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Abstract

There are many reasons to try to achieve a
good grasp of the distribution of oxygen in the
tumor microenvironment. The lack of oxygen
– hypoxia – is a main actor in the evolution
of tumors and in their growth and appears to
be just as important in tumor invasion and
metastasis. Mathematical models of the distri-
bution of oxygen in tumors which are based
on reaction-diffusion equations provide par-
tial but qualitatively significant descriptions of
the measured oxygen concentrations in the tu-
mor microenvironment, especially when they
incorporate important elements of the blood
vessel network such as the blood vessel size
and spatial distribution and the pulsation of
local pressure due to blood circulation. Here,
we review our mathematical and numerical
approaches to the distribution of oxygen that
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yield insights both on the role of the distribu-
tion of blood vessel density and size and on the
fluctuations of blood pressure.
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4.1 Introduction

One cannot underestimate the role of oxygen in
the tumor microenvironment, as it regulates both
the life and death of tumor cells in many ways.
Oxygen in tumors also determines the efficacy
of many therapies. For instance, radiotherapy de-
pends in a crucial way on the oxygen effect [1],
and one of the basic aims of fractionated radio-
therapy is just providing enough oxygen after
each fraction to help killing tumor cells in the next
fraction.

In spite of its importance for tumor biology
and the clinical course of the disease, however, the
current understanding of the quantitative aspects
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of oxygen diffusion in tumors is not complete, and
there is no doubt that this is at least partly due to
the biological and biochemical complexity of the
tumor microenvironment.

It is known that in addition to tumor cells,
the tumor microenvironment comprises nonma-
lignant cells of different origin, such as stromal
and immune cells. These nonmalignant cells play
an active role in tumor progression by exchanging
a number of molecular signals with tumor cells
[2]. The mixture of different cells is mechan-
ically supported by an extracellular matrix of
polysaccharides and fibrous proteins, and all this
complex tissue structure is fed by an irregular
network of blood vessels [2, 3]. The network of
blood vessels in tumors differs substantially from
that of normal tissue. Tumor blood vessels are in
general more tortuous, irregular, and leaky [4],
and, importantly, the intervascular distances are
larger. This means that the blood flow is irregular
and that the cells that are far apart from feeding
vessels receive low amounts of oxygen. Many
tumors show in fact hypoxic or even anoxic inner
areas [3–7]. In turn, hypoxia induces significant
genomic and proteomic changes in tumor cells,
and it has been shown to induce also genomic
instability by increasing the mutation frequency
of cells [4, 5]. The highly selective tumor mi-
croenvironment can then promote the growth of
more aggressive tumor phenotypes [4–6].

In their search for nutrients, living cells wrap
around blood vessels to form cords of living cells.
They consume oxygen, nutrients, and eventually
drugs, and since their spatial distribution in the tu-
mor is not homogeneous, the concentration field
of suchmolecules in the tumormicroenvironment
is not homogeneous as well. For example, hy-
poxia shows up differently in different tumors and
even in different parts of individual tumors, where
it is heterogeneous both in space and in time
[7, 8]. Therefore the spatial distribution of cells
alters the environment bringing about a complex
feedback loop.

From this very short introduction to the bio-
physics of oxygen in the tumor microenviron-
ment, it is clear that it displays all the complex-
ities of biological systems. The environmental
details span several hierarchical levels, from in-

dividual molecules to fully formed tumors; there
is a large number of interacting elements, starting
again from the individual molecules belonging
to many chemical species to cells of many dif-
ferent types – both normal and tumor. There are
structures that belong to normal tissues and their
deformed counterparts in the tumor mass. Finally,
all these elements are closely interacting, and
the interactions are usually nonlinear. This means
that mathematical and numerical approaches can
only scratch the surface of this all-embracing
complexity and that we must be confident in
our ability of correctly separating the hierarchical
levels and finding good phenomenological ap-
proximations to compensate for the shortcomings
of calculations.

While here we concentrate on one single
chemical species, O2, it cannot be considered
in isolation, and the equations that describe
its diffusion in the microenvironment must be
complemented by reaction terms that specify
its interaction with the other parts of the
microenvironment. This problem of the reaction-
diffusion of oxygen in tissues in general and in
tumors in particular has already been considered
in some of its aspects by other workers in this field
(see, e.g., [9, 10] and references cited therein).
In the following sections, we review the two
approaches that we have followed in our work:
an analytical one, which brings out rather nicely
the time-dependent features of oxygen diffusion
in the tumor microenvironment, and a numerical
approach which starts from the simulation
of individual cells and capillary vessels and
that recreates the hypoxic recesses with large
chemical gradients that drive the Darwinian
evolution of different tumor genotypes.

4.2 The Fourier Problem

Before dealing with the analytical model of oxy-
gen in the tumor microenvironment, it is useful to
introduce the methods used later on with a seem-
ingly unrelated problem, which was considered
long ago by Jean-Baptiste Joseph Fourier, that of
the diffusion of the sun’s heat into the ground
[11].



Oxygen in the Tumor Microenvironment 55

The soil temperature is still an outstanding
problem in agriculture, as it influences the growth
of plants, but nowadays this is commonly moni-
tored by measurements with temperature probes.
However, for Fourier it was different, it was not
just a matter of measurements, and it was some-
thing that he wanted to understand in depth, and
to this end, he started from the newly discovered
diffusion equation for temperature in one dimen-
sion1:

∂T

∂t
= D

∂2T

∂z2
, (4.1)

where T = T (t, z) is the temperature, a function
of both time t and of space coordinate z. The
equation says that the rate of change of temper-
ature at a given position in space depends on the
values of the temperature all around that given
position, i.e., on the flow of heat to and from
the neighborhood of that position. In the problem
considered by Fourier, there is just one spatial
dimension, z, because he was interested in the
approximation where the ground is a uniform
plane and z represents the depth.

It is important to note that the diffusion equa-
tion (4.1) is linear. This means that if we find two
different solutions T1(t, z) and T2(t, z), then any
linear combination T (t, z) = a × T1(t, z) + b ×
T1(t, z), where a and b are real numbers, is again a
solution of the equation. In the jargon of physics,
this means that the principle of superposition
holds.2

1Formally, the diffusion equation for heat is the com-
bined result of Fick’s law applied to thermal current J
and temperature, J = −K∇T , where K is the thermal
conductivity, of the conservation of energy applied to the
thermal current and internal (thermal) energy U ,

− ∂U

∂t
= ∇ · J ,

and of the relation between internal energy and temper-
ature, �U = C�T , where C is the constant-volume
thermal capacity, so that one finds the multidimensional
diffusion equation for temperature

∂T

∂t
= D∇2T ,

with D = K/C.
2A “superposition” is just a linear combination as in the
text, and whenever the principle holds, then any superpo-
sition of solutions is also a solution. Much of the value of

Obviously, when dealing with the Earth’s
ground, the source of heat is the sun, a source
which is doubly modulated, daily and yearly. This
double modulation can be roughly described as
the sum of two sinusoidal terms

T (t, 0) = Ad cos(ωdt + φd) + Ay cos(ωyt + φy)

(4.2)
with ωd = 2π/Td , ωy = 2π/Ty , where Td =
86,400 s is the duration of one day, and Ty ≈
3.1558 × 107 s is the duration of the astronom-
ical year. Ad and Ay are the amplitudes of the
sinusoidal terms and depend on the latitude (for
instance, on the equator daylight always lasts 12h,
there is only a weak dependence on the day of the
year, and Ay ≈ 0). The constants φd and φy are
two phases that depend on the choice of the origin
of the time axis and are irrelevant in the present
calculation.

Thanks to the principle of superposition,
we can find the solution of the diffusion
equation (4.1) for each single sinusoidal term
and combine them thereafter. Before proceeding
further, it is also helpful to go one step further
with the superposition principle. We note that a
cosine is itself a weighted sum of two complex
exponential functions, and therefore we can apply
the superposition principle “backward.” Since a
given cosine function is a solution of the diffusion
equation, then the two complex exponentials
are themselves solutions of the same equation.
This means that we can go through the whole
process of solving the diffusion equation with
exponential functions, use their decomposition
eix = cos x + i sin x, and use again one final
time the superposition principle to just discard
the “unphysical” imaginary part. This choice of
the complex exponentials greatly simplifies all
the calculations, and on the boundary plane (the
ground), we can take the “complex” temperature
T̂ (t, 0) = Âeiωt , where the hat denotes complex
variables, and Â = Aeiφ .

the principle comes from experiment rather than theory: if
one finds experimentally that the principle holds, then one
knows that the underlying equations must be linear, just as
the diffusion equation.
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Because of the linear character of the diffusion
equation, we know that the time dependence re-
mains the same at all depths; however, we still
have to determine the space dependence of tem-
perature. Therefore, we write T̂ (t, z) = Â(z)eiωt ,
we substitute in Eq. (4.1), and we find

iωÂ(z) = D
d2Â

dz2
. (4.3)

Equation (4.3) is the same equation one has to
solve for a harmonic oscillator, albeit with com-
plex coefficients, and it is well-known that its
solution is just a linear combination of exponen-
tial terms (again). Therefore, we can repeat the
steps that we have already taken with the time-
dependent part and write the space-dependent
part Â(z) as a linear combination of complex
exponentials eαz that depend on the depth z. We

can determine the constant α by substitution into
Eq. (4.3), and we find the algebraic equation

iω = Dα2, (4.4)

which has the solutions α = ±eiπ/4√ω/D =
±(1+i)

√
ω/2D. Mathematically, this determines

two spatial solutions

Â(z) = A± exp

(
±(1 + i)

√
ω

2D
z

)
,

but only the solution with the minus sign is ac-
ceptable, because the other one is unphysical,
with its amplitude which increases exponentially
in time.

Assembling the factors together, and equating
its value at the boundary (the ground) with the
known modulation A cos(ωt + φ), we find the
complete solution

T (t, z) = A exp

(
−

√
ω

2D
z

)
cos

(√
ω

2D
z

)
cos(ωt + φ) (4.5)

= A

2
exp

(
−

√
ω

2D
z

)[
cos

(
ωt + φ +

√
ω

2D
z

)
+ cos

(
ωt + φ −

√
ω

2D
z

)]
(4.6)

Equation (4.6) shows that while at any given
depth the oscillation has the same frequency as on
the ground, it decomposes into two components
with different depth-dependent and frequency-
dependent phases. Moreover the amplitude it-

self decreases exponentially with a characteristic
length λwhich is again frequency dependent, λ =√

2D/ω, and decreases steadily for increasing
frequency.

Applying the principle of superposition to
each modulation, diurnal and annual, we find the
solution of the original Fourier problem:

T (t, z) = Ad exp

(
−

√
ωd

2D
z

)
cos

(√
ωd

2D
z

)
cos(ωdt + φd)

+ Ay exp

(
−

√
ωy

2D
z

)
cos

(√
ωy

2D
z

)
cos(ωyt + φy). (4.7)

This ingenious solution was the beginning of
the Fourier series, as Fourier understood that it
could be extended to any number of sinusoidal
components. It also displays from the very start
one of the strengths of the Fourier series, namely,
that they can be used as a tool to solve any
kind of linear differential equation – be it an

ordinary differential equation or a partial dif-
ferential equation – thanks to the principle of
superposition.

As we shall see in the next sections, all the
basic features of the solution (4.7) are carried
over to the case of oxygen diffusion in the tumor
microenvironment.
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4.3 Linear Model of Oxygen
Diffusion and Consumption

When we consider the complex tumor microen-
vironment, we find that the concentration of any
chemical follows the same basic rules as the tem-
perature of Fourier’s problem. There is a molec-
ular current from regions of higher concentration
to regions of lower concentration which follows
Fick’s law J = −D∇	, where 	 is the concen-
tration, and there is relation which is an extension
of the conservation of energy in the previous
section

∂	

∂t
= −∇ · J − f (	(r, t), r, t))

This means that the rate of change of the concen-
tration in a given region of space around position
r depends both on the outflow of molecules from
that region – described by the current term –
and from the disappearance of those molecules
because of the reaction with other chemicals –
described by the reaction term f (	(r, t), r, t)).

Combining these equations together, we find
the complete reaction-diffusion equation

∂	

∂t
= ∇ · (D∇	) − f (	(r, t), r, t)) . (4.8)

Equation (4.8) is very general: the diffusion co-
efficient D which parameterizes the speed of
diffusion of molecules in the environment can be
position- and time-dependent, D = D(r, t), and
the reaction term is in general a combination of
one or more Michaelis-Menten (or Hill) terms.3

3We recall that the enzymatic activity – and therefore also
the individual steps of the metabolic pathways – is often
described by the Michaelis-Menten (MM) equation

v = vmax
[S]

Km + [S]
where v is the reaction rate and [S] is the concentration
of the substrate (in our case, oxygen). The reaction rate
depends on two parameters vmax and Km which charac-
terize the specific enzymatic process. The MM equation
is unable to fit some of the observed reaction rates, which
are sigmoid functions of the substrate concentration, and
in this case, it is common to turn to the Hill equation, a
phenomenological modification of the MM equation

Here, we concentrate our attention on a
very small spatial region, and we assume that
D does not depend on r . We also assume
that the reaction term can be linearized in a
simple way, f (	(r, t), r, t)) ≈ γ	(r, t),
which is consistent with the low-concentration
approximation of a Michaelis-Menten reaction
term. Then, Eq. (4.8) becomes

∂	

∂t
= D∇2	 − γ	. (4.9)

In this case we are going to use this formalism to
understand how the fluctuations of oxygen con-
centration in the blood vessels influence the con-
centration of oxygen in the microenvironment,
and it is instructive to start with Eq. (4.9) in the
one-dimensional case

∂	

∂t
= D

∂2	

∂z2
− γ	, (4.10)

which we solve with the same methods used in
Sect. 4.2. We let again 	̂(t, 0) = Âeiωt , and we
obtain the ordinary differential equation

(iω + γ )	̂ = D
d2	̂

dz2
, (4.11)

which is nearly the same as Eq. (4.3). The solution
is again an exponential function eαz, where α

solves the algebraic equation

iω + γ = Dα2.

With a little complex algebra, it can be shown that

	̂(z, t) = A exp [i (ωt + ϕ(z))] e−z/�,

where the position-dependent phase is

ϕ(z) =
(

ω2 + γ 2

D2

)1/4

sin

(
1

2
arctan

ω

γ

)
z,

and the decay length is

v = vmax
[S]n

Kn
m + [S]n

with onemore parameter, the exponent n. For more details,
see, e.g., [12].
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�(ω, γ ) =
√

2D

γ + √
ω2 + γ 2

= �0(ω)

√
2

1 + √
1 + ω2/γ 2

,

with
�0(ω) = �(ω, 0) = √

D/ω

Except for a factor
√

2 – which comes from our
preferred definition of the ratio �/�0 – the decay
length �0 is the same as in the Fourier problem
in Sect. 4.2 where there is no absorption term,
and here we see that the introduction of the con-
sumption/absorption coefficient γ modifies the
decay length making it somewhat smaller. It also
shows that usual formulations of the reaction-
diffusion problem which take into account the
consumption/absorption term but ignore modula-
tion do not properly estimate the decay length as
they tend to overestimate it and therefore also the
penetration of oxygen into themicroenvironment.
On the whole, we find that the concentration of
oxygen in the tumor microenvironment must be
influenced by the frequency of the fluctuations of
oxygen concentration in its blood vessels.

Another interesting feature of the reaction-
diffusion solution is that while the decay length
�0(ω) diverges for ω → 0, the presence of
the consumption/absorption term limits the decay
length to

�(ω, γ ) ≤ �(0, γ ) = √
D/γ .

The complete behavior of the �/�0 ratio is shown
in Fig. 4.1.

To conclude this section, we recall that
in the solution of the Fourier problem, there
were two Fourier components of the ground
temperature that fluctuated about an average
value of zero. When considering temperature
in Celsius degrees, this may be adequate, but
negative swings are certainly forbidden with
chemical concentrations. It is easy to cure this
problem by adding a constant component (a
zero-frequency component) that restores the non-
negativity of the concentration, as in Fig. 4.2.

4.4 The Near-Cylindrical
Geometry of Blood Vessels

The discussion of the previous section cannot be
considered completewithout a proper appraisal of
the role of blood vessel geometry. In this section
we briefly consider the role of the cylindrical
geometry which locally approximates the geom-
etry of blood vessels. We remark that the validity
of the approach is limited to blood vessels with
a diameter much smaller than their length. In
an environment crowded with blood vessels, the
approach is useful in the linear limit of Eq. (4.9),
as the overall oxygen concentration can be com-
puted – from the principle of superposition –
from the sum of the concentrations due to the
individual blood vessels (see also [13]), and this
holds for a fluctuating oxygen concentration as
well.

We use cylindrical coordinates (r, θ, z) and
take the z-axis along the axis of a blood vessel
(locally approximated by a cylinder with radius
R), then we find the reaction-diffusion equation

∂	

∂t
= D

1

r

∂

∂r

(
r
∂	

∂r

)
− γ	. (4.12)

where r is the distance from the axis of the blood
vessel. When we take again 	̂(t, 0) = Âeiωt ,
Eq. (4.12) becomes

r
∂

∂r

(
r
∂	̂

∂r

)
− iω + γ

D
r2	̂ = 0, (4.13)

which is a modified Bessel equation. The solution
of Eq. (4.13) with a boundary condition which is
set by the oxygen concentration on the surface of
the blood vessel 	̂(R, t) = 	̂0eiωt is qualitatively
similar to the simpler one-dimensional case with
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Fig. 4.1 Log-log plot of
the decay length of the
solution of the
one-dimensional diffusion
problem. Solid line: the
curve is nearly flat for
ω < γ , and its value is
close to 1. Dashed line: if
ω � γ , the ratio of decay
lengths approaches the
behavior of the decay
length without
consumption/absorption,
i.e., the simple power law
�/�0 ∼ ω−1/2. The
transition between the two
regimes occurs at ω ≈ γ
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Fig. 4.2 Periodic fluctuations of the concentration about
an average value (concentration normalized to the peak
value vs. time in arbitrary units). In this elementary exam-
ple, the relative concentration c(t) is described by just two
Fourier components: c(t) = 0.8 + 0.2 cos(2πt + 0.7) =

	(0.8 + 0.2e(2πt+0.7)i), where 	(x) is the real part of
the complex number x. The solid line represents the sum
of the two terms, while the dashed line represents the
constant term which is essential for the consistency of the
mathematical description

a plane boundary that has been considered above,
though with some added mathematical complex-
ities which are described in detail in reference
[14]. The main difference with respect to the
one-dimensional case is that the Bessel function
that solves equation (4.13) – a modified Bessel
function of the second kind with complex argu-
ment, K0

(√
(γ + iω)/Dr

)
– decays faster than

exponentially, as shown in Fig. 4.3, where several
other details are illustrated.

4.5 Dealing with Dead Cells:
Tumor Cords

The solution discussed in the previous section is
characterized by an extremely fast decrease of the
oxygen concentration when the blood vessels are
surrounded by a uniform population of live cells.
In normal tissues this fast decrease is compen-
sated by a high density of blood vessels, that are
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Fig. 4.3 Plots of K0
(√

γ /Dr
)
/K0

(√
γ /DR

)
(solid

line) and of the exponential function e−r/�0 (dashed line)
vs. r/�0 for 2R = 0.01�0. This shows the contribution
of the constant Fourier component of the fluctuating oxy-
gen concentration to the concentration in the surround-
ing environment, in the case of a blood vessel with a
diameter which is 1% of the decay length �0. Since �0
is about 0.96 mm with physiological parameters (D =
2000µm2/s; γ ≈ 2.16×10−3 s−1, see Sect. 4.5 for further
discussion about the parameters), this corresponds to a
blood vessel with diameter 2R ≈ 20µm. The smallest
diameter is one order of magnitude lower. Upper panel:
this plot has a linear vertical scale and shows the dramatic

effect of the cylindrical geometry, which leads to decay
of the concentration which is much faster than in the
one-dimensional, planar case (the dashed exponential).
Lower panel: same plot, but with a logarithmic vertical
scale, where we note that for large radius, the solution
behaves again almost exponentially, but with a drops more
than one order of magnitude below the one-dimensional
planar case. These plots display quite starkly the effect of
the cylindrical geometry of the individual blood vessels.
Finally, it is important to note that the difference between
the cylindrical and the plane geometry depends on the
radius of the blood vessels: it is reduced for large radii,
while it is enhanced for small radii

never too far apart, so that the superposition of the
concentrations is always in a physiological range
and cells live. However, this is not the case in the
majority of tumor tissues, where blood vessels are
often far apart and have a chaotic distribution and
shape that lower the efficiency of oxygen trans-
port. Hypoxic regions appear where the harsh

conditions cause the death of many cells, and the
resulting environment develops gradients of the
concentration of live cells. Eventually, live cells
are mostly concentrated around blood vessels –
making up the so-called tumor cords [15] – with
extended necrotic regions in between the blood
vessels.
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The uneven distribution of live cells means
that the consumption/absorption coefficient γ is
position-dependent. Here we consider a general
exponential model of (radial) space dependence,
motivated by our previous numerical work
[16, 17]

γ (r) = γ0 + γc exp(−r/λc), (4.14)

where γ0 corresponds to the binding of oxygen
to some environmental chemical (and we assume
this to vanish in most tissues) and γc is the oxy-
gen consumption associated with a population of
live cells. Model (4.14) leads to the following
Fourier coefficients (i.e., amplitudes of the time-
dependent terms, see [14] for more details):

ln φ(r, ω) = ln φ(R, ω) +
∫ r

R

√
iω + γ (r ′)

D

K ′
0

(√
iω + γ (r ′)/D r ′)

K0
(√

iω + γ (r ′)/D r ′)dr ′ (4.15)

Equation (4.15) is noteworthy because it rep-
resents a decently realistic model of the oxygen
concentration in a small fraction of the tumor
microenvironment where the blood vessels are far
apart. However, a comparison with actual data re-
quires properly chosen parameter values. All the
parameters used in the numerical evaluations that
follow are extrapolated from experimental data
and apply to solid tumors. We take the estimates
in [16, 17] for the decay length in the defini-
tion (4.14): λc = 120µm. The diffusion constant
of oxygen as measured both in blood and tissues
D = 2 × 10−9 m2/s is taken from [18, 19]. The
rates of oxygen consumption in different areas of
in vivo tumors have been precisely measured and
shown to vary in the range 1.66 10−4 – 5 10−3 s−1

(mean value 2.16 10−3 s−1) [20–22]. Finally, we
note that measurements on melanomas [23] in-
dicate that the average microvessel diameter is
about 5µm, i.e., R = 2.5µm, just enough to let
one erythrocyte through.

The reduced consumption/absorption coeffi-
cient at larger depth means that when tumor cords
form, the decay of the oxygen concentration is not
as fast as in the straightforward cylindrical case.
This is illustrated in Fig. 4.4 which compares the
concentration decay for tumor cords with the pre-
viously examined cases (the simple exponential
decay found in the one-dimensional case and the
enhanced decay found in the case with cylindrical
symmetry).

To conclude this section, we note that the time
dependence of the boundary conditions has a very
important effect on the concentration also in the

case of the tumor cords. Figure 4.5 shows the
concentration vs. the radial distance r for several
Fourier amplitudes φ(ω, r) computed using aver-
age parameter values for solid tumors and a blood
vessel diameter close to the minimum (6µm),
and we see that fluctuations that correspond to a
normal heartbeat (60 beats/minute = 1Hz) have a
very short penetration depth into the tumor tissue.

4.6 Comparison with
Experimental Data

Experimental data are very hard to come by, but
some high-quality data have been produced by
Helmlinger et al. [24] (see Fig. 4.6), and they
show a very fast decrease of the partial oxygen
pressure at increasing distance from blood vessels
in a colon adenocarcinoma xenograft. This is in
line with the qualitative indications in the pre-
vious sections, but can we make this correspon-
dence more robust?

Figure 4.7 shows the same data as Fig. 4.6
and some additional curves. In particular,
it shows that the data can be bracketed by
two curves calculated for tumor cords and
that correspond to Fourier components with
frequencies 10 and 100mHz (0.6 cycles/minute
and 6 cycles/minute). These frequencies define
the interval of the observed frequencies with the
highest amplitude for oxygen oscillations in the
tumor microcirculation as observed by Braun
et al. [25]. This indicates that low-frequency
fluctuations in the tumor tissue may explain
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Fig. 4.4 Relative concentration in the case of tumor cords
(solid line) vs. radial distance r . Similarly to Fig. 4.3,
other curves show the corresponding decays in the one-
dimensional case (dotted line) and in the case with cylin-
drical symmetry (dashed line). The parameter values used

here are D = 2 × 10−9 m2/s, γ0 = 0, γc = 2.16 ×
10−3s−1, and λc = 120µm. Notice that, once again, this
is the plot for the Fourier component with ω = 0, and we
know that the Fourier components with ω > 0 decrease
faster than shown here

Fig. 4.5 Plots of
|φ(ω, r)/φ(ω, R)| vs. r
(µm) in the case of a tumor
cords, Eq. (4.15), for
different frequencies
ν = ω/2π . All curves have
been calculated with
2R = 6µm,
D = 2000µm2/s, γ0 = 0,
γc = 2.16 10−3 s−1, and
λc = 120µm. The black
line is the stationary
solution (ν = 0); the other
line shows the relative
concentration for
frequencies ranging from
ν = 0.001Hz to ν = 1Hz

the observed decrease of the partial oxygen
pressure. However, there are still too many
parameter values that have been fixed to produce
Fig. 4.7, and this may leave the impression that
the agreement is somewhat ad hoc.

This can be remedied with a better explo-
ration of the parameter space, which can be pro-
vided, e.g., by a Monte Carlo simulation. Con-
sider Fig. 4.7, which has been drawn taking the
median blood vessel radius R = 22.5µm: what
happens if we let this fluctuate within a rea-
sonable range? The answer is shown in Fig. 4.8,
where both the frequency (range: ν = 0.01Hz

– ν = 0.1Hz) and the radius of the blood
vessel (range: 3µm – 160µm) are uniformly
distributed in the respective ranges. We see that
the distribution of radius does not significantly
alter the band of Fig. 4.7.We can push the method
further and introduce a fluctuation of the diffusion
coefficient and of the consumption/absorption co-
efficient in addition to the fluctuation of the blood
vessel diameter. The results are shown in Figs. 4.9
and 4.10, and we see once again that the resulting
bands fit rather well the actual data. There are
other factors that might influence these results,
such as the shape of the probability density func-
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Fig. 4.6 Experimental data taken in measurements on
colon adenocarcinoma xenografts, redrawn from Fig. 3
in Ref. [24]. The figure shows values of partial oxygen
pressure (pO2) in the tumor interstitium as a function of
the distance from blood vessels (circles; bars represents

the s.e.m. calculated from 15 samples). In this figure pO2
has been normalized with respect to the central value in the
nearest blood vessel (pO(0)

2 ). The observed median radius
of the blood vessels in [24] is R = 22.5µm
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Fig. 4.7 Comparison of the observed relative oxygen
pressure redrawn from [24] as in Fig. 3 vs. the distance
r from axis of the nearest blood vessel. The solid line
shows the decay of the relative oxygen pressure in the
case of a tumor cord, while the dashed line shows the
straightforward case with cylindrical symmetry, in both

cases for ν = 0. The grayed band delimits the region
between ν = 0.01Hz to ν = 0.1Hz. All curves are
calculated with the values D = 2000µm2/s, γ0 = 0,
γc = 2.16 10−3 s−1, and λc = 120µm and with the
median blood vessel radius R = 22.5µm

tion of the blood vessel radius; a test carried
out with an exponential distribution of the radius
(with mean value 22.5µm, not shown) displays
very little variation with respect to Figs. 4.8, 4.9,
and 4.10.

The conclusion that we can draw from this
study is that the frequency of the fluctuations is
the single most important factor in determining
the penetration of oxygen in the microenviron-
ment in the case of isolated blood vessels. In
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Fig. 4.8 Monte Carlo
simulation of the model
predictions that takes into
account the fluctuation of
the frequencies and of the
blood vessel radii. The
parameters used for the
Monte Carlo are the same
as those of Fig. 4.7, except
that here both the radius
and the frequency are
allowed to fluctuate
following uniform
distributions in the range
(0.01 and 0.1Hz)
(frequency) and (3 and
160µm) (radius)
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Fig. 4.9 Monte Carlo
simulation of the model
predictions that takes into
account the fluctuation of
the diffusion coefficient as
well as that of the
frequencies and of the
blood vessel radii. The
parameters used for the
Monte Carlo are the same
as those of Fig. 4.8, except
that here the diffusion
coefficient fluctuates as
well, following a uniform
distribution in the range
(1000 and 3000µm2/s)
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Fig. 4.10 Monte Carlo simulation of the model predic-
tions that takes into account the fluctuation of the con-
sumption/absorption coefficient as well as that of the
frequencies and of the blood vessel radii. The parameters

used for the Monte Carlo are the same as those of Fig. 4.8,
except that here the consumption/absorption coefficient
fluctuates as well, following a uniform distribution in the
range (0.5 × 2.16 10−3 s−1, 2 × 2.16 10−3 s−1)
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the next sections, we move on to consider blood
vessel geometry, the importance of its remodeling
in cancer tissues, and more.

4.7 Into the Future: Numerical
Simulations of Vascularized
Tumors

While the considerations in the preceding
sections are very useful to understand the general
behavior of oxygen, they are not sufficient to
describe the spatial complexity of the tumor
microenvironment. A detailed calculation of the
oxygen concentration due to the blood vessels in a
tumor and in the surrounding healthy tissue defies
the analytical methods, and we must turn instead
to numerical tools. These tools are important both
to gauge the importance of nonlinear effects and
to unveil those aspects of the complexity that
escape a simple description as the one given in
the previous sections. In particular, we note that

• We neglected that the tumor microenviron-
ment comprises both healthy and cancerous
vessels/cells at the same time.

• In Sect. 4.3, we noted that the Michaelis-
Menten and the Hill equations are biologically
reasonable models of the reaction terms in
the reaction-diffusion equation. However, the
linearization of these nonlinear model works
only for low concentrations, and the linear
hypothesis may not be adequate in many
circumstances (for instance, it may lead to
an overestimate of the oxygen consumption in
well-oxygenated regions).

• Finally, the most severe simplification is the
small system size comprising a single blood
vessel only. Realistic tissues feature a vascu-
lature consisting of many blood vessels of dif-
ferent radii and surface characteristics. Since
blood vessels are the source of the oxygen
inside tissue, the exact form of the oxygen field
depends on the strength of the sources and
on the arrangement of the sources in space,
i.e., the oxygen concentration field depends
crucially on vascular morphology. During the
growth progression of solid tumors, both the

source strength and the arrangement of the
vessels are altered. The vasculature becomes
irregular, tortuous, and leaky with correspond-
ing consequences for the oxygen transport.

All of these limitations can be overcome by com-
puter simulations, which are a comprehensive
tool to study tumor growth and the tumor mi-
croenvironment in a much more realistic way,
although at the non-negligible cost of a large
coding and computational effort [26].

4.7.1 The Oxygen Concentration
Field of Simulated
Vascularized Tumors
Embedded in Normal Tissue

To address the problem of vessel geometry, we
explicitly model each blood vessel as a cylin-
der with length l, radius r , and thickness w.
The problem of creating realistic arteriovenous
blood vessel networks in 3D was solved in [27].
Upon the construction of the initial vasculature,
tumor growth starts to remodel the vasculature by
vessel dilation and collapse, wall degeneration,
and angiogenesis. While the first three processes
require themodification of existing blood vessels,
sprouting angiogenesis refers to the establish-
ment of new connections. Blood vessels are sur-
rounded by a layer of endothelial cells, and tumor
cells secrete numerous chemicals. One family
of chemical messengers, the vascular endothelial
growth factor (VEGF), triggers the proliferation
of endothelial cells and their migration toward
the formation of new vessels. In our simulation
program (Tumorcode), angiogenesis is turned on
when the concentration of VEGF exceeds a spe-
cific threshold. Once this happens, angiogenesis
proceeds as a two-step random process: first, a
sprout is initialized, and second, a present sprout
may be extended.

Tumor vasculature cannot be considered in
isolation because it feeds the tumor. And just as
the tumor grows and changes, so does its vascu-
lature, and these two entities influence each other
in a complex feedback loop that involves oxygen,
nutrients, and messenger molecules. This means
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that the computational model of the vasculature
must be coupled with a properly chosen model of
tumor tissue.

In our approach we have adopted two differ-
ent models of tumor tissue: one of them is a
continuum description, which is computationally
efficient and is well suited for the description of
tumors of clinical interest but lacks the ability
to describe processes at the individual cell level,
such as the evolutionary processes that produce
the heterogeneity of the tumormicroenvironment.
The other one is based on a model of individual
cells, and excels in the description of the single-
cell events, but is much more computationally
demanding.

4.7.2 ContinuumDescription of
Tumor Tissue

A description of tumor development and growth
based on continuummechanicsmust deal with the
fact that cells proliferate and die, in addition to the
conditions of mass and momentum conservation
that must normally be met. Just like the equation
that expresses the conservation of thermal energy
in Sect. 4.2, we can express the conservation of
the number of cells (which corresponds to the
conservation of mass) by means of the equation

−∂	

∂t
= ∇ · (	u) (4.16)

where the tumor cell density 	(x, t) depends on
the space and time coordinates x and t , u is the
local velocity field, and 	u is the current of cells
that enter and leave a small volume centered at
position x, at time t .

Since the number of cells is not actually con-
served because cells proliferate and die, we must
add a term f that modifies the time derivative as
follows

−∂	

∂t
= ∇ · (	u) − f (4.17)

Using the identities

∇(	u) = 	∇ · u + u · ∇	

and

d	

dt
= ∂	

∂t
+ u · ∇	

we can rearrange equation (4.17) in the form

d	

dt
= −	∇ · u + f (4.18)

which is the standard way in which this equation
is usually presented.

In turn, cell death and proliferation cause
shape changes that produce mechanical forces.
To model this aspect, it is necessary to turn to
the theory of plastic solids and introduce an
equation that corresponds to the conservation
of momentum. The general form of the equation
of motion is

d(	u)

dt
= ∇ · σ + F (4.19)

where σ is the Cauchy stress tensor and F is
the total body force accounting for gravity and
other external forces (see, e.g., [28] for a general
derivation of the equation).

There are several other details that can be taken
into account and in the bulk-tissue simulation of
Tumorcode, and we follow the continuum-based
model described in [29]. This is a state-of-the-
art multiphase or mixture model [30]. In such
models, the mass, the momentum, and the stress
are given by summation over the contributions
from all constituents. We take into account solid-
like contributions from tumor cells (	T ), normal
cells (	N ), necrotic cells (	D), and fluid-like
contributions from interstitial fluid (l). For each
constituent, the velocity field, the mass conser-
vation equation, and the momentum balance are
explicitly formulated in [31]. The cells (solid-
like contributions) are modeled as viscous liquid
(including an isotropic pressure, friction, and ad-
hesion) neglecting inertial force because tissue
growth and cell migration happen at very low
Reynolds numbers (Re � 1). The liquid (fluid-
like contribution) is modeled as a liquid within a
porous medium resulting in a variant of Darcy’s
law. In our model, the liquid part of the blood
(plasma) is allowed to extravasate from the ves-
sels into the interstitium. Therefore we consider
additional source terms for the liquid proportional
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to the local volume vessel density. Finally we
solve an elliptic equation for the pressure of the
liquid.

To mimic a tumor mass, we impose that tumor
cells and normal cells are immiscibly separated
by an interface. This is defined via an auxiliary
function in the context of the level set method
[32–34]. This method allows to perform numer-
ical computations involving surfaces without pa-
rameterization; therefore it is suitable for fast
modeling of time-varying objects that include
shape changes such as solid tumors.

We solved this coupled set of continuum equa-
tions numerically with the method of finite differ-
ences (FD). The FD methods applied to the ellip-
tic equations of our model result in sparse matrix
systems. Since sparse matrices are a specialized
field within mathematical numerical research, a
lot of tools are available to solve systems with
sparse matrices (direct factorization, fast Fourier
transform, multigrid and iterative preconditioned
Krylov subspace methods). Because of the high
portability, we decided to use the implementation
of the numerical library Trilinos [35].

To facilitate computations and enable tumor
sizes of clinical relevance, we have simplified
the bulk-tissue tumor model [29]. In our “fake
tumor simulation,” the tumor is described as a
growing sphere with constant radial expansion
speed vtum. Moreover, even though the tissue and
liquid dynamics are neglected, the growing tumor
is still a source of VEGF, and the remodeling of
the vasculature takes place accordingly.

In our comprehensive numerical approach, we
compute the oxygen saturation within tissue for
arteriovenous blood vessel networks both before
and after they are subject to the modifications
of solid tumors [36]. Because oxygen diffusion
happens much faster than vascular remodeling,
it is not necessary to consider diffusion as an
out-of-equilibrium process; rather it is sufficient
to stop the vascular remodeling, calculate the
oxygen distribution for a fixed vessel network
configuration, and continue the vascular remod-
eling. Since the oxygen diffuses across the blood-
tissue interface, the net oxygen flux depends not
only on tissue microenvironment but also on the
blood pressure inside the vessel [37]. Therefore

the local blood pressure is an important input
for the calculation of the oxygen field. Moreover,
intravascular oxygen transport takes place by free
diffusion, and since oxygen is bound to red blood
cells (RBCs) in blood vessels, the consideration
of RBCs is also crucial for a realistic calculation
of the oxygen source strength.

We refer the reader to the original papers for all
model details. Here we focus briefly on the part of
model that deals with the oxygen calculation. The
calculation of intravascular pO2 is a demanding
task [38]. Since our focus is on the oxygen field in
the tissue, we treat the vessels as one-dimensional
line segments neglecting intravascular pO2 vari-
ations in radial direction. The net transvascular
oxygen flux per blood-tissue interface surface
area jtv is proportional to the oxygen pressure
gradient from inside the vessel (P) to the outside
in the tissue (Pt )

jtv = γ (P − Pt) . (4.20)

Equation 4.20 is a phenomenological assumption
with an effective (tissue dependent) propor-
tionality factor γ that comprises information
about the vessel wall and the tissue/tumor
microenvironment (see the supplemental material
“S1Appendix.PDF” of [36] for details on the
determination of γ ). Together with Michaelis-
Menten-like uptake of oxygen by the tissue/tumor

M(P) = M0
P

P + P50
(4.21)

Eqs. (4.20) and (4.21) build the reaction part used
in our implementation of the oxygen transport. To
obtain the partial oxygen pressure inside the tis-
sue, we solve numerically the following equation:

0 = αtD∇2Pt − M(Pt) + Jtv (4.22)

with the solubility of oxygen in tissue αt and dif-
fusion constant of oxygen in tissue D. Note that
unlike the previous sections, Eq. (4.22) considers
the stationary equilibrium case only.

As an additional complication, in the physio-
logical coupling of intravascular and extravascu-
lar oxygen transport, wemust alsomatch different
discretization grids. To solve Eq. (4.22), the tissue

https://ndownloader.figshare.com/files/5847807
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domain is discretized on a regular cubic grid, but
the vessel network is not defined on the same
grid. To interpolate P from an arbitrary point
along the one-dimensional vessel line to the tissue
grid point (where Pt is defined), we follow stan-
dard finite elements methods (FEM) using three-
dimensional piecewise trilinear functions.

In summary, the oxygen transport across the
vessel wall and inside the microenvironment of
the solid tumors is complicated because of many
reasons. Numerical simulations are not able to
solve all problems, but at least in this approach,
we can overcome the simplificationsmentioned at
the beginning of this section and in particular:

(a) we find realistic values for the source strength
of oxygen by fitting the transvascular oxygen
mass transfer coefficient γ to available liter-
ature values;

(b) we use the full nonlinearity of the Michaelis-
Menten and Hill equations in the reaction
part;

(c) we do take into account the chaotic and inho-
mogeneous architecture of blood vessel net-
works in tumors for the calculation of the
oxygen field.

Figure 4.11 shows the result of one of our
continuum-based simulations, as reported in [36]:
it is interesting to observe the strong correlation
between the pO2 in the local microenvironment
and the blood vessel distribution. For further de-
tails, we refer the interested reader to reference
[39].

4.7.3 Simulation of Individual
Tumor Cells

A computational description based on individual
cells provides an even finer view of the microen-
vironmental pO2: in our case it is based on an-
other piece of software (VBL, Virtual Biophysics
Lab) that has been used in the past to simulate
small avascular solid tumors [16, 40, 41].

The VBL computational model is based on
a lattice-free representation where cells are free
to move and to exert both attractive and repul-

sive biomechanical forces on neighboring cells.
The resulting motions of individual cells in the
disordered tumor tissue can be followed in time,
while the overall tumor structure takes its shape.
On the whole the growth dynamics of the sim-
ulated avascular tumors is determined by this
collective behavior of cells. At the same time,
cells live, proliferate, and die, thanks to an em-
bedded model of the cell cycle. The cycle is
set in motion by a phenomenological model of
the biochemical networks that describes nutri-
ent uptake and utilization by cells. Nutrients can
either be directly converted to ATP or energy-
storingmolecules in cells. Themodeled pathways
also include metabolites and waste products. The
waste products are secreted into the surrounding
environment, while both ATP and metabolites are
used to build up proteins, DNA, and cellular struc-
tures. The model features a limited description
of protein synthesis, with some specific named
proteins such as cyclins and kinases that regulate
the timing and the fate of the cell cycle [42, 43].

The pathways included in the model have been
studied independently to fix model parameters
and to reduce their known complexity to a few
basic simplified reaction schemes. In this way we
have reduced the computational cost of the model
and, at the same time, preserved its quantitative
predictability. All the pathways have been con-
nected together to obtain a basic metabolic model
of tumor cells [41–43]. When needed, the overall
biochemical description can be modified in an
incremental way to include additional pathways
to address specific aspects of tumor biology.

In VBL, cells are complex objects, while the
basic actors are nutrient and waste molecules
which interact in the intertwined biochemical
pathways that regulate a cell’s life. The model
assumes that tumor cells are never quiescent so
that cells always grow and proliferate (or die).
On an individual basis, the cell volume increases,
while the cell’s components – such as proteins,
DNA, and organelles – are built, and the growth
process proceeds in parallel with the phases of
the cell cycle up to mitosis. Just as in real cells,
mitosis is uneven, and the mother cell material is
subdivided randomly between the two daughter
cells [41–43]. The individual variability in cell
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Fig. 4.11 Oxygen in a
growing solid tumor. This
simulation assumes a
spherical expanding tumor
mass including the full
vessel remodeling
dynamics of Tumorcode
(“fake tumor”). The
simulation setup is
identical to the one
described in [36] and
comprises a volume of
8mm3 containing about
340k vessel segments.
Both panels show a slice
through the center of the
simulation domain at
simulation time t = 600 h.
The vessels shown are in a
200µm thick slice above
the central plane. Upper
panel: tissue pO2 in a
central slice overlain with
vessels (color-coded by
their pO2 value). The color
bar is in mmHg. Lower
panel: vessels color-coded
by oxygen saturation level

division propagates to the cell population, and
it is one of the random factors that determine
the chaotic movements of cells in the simulated
tumor.

The computer code contains a mixture of de-
terministic steps – those related to the numerical
solution of the reaction diffusion equations, and
the mechanical movements – and random steps,
such as the division of the cell’s materials at mito-
sis or the protein synthesis, which is related to the
availability of nutrients in a chaotic environment.

The deterministic steps describe the dynamics of
structures that span at least 3 orders of magnitude
in space (from the few µm of cell radius up to a
fewmmof diameter of an avascular tumor) and 12
orders ofmagnitude in time (from a few tens ofµs
that are typical diffusion times of the molecular
species up to ∼ 107 s for the full development
of an avascular tumor) [44]. Thus, our computer
code is a true multiscale model of small avascular
tumors, and it requires the use of appropriate
algorithms to manage the stiff set of differential
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equations for reaction-diffusion and mechanical
movements [45].

On the whole, the behavior of each individ-
ual cell is controlled by ∼100 parameters, and
this lends great flexibility to the computer code,
which can mix in the same simulation several
kinds of tumor cells. Comparisons of the results
of simulation runs with experimental data have
shown that our simulation program is a reliable
model of the growth of avascular tumors [41,
43]. Usually we assume that cells are nonpolar
and spherical and that they are immersed in a
uniform environment with which they exchange
oxygen, nutrients, and metabolites: in such con-
ditions we obtain cell clusters that are invariably
nearly spherical and that reproduce in good detail
the structure and the chemical gradients found in
tumor spheroids [46].

The computer code can also handle more com-
plex situations, like the growth of cells around a
single blood vessel that acts as the only source of
oxygen and nutrients, with a surrounding environ-
ment that is oxygen- and nutrient-poor and filled
with metabolites such as lactic acid that make it
acidic. This case is illustrated in Fig. 4.12, which
shows two different views of the same object, a
simulated tumor cord about 480µm long. The
first view shows theO2 concentration. The second
view shows the distribution of cell phases, which
displays the fine-grained level of detail that is
reached in the simulation. Given the conditions
of the simulation, the O2 concentration is highest
close to the blood vessel, and it decreases sharply
further away from the vessel. Correspondingly,
cells are distributed in various phases in the vicin-
ity of the blood vessel, while they are mostly dead
further away from it.

4.7.4 Oxygen in a Fine-Grained
Simulation of the Tumor
Microenvironment

As noted above, the continuum model is compu-
tationally efficient and capable of simulating tu-
mors of clinical relevance. On the other hand, the
less efficient cell-based simulation is extremely
fine-grained and offers a different view of the

tumor, one that has the potential to give a glimpse
of the transformative, evolutionary events that
produce the heterogeneity that is observed in real
tumors.We have recently taken steps in this direc-
tion, and we have obtained the very first compu-
tational snapshots of the tumormicroenvironment
at the cellular level [47]. While our simulation is
not yet sufficiently detailed to actually deliver the
promised results on tumor heterogeneity – they
still lack the plurality of cell types that populate
a real tumor – they already display such basic
features of the microenvironment as the large
gradients that lead to the formation of ecological
niches and ultimately drive the Darwinian evolu-
tion of tumor cells [48]. Obviously, one of these
important gradients is associated with the local
oxygen concentration.

In the combined simulation of Tumorcode and
VBL [47], we improved two mean field assump-
tions of the standalone version of Tumorcode –
the VEGF field and the oxygen uptake field –
thanks to the availability of the detailed represen-
tation of individual cells. The VEGF field was
previously extracted from the bulk-tissue tumor
or was assumed to be spherically symmetric in
the case of the fake tumor. In the combined pro-
gram, we assume that each cell is a point source
for the VEGF and constructs the VEGF field as
a superposition of single-cell contributions. The
tumor models already integrated in Tumorcode
comprise three kinds of tissue: normal, tumor, and
necrotic tissue, and each of them has its own oxy-
gen consumption parameters in the Michaelis-
Menten equation for the oxygen uptake. In con-
trast, VBL calculates the oxygen uptake for each
cell, and we use this fine-grained information
to interpolate a continuous oxygen uptake field
which is a more realistic input for the oxygen
computation in Tumorcode.

Recently, we used the combined program to
study the tumor microenvironment at the angio-
genic switch. The angiogenic switch is an im-
portant step toward malignancy, since it marks
the onset of tumor vascularization [49]. After the
angiogenic switch, malignant tumors can invade
vessels, spread throughout the body via the blood
stream, and metastasize at different locations.
This step of the progression is particularly impor-
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Fig. 4.12 Longitudinal
section of a simulated
tumor cord about 480µm
long (the blood vessel runs
along the axis of the cord
and is not shown). Top
panel: O2 concentration;
the highest value in the
color scale corresponds to
O2 in equilibrium with
atmospheric oxygen.
Bottom panel: cell phases.
The cell phases are labeled
with the numbers 1–5
(1 = early G1 phase;
2 = late G1 phase; 3 = S
phase; 4 =G2 phase; 5 =M
phase), while 6 indicates
the dead cells

tant in the development of cancer and therefore of
special interest for the prognosis and therapy of
the disease. We performed two experiments: one
in analogy with the experimental setup used by
Helminger et al. [24] and one that nearly matches
the maximum problem size on our current hard-
ware.

Helminger et al. measured the pO2 and pH
in human tumor xenografts, utilizing phosphores-
cence quenching for pO2 and fluorescence ratio
imaging for pH. Themeasurements were done for
different blood vessel arrangements. We focused
on the topology used for panels c and d of Fig. 2
in [24], which is the measurement along a straight
line between the bifurcation of two blood vessels,

as illustrated in Fig. 4.13. To recreate this setup in
our simulation, we used Tumorcode to build an
arteriovenous blood vessel network, searched for
a similar bifurcation, seeded the VBL spheroid
in between the bifurcation, and started the sim-
ulation run. The resulting pO2 gradients along
the line between the blood vessels are quantita-
tively quite similar to the measured gradients of
Helminger et al. (see Fig. 4.14 and compare with
the corresponding figures in [24]).

In the second experiment, we followed the tu-
mor growth dynamics up to a wall time4 of about

4In the jargon of High Performance Computing, this is the
experimenter’s actual waiting time for the completion of
the simulation.
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Fig. 4.13 Geometry of
the measurements of
Helminger et al. [24]. The
measurements were carried
out along an ideal line
connecting two points on
different branches of a
bifurcation. The pO2 was
reported as a function of
the distance traveled along
this line from A to B

B

A

1 month, resulting in simulated time of 580 h past
the initial seeding of the tumor. Because oxygen
and other nutrients are released by blood vessels,
the distance of a cell to its nearest vessel is cer-
tainly an interesting quantity to look at. Experi-
mentally it would be impossible (or at least very
tedious) to quantify the distance of each cell in
a tumor to its nearest blood vessel. For computer
simulations, this can be made automatic, and it
provides us with some intriguing data.

We histogrammed the pO2 for every cell ac-
cording to the distance to the nearest blood ves-
sel, thus producing a set of empirical probability
distributions of pO2 for a set selected distances
to the nearest blood vessel. For early time points
(380 h past the initial seeding), we find that the
median of these distributions decays exponen-
tially vs. distance (see Fig. 4.15), as expected for
a spheroid embedded in a homogenous tissue.
However, for increasing simulation time (480 h
and 580 h past the initial seeding), the medians
change, up to a point where they start to increase
again with distance. This happens because of the
modifications of the blood vessel network and
because of the death of many cells which leads
to a reduction of the oxygen consumption. In the
vascularized tumor mass, we observe cells that
are more than 100µm away from the nearest
blood vessel and still are sufficiently oxygenated.

In [47], we have shown that such computer
simulations of vascularized multicellular tumor
spheroids are in good qualitative agreement with
measurements of human tumor xenograft, and we
showed that in our particular in silico model, the
transport of vascular oxygen results in a con-

tinually changing and rugged microenvironment.
This means that the niche diversity is large and
consequently that the evolutionary pressure is
high and leads to a very effective selection of
different tumor clones even in small tumors.

4.8 Conclusions

As we have already noted, the numerical
simulations do not take everything into account,
and yet, it is interesting to observe that on
average, they are in quite good agreement with
the measurements in [24]. The simulations are
driven by model parameters that have been
taken from the literature and which have been
obtained with different experimental systems
and tumor cell types. Whenever experimental
measurements were missing, we estimated
parameter values from independent biophysical
modeling of available data, once again collected
in experiments with different tumor systems [44].
Therefore, model parameters have not been tuned
to describe the behavior of any specific tumor, and
yet we obtain a good agreement of the oxygen
concentration with the actual measurements.
But shouldn’t there be a measurable specificity
of tumor cells and tissue that shows up in the
simulations? How can we explain the observed
agreement?

One simple answermay be that for all their dif-
ferences, tumor cells are similar in their average
metabolic behavior, as we noted in our derivation
of themetabolic law in reference [17] (see Fig. 4.2
in that paper). There, we found that the mean val-
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Fig. 4.14 pO2 and pH vs. distance traveled along a segment joining two branches of a bifurcation, as in reference [24],
at simulated time t = 350 h

 distance to nearest vessel/ 

Fig. 4.15 Combined representation of the pO2 values of
cells at given distances from nearest blood vessels, for
three different time points past the angiogenic switch:
blue 380 h, green 480 h, and orange 580 h. For the two
earlier timepoints (380 and 480 h), the blue bullets and the

green triangles show the median value. For the last time
point, the median is shown by an orange line inside a box
that marks the positions of the 25th and 75th percentiles.
The whiskers represent the 10th and 90th percentiles. It
is interesting to note the large widths of the distance
distributions
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ues of metabolic consumption are very effective
descriptors of an average metabolic consumption,
even though the figure summarizes the behavior
of different tumor types. Incidentally, this would
also mean that a model of metabolism of cells is
all we need to describe the oxygen concentration.

This answer highlights that the agreement be-
tween our simulations and observations has been
established for the average behavior of the sim-
ulations (we have compared the median values
to the observations), but a careful observation of
Fig. 4.15 shows that the empirical distributions of
the distance to the closest vessel are quite wide.
These spatial fluctuations are extremely impor-
tant, actually they are one of the main results
of our simulation effort. Indeed, they produce
a large niche diversity even in small vascular-
ized solid tumors. This means that already at the
early stages of tumor progression, i.e., close to
the angiogenic switch, the microenvironment can
exert a high evolutionary pressure that drives the
Darwinian selection of different clones. Here we
stress that while the molecular mechanisms that
promote genotypic changes in tumor clones are
well-known and characterized, genotypic varia-
tion is but one ingredient of tumor evolution, the
other important feature being the variability of
the environment that supervenes the genome and
sets the stage for the evolutionary process. With
our computational tool, we can start to explore
this Darwinian dynamics in tumors and grasp the
role of evolutionary forces in the establishment of
more or less aggressive tumor phenotypes.

In the first part of this chapter, we also
examined the importance of time fluctuations,
whose existence is supported by several
experiments; see [8, 25, 50, 51]. Together with
the oxygen consumption by cells, they conspire
to further limit the penetration of oxygen in the
tumor tissue. This may have an important clinical
impact, because tumor hypoxia is known to neg-
atively affect radiotherapy [1, 52, 53]. Our model
predicts that by blocking the pathophysiological
oscillations of oxygen observed in the tumor
microcirculation, the oxygen concentrations in
the tumor tissue should increase. It is known that
the low-frequency rhythms of arterial circulation

can be strongly attenuated, or even abolished,
after alpha-adrenoreceptor blockade [54, 55].
Alpha blockers are well-tolerated drugs, and
they are already used in the clinical setting
to treat a variety of disorders such as anxiety,
panic, and post-traumatic stress disorders [56–
58]. Thus, this class of drugs could be used in
combination with radiotherapy to transiently
improve the oxygenation of the tumor microen-
vironment and increase the efficacy of radiation
treatments.

Such considerations prove that mathematical
and numerical approaches to the distribution of
oxygen in the tumor microenvironment are more
than mere mathematical exercises; they yield new
and useful insights on the role of the distribu-
tion of blood vessel density and size and on the
fluctuations of blood oxygenation and pressure,
with implications on both tumor biology and ra-
diotherapy. More generally, these models are not
affected by the practical limitations that hamper
the experimental collection of quantitative data at
appropriate spatial and temporal resolution. For
example, with current technologies it is almost
impossible to follow the evolution kinetics of
individual clones in solid tumors and carry out
experiments to explore the space of parameters.
Analytic and numerical models can illuminate the
basic features of complex biological systems and
can uncover novel ones.
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