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Abstract A thorough understanding of discrete optimization problem instances is
the foundation for the development of successful solving strategies. For this, the
analysis of search spaces is a valuable tool. In particular, networks of solutions—
referred to as search landscapes—are used in research. Because of the large
number of solutions, topological analysis methods are typically restricted to much
smaller problem instances than instances that occur in practical applications. In
this paper we present a coarse-grained abstraction of search landscapes—the meta
landscape—that is accessible for a complete analysis, can be computed easily
and preserves relevant properties of the original search landscapes. Thus, detailed
topological analysis and visualization become available for problem instances of
realistic sizes. We demonstrate the use of our method for search spaces of more
than 1050 solutions.

Keywords Combinatorial optimization · Fitness landscapes · Topological
analysis · Barrier trees

1 Introduction

Combinatorial optimization is a challenging task. One reason is the large search
space of typical optimization problems. Therefore, a better understanding of large
search spaces is of high interest, but difficult to obtain. It would be helpful if humans
could use their visual pattern detection abilities to derive structural properties of
search spaces. The knowledge about such properties can then be used to design
good (meta-)heuristics for the problem. However, such a visual inspection requires a
visualization of the search space. Obviously, any direct visualization of all solutions
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is usually impossible since even small problems, e.g., the Traveling Salesman
Problem with n ≥ 13 cities, have more solutions than there are pixels on any screen.

Research has found ways of obtaining a structure-preserving, coarse representa-
tion of the search space. In this paper we present a novel approach that relies on
a massive and implicit collapse of parts of the search space. The method exploits
structural properties of the solution set and the chosen search operator, but is
independent of the cost function of the optimization problem. The solutions are
partitioned into a manageable number of well-describable subsets. On top of them,
the coarse-grained meta landscape is constructed that approximates the original
search space. The meta landscape is small enough such that complete (topological)
analyses are feasible. This enables the use of established visualization techniques
like dPSO-Vis [18] for the investigation of the search space.

We present a precise mathematical definition of the meta landscape and discuss to
what extent topological properties of the meta landscape correspond to topological
properties of the original search space. We further discuss how approximate
meta landscapes can be constructed for problem instances that are too large
for an exhaustive search. Finally, we present and discuss different heuristics for
constructing approximate meta landscapes that reveal different aspects of the search
space. For the examples of the Traveling Salesman Problem (TSP) and the Quadratic
Assignment Problem (QAP), we show how the proposed method can be used in
practice to analyze optimization problem instances.

2 Foundations and Related Work

In this section, the mathematical foundations of this work are introduced and related
work is reviewed.

2.1 Discrete Optimization Problems

A discrete optimization problem (also called combinatorial optimization problem)
is to find the best solution out of a finite set of solutions X where the quality of a
solution is determined by a cost function f : X → R, so that x ∈ X is better than
y ∈ X if f (x) < f (y). Thus, solving a discrete optimization problem is equivalent
to finding the global minimum of f . For many discrete optimization problems the
set of solutions can be characterized easily, but its size is so large that a complete
enumeration is infeasible even for small problem sizes. Many practically relevant
discrete optimization problems are NP-hard [5].

Common types of discrete optimization problems are subset problems and per-
mutation problems. Subset problems, like the maximum binary variable saturation
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problem (MAXSAT), are defined on the power set X over the finite set {1, . . . , n}, or
equivalently over the set of all binary strings of length n, i.e., |X| = 2n. Permutation
problems are defined on the set X of permutations of size n, i.e., |X| = n!. Examples
are the Traveling Salesman Problem (TSP) and related vehicle routing problems, job
scheduling problems and the Quadratic Assignment Problem (QAP) [5].

The techniques that are proposed in this paper are, in principle, applicable to
any type of discrete optimization problem. However, we restrict our presentation to
permutation problems and use the TSP and the QAP as particular examples.

The symmetric TSP is: Given a set of n cities and distances dij = dji between
cities 1 ≤ i, j ≤ n, the task is to find the shortest round-trip that visits all cities
exactly once. A round-trip can be modeled as a permutation π , where π(i) is the
city at the i-th position of the round-trip. Then, fT SP (π) = ∑n−1

i=1 dπ(i),π(i+1) +
dπ(n),π(1) is the length of a tour. There is no distinguished “first” city, and since
dij is symmetric, the direction of the round-trip is not important. Thus, there are
(n − 1)!/2 equivalence classes of solutions.

The QAP is: given are n facilities with a flow Fij between facilities i and j and n

locations with distances dij , 1 ≤ i, j ≤ n. Then, a mapping π of the facilities to the
cities is to be found, such that fQAP (π) = ∑n

i=1
∑n

j=1 Fij · dπ(i)π(j) is minimized.
The QAP does not exhibit any symmetries in general, so that n! equivalence classes
of permutations are needed to represent all possible solutions.

2.2 Search Landscapes

The notion of landscapes was first presented in 1932 by Sewall Wright [21] as fitness
landscapes to model evolutionary processes. The concept has been used many times
to study optimization [1, 6, 12, 16, 18, 19]. A (fitness) landscape L(X,N, f ) consists
of a finite set X, a neighborhood relation N ⊂ X × X, and a function f : X → R

[12]. Depending on the context, f is called fitness function, energy function, or
cost function. N induces a graph structure on the set of nodes X. Thus, landscapes
can also be defined by a pair (GX,N , f ) for a function f : X → R and graph
GX,N = (X,N) with vertex set X and edge set N [3]. Landscapes are a valuable tool
for the study of local search algorithms [12] where the neighborhood of the local
search algorithm defines the edge set of the graph. In practice, the neighborhood
is often modeled by means of a search operator Δ, that is a collection of operator
functions δ : X → X [15]. Then, (x, y) ∈ N ⇐⇒ ∃δ ∈ Δ such that δ(x) = y.

For a combinatorial optimization problem with set of solutions X, cost function
f , and a local search algorithm with neighbourhood N the corresponding search
landscape is L(X,N, f ) = (GX,N , f ). In this paper we assume without loss of
generality that the graph is connected and consider only symmetric neighbourhoods.
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2.3 Landscape Analysis

Landscape analysis is used in different fields of research and various analysis
methods have been developed (see [12] for a comprehensive survey). Of particular
interest is the investigation of barriers between local minima. Together with the
concept of basins of attraction, barriers can be used to structure a landscape
topologically. This gives rise to the barrier tree that was described in detail by
Flamm et al. [3]. It is a rooted tree that has the local minima and saddle points of the
landscape as its nodes and the hierarchical relations between them are represented
by the edges. A major drawback of the barrier tree is that it can only be applied if
all local minima and all barriers are known. To find them it is often necessary to
completely enumerate at least the part of the landscape below a particular barrier.
Thus, the barrier tree is often limited to the analysis of smaller problem instances,
e.g., TSP instances with up to 13 cities (2.4 · 108 solutions).

A different approach for the analysis of search landscapes is the computation
of the auto-correlation of random walks, as done in [16], and the investigation of
distances between local minima, as done in [4, 13]. Both approaches indirectly
reveal some structural properties of the search landscape of TSP instances. While
not requiring a complete enumeration of all solutions, these approaches have the
drawback that no comprehensive topological structure of the search landscape
is determined. Only indications about the shape of the search landscape can be
obtained. The methods have been applied to problems instances up to approximately
400 cities [4, 16].

Local Optima Networks (LON) [8, 10, 11] have been introduced to investigate
search methods. The idea is to reduce the search space to a (sampled) selection
of local minima. The connectivity is defined through means of a so called escape
perturbation operator that mutates a local optimum in an attempt to escape from
its basin of attraction. Being defined on minima, LONs do not provide context for
arbitrary solutions in the search space. Although topological analyses are possible
on LONs [7], the results only describe the behavior of the escape operator on the set
of local optima in the search landscape with respect to the search operator.

In this work, we propose a method that allows to approximate the topological
structure for search landscapes that cannot be enumerated completely. It applies to
single-operator landscapes and incorporates all solutions of the search space.

2.4 Landscape Visualization

There exist direct visualization approaches that place individual landscape nodes
in the Euclidean plane by using multidimensional scaling techniques. This can be
based, e.g., on the probability of transitions between solutions [9], or on distances
within the landscape [20]. Potential disadvantages of these approaches comprise the
error inherent to projection techniques as well as the reliance on samples of the
landscape.
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There exist also topological visualization approaches. A graph layout of the bar-
rier tree is used, e.g., by Hallam and Prügel-Bennet [6]. In this work, we build upon
the visualization tool dPSO-Vis by Volke et al. [18, 19]. In the latter approach, a 1D
height function is computed that has the same barrier tree as the original landscape.
The focus of that work was the study of folding landscapes of RNA molecules, but
the idea has also been applied to study search operators for the TSP [1].

3 Coarse-Grained Search Landscapes: The Meta Landscape

A main problem with search landscapes of combinatorial optimization is the
exponential number of landscape nodes. This makes a topological analysis
infeasible even for problem instances of small size. We tackle this problem by
creating a coarse-grained abstraction of the search landscape that is amenable to
complete computational analysis. In the following, we define the meta landscape
that is the foundation for the coarse-graining. Then, some properties of meta
landscapes and how their topology relates to the topology of the original search
landscape are discussed.

3.1 Definition

Given a search landscape L(X,N, f ), we introduce the meta landscape
L(X̃, Ñ, f̃ ). Basically, the approach can be regarded as a simplification of the
search landscape by means of collapsing edges. Formally, a meta solution X̃ ⊂ X

is defined as a set of solutions where the subgraph G[X̃] of the neighborhood graph
with vertex set X̃ is connected. A set of meta solutions X̃ ⊂ 2X represents X if X̃ is
a partition of X, i.e., the meta solutions are pairwise disjoint and together cover X:⋃

X̃∈X̃ X̃ = X.

We define a neighborhood relation Ñ between meta solutions by (X̃, Ỹ ) ∈
Ñ ⇐⇒ ∃x ∈ X̃, y ∈ Ỹ : (x, y) ∈ N . The cost function f is transferred to the
meta solutions by constructing the function f̃ : X̃ → R, X̃ 
→ min{f (x) | x ∈ X̃}.
Thus, every meta solution is represented by the local optimum that it contains.
Now, L(X̃, Ñ, f̃ ) = (GX̃,Ñ

, f̃ ) is called meta landscape. Observe, that the meta
landscape is itself a search landscape, so that topological analysis approaches for
search landscapes can be applied to meta landscapes as well.

3.2 Properties

Meta landscapes have some useful properties which indicate that meta landscapes
can be considered a valid topological compression method for search landscapes.
First, we note that for a maximal partition of X, i.e., ∀X̃ : |X̃| = 1, the meta
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landscape is equivalent to the original search landscape and thus possesses the
same barrier tree. Hence, the approximation through the meta landscape converges
towards exactness with the degree of its granularity. If the partition is coarse-
grained, the meta landscape conceals topological features of the search landscape.
The following theorem shows a relation between the local minima of a meta
landscape and the local minima of its underlying landscape.

Theorem 1 Every local minimum of the meta landscape contains at least one local
minimum of the original search landscape and this local minimum is the minimal
solution contained in the meta solution.

Proof Consider a local minimum M̃ from the meta landscape and let m ∈ M̃ be the
solution from M̃ that has the smallest value of f . Hence, f̃ (M̃) = f (m). Suppose
that m is not a local minimum in L(X,N, f ). Then, a solution s ∈ X exists with
f (s) < f (m) and (m, s) ∈ N . By the construction s �∈ M̃ . Hence, there exists a
meta solution S̃ �= M̃ with s ∈ S̃. From (m, s) ∈ N follows (M̃, S̃) ∈ Ñ , and from
f (s) < f (m) we have f̃ (S̃) ≤ f (s) < f (m) = f̃ (M̃). Thus, M̃ is not a local
minimum in the meta landscape, which is a contradiction and the result follows.

Note that there is no guarantee that all local minima of the original search
landscape are contained in different meta solutions. Thus, a meta landscape can
contain significantly fewer local minima than the original search landscape.

The barrier tree is defined with the concept of saddle height [3]. The saddle height
between two minima m1 and m2 is the minimal cost h(m1,m2), such that m1 and m2
are still in the same connected component of the subgraph of the search landscape
consisting only of the solutions {x ∈ X | f (x) ≤ h(m1,m2)}. The following
theorem shows how saddle height in the meta landscape is related to saddle height
in the original landscape:

Theorem 2 The saddle height in the meta landscape is a lower bound for the saddle
height in the original search landscape.

Proof Consider two local minima m1 and m2 in the search landscape. If there exists
a single meta solution M̃ that contains both m1 and m2 then the saddle height
h̃(M̃, M̃) is bounded by min{f (m1), f (m2)} and thus, h̃(M̃, M̃) ≤ h(m1,m2).
Now consider the case that there exist two meta solutions M̃1 and M̃2 with m1 ∈ M̃1
and m2 ∈ M̃2. Consider a path p between m1 and m2 in the original search
landscape with maxs∈p(f (s)) = h(m1,m2). Path p induces a path p̃′ in the meta
landscape by replacing every solution in p with the meta solution that contains it
(and by contracting subpaths where all nodes are equal to a same single node).
By construction of the meta landscape, the maximal value of f along path p̃′ is less
than or equal to h(m1,m2). Then, h̃(M̃1, M̃2) ≤ maxs̃∈p̃′(f̃ (s̃)) ≤ maxs∈p(f (s)) =
h(m1,m2).

For investigators of search landscapes, this is important as it allows to draw
conclusions about the non-existence of connections below a fixed cost value. The
meta landscape might suffer from false positives, i.e., it may show connections when
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there are none. But there are no false negatives, so that statements about separation
in the meta landscape are also valid in the original search landscape.

3.3 Relaxation

In practice, the cost function f̃ cannot be determined exactly without solving the
optimization problem. But then an approximation of f̃ might help. We formalize
the approximation by allowing for a maximal deviation from the exact values.
The relaxed cost function rf̃ : X̃ ∈ X̃ → R is required to satisfy ∀X̃ ∈ X̃ :∣
∣
∣f̃ (X̃) − rf̃ (X̃)

∣
∣
∣ < ε/2 for some ε > 0.

Relaxed cost functions correspond to so-called ε-approximate solutions [5],
which are available for many optimization problems. The relaxation makes it much
harder to draw reliable conclusions from the meta landscape. For the discussion, we
introduce the notion of persistence of a minimum as the strength of a perturbation
of the cost function that is needed to eliminate the local minimum. This roughly
corresponds to the cost difference between the local minimum and a saddle that
connects a local minimum with lower costs.

Every minimum of the relaxed meta landscape with a persistence of at least ε

is still guaranteed to contain a minimum of the original search landscape. Also, the
saddle heights can only be interpreted with an additional uncertainty of ε. Thus, two
solutions m1 and m2 are guaranteed to have no connection below a cost value c in
the search landscape, if they have no connection below a cost value of c + ε in the
meta landscape.

4 Meta Landscapes for Permutation Problems

The use of the meta landscape approach to analyze a search space requires
addressing two problem-specific tasks. First, the meta solutions have to be defined
in a way that allows to compute the neighborhood relation and the optimal cost
value within each meta solution efficiently. Clearly, this depends on the specific
optimization problem and the used search operators. Second, the approximation
quality of the meta landscape depends on the particular partition of the solutions into
meta solutions. In a sense, the quality improves with the granularity of the partition.
Thus, the number of meta solutions should be chosen as large as possible while still
retaining computational feasibility for both the generation of the meta landscape and
its analysis. Further, the partition has to preserve important topological features of
the search landscape. Consequently, structures with particularly important features
should be placed into different meta solutions. This is a very important property for
analysis applications, although it is difficult to guarantee in the individual case and
requires profound domain knowledge.
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For solving the first task we introduce in the following the permutation tree that
allows to easily generate meta solutions for permutation problems. To address the
second task, we demonstrate how to control the generation of meta solutions in a
way that can be tailored towards specific analysis goals by domain experts, e.g., by
applying a heuristic.

4.1 Permutation Trees

For the convenient generation of partitions of the set of permutations of size n,
we organize the permutations into a tree structure PT (n) with a height of n (cf.
Fig. 1). The tree is called permutation tree for further reference. It is a decision tree
where at each level one position in the permutation is set. Thus, each leaf of the tree
represents one permutation of size n. In practice, this tree is pruned so that in case of
symmetries in the cost function of the permutation problem every equivalence class
is only present once in the tree.

Every subtree of the permutation tree represents the set of permutations that
match in the positions that have been fixed further up in the permutation tree, and
differ in the remaining positions. In the following, we characterize each such set
of permutations by its fixed, or equivalently by its variable positions. Every set
of mutually disjoint subtrees that together include all leaves of the permutation
tree, represents a partition of the set of permutations. Thus, we can identify meta
solutions with subtrees of the permutation tree.

If we remove a set of k edges from PT (n), the tree is decomposed into k + 1
connected components, each of which possibly contains some leaf nodes of PT (n).
Components without leaf nodes are discarded. Thus, each such edge set defines a
partition of permutations. Likewise, every partition of permutations can be identified
with a set of edges that would decompose PT (n) into the corresponding subtrees.

To obtain sets of permutations that are well-suited for use in meta landscapes,
we require that for every level i of the permutation tree the variable positions of the

/0

1 2 . . . n

. . . 1 3 . . . n . . .

. . . . . .

5

position 1

position 2

position 3

position n

set of permutations
1 ? ? ? ?

permutation
2 3 4 1 5

Fig. 1 Permutation tree PT (n). At every level of the tree, one position in the permutations is fixed
to the specified element. Every leaf of the tree represents one permutation. A subtree corresponds
to a set of permutation that agree at the fixed positions and differ at the remaining ones
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permutations form a consecutive range of indices pi+1, . . . , pn. Given a solution x

that belongs to the meta solutions X̃, we consider its set of neighbors Nx = {y ∈ X |
(x, y) ∈ N} and investigate the cardinality of Nin

x = Nx ∩ X̃ and Nout
x = Nx \ X̃.

We want Nin
x to be maximal, so that connectivity within a meta solution is as strong

as possible. At the same time, we want Nout
x to be minimal, so that meta solutions

are as separated from each other as possible.
Consider a meta solution X̃ with i fixed positions and k = (n − i) consecutive

variable positions. For three common operators on permutations—consecutive
swaps, interchange of two positions, 2opt (for details see Schiavinotto et al. [15])—
we obtain the following quantities:

Operator |Nin
x | |Nout

x |
Consecutive swap k − 1 n − k

Interchange, 2opt (k · (k − 1))/2 (n · (n − 1) − k · (k − 1))/2

These numbers are optimal for sets of permutations with i fixed positions. When
changing the partitioning scheme and allowing non-consecutive variable positions in
the permutations, we end up with much worse ratios in particular for the consecutive
swap and the 2opt operators.

4.2 Heuristic Generation of Partitions by Branching

The generation of a partition by cutting a number of edges in the permutation tree
facilitates a branching approach to define and refine such partitions. Initially, we
select the out edges of the root node for cutting (cf. Fig. 2). Then, we iteratively
select one of these edges and branch it, i.e., we replace it by the out edges of its
target node. This is repeated until a partition of sufficient resolution is generated,
such that the number of meta solutions stays manageable and at the same time the
size of the meta solutions is small enough to provide a meaningful approximation

=⇒

Fig. 2 Branching step in a permutation tree. Initially (left side), some edges (dashed) are selected
for cutting. Among these, a branching candidate is determined (circled edge). In the branching step
(right side), this candidate is replaced by the outgoing edges of its target
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of the original landscape. The process of selecting edges for further refinement can
be steered heuristically with respect to the needs of the expert.

For a general analysis of the search landscape, we propose the following
branching criteria:

• Branch evenly: Branching is performed so that the resulting meta solutions have
nearly equal size.

• Branch by cost: For every meta solution a lower bound for the optimal solution
in the meta solution is computed. The meta solution with the lowest bound is
branched.

• Branch by cost range: For every meta solution we compute a lower bound and
an upper bound. The meta solution with the largest difference between upper and
lower bound is branched.

Branching criteria can also be combined, e.g., a smaller size of a meta solution can
be weighted against lower costs of a meta solution. However, it seems reasonable
to restrict the branching to meta solutions that have a certain minimum size, so that
too small meta solutions are avoided.

Furthermore, for an analysis of a landscape it might be interesting to incorporate
the global optimum into the branching. In that case the optimum needs to be
known or determined beforehand by using an exact solving method. Then, the
global optimum can be pre-branched by iteratively branching the meta solution that
contains the global optimum until the meta solution falls under a certain size.

5 Results

In this section, we investigate of the proposed meta landscape experimentally and
show how it can be applied to TSP and QAP instances. We present the results
by using a topological visualization tool for meta landscapes that is a variant of
the tool dPSO-Vis [18] with the visual modifications of Bin et al. [1]. dPSO-Vis
computes a one-dimensional landscape outline that has the same barrier tree as the
meta landscape. We compensate for the differing sizes of the meta solutions by
introducing a width for every solution into the visualization (dPSO-Vis considers
only individual solutions that naturally are of equal size). As every solution is laid
out in an individual horizontal interval, this can be easily achieved by scaling these
intervals so their size is proportional to the size of the meta solution. This makes
the layout of the topological landscape more robust against changes of the applied
branching. It also allows the visual comparison of the visual sizes of different
landscape parts—particularly of topological substructures—even if the sizes of the
individual meta solutions differ.
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5.1 Validation of the Approach

Though we have some theoretical results pertaining to the correctness of the
topological approximation with the meta landscape, the quality and amount of
detail can only be verified experimentally. For that purpose, we considered small
TSP instances with at most 12 cities, so that the complete search landscape was
available as a ground truth. The results are demonstrated with the example of a 10-
city problem that was generated by randomly placing cities in the plane (cf. Fig. 3).
A general drop in the overall landscape height can be observed when using large
meta solutions. This is an effect of using the local optimum within a meta solution
as the reference cost value for the whole meta solution. However, even when using a
meta landscape with only few meta solutions the most persistent topological features
are preserved.

5.2 Branching Strategies

We show the results of different branching strategies (cf. Sect. 4.2) for the example
of the 52 city TSP instance berlin52 from the TSPLIB [14]. We expect a complex
topology, because of the huge magnitude of the search space for this instance.
Extrapolating experiences with smaller problem instances, we also expect that no
branches in the barrier tree occur outside a small percentage of the best solutions.
To estimate the minimal costs within each meta solution, we used the branch-and-
bound scheme of Volgenant and Jonker [17].

Figure 4 shows the meta landscapes for the different branching strategies. The
meta landscapes differ in the number of branches and the resolution within the
interesting parts of the landscape. From the visual size of the meta solutions and

Fig. 3 Interchange operator landscapes of a randomly generated TSP instance with 10 cities
(181 440 solutions). Only the lower part of the search landscape is shown as higher parts are
topologically not so interesting. The meta landscape were constructed by cutting the permutation
tree at the 7-th and 5-th level, respectively, resulting in 30,240 and 1512 meta solutions. (a)
Ground truth from complete enumeration. (b) 7 levels of the permutation tree. (c) 5 levels of the
permutation tree
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Fig. 4 Swap operator landscapes of the berlin52 instance from the TSPLIB [14] that have been
generated with different branching strategies (cf. Sect. 4.2). The complete landscape contains 7.76·
1065 solutions. All meta landscapes consist of 50,000 meta solutions with at least 3 and at most 17
fixed permutation positions. Only the topologically relevant part is shown here

their cost values, it can be seen that some branching strategies generate too many
meta solutions in parts of the landscape that can be considered as less interesting,
i.e., parts with solutions of high costs. This is particularly visible for the strategies
branching by cost values and branching evenly. Branching by cost, however, is able
to detect a high number of local minima, so that it appears reasonable to include
some cost-related metric into the branching. A combined branching strategy that
allows level differences between different parts of the permutation tree in relation
to the corresponding cost differences (depth/cost combination in Fig. 4) results in
the more balanced images and also tends to reveal most branches around the global
optimum when compared to other branching strategies. A minimization of the cost
intervals for each meta solution appears reasonable from a theoretical point of view
(we gain a well-defined persistence per meta solution). However, it does not perform
as well as the depth/cost combination. We tested pre-branching the global optimum
for the cost/depth combination and the cost range strategy. In both cases, a slightly
better focus on the near-optimal part of the landscape can be noticed, but the effect
is not very strong.

While the figure shows results for only one example instance, it should be noted
that similar differences between the branching strategies have also been found for
other TSP instances. Therefore, we suggest to use branching strategies that combine
different criteria, e.g., the depth/cost combination, or a branching by cost ranges,
and to omit pre-branching.
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Fig. 5 Landscapes of the problem instances tai30a and tai30b from the QAPLIB [2]. The
landscapes have been created with the same parameter set, using branching by a combination of
cost and depth with a size of 50,000 meta solutions

5.3 Comparison of QAP Instances

Ongoing research tries to categorize QAP instances in order to identify structural
properties of them [7], as there can be huge differences between instances. There
exist small, but still not optimally solved problem instances, e.g., instance tai30a
of Taillard (included in the QAPLIB [2]). However, for the similar instances tai30b
which is the sibling instance in the QAPLIB, the global optimum is known. We
computed and compared meta landscapes for these two instances. As no well-
performing branch-and-bound algorithm for QAP is available, we used probing with
multiple local searches to estimate the cost minimum within each meta solution.

Figure 5 contrasts the meta landscapes of both instances. Instance tai30a
possesses a much more complicated barrier tree than tai30b. There are many local
minima with nearly equal persistence. There also appears a plateau-like structure
in the landscape which is indicated by the almost horizontal part of the landscape
in the center and the right of the landscape visualization. All this indicates that a
bad performance of local search is to be expected. Differently, tai30b contains only
few local minima, which also branch away at well-separated cost values. Further,
the shape of the fitness landscape might be an indicator for individual structural
properties that could be exploited for a well-performing search algorithm.

6 Conclusion

In this paper the concept of meta landscapes was proposed as a well-defined coarse-
grained representation of search landscapes. Some properties were shown that allow
an interpretation of meta landscapes and to transfer the results back to the original
search landscape. Some advice for the computation and usage of meta landscapes
was given. In particular, we demonstrated how a heuristically controlled branching
scheme could be used to define an application-specific meta landscape.

Since meta landscapes are completely enumerable, topological methods like the
barrier tree can be applied to it. Then, topological visualization methods, like dPSO-
Vis [18, 19] that build upon the barrier tree, can be used to visually analyse the
search landscape. The approach makes permutation problem instances with sizes



68 S. Volke et al.

over 50 accessible for a (visual) analysis of the topological structure of their search
landscapes. Thus, the sizes of analyzable search landscapes are increased by several
orders of magnitude in comparison to completely enumerable landscapes. This was
demonstrated for the example of the TSP and the QAP.

In future work, we want to focus on improved branching strategies for parti-
tioning the search landscape since the branching strategy has a strong influence on
the quality of the meta landscape. One possibility would be to pre-sample local
minima and to incorporate their distribution within the search landscape into the
branching. Also, theoretical results about the quality of the branching are missing.
In this paper we focused on permutation problems. However, for subset (or bitstring)
problems like MAXSAT, a decision tree can be defined that is similar in structure
to the permutation tree. The branching strategies are not dependent on the solutions
being permutations, so that the approach should be applicable to subset problems
with minimal adaptation. Here, we expect to be able to analyze problems of a size
up to 225 variables as these possess similar landscape sizes.
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