
Topological Machine Learning with
Persistence Indicator Functions

Bastian Rieck, Filip Sadlo, and Heike Leitte

Abstract Techniques from computational topology, in particular persistent homol-
ogy, are becoming increasingly relevant for data analysis. Their stable metrics
permit the use of many distance-based data analysis methods, such as multidimen-
sional scaling, while providing a firm theoretical ground. Many modern machine
learning algorithms, however, are based on kernels. This paper presents persistence
indicator functions (PIFs), which summarize persistence diagrams, i.e., feature
descriptors in topological data analysis. PIFs can be calculated and compared in
linear time and have many beneficial properties, such as the availability of a kernel-
based similarity measure. We demonstrate their usage in common data analysis
scenarios, such as confidence set estimation and classification of complex structured
data.

1 Introduction

Persistent homology [9–11], now over a decade old, has proven highly relevant
in data analysis. The last years showed that the usage of topological features
can lead to an increase in, e.g., classification performance of machine learning
algorithms [20]. The central element for data analysis based on persistent homology
is the persistence diagram, a data structure that essentially stores related critical
points (such as minima or maxima) of a function, while providing two stable
metrics, namely the bottleneck distance and the pth Wasserstein distance. Certain
stability theorems [7, 8] guarantee that the calculations are robust against perturba-
tions and the inevitable occurrence of noise in real-world data.

B. Rieck (�) · H. Leitte
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: rieck@cs.uni-kl.de; bastian.rieck@iwr.uni-heidelberg.de; leitte@cs.uni-kl.de

F. Sadlo
Heidelberg University, Heidelberg, Germany
e-mail: sadlo@uni-heidelberg.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_6

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_6&domain=pdf
mailto:rieck@cs.uni-kl.de
mailto:bastian.rieck@iwr.uni-heidelberg.de
mailto:leitte@cs.uni-kl.de
mailto:sadlo@uni-heidelberg.de
https://doi.org/10.1007/978-3-030-43036-8_6

88 B. Rieck et al.

This stability comes at the price of a very high runtime for distance calculations
between persistence diagrams: both metrics have a complexity of at least O

(
n2.5

)
,

or, if naively implemented, O
(
n3

)
[9, p. 196]. Using randomized algorithms, it

is possible to achieve a complexity of O (nω), where ω < 2.38 denotes the
best matrix multiplication time [18]. Further reductions in runtime complexity are
possible if approximations to the correct value of the metric are permitted [14].
Nevertheless, these algorithms are hard to implement and their performance is worse
thanO

(
n2

)
, meaning that they are not necessarily suitable for comparing larger sets

of persistence diagrams.
In this paper, we describe a summarizing function for persistence diagrams,

the persistence indicator function (PIF). PIFs were informally introduced in a
previous publication [22]. Here, we give a more formal introduction, demonstrate
that PIFs can be easily and rapidly calculated, derive several properties that are
advantageous for topological data analysis as well as machine learning, and describe
example usage scenarios, such as hypothesis testing and classification. We make our
implementation, experiments, and data publicly available.1

2 Related Work

The persistence curve is a precursor to PIFs that is widely used in the analysis of
Morse–Smale complexes [4, 13, 17]. It counts the number of certain critical points,
such as minima or maxima, that either occur at a given persistence threshold or at
given point in time. The curve is then used to determine a relevant threshold, or cut-
off parameter for the simplification of the critical points of a function. To the best of
our knowledge, no standardized variant of these curves appears to exist.

Recognizing that persistence diagrams can be analyzed at multiple scales as
well in order to facilitate hierarchical comparisons, there are some approaches
that provide approximations to persistence diagrams based on, e.g., a smoothing
parameter. Among these, the stable kernel of Reininghaus et al. [20] is particularly
suited for topological machine learning. Another approach by Adams et al. [1]
transforms a persistence diagram into a finite-dimensional vector by means of a
probability distribution. Both methods require choosing a set of parameters (for
kernel computations), while PIFs are fully parameter-free. Moreover, PIFs also
permit other applications, such as mean calculations and statistical hypothesis
testing, which pure kernel methods cannot provide.

Recently, Bubenik [5] introduced persistence landscapes, a functional summary
of persistence diagrams. Within his framework, PIFs can be considered to rep-
resent a summary (or projection) of the rank function. Our definition of PIFs is
more straightforward and easier to implement, however. Since PIFs share several
properties of persistence landscapes—most importantly the existence of simple

1https://github.com/Submanifold/topological-machine-learning.

https://github.com/Submanifold/topological-machine-learning

Topological Machine Learning with Persistence Indicator Functions 89

function-space distance measures—this paper uses similar experimental setups as
Bubenik [5] and Chazal et al. [6].

3 Persistence Indicator Functions (PIFs)

Given a persistence diagram D , i.e., a descriptor of the topological activity of a
data set [9], we can summarize topological features by calculating an associated
persistence indicator function of D as

1D : R −→ N

ε �−→ ∣∣{(c, d) ∈ D | ε ∈ [c, d]}∣∣,
(1)

i.e., the number of points in the persistence diagram that, when being treated as a
closed interval, contain the given parameter ε. Equivalently, a PIF can be considered
to describe the rank of the pth homology group of a filtration of a simplicial
complex. A PIF thus measures the amount of topological activity as a function of
the threshold parameter ε. This parameter is commonly treated as the “range” of a
function defined on the given data set, e.g., a distance function [11] or an elevation
function [2]. Figure 1 demonstrates how to calculate the persistence indicator
function 1D (·) from a persistence diagram or, equivalently, from a persistence
barcode. For the latter, the calculation becomes particularly easy. In the barcode,
one only has to check the number of intervals that are intersected at any given time
by a vertical line for some value of ε.

0 2 4 6 8

0

2

4

6

8

(a)

0 2 4 6 8

0

2

4

6

8

(b)

0 2 4 6 8

0

2

4

6

8

(c)

Fig. 1 A persistence diagram (a), its persistence barcode (b), and its corresponding persistence
indicator function (c). Please note that the interpretation of the axes changes for each plot

90 B. Rieck et al.

0.2 0.4
0

10

20
C
ar
di
na
lit
y

(a)

0.2 0.4
0

10

20

C
ar
di
na
lit
y

(b)

e e

Fig. 2 Mean persistence indicator function of the one-dimensional persistence diagrams of a
sphere and of a torus. Both data sets have been sampled at random and are scaled such that their
volume is the same. (a) Sphere (r ≈ 0.63). (b) Torus (R = 0.025, r = 0.05)

3.1 Properties

We first observe that the PIF only changes at finitely many points. These are given
by the creation and destruction times, i.e., the x- and y-coordinates, of points in the
persistence diagram. The PIF may thus be written as a sum of appropriately scaled
indicator functions (hence the name) of the form 1I (·) for some intervalI . Within
the intervalI , the value of 1D (·) does not change. Hence, the PIF is a step function.
Since step functions are compatible with addition and scalar multiplication, PIFs
form a vector space. The addition of two PIFs corresponds to calculating the
union of their corresponding persistence diagrams, while taking multiplicities of
points into account. As a consequence, we can calculate the mean of a set of PIFs
{11

D , . . . ,1n
D } as

1D (·) := 1

n

n∑

i=1

1i
D (·), (2)

i.e., the standard pointwise mean of set of elements. In contrast to persistence
diagrams, for which a mean is not uniquely defined and hard to calculate [26],
this calculation only involves addition (union) and scalar multiplications of sets of
intervals. Figure 2 depicts mean persistence indicator functions for two randomly-
sampled data sets. We see that the resulting mean persistence indicator functions
already introduce a visual separation between the two data sets.

As a second derived property, we note that the absolute value of a step
function (and that of a PIF) always exists; one just calculates the absolute value
for every interval in which the step function does not change. The absolute value of

Topological Machine Learning with Persistence Indicator Functions 91

a step function is again a step function, so the Riemann integral of a PIF is well-
defined, giving rise to their 1-norm as

‖1D‖1 :=
∫

R

|1D (x)|dx, (3)

which is just the standard norm of an L1-space. The preceding equation requires the
use of an absolute value because linear operations on PIFs may result in negative
values. The integral of a PIF (or its absolute value) decomposes into a sum of
integrals of individual step functions, defined over some interval [a, b]. Letting the
value of the step function over this interval be l, the integral of the step function is
given as l ·|b−a|, i.e., the volume of the interval scaled by the value the step function
assumes on it. We can also extend this norm to that of an L-space, where p ∈ R. To
do so, we observe that the pth power of any step function is well-defined—we just
raise the value it takes to the pth power. Consequently, the pth power of a PIF is also
well-defined and we define

‖1D‖p :=
(∫

R

|1D (x)|pdx
) 1

p
, (4)

which is the standard norm of an L-space. Calculating this integral again involves
decomposing the range of the PIF into individual step functions and calculating
their integral. We have ‖1D‖p < ∞ for every p ∈ R because there are only finitely
many points in a persistence diagram, so the integrals of the individual step functions
involved in the norm calculation are bounded.

Hypothesis Testing Treating the norm of a PIF as a random variable, we can per-
form topology-based hypothesis testing similar to persistence landscapes [5]. Given
two different samples of persistence diagrams, {D1

1 , . . . ,D1
n} and {D2

1 , . . . ,D2
n}, we

calculate the 1-norm of their respective mean PIFs as Y1 and Y2, and the variances

σ 2
i := 1

n − 1

n∑

j=1

(∣∣1D i
j

∣∣ − Yi

)2
, (5)

for i ∈ {1, 2}. We may then perform a standard two-sample z-test to check whether
the two means are likely to be the same. To this end, we calculate the z-score as

z := Y1 − Y2√
s21/n − s22/n

(6)

and determine the critical values at the desired α-level, i.e., the significance level,
from the quantiles of a normal distribution. If z is outside the interval spanned by
the critical values, we reject the null hypothesis, i.e., we consider the two means to
be different. For the example shown in Fig. 2, we obtain Y1 ≈ 2.135, s21 ≈ 0.074,

92 B. Rieck et al.

Y2 ≈ 2.79, and s22 ≈ 0.093. Using α = 0.01, the critical values are given by
z1 ≈ −2.58 and z2 ≈ 2.58. Since z ≈ −11.09, we reject the null hypothesis with
p ≈ 1.44 × 10−28 � 0.01. Hence, PIFs can be used to confidently discern random
samples of a sphere from those of a torus with the same volume.

Stability The 1-norm of a PIF is connected to the total persistence [8], i.e., the sum
of all persistence values in a persistence diagram. We have

‖1D‖1 =
∫

R

|1D (x)|dx =
∑

I∈I
cI vol(I), (7)

where I denotes a set of intervals for which the number of active persistence pairs
does not change, and cI denotes their count. We may calculate this partition from
a persistence barcode, as shown in Fig. 1b, by going over all the dotted slices, i.e.,
the intervals between pairs of start and endpoints of each interval. The sum over all
these volumes is equal to the total persistence of the set of intervals, because we can
split up the volume calculation of a single interval over many sub-interval and, in
total, the volume of every interval is only accumulated once. Hence,

‖1D‖1
∫

R

|1D (x)|dx =
∑

(c,d)∈D
|d − c| =

∑

(c,d)∈D
pers(c, d) = pers(D), (8)

where pers(D) denotes the total persistence of the persistence diagram. According
to a stability theorem by Cohen-Steiner et al. [8], the 1-norm of a PIF is thus stable
with respect to small perturbations. We leave the derivation of a similar equation for
the general L-norm of a PIF for future work.

3.2 The Bootstrap for Persistence Indicator Functions

Developed by Efron and Tibshirani [12], the bootstrap is a general statistical method
for—among other applications—computing confidence intervals. We give a quick
and cursory introduction before showing how this method applies to persistence
indicator functions; please refer to Chazal et al. [6] for more details.

Assume that we have a set of independent and identically distributed variables
X1, . . . , Xn, and we want to estimate a real-valued parameter θ that corresponds to
their distribution. Typically, we may estimate θ using a statistic θ̂ := s(X1, . . . , Xn),
i.e., some function of the data. A common example is to use θ as the population
mean, while θ̂ is the sample mean. If we want to calculate confidence intervals for
our estimate θ̂ , we require the distribution of the difference θ − θ̂ . This distribution,
however, depends on the unknown distribution of the variables, so we have to
approximate it using an empirical distribution. Let X∗

1 , . . . , X∗
n be a sample of the

original variables, drawn with replacement. We can calculate θ̂∗ := s(X∗
1, . . . , X

∗
n)

Topological Machine Learning with Persistence Indicator Functions 93

and approximate the unknown distribution by the empirical distribution of θ̂ − θ̂∗,
which, even though it is not computable analytically, can be approximated by
repeating the sampling procedure a sufficient number of times. The quantiles of
the approximated distribution may then be used to construct confidence intervals,
leading to the following method:

1. Calculate an estimate of θ from the input data using θ̂ := s(X1, . . . , Xn).
2. Obtain X∗

1 , . . . , X∗
n (sample with replacement) and calculate θ̂∗ :=

s(X∗
1, . . . , X

∗
n).

3. Repeat the previous step B times to obtain θ̂∗
1 , . . . , θ̂

∗
B .

4. Given α, compute an approximate (1 − 2α) quantile interval as

[θ̂1, θ̂2] ≈ [θ̂∗(α)
B , θ̂

∗(1−α)
B], (9)

where θ̂
∗(α)
B refers to the αth empirical quantile of the bootstrap replicates from

the previous step.

This procedure yields both a lower bound and an upper bound for θ̂ . It is also
referred to as the percentile interval for bootstraps [12, pp. 168–176]. More
complicated versions—yielding “tighter” confidence intervals—of this procedure
exist, but the basic method of sampling with replacement and computing the
statistic s(·) on the bootstrap samples remains the same.

In order to apply the bootstrap to functions, we require empirical processes [16].
The goal is to find a confidence band for a function f (x), i.e., a pair of functions
l(x) and u(x) such that the probability that f (x) ∈ [l(x), u(x)] for x ∈ R is at least
1 − α. Given a function f , let Pf := ∫

f dP and Pnf := n−1 ∑n
i=1 f (Xi). We

obtain a bootstrap empirical process as

{Pf }f ∈F := {√n
(
P ∗

n f − Pnf
)}, (10)

where P ∗
n := n−1 ∑n

i=1 f (X∗
i) is defined on the bootstrap samples (as introduced

above). Given the convergence of this empirical process, we may calculate

θ̂ := sup
f ∈F

|Pf |, (11)

which yields a statistic to use for the bootstrap as defined above. From the
corresponding quantile, we ultimately obtain [θ̂1, θ̂2] and calculate a confidence
band

Cn(f) :=
[
Pnf − θ̂1

n
, Pnf + θ̂2

n

]
(12)

for the empirical mean of a set of PIFs. Figure 3 depicts an example of confidence
bands for the mean PIF of the sphere and torus samples. We can see that the
confidence band for the torus is extremely tight for ε ∈ [0.2, 0.3], indicating that

94 B. Rieck et al.

0.2 0.4
0

10

20

ε

C
ar
di
na
lit
y

0.2 0.4
0

10

20

ε

C
ar
di
na
lit
y

(a) (b)

Fig. 3 Confidence bands at the α = 0.05 level for the mean persistence indicator functions of a
sphere and a torus. The confidence band is somewhat tighter for ε ≥ 0.2. (a) Sphere. (b) Torus

the limit behavior of samples from a torus is different at this scale from the limit
behavior of samples from a sphere.

3.3 Distances and Kernels

Given two persistence diagrams Di and Dj , we are often interested in their
dissimilarity (or distance). Having seen that linear combinations and norms of PIFs
are well-defined, we can define a family of distances as

distp(1Di
,1Dj

) :=
(∫

R

|1Di
(x) − 1Dj

(x)|pdx
) 1

p
, (13)

with p ∈ R. Since the norm of a PIF is well-defined, this expression is a metric in
the mathematical sense. Note that its calculation requires essentially only evaluating
all individual step functions of the difference of the two PIFs once. Hence, its
complexity is linear in the number of sub-intervals.

Example Figure 4 depicts pairwise distance matrices for random samples of a
sphere and of a torus. The first matrix of each group is obtained via distp for PIFs,
while the second matrix in each group is obtained by the pth Wasserstein distance.
We observe two groups of data sets in all matrices, meaning that both classes of
distances are suitable for detecting differences.

We can also employ the distance defined above to obtain a kernel [23]. To this end,
we define

kp(Di ,Dj) := − distp(1Di
,1Dj

), (14)

Topological Machine Learning with Persistence Indicator Functions 95

(a) (b)

Fig. 4 A comparison of distance matrices obtained using the distance measure distp for PIFs, and
the corresponding pth Wasserstein distance Wp . The left matrix of each group shows distp , while
the right matrix depicts Wp . Red indicates close objects (small distances), while blue indicates far
objects (large distances). (a) p = 1. (b) p = 2

where p ∈ {1, 2} because we need to make sure that the kernel is conditionally
positive definite [23]. This kernel permits using PIFs with many modern machine
learning algorithms. As an illustrative example, we will use kernel support vector
machines [23] to separate random samples of a sphere and a torus.

Example Again, we use 100 random samples (50 per class) from a sphere and a
torus. We only use one-dimensional persistence diagrams, from which we calculate
PIFs, from which we then obtain pairwise kernel matrices using both k1 and k2.
Finally, we train a support vector machine using nested stratified 5-fold cross-
validation. With k1, we obtain an average accuracy of 0.98±0.049, whereas with k2,
we obtain an average accuracy of 0.95 ± 0.063. The decrease in accuracy is caused
by the additional smoothing introduced in this kernel.

4 Applications

In the following, we briefly discuss some potential application scenarios for PIFs.
We use only data sets that are openly available in order to make our results
comparable. For all machine learning methods, we use SCIKIT-LEARN [19].

4.1 Analysis of Random Complexes

It is often useful to know to what extent a data set exhibits random fluctuations. To
this end, we sampled 100 points from a unit cube in R3, which has the topology of
a point, i.e., no essential topological features in dimensions >0. We calculated the
Vietoris–Rips complex at a scale such that no essential topological features remain
in dimensions ≥ 1, and obtained PIFs, which are depicted in Fig. 5 along with their
corresponding mean. All functions use a common axis in order to simplify their

96 B. Rieck et al.

0 0.2 0.4 0.6

0

50

100

ε

C
ar
di
na
lit
y

0.2 0.4 0.6

0

10

20

ε

C
ar
di
na
lit
y

Fig. 5 PIFs for random complexes sampled over a unit cube in R3. Dimensions zero (red),
one (blue), and two (yellow) are shown. To show the peak in dimension two better, the right-hand
side shows a “zoomed” version of the first chart (dashed region)

0 0.5 1 1.5

0

50

100

ε

C
ar
di
na
lit
y

0 0.5 1 1.5

0

5

10

ε

C
ar
di
na
lit
y

Fig. 6 PIFs for random samples of a sphere with r = 1.0. Again, dimensions zero (red),
one (blue), and two (yellow) are shown, along with a “zoomed” version of the first chart (dashed
region)

comparison. We first comment on the dynamics of these data. Topological activity
is “shifted”, meaning that topological features with a different dimensionality are
not active at the same scale. The maximum of topological activity in dimension
one (blue curve) is only reached when there are few zero-dimensional features.
The maximum in dimension two (yellow curve) also does not coincide with the
maximum in dimension one. These results are consistent with a limit theorem of
Bobrowski and Kahle [3], who showed that (persistent) Betti numbers follow a
Poisson distribution.

By contrast, for a data set with a well-defined topological structure, such as a 2-
sphere, the PIFs exhibit a different behavior. Figure 6 depicts all PIFs of random
samples from a sphere. We did not calculate the Vietoris–Rips complex for all
possible values of ε but rather selected an ε that is sufficiently large to capture
the correct Betti numbers of the sphere. Here, we observe that the stabilization
of topological activity in dimension zero roughly coincides with the maximum

Topological Machine Learning with Persistence Indicator Functions 97

of topological activity in dimension one. Topological activity in dimension two
only starts to increase for larger scales, staying stable for a long interval. This
activity corresponds to the two-dimensional void of the 2-sphere that we detect using
persistent homology.

PIFs can thus be used to perform a test for “topological randomness” in real-
world data. This is useful for deciding whether a topological approximation is
suitable or needs to be changed (e.g., by calculating a different triangulation, using
α-shapes, etc.). Moreover, we can use a PIF to detect the presence or absence of
a shared “scale” in data sets. For the random complexes, there is no value for ε in
which stable topological activity occurs in more than one dimension, whereas for
the sphere, we observe a stabilization starting from ε ≈ 0.75.

4.2 Shakespearean Co-occurrence Networks

In a previous work, co-occurrence networks from a machine-readable corpus of
Shakespeare’s plays [21] have been extracted. Their topological structure under
various aspects has been analyzed, using, for example, their clique communities [22]
to calculate two-dimensional embeddings of the individual networks. The authors
observed that comedies form clusters in these embeddings, which indicates that they
are more similar to each other than to plays of another category. Here, we want to
show that it is possible to differentiate between comedies and non-comedies by
using the kernel induced by PIFs. Among the 37 available plays, 17 are comedies,
giving us a baseline probability of 0.46 if we merely “guess” the class label of a
play. Since the number of plays is not sufficiently large to warrant a split into test
and training data, we use various cross-validation techniques, such as leave-one-out.
The reader is referred to Kohavi [15] for more details. Table 1 reports all results; we
observe that k1 outperforms k2. Since k2 emphasizes small-scale differences, the
number of topological features in two networks that are to be compared should be
roughly equal. This is not the case for most of the comedies, though. We stress that
these results are only a demonstration of the capabilities of PIFs; the comparatively
low accuracy is partially due to the fact that networks were extracted automatically.
It is interesting to note which plays tend to be mislabeled. For k1, ALL’S WELL

THAT ENDS WELL, CYMBELINE, and THE WINTER’S TALE are mislabeled more
than all other plays. This is consistent with research by Shakespeare scholars who
suggest different categorization schemes for these (and other) problem plays.

Table 1 Classifier performance for Shakespearean co-occurrence networks

Kernel 5-fold LOO LPO (p = 2) LPO (p = 3) LPO (p = 4) Split

k1 0.84 0.83 0.83 0.80 0.79 0.80

k2 0.64 0.00 0.67 0.68 0.68 0.68

Classification based on k1 outperforms the second kernel k2

98 B. Rieck et al.

4.3 Social Networks

Yanardag and Vishwanathan [27] crawled the popular social news aggregation
website reddit.com in order to obtain a set of graphs from online discussions. In
each graph, the nodes correspond to users and an edge signifies that a certain
user responded to a another user’s comment. The graphs are partitioned into two
classes, one of them representing discussion-based forums (in which users typically
communicate freely among each other), the other representing communities based
on a question–answer format (in which users typically only respond to the creator
of a topic). The data set is fully-balanced.

Here, we want to find out whether it is possible to classify the graphs using
nothing but topological information. We use the degree, i.e., the number of
neighbors, of a node in the graph to obtain a filtration, assigning every edge
the maximum of the degrees of its endpoints. We then calculate one-dimensional
persistent homology and our kernel for p = 1 and p = 2. Figure 7 shows the
results of applying kernel principal component analysis (k-PCA) [24], which each
point in the embedding corresponding to a single graph. A small set of outliers
appears to “skew” the embedding (Fig. 7a), but an inspection of the data shows that
these graphs are extremely small (and sparse) in contrast to the remaining graphs.
After removing them, the separation between both classes is visibly better (Fig. 7b).
Progress from “left” to “right” in the embedding, graphs tend to become more dense.

As a second application on these data, we use a kernel support vector machine
to classify all graphs, without performing outlier removal. We split the data into
training (90%) and test (10%) data, and use 4-fold cross validation to find the best
hyperparameters. The average accuracy for k1 is 0.88, while the average accuracy
for k2 is 0.81. PIFs thus manage to surpass previous results by Yanardag and
Vishwanathan [27], which employed a computationally more expensive strategy,

(a) Original data (b) Cleaned data

Fig. 7 Embeddings based on k-PCA for the k1 kernel. (a) Every node represents a certain graph.
The color indicates a graph from a discussion-based forum (red) or a Q/A forum (blue). (b) We
removed some outliers to obtain a cleaner output. It is readily visible that the two classes suffer
from overlaps, which influence classification performance negatively

www.reddit.com

Topological Machine Learning with Persistence Indicator Functions 99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PR-AUC: 0.93

Recall

Pr
ec
is
io
n

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PR-AUC: 0.91

Recall

Pr
ec
is
io
n

(b)

Fig. 8 Precision–recall curves for both kernels on the social networks data set. Each curve also
includes the area-under-the-curve (AUC) value. (a) k1. (b) k2

i.e., graph kernels [25] based on learned latent sub-structures, and obtained an
average accuracy of 0.78 for these data. Figure 8 depicts precision–recall curves for
the two kernels. The kernel k1 manages to retain higher precision at higher values
of recall than k2, which is again due to its lack of smoothing.

5 Conclusion

This paper introduced persistence indicator functions (PIFs), a novel class of
summarizing functions for persistence diagrams. While being approximative by
nature, we demonstrated that they exhibit beneficial properties for data analysis,
such as the possibility to perform bootstrap experiments, calculate distances, and use
kernel-based machine learning methods. We tested the performance on various data
sets and illustrated the potential of PIFs for topological data analysis and topological
machine learning. In the future, we want to perform a more in-depth analysis of the
mathematical structure of PIFs, including detailed stability theorems, approximation
guarantees, and a description of their statistical properties.

100 B. Rieck et al.

References

1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S.,
Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of
persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

2. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. Discr.
Comput. Geom. 36(4), 553–572 (2006)

3. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey (2014). https://
arxiv.org/abs/1409.4734

4. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions
on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004). https://doi.
org/10.1109/TVCG.2004.3

5. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn.
Res. 16, 77–102 (2015)

6. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for
persistence diagrams and landscapes. Model. Anal. Inf. Syst. 20(6), 111–120 (2013)

7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr.
Comput. Geom. 37(1), 103–120 (2007)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable
persistence. Found. Comput. Math. 10(2), 127–139 (2010)

9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, New York
(2010)

10. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European
Congress of Mathematics. EMS Publishing House, Zürich (2014)

11. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification.
Discr. Comput. Geom. 28(4), 511–533 (2002)

12. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and
Applied Probability, vol. 57 . Chapman & Hall/CRC, Boca Raton, FL (1993)

13. Günther, D., Boto, R.A., Contreras-Garcia, J., Piquemal, J.P., Tierny, J.: Characterizing
molecular interactions in chemical systems. IEEE Trans. Vis. Comp. Graph. 20(12), 2476–
2485 (2014)

14. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams.
In: Goodrich, M., Mitzenmacher, M. (eds.) Proceedings of the 18th Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 103–112. SIAM, Philadelphia, PA (2016)

15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the IJCAI, vol. 2, pp. 1137–1143 (1995)

16. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer,
New York, NY (2008)

17. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure
of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph.
12(5), 1053–1060 (2006)

18. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Annual
IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, É.: SCIKIT-LEARN: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

20. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological
machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4741–4748. Curran Associates, Inc., Red Hook, NY (2015)

21. Rieck, B., Leitte, H.: Shall I compare thee to a network?—Visualizing the topological structure
of Shakespeare’s plays. In: Workshop on Visualization for the Digital Humanities at IEEE VIS.
Baltimore, MD (2016)

https://arxiv.org/abs/1409.4734
https://arxiv.org/abs/1409.4734
https://doi.org/10.1109/TVCG.2004.3
https://doi.org/10.1109/TVCG.2004.3

Topological Machine Learning with Persistence Indicator Functions 101

22. Rieck, B., Fugacci, U., Lukasczyk, J., Leitte, H.: Clique community persistence: a topological
visual analysis approach for complex networks. IEEE Trans. Vis. Comput. Graph. 22(1), 822-
831 (2018). https://doi.org/10.1109/TVCG.2017.2744321

23. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge, MA (2002)
24. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue

problem. Neural Comput. 10(5), 1299–1319 (1998)
25. Sugiyama, M., Ghisu, M.E., Llinares-López, F., Borgwardt, K.: graphkernels: R and

Python packages for graph comparison. Bioinformatics 34(3), 530–532 (2017)
26. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence

diagrams. Discr. Comput. Geom. 52(1), 44–70 (2014)
27. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and DataMining, pp. 1365–1374.
ACM, New York, NY (2015)

https://doi.org/10.1109/TVCG.2017.2744321

	Topological Machine Learning with Persistence Indicator Functions
	1 Introduction
	2 Related Work
	3 Persistence Indicator Functions (PIFs)
	3.1 Properties
	3.2 The Bootstrap for Persistence Indicator Functions
	3.3 Distances and Kernels

	4 Applications
	4.1 Analysis of Random Complexes
	4.2 Shakespearean Co-occurrence Networks
	4.3 Social Networks

	5 Conclusion
	References

