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Abstract In this work, we present concepts for the analysis of the evolution of
two-dimensional skeletons. By introducing novel persistence concepts, we are able
to reduce typical temporal incoherence, and provide insight in skeleton dynamics.
We exemplify our approach by means of a simulation of viscous fingering—a highly
dynamic process whose analysis is a hot topic in porous media research.

1 Introduction

There are many research problems that express themselves more in terms of
topological structure than morphology. Typical examples of such processes include
electrical discharge, the growth of crystals, and signal transport in networks. In
this paper, we address viscous fingering, where the interface between two fluids
is unstable and develops highly-dynamic “finger-like” structures. A prominent
cause for such structures are setups where a fluid with lower viscosity (Fig. 1a–
c, left) is injected into a fluid with higher viscosity (Fig. 1a–c, right). To analyze
these processes, a straightforward approach employs traditional skeletonization
techniques for extracting the topology of each time step independently. Here, we
employ iterative thinning [11]. However, like all skeletonization techniques, the
resulting skeletons tend to be to temporally incoherent because the extraction is
susceptible to small variations and noise. We present persistence concepts to address
these issues and provide insight into the underlying processes.
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Fig. 1 Selected time steps (a)–(c) of a 2D viscous fingering simulation [15], with extracted
skeleton (overlay). We used a conservative threshold for segmentation to suppress dark-red parts.
(a) t = 8. (b) t = 30. (c) t = 70

2 Viscous Fingering

Even though the methods described in this paper are generically applicable to
time-varying skeletons, we focus our analysis on skeletons that we extracted from
viscous fingering processes. The term viscous fingering refers to the formation of
structural patterns that appear when liquids of different viscosity are mixed. Under
the right conditions, e.g., when water is being injected into glycerine, branch-like
structures—the eponymous viscous fingers—begin to appear and permeate through
the liquid of higher viscosity. Understanding the formation of these patterns is a
prerequisite for the description of many natural processes, such as groundwater
flows. Consequently, researchers are interested in setting up simulations that closely
match the observations of their experiments.

Since each simulation uses a different set of parameters, summary statistics and
comparative visualizations are required in order to assess how well a simulation
describes an experiment. As a first step towards analyzing these highly-complex
dynamics, we extract skeletons for each time step of a simulation or an experiment.
In this paper, we introduce several concepts for assessing the inherent dynamics of
these skeletons, permitting a comparative analysis.

2.1 Other Methods

In the context of analyzing viscous fingering, several other techniques exist.
An approach by Lukasczyk et al. [12], for example, uses tracking graphs to
visualize the spatio-temporal behavior of such processes. In a more general context,
discrete Morse theory could be applied to detect persistent structures in gray-
scale images [5]. The applicability of these approaches hinges on the data quality,
however. Our experimental data suffers from a high noise level in which many
smaller fingers cannot be easily identified by the other approaches. This is why
we decided to focus on conceptually simpler skeletonization techniques for now.
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Skeleton extraction Time propagation Persistence calculation Analysis

Fig. 2 The basic pipeline of our approach. The first step, i.e., skeleton extraction, strongly depends
on the desired application. Likewise, the analysis step can comprise different diagrams, summary
statistics, and goals. Individual parts of the pipeline are replaceable, making our approach highly
generic. Our current implementation uses an algorithm by Zhang and Suen [16] for skeleton
extraction (Sect. 3.1.3). The subsequent propagation of creation times between time steps along
all branches of the skeleton uses the methods described in the same section. From this extended
skeleton, Sect. 3.3 describes how to derive numerous persistence diagrams. Following this, we
define multiple activity indicators based on these diagrams in Sect. 3.4. Finally, Sect. 4 presents an
analysis of different data sets under different aspects

3 Overview and Methods

In this paper, we implement a pipeline that comprises the whole range of the
analysis process of a series of time-varying skeletons. Figure 2 shows a schematic
illustration and points to the corresponding sections in which individual parts are
described. We provide an open-source implementation (in Python) of the pipeline
on GitHub.1 The repository includes all examples, data, and instructions on how
to reproduce our experiments. For the analysis of our persistence diagrams, we
implemented tools that build upon Aleph,2 an open-source library for persistent
homology calculations. We stress that our implementation is a proof of concept.
Its computational bottleneck is the brute-force matching (which could be improved
by using an approximate matching algorithm) that is required as a precursor to
creation time propagation. More precisely, calculating all matches over all time
steps takes between 2 h and 6 h, while the subsequent propagation of creation times
takes 82 s (example data, 839 px × 396 px, 84 time steps), 384 s (measured data,
722 px × 1304 px, 58 time steps), and 524 s (simulation data, 1500 px × 1000 px,
37 time steps). Finally, persistence diagram creation requires 100 s (example data),
183 s (simulation data), and 926 s (measured data), respectively. The time for
calculating activity indicators (Sect. 3.4), e.g., total persistence, is negligible, as the
persistence diagrams only contain a few hundred points. Please refer to Sect. 4 for
more information about the individual data sets.

Subsequently, we will first briefly discuss skeleton extraction—both in terms of
sets of pixels as well as in terms of graphs. Next, we explain the necessary steps for
obtaining information about the “creation time” of pixels and how to propagate said

1https://github.com/Submanifold/Skeleton_Persistence.
2https://github.com/Submanifold/Aleph.

https://github.com/Submanifold/Skeleton_Persistence
https://github.com/Submanifold/Aleph
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information over all time steps in order to obtain evolution information. Based on
this, we derive and exemplify several concepts motivated by topological persistence.

3.1 Skeleton Extraction and Propagation of Pixel Creation
Time

Iterative thinning provides skeletons from binary images in a pixel-based format.
A sequence of skeletons thus gives rise to a sequence of pixel sets P0,P1, . . . ,
Pk , each corresponding to a time step t0, t1, . . . , tk . We employ 8-neighborhood
connectivity around each pixel, i.e., the set of all neighbors including the diagonal
ones, to convert each pixel set Pi into a graph Gi . Depending on the degree d of
each vertex in Gi , we can classify each pixel as being either a regular point (d = 2),
a start/end point (d = 1), or a branch point (d ≥ 3). This also permits us to define
segments formed by connected subsets of regular pixels.

3.1.1 Pixel Matching

Since the skeleton changes over time, we need to characterize the creation time of
each pixel, i.e., the time step ti in which it initially appears. Moreover, we want to
permit that a pixel “moves” slightly between two consecutive time steps in order
to ensure that drifts of the skeleton can be compensated. Our experiments indicate
that it is possible to obtain consistent creation times for the pixels based on their
nearest neighbors, regardless of whether the simulation suffers from a coarse time
resolution or not. Given two time steps ti , ti+1, we assign every pixel p ∈ Pi the
pixel p′ ∈ Pi+1 that satisfies

p′ := arg min
q∈Pi+1

dist(p, q), (1)

where dist(·) is the Euclidean distance. Likewise, we assign every pixel inPi+1 its
nearest neighbor in Pi , which represents a match from Pi+1 to Pi . This yields a
set of directed matches between Pi and Pi+1. Each pixel is guaranteed to occur
at least once in the set. We refer to matches from Pi to Pi+1 as forward matches,
while we refer to matches in the other direction as backward matches. A match is
unique if the forward and backward match connect the same pair of pixels. Figure 3
depicts matches for selected time steps and illustrates the movement of pixels.

3.1.2 Pixel Classification

We now classify each pixel in time step ti+1 according to the forward matches
between Pi and Pi+1, as well as the backward matches between Pi and Pi+1.
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(a) (b) (c)

Fig. 3 An excerpt demonstrating matches between two time steps. Some of the pixels of the
current time step (blue circles) overlap with pixels from the previous time step (red crosses). We
use arrows to indicate forward and backward matches. (a) t = 72. (b) t = 73. (c) t = 74

Fig. 4 Classification of all pixels into growth pixels (red filled circle), decay pixels (blue filled
circle), known pixels (gray filled circle), and irregular pixels (yellow filled circle). The abrupt
appearance (b) or disappearance (c) of segments is a challenge for skeleton extraction and tracking.
(a) t = 68. (b) t = 69. (c) t = 70

We call a pixel known if their match is unique, i.e., there is exactly one forward
and one backward match that relate the same pixels with each other. Known pixels
are pixels that are already present in a previous time step with a unique counterpart
in time step ti+1. Similarly, we refer to a pixel in Pi+1 as a growth pixel if there
is a unique match in Pi and at most one forward match from some other pixel in
Pi . Growth pixels indicate that new structures have been created in time step ti+1,
or that existing structures have been subject to a deformation. The counterpart to a
growth pixel is a decay pixel inPi+1, which is defined by a unique match inPi and
at most one backward match to the same pixel in Pi from another pixel in Pi+1.
Decay pixels indicate that a skeleton region has been lost in time step ti+1. We refer
to all other pixels as irregular. In our experiments, irregular pixels, which are caused
by small shifts between consecutive time steps, comprise about 60% of all pixels. As
we subsequently demonstrate, we are able to assign consistent creation times despite
the prevalence of irregular pixels. Figure 4 depicts classified pixels for consecutive
time steps. It also demonstrates that skeletons may be temporally incoherent: pixels
in region (i) only exist for a single time step, forming long but short-lived segments.
Pixels in region (ii), by contrast, form short but long-lived segments. We want to
filter out segments in region (i), while keeping segments in region (ii) intact. This
requires knowledge about pixel creation times.
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Fig. 5 Propagated age per pixel, using a white–red color map. The skeleton inconsistencies in
region (i) impede the temporal coherence of neighboring pixels. (a) t = 68. (b) t = 69. (c) t = 70

3.1.3 Propagating Creation Times

Initially, each pixel in P0 is assigned a creation time of 0. Next, we classify the
pixels in each pair of consecutive time steps ti and ti+1 as described above. For
known pixels, we re-use the creation time of ti . For growth pixels, we distinguish
two different cases: (1) If a growth pixel in time step ti+1 is not the target of a
forward match from time step ti , we consider it to be a new pixel and hence assign it
a creation time of ti+1. (2) Else, we re-use the creation time just as for known pixels.
This procedure ensures that we are conservative with assigning “new” creation
times; it turns out that a small number of growth pixels with increased creation
times is sufficient for propagating time information throughout the data. For all
other types of pixels, we assign them the minimum of all creation times of their
respective matches fromPi , ignoring the direction of the matching. Again, this is a
conservative choice that reduces the impact of noise in the data.

Thus, every pixel in every time step has been assigned a creation time. This time
refers to the first time step in which the pixel was unambiguously identified and
appeared. By propagating the creation time, we ensure that skeletons are allowed
to exhibit some movement between consecutive time steps. Figure 5 depicts the
creation times for several time steps. For temporally coherent skeletons, recent
creation times (shown in red) should only appear at the end of new “fingers”. We
can see that the brief appearance of segments causes inconsistencies. Ideally, the
creation time of pixels should vary continuously among a segment.

3.2 Improving Temporal Coherence

To improve temporal coherence, i.e, creation times of adjacent pixels, we observe
that inconsistencies are mainly caused by a small number of growth pixels along
a segment. These are a consequence of a “drift” in pixel positions over subsequent
time steps, which our naive matching algorithm cannot compensate for. A simple
neighborhood-based strategy is capable of increasing coherence, though: for each
growth pixel, we evaluate the creation times in its 8-neighborhood. If more than 50%
of the neighbors have a different creation time than the current pixel, we replace its
creation time by the mode of its neighbors’ creation times. This strategy is remi-
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Fig. 6 Pixel creation times at two selected time steps. Recent creation times are shown in shades
of red. We can see that the “front” of the fingers is always recent, while the oldest structures have
been created at the very beginning. This example also demonstrates how the temporal coherence
of creation times can be improved. (a) t = 42 (no coherence). (b) t = 84 (no coherence). (c)
t = 42 (coherence). (d) t = 84 (coherence)

niscent of mean shift smoothing [4]. Figure 6 compares the original and improved
creation times for two time steps. Ideally, all segments should exhibit a gradient-
like behavior, indicating that their structures have been expanded continuously. We
see that this is only true for the longest segments. Erroneous creation times are an
inevitable byproduct of instabilities in skeleton extraction, which can be mitigated
through persistence-based concepts.

3.3 Persistence Concepts

Persistence is a concept introduced by Edelsbrunner et al. [6–8]. It yields a measure
of the range (or scale) at which topological features occur in data and is commonly
employed to filter or simplify complex multivariate data sets [14]. For skeletons,
i.e., graphs, the standard topological features are well known, comprising connected
components and cycles. While these features are useful in classifying complex
networks [2], for example, they do not provide sufficient information about skeleton
evolution processes because they cannot capture the growth of segments. Hence,
instead of adopting this viewpoint, we derive several concepts that are inspired by
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the notion of persistence. A crucial ingredient for this purpose is the availability of
creation times for every pixel in every time step.

3.3.1 Branch Inconsistency

Using the graph Gi for a time step ti , we know which pixels are branch points,
i.e., points where multiple segments meet. Let cb be the creation time of such
a branch point, and let c1, c2, . . . refer to the creation times of the first adjacent
point along each of the segments meeting at the branch point. We define the branch
inconsistency for each branch–segment pair as |ci −cb|, and we refer to the diagram
formed by the points (cb, ci) as the branch persistence diagram. The number of
points in the branch inconsistency diagram indicates how many new branches are
being created in one time step. Moreover, it can be used to prune away undesired
segments in a skeleton: if the branch inconsistency of a given segment is large,
the segment is likely an artifact of the skeletonization process—thinning algorithms
often create segments that only exist for a single time step. Overall, those segments
thus have a late creation time. In contrast to the persistence diagrams in topological
data analysis, where closeness to the diagonal indicates noise, here, points that are
away from the diagonal correspond to erroneous segments in the data. Points below
the diagonal are the result of inconsistent creation times for some segments—a
branch cannot be created before its branch point.

Figure 7 shows the branch inconsistency diagram and colored skeletons for t =
69. It also depicts how to filter segments with a large branch inconsistency, which
already decreases the number of noisy segments. Please refer to the accompanying
video for all branch inconsistency values.
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(a) (b) (c)

Fig. 7 Branch inconsistency diagram and branch inconsistency values on the skeleton for t = 69.
The diagram indicates that most branches are temporally coherent. Some of them are removed
from the diagonal (or below the diagonal), which may either indicate inconsistencies in skeleton
tracking or cycles. Removing segments with a branch inconsistency ≥5 (red dots in the diagram,
dark red segments in the skeleton) can be used to filter the skeleton. (a) Branch inconsistency. (b)
Skeleton. (c) Skeleton, filtered
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Fig. 8 Age persistence diagram and age persistence values on the skeleton for t = 69. Numerous
segments towards the “front” of the fingers appear to be active here. Removing all segments whose
age persistence is ≤5 (red points in the diagram) leaves us with the most active segments. (a) Age
persistence. (b) Skeleton. (c) Skeleton, filtered

3.3.2 Age Persistence

Analogously to branch inconsistency, we obtain an age persistence diagram for each
branch–segment pair when we use the maximum creation time of points along each
segment. Age persistence is capable of measuring whether a segment is young or old
with respect to its branch point. Here, the “persistence” of each point is an indicator
of how much the skeleton grows over multiple time steps: if segments stagnate, their
points remain at the same distance from the diagonal. If segments continue to grow,
however, their points will move away from the diagonal.

Figure 8 shows the age persistence diagram and the age persistence values
on the skeleton for t = 69. The filtered skeleton only contains the most active
segments, which facilitates tracking. We can combine branch inconsistency and age
persistence to remove fewer segments than in Fig. 7c. For example, we could remove
segments that correspond to points below the diagonal of the branch inconsistency
diagram and keep those for which both branch inconsistency and age persistence
are high. These segments commonly correspond to cycles that were formed during
the evolution of the skeleton. An isolated analysis of branch inconsistency is unable
to detect them. Figure 9 depicts the results of such a combined filtering operation.

3.3.3 Growth Persistence

We define the growth persistence of a segment in Gi as the difference between the
maximum creation time tmax of its pixels and the current time step ti . Intuitively,
this can be thought of performing “time filtration” of a simplicial complex, in
which simplices may be created and destroyed (notice that such a description would
require zigzag persistence for general simplicial complexes). A small value in this
quantity indicates that the segment is still growing, while larger values refer to
segments that stagnate. Growth persistence is useful to highlight segments that are
relevant for tracking in viscous fingering processes. In contrast to the previously-
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Fig. 9 (a) Filtering segments using branch inconsistency may destroy longer segments. (b) If we
combine both branch inconsistency and age persistence, keeping only those segments whose age
persistence is high or whose branch inconsistency is low, we can improve the filter results by
removing noisy segments while keeping more cycles intact

Fig. 10 Growth persistence values. Red segments are highly active in the evolution of the skeleton.
In this example, red segments are mostly those that are at the tips of individual “fingers”. (a) t = 21.
(b) t = 42. (c) t = 84

defined persistence concepts, growth persistence is only defined per segment and
does not afford a description in terms of a persistence diagram. Figure 10 depicts
the growth persistence of several time steps. Red segments are growing fast or have
undergone recent changes, such as the creation of cycles. A low branch persistence
in segments, coupled with a low growth persistence corresponds to features that are
“active” during skeleton evolution. Please refer to the accompanying video for the
evolution of growth persistence.

3.4 Activity Indicators

In order to capture the dynamics of skeleton evolution, we require a set of activity
indicators. They are based on the previously-defined concepts and can be used to
quickly summarize a time series of evolving skeletons.
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3.4.1 Total Persistence

There are already various summary statistics for persistence diagrams. The second-
order total persistence pers(D) [3] of a persistence diagram D is defined as

pers(D)2 :=
⎛
⎝ ∑

(c,d)∈D
pers2(c, d)

⎞
⎠

1
2

, (2)

i.e., the sum of powers of the individual persistence values (i.e. coordinate differ-
ences) of the diagram. Total persistence was already successfully used to assess
topological activity in multivariate clustering algorithms [13].

Here, the interpretation of total persistence depends on the diagram for which
we compute it. Recall that in a branch inconsistency diagram, points of high
“persistence” indicate inconsistencies in branching behavior. Total persistence thus
helps detect anomalies in the data; see Fig. 12 for a comparison of total branch
persistence in different data sets. For age persistence, by contrast, high persistence
values show that a skeleton segment is still actively changing. The total age
persistence hence characterizes the dynamics of the data, e.g., whether many or
few segments are active at each time step. Figure 14 depicts a comparison of total
age persistence in different data sets.

3.4.2 Vivacity

We also want to measure the “vivacity” of a viscous fingering process. To this end,
we employ the growth persistence values. Given a growth threshold tG, we count all
growth pixels with persG ≤ tG and divide them by the total number of pixels in the
given time step. This yields a measure of how much “mass” is being created at every
time step of the process. Similarly, we can calculate vivacity based on segments in
the data. However, we found that this does not have a significant effect on the results,
so we refrain from showing the resulting curves. Figure 15 depicts vivacity curves
for different data sets with tG = 10.

4 Analysis

Having defined a variety of persistence-based concepts, we now briefly discuss
their utility in analyzing time-varying skeleton evolution. In the following, we
analyze three different data sets: (1) the example data set that we used to illustrate
all concepts, (2) a measured data set, corresponding to a slowly-evolving viscous
fingering process, (3) and a simulation of the example data set. Figure 11 depicts
individual frames of the latter two data sets. The measured data set is characterized
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Fig. 11 Selected still images from the two remaining data sets. The measured data in (a) exhibits
artifacts (parallel lines) that are caused by the experimental setup. The simulation data (b), by
contrast, does not contain any noise. (a) Measured data set, t = 33. (b) Simulation data set, t = 26
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Fig. 12 A comparison of total persistence of the branch inconsistency diagram for three different
data sets. The first data set (a) exhibits more anomalies; these are indicated by “jumps” in the total
persistence curve. (a) Example. (b) Measured. (c) Simulation

by a viscous fingering process whose fingers evolve rather slowly over time.
Moreover, this experiment, which was performed over several days, does not exhibit
many fingers. The simulation data, by contrast, aims to reproduce the dynamics
found in the example data set; hence, it contains numerous fast-growing fingers.
Please refer to the accompanying videos for more details.

4.1 Anomaly Detection

To detect anomalies in skeleton extraction and tracking, we calculate the total
persistence of the branch inconsistency diagram. Figure 12 compares the values for
all data sets. We observe that the example data set, Fig. 12a, exhibits many “jumps”
in branch inconsistency. These are time steps at which the skeleton (briefly) becomes
inconsistent, e.g., because a large number of segments disappears, or many small
cycles are created. At t = 43 and t = 72 (both local maxima in the diagram), for
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Fig. 13 Comparing the previous (gray) and the current time step (red) based on total persistence
of the branch inconsistency diagram helps uncover problems with skeleton extraction. (a) t = 43.
(b) t = 72

example, we observe changes in the number of cycles as well as the appearance of
numerous segments of various lengths, which makes it harder to assign consistent
creation times according to Sect. 3.1. Figure 13 depicts the changes in skeleton
topology at these time steps. The other two data sets contain fewer anomalies. For
the measured data, this is caused by lower propagation velocities and fewer “fingers”
in the data. For the simulation data, this is due to a better separation of individual
fingers, caused by the synthetic origin of the data.

4.2 Active Branches

We use total age persistence to assess the rate at which existing branches move.
Figure 14 compares the data sets, showing both the original total age persistence
values as well as a smooth estimate, obtained by fitting Bézier curves [9] to the
sample points. In Fig. 14c, the simulated origin of the data is evident: while the
other data sets exhibit changes in the growth rate of total age persistence, the
simulation data clearly exhibits almost constant growth. Moreover, we observe that
the measured data in Fig. 14b has a period of constant growth for t ∈ [20, 40], while
the example data displays a slightly diminished growth rate for t ∈ [25, 65], only to
pick up at the end. Age persistence may thus be used to compare the characteristics
of different skeleton evolution processes.

4.3 Quantifying Dissimilarity

To quickly quantify the dissimilarity between different curves, e.g., the vivacity
curves that we defined in Sect. 3.4.2, we can use dynamic time warping [1], a
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Fig. 14 A comparison of total age persistence for the three different data sets, along with a smooth
estimate for showing trends. (a) Example. (b) Measured. (c) Simulation
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Fig. 15 Vivacity curves (pixel-based) for the three different data sets. At a glance, the curves per-
mit comparing the dynamics of each process. The sampling frequencies are different, necessitating
the use of dynamic time warping. (a) Example. (b) Measured. (c) Simulation

technique from dynamic programming that is able to compensate for different
sampling frequencies and different simulation lengths. Figure 15 depicts the vivacity
curves of the data sets. We can see that the measured data in Fig. 15b is characterized
by a slower process in which new mass is continuously being injected to the
system. Hence, its vivacity does not decrease steeply as that of the example data
in Fig. 15a. The vivacity curve for the simulation, shown in Fig. 15c, appears to
differ from the remaining curves. As a consequence, we can use these curves in
visual comparison tasks and distinguish between different (measured) experiments
and simulations. The dynamic time warping distance helps quantify this assumption.
We have dist(a, b) ≈ 442, dist(a, c) ≈ 1135, and dist(b, c) ≈ 173. This indicates
that the characteristics of the simulation in Fig. 15c differ from those found in a real-
world viscous fingering process, shown in Fig. 15a, while being reasonably close
to another measured experiment, which is depicted by Fig. 15b. Vivacity curves
may thus be used for parameter tuning of simulations in order to obtain better
approximations to measured data.
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5 Conclusion

Driven by the need for a coherent analysis of time-varying skeletons, we developed
different concepts inspired by topological persistence in this paper. We showed
how to improve the consistency of tracking algorithms between consecutive time
steps. Moreover, we demonstrated the utility of our novel concepts for different
purposes, including the persistence-based filtering of skeletons, anomaly detection,
and characterization of dynamic processes.

Nonetheless, we envision numerous other avenues for future research. For
example, the propagation velocity of structures in the data may be of interest in
many applications. We also plan to provide a detailed analysis of viscous fingering,
including domain expert feedback, and extend persistence to physical concepts
within this context. More generally, our novel persistence-inspired concepts can also
be used in other domains, such as the analysis of motion capture data (which heavily
relies on skeletonization techniques) or time-varying point geometrical point clouds,
for which novel skeletonization techniques were recently developed [10].
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