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Abstract The design of automatic transfer functions for volume rendering is a
perennial problem in volume visualization. Over the last three decades, a variety
of design methodologies have been proposed. However, sensitive adjustment of
related control parameters remains entrusted to users, because rendering conditions,
such as the thickness of emphasized subvolumes in the ray direction and the size
of a target dataset, differ on a case-by-case basis. Our group previously proposed
one-dimensional transfer functions to accentuate topological changes in the scalar
field of the target dataset. However, the method forces us to determine the actual
control parameter values for the transfer functions in an empirical manner. In this
paper, we propose a supplementary mechanism with which to judiciously define an
appropriate profile of the opacity values. More specifically, the height and width of
the hat opacity transfer functions that accentuate feature isosurfaces are determined
according to the number of voxels belonging to the relevant topologically equivalent
scalar field interval. The feasibility of the proposed method is evaluated by its
application to five kinds of volume datasets.

1 Introduction

Volume rendering is one of the traditional visualization techniques for scalar
fields. Over the last three decades, various methodologies have been proposed
for designing transfer functions [1]. Data-centric approaches, which perform a
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mathematical analysis of the dataset before pertinent rendering, have become well
established. Kindlmann and Durkin [2] defined a histogram volume consisting
of first and second partial derivatives of the volume dataset, which is used to
design transfer functions in order to emphasize the boundaries between different
materials contained in the target volume dataset. Kniss et al. [3] generalized the
histogram volume-based method in order to design three-dimensional transfer
functions. Hladůvka et al. [4] and Kindlmann et al. [5] independently proposed
multi-dimensional transfer functions based on isosurface curvatures in the target
volume dataset. Weber et al. [6] proposed a topology-based method that defines
the opacity at a sample point based on the topological characterization of a target
dataset. Zhou et al. [7] proposed an automatic transfer function design using a
residue flow model controlled by a contour tree [8]. Shape-based transfer functions,
proposed by Praßni et al. [9], are based on the shape of the surfaces to be visualized.
Xiang et al. [10] proposed a graph cut segmentation method and localized transfer
function, which is suitable for datasets with a comparatively clear boundary rather
than for simulation datasets whose values are distributed smoothly. In addition, it is
conceivable to design the transfer functions based on other structures of the target
dataset, such as representative isosurfaces [11].

Our group previously proposed yet another topology-based method [12], which
designs one-dimensional transfer functions to accentuate topological changes in the
scalar field of the target dataset. However, the method forces us to determine the
actual control parameter values for the transfer functions in an empirical manner;
the users have to adjust the control parameter values according to a target dataset.
In this paper, therefore, we propose a supplementary mechanism with which to
judiciously define an appropriate profile of opacity values. More specifically, the
height and width of the hat opacity transfer functions that accentuate the feature
isosurfaces are determined according to the number of voxels belonging to the
relevant topologically equivalent scalar field interval. We focus on a traditional
one-dimensional transfer function that assigns an opacity to a field value and a
multi-dimensional transfer function that assigns an opacity to a field value as well
as other attributes, such us inclusion level [13]. To evaluate the proposed method,
we use our transfer functions to visualize five different kinds of volume datasets.
Furthermore, we introduce an evaluation mechanism for measuring the quality of
the volume-rendered images with the designed transfer functions and also discuss
the processing speed of our method.

2 Volume Skeletonization

First, we extract the topological structure from a target dataset using the topological
volume skeletonization algorithm [12, 13].
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2.1 Volume Skeleton Tree

The level-set graph, known as the volume skeleton tree (VST), allows us to evaluate
the topological attributes of each voxel by illuminating both the global and local
features of the volume dataset. A node of the VST represents a critical point that
displays a change either in the number of connected isosurface components or in
the genus of each of the isosurface components. Critical points are classified into
four groups: maxima (C3), saddles (C2, C1), and minima (C0), which represent
isosurface appearance, merging, splitting, and disappearance, respectively, as the
scalar field value decreases. A link of the VST represents a topology-preserving
connected component of interval volume (transition of isosurface) [14]. A link
is defined as solid if its isosurface component expands as the scalar field value
decreases; it is defined as hollow if it shrinks.

Both the isosurfaces merging at C2 and splitting at C1 have four topological
transition paths with different isosurface spatial configurations, as shown in Fig. 1.
In what follows, the VST uses the notation for the critical points with its own
connectivity, as indicated in Fig. 1, where the solid incident link represents a solid
isosurface and the broken link a hollow isosurface. The saddle points ofCi(i = 1, 2)
are classified into 3-Ci and 2-Ci , according to their degree (valence). For later
convenience, all the boundary voxels are assumed to be connected to the virtual
minimum having −∞ as its scalar field value [12]. Note that the link to the C0 node
is solid when the node is the virtual minimum, as shown in Fig. 1.

Fig. 1 The connectivity of critical points in the VST
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Fig. 2 An example of a VST.
The critical field values and
the representative field values
are denoted by
ci (i = 0, · · · , 4) and
ri (i = 0, · · · , 3),
respectively. The inclusion
level of the link l3,4 is 1,
whereas those of the outer
links are 0
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2.2 Feature Values in the VST

In a VST, a node pi has coordinates xi and a scalar field value ci (i = 0, · · · ,m−1),
which is referred to as critical field value, denoted in the monotonically decreasing
order of the scalar field. Representative field value is also defined as the mid-value
ri = (ci+1 + ci)/2 of each interval [ci+1, ci](i = 0, . . . , m − 2) bounded by
consecutive critical field values, as shown in Fig. 2.

A link li,j has the genus of the corresponding isosurface component, the index
of adjacent nodes pi , and pj , and its subvolume as the sweep of a connected
component of a topologically equivalent isosurface. We denote a volume ratio
belonging to the subvolume corresponding to link li,j as vi,j , calculated as ni,j /N ,
where N denotes the total number of voxels in the target volume and ni,j denotes
the number of voxels in the subvolume representing link li,j .

Because the VST is sensitive to small changes in field values, it may contain a
large number of minor critical points if the volume dataset involves high-frequency
noise. In order to capture the global features of the entire volume dataset, it is
necessary to eliminate some minor links from the VST. To control the level of detail
(LoD) of the VST, we define a persistency value of li,j as vi,j /|ci − cj |. In our
algorithm, the VST is simplified by removing links in ascending order until the
value reaches a specified threshold [12].

Furthermore, we can extract an inclusion level that represents the depth of its
associated isosurface in the nested structure at the corresponding scalar field value
and serves as an additional variable for the multi-dimensional transfer functions
that emphasize these nested structures. Figure 1 clearly illustrates that isosurface
nested structures originate only from the transition paths in 3-C2(b) and 3-C1(b).
This motivates us to locate such isosurface inclusions directly from the VST if we
can identify all the nodes that correspond to the previously mentioned transition
paths. Indeed, the inclusion level can be systematically extracted by tracing the VST
from the virtual minimum, because its incident link is known to be solid [13]. In
Fig. 2, it has a nested structure in the field interval [c4, c3] where the isosurfaces
belonging to l3,5 exist outside the isosurfaces belonging to l3,4.
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3 Transfer Function Design

Next, we design a transfer function reflecting the topological structures in the VST
(Sect. 2). The basic principle is to accentuate the topological change of an isosurface
within the volumetric domain [12].

3.1 Color Transfer Function

In our previously proposed method [13], wherein the color transfer function is
defined piecewise using the range of the HSV hex-cone [0, 2/3π ], so that the
function value decreases linearly over an evenly divided hue interval for each of
the field intervals [ci+1, ci]. Our transfer functions can be designed based on blue-
white-red, blue-white-yellow, heat object, as well as rainbow colormap. In every
case, we define the color transfer function based on the above principle of dividing
a given hue range. Figure 3a shows the design of our color transfer function, which
allows us to assign a steep color gradation to the regions where the consecutive
critical field values are in closer proximity to one another.

3.2 One-Dimensional Opacity Transfer Function

For opacity transfer functions, we propose two methods, accentuating critical or
representative field values. The first method assigns local hat functions centered
at the critical field values ci , whereas the second is centered at representative
field values ri . When the critical field values are emphasized, topological changes,
such as splitting and merging isosurfaces, can be visualized more clearly. On the
other hand, emphasizing the representative field values reveals the representative
topological structures. In our framework, because the outermost isosurface does not
shrink as the field value decreases, we minimize the occlusion artifacts induced by
the isosurface nested structure by decreasing the base elevation of the hat functions
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Fig. 3 Basic principle of designing transfer functions (TFs). (a) Color TF. (b) 1D opacity TF. (c)
2D opacity TF
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for cm−1 through c0, or rm−2 through r0, in a stepwise fashion, as shown in Fig. 3b.
Note that in this figure, ci and ri are expressed commonly as fi .

In our previously proposed method [12], we determined the actual opacity values
empirically, because the opacity of the object projected on the screen was affected
by the rendering conditions, such as the thickness of the emphasized subvolumes in
the ray direction and the size of a target dataset.

In order to emphasize the internal structure of the volume dataset more clearly,
it is necessary to set the opacity value higher for the area closer to the center of the
dataset. In our previously proposed method [12], we assumed that the isosurfaces
whose field value is higher, exist inside the dataset; thus, a higher opacity value
is assigned to them, without any consideration of the thickness of the emphasized
subvolumes in the ray direction. If the sampling distance is larger than the thickness,
it will not be visualized regardless of the height of the corresponding opacity value.
However, if the sampling distance is small, many sampling points are generated
in unnecessary regions, which may cause a computational burden. To address this
problem, we calculate the thickness of the emphasized region in the ray direction
in a pseudo manner, and we introduce the following variable Gi into the opacity
calculation formula:

Gi = 1.0 − V
1/3
0,i

d
, (1)

where Vi,i+1 denotes the volume ratio of the subvolume belonging to the corre-
sponding interval volume at [ci+1, ci], and d the average of the number of grid
points in the x-, y-, and z-axis directions of the target dataset. Note that Vi,i+1
and vi,i+1 are different when multiple links of the VST are included in the field
interval [ci+1, ci]. For example, as Fig. 2 shows, V1,2 is calculated as the sum of the
subvolume v1,2 corresponding to link l1,2 and a part of the subvolume v0,2 whose
scalar field is included in the interval [c2, c1]. Assuming that the homeomorphic
regions are spherically distributed, V0,i is proportional to the radius of the sphere.
Moreover, because Σm−2

i=0 Vi,i+1 equals 1, 1 − V
1/3
0,i can be thought of as a pseudo

distance from the data boundary to the corresponding region. This is further divided
by d, and it is used as the thickness per grid interval.

Herein, we define the opacity value α at three control points, such as the top and
two bottoms of the hat function, using the following equations:

α(fi) = m − 1 − i

m − 1
μGi, α(fi +δ+

i
) = m − 1 − i

m − 1
Gi−1, α(fi −δ−

i
) = m − 1 − i

m − 1
Gi,

(2)

where μ denotes a coefficient for the degree of emphasis. From this setting, the
opacity values decrease as the number of voxels corresponding to the subvolume
increases.
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The opacity value of a scalar field value s other than the control points is
calculated using Eqs. (3):

α(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m − 1 − i

m − 1
Gi (fi+1 + δ+

i+1 ≤ s < fi − δ−
i

)

(s − fi + δ−
i

)α(fi) − (s − fi)α(fi − δ−
i

)

δ−
i

(fi − δ−
i

≤ s < fi)

(s − fi)α(fi + δ+
i

) − (s − fi − δ+
i

)α(fi)

δ+
i

(fi ≤ s < fi + δ+
i

)

. (3)

If the field interval [−δ−
i , δ+

i ] to be emphasized is too narrow, the sampling point
of volume rendering may not appear in the region whose scalar values belong to the
interval. Therefore, to secure a certain number of voxels there, our transfer function
controls the width of the hat functions, as follows:

• For the critical field values (fi = ci),

δ−
i = η

ci − ci+1

Vi,i+1
, δ+

i = η
ci−1 − ci

Vi−1,i
. (4)

• For the representative field values (fi = ri),

δ+
i = δ−

i = η
ri − ri+1

Vi,i+1
, (5)

where η denotes another coefficient representing the degree of emphasis. To avoid
an overlap between different hat functions, for the critical field values, if δ−

i >

|ci − ri | then let δ−
i = |ci − ri |, and if δ+

i > |ci − ri−1| then let δ+
i = |ci − ri−1|.

For the representative field values, if δ−
i > |ri − ci+1| then let δ−

i = |ri − ci+1|, and
if δ+

i > |ri − ci | then let δ+
i = |ri − ci |.

3.3 Multi-Dimensional Opacity Transfer Function

Generally, a one-dimensional transfer function is used to assign an opacity value
to a field value. However, if isosurface components with the same field value have
different meanings, it is impossible to obtain a visualization result that emphasizes
them separately. To address this problem, we proposed a design method for multi-
dimensional transfer functions based on topological attributes [13].

In this paper, we extend a two-dimensional opacity transfer function that depends
on the scalar field value and the inclusion level [13]. The inclusion level is assigned
for the isosurface component that has the same field value, with larger values for a
more inner component. The inclusion level of the outermost isosurface component
is set to 0.
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Figure 3c shows an overview of our design of a two-dimensional transfer
function. When the inclusion level u is even, because the isosurface component
becomes outer as the scalar field value decreases, the opacity values αm(s, u) are
defined as (u + 1)α(s)/umax using a one-dimensional opacity transfer function,
where umax denotes the maximum inclusion level. When the inclusion level u is odd,
because the isosurface component becomes inner as the scalar field value decreases,
opacity values αm(s, u) are defined as follows:

αm(s, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u + 1

umax

i

m − 1
Gi (fi+1 + δ+

i+1 < s ≤ fi − δ−
i )

(s − fi + δ−
i )αm(fi, u) − (s − fi)αm(fi − δ−

i , u)

δ−
i

(fi − δ−
i < s < fi)

u + 1

umax

i

m − 1
μGi (s = fi)

(s − fi)αm(fi + δ+
i , u) − (s − fi − δ+

i )αm(fi , u)

δ+
i

(fi < s < fi + δ+
i )

u + 1

umax

i

m − 1
Gi−1 (s = fi + δ+

i )

. (6)

4 Empirical Evaluation

From the aspects of the size of the dataset, the parameter values of a transfer
function, and the LoD of the VST, we assessed their impact on the visualization
results. All datasets were found to be affinely mapped to the range [0, 255]. The
platform used for our experiments was a standard PC (OS: Redhat ES 7.2; CPU:
Intel Xeon; Clock: 2.50 Hz; RAM: 64GB; GPU: NVIDIA Quadro K6000).

4.1 Sensitivity to μ and η

To obtain appropriate visualization results, we can control μ and η in our transfer
function design. From the definition shown in Eqs. (2), (4), and (5), μ and η affect
the opacity of the accentuated isosurfaces and the width of the accentuated field
interval. First, we investigated the effect of μ and η, which are the parameter values
of our transfer function.

Figure 4 shows the visualization results when our method was applied to a tooth
dataset (161× 161× 161) [15]. We used a blue-white-yellow colormap. As seen in
these images, opacity increases as a μ and η increase. However, it should also be
noted that the accentuated isosurfaces are not significantly emphasized when only
the μ value is changed. Because a region of the accentuated field interval is narrow,
it is difficult to emphasize the target isosurfaces simply by increasing the height
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η = 0.03

η = 0.05

μ = 20 μ = 40 μ = 60

Fig. 4 Visualizing the tooth dataset with different values of μ and η, which affect the degree
of emphasis of the accentuated isosurfaces and the width of the accentuated field intervals,
respectively. These images show that the accentuated isosurfaces are not significantly emphasized
when only the μ value is changed

(a) (b)

Fig. 5 Visualizing the implosion dataset with our one-dimensional transfer function and two-
dimensional transfer function. These images shows our two-dimensional transfer function makes
it possible to clearly visualize the inner structures by removing unnecessary surface. (a) One-
dimensional TF. (b) Two-dimensional TF

of the hat function of the opacity transfer function. Therefore, an η value becomes
important for this type of dataset.

Next, in order to evaluate our two-dimensional transfer function, we applied it to
a laser fusion implosion dataset (225 × 225 × 225) [16], where small bubble-spike
structures evolve around a contact surface between a fuel ball and pusher during
the stagnation phase. The contact surface is occluded by the other outer component
residing in the pusher domain, which is nothing but a phantom surface created by
the action-reaction effect.

Figure 5 shows the visualization results (μ = 20, η = 0.05) of the laser fusion
implosion dataset, which emphasizes the representative field values with a rainbow
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colormap. Figure 5a does not clearly show the inner isosurface components of
interest, because these are indeed occluded by the outer phantom surface. On the
other hand, Fig. 5b clearly illustrates that our two-dimensional transfer function
makes it possible to clearly visualize the inner structures by removing unnecessary
phantom surface.

4.2 Dataset Size Sensitivity

Next, we evaluated whether similar visualization results can be obtained from the
datasets with different sizes. In order to demonstrate the effectiveness of our method,
we applied it to two types of volume datasets.

The first is an analytical dataset [12], which is formulated as follows:

f (x, y, z) = 4c2
(
(x − R)2 + (z − R)2

)
−

(
(x − R)2 + y2 + (z − R)2 + c2 − d2

)2

+4c2
(
(x + R)2 + (z + R)2

)
−

(
(x + R)2 + y2 + (z + R)2 + c2 − d2

)2
, (7)

where 0 < d < c and c2 + d2 ≥ 6R2. This dataset has two maxima, three saddles,
and a virtual minimum. Figure 6 shows the VST of the analytical function and the
visualization results applied to three analytical datasets with different sizes: 33 ×
33×33, 65×65×65, and 129×129×129. As Fig. 6 shows, our transfer functions
to accentuate the critical field values with a blue-white-red colormap (μ = 30, η =
0.035). The volume ratio corresponding to each link differs according to the dataset
size, as shown in Table 1. It is clear that the volume ratios are nearly equal regardless
of the size of dataset. The results presented in Figs. 6b–d show that the proposed
transfer functions provide similar visualization results regardless of the size of the
dataset.

The second is a three-dimensional head dataset, which was provided courtesy of
Siemens Medical Systems, Inc. (Iselin, NJ). Figure 7 shows the visualization results
applied to two head datasets with different sizes: 65×65×65 and 129×129×129.
These images use our transfer functions to accentuate the critical field values with
a blue-white-yellow colormap (μ = 40, η = 0.05). The figure illustrates that the
visualization results obtained for a real-world dataset are similar to those obtained
for the analytical dataset, regardless of the size of the dataset.

These results demonstrate that the effectiveness of our method does not depend
on the size of datasets, even for different types of datasets.
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Fig. 6 VST and visualization results for the analytical datasets with our opacity transfer functions
(μ = 30, η = 0.035). These images show that our transfer functions provide similar visualization
results regardless of the size of the dataset. (a) VST. (b) 33 × 33 × 33. (c) 65 × 65 × 65.
(d) 129 × 129 × 129

Table 1 Volume ratios
corresponding to each link of
the analytical datasets shown
in Fig. 6

Link 33 × 33 × 33 65 × 65 × 65 129 × 129 × 129

l1−3 4.67e−2 4.86e−2 4.96e−2

l2−3 4.67e−2 4.86e−2 4.96e−2

l3−4 0.0 0.0 0.0

l4−5 1.73e−1 1.82e−1 1.86e−1

l5−6 7.33e−1 7.21e−1 7.15e−1

4.3 Response to the LoD of the VST

Finally, in order to evaluate whether our method is effective even if the number of the
accentuated surfaces increases, we examined how our transfer function responds to
differences in the LoD of the VST. When the VST extracts the topological structure
from the target dataset, it may contain a large number of minor critical points.
Because they may hide the important global structure of the dataset, we need to
simplify the extracted VST by removing them.

We applied our method to a nucleon dataset (41 × 41 × 41) [17] to evaluate the
effect of the LoD of the VST. Figure 8 shows the visualization results with a heat
object colormap (μ = 20, η = 0.04); the results emphasize the representative field
values for different LoDs of the VST. Figure 8a shows a visualization result based
on the original VST, which has 1006 critical points and 21 critical field values.
Note that we cannot show the original VST because it is too complicated to draw.
Figures 8b, c show the results based on simplified VSTs that have ten and six critical
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Fig. 7 Visualization results of the head datasets with our opacity transfer functions (μ = 40, η =
0.05). These images show that our transfer functions provide similar visualization results regardless
of the size of the dataset. (a) 65 × 65 × 65. (b) 129 × 129 × 129
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Fig. 8 Visualizing the nucleon dataset applied for different LoDs of the VST. These images show
that our transfer function can effectively visualize the topological structure even if the number of
critical points decreases. (a) Original VST (1006 critical points). (b) Simplified VST (10 critical
points). (c) Simplified VST (6 critical points)

points and six and five critical field values, respectively. These images illustrate that
our transfer function can effectively visualize the topological structure, regardless
of the number of critical points.
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5 Further Controllability

In this section, we evaluate our method further from the perspective of image quality
and processing speed.

5.1 Image Quality

In order to evaluate the quality of a visualization result, we defined an evaluation
function based on a normalized Shannon information entropy as follows:

Entropy = −∑M
i=0 p(Ai) log2 p(Ai)

log2 M
, (8)

where M and p(Ai) represent the number of levels and the probability of pixels of
level i, respectively. When the value of entropy is high, there are many pixels at
various levels, which means that the information entropy of the visualized image
is large. Conversely, when there are numerous pixels with the same levels, the
information entropy is small. Therefore, we assume that the higher the entropy, the
better the quality of the image. Note that the evaluation function can also potentially
lead to misleading results in the presence of noise in the dataset. We evaluate the
quality of images in terms of their hue, saturation, and luminance values. When
the entropies of hue, saturation, and luminance are represented by Eh,Es , and El ,
respectively, our evaluation function is defined as follows:

{
E = kH EH + kSES + kLEL

kH + kS + kL = 1 (0 ≤ kH , kS, kL ≤ 1)
, (9)

where kH , kS , and kL are the weight coefficients for hue, saturation, and luminance,
respectively. Users can control these coefficients based on their preferences.

Figure 9a shows the heatmap that represents our evaluation function, where kH =
kS = kL = 1/3 of the analytical dataset (129 × 129 × 129). The value for μ was
increased by 10 increments ranging from 10 to 50. The value for η was increased by
0.005 increments, and its range was set so that the field interval that emphasizes the
critical field value does not exceed the adjacent representative field values. The cells
surrounded by the black box and the white box represent the minimum value and the
maximum value of the corresponding entropy, respectively. Figures 9b, c show the
best and worst visualization results. The values ofμ and η in the best case are 30 and
0.035, respectively; in the worst case, they are 10 and 0.005. Moreover, in the best
case, the value of our evaluation function is 0.88; in the worst case, it is 0.79. In this
example, the images in the worst cases are darker than the images representing the
best cases. By introducing our evaluation mechanism, we can automatically obtain
an appropriate visualization result, which is well balanced among hue, saturation,
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Fig. 9 Entropy heatmap of E and the best and worst visualization results of the analytical dataset.
We can automatically obtain an appropriate visualization result referring to the entropy heatmap.
(a) Entropy heatmap of E (kH = kS = kL = 1/3). (b) Best (μ = 30, η = 0.035). (c) Worst
(μ = 10, η = 0.005)

and luminance, from the entropy heatmap, as shown in Fig. 9a. Note that μ and η in
the best case were used to obtain Fig. 6.

5.2 Processing Speed

In our method, the time required for the transfer function design, excluding the VST
extraction, was 0.01 CPU seconds for any dataset throughout this paper. However,
the computation time required for VST extraction also increases as the dataset
size increases. Our extraction algorithm [12, 18] can adjust the accuracy of the
VST extraction with interactive operations, although it may take several minutes
to several tens of minutes of processing time in some cases. Though a discussion
of the extraction algorithm of the VST is beyond the scope of this paper, we had
to accelerate our algorithm to extract the topological structures from large-scale
datasets.

In order to shorten the processing time required for the VST extraction, it
is conceivable to use downsized datasets to obtain the VST and to reduce the
processing time. To visualize a large-scale dataset, we design the transfer function
based on the VST extracted from the downsized dataset and then visualize the
original large dataset using that function. The experiments presented in Sect. 4.2
that similar visualization results can be obtained even if the VST extracted from the
downsized dataset is used.

Figure 10 shows the VST and the visualization result of the stag beetle dataset
(832 × 832 × 494) [19], which emphasizes the critical isosurfaces. The VST was
extracted from the small stag beetle dataset (208 × 208 × 123) and simplified until
the number of the critical points became 14. As the image illustrates we can obtain
an effective visualization result even if the transfer function is designed based on
the VST extracted from the downsized dataset.
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Fig. 10 VST, visualization result, and transfer function of the stag beetle dataset. We can obtain
effective visualization results even if the transfer function is designed based on the VST extracted
from the downsized dataset. (a) VST. (b) Visualization result. (c) Transfer function

6 Conclusion

In this paper, we proposed a method to define the opacity values of topology-
accentuated transfer functions. Controlling the height and width of the hat functions
made it possible to emphasize the feature isosurfaces regardless of the kind of
dataset. According to our empirical evaluations so far, μ and η should range
from 10 to 50 and from 0.01 to 0.05, respectively, because the internal structure
becomes invisible outside of the range in many cases. Our multi-dimensional
transfer function is also able to more clearly emphasize the inner structures in
a target dataset. In addition, our empirical evaluations suggest that the proposed
transfer function design can automatically provide guaranteed results regardless of
the size of the target dataset and the LoD of the VST. Furthermore, by introducing
the evaluation function with different combinations of color components, we can
anticipate appropriate visualization results based on users’ preferences.

The present transfer function design can incorporate sampling distance as a
variable of its definition in order to determine the region to be emphasized around
accentuated isosurfaces. In order to evaluate the effects of the designed transfer
functions in more detail, we will apply them to more complicated and larger
datasets in future studies. Moreover, we should take up the challenge of considering
parameter settings for a multi-dimensional transfer function based on multi-variate
topological structures [20].
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