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Abstract

The RECQ family of DNA helicases is a con-
served group of enzymes that plays an impor-
tant role in maintaining genomic stability. 
Humans possess five RECQ helicase genes, 
and mutations in three of them – BLM, WRN, 
and RECQL4 – are associated with the genetic 
disorders Bloom syndrome, Werner syn-
drome, and Rothmund-Thomson syndrome 
(RTS), respectively. These syndromes share 
overlapping clinical features, and importantly 
they are all associated with an increased risk 
of cancer. Patients with RTS have the highest 
specific risk of developing osteosarcoma com-
pared to all other cancer predisposition syn-
dromes; therefore, RTS serves as a relevant 
model to study the pathogenesis and molecu-
lar genetics of osteosarcoma. The “tumor sup-
pressor” function of the RECQ helicases 
continues to be an area of active investigation. 
This chapter will focus primarily on the known 
cellular functions of RECQL4 and how these 
may relate to tumorigenesis, as well as ongo-
ing efforts to understand RECQL4’s functions 

in  vivo using animal models. Understanding 
the RECQ pathways will provide insight into 
avenues for novel cancer therapies in the 
future.
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�Introduction

The roles of the RECQ helicases in cancer and 
specifically the role of RECQL4 in osteosarcoma 
(OS) are areas of active investigation. While it is 
known that constitutional mutations in the RECQ 
genes predispose patients to developing cancer, 
the exact mechanisms of tumorigenesis remain to 
be fully explored. As basic science research con-
tinues to reveal the normal cellular functions of 
the RECQ helicases, application of this knowl-
edge to OS pathogenesis will provide avenues for 
future investigation into targeted therapies for 
this disease. This chapter will primarily focus on 
what is currently known about the RECQL4 DNA 
helicase gene, which is mutated in the OS predis-
position disorder Rothmund-Thomson syndrome 
(RTS).
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�RECQ Family of DNA Helicases 
and Cancer Predisposition

The RECQ DNA helicases are a family of pro-
teins that are important in maintaining genomic 
integrity. DNA helicases are ubiquitous molecular 
motor proteins that harness the chemical free 
energy of ATP hydrolysis to catalyze the unwind-
ing of duplex DNA and as such play important 
roles in nearly all aspects of nucleic acid metabo-
lism, including replication, repair, recombination, 
and transcription [115]. The RECQ helicases 
belong to the SF2 superfamily of DNA helicases 
that unwind DNA in a 3′ ↑ 5′ direction in an ATP- 
and Mg2+-dependent fashion [5, 8]. As such, they 
contain a conserved region that includes the seven 
characteristic helicase motifs (I, Ia, II, III, IV, V, 

and VI) that define this family of helicases and 
that are important for coupling ATP hydrolysis to 
the separation of DNA strands. The first RECQ 
helicase was discovered in Escherichia coli (E. 
coli) in a screen for resistance to thymineless 
death [81]. Subsequently, RECQ proteins have 
been identified in multiple species. These evolu-
tionarily conserved proteins are defined by their 
common central helicase motif, a highly con-
served region of approximately 400 amino acids 
(Fig. 3.1) [8, 55]. The number of RECQ helicases 
increases from lower to higher organisms. 
Bacteria such as E. coli have one (RecQ), as do 
yeast (Sgs1 in Saccharomyces cerevisiae and 
Rqh1 in Schizosaccharomyces pombe), while 
Caenorhabditis elegans has two and Arabidopsis 
thalianas has seven RECQ helicases [58].

Fig. 3.1  Structural features of RecQ helicases. The RecQ 
proteins have several structural domains that are con-
served from bacteria through humans. All RecQ proteins 
have a core helicase domain. Most RecQ proteins also 
contain conserved helicase and RNAse D C-terminal 
(HRDC) and RecQ C-terminal (RQC) domains that are 
thought to mediate interactions with nucleic acid and 
other proteins, respectively. Many RecQ proteins have 
acidic regions that enable protein-protein interactions, and 

some of the RecQ proteins have nuclear localization 
sequences. WRN and FFA-1 protein are unique in that 
they also contain an exonuclease domain. Sgs1 and Blm 
are the first characterized members of this family of pro-
teins containing a functional strand exchange domain in 
their N-terminus. The number of amino acids in each pro-
tein is indicated on the right. (Reprinted with permission 
from Bernstein et al. [8])
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In humans, there are five RECQ helicases 
(Fig.  3.1). Three of these, WRN, BLM, and 
RECQL4, are associated with human diseases 
[79]. Mutations in the WRN gene [137] cause 
Werner syndrome [73], and mutations in the BLM 
gene [30] are responsible for Bloom syndrome 
[36]. Mutations in RECQL4 are associated with 
three overlapping disorders: RTS, RAPADILINO 
syndrome, and Baller-Gerold syndrome (BGS) 
[56, 101, 117]. Although RECQL and RECQL5 
have not thus far been associated with any human 
genetic disorders, both have been linked to 
human tumorigenesis [23, 28, 127]. In one study, 
rare germ line truncating mutations in the RECQL 
gene were shown to be associated with an 
increased risk of breast cancer in two populations 
of high-risk patients [23]. A few small studies 
have demonstrated that specific single-nucleotide 
polymorphisms in RECQL5 are more common in 
OS patients [28, 139], and decreased expression 
of RECQL5 in OS tumors may be associated with 
disease progression [127].

All of the human RECQ disorders are cancer 
predisposition syndromes, but they have varying 
cancer profiles (Table 3.1). Patients with Werner 
syndrome display features of premature aging, 
such as diabetes, coronary artery disease, cata-
racts, and osteoporosis. They are susceptible pri-
marily to thyroid cancer, melanoma, meningioma, 
soft tissue sarcomas, and OS.  In a study of the 

spectrum of cancers in Werner syndrome patients, 
OS was found to comprise 8% of all neoplasms 
[62]. In contrast, patients with Bloom syndrome 
are susceptible to all types of cancers seen in the 
general population, but at a much higher fre-
quency and at an earlier age. These include leu-
kemia and lymphomas and epithelial cancers of 
the colon, breast, head and neck, and cervix, as 
well as OS, which accounted for 2% of the first 
100 cases of cancers reported in the Bloom 
Registry [22, 37]. Among the RECQL4-associated 
disorders, patients with RTS have a very high and 
specific risk for OS, in addition to nonmelanoma 
skin cancers (squamous and basal cell carcino-
mas). In one clinical cohort study of 41 RTS 
patients, 30% had a diagnosis of OS [122]. 
Patients with RAPADILINO syndrome and 
RECQL4 mutations are also at risk for cancer, 
most commonly lymphomas as well as OS [102]. 
These patients share many of the same pheno-
types as RTS patients, including small stature, 
limb deformities, radial ray defects, and absent 
patellae. Interestingly, these patients do not dis-
play poikiloderma, which is a defining feature of 
RTS. BGS is the least well-characterized of the 
RECQL4 disorders. These patients are character-
ized by craniosynostosis and radial ray defects, 
as well as poikiloderma in some patients. So far 
only a few cases have been described to have 
RECQL4 mutations, and cancer has only been 

Table 3.1  Human RECQ helicase syndromes

Disease Main clinical features Cancer predisposition Gene location
Bloom syndrome Small stature, photosensitive 

rash, immunodeficiency
Multiple tumor types, including 
leukemia, lymphoma, solid 
tumors

BLM 15q26.1

Werner syndrome Premature aging, cataracts, 
diabetes, atherosclerosis

Soft tissue sarcomas, skin 
(melanoma), thyroid cancer, 
osteosarcoma

WRN 8p11

Rothmund-Thomson 
syndrome

Poikiloderma, radial ray and 
other skeletal defects, 
alopecia

Osteosarcoma, skin cancer 
(squamous and basal cell 
carcinomas)

RECQL4 8q24.3

RAPADILINO syndrome Small stature, radial ray and 
limb deformities, palatal 
defects, absent patella

Lymphoma and osteosarcoma RECQL4 8q24.3

Baller-Gerold Ssyndrome Craniosynostosis, radial ray 
defects, poikiloderma

Possibly lymphoma RECQL4 8q24.3
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described in one patient who developed a midline 
NK cell lymphoma [26]. Overall there have been 
over 60 RECQL4 mutations identified among 
these three disorders [116]. Exact genotype-
phenotype correlations with respect to specific 
mutations and resultant phenotypes, including 
cancer, remain to be elucidated.

As a group, the RECQ helicases are consid-
ered “caretakers” of the genome and as such do 
not necessarily directly drive tumorigenesis but 
prevent genomic instability that results in accu-
mulation of structural changes in oncogenes or 
tumor suppressors that could then lead to cancer 
[17]. This protection of genome stability is 
achieved through their various roles in DNA rep-
lication, repair, and telomere maintenance. It is 
also possible that the RECQ helicases could play 
a more direct role in affecting tumorigenesis. 
While the exact molecular mechanisms of tumor 
suppression have yet to be worked out fully, defi-
ciency of the WRN, BLM, and RECQL4 proteins 
in humans clearly predisposes to the develop-
ment of cancer.

�Structure and Functions 
of the RECQL4 DNA Helicase

The role of RECQL4  in DNA replication has 
been extensively studied, and it appears that 
while RECQL4 may participate in many cellular 
functions, its primary role is in the initiation of 
DNA replication [46, 74, 94, 113, 126, 132, 
133]. This is achieved primarily through its 
N-terminal domain (amino acids 1–370) which 
shares homology to the yeast replication factor 
Sld2 in S. cerevisiae and Drc1 in S. pombe [72, 
74, 94], both of which are important for estab-
lishing replication forks during the initiation of 
DNA replication. After phosphorylation by 
cyclin-dependent kinases, Sld2 binds Dpb11, a 
key mediator of the formation of the active repli-
cative helicase complex on replication origins 
and a crucial factor in the initiation of DNA rep-
lication [51, 108, 119]. In Xenopus, it has been 
shown that xRECQL4 belongs to the replication 
initiation complex and helps to promote loading 
of replication factors at the origins, after pre-

replication complex formation [94]. The 
N-terminal amino acid region 1–596 of RECQL4 
interacts directly with xCut5 (frog orthologue of 
Dpb11), which is responsible for recruiting DNA 
polymerases to the sites of replication [74]. 
RECQL4 has also been shown to interact with 
multiple DNA replication factors, such as 
MCM10, MCM2-7, CTF4, CDC45, GINS, and 
SLD5 which are essential for initiation of DNA 
replication [46, 47, 57, 132], as well as TopBP1, 
the vertebrate orthologue of Dpb11 [87]. The 
C-terminus of RECQL4 including the helicase 
domain also appears to play a role in replication 
under stressed conditions. Human pre-B lym-
phocyte cells with mutant RECQL4 lacking the 
C-terminus were shown to have replication 
defects only after ionizing radiation, perhaps by 
allowing replication forks to negotiate the radia-
tion-damaged DNA templates [59]. Because 
RECQL4 is overexpressed in many types of spo-
radic cancers (see below), the effect of overex-
pression of RECQL4 on replication has also 
been studied. Although overexpression of 
RECQL4 alone did not affect replication, when 
RECQL4 was fused to a subunit of the origin 
recognition complex-ORC4 protein, overexpres-
sion of this fusion protein induced increased 
binding of RECQL4 to late replication origins in 
early S phase and recruitment of replication ini-
tiation factors [99]. As a result, early activation 
of replication was observed in genes with late 
replication origins, leading to elevated replica-
tion stress caused by replication-transcription 
conflicts [99]. Therefore, the binding of RECQL4 
to replication origins needs to be tightly regu-
lated to ensure a normal replication process. In 
addition to initiation of DNA replication, 
RECQL4 may also play a role in replication fork 
restart given its high affinity to Holliday junction 
substrates demonstrated by in  vitro binding 
assays via N-terminal amino acid residues 320–
400 [96].

RECQL4 has been shown to bind additional 
nucleic acid substrates in vitro, including guanine 
quadruplex (G4) structures [54]. G4 is a type of 
secondary structure formed in guanine-rich 
sequences and is found in replication origins, 
gene promoter regions, and telomeric DNA 
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sequences [41]. BLM, WRN, and RECQL4 have 
all been shown to be important for telomere main-
tenance [20]. Both BLM and WRN helicases bind 
and unwind G4 DNA substrates [77], while 
RECQL4 only binds but has no detectable 
unwinding activity [54]. Gene expression analy-
ses using fibroblasts from both Bloom and Werner 
syndrome patients showed that BLM and WRN 
regulate transcription through G4 DNA sequences 
[85, 109]. The biological function of RECQL4 at 
G4 sites needs further investigation given the 
importance of G4 sequences in normal physiolog-
ical processes as well as in tumorigenesis. In addi-
tion to the abovementioned functional domains, 
the N-terminus of RECQL4 also contains several 
localization regions, including two nuclear local-
ization domains [9], a region of acetylation by 
p300 which regulates nuclear to cytoplasmic 
localization [27], and a predicted mitochondrial 
localization signal in amino acids 1–84 [25].

Initially, researchers were unable to demon-
strate actual DNA unwinding activity by 
RECQL4 using a variety of DNA substrates [69, 
134]. Helicase activity was finally demonstrated 
for RECQL4 by several groups [11, 91, 107, 
131], which was likely masked in previous assays 
by the strong annealing activity of the enzyme. In 
vitro biochemical data suggested that RECQL4 
possesses another N-terminal region contributing 
to DNA unwinding besides the well-known con-
served helicase domain [131], although known 
helicase motifs and nucleotide binding sites were 
not found to be present in this region. The in vivo 
function of this extra helicase domain requires 
further investigation. In addition to the helicase 
domain, other protein domains in RecQ heli-
cases, including the helicase-and-RNase D 
C-terminal (HRDC) and RecQ-C-terminal 
(RQC) domains, are also important for helicase 
unwinding activity. However, RECQL4 lacks the 
structurally conserved HRDC domain which is 
felt to be important for interactions with nucleic 
acids (Fig.  3.1) [8, 80]. Human RECQL4 also 
appears to lack the structurally conserved RQC 
domain that is important for zinc and DNA bind-
ing and for helicase activity. However, through 
bioinformatic and biochemical analyses, 
Mojumdar et  al. identified a functional RQC 

domain in human RECQL4 that is essential for 
these activities [72, 78]. In addition, the crystal 
structure of a human RECQL4 fragment (resi-
dues 449–1111), including the helicase domain 
and the majority of the C-terminus, revealed that 
a RECQL4 zinc binding domain (R4ZBD, resi-
dues 836–1045) resides downstream of the heli-
case domain and is important for DNA unwinding 
activity in a biochemical DNA helicase activity 
assay [50]. Interestingly, the last 92 residues of 
human RECQL4 have also been shown to play an 
important role in helicase activity by increasing 
DNA binding [50].

In addition to its role in DNA replication, 
RECQL4 has also been implicated to function in 
various aspects of DNA repair, including double-
strand break (DSB) repair [61, 66, 67, 90, 97, 
103], nucleotide excision repair (NER) [19, 31], 
and base excision repair (BER) [95]. RECQL4 
plays important roles in both homologous recom-
bination (HR)-dependent and nonhomologous 
end-joining (NHEJ)-mediated repair of DSBs. 
RECQL4 has been shown to interact physically 
with the Ku70/Ku80 heterodimer [97], which 
forms a complex with DNA-PKcs to play a cen-
tral role in NHEJ-mediated DSB repair. During 
HR-dependent DSB repair, RECQL4 has been 
shown to interact physically by co-
immunoprecipitation with RAD51, a key protein 
involved in the HR pathway of DSB repair, and to 
associate with RAD51 by immunofluorescence in 
DNA damage foci [61, 90, 103]. Lu et al. reported 
that RECQL4 participates in 5′ end resection of 
DSBs, the first step in HR-mediated DSB repair 
[67]. RECQL4 interacts with the MRE11-
RAD50-NBS1 (MRN) complex and increases the 
recruitment of CtIP which stimulates end resec-
tion by the MRN complex [67]. Interestingly, the 
participation of RECQL4  in both pathways was 
shown to be cell cycle dependent and was regu-
lated by the phosphorylation of RECQL4 by 
cyclin-dependent kinases CDK1/CDK2. 
RECQL4 stimulates NHEJ in G1 phase and pro-
motes HR-mediated DSB repair in S and G2 
phases when CDK1/CDK2 activity is high [66]. 
RECQL4 has also been shown to interact with 
BLM helicase, which like RECQL4 probably has 
many functions in the cell, the most important of 
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which is its role in HR.  This interaction was 
strengthened in S-phase and after ionizing radia-
tion treatment in human cells, indicating that 
RECQL4 coordinates with BLM to function in 
DNA replication and DNA damage repair [104]. 
Ribosomal protein S3 (RPS3), a component of 
40S small subunit of the ribosome contributing to 
protein translation, has also been shown to inter-
act with the N-terminus of RECQL4 and modu-
lates its activity during DNA damage repair [89]. 
RECQL4 helicase activity appears to be essential 
for the end resection and HR-dependent repair of 
DSBs [67]. However, a knock-in mouse model 
(Recql4K525A), mimicking human RECQL4K508M, 
displayed normal development and normal life 
span compared to wild-type littermates [12]. Cells 
derived from these mice had no significant differ-
ence in growth rate after treatment with genotoxic 
agents [12]. This discrepancy between human 
cells and mouse models requires more detailed 
investigation. Nevertheless, taken together, the 
data suggest that lack of RECQL4 functional 
activity in DNA repair can lead to increased 
DSBs, DNA replication stress, genomic instabil-
ity, and cancer development.

The NER pathway is a major mediator of 
repair of UV damage, and RECQL4 has been 
shown to colocalize with XPA, a key protein 
involved in NER, and to interact with XPA 
directly by GST pull-down assay [31]. The BER 
pathway is the main mechanism for repair of oxi-
dative DNA lesions, and RECQL4 was also 
found to colocalize and functionally interact with 
key proteins involved in BER, including APE1, 
FEN1, and DNA polymerase β, after treatment 
with H2O2 [95]. Werner et al. showed that after 
H2O2 treatment, RECQL4 translocates from the 
cytoplasm to the nucleus and forms nuclear foci 
in normal human fibroblasts. After recovery from 
oxidant damage, viable RTS patient fibroblasts 
underwent irreversible growth arrest and had sig-
nificantly decreased DNA synthesis [124]. Woo 
et  al. also showed that in response to oxidative 
stress, RECQL4 had altered cellular localization 
to the nucleolus and using a T7 phage display 
screen showed that RECQL4 C-terminus inter-
acts with the single-strand break repair protein, 
poly(ADP-ribose) polymerase-1 (PARP-1) [125]. 

PARP-1 is activated in response to a wide variety 
of DNA-damaging agents and modulates the cel-
lular sensitivity to γ-irradiation [68].

The response of RECQL4 mutant cells to dif-
ferent genotoxic agents has been investigated by 
several groups; these have included UV and ion-
izing radiation (IR), hydrogen peroxide, topoi-
somerases inhibitors, and chemotherapy agents 
such as doxorubicin and cisplatin [10, 19, 31, 49, 
59, 103, 124]. However, the results have been 
somewhat inconsistent between studies, likely 
reflecting the use of different primary cells or cell 
lines (transformed cells vs. untransformed cells, 
RTS patient cells vs. RECQL4 knockdown cells), 
different assays to determine sensitivity, and dif-
ferent RECQL4 mutations present in the cells. 
For example, some studies have demonstrated 
significant increased sensitivity to UV radiation 
[88, 100, 105], while others have shown moder-
ate or no increase in sensitivity [49, 59]. Using 
CRISPR-Cas9, Kohzaki et  al. deleted the 
C-terminus of RECQL4 after the NLS domain, 
including the conserved helicase domain, in sev-
eral human cancer cell lines [60]. These cells dis-
played hypersensitivity to IR and cisplatin, which 
primarily introduce DNA DSB and interstrand 
cross-links, respectively. In vitro cell-based DSB 
repair reporter assays showed that these cells dis-
played increased single-strand annealing activity 
and reduced alternative end-joining mediated 
pathway. They showed that RAD52 inhibition 
suppressed the growth of cancer cell lines in vitro 
and in xenograft mouse models. In addition, cis-
platin treatment had an additive inhibitory effect 
with RAD52 inhibition on tumor cell growth, 
providing a potential treatment avenue for cancer 
patients with RECQL4 mutations and increased 
RAD52 expression [60].

As mentioned earlier, RECQ proteins bind to 
G4 structures such as those found in telomeric 
DNA, and RECQL4 has been shown to play a 
role in telomere maintenance [38]. RTS patient 
cells and human cells with RECQL4 knockdown 
exhibit increased fragile telomeric ends. In addi-
tion, human RECQL4 localizes to telomeres and 
interacts with shelterin protein telomeric repeat-
binding factor 2 (TRF2) which maintains telo-
mere integrity [38]. RECQL4 also interacts with 
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the WRN protein and stimulates WRN’s activity 
on telomeric D-loops. Similar to WRN and BLM, 
RECQL4 also appears to be able to resolve these 
D-loops, which is necessary for replication to 
take place at the telomeres, and this resolving 
activity is stimulated by TRF1 and TRF2 as well 
as the shelterin protein POT1 [38]. Also similar 
to WRN and BLM, RECQL4 seems to be more 
active on telomeric D-loops that contain 
8-oxoguanine base lesions, indicative of oxida-
tive damage. Unlike WRN, however, RECQL4 
also has a clear preference for unwinding D-loops 
that contain thymine glycol (Tg) lesions, which 
are the most common oxidation product of the 
thymine base, and this activity is stimulated by 
TRF2 [34]. Thus, mutations in RECQL4 could 
result in dysfunctional telomeres, which are well 
known to play a role in both tumor suppression 
and tumor progression, depending on the cellular 
milieu, particularly with respect to the check-
point status of the cells [130].

In addition to these nuclear functions, 
RECQL4 has also been shown to localize in the 
cytosol [27, 134] as well as in the mitochondria 
[16, 21, 25, 120]. Yin et al. showed that RECQL4 
interacts with cytosolic ubiquitin ligases UBR1 
and UBR2 which function in the N-end rule path-
way by ubiquitination and degradation of pro-
teins [134]. Dietschy et  al. demonstrated that 
RECQL4 can be acetylated by histone acetyl-
transferase p300 resulting in the cytosolic trans-
location of RECQL4 from the nucleus [27], 
providing a mechanism to modulate RECQL4 
nuclear activities. In the mitochondria, loss of 
RECQL4 led to abnormalities in mitochondrial 
DNA (mtDNA) as well as mitochondrial function 
caused by reduced replication of mtDNA [16, 25] 
or caused by reduced proofreading and polymer-
ization functions of mitochondrial DNA 
polymerase-γ (PolγA) [40]. Interestingly, a 
RECQL4 mutation frequently reported in 
RAPADILINO patients who are predisposed to 
lymphoma and osteosarcoma disrupts the inter-
action between RECQL4 and mitochondrial p32 
protein [120] while also enhancing the interac-
tion between RECQL4 and mitochondrial heli-
case PEO1, leading to increased replication of 
mtDNA.  Both increased or decreased mtDNA 

content could cause abnormal mitochondrial 
function demonstrated by abnormal mitochon-
drial metabolism and glycolysis [40, 120].

In addition to the abovementioned cellular 
functions, RECQL4 was also recently demon-
strated to play a role in mitosis. RECQL4 was 
shown to be a microtubule-associated protein and 
to participate in the maintenance of chromosome 
alignment during mitosis [135]. It was identified 
among the proteins with a nuclear localization 
sequence (NLS) that can be pulled down by 
Taxol-stabilized microtubules in mitotic Xenopus 
egg extracts. RECQL4-depleted HeLa cells as 
well as RTS fibroblasts exhibited spindle abnor-
malities, including misaligned chromosomes and 
increased micronuclei. Interestingly, using 
immunoprecipitation with tagged proteins and 
GST pull-down assays in human cells, RECQL4 
was shown to interact with aurora kinase B 
(AURKB) and to modulate its protein stability by 
reducing ubiquitination of AURKB [33], an 
essential protein that modulates mitosis by regu-
lating chromosome alignment and segregation.

�Rothmund-Thomson Syndrome 
(RTS): Nature’s Model 
of Osteosarcoma

RTS was first described in 1868 by Dr. Auguste 
Rothmund, who was a German ophthalmologist. 
He described poikiloderma, the classic skin find-
ing in RTS, along with rapidly developing bilat-
eral juvenile cataracts in several families in an 
isolated region in the Bavarian Alps [92]. In 
1921, Dr. Sydney Thomson, a British dermatolo-
gist, described a similar rash in two sisters, but 
instead of juvenile cataracts, they had bone 
abnormalities (radial ray defects) [114]. Later, 
Dr. William Taylor in the United States proposed 
that the two disorders described by Rothmund 
and Thomson were the same, and he proposed the 
eponym Rothmund-Thomson syndrome [112]. 
Mutations in the RECQL4 gene in RTS were not 
discovered until 1999 [55, 56], 131  years after 
the original description by Rothmund. It is now 
known that approximately two-thirds of patients 
with RTS have mutations in the RECQL4 gene 
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(designated Type 2 RTS). The other one-third of 
patients who lack RECQL4 mutations are desig-
nated as Type 1 RTS. Mutations in the ANAPC1 
gene, which encodes the APC1 protein, a compo-
nent of the anaphase-promoting complex/cyclo-
some (APC/C), have recently been identified as 
causative in a subset of Type 1 RTS patients [3]. 
Previous studies have shown that the presence of 
pathogenic mutations in RECQL4 correlates sig-
nificantly with risk of developing OS (Fig. 3.2) 
[121]. None of the patients with Type 1 RTS 
developed OS, while every RTS patient with OS 
had RECQL4 mutations. These pathogenic muta-
tions included nonsense, frameshift, splice site, 
and intronic deletions. Unlike other hereditary 
cancer syndromes known to predispose patients 
to OS, such as Li-Fraumeni syndrome and hered-
itary retinoblastoma, where the causative genes, 
p53 and RB, respectively, are commonly mutated 
in sporadic OS [14], mutations in RECQL4 have 
not been detected in sporadic OS tumors [86]. 
Thus, RECQL4 does not appear to be a direct tar-
get for somatic mutations in sporadic 
OS.  However, the extremely high and specific 
risk for OS in Type 2 RTS patients suggests that 

the RECQL4 helicase plays a clear role in OS 
tumor suppression, making RTS a relevant model 
for the study of human OS pathogenesis.

In addition to cancer of the bone, patients with 
RTS also have prominent developmental defects 
of the bone. In a study of 28 RTS patients who 
underwent skeletal surveys, 75% were found to 
have major skeletal abnormalities, including 
radial, ulnar, or thumb agenesis/hypoplasia, 
radioulnar and radiohumeral synostoses, abnor-
mal metaphyseal trabeculation, brachymesopha-
langy, and osteopenia [75]. This risk correlated 
with presence of RECQL4 mutations. 
Understanding the role that RECQL4 plays in 
normal skeletal development will provide addi-
tional insight into the specific risk for OS, since 
many developmental pathways, such as the Wnt, 
Hedgehog, and Notch signaling pathways, not 
only are critical for normal skeletal development 
[39, 44, 110] but also play important roles in 
tumorigenesis [7, 18, 52, 111, 118].

Early case reports suggested that OS arising in 
RTS patients may be different from sporadic OS, 
i.e., arising in unusual or multiple (multifocal) 
sites [29]. In addition, because of the implicated 

Fig. 3.2  Estimated probability of osteosarcoma onset in 
Rothmund-Thomson syndrome, classified by RECQL4 
mutation status. The time to OS onset was defined from 
the date of birth to the first diagnosis of OS. Event-time 

data were analyzed by Kaplan-Meier method, and the dif-
ference between the RECQL4 mutation-positive and 
RECQL4 mutation-negative patients was compared by the 
log-rank method
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role of RECQL4 in DNA damage repair, clinicians 
may consider decreasing chemotherapy doses 
up-front for RTS patients diagnosed with 
OS. However, a study of 12 RTS patients with OS 
showed that their tumors had features that mir-
rored OS in the general population with regard to 
location of primary tumor (distal long bones), 
histology (conventional OS), histologic response 
to neoadjuvant chemotherapy, and overall out-
comes [42]. The major difference was that the 
age of onset was younger in the RTS cohort com-
pared to sporadic OS, which is not surprising 
given the genetic predisposition of RTS patients 
to OS. Some patients developed mucositis requir-
ing dose modifications, particularly to doxorubi-
cin (no more than 25% decrease), but there is no 
current method to determine a priori who will 
experience increased toxicities. Therefore, cur-
rent recommendations are to treat with standard 
doses of chemotherapy and to adjust according to 
the patient’s individual course. The similarities 
between OS in RTS and sporadic OS support the 
further study of the contribution of the RECQL4 
pathways in the pathogenesis of OS.

�Understanding the Role of RECQL4 
in Osteosarcoma Development 
Using Mouse Models

�Recql4 Global Knockout Mouse 
Models

In order to understand the function of RECQL4 in 
OS tumorigenesis in vivo, three mouse models of 
global Recql4 disruption have been generated. In 
the first model, exons 5–8 of Recql4 upstream of 
the conserved helicase domain (exons 9–15) 
were replaced with PGKneo and LacZ cassettes 
[45]. Homozygous mutants died during early 
embryonic stage E3.5–6.5. Although there was 
no information about transcripts and protein lev-
els of Recql4 in the paper, presumably this target-
ing strategy generated a null mutation as a result 
of nonsense mediated decay. The second mouse 
model by Hoki et al. targeted exon 13 of the heli-
case domain of Recql4 with a neomycin cassette 
[43]. These homozygous mutants were viable at 

birth, but 95% of them died within 2 weeks. The 
remaining 5% exhibited growth retardation, skin 
atrophy, hair abnormalities, and tissue hypopla-
sia, such as severely reduced bone trabeculae and 
fewer and smaller villi of the small intestine. The 
MEFs from these mutants showed reduced pro-
liferation. However, there was no malignancy 
reported in these mice. The third global mouse 
model was generated by replacing exons 9–13 in 
the conserved helicase domain of Recql4 with a 
PGK-HPRT cassette [71]. Homozygous mutants 
were born alive with normal Mendelian ratio, but 
16% of them died within 24 hours of birth. The 
remaining mutants exhibited tail pigmentation 
defects by 12  months, and palatal patterning 
defects were seen in all examined animals. 
Furthermore, 6% of these mutants developed 
limb defects at birth, ranging from preaxial poly-
dactyly of hindlimbs to forelimb aplasia. 
Interestingly, 5% of these mutants developed OS 
or lymphoma by 20 months, while heterozygous 
and wild-type mice had no tumor formation, 
although this difference was not found to be sta-
tistically significant.

�Recql4 Conditional (Bone-Specific) 
Mouse Models

Because the previous global Recql4 knockout 
mouse models failed to recapitulate the high risk 
of OS seen in RTS patients with RECQL4 muta-
tions, skeletal-specific conditional knockout 
mouse models have been developed to assess the 
effect of Recql4 deficiency in the bone. Lu et al. 
developed a conditional knockout model of 
Recql4 in early skeletal progenitor cell system by 
crossing these Recql4 mice with Prx1-Cre trans-
genic mice. Resultant mutants developed fore-
shortened limbs, digit defects, abnormal growth 
plates and joints, and craniosynostosis, recapitu-
lating the major skeletal defects seen in RTS 
patients. Mouse tissues lacking Recql4 displayed 
increased DNA damage and elevated p53 activa-
tion, leading to increased cell death, reduced cell 
proliferation, and increased senescence. These 
defects were partially rescued by concurrent 
inactivation of p53, indicating that p53 activation 
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may contribute to the skeletal phenotypes seen in 
RTS patients. RTS human fibroblasts were also 
shown to have increased p53 phosphorylation 
and expression of downstream target genes of 
p53 [24, 25]. Similarly, depletion of RECQL4 in 
primary human fibroblasts causes increased DNA 
damage and cellular senescence as well as p53 
activation and increased expression of target 
genes [65].

Ng et al. developed another conditional knock-
out model using Osx-Cre to inactivate Recql4 in 
osteoblast progenitor cells at a later stage of skel-
etal development, and they observed reduced 
body weight and decrease in trabecular and corti-
cal bone [83]. Mice lacking Recql4 in the osteo-
cytes and a subset of osteoblasts showed no 
striking developmental skeletal abnormalities 
[83], indicating that RECQL4 plays a more 
important developmental role in the early stages 
of osteoblast differentiation. Unlike human RTS 
patients, however, these homozygous Recql4 
conditional knockout mice did not develop 
OS. Interestingly, mice with homozygous loss of 
both Recql4 and p53 in the osteoblast progenitor 
cells showed delayed osteosarcoma development 
and significantly longer survival compared to p53 
homozygous loss alone, indicating that Recql4 
may actually be necessary for OS development in 
mice [83]. The mouse models developed to date 
have not been able to recapitulate the high inci-
dence of OS seen in RTS patients, and further 
work is in progress to understand these differ-
ences and to dissect the molecular mechanisms 
underlying OS development in RTS patients.

In order to more closely mirror the human dis-
ease, induced pluripotent stem cell (iPSC) tech-
niques have been used to model RECQ syndromes 
using patient-derived somatic cells including 
peripheral blood mononuclear cells and dermal 
fibroblasts. Werner syndrome iPSCs have been 
generated by several groups [15, 35, 98, 123], 
and they exhibit normal karyotypes and stable 
chromosomes after long-term culture [98]. In 
addition, human embryonic stem cells were also 
used to generate WRN-deficient cells which were 
further differentiated into human mesenchymal 
stem cells (MSCs), demonstrating that WRN is 
essential for maintaining heterochromatin stabil-

ity and that loss of WRN in human MSCs leads to 
disorganization of heterochromatin and increased 
senescence [138]. Thus far, an iPSC line has been 
generated from dermal fibroblasts derived from a 
RECQL4 heterozygous carrier [48], and work is 
ongoing to establish iPSC lines differentiated 
into osteoblasts from RTS patient fibroblasts with 
biallelic RECQL4 mutations in order to identify 
the molecular mechanisms underlying the high 
risk of OS in RTS patients.

�Clinical Implications 
for Understanding RECQ Gene 
Defects and Potentially Targeting 
RECQ-Related Pathways for Cancer 
Therapy

Based on the roles of the RECQ proteins in nor-
mal cellular proliferation, DNA damage 
response, DNA repair, and telomere mainte-
nance, there is growing interest in exploring 
inhibition of these functions in susceptible can-
cer cell types. Small molecule inhibitors of the 
WRN [1] and BLM [84] proteins have been 
identified as potential antiproliferative cancer 
therapies. Both of these molecules were identi-
fied through in  vitro helicase activity screens. 
The WRN inhibitor, a small molecule inhibitor 
identified from the National Cancer Institute 
Diversity Set, designated NSC 19630 [2], was 
shown to inhibit cell proliferation and to induce 
apoptosis in a WRN-dependent manner. It also 
caused increase in DSBs and accumulation of 
blocked replication forks in human tumor cells 
grown in culture. NSC 19630 also had a syner-
gistic effect on inhibiting cell proliferation when 
cells were co-treated along with telomestatin, a 
small molecule that binds G4 structures and 
causes disruption of telomere-associated pro-
teins, as well as a PARP inhibitor KU0058948. It 
also acted synergistically with the topoisomerase 
inhibitor topotecan in inducing DSBs. 
Investigators later characterized a structurally 
related compound, NSC 617145, which they 
demonstrated was able to sensitize cancer cells 
to mitomycin C, resulting in decreased cell pro-
liferation, increased DNA damage, and chromo-
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somal abnormalities [1]. More recently, through 
high-throughput CRISPR-Cas9-mediated 
knockout and/or RNA interference screening, 
the WRN helicase has been shown by several 
groups to be a promising synthetically lethal tar-
get in cancers with high levels of microsatellite 
instability (MSI), including colorectal, endome-
trial, ovarian, and gastric cancers [6, 13, 53, 63]. 
MSI is caused by an impaired DNA mismatch 
repair pathway leading to small insertions and/or 
deletions in genomic nucleotide repeats. The 
helicase function of WRN is essential for this 
synthetic lethality [13, 63], which was not 
observed with other RecQ helicases [13, 63]. 
Similarly, inactivation of WRN leads to increased 
DNA damage and cell death in MSI high cancer 
cells, but not in microsatellite stable cancer cells 
[6, 13, 53, 63]. Therefore, these small molecule 
inhibitors to the WRN protein may be useful to 
target cancers with high levels of MSI.

The small molecule inhibitor of BLM, ML216 
[84], was found to exert its action by preventing 
BLM from binding to DNA.  Cells treated with 
ML216 showed decreased proliferation as well as 
an increase in sister chromatid exchanges, a hall-
mark of Bloom syndrome. One of the proposed 
future uses of this BLM-specific inhibitor would 
be to test its efficacy in treating tumor cells that 
depend on the ALT (alternative lengthening of 
telomeres) mechanism for maintenance of telo-
meres, since previous work showed that the BLM 
orthologue Sgs1 is required for telomere mainte-
nance in the absence of telomerase[140]. 
Approximately 5–10% of tumors depend on the 
ALT pathway for continued proliferation, includ-
ing OS; therefore, further exploration of this 
BLM-specific inhibitor could reveal a new thera-
peutic strategy for targeting susceptible tumors.

Expression of RECQL4 has been found to be 
upregulated in a variety of cancer types in addi-
tion to sporadic OS [70, 93], including soft tissue 
sarcomas [64], prostate cancer [106], cervical 
cancer [82], breast cancer [4, 32], gastric cancer 
[76], and oral cancer [136], suggesting that inac-
tivation of RECQL4, and thus inhibition of its 
functions in cellular replication/viability, genome 
stability, DNA repair, and telomere maintenance, 
may be attractive as a potential adjunct to cancer 

therapy in susceptible tumor cells. RECQL4 may 
also work in coordination with other Holliday 
junction processing proteins, including BLM, to 
prevent replication fork stalling and reversal in 
order to maintain cancer cell fitness by resolving 
increased Holliday junctions in cancer cells with 
overexpression of RAD51 [128, 129]. 
Additionally, in gastric cancer cells, overexpres-
sion of RECQL4 has been linked to increased 
resistance to cisplatin by physically interacting 
with YB1 and AKT, as well as by increasing 
AKT-dependent YB1 phosphorylation and 
expression of the downstream drug resistance 
gene MDR1 [76]. These data suggest that 
RECQL4 may be required for rapid tumor cell 
proliferation and chemoresistance, providing a 
potential therapeutic target for cancer cells with 
overexpression of RECQL4.

Although sporadic OS tumors have not been 
found to have somatic RECQL4 mutations, a 
recent study which examined germ line sequence 
data from over 5000 sporadic pediatric cancer 
patients revealed an increase in heterozygous 
RECQL4 loss-of-function variants in OS patients 
compared to non-cancer database controls[141]. 
While presence of a RECQL4 heterozygous 
mutation does not cause RTS with its associated 
high risk of OS, it may still confer an elevated OS 
risk in carriers compared to the general popula-
tion. This has implications for genetic counseling 
of these patients and may also offer potential 
avenues for novel targeted therapies for their spe-
cific tumors. Ongoing basic science and clinical 
research is needed to fully understand the cellular 
context and molecular mechanisms by which 
RECQL4 exerts its actions on osteosarcomagen-
esis, and this will provide useful information on 
the basic biology of OS and open avenues for 
potential new therapies for OS.
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