaf of C

n-valued functions then σL(U ) = {σ f | f ∈ L(σ (U ))}. Moreover, L is
an R-sheaf if and only if σL(U ) = L(U ) for any open set U in X .
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Our definition of an R−sheaf is motivated by the following result which explicits
the relationship between R-sheaves on an R-variety (X, σ ) and sheaves of invariant
functions. A priori an R-sheaf is only a sheaf which is globally fixed by σ .

Lemma 2.5.3 Let (X, σ ) be a quasi-projective R-variety and let L be a quasi-
coherent sheaf of OX -modules. If L is an R-sheaf then there is a quasi-coherent
sheaf of OX -modules L0 such that for any open affine subset U ⊂ X,

L(U ∩ σ(U )) � L0(U ∩ σ(U )) ⊗R C

and ∀ f ∈ L0(U ∩ σ(U )), σ f = f . When this is the case we will say that f has real
coefficients.

Proof Recall that by definition σ is a homeomorphism for the Zariski topology on X
and in particular ifU is a Zariski open set in X then the intersectionU ∩ σ(U ) is also
Zariski open.Moreover, byExercise1.3.15(4), the open setU ∩ σ(U ) is affine. It will
therefore be enough to prove the result for an affine R-variety so by Theorem2.1.33
we may assume we are in the case where X ⊂ A

n(C) and I(X) ⊂ R[X1, . . . , Xn].
Under these hypotheses we have that σ = σA|X and

OX (X) = A(X) = (R[X1, . . . , Xn]/I(X)) ⊗R C .

Let M be theA(X)-module of global sections of theOX -module L(X). By hypoth-
esis, σ induces a Galois action on M for which, on equipping the subgroup of fixed
points MG with its natural A(X (R))-module structure, we have that

M = MG ⊗A(X (R)) (A(X (R)) ⊗R C) .

We then simply defineL0 to be the sheaf associated to theA(X (R))-module MG .
See DefinitionC.7.2 for more details, �

Wewill make intensive use of coherentR-sheaves, particularly invertible sheaves,
see DefinitionC.5.8. These are in bijective correspondence with line bundles, see
Corollary2.5.13.

Let (X,OX ) be an affine real or complex algebraic variety and let F be a quasi-
coherent sheaf. The set of global sections �(X,F) is then a �(X,OX )-module. If
F is locally free then this module is projective, by which we mean that it is a direct
summand of a free �(X,OX )-module, see DefinitionA.4.6.

The next lemma requires us to generalise DefinitionC.7.2. Let M be a �(X,OX )-
module and let OX ⊗�(X,OX ) M be the sheaf of OX -modules associated to the
presheafU �→ OX (U ) ⊗�(X,OX ) M . If (X,OX ) is a complex variety thenOX (U ) =
�(X,OX ) f for any principal open set U = D( f ) and OX ⊗�(X,OX ) M can be iden-
tified with the sheaf M̃ of DefinitionC.7.2. In particular,

(OX ⊗�(X,OX ) M
)
(U ) =

M̃(U ) = M f for any principal open set U = D( f ). If (X,OX ) is a real variety
then for any open set U in X , OX (U ) can be identified with the inductive limit
lim−→D( f )⊃U

�(X,OX ) f of the localisations �(X,OX ) f where f runs over the set of
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regular functionswhich donot vanish on anypoint ofU and
(OX ⊗�(X,OX ) M

)
(U ) �

lim−→D( f )⊃U
M f .

The special case of locally free finitely generated sheaves leads us directly to
vector bundles.

Lemma 2.5.4 Let (X,OX ) be a real or complex affine algebraic variety. LetF be a
sheaf of finitely generated locally freeOX -modules. The �(X,OX )-module �(X,F)

of global sections of F is then projective and finitely generated. Conversely, let
M be a projective finitely generated �(X,OX )-module. The associated OX -module
OX ⊗�(X,OX ) M is then finitely generated and locally free.

Proof Left as an exercise for the reader. �

If (X,OX ) is a complex variety then every locally free finitely generated OX -

moduleF is equal to the sheaf ˜�(X,F) associated to its�(X,OX )-module�(X,F)

of global sections.

Proposition 2.5.5 If (X,OX ) is a complex affine algebraic variety then the map
M �→ M̃ yields a bijective correspondence between finitely generated projective
�(X,OX )-modules and finitely generated locally free OX -modules.

Proof See [Har77, Corollary II.5.5]. �

On the other hand, as the following example shows, if (X,OX ) is a real affine
variety then there are finitely generated locally free sheaves which are not associated
to �(X,OX )-modules.

Example 2.5.6 Based on [BCR98, Example 12.1.5], see also [FHMM16, Example
5.35].

Let P ∈ R[x, y] be the polynomial defined by

P(x, y) = x2(x − 1)2 + y2

which has exactly two real zeros, a0 = (0, 0) and a1 = (1, 0). SetUi = R
2 \ {ai } for

i = 0, 1. The Zariski open subsets U0 and U1 form an open covering of A
2(R). We

define a locally free coherent rank 1 sheaf F by gluing the sheaves OA2(R)|U0 and
OA2(R)|U1 over U0 ∩U1 using the transition function ψ01 = P on U0 ∩U1. In other
words, two sections s0 ∈ OA2(R)|U0(V0) and s1 ∈ OA2(R)|U1(V1) on the Zariski open
sets V0 and V1 are glued together if and only if ψ01s1 = s0 over V0 ∩ V1.

The OA2(R)-module F is not generated by its global sections because any global
section s ofF vanishes at a1. Indeed, the restriction si of s toUi is a regular function
on Ui for i = 0, 1. The gluing condition is ψ01s1 = s0 on U0 ∩U1. Set si = gi/hi
where gi , hi ∈ R[x, y], with hi 	= 0 at every point on Ui and gi , hi coprime for
i = 0, 1. The gluing condition implies that Ph0g1 = g0h1 onR

2. As P is irreducible
and h1(a0) 	= 0 the polynomial P divides g0 or in other words there is an λ ∈ R

∗ such
that g0 = λPg1 and h1 = λ−1h0. In particular g0(a1) = 0 and hence s(a1) = 0. It
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follows that the quasi-coherent sheafF onA
2(R) is not generated by global sections.

A fortiori, there is no �(A2(R),OA2(R))-module whose associated sheaf is F .
Note that the module of global sections �(A2(R),F) is isomorphic to

�(A2(R),OA2(R)) = R(R2) via the map (s0, s1) �→ s1 = g1
h1

since h1 = λ−1h0 does
not vanish at any point of R

2.

2.5.2 Algebraic Vector Bundles

Definition 2.5.7 Let (X,OX ) be an algebraic variety over a field K . A rank r pre-
algebraic vector bundle over X is a K -vector bundle (E, π), see DefinitionC.3.5,
where E is an algebraic variety over K , π : E → X is a regular map and the home-
omorphisms ψi : π−1(Ui )

�−→ Ui × Kr are biregular maps. More generally, a pre-
algebraic vector bundle has constant rank on every connected component of X .

Remark 2.5.8 On an affine real algebraic variety the vector bundles defined above
are called pre-algebraic in [BCR98] but algebraic in the previous version [BCR87].

Consider a pre-algebraic (resp. rank r ) vector bundle on X . Its sheaf of algebraic
local sections is then naturally equipped with aOX -module structure which is locally
free (resp. of rank r ).

Proposition 2.5.9 Let (X,OX ) be an algebraic variety over a base field K . There is
a bijective correspondence between the class of finitely generated locally free (resp.
of rank r) coherent sheaves on X and isomorphism classes of pre-algebraic (resp.
rank r) vector bundles on X.

Proof See [BCR98, Proposition 12.1.3]. �

If (X,OX ) is a complex variety, pre-algebraic bundles are well behaved, as we
saw in Proposition2.5.5. If (X,OX ) is a real variety, the pre-algebraic line bundle
associated to the sheaf F of Example2.5.6 is not generated by its global sections,
illustrating the fact that on a real variety the notion of pre-algebraic vector bundles
is not particularly useful and motivating thereby the following definition.

Definition 2.5.10 A pre-algebraic vector bundle (E, π) on an affine real algebraic
variety X is said to be algebraic if it is isomorphic to a pre-algebraic subbundle of a
direct sum of structural sheaves. Similarly, a finitely generated locally free sheaf is
said to be algebraic if its associated vector bundle is algebraic.

Remark 2.5.11 (Real and complex bundles)

1. Proposition2.5.5 implies that any pre-algebraic vector bundle on an affine com-
plex algebraic variety is algebraic.

2. On a real affine algebraic variety the vector bundles defined above were said to be
algebraic in [BCR98, Definition 12.1.6] but were strongly algebraic in [BCR87].
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Definition 2.5.12 A rank one algebraic vector bundle is called a line bundle.

Corollary 2.5.13 Let (X,OX ) be a real or complex algebraic variety. There is
a bijective correspondence between isomorphism classes of invertible algebraic
sheaves on X and (algebraic) line bundles on X.

Proof This follows immediately from Proposition2.5.9. �

Theorem 2.5.14 Let (X,OX ) be a real affine algebraic variety and let (E, π) be a
pre-algebraic vector bundle on X. The bundle E is then algebraic if and only if there is
a finitely generated projective �(X,OX )-module M such that the �(X,OX )-module
of algebraic sections of (E, π) is isomorphic to the �(X,OX )-moduleOX ⊗�(X,OX )

M.

Proof See [BCR98, Theorem 12.1.7]. �

As in [Hui95], we see that Definition2.5.10 of “nice” vector bundles on a real
algebraic variety V , which may initially seem unnatural, simply says that “nice”
vector bundles are precisely those that can be obtained by restricting an R-vector
bundle on some complexification (X, σ ) of V .

Let (X, σ ) be a quasi-projective algebraic R-variety with enough real points
(see Definition2.2.5 and Theorem2.2.9) and let L be a finitely generated locally
free R-sheaf. It is immediate that the restriction L0|X (R) of the sheaf L0 defined in
Lemma2.5.3 is a finitely generated locally free sheaf on the real algebraic variety(
X (R), (OX )GX (R)

)
.

Theorem 2.5.15 Let (X, σ ) be a quasi-projective algebraic R-variety with enough
real points and letLbe a finitely generated locally freeR-sheaf. The finitely generated

locally free sheaf L0|X (R) on the real algebraic variety
(
X (R), (OX )GX (R)

)
is then

algebraic.

Corollary 2.5.16 Let (X, σ ) be a quasi-projective algebraic R-variety with enough
real points and let (E, π) be a topological vector bundle on the real algebraic variety(
X (R), (OX )GX (R)

)
.

The vector bundle (E, π) is then algebraic if and only if there is a pre-algebraic
R-vector bundle (E, η) on (X, σ ) whose restriction (E |X (R), η|X (R)) is isomorphic to
(E ⊗ C, π ⊗ C).

Remark 2.5.17 In other words, a topological R-vector space E on a real affine
algebraic variety V is algebraic if and only if tensoring with C yields the restriction
to V of an algebraic C-vector bundle E equipped with a real structure on some
complexification VC of V .
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2.6 Divisors on a Projective R-Variety

This section draws on [Liu02, Chapter 7], where the interested reader will find all
the proofs left out below. A handful of statements and proofs in this section require
some knowledge of sheaf cohomology, for which we also refer to [Liu02, Section
5.2].

2.6.1 Weil Divisors

Definition 2.6.1 Let X be a quasi-projective irreducible normal complex algebraic
variety (Definition1.5.37). This is not the weakest possible hypothesis we could
make: everything that follows holds on any variety that is non singular in codimension
1.

• A prime divisor on X is an irreducible closed subvariety of X of codimension 1.
• A Weil divisor on X is a codimension 1 cycle, i.e. a finite formal sum of prime
divisors with integer coefficients3

D =
∑

A prime Weil
divisor on X

aA A , aA ∈ Z almost all zero.

• Let D = ∑
aA A be a divisor. For any prime divisor A in X , the integer aA is called

the multiplicity, denoted multA(D), of D along A.
• The support of a divisor is the subvariety

Supp D =
⊔
aA 	=0

A .

• If all the coefficients vanish, i.e. Supp D = ∅, we write D = 0.
• If all the coefficients are positive or zero D is said to be effective and we write

D � 0.

We denote by Z1(X) we set of all Weil divisors on X . By definition, Z1(X) is the
free abelian group generated by prime divisors.

Example 2.6.2 1. If X is a curve then the prime divisors on X are the points of X .
We define the degree of aWeil divisor

∑s
i=1 ai Di to be the sum of the coefficients

deg D =
s∑

i=1

ai .

3Or in other words—zero except for a finite number of them.
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2. If X is a projective surface then the prime divisors on X are the irreducible curves
in X . There is then no intrinsic definition of the degree of a divisor but we can
define the degree with respect to a choice of very ample divisor or projective
embedding.

3. If X = P
n then prime divisors are irreducible hypersurfaces. The degree of a

hypersurface Di is then well-defined (it is the degree of a polynomial generating
the principal ideal I(Di ), see [Har77, Chapitre I]) and the degree of aWeil divisor∑s

i=1 ai Di ∈ Z1(Pn) is defined by

deg D =
s∑

i=1

ai deg Di .

If f ∈ K (X)∗ = C(X)∗ is a rational function not identically zero (see Defini-
tion1.2.69 and Remark1.2.74) and A is a prime divisor we define the multiplicity
multA( f ) of f along A as follows:

• multA( f ) = k > 0 if f vanishes along A to order k;
• multA( f ) = −k if f has a pole of order k along A (i.e. if 1

f vanishes along A to
order k;

• multA( f ) = 0 in all other cases.

We can associate to any rational function f ∈ K (X)∗ a divisor div( f ) ∈ Z1(X)

defined by
div( f ) :=

∑
A prime Weil
divisor in X

multA( f )A .

Note that div( f ) ∈ Z1(X) since multA( f ) vanishes for almost all prime divisors A.
Such divisors are called principal divisors. Since div( f g) = div( f ) + div(g) the set
of such divisors is a subgroup P(X) in Z1(X).

Exercise 2.6.3 Prove that for any rational function f on P
n we have that

deg(div( f )) = 0 .

Definition 2.6.4 Two divisors D, D′ on a variety X are said to be linearly equivalent
if D − D′ is a principal divisor. We denote by D ∼ D′ the equivalence relation thus
defined and by

Cl(X) := Z1(X)/P(X) = Z1(X)/∼

the group of divisors modulo linear equivalence.

Exercise 2.6.5 Prove that the group Cl(Pn) is isomorphic to Z and it is generated
by the linear class of the divisor 1H associated to a hyperplane H ⊂ P

n.

Example 2.6.6 LetC be aprojective plane curveof degreed—seeDefinition1.6.1—
and let L be a line in P

2(C). The curve C is then linearly equivalent to d times the



2.6 Divisors on a Projective R-Variety 103

line L . In particular, any projective conic (see Exercise1.2.68) is linearly equivalent
to the double line 2L .

2.6.2 Cartier Divisors

Let X be an algebraic variety, let U ⊂ X be an open subset and let f ∈ K (U )∗ be
a rational function which is not identically zero on U . By definition there is then a
dense open subset V ⊂ U such that ∀p ∈ V , f (p) = g(p)

h(p) for some g, h ∈ OX (V ).

Definition 2.6.7 A Cartier divisor (or locally principal divisor) on an algebraic
variety X is a global section of the quotient sheaf arising from the following exact
sequence of multiplicative sheaves

1 −→ O∗
X −→ M∗

X −→ M∗
X/O∗

X −→ 1 (2.3)

where O∗
X is the sheaf of regular functions that do not vanish at any point and M∗

X
is the sheaf of rational functions that are not identically zero4. We denote by

Div(X) := �(X,M∗
X/O∗

X )

the group of Cartier divisors. The group law on Div(X) is abelian and is written
additively.

Definition 2.6.8 A Cartier divisor is said to be principal if it is associated to a
global rational function. We say that two divisors D1 and D2 are linearly equivalent
if D1 − D2 is principal. We then write D1 ∼ D2 as for Weil divisors. The subgroup
of Div(X) of principal divisors is isomorphic to P(X) and we denote by

CaCl(X) := Div(X)/P(X) = Div(X)/∼

the group of Cartier divisors modulo linear equivalence.

Proposition 2.6.9 Let X be an algebraic variety. The group CaCl(X) is a subgroup
of the cohomology group H 1(X,O∗).

Proof We consider the long exact sequence associated to the short exact

sequence (2.3). Part of this long exact sequence is given by H 0(X,M∗
X )

f−→
H 0(X,M∗

X/O∗
X )

g−→ H 1(X,O∗
X ). By definition, the image of H 0(X,M∗

X ) under
f is the group of principal divisors so g induces an inclusion

CaCl(X) ↪→ H 1(X,O∗) . �

4Of course, M∗
X (X) = K (X)∗. The notation MX , chosen to emphasise the fact that the corre-

sponding analytic sheaf is the sheaf of meromorphic functions, is used to avoid confusion with the
canonical sheaf KX . See Definition 2.6.26 for more details.
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Let D = (Ui , fi )i ∈ Div(X) be a Cartier divisor describedwith respect to an open
covering {Ui }i of X . There are therefore germs of regular functions gi , hi ∈ OX (Ui )

such that

fi = gi
hi

and
gi
hi

·
(
g j

h j

)−1

∈ O∗
X (Ui ∩Uj ).

Let D be a Cartier divisor on X . For any prime divisor A on X we define the
multiplicity multA(D) of D on A as follows. If D is represented by (Ui , fi )i∈I then
we set multA(D) = multA( fi ): since by hypothesis fi

f j
is nowhere vanishing, the

value multA(D) does not depend on i . If a Cartier divisor D is represented by data
(Ui , fi )i∈I then we associate to it a Weil divisor

[D] :=
∑

A prime divisor
on X

multA(D)A.

The map Div(X) → Z1(X), D �→ [D] thus defined is a group morphism.

Proposition 2.6.10 Let X be an irreducible complex variety.

1. If X is normal then themapDiv(X) → Z1(X), D �→ [D] is injective and induces
an injective morphism

CaCl(X) → Cl(X) .

2. If X is non singular then D �→ [D] is an isomorphism

Div(X) � Z1(X)

and the induced morphism
CaCl(X) � Cl(X)

is an isomorphism.

Proof See [Har77, II.6]. �

2.6.3 Line Bundles

We recall that an (algebraic) complex line bundle is an algebraic vector bundle of
fiberC as in Definition2.5.7.We further remark that overC, any pre-algebraic vector
bundle is algebraic, as in Remark2.5.11(1). The sheaf of sections of such a bundle
is an invertible sheaf, see DefinitionC.5.8, and the correspondence thus induced
between isomorphism classes of line bundles and invertible sheaves is one-to-one,
see Proposition2.5.9.



2.6 Divisors on a Projective R-Variety 105

To any Cartier divisor D represented by (Ui , fi )i we can associate the sub-sheaf
OX (D) ⊂ MX defined byOX (D)|Ui = f −1

i OX |Ui . The sheafOX (D) is an invertible
sheaf over X . By abuse of notation we will also denote by OX (D) the associated
line bundle. More explicitly, the line bundle OX (D) is given by the data of the
open cover {Ui }i∈I of X and the transition functions fi j : Ui ∩Uj → C

∗ where
fi j = f j |Ui∩Uj ◦ f −1

i |Ui∩Uj . The total space of the bundle is the quotient of the
disjoint union �i (Ui × C) by the equivalence relation (x, z) ∼ (x, f jk(x)z) for any
pair of open sets Uj ,Uk containing x . This quotient is well defined because these
functions satisfy the cocycle condition:

fik = fi j f jk sur Ui ∩Uj ∩Uk ∀i, j, k .

By construction, D is effective if and only if OX (−D) ⊂ OX . If U is an open
subset of X then OX (D)|U = OU (D|U ).

Definition 2.6.11 The line bundle OX (D) is the line bundle associated to D.
We denote by Pic(X) the Picard group of line bundles modulo isomorphism

with group operation given by tensor product and by ρ : Div(X) → Pic(X) the map
associating to a divisor D the isomorphism class of the line bundle OX (D).

Proposition 2.6.12 Let X be a complex algebraic variety. The Picard group Pic(X)

is isomorphic to the cohomology group H 1(X,O∗).

Proof See [Har77, III, Exercise 4.5] or [GH78, Section 1.1] for an analytic version
of this theorem. �

Example 2.6.13 Consider X = P
n . By Exercise2.6.5, the group Cl(Pn) is isomor-

phic to Z and it is generated by the class of a hyperplane H ⊂ P
n . The Picard group

Pic(Pn) is therefore isomorphic toZ and has a natural generator, namely the line bun-
dle associated to H . By convention,wedenote this line bundle byOPn (1) := OPn (H).
The other generator of Pic(Pn) is its dual bundle, denoted OPn (−1) := OPn (1)∨.

By extension, we writeOPn (k) := OPn (1)⊗k andOPn (−k) := OPn (−1)⊗k for any
positive integer k. In particular, OPn (0) = OPn . It follows that the line bundle asso-
ciated to the divisor kH is OPn (k) for any k ∈ Z. See [Ser55a, Chapitre III, Section
2] for the original construction of the sheaves O(k).

Definition 2.6.14 The line bundle OPn (1) is called Serre’s twisting sheaf and the
line bundle OPn (−1) is called the tautological bundle. See SectionF.1 for a direct
construction of this bundle.

Exercise 2.6.15 Consider an integer d>1. Prove that the vector space �(Pn,

On
P
(dH)) of global sections of the line bundle OPn (d) is exactly the space of degree

d homogeneous polynomials in n + 1 variables. Deduce that dim H 0
(
P
n,On

P
(d)

) =(n+d
d

)
.

Proposition 2.6.16 Let X be an irreducible quasi-projective complex algebraic
variety.
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1. For any D1, D2 ∈ Div(X) we have that

ρ(D1 + D2) = OX (D1) ⊗ OX (D2) .

2. The map ρ : Div(X) → Pic(X) induces an isomorphism

CaCl(X) � Pic(X) .

Proof See [Har77, II.6]. �

By abuse of notation we will often write D ∈ Pic(X) for the linear class of a
divisor D ∈ Div(X).

Corollary 2.6.17 Let X be a non singular irreducible quasi-projective complex
algebraic variety. There are isomorphisms

Cl(X) � CaCl(X) � Pic(X) � Div(X)/P(X) .

Definition 2.6.18 Let D be a divisor on an algebraic variety X . The linear system
|D| is the set of effective divisors which are linearly equivalent to D. We identify this
set with the projectivisation of the complex vector space H 0(X,OX (D)) of global
sections of OX (D).

We have that H 0(X,OX (D)) = { f ∈ K (X)∗ | D + ( f ) � 0} ∪ {0}. If this com-
plex vector space is of finite dimension then any basis {s0, . . . , sN } of H 0(X,OX (D))

is a set of global rational functions on X which enables us to defined a rational map

ϕD :
{
X ��� P(H 0(X,OX (D))) = P

N (C)

x ���� (s0(x) : · · · : sN (x)) .

Remark 2.6.19 The map ϕD depends on a choice of basis for H 0(X,OX (D)) and
is only determined by D up to automorphism of P(H 0(X,OX (D))).

Definition 2.6.20 A divisor D on a variety X is very ample if the rational map ϕD

is a morphism embedding X in P(H 0(X,OX (D))). A divisor D is ample if one of
its multiples mD, m � 1, is very ample.

Likewise, an invertible sheaf L is very ample if it is associated to a very ample
divisor L = OX (D), and it is ample if L⊗m is very ample for some m � 1.

Proposition 2.6.21 An abstract algebraic variety (constructed by “gluing together”
affine algebraic varieties as in Definition1.3.1) is projective if and only if it has an
ample divisor.

Proof Suppose that D is an ample divisor on X . There is then a multiple mD,
m � 1, which is very ample and the associated morphism ϕmD embeds X as a closed
subvariety of projective space. Conversely, let X be a projective algebraic variety and
let ϕ : X → P

N be an embedding. For any hyperplane H in P
N the divisor ϕ∗(H) is
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a very ample divisor on X (or in terms of line bundles, ϕ∗(OPN (1)) is very ample on
X ). The divisor ϕ∗(H) is the divisor of the hyperplane section of X relative to the
embedding ϕ. �

Definition 2.6.22 A divisor D on an algebraic variety X (which we will assume
complete in order to be sure that the maps ϕmD exist) is big if there exists an
m > 0 for which the dimension of the image of the rational map ϕmD : X ���
P(H 0(X,OX (mD))) is maximal, or in other words, if

dim ϕmD(X) = dim X .

Likewise, a line bundle L is big if for some m > 0 we have that

ϕL⊗m (X) = dim X .

Example 2.6.23 1. Any ample line bundle is of course big.
2. The pull back of an ample line bundle along a generically finite map is a big line

bundle. See [Laz04, Section 2.2] for more details.

Theorem 2.6.24 If X is a normal variety (which is the case in particular, for any
non singular variety) then a line bundle L is big if and only if there is some m > 0
for which the rational map ϕL⊗m : X ��� P(H 0(X,OX (mD))) is birational onto its
image.

Proof This result follows from the existence of the Iitaka fibration. See [Laz04,
Section 2.2] for more details. �

Remark 2.6.25 The bigness of a line bundle is invariant under birational transfor-
mations.

If X is a non singular quasi-projective complex algebraic variety then the sheaf of
regular differential forms (see [Liu02, Chapter 6] or [Har77, II.8] for regular differen-
tial forms and DefinitionD.3.2 for holomorphic differential forms) of degree 1 on X ,
denoted �X := �1

X , is a locally free finitely generated sheaf. The associated vector
bundle, also denoted �X , has rank equal to the dimension of X and its determinant
bundle det�X is a line bundle.

Definition 2.6.26 Let X be a non singular quasi-projective complex algebraic vari-
ety. The canonical bundle on X is the complex line bundle defined by

KX := det�X =
n∧

�X .

The canonical divisor of X denotes any divisor associated to the canonical bundle

OX (KX ) = KX .
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It is customary to talk about “the” canonical divisor, even though such divisors
are only defined up to linear equivalence.

Exercise 2.6.27 Prove that KPn is isomorphic to the line bundle OPn (−n − 1).

Exercise 2.6.28 (See [CM09, Theorem 4.3]) Let X be a non singular projective
variety. Prove that if H 0(X,OX (−KX )) 	= 0 and H 0(X,�1

X ) = 0 then H 0(X,�1
X

(KX )) = 0.
Using Serre duality (TheoremD.2.5) deduce that

H 2(X,�X ) = 0

where �X is the tangent bundle.

Definition 2.6.29 A non singular projective variety X is said to be of general type
if its canonical bundle KX is big.

2.6.4 Galois Group Action on the Picard Group

Let (X, σ ) be an R-surface: we denote by σ the involution induced on the divisor
group of X . If D = ∑

ni Di is a Weil divisor on X then σD := ∑
niσ(Di ). If

D = (Ui , fi )i is a Cartier divisor on X then σD = (σ (Ui ),
σ fi )i . If L is a line

bundle on X with cocycle (Ui j , gi j ) then the conjugate sheaf (Definition2.5.1) σL is
the line bundle on X of cocycle (σ (Ui j ),

σ gi j ).

Proposition 2.6.30 Let X be projective. If D is a Cartier divisor and OX (D) is the
associated invertible sheaf then

OX (σD) = σ (OX (D)).

Conversely, if L is an invertible sheaf on X, D is a divisor associated to L and
D′ is a divisor associated to σL then D′ ∼ σD.

Proof Let D = (Ui , fi )i be a Cartier divisor. The sheaf OX (D) is determined by
the cocycle (gi j )i j = (

fi
f j
)i j . Indeed,�(U,OX (D)) = { f ∈ OX (U ) | ( f ) + D � 0}.

Let (si )i be a family of local sections of OX (D). We then have that

∀i, j, si = gi j s j . (2.4)

By definition of the conjugate sheaf, (σ si )i is a family of local sections of the
sheaf σ (OX (D)) and by (2.4) we have that

∀i, j, σ si = σ gi j
σ s j . (2.5)
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The proof follows on noting thatOX (σD) is determined by the cocycle (σ gi j )i j =
(

σ fi
σ f j

)i j . �

Proposition 2.6.31 Let D be a divisor invariant under (X, σ ). There is then a
basis {s0, . . . , sN } of the complex vector space H 0(X,OX (D)) = { f ∈ K (X)∗ |
D + ( f ) � 0} ∪ {0} consisting of invariant functions σ si = si , i = 0, . . . , N.

Proof Follows immediately from LemmaA.7.3. �

Theorem 2.6.32 Let (X, σ ) be an irreducible non singular complex projective alge-
braic R-variety. If X (R) 	= ∅ then for any divisor D linearly equivalent to σ(D)

there is a divisor D′ linearly equivalent to D such that D′ = σ(D′). In other words,5

Div(X)G/P(X)G = Pic(X)G .

Proof See [Sil89, pp. 19–20]. �

Example 2.6.33 (Div(X)G/P(X)G 	= Pic(X)G) The example of the conic X in P
2

of equation x20 + x21 + x23 = 0 shows that when X (R) = ∅, Pic(X)G can be larger
than Div(X)G/P(X)G . In this example, Pic(X)G = Pic(X) = Z which is generated
by a point, but all the invariant divisors are of even degree and there is an exact
sequence

0 → Div(X)G/P(X)G −→ Pic(X)G −→ Z/2Z → 0 .

Up till now we have studied the Picard group of linear divisor classes. We now
present another group of divisor classes, the Néron–Severi group.

Definition 2.6.34 Let X be a non singular complex projective variety and let Pic0(X)

be the connected component of Pic(X) containing the identity (Pic0(X) is the Picard
variety of X , see DefinitionD.6.6). The Néron–Severi group NS(X) is the group of
components of Pic(X):

0 → Pic0(X) −→ Pic(X) −→ NS(X) → 0 .

Two divisors in the same class in the Néron Severi group are said to be alge-
braically equivalent.6

Theorem 2.6.35 (Néron–Severi theorem) Let X be a non singular complex pro-
jective variety. The group NS(X) is then finitely generated.

Proof See [GH78, IV.6, pp. 461–462]. �

5Scheme-theoretically, if X is a scheme defined over R satisfying the hypotheses of the theorem
then Pic(X) = Pic(XC)G .
6See [GH78, III.5] for an explanation of this term. The term “numerically equivalent” is also
common in the literature: see [Ful98, Section 19.3] for more details.
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Definition 2.6.36 Let X be a non singular complex projective variety. The rank
of the Neron–Severi group ρ(X) := rk NS(X) = rk(Pic(X)/Pic0(X)) is called the
Picard number of X . Let (X, σ ) be a non singular projective R-variety. If X (R) is
non empty then the real Picard number of (X, σ ) is the rank of the realNéron–Severi
group ρR(X) := rk(Pic(X)G/Pic0(X)

G
).

Proposition 2.6.37 Let X be a non singular complex projective variety such that
q(X) = dim H 1(X,OX ) = 0. We then have that

NS(X) � Pic(X) .

Proof It follows from the exact sequence (D.3) following PropositionD.6.7 that if
q(X) = 0 then the group Pic0(X) is trivial. �

2.6.5 Projective Embeddings

We have seen that any compact real affine algebraic variety has a projective com-
plexification. The aim of this section is to study these projective models using ample
divisors.

Example 2.6.38 (R-embedding of the product torus) This example draws on
[BCR98, Example 3.2.8]. Let V be the product torus V := Z (

t2 + u2 − 1
) ×

Z (
v2 + w2 − 1

) ⊂ A
2(R) × A

2(R) and let W be the quartic torus in R
3
x1,x2,x3

obtained by rotating the circle of centre (2, 0) and radius 1 in the (x1, x3) plan
around the x3 axis

W := Z(16(x21 + x22 ) − (x21 + x22 + x23 + 3)2) ⊂ A
3(R) .

Both of these real algebraic sets are diffeomorphic to the torus with the Euclidean
topology V ≈ W ≈ S

1 × S
1.

ConsiderW as a subset of P
3(R) via the inclusion R

3
x1,x2,x3 ⊂ P

3(R)x0:x1:x2:x3 . The
polynomial map

ϕ : V −→ W
(t, u, v, w) �−→ (1 : t (2 + v) : u(2 + v) : w)

is bijective and its inverse ϕ−1 : W → V ,

ϕ−1(x0 : x1 : x2 : x3) = (
x1x0/ρ, x2x0/ρ, (ρ − 2x20 )/x

2
0 , x3/x0

)

where ρ = (x21 + x22 + x23 + 3x20 )/4, is a regular map of real algebraic varieties since
W ∩ {x0 = 0} = ∅.

The map ϕ is therefore an isomorphism of real algebraic varieties and the algebras
R(V ) andR(W ) are isomorphic by Corollary1.3.20: the algebras P(V ) and P(W ),
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however, are different, since the first is regular, unlike the second. Consider the
projective complexifications of the toruses V and W : V C � P

1(C) × P
1(C) for the

first and the singular quartic hypersurface

ŴC := Z(16(x21 + x22 ) − (x21 + x22 + x23 + 3x20 )
2) ⊂ P

3(C) .

for the second. The map ϕ is then the restriction of a birational map of R-varieties

ψ : P
1(C) × P

1(C) → ŴC

which is a resolution of singularities of ŴC.
Note that ψ is a morphism of R-varieties but ψ−1 is only a rational map. Note

also that as ŴC is a quartic in P
3(C) which is birational to P

1(C) × P
1(C) it must be

singular. Indeed, P1(C) × P
1(C) is a rational surface whereas a non singular quartic

in P
3 is a non rational surface (called a K3 surface, see Definition4.5.3). The R-

surfaces (P1(C) × P
1(C), σP × σP) and (ŴC, σP|ŴC

) are birationally equivalent but
not isomorphic.

2.6.6 Review of Theorem 2.1.33

We have seen that a variety X embedded in P
n(C) and stable by the conjugation σP

has a natural real structure σ induced by σP. Note that if X is a projective complex
variety with a real structure σ then its image under an arbitrary projective embed-
ding is not always stable under σP, but we can always find a real embedding by
Theorem2.6.44 below. We will give a proof of this theorem based on the Nakai–
Moishezon criterion. Of course, Theorem2.6.44 implies Theorem2.1.33 for which
we have only provided a reference for the proof. In what follows, up to and including
the proof of Theorem2.6.44, we will not use Theorem2.1.33.

The key fact to remember is that if X is a complex projective variety then for any
real structure σ on X theR-variety (X, σ ) has an equivariant embedding in projective
space.

2.6.7 Nakai–Moishezon Criterion

See [Har77,AppendixA, p. 424] for the definition andmain properties of intersection
theory onvarieties of arbitrary dimension. If the global variety has a real structure then
this intersection theory is compatible with the real structure. If r is the dimension of
a non singular variety Y and D1, D2, . . . , Dr are divisors on Y then their intersection
product (D1 · D2 · · · Dr ) belongs to Z and only depends on the linear class of the
divisors Di . In particular, if the Di s are hypersurfaces meeting transversally then
(D1 · D2 · · · Dr ) is equal to the number of points in the intersection of the Di s.
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Theorem 2.6.39 (Nakai–Moishezon criterion) Let D be a Cartier divisor on a
complex projective algebraic variety X. The divisor D is then ample on X if and
only if for any irreducible subvariety Y ⊂ X of dimension r we have that

(D|Y )r > 0 .

Proof See [Har77, Appendix A, Theorem 5.1, p. 434], for example. The above
statement also holds for singular X , but requires a modified intersection theory. See
[Kle66, Ful98] for more details. �

Corollary 2.6.40 (Nakai–Moishezon criterion for surfaces) A divisor D on a non
singular irreducible complex projective algebraic surface X is ample if and only if
(D)2 > 0 and D · C > 0 for any irreducible curve C in X.

Proof Simply set Y = X in the general criterion to obtain (D)2 > 0 and for any
irreducible curve C ⊂ X , D · C > 0. �

Definition 2.6.41 A divisor D on a variety X is nef (for numerically eventually
free7) if for any irreducible subvariety Y ⊂ X of dimension r we have that

(D|Y )r � 0 .

Similarly, a line bundle L is nef if and only if it is associated to a nef divisor
L = OX (D).

Remark 2.6.42 Any ample bundle is of course nef.

Proposition 2.6.43 Let X be a complex projective variety with a real structure σ .
There is then an ample divisor D such that D = σD.

Proof Let H be an ample divisor on X . For any irreducible subvariety Y ⊂ X of
dimension r the conjugate subvariety σY is irreducible and of dimension r and by
the Nakai–Moishezon criterion (Theorem2.6.39) we have that (H |σY )r > 0. Since
the real structure is involutive, (σH)|Y = σ(H |σY ) and since the real structure is
compatible with the intersection product we get that ((σH)|Y )r = (H |σY )r > 0. By
the Nakai–Moishezon criterion, σH is ample, as is

D := H + σH .

�

Theorem 2.6.44 Let (X, σ ) be an algebraic R-variety. If the complex algebraic
variety X is quasi-projective then there is an R-embedding

7If the linear system |mD| is free for some m > 0 (eventually free), then D is nef. The incorrect
interpretation numerically effective often appears in the literature, but considering (−1)-curves—
see Definition4.3.2—we see that a divisor can be effective without being either nef or linearly
equivalent to a nef divisor.



2.6 Divisors on a Projective R-Variety 113

ϕ : (X, σ ) ↪→ (PN (C), σP) .

Proof We start by assuming X is projective, so by Proposition2.6.43, there is an
ample divisor D0 and a positive integer m such that D = mD0 is very ample on
X and satisfies σD = D. By Proposition2.6.31, there is a basis {s0, . . . , sN } of
H 0(X,OX (D)) such that σ si = si , i = 0, . . . , N . As the divisor D is very ample,
the map

ϕD :
{
X ��� P

N (C)

x ���� (s0(x) : · · · : sN (x))

is a morphism which induces an isomorphism of R-varieties

(X, σ ) � (ϕD(X), σP|ϕD(X)) .

Now consider a quasi-projective variety U = X \ Y , where X is a projective R-
variety andY ⊂ X is a closedR-subvariety of X .We have just proved the existence of
an R-embedding; ϕ : (X, σ ) ↪→ (PN (C), σP): in particular, ϕ is a homeomorphism
onto its image ϕ(X \ Y ) = ϕ(X) \ ϕ(Y ) and ϕ therefore induces an embedding of
U as a quasi-projective algebraic set

(U, σ |U ) � (ϕ(X) \ ϕ(Y ), σP|ϕ(X)\ϕ(Y )) .

�

2.6.8 Degree of a Subvariety of Projective Space

Classically, we define the degree of a subvariety of P
N using its Hilbert polynomial

[Har77, Section I.7] and only subsequently prove that this definition is equivalent to
the definition given below.

Definition 2.6.45 (Degree of a subvariety of projective space) The degree of an n
dimensional subvariety X of P

N is the degree of the 0-cycle D := (H · X) obtained
on intersecting X with a general codimension n projective subspace H in P

N .

There is a hidden difficulty in the above definition, namely finding the coefficients
of the 0-cycle D := (H · X) for an arbitrary X . See the section preceding [Har77,
Theorem 7.7, p. 53] for more details. If X is complex and non singular then by
Bertini’s Theorem D.9.1 if we choose a sufficiently general H then the 0-cycle D is
the sum of all points in H ∩ X .

Definition 2.6.46 (Complex degree) The complex degree of a complex projec-
tive algebraic variety is the smallest degree of any of its embeddings in a complex
projective space P

N (C).
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Definition 2.6.47 (Real degree) Let (X, σ ) be a projective R-variety. The real
degree of (X, σ ) is the smallest degree of a real embedding in projective space
(PN (C), σP).

The real degree exists by Proposition2.6.43. As any real embedding is also a
complex embedding, the real degree is not smaller than the complex degree. The
minimal degree of a complex projective embedding is frequently strictly smaller
than the minimal degree of a real projective embedding. The simplest example is
that of conic without real points, whose complex degree is 1 but whose real degree
is 2. Let X be the projective plane curve defined by the equation x2 + y2 + z2 = 0
with the restriction of σA. The curve X is isomorphic as an abstract complex curve
to the curve P

1(C) and has degree 1 embeddings—namely lines—in every P
n(C).

None of these embeddings can be real because any embedding as an R-line has real
points. The following proposition generalises this principle.

Proposition 2.6.48 Let X ⊂ P
n(C) be a algebraic subvariety, stable under σP. If

the degree of X is odd then X (R) 	= ∅.

Proof We can assume that r := n − dim X > 0. Let H be a projective subspace of
dimension r in P

n which is not contained in X . By hypothesis, the degree of the
0-cycle D := (H · X) is odd. In particular, the real part of D has odd degree and its
support consists of an odd number of points so it is non empty. �

2.7 R-Plane Curves

We end this chapter by applying the above theory to plane curves. We refer to
Section1.6 of the first chapter for the general definitions. Bézout’s theorem on plane
curves, given in Chapter1, is here applied toR-curves. It will be generalised to curves
on other surfaces in Chapter 4.

Theorem 2.7.1 (Bézout’s theorem forR-plane curves) Let C1 andC2 be projective
plane R-curves of degrees d1 and d2 respectively

1. If C1 and C2 have no common component then

(C1 · C2) = d1d2 .

2. If the intersection C1(R) ∩ C2(R) is finite then

(C1(R) · C2(R)) � d1d2 .

3. If moreover the branches of C1 and C2 are transverse at every point then the
number of intersection points #(C1(R) ∩ C2(R)) is congruent modulo 2 to the
product d1d2.
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Proof We simply defined the intersectionmultiplicitymodulo 2 at a point a ∈ A
2(R)

of two affine plane R-curves C1 and C2 of equations P1(x, y) and P2(x, y) to be

(C1 · C2)
R

a := dimR OA2(R),a/(P1, P2) mod 2 ;

and the intersection number modulo 2 to be

(C1 · C2)
R :=

∑
a∈C1(R)∩C2(R)

(C1 · C2)
R

a mod 2 .

We then apply Theorem1.6.16 to the complex curves C1 and C2. �

We recall the genus formula proved in Chapter1, Theorem1.6.17. If C is a non
singular irreducible projective plane curve of genus g = g(C) then

g = (d − 1)(d − 2)

2
.

The real locus of a non singular projective R-curve is a compact differentiable
variety of dimension 1. It is therefore homeomorphic to a finite union of disjoint
embedded circles.

Theorem 2.7.2 (Harnack 1876) Let (C, σ ) be a non singular projective plane R-
curve of degree d. Let s be the number of connected components of C(R). We then
have that

s � (d − 1)(d − 2)

2
+ 1 = g(C) + 1 . (2.6)

Remark 2.7.3 Further on we will give an elementary proof of this inequality based
on Bézout’s theorem. It is useful to note that the number of connected components
of a plane curve of degree d is bounded above by (d−1)(d−2)

2 + 1 even when C is
singular. First of all, it is enough to prove the result when C is irreducible. If not, C
is defined by a product of polynomials of degrees d1 and d2, so that d = d1 + d1 and

(d1 − 1)(d1 − 2)

2
+ 1 + (d2 − 1)(d2 − 2)

2
+ 1 � (d − 1)(d − 2)

2
+ 1 .

We then show that we can assume that C(R) contains at least one component of
dimension 1 using Brusotti’s Theorem2.7.10 as in Corollary3.3.20. The proof then
follows the proof for the smooth case given below, see [BR90, Second proof of 5.3.2].

Remark 2.7.4 More generally, for any non singular projective R-curve(C, σ ) (note
that C is not assumed to be plane), we have that s � g(C) + 1, where g(C) is the
genus of the topological surface C . We will give two proofs of this in Chapter3 and
Corollary3.3.7. We will also see in Chapter3 that this inequality can be generalised
to higher dimension using Smith theory.
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Lemma 2.7.5 There is a real projective curve of degree d which passes through any
given set of

(d+2
2

) − 1 = 1
2 (d + 2)(d + 1) − 1 points in P

2(R).

Proof The number of degree d monomials in three variables is
(d+2

2

)
. We deduce

from this a bijection between the set of degree d curves in the real projective plane
and a real projective space of dimension 1

2 (d + 2)(d + 1) − 1. �

Proposition 2.7.6 For any point p ∈ RP
2,

π1(RP
2, p) � Z2 .

Proof Consider RP
2 as the quotient of S

2 by the antipodal map. �

Definition 2.7.7 A simple closed curve in the real projective space is an oval if it is
homotopic to 0 and a pseudo-line if it is not homotopically trivial.

Lemma 2.7.8 (Ovals and pseudo-lines) Let (C, σ ) be a non singular projective
plane R-curve of degree d.

1. If d is even all the connected components of C(R) are ovals.
2. If d is odd then one connected component of C(R) is a pseudo-line and all the

others are ovals.
3. Any curve meets any oval in an even number of intersection points, counted with

multiplicity.

Proof The proof is left as an exercise. Use Bézout’s theorem. �

Proof of Theorem 2.7.2 Suppose that d > 2. We argue by contradiction: suppose
that � is a non singular irreducible plane R-curve of degree d whose real locus
has at least g(d) + 1 connected components. Let h = g(d) + 1 and �1, . . . , �h be
ovals in �(R): there is at least one other component in �(R). Choose 1

2d(d − 1) − 1
points on �(R). Since 1

2d(d − 1) − 1 � g(d) + 1 for any d > 2 we can choose one
point on each of the ovals �1, . . . , �h and the other points on some other connected
component of �(R). Consider an R-curve � of degree d − 2 passing through these
1
2d(d − 1) − 1 points. The curves � and � have no common components because
� is irreducible and the degree of � is d − 2. By Bézout’s theorem, the number of
intersection points of � with � counted with multiplicity is less than or equal to
d(d − 2). If � meets an oval �i with multiplicity 1 then � meets �i at some other
point, so that � · � � 1

2d(d − 1) − 1 + g(d) + 1 = (d − 1)2 which is larger than
d(d − 2). The theorem follows. �

The bound (2.6) is optimal: Harnack’s bound is realised for any degree d:

Proposition 2.7.9 For any d ∈ N
∗ there is a non singular projective plane R-curve

(C, σ ) of degree d whose real locus C(R) contains s = (d−1)(d−2)
2 + 1 connected

components.

Proof See [BCR98, pp. 287–288] or [BR90, 5.3.11] for Harnack’s construction. �
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The constructions of the curves described above often use explicit deformations
of reducible curves. We can often prove the existence of configurations of ovals of
given degree without explicit constructions using Brusotti’s useful theorem.

Theorem 2.7.10 (Brusotti’s theorem) Let C ⊂ P
2(R) be a degree d real plane curve

whose singularities are ordinary double points. Suppose given a local deformation
of each of the ordinary double points. There is then a deformation of the curve C in
the space of real curves of degree d which realises each of the local deformations.

Proof See [BR90, Section 5.5]. �
As well as (2.6) which gives a bound on the number of connected components,

we have restrictions on the positions of ovals of plane R-curves.

Definition 2.7.11 The complement RP
2 \ � of a oval in the real projective plane

has two connected components. One of these is diffeomorphic to the disc and is
called the interior of the oval, and the other is diffeomorphic to a Moebius band.
We say that another oval is contained in � if it is contained in its interior. An oval
component of a real curve is said to be empty if it does not contain any other oval
component. A family E is said to be a nest of ovals if and only if it is totally ordered
by inclusion.

Definition 2.7.12 An oval is said to be positive (or even) if it is contained in an even
number of ovals and negative (or odd) otherwise.8

Theorem 2.7.13 (Petrovskii’s inequalities) Let (C, σ )be anon-singular projective
plane R-curve of even degree d = 2k. Let p be the number of even ovals of C(R)

and let n be the number of negative ovals. We then have that

p − n � 3

8
d(d − 2) + 1 = 3

2
k(k − 1) + 1 ;

n − p � 3

8
d(d − 2) = 3

2
k(k − 1) .

See [Pet33, Pet38] or [Arn71]. In Chapter3, Theorem3.3.14 we prove these
inequalities using double covers.

Corollary 2.7.14 Let (C, σ ) be a non singular projective plane R-curve of even
degree d = 2k. Let p be the number of positive ovals of C(R) and n be the number
of negative ovals. Then we have that

p � 7

4
k2 − 9

4
k + 3

2
; n � 7

4
k2 − 9

4
k + 1 .

Proof For any curve of even degree d = 2k, Harnack’s inequality (2.6) gives p +
n � 2k2 − 3k + 2. Adding with the Petrovskii inequalities yields the desired result.

�

8See [Pet38, p. 190] for a justification of this terminology.
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Remark 2.7.15 (Ragsdale’s conjecture) A famous, but incorrect, conjecture by
Ragsdale [Rag06] states that p and n actually satisfy the inequalities p � 3

2k(k −
1) + 1, et n � 3

2k(k − 1). We will come back to this conjecture in Chapter3, at the
end of Section3.5.

When the curve does not have any nest of ovals, all ovals are positive and Petro-
vskii’s first inequality gives us the following.

Corollary 2.7.16 Let C be a non singular projective plane R-curve of even degree
d = 2k without a nest of ovals. The number of ovals s := #π0(C(R)) is then bounded
by

s � 3

2
k(k − 1) + 1 .

Corollary 2.7.17 The maximal even degree d curves, by which we mean the curves
with the maximal number of connected components in their real locus, namely
(d−1)(d−2)

2 + 1, (see Definition3.3.10) have at least one nesting from degree 6
onwards.

2.8 Solutions to exercises of Chapter 2

2.1.3 1. LetU be an open set inA
n(C) and consider f ∈ σO(U ). By definition there is

a function g ∈ O(σA(U )) such that f = σ g so f = g ◦ σA : U → C is regular and
hence f ∈ O(U ). The opposite inclusion O(U ) ⊂ σO(U ) is proved by a similar
argument.

2. Apply Definition1.3.7 to the sheaf σO and the subspace F to get the sheaf
σOF . If U is an open subset of F then U is an open set of F and hence of F by
hypothesis. A function f : U → C belongs to σOF (U ) if and only if for any point
x in U there is a neighbourhood V of x in A

n(C) and a function g ∈ σO(V ) such
that g(y) = f (y) for any y ∈ V ∩U . By the previous question g ∈ O(V ) and hence
σOF = OF .

2.1.7The sets F and F are subsets ofAn(C) andOF = (OAn )F (seeDefinition1.3.7).
The restriction σA : F → F is clearly bijective. Moreover, σA is continuous since if
Z = Z(I ) is a Zariski closed subset of F defined by an ideal I inC[X1, . . . , Xn] then
σA

−1(Z) = σA(Z) = Z = Z(σ I ) where σ I := {σ f | f ∈ I }. Finally, σA|F induces
an isomorphism of ringed spaces (see ExerciseC.5.3) (F,OF ) → (F,OF ) because
ifU is an open subset of F then σA(U ) is an open subset of F and if f ∈ OF (U ) then
f ◦ σA : σA(U ) → C is regular or in other words f ◦ σA ∈ OF (σA(U )). Indeed, as
f ∈ OF (U ) there is a function f0 ∈ OF (U ) such that f = f0 and it follows that
f ◦ σA = f0 ◦ σA = σ f0. As f0 is regular on U , σ f0 is regular on σA(U ).
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C

z �→z

F
σA

F
f

f0

C

2.1.21 1. Recall that if C is the zero locus of a polynomial P then C is the
zero locus of σ P . A straightforward calculation shows that (ϕ ◦ ϕ)(x, y) = (x, y)
so ϕ is an involutive automorphism of A

2(C) and in particular ϕ−1 = ϕ. Now
consider P(x, y) = y2 − a0xm − ∑m

k=1

(
akxm+k + (−1)kakxm−k

)
. On substituting

P(ϕ(x, y)) we obtain − y2

x2m + a0
1
xm + ∑m

k=1

(
ak

1
xm−k + (−1)kak 1

xm+k

)
and hence

−x2m P(ϕ(x, y)) = σ P(x, y).
2. Set τ = σA ◦ ϕ. We then have that τ(x, y) = (− 1

x ,− i y
xm ) et (τ ◦ τ)(x, y) =

(x,−y).
3a. Restricting the projection (x, y) �→ x we exhibit the curve C := Cm,a0,...,am as

a degree 2 covering of P
1(C). Its function fieldC(C) is therefore a degree two exten-

sion of C(x) = C(P1(C)). Moreover, there is a one-to-one correspondence between
automorphisms ofC and automorphisms of the fieldC(C).9 The two elements of the
automorphism group of the extension C(C)|C(x) are represented by idC and ρ. Any
automorphism of C(C) therefore induces an automorphism of Frac (C[x, y]/(P)).
If the coefficients of the one-variable polynomial P(x, y) − y2 are independent over
Q then the only non trivial automorphism is represented by ρ.

3b. By Proposition2.1.19, if C has a real structure then there is an isomorphism
between C and C satisfying σAψ ◦ ψ = idC .

Moreover, it follows from 3a that the only isomorphisms between Cm,a0,...,am and
its conjugate are ϕ and ϕ′ : (x, y) �→ (− 1

x ,− i
xm y), but ϕ ◦ σAϕ = (ϕ′) ◦ (σA(ϕ′)) =

ρ 	= idCm,a0 ,...,am
. It follows that if a0, ak , ak are independent over Q then the curve

Cm,a0,...,am has no real structure.

2.1.42 We have two non-equivalent real structures on P
1(C):

σP : (x0 : x1) �→ (x0 : x1)

et
σP

′ : (x0 : x1) �→ (−x1 : x0)

which give rise to three non-equivalent structures on P
1(C) × P

1(C): the involution
σP × σP whose fixed locus is the torus T

2 = S
1 × S

1 and the involutions σP × σP
′

and σP
′ × σP

′ whose fixed loci are empty.
The fourth structure is ((x : y), (z : t)) �→ (

(z : t), (x : y)) whose fixed locus is
the sphere S

2.

9As an automorphism ofC is also a birational transformation ofC we simply apply Theorem1.3.30
which states there is a one-to-one correspondence between automorphisms of C(C) and birational
transformations of C . The stronger correspondence used in this proof relies on the fact that C is a
smooth projective curve.
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2.2.6 1. We have that F(R) = Z(I ) and F(R) = ZC(I(F(R))).
If I(Z(I )) ⊆ I then ZC(I(F(R))) ⊇ ZC(I ) or in other words F(R) ⊇ F so

F(R) is dense in F .
If F(R) is dense in F then ZC(I(F(R))) = F = ZC(I ). As the ideal I is rad-

ical the ideal IC = I ⊗R[X1,...,Xn ] C[X1, . . . , Xn] is also radical. It follows by the
Nullstellensatz that IC(F(R)) ⊆ IC and hence I(F(R)) ⊆ I .

2. This follows immediately from (1) using TheoremA.5.15.

2.2.7 Set I = (x2 + y2): we then have that F = ZC(I ) = {x ± iy = 0} and the real
locus is F(R) = Z(I ) = {(0, 0)} and I(Z(I )) = (x, y) � I in R[X1, . . . , Xn].

We set a = (0, 0). On the one hand, OF(R),a =
(
R[x,y]
(x,y)

)
mF(R),a

= R and on the

other hand
(OG

F |F(R)

)
a = OG

F,a =
((

C[x,y]
(x2+y2)

)
mF,a

)G

� R since the class of the poly-

nomial x modulo (x2 + y2) belongs to OG
F,a since its coefficients are real.

2.2.26 1. ϕ is a morphism of R-varieties if and only if

• ϕ is an morphism of complex varieties and
• ϕ ◦ σA|F1 = σA|F2 ◦ ϕ.

By Exercise1.2.56 the first condition is equivalent to the existence of poly-
nomial functions f1, . . . , fm ∈ C[x1, . . . , xn] such that for every (x1, . . . , xn) ∈
F1, ϕ(x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). The second condition is
equivalent to

ϕ (x1, . . . , xn) = ϕ(x1, . . . , xn) ,

which simply means that for every (x1, . . . , xn) ∈ F1 and every i = 1 . . .m,

fi (x1, . . . , xn) = fi (x1, . . . , xn) .

i.e. for every i = 1 . . .m, σ fi = fi or in other words fi has real coefficients.
2. ϕ is an R-regular rational map if and only if

• ϕ is a rational map of R-varieties;
• F1(R) ⊂ dom(ϕ).

In other words, ϕ is an R-regular rational map if and only if

• ϕ is a rational map of complex varieties
• ϕ ◦ σA|F1 = σA|F2 ◦ ϕ;
• F1(R) ⊂ dom(ϕ).

By Exercise1.3.25, the first condition is equivalent to the existence of polynomial
functions g1, . . . , gm ∈ C[x1, . . . , xn] and h1, . . . , hm ∈ C[x1, . . . , xn] such that for
any (x1, . . . , xn) ∈ dom(ϕ),

ϕ(x1, . . . , xn) =
(
g1(x1, . . . , xn)

h1(x1, . . . , xn)
, . . . ,

gm(x1, . . . , xn)

hm(x1, . . . , xn)

)
.
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The map ϕ is therefore an R-regular rational map if and only if gi and hi have
real coefficients and the functions hi do not vanish at any point of F1(R).

2.2.31 The usual atlas is a compatible atlas because the functions defining the open
sets have real coefficients. We set

U0 := {(x0 : x1) ∈ P
1(C) | x0 	= 0}

and

ϕ0 :
{

U0 −→ C

(x0 : x1) �−→ x1
x0

.

Similarly, set U1 := {(x0 : x1) ∈ P
1(C) | x1 	= 0} and

ϕ1 :
{

U1 −→ C

(x0 : x1) �−→ x0
x1

.

We then have that

σ ϕ0 :
{

σ(U0)
σP−→ U0

ϕ0−→ C
σA−→ C

(x0 : x1) �−→ (x0 : x1) �−→ x1
x0

�−→ x1
x0

and
σϕ1 :

{
U1 −→ C

(x0 : x1) �−→ x0
x1

.

2.3.14 Use Exercise1.2.56(3) to write the isomorphism

ϕ′ ◦ ϕ−1 : ϕ′(V ) → ϕ(V )

in homogeneous coordinates then check that ϕ′ ◦ ϕ−1 extends to an isomorphism
ϕ(V )K → ϕ′(V )K .

2.3.17 1. I(F) = (x, y) so FC = {(0, 0} is a complexification of F which is irre-
ducible so F is geometrically irreducible.

2. V = ZC(x + iy) ∪ ZC(x − iy).
3. The R-variety (V, σ ) does not have enough real points so it is not a complexi-

fication of F .

2.6.15 See [Ser55a, Chapitre III, Section 2] if necessary.

2.6.27 To simplify notation we will prove this result only for n = 2. Take a system
of linear homogeneous coordinates (x0 : x1 : x2) and let Uk := P

2 \ Z(xk) be the
standard open affine set defined by xk 	= 0. Consider U0 with its coordinates u1, u2.
Sections of KP2 onU0 are all of the form p(u1, u2) du1 ∧ du2. We will calculate the
poles and zeros of the section du1 ∧ du2 outside of U0. There is only one divisor
outside of U0, namely x0 = 0, so it is enough to check the multiplicity along this
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divisor.Wewill calculate inU1 with coordinates v0, v2 such that (1 : u1 : u2) = (v0 :
1 : v2). In other words, u1 = 1

v0
and u2 = v2

v0
, from which we get that

du1 ∧ du2 =
(

− 1

v2
0

dv0

)
∧

(
v0 dv2 − v2 dv0

v2
0

)
= − 1

v3
0

dv0 ∧ dv2 .

This form therefore has a pole of order 3 along v0 = 0 as claimed.

2.6.28 Since H 0(X,OX (−KX )) 	= 0, there is an effective divisor C linearly equiva-
lent to −KX .

There is an exact sequence

0 → OX (−C) → OX → OC → 0

which on tensorising with �1
X gives us

0 → �1
X (KX ) → �1

X → �1
X |C → 0

whose initial terms in the long exact sequence are

0 → H 0(X,�1
X (KX )) → H 0(X,�1

X ) → · · ·

and the conclusion follows because H 0(X,�1
X ) = 0.

For the second question simply note that �X is the dual of �1
X and apply Theo-

remD.2.5.
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