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Abstract This work focuses on particle-based ΛCDM (cold dark matter) sim-
ulations. The features of interest are clusters of dark matter particles, called
halos. Halos are governed by the laws of motion and gravitation, and they may,
consequently, merge over time. In this paper, we present visualization methods for
the topology of the resulting tree-like accumulation history of the halos, as well as
for the underlying halo data. We combine direct visualization methods of merger
trees, in which trajectories over time are depicted in 3D space, with novel visual
topological abstracts that are obtained by mapping time to one spatial axis while
projecting halo positions on the remaining two axes. The user can explore and
analyze both halos and merger trees through our unified visualization interface,
which uses linked views complementing each other. All of our methods pay special
attention to the periodic boundary conditions that are typically used during the
underlying physical simulation.

1 Introduction

In cosmology, large-scale particle-based ΛCDM (cold dark matter) simulations
are a popular way to gain knowledge about the structure formation in the early
universe. The simulated dark matter movements allow the scientists to understand
the formation of galaxies and other major stellar structures [31]. To deduce galaxy

K. Schatz (�) · C. Müller · G. Reina · T. Ertl
Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
e-mail: karsten.schatz@visus.uni-stuttgart.de; christoph.mueller@visus.uni-stuttgart.de;
guido.reina@visus.uni-stuttgart.de; thomas.ertl@visus.uni-stuttgart.de

J. Schneider
College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
e-mail: jeschneider@hbku.edu.qa

M. Krone
Big Data Visual Analytics (BDVA), University of Tübingen, Tübingen, Germany
e-mail: michael.krone@uni-tuebingen.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_8

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_8&domain=pdf
mailto:karsten.schatz@visus.uni-stuttgart.de
mailto:christoph.mueller@visus.uni-stuttgart.de
mailto:guido.reina@visus.uni-stuttgart.de
mailto:thomas.ertl@visus.uni-stuttgart.de
mailto:jeschneider@hbku.edu.qa
mailto:michael.krone@uni-tuebingen.de
https://doi.org/10.1007/978-3-030-43036-8_8


124 K. Schatz et al.

formation models from these simulations, it is necessary to comprehend how the
simulated dark matter particles attract each other and form clusters, called halos.
These halos, again, exert gravitational forces on each other and merge to even larger
structures. Using the history of these merging processes it is possible to build so-
called merger trees that describe the mass assembly of the halos in a topological
manner [10].

Visualization of the halos and their assembly histories can be a useful tool for
understanding the simulated phenomena. To this end, visualizing merger trees and
the accompanying halos were the subject of the IEEE SciVis Contest in 2015 [8].
The data published for the contest originate from the Dark Sky simulations [27],
which are a series of some of the largest cosmological N-body simulations ever
performed.

Contributions We present visualization methods both for dark matter halos as well
as merger trees. In particular, we present a direct visualization of the halo positions
in the merger trees. This visualization highlights each halo’s trajectory and the
individual merge events. To better understand the history of the halo trajectories
in the merger tree, we furthermore present a novel method to generate visual
topological abstracts. Inspired by the clarity of two-dimensional graph drawings,
the topological abstracts map the time axis to one of the three spatial dimensions.
In contrast to 2D drawings, however, our method is able to communicate the spatial
relationship between a primary halo trajectory and secondary trajectories that merge
with the primary. This is achieved by projecting the 3D halo positions onto the
remaining two coordinate axes in a consistent fashion. Using the data provided for
the aforementioned contest, we demonstrate that our visual topological abstracts
highlight the mutual gravitational interactions between halo trajectories effectively.
By rendering the resulting structures as colored tubes, our method further allows
us to communicate the virial radius of halos as well as one additional attribute, for
example velocity dispersion, spin, mass, etc. All of our methods specifically resolve
periodic boundary conditions. Such boundary conditions are common for ΛCDM
simulations and, if unaccounted for, will result in visual artifacts as halo trajectories
leave through one face of the domain and re-enter at the opposite side.

2 Related Work

Large N-body simulations have become more and more popular over the last years.
Reasons are the ever increasing computational power of the supercomputers used to
run the simulation, coupled with algorithmic advances. As a result, the data output
has grown tremendously in size and fidelity. In 2005, the Millennium Run simulated
about ten billion particles [28], whereas the Dark Sky simulations of 2014 comprise
around one trillion particles in the largest run [27]. This amounts to an increase of
two orders of magnitude in less than 9 years.
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The resulting data can be visualized showing the raw particles [7, 11, 23].
Rendering large point-based data sets is a well-known problem in scientific visu-
alization and has been addressed many times, for example by Hopf and Ertl [9]
or Rizzi et al. [22]. More related to this specific area, Ahrens et al. [1] presented an
approach for comparative visualizations of cosmological data sets, where the results
of different simulations can be compared. For more information on visualizing data
from physical sciences, we would like to refer to the survey by Lipşa et al. [13].

Alternatively or to support the visualization of the raw particles, halos and other
structures can be extracted from the data to gain insight into the data’s underlying
topology. To this end, a wide variety of halo identification tools have been proposed
(e.g., Knebe et al. [12] or Onions et al. [18]). Most of these tools try to apply the
density profile proposed by Navarro et al. [17] to the particle data sets to detect the
halos. In the context of the Dark Sky simulations, halos have been extracted using
a modified version of the ROCKSTAR algorithm [3] running in largely distributed
processing environments. The modification allowed the direct generation of merger
trees, which are normally computed separately using other algorithms [10, 31].
Especially the so-called major mergers, which are merge events of halos of similar
size, are of interest to the community [4].

While the visualization of raw particles is rather common, visualizations of
halo data or their merger trees are rare [29, 30], although the assembly history
of dark matter halos is of keen interest, as stated by Wechsler et al. [33], for
example. These may have been the main motivations for the task of the 2015 IEEE
SciVis Contest [8], which actively requested the visualization of the merger trees.
Scherzinger et al. [24], who won the contest, addressed this topic with a direct
graph drawing of the merger tree graph. Merger trees of the accumulation topology
can also be understood as a special case of contour trees, which themselves are
special cases of Reeb graphs [20]. In contrast to merger trees, the construction [5]
and visualization [19, 32] of contour trees is well-studied. Unlike contour trees,
however, merger trees typically allow joining of nodes only, as splitting would
indicate erroneous cluster assignment of a given halo.

3 Visualization Methods

Our data was released during the 2015 IEEE SciVis Contest. It comprises 89
time steps of raw dark matter particles (1283), halos (∼550,000), and spatio-
temporal halo merger trees (∼7500). In this work, we deliberately ignore the
raw particle data and focus on the halos. Each halo comprises a wide variety of
physical quantities, including position, radius, angular momentum, and other, more
specialized variables. As depicted in Fig. 1, merger trees are constructed bottom-up,
starting with the oldest halos. A halo is assigned a new ID for each time step, and
old halos store the ID of the younger halo they evolve into. If halos merge, each
of the older halos stores the ID of the younger, merged halo. Furthermore, halos
store their virial radius and, additionally, eccentricity. The virial radius Rvir of a
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Fig. 1 (a) Possible merger tree in two-dimensional representation, with the youngest halo as root
node at the top. (b) Merger tree with halo positions, colored according to merging relationships.
Direct temporal predecessors of the selected halo (red) are green, temporal successors are blue

Fig. 2 Halos rendered as spheres (a–b) or ellipsoids (c). (a) and (b) Colored according to velocity
dispersion (blue=low, red=high). Cutouts in (b) allow exploring sub-halos. In (c), depth darkening
depicts a large distance between the shadowing and the shadowed object

halo is the radius where the dark matter density inside the described sphere exceeds
a certain threshold that depends on the chosen properties of the simulated universe
(analogously, Mvir is the mass of dark matter inside the sphere).

The spatial locations of the halos and their size can be directly visualized in the
3D view (see Fig. 2a) of our application, which combines different linked views
on the halo data. In this view, the user can also select a halo for inspecting its
history (see Fig. 1b). This adds the predecessors and successors of the selected halo,
showing the merger tree while preserving spatial positions and sizes of the halos.
Furthermore, a line representation of the merger trees (see Fig. 3) can be selected
to counter occlusion caused by large halos. However, halos can have thousands of
predecessors, which still results in a very complex visual representation of limited
utility. We therefore propose an additional view showing a topological abstract of
the merger tree, which enables the user to explore the development of the selected
halo over time while preserving the virial radii of the halos involved as well as
limited information about the spatial relations between them.
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Fig. 3 Tree visualization behavior at bounding box borders. Positions of early time steps are green,
positions of late time steps are red. In (a), the periodic boundary condition hints are depicted in
magenta. In (b), the missing part (desaturated) is shown directly at the side of the available part.
The desaturation is best visible with dark backgrounds (c)

3.1 Direct Halo Visualization

Our direct visualisation of the halo data is based on ellipsoids, which are tessellated
and scaled on the GPU from an icosahedron created for each halo. Using geometry
instead of impostors allows for displaying sub-halos by cutting out occluding
geometry in a shader program (see Fig. 2b). Sub-halos are halos which are already
bound by gravitation to a bigger host halo, but which have not yet merged. As a
consequence, sub-halos typically lie inside their corresponding host halo. In addition
to Blinn-Phong shading, we also use depth darkening by Luft et al. [15] to add an
ambient occlusion-like shadow effect behind every object. The effect increases with
the distance between the front objects and objects behind them (see Fig. 2c). The
resulting additional depth cue eases depth perception of overlapping halos, while
maintaining the overall appearance of non-occluded objects in the background.

The ellipsoidal representation of the halos can be used to construct a spatial
representation of a merger tree by just showing the predecessors and successors
of a selected halo (see Fig. 1b). Using color coding, we can, on the one hand, show
the temporal relation of the elements in the tree to the selected halo. On the other
hand, the user may also choose any of the halo properties from the simulation and
map them to the color of both, merger tree and halos.

Besides preserving important 3D spatial relationships, this representation also
allows for showing the virial radius in a natural way, namely as size of the ellipsoids.
However, as can be seen in Fig. 1b, halos with a large virial radius may hide merge
events when using solid ellipsoids. Sacrificing the size as attribute for mapping
data, a line representation can solve this issue. It can be used to obtain an image
containing the trajectories of all halos of the entire simulation run. To improve
the perception of line orientation, we applied the line lighting technique by Mallo
et al. [16] (see also Fig. 3).

This line representation nevertheless suffers from artifacts induced by periodic
boundary conditions, which are common in cosmological simulations. The periodic
boundary conditions result in one half of a tree appearing on one side of the
bounding box of the simulation domain, while the other half appears on the opposite
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side. We provide two ways to remedy this situation. First, the user can enable a
visual cue of where straight edges leaving or entering the bounding box appear
also on the other side (see Fig. 3). This allows for a quick diagnosis of boundary
effects. Second, to fully eliminate this kind of distraction, we also offer the option
to duplicate the part of the tree that crosses the boundary. The duplicated part of the
tree is shifted such that the merger tree is rendered as a whole. This shifted part of
the tree, which is outside the simulation bounding box, is rendered with desaturated
colors to indicate the duplication. Consequently, this allows the user to explore the
tree as a whole, that is, as if there was no boundary between the two halves. The
rendering of the duplicated version of the trees is performed in a geometry shader.
For each tree that has to be duplicated, a second instance of each rendered line is
spawned on the other side of the bounding box.

While rendering merger trees directly as depicted in Fig. 1 conveys the spatial
geometry of each trajectory well, it is not free of problems. Firstly, since this is
essentially a projection along the time axis, the history of each trajectory is hard to
grasp. Secondly, additional visual clutter may be produced by instancing a primitive
per halo and per time step, given that some merger trees comprise more than 4000
halos. While the first issue can be resolved by color-coding time, this solution may
be inadequate if additional attributes are to be visualized on top of the geometry.

3.2 Topological Abstracts of Merger Trees

For the aforementioned reasons, we also propose visual topological abstracts of
merger trees. The key idea of these visual abstracts is similar to the tx transform
video technique popularized by Reinhart [21]. In essence, we map time to one of
the spatial axes while projecting 3D positions to the remaining two spatial axes.

Given a primary trajectory P consisting of samples pi in space-time R3 × R
+
0 ,

P = {pi}Ni=1 , pi ∈ R
3 × R

+
0 , N ∈ N, (1)

we would like to project samples of a second trajectory

S = {si}Mi=1 , si ∈ R
3 × R

+
0 , M ∈ N (2)

onto the XY plane. For this, we postulate the following goals:

(1) Convey the 3D distance
∥
∥si − pj

∥
∥
2, where pj is the sample on P closest in time

to si .
(2) Preserve the altitudinal angle between si and the primary trajectory P.
(3) Show both the virial radius of the halo at samples si ,pj and one additional,

user-selectable attribute.
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In addition, we want to straighten P such that we can map time onto the remaining
Z axis. Goal (1) ensures that the user can judge the relative distance between P and
S, while goal (2) provides visual information on the relative orientation of S with
respect to P. Finally, goal (3) provides the user with a sense of the relative scale of
each halo and conveys additional attributes like velocity dispersion, spin, mass, etc.

To achieve these goals, we begin by computing the orthonormal Frenet-Serret
frame using only the three spatial components of each point pi :

Ti = ∂

∂t
P

∣
∣
∣
∣
pi

, Ni = T⊥
i

(

∂2

∂t2
P

∣
∣
∣
∣
pi

)

, Bi = Ti ⊗ Ni ,

followed by normalization,

Ti ← Ti

‖Ti‖2 , Ni ← Ni

‖Ni‖2 , Bi ← Bi

‖Bi‖2 . (3)

Here, T⊥
i denotes projection into the orthogonal complement of Ti and ⊗ denotes

the cross-product. Ti ,Ni ,Bi denote, respectively, tangent, normal, and binormal at
sample pi of the trajectory P with respect to time t (also see Fig. 4, left).

We then proceed by projecting the samples of the secondary trajectory. For each
sample si , we first find two samples pj ,pj+1 such that the time of pj is smaller
and the time of pj+1 is greater or equal to the time of si . Using linear interpolation,
we then compute the point p′ on P that is closest in time to si . We also use linear
interpolation followed by re-orthonormalization to compute a Frenet-Serret frame
T,N,B at p′. Using this fame, we project the spatial part of si along T onto the NB

N

T

B

tim
e p

j+1
p
j+1

p

p
j

p´

N

s
i

s´
s´´

B

Fig. 4 Quantities arising in the projection of samples si onto the primary halo trajectory. Left:
Frenet-Serret frame along a trajectory, parametrized by time. Right: Projecting a sample si onto
s′′, on the NB plane through position p′ of the primary trajectory (blue quantities on the NB plane)
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plane. To simplify the following exposition, we again consider only the three spatial
components of the involved vectors (refer also to Fig. 4, right).

s′ := p′ + T⊥ (

si − p′) , (4)

where T⊥ again denotes projection into the orthogonal complement of T. While this
ensures that goal (2) is achieved, a re-normalization establishes goal (1):

s′′ := p′ + s′ − p′

‖s′ − p′‖2
∥
∥si − p′∥∥

2 . (5)

This allows us to express s′′ solely in terms ofN and B. Straightening the trajectories
P,S after this projection thus becomes a simple matter of mapping the local
coordinate axes: B 	→ X, N 	→ Y and T 	→ Z. For samples of the primary and
secondary trajectories, 3D positions are thus obtained as

pj 	→
⎡

⎣

0
0

time
(

pj

)

⎤

⎦ , si 	→
⎡

⎣

〈s′′,B〉
〈s′′,N〉
time (si )

⎤

⎦ . (6)

Finally, to achieve goal (3), we extrude the trajectories obtained by the above
embedding using a logarithmic mapping of the virial radius. The logarithmic
mapping is necessary in order to cope with the high dynamic range of this attribute.
We first assign radii to samples using a homeomorphic mapping,

r = α
log (1 + Rvir)

log (1 + max Rvir)
, (7)

which results in r ∈ [0, α]. Rvir is the so-called virial radius of a halo, whereas
α ∈ R

+ is a user-defined parameter to control the overall thickness. To compute the
final geometry, we use a transfinite generalization of the Power Diagram [2]. Power
Diagrams are a generalization of Voronoi diagrams, in which the Euclidean distance
is replaced with the power of a point with respect to a sphere. Given a point p and a
sphere with center c and radius r , the power is defined as ‖p − c‖22 − r2. The power
vanishes if p is on the sphere, it is positive for p outside the sphere and negative
for p inside the sphere. Assigning to each sample on P and S a radius allows us to
compute the minimum power value on a regular 3D grid. The 0-isocontour, which
can be obtained by contouring algorithms such as Marching Cubes [14], is then
the desired surface fulfilling all of our goals. In our case, the generalization to the
transfinite case is achieved by considering linear interpolations between two circles.
Figure 5 depicts selected iso-contours of a single segment in 2D.

In addition to the actual scalar power field, we also keep track of the nearest site
on the trajectories for each 3D grid position. This allows us to propagate attributes
from the trajectory to the actual surface. Since time and virial radius are already
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C1 C2

Fig. 5 Power isocontours of two circles C1 at (0, 0) with radius 0.5, and C2 at (5, 0) with radius
1. We plot isocontours at −0.5,−0.25, 0, 1, 2, 3. Blue hues correspond to positive values, whereas
red hues correspond to negative values

Fig. 6 A topological abstract with six selected, color-coded attributes (units in brackets). (a) Virial
density (Msun/h). (b) Virial mass (Msun/h). (c) Spin. (d) Scale radius (kpc/h). (e) Angular momentum
magnitude ((Msun·Mpc·km)/(h2·s)). (f) Velocity magnitude (km/s)

encoded in the geometry, an additional attribute can then be mapped to a color to
satisfy the second half of goal (3) as depicted in Fig. 6.

3.3 Implementation Details

To ensure that the Frenet-Serret frame is smooth, we first compute Ti using
central differences, followed by a smoothing step and then re-normalization prior
to computing Ni ,Bi as described in Eq. (3). In order to obtain smooth trajectories,
we subdivide segments pi ,pi+1 and si , si+1. Due to the scaling of Eq. (5), which
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preserves 3D distances, simple linear interpolation between the end-points of line
segments results in curved arcs in the final surface.

We implemented the Power Diagram using a variation of a parallel vector
propagation [25, 26]. However, instead of storing the vector to the closest point as
in the aforementioned references, we store the ID of the site and compute the power
of a point with respect to the line segment analytically. We compute the Power
Diagrams on a 1 0243 regular grid and we set the maximum radius α to about 15
voxel lengths.

In order to obtain consistent topological abstracts, we resolve periodic boundary
conditions as follows: We choose the first sample of the primary trajectory as
anchor point. For every remaining sample of the primary trajectory, we consider
the Euclidean distance between the previous sample and the current sample. Of the
six wrap-around cases, we choose the one resulting in the minimum distance. The
periodicity is resolved analogously for the secondary trajectories, except for the first
sample of each trajectory where we minimize the distance to the anchor point.

4 Discussion

The visualization methods described in Sect. 3 are combined in an interactive,
unified visualization framework (see also Fig. 7). Our framework uses linked views
in which selections are propagated across all different visualization methods. This
allows users to quickly move between halo and merger tree visualizations. In the
halo view, the user has the option to select any of the visualizations depicted in
Fig. 2. In particular, cutouts of tessellated host halo clusters allows to explore the
interior of halos (Fig. 2b). Cutouts were chosen over transparency since they do not
require depth sorting, which can quickly become prohibitive for large simulation
data. Furthermore, depth darkening provides the user with additional depth cues
(Fig. 2c). Unlike using fogging to provide depth cues, depth darkening does not
change the appearance of non-occluded objects.

For visualizing halo trees, we provide two visualization approaches. The first
approach is the direct visualization of halos and merger trees, explained in Sect. 3.1.
To provide users with intuitive illustrations, special attention has been paid to
the periodic boundary conditions commonly used in ΛCDM simulations. In our
framework, edges of the trajectory crossing boundaries can either be highlighted
(Fig. 3a) or be desaturated (Fig. 3c) to aid the user in understanding the domain
extent. Alternatively, they can be fully resolved to help in understanding the
underlying spatial structure (Fig. 3b). Our direct visualization approach provides
a good spatial overview, but it may be difficult to assess a single halo trajectory’s
history. To address this issue, we provide as second visualization approach, namely
our novel visual topological abstracts explained detailed in Sect. 3.2. While our
topological abstracts maintain some spatial information (distance and altitudinal
angle), they do not match the spatial clarity of the direct method. In contrast
to the direct method, our topological abstracts provide the user with clear cues
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Fig. 7 Overview of our unified visualization framework. Left: Halo view with slider to select
timestep. The user can pick a halo to display the corresponding merger tree’s topology in the
linked views to the right. Right, top: Topological abstract. Right, bottom: Direct merger tree
visualization using spheres (left) and lines (right). Periodic boundary conditions are fully resolved.
All topology visualizations show the color-coded velocity magnitude. The color-encoded value
range is: 6.59 km/s 2009.36 km/s

about the history of each trajectory, mutual gravitational interactions, and geometric
deformations of the halos. This is illustrated in Fig. 8, which shows three different
visual topological abstracts generated with our method. The straight line in the
center represents the primary halo trajectory with multiple secondary trajectories
projected into the primary’s Frenet-Serret space. As can be seen, merging secondary
halos enter the first halo’s gravitational field. The mutual gravitational pull coupled
with the inertia of the involved halos frequently results in oscillations prior to halos
merging that can be clearly seen in the visualization. Furthermore, as halos are
absorbed in the primary halo, their virial radius commonly expands, which is also
obvious from our visual abstract. For these reasons, our visualization framework
combines complementing visualization methods using linked views. While the
camera is freely movable in the halo visualization (Fig. 7 left), the two direct merger
tree views (Fig. 7 bottom right) allow a linked rotation around the center. The
rendering of the topological abstract (Fig. 7 top right) can be rotated around the main
axis, that is, around the straightened primary halo trajectory. Panning and zooming
is supported by all views.
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Fig. 8 Topological abstracts of three merger trees. Top: A halo merger tree comprising a total of
4175 halo samples. The primary halo trajectory (green arrow) is aligned in the center, with time
increasing from left to right and mapped to the following color scale: min max.
Mutual gravitational pull between primary and secondary trajectories coupled with the inertia of
the halos result in clearly visible oscillations in the altitudinal angle (blue arrow). As secondary
halos merge with the primary halo, their radius increases (red arrow) as a result of the gravitational
pull of the primary trajectory. This can also be seen in the inset showing the velocity dispersion
in this area, using the same coloring scheme in the value range [0.0, 1069.9] km/s. The part of
the halo closer to the future host halo is accelerated faster than the part further away, resulting in
an increase of the dispersion. Middle: The primary halo (green arrow) is the result of two large
secondary halos merging (blue arrow). Bottom: Multiple secondary halos approach the primary
halo trajectory (green arrow) and start oscillating (blue arrow) until they finally merge (red arrow)

5 Conclusion and Future Work

We presented a unified interactive visualization framework for rendering merger
trees and their accompanying halo data. Our framework uses linked views with
complementing visualization methods to comprehensively communicate the com-
plex topology arising in merger trees effectively and efficiently.

The richness of cosmological data sets leaves plenty of tasks for the future: We
would like to incorporate our halo topology visualization into existing visualization
frameworks geared towards the visual exploration of large particle simulations, e.g.,
[22, 23]. Our direct visualization method could be improved further by the use of
methods specialized to the rendering of dense line ensembles, such as the method of
Everts et al. [6]. Furthermore, we also want to incorporate non-spatial visualizations
of merger trees similar to the tracking graphs of Widanagamaachchi et al. [34].

While our framework is geared towards the understanding of the topology arising
in merger trees, we would further like to grow our visualization into a semi-
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Fig. 9 Representative examples for visually identified topological classes, with direct rendering
of the merger tree as inset. Shown value: Max. velocity (39.09 km/s 1164.39 km/s)
Top row: Complex interactions of multiple secondary trajectories swirling around a primary
halo forming early in time. Middle row: Smaller halo merger trees result in significantly less
complex structures. Bottom row: If the primary halo forms later in time, secondary trajectories are
straightened prior to the start of the primary trajectory

automated analysis tool. In collaboration with domain scientists, we would like to
provide users with automatically extracted and scientifically significant statistics in
regions of interest around the halos. In particular, we believe that our topological
abstracts are helpful in visually classifying different types of halo formation, as
depicted in Fig. 9. However, a comparative study of such classes is left for future
work.
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