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Abstract Topological data analysis is becoming increasingly relevant to support
the analysis of unstructured data sets. A common assumption in data analysis is that
the data set is a sample—not necessarily a uniform one—of some high-dimensional
manifold. In such cases, persistent homology can be successfully employed to
extract features, remove noise, and compare data sets. The underlying problems
in some application domains, however, turn out to represent multiple manifolds
with different dimensions. Algebraic topology typically analyzes such problems
using intersection homology, an extension of homology that is capable of handling
configurations with singularities. In this paper, we describe how the persistent
variant of intersection homology can be used to assist data analysis in visualization.
We point out potential pitfalls in approximating data sets with singularities and give
strategies for resolving them.

1 Introduction

The manifold hypothesis is a traditional assumption for the analysis of multivariate
data. Briefly put, it assumes that the input data are a sample of some manifold M,
whose intrinsic dimension d is much smaller than the ambient dimension D.
Typical examples of this assumption are found in dimensionality reduction algo-
rithms [22, 25]. For certain applications, such as image analysis [10] or image
recognition [15], we already know this hypothesis to be true—at least with respect
to the models that are often used to describe such data. For other applications, there
are strategies [13, 19] for testing this hypothesis provided that a sufficient number
of samples is available.
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Fig. 1 (a) The structure of a central “core” with “flares” emanating from it appears in many data
sets (here, 2-year growth rates of Standard & Poor’s 500 vs. the U.S. CPI with the core shown
in red and one example flare shown in blue). (b) The corresponding persistence diagram shows
topological features in dimension zero (red) and dimension one (blue)

The practice of multivariate data analysis seems to suggest something else,
though: Carlsson [4], for example, remarks that many real-world data sets exhibit
a central “core” structure, from which different “flares” emanate. Figure 1 illus-
trates this for a simple 2D data set, generated from 2-year growth rates of
Standard & Poor’s 500 vs. the U.S. CPI. This structure is irreconcilable with the
structure of a single manifold. Novel data analysis algorithms such as MAPPER [24]
account for this fact by not making any assumptions about manifold structures and
attempting to fit data in a local manner—a strategy that is also employed in low-
dimensional manifold learning [23].

In this paper, we argue that some real-world data sets require special tools to
assess their structure. Just as persistent homology [11, 12] was originally developed
to analyze samples from spaces that are supposed to have the structure of a
manifold, we need a special tool to analyze spaces for which this assumption
does not hold. More precisely, we will tackle the task of analyzing spaces that
are composed of different manifolds (with possibly varying dimensions) using
intersection homology [16] and persistent intersection homology [1, 2]. To make
it accessible to a wider community of researchers, we devote a large portion of this
paper to explaining the theory behind persistent intersection homology. Further-
more, we discuss implementation details and present an open-source framework
for its calculation. We also describe pitfalls in “naive” applications of persistent
intersection homology and develop strategies to resolve them.
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2 Background

We first explain the mathematical tools required to describe spaces that are not
composed of a single manifold, but of multiple ones. Next, we introduce (persistent)
intersection homology, give a brief algorithm for its computation, and describe how
to use it to analyze real-world data sets.

2.1 Stratifications

Stratifications are a way of describing spaces that are not a manifold per se, but
composed of multiple parts, each of which is a manifold. A common example of
such a space is the “pinched torus”, which is obtained by collapsing (i.e., pinching)
one minor ring of the torus to a single point. Figure 2a depicts an example. The
neighborhood of the pinch point is singular because it does not satisfy the conditions
of a manifold: it does not have a neighborhood that is homeomorphic to a ball. If
we remove this singular point, however, the remaining space is just a (deformed)
cylinder, i.e., a manifold. Permitting the removal of certain parts of a space may
thus be beneficial to describe the manifolds it is composed of. This intuition leads
to the concept of stratifications.

Let X ⊆ Rn be a topological space. A topological stratification of X is a filtration
of closed subspaces

∅ ⊆ X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xd−1 ⊆ Xd = X, (1)

such that for each i and every point x ∈ Xi \Xi−1 there is a neighborhood U ⊆ X of
x, a compact (n− 1 − i)-dimensional stratified topological space V, and a filtration-
preserving homeomorphism U � Ri × CV , where CV denotes the open cone on
V , i.e., CV := V × [0, 1)/(V × {0}). We refer to Xi \ Xi−1 as the i-dimensional
stratum of X. Notice that it is always a (smooth) manifold, even though the original

(a) (b)

Fig. 2 (a) The “pinched torus” is a classical example of an object that is not a manifold but
composed of parts that are manifolds, provided the singular point that is caused by the “pinch”
is ignored. (b) The singular point is readily visible when calculating mean curvature estimates
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space might not be a manifold. Hence, this rather abstract definition turns out to be
a powerful description for a large family of spaces. There are some stratifications
with special properties that are particularly suited for analyzing spaces. Goresky
and MacPherson [14], the inventors of intersection homology, suggest using a
stratification that satisfies Xd−1 = Xd−2 so that the (d − 1)-dimensional stratum is
empty, i.e., Xd−1 \ Xd−2 = ∅.

2.2 Homology and Persistent Homology

Prior to introducing (persistent) intersection homology, we briefly describe sim-
plicial homology and its persistent counterpart. Given a d-dimensional simplicial
complex K, the chain groups {C0, . . . , Cd} contain formal sums (simplicial chains)
of simplices of a given dimension. A boundary operator ∂p : Cp → Cp−1 satisfying
∂p−1 ◦ ∂p = 0 (i.e., a closed boundary does not have a boundary itself) then permits
us to create a chain complex from the chain groups. This results in two subgroups,
namely the cycle group Zp := ker ∂p and the boundary group Bp := im ∂p+1, from
which we obtain the pth homology group as

Hp := Zp/Bp, (2)

where the /-operator refers to the quotient group. Intuitively, elements in the cycle
group Zp constitute sets of simplicial chains that do not have a boundary, while
elements in the boundary group Bp are the boundaries of higher-dimensional
simplices. By removing these in the definition of the homology group, we obtain
a group that describes high-dimensional “holes” in K.

Homology is a powerful tool to discriminate between different triangulated
topological spaces. It is common practice to use the Betti numbers βp, i.e., the
ranks of the homology groups, to obtain a signature of a space. In practice, the Betti
numbers turn out to be highly susceptible to noise, which prompted the development
of persistent homology [11]. Its basic premise is that the simplicial complex K is
associated with a filtration,

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K, (3)

where each Ki is typically assigned a function value, such as a distance. The
filtration induces a homomorphism of the corresponding homology groups, i.e.,
f

i,j
p : Hp(Ki ) → Hp(Kj ), leading to the definition of the pth persistent homology

group H
i,j
p for two indices i ≤ j as

H
i,j
p := Zp (Ki ) /

(
Bp

(
Kj

) ∩ Zp (Ki )
)
. (4)
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This group contains all the homology classes of Ki that are still present in Kj . It is
possible to keep track of all homology classes within the filtration.

The calculation of persistent homology results in a set of pairs (i, j), which
denote a homology class that was created in Ki and destroyed (vanished) in Kj .
Letting fi denote the associated function value of Ki , these pairs are commonly
visualized in a persistence diagram [6] as (fi, fj ). The distance of each pair to the
diagonal, measured in the L∞-norm, is referred to as the persistence of a topological
feature. It is now common practice in topological data analysis to use persistence
to separate noise from salient features in real-world data sets [11, 12]. Figure 1b
shows the persistence diagram of an example data set. Since the data set, shown in
Fig. 1a, appears to be a “blob”, the persistence diagram, as expected, contains few
topological features of high persistence in both dimensions.

2.3 Intersection Homology and Persistent Intersection
Homology

Despite its prevalence in data analysis, persistent homology exhibits some limita-
tions. In the context of this paper, we are mostly concerned with its lack of duality
for non-manifold data sets, and with its inability to detect topological features of
data sets consisting of multiple manifolds.1 Recall that for a d-manifold, Poincaré
duality means that the Betti numbers satisfy βk = βd−k . While it is possible
to extend persistent homology to obtain something similar for manifolds [7, 9],
there is no general duality theorem yet. Additionally, persistent homology cannot
detect manifolds of varying dimensionality that are “glued together” in the manner
described in Sect. 2.1. For example, we could model the data set from Fig. 1, in
which we see a central “core” along with some “flares”, as a topological disk to
which we added multiple “whiskers”. The persistence diagram does not contain
evidence of any whiskers, so the data set will have the same persistence diagram as
a data set that only contains a topological disk. Carlsson [4] proposes to use filter
functions on the data to remedy this situation. While this helps detect the features, it
does not detect that the underlying structure does not consist of one single manifold.

Intersection homology faces these challenges by providing a homology theory
for such spaces with singularities. We follow the notation of Bendich [1, 2] here,
who provided a generic framework for calculating restricted forms of (persistent)
homology, of which intersection homology is a special case. In the following, we
require a function φ : K → {0, 1} that restricts the usage of simplices. We call

1We remark that topologically, this case can often be reduced to the computation of ordinary
homology, because a theorem of Goresky and MacPherson [14] ensures that for pseudomanifolds,
the intersection homology groups remain the same under normalization, and if they are nonsin-
gular, the intersection homology groups are ordinary homology groups. As it is not clear how to
obtain normalizations for real-world data, the calculation of persistent intersection homology is
necessary.
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a simplex σ proper or allowable if φ(σ) = 1. While φ(K) is not generally a
simplicial complex, we can use it to define a restriction on the chain groups of
K by calling a simplicial chain c ∈ Cp(K) proper or allowable if both c and ∂p c

can be written as formal sums of proper simplices. We refer to the set of allowable
p-chains as IφCp(K). Since ∂p−1 ◦∂p = 0, the boundary of an allowable p-chain is
an allowable chain of dimension p − 1, so the boundary homomorphism gives rise
to a chain complex on the set of allowable chains. We write IφHp(K) to denote the
pth homology group of this complex, and refer to it as the pth intersection homology
group. There is a natural restriction of φ(·) when K is filtrated, so we can define a
set of restricted persistent homology groups IφH

i,j
p in analogy to the definition of

the persistent homology groups.

2.3.1 Persistent Intersection Homology

To obtain intersection homology from this generic framework, we require a few
additional definitions: a perversity2 is a sequence of integers

p̄ = (p1, p2, . . . , pd−1, pd) (5)

such that −1 ≤ pk ≤ k − 1 for every k. Alternatively, following the original
definition of Goresky and MacPherson [14], a perversity is a sequence of integers

p̄′ = (p′
2, p

′
3, . . . , p

′
d−1, p

′
d) (6)

such that p′
2 = 0 and either p′

k+1 = p′
k or p′

k+1 = p′
k + 1. Both definitions permit

assessing to what extent a data set deviates from being a manifold. More precisely,
the perversity measures how much deviation from full transverse intersections (i.e.,
intersections of two submanifolds that yield another submanifold) are permitted
for a given simplicial complex. Each choice of perversity will yield a different
set of restricted (persistent) homology groups. We focus only on low-dimensional
perversities in this paper, with k ≤ 3. Finally, tying all the previous definitions
together, we define a function φ(·) for a given perversity and a given stratification:
a simplex σ is considered to be proper if

dim(σ ∩ Xd−k) ≤ dim(σ ) − k + pk (7)

holds for all k ∈ {1, . . . , d}. Intuitively, this inequality bounds the dimensionality of
the intersection of a simplex with a given subspace. We set dim(∅) := −∞ so that
simplices without an intersection are considered proper. Larger values for pk give
us more tolerant intersection conditions, whereas smaller values for pk make the

2See the unpublished notes by MacPherson on Intersection Homology and Perverse Sheaves,
available under http://faculty.tcu.edu/gfriedman/notes/ih.pdf, for the origin of this name.

http://faculty.tcu.edu/gfriedman/notes/ih.pdf


Persistent Intersection Homology for the Analysis of Discrete Data 43

A

(a) X0

A B

C

D

(b) X1 = K

Fig. 3 A simple example stratified space (b) for which simplicial homology is incapable of
detecting the additional “whisker”. The singular stratum (a) only consists of a single vertex, A

intersections more restrictive. This leads to persistent intersection homology groups
with a given perversity function.

2.3.2 Simple Example

Figure 3 shows a triangulation of a circle with an additional “whisker”. This
triangulation is in itself not a manifold: at vertex A, the neighborhood condition
that is required for a manifold is violated. However, the space is made up of
two manifolds, namely a circle and a line, that are joined at a single point. A
natural stratification of such a space thus puts the singular vertex A in X0 and
the full simplicial complex in X1. With ordinary simplicial homology, we obtain
β0 = 1, because there is only a single connected component. Intersection homology
permits only two different perversities here (we cannot use Goresky–MacPherson
perversities because d = 1), either p1 = −1 or p1 = 0; as we are only interested
in β0, we do not have to provide a higher-dimensional value for the perversity. For
p1 = −1, we obtain β0 = 2, because no simplex that contains A is proper. This
reflects the fact that the simplicial complex is made up of two pieces whose type is
different. For p1 = 0, we obtain again β0 = 1 because the singular point now leads
to a proper connected component: Eq. 7 becomes dim(σ ∩ X1) ≤ dim(σ ), which is
satisfied by every simplex σ .

2.3.3 Implementation

The crucial part of implementing persistent intersection homology lies in an efficient
evaluation of Eq. 7: for each simplex σ , the calculating the dimension of the inter-
section on the left-hand side requires searching through some Xd−k and reporting
the intersection with the highest dimension. Large speedups can be obtained by
(1) restricting the search to l-simplices, where l := min(dim σ, d − k) is the
maximum dimension that can be achieved by the intersection, and (2) enumerating
all subsets τ ⊆ σ (in reverse lexicographical order, because we are looking for the
largest dimension) and checking whether τ ∈ Xd−k . The second step particularly
improves performance when dim σ is small, because we have to enumerate at most
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2dim σ simplices and check whether they are part of Xd−k . Each check can be done in
constant or (at worst) logarithmic time in the size of Xd−k . By contrast, calculating
all intersections of σ with Xd−k takes at least linear time in the size of Xd−k .
If 2dim σ · log |Xd−k| � |Xd−k|, our method will be beneficial for performance.
We provide an implementation of persistent intersection homology in Aleph,3 a
software library for topological data analysis. We are not aware of any other open-
source implementation of persistent intersection homology at this time.

3 Using Persistent Intersection Homology

Prior to using persistent intersection homology in a topological data analysis work-
flow, we need to discuss one of its pitfalls: the Vietoris–Rips complex is commonly
used in topological data analysis to deal with multivariate data sets. For persistent
intersection homology, this construction turns out to result in triangulations that
yield unexpected results. Figure 4 depicts an example of this issue. Here we see the
one-point union, i.e., the wedge sum, of two circles, denoted by S1 ∨ S1. Formally,
this can be easily modeled as a simplicial complex K (Fig. 4a). The smallest
stratification of this space places the singular point x in its own subspace, i.e., X0 =
{x}, X1 = K, and uses p̄ = (−1). The intersection homology of K results in β0 = 2,
because of the singular point at which the two circles are connected. Calculating
persistent intersection homology of a point cloud that describes this space (Fig. 4b),
by contrast, results in β0 = 1, regardless of whether we ensure that the triangulation
is flaglike [17] by performing the first barycentric subdivision (which is guaranteed
to make the calculations independent of the stratification [14]). The reason for
this is that the topological realization of the Vietoris–Rips complex seems to be
more closely tied to regular neighborhoods than to the homeomorphism type of
S1 ∨ S1. However, the regular neighborhood of a space is always a manifold. It can
be thought of as calculating a “thickened” version of the space in which isolated
singularities disappear.

As far as we know, Bendich and Harer [2], while discussing other dependencies
of persistent intersection homology, did not discuss this aspect. Yet, it is crucial
to get persistent intersection homology to “detect” those singularities if we want
to understand the manifold structure of a given data set. To circumvent this issue,
we propose obtaining additional information about the geometry of a given point
cloud in order to determine which points are supposed to be singular. Alternatively,
we could try to learn a suitable stratification of the whole space [3] at the cost of
reduced performance.

3https://github.com/Submanifold/Aleph.

https://github.com/Submanifold/Aleph
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(a) (b)

Fig. 4 Calculating the Vietoris–Rips complex of a point cloud makes it impossible to detect
singularities by homological means alone. (a) Simplicial complex. (b) Vietoris–Rips complex

3.1 Choosing a Stratification

Having seen that the utility and expressiveness of persistent intersection homology
hinge upon the choice of a stratification, we now develop several constructions.
We restrict ourselves to the detection of isolated singular points, i.e., vertices or
0-simplices, in this paper. A stratification should ideally reflect the existence of
singularities in a data set. For the example shown in Fig. 3, a singularity exists
at A because the “whisker” will remain a one-dimensional piece regardless of the
scale at which we look at the data, while the triangle is a two-dimensional object.
This observation leads to a set of stratification strategies, which we first detail before
applying them in Sect. 4.

3.1.1 Dimensionality-Based Stratifications

In order to stratify unstructured data according to the local intrinsic dimensionality,
we propose the following scheme. We first obtain the k nearest neighbors of every
data point and treat them as local patches. For each of these subsets, we perform
a principal component analysis (PCA) and obtain the respective set of eigenvalues
{λ1, . . . , λd}, where d refers to the maximum number of attributes in the point cloud.
We then calculate the largest spectral gap, i.e.,

di := arg max
j∈{2,...,d}

|λj − λj−1| − 1, (8)

and use it as an estimate of the local intrinsic dimensionality at the ith data
point. Points that can be well represented by a single eigenvalue are thus taken to
correspond to a locally one-dimensional patch in the data, for example. In practice,
as PCA is not robust against outliers, one typically requires some smoothing
iterations for the estimates. We use several iterations of smoothing based on nearest
neighbors, similar to mean shift clustering [5]. The resulting values can then be used
to stratify according to local dimensionality.
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3.1.2 Density-Based Stratifications

We can also stratify unstructured data according to the behavior of a density
estimator, such as a truncated Gaussian kernel, i.e.,

f (x) :=
∑

y �=x

exp

(
− dist2(x, y)

2h

)
, (9)

where h is the bandwidth of the estimator and we define the exponential expression
to be 0 if dist(x, y) > h. The density values give rise to a distribution of values
so that we can use standard outlier detection methods. Once outliers have been
identified, they can be put into the first subset of the filtration. This approach has
the advantage of rapidly detecting interesting data points but it cannot be readily
extended to higher-dimensional simplices.

3.1.3 Curvature-Based Stratifications

The curvature of a manifold is an important property that can be used to detect
differences in local structure. Using a standard algorithm to estimate curvature
in meshes [18], we can easily identify a region around the singular point in the
“pinched torus” as having an extremely small curvature. Figure 2b depicts this.
For higher-dimensional point clouds, we propose obtaining an approximation of
curvature by using the curvature of high-dimensional spheres that are fit to local
patches of a point cloud. More precisely, we extract the k nearest neighbors of
every point in a point cloud and fit a high-dimensional sphere. Such a fit can be
accomplished using standard least squares approaches, such as the one introduced
by Pratt [20].

4 Results

In the following, we discuss the benefits of persistent intersection homology over
ordinary persistent homology by means of several data sets, containing random
samples of non-trivial topological pseudomanifolds, as well as experimental data
from image processing.

4.1 Wedge of Spheres

We extend the example depicted in Fig. 4 and sample points at random from a
wedge of 2-spheres. If no precautions are taken, the resulting data set suffers from
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(a) (b)

Fig. 5 A random sample of S2 ∨ S2, color-coded by two stratification strategies. Both descriptors
register either extremely high (density) or extremely low (dimensionality) values as we approach
the singular part of the data set. The corresponding points are put into X0. (a) Density. (b) Local
dimension (smoothed)

(a) (b)

Fig. 6 Excerpt of the zero-dimensional barcodes for S2 ∨ S2. With persistent homology (a), no
additional connected component appears, whereas with persistent intersection homology (b) with
the density-based stratification, the singular point/region results in splitting the data

the problem that we previously outlined. We thus use it to demonstrate the efficacy
of our stratification strategies. Figure 5 depicts the data set along with two different
descriptors. In both cases, we build a simple stratification in which X0 contains all
singular points, X1 = X0, and X2 = K, i.e., the original space. We use the default
Goresky–MacPherson perversity p̄′ = (0). This suffices to detect that the data set is
not a manifold: we obtain β0 = 2 for both stratification strategies, whereas persistent
homology only shows β0 = 1. Figure 6 depicts excerpts of the zero-dimensional
barcodes for the data set. The two topological features with infinite persistence are
clearly visible in the persistent intersection homology barcode. Since β2 = 2, this
re-establishes Poincaré duality.
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Fig. 7 (a) Persistent homology detects more one-dimensional features for the “pinched torus” data
set than (b) persistent intersection homology

4.2 Pinched Torus

We demonstrate the curvature-based stratification using the “pinched torus” data
set. Figure 2b depicts the torus along with curvature estimates. A standard outlier
test helps us detect the region around the singular point. We set up the stratification
such that X0 contains all points from the detected region, X1 = X0, and X2 = K.
Moreover, we use p̄′ = (0) because the dimensionality of the input data prevents
us from detecting any higher-dimensional features. Persistent homology shows that
the point cloud contains a persistent cycle in dimension one. Essentially, the data are
considered to be a “thickened circle”. Figure 7 depicts the persistence diagrams. We
can see that the point with infinite persistence (shown in Fig. 7a at the top border)
is missing in addition to many other points in the persistent intersection homology
diagram (Fig. 7b). The Wasserstein distance [11] between the two diagrams is thus
large, indicating the non-manifold structure of the data.

4.3 Synthetic Faces

This data set was originally used to demonstrate the effectiveness of nonlinear
dimensionality reduction algorithms [25]. Previous research demonstrated that
the data set does not exhibit uniform density [21], which makes the existence
of (isolated) singular points possible. It is known that the intrinsic dimension of
the data set is three, so we shall only take a look at low-dimensional topological
features. More precisely, using the curvature-based stratification, we want to see
how persistence diagrams in dimensions 0–2 change when we calculate intersection
homology. Note that analyzing three-dimensional features is not expedient, because
the stratification cannot detect deviations from “manifoldness” in this dimension.
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(a) (b)

Fig. 8 Zero-dimensional barcodes for the “Synthetic Faces” data set. Both barcodes are virtually
identical, indicating that the singular points do not influence connected components. (a) Persistent
homology. (b) Persistent intersection homology
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0 5 10
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10
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Fig. 9 Comparison of persistent homology in dimension one (above diagonal) and two (below
diagonal) for the “Synthetic Faces” data set. The overall structure is similar, and only few features
disappear during the calculation of persistent intersection homology. (a) Persistent homology. (b)
Persistent intersection homology

Figure 8 depicts the zero-dimensional barcodes of the data set. They are virtually
identical for both methods (we find that their Wasserstein distance is extremely
small), except for some minor shifts in the destruction values, i.e., the endpoints of
every interval. This indicates that the singular points only have a very local influence
on the structure of the data set; they are not resulting in a split, for example. For
dimensions one and two, depicted by Fig. 9, we observe a similar behavior. The
overall structure of both persistence diagrams is similar, and there is only a slight
decrease in total persistence [8] for persistent intersection homology. Likewise, the
Wasserstein distance between both diagrams is extremely small.

In summary, we see that we are unable to detect significant differences in
zero-dimensional, one-dimensional, and two-dimensional topological features. This
lends credibility to the assumption that the data set is a single manifold.
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5 Conclusion

We showed how to use persistent intersection homology for the analysis of data
sets that might not represent a single manifold. Moreover, we described some
pitfalls when applying this technique—namely, finding suitable stratifications, and
presented several strategies for doing so. We demonstrated the utility of persistent
intersection homology on several data sets of low intrinsic dimensionality. Future
work could focus on improving the performance of the admissibility condition
in Eq. 7 to process data sets with higher intrinsic dimensions. It would also
be interesting to extend stratification strategies to higher-dimensional strata, i.e.,
singular regions instead of singular points.
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