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Abstract We introduce and explore the concept of discrete Poincaré duality angles
as an intrinsic measure that quantifies the metric-topological influence of boundary
components to compact surfaces with boundary. Based on a discrete Hodge-Morrey-
Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces
with boundary, the discrete Poincaré duality angles reflect a deep linkage between
metric properties of the spaces of discrete harmonic Dirichlet and Neumann fields
and the topology of the underlying surface, and may act as a new kind of shape
signature. We provide an algorithm for the computation of these angles and discuss
them on several exemplary surface models.

1 Introduction

Hodge-type decomposition statements form an indispensable tool for the analysis
and structural understanding of vector fields and more generally differential forms
on manifolds. Dating back at least to Helmholtz’ classical result [18] on the decom-
position of a vector field into a divergence-free and a rotation-free component,
there has been a remarkable evolution of extensions and generalizations. Nowadays
there is a well-developed theory for Hodge decompositions of differential forms
of Sobolev class (see [15] for an overview), which is of central importance e.g.
for finite element Galerkin methods for problems involving vector fields such as
Maxwell’s equations or Navier-Stokes systems. A surprising property is the strong
linkage of certain spaces of harmonic forms to the topology of the underlying man-
ifold, whose first encounter is given by de Rham’s theorem, stating that on a closed
oriented Riemannian manifold the space of harmonic k-forms is isomorphic to the
k-th cohomology with real coefficients. On a surface with non-empty boundary,
the corresponding statement applies to the spaces of harmonic Dirichlet fields H 1
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and Neumann fields H 1
N , which are subspaces of all harmonic fields with certain

boundary conditions imposed. However, there are now two decompositions—one
including H 1

D , the other one including H 1
N—and in general there is no single L2-

orthogonal decomposition including both these spaces at the same time. A recent
result by Shonkwiler [16, 17] identifies the reason for this non-orthogonality as
the existence of non-empty subspaces representing the interior cohomology of the
manifold (in contrast to the cohomology induced by the boundary components),
which establishes another astonishing linkage between metric properties and the
topology. In particular, the principal angles between H 1

N and H 1
D seem to act as

an indicator for the influence of boundary components on the overall geometry and
therefore as a theoretical shape signature.

Contributions The main contribution of this article is the introduction of discrete
Poincaré duality angles in Sect. 4, based on a discretization of harmonic Neumann
and Dirichlet fields by piecewise constant vector fields on simplicial surfaces with
boundary. Furthermore, we provide an algorithm for their numerical computation,
using a singular value decomposition of a matrix whose size only depends on the
topological complexity of the surface. Finally, we compute these angles for a few
exemplary models and discuss their interpretation as shape signatures.

Related Work The literature on Hodge-type decomposition statements is vast and
has a long history. For a modern treatment and a good overview on smooth and
Sobolev-class Hodge-type decomposition statements see [15] and the literature
referenced therein. The recent work by Shonkwiler [16, 17] introduces the concept
of Poincaré duality angles and the splitting of Neumann and Dirichlet fields into
interior cohomology- and boundary cohomology-representing subspaces on smooth
oriented Riemannian manifolds. A general background on differential forms, Hodge
decompositions and homology theory of manifolds can be found in standard
textbooks such as [5, 9] and [10].

For the numerical treatment of vector fields there is a variety of discretization
strategies available, cf. the overview article [3]. For instance, the finite element
exterior calculus [2] by Arnold et al. introduces families of spaces of polynomial
differential forms of arbitrary degree and generalizes classical ansatz spaces such as
the Raviart-Thomas elements or Nédélec’s elements. The discrete exterior calculus
[7] by Hirani defines discrete differential forms as synonyms for simplicial cochains
and relies on a dual grid to derive metric-dependent properties. Here we focus on a
discretization by piecewise constant vector fields (PCVFs). Their usage and analysis
in geometry processing tasks goes back at least to the work by Polthier and Preuss
[13] and Wardetzky [19]. The interplay of linear Lagrange and Crouzeix-Raviart
elements as ansatz spaces for gradients and cogradients which is central to these
works can already be found in [1] for the special case of a simply-connected domain
in R2. Since then, PCVFs have become a main ingredient for frame field modelling
[20], remeshing [6, 14] or surface parameterization [8], just to name a few examples.

A complete, structurally consistent set of Hodge-type decompositions for PCVFs
on simplicial surfaces and solids with boundary has been recently developed by
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Poelke and Polthier [11, 12], and we refer the reader to these works for all details
concerning theory, discretization, implementation and numerical solving left out in
this article.

Outline Section 2 reviews the necessary background of smooth Hodge-type
decompositions and Poincaré duality angles on smooth manifolds. In Sect. 3 we
state the most important results from a discretization by piecewise constant vector
fields as developed in [11, 12]. Furthermore, some exemplary angles between dis-
crete harmonic Neumann and Dirichlet fields are computed, serving as a motivation
for the introduction of discrete Poincaré duality angles, which are then introduced,
computed and discussed in Sect. 4.

2 Hodge-Type Decompositions, Topology and Duality Angles

In its modern formulation, the Hodge decomposition theorem states that on a
closed oriented Riemannian manifold M the space Ωk of smooth k-forms can be
decomposed L2-orthogonally as

Ωk = dΩk−1 ⊕ δΩk+1 ⊕ H k (1)

where H k is the space of harmonic k-forms satisfying dω = δω = 0. Here and in
the following, ⊕ always denotes an L2-orthogonal direct sum. A remarkable result
is de Rham’s theorem which provides an isomorphism H k ∼= Hk(M) between the
space of harmonic k-forms and the k-th cohomology with real coefficients on M ,
and therefore identifies the dimension of H k as a topological invariant.

As soon as the manifold M has a non-empty boundary ∂M �= ∅, Eq. (1) is no
longer valid. Instead, the analogous splitting is now given by two decomposition
statements known as the Hodge-Morrey-Friedrichs decomposition (see [15]):

Ωk = dΩk−1
D ⊕ δΩk+1

N ⊕ (H k ∩ dΩk−1) ⊕ H k
N

= dΩk−1
D ⊕ δΩk+1

N ⊕ (H k ∩ δΩk+1) ⊕ H k
D .

Here, the subscript D denotes Dirichlet boundary conditions (i.e. the tangential part
t(ω) of a differential form ω has to vanish along ∂M) and N denotes Neumann
boundary conditions (i.e. the normal part ω |∂M −t(ω) has to vanish along ∂M)
which are imposed on the corresponding spaces. Again, there are isomorphisms
H k

N
∼= Hk(M) and H k

D
∼= Hk(M, ∂M), respectively, with the latter space

Hk(M, ∂M) denoting the k-th relative cohomology of M .
With respect to the characterization of vector fields on surfaces with boundary,

a natural question is whether there is a single orthogonal decomposition including
H 1

N and H 1
D at the same time. To this end, we say that a surface M is of type
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Σg,m, if M is a compact orientable surface of genus g ≥ 0 with m ≥ 0 boundary
components. We have the following result [11, Lemma 2.4.5]:

Lemma 1 Let M be a surface of type Σ0,m. Then there is an L2-orthogonal
decomposition

Ω1 = dΩ0
D ⊕ δΩ2

N ⊕ (dΩ0 ∩ δΩ2) ⊕ H 1
D ⊕ H 1

N .

Lemma 1 includes the common case of two-dimensional flat domains embedded
in R

2. On the other hand, if g ≥ 1 the sum H 1
D ⊕ H 1

N is not L2-orthogonal any
more. A recent result by Shonkwiler [16, 17] identifies subspaces of H 1

D and H 1
N ,

or more generallyH k
D andH k

N , representing the cohomology corresponding to the
inner topology of M as the reason for this non-orthogonality. Shonkwiler introduces
the spaces

H k
N,co := H k

N ∩ δΩk+1

H k
N,∂ex := {ω ∈ H k

N : ι∗ω ∈ dΩk−1(∂M)}
H k

D,ex := H k
D ∩ dΩk−1 = �H n−k

N,co

H k
D,∂co := {ω ∈ H k

D : ι∗(�ω) ∈ dΩn−k−1(∂M)} = �H n−k
N,∂ex

(2)

of coexact Neumann, boundary-exact Neumann, exact Dirichlet and boundary-
coexact Dirichlet k-forms, respectively. Here, ι : ∂M ↪→ M denotes the inclusion,
� is the Hodge star and n is the dimension of M . It is then shown [16, Thm. 2.1.3]
that always H k

D,ex ⊥ H k
N and H k

N,co ⊥ H k
D , but in general H k

N,∂ex �⊥ H k
D,∂co.

Furthermore, the subspacesH k
D,ex andH

k
N,co can be directly related to cohomology

information that is induced by the boundary components, whereas the critical
subspacesH k

N,∂ex andH
k

D,∂co are related to the “interior topology” of the manifold,
and it is this presence of interior topology that causes the orthogonality to fail.
The amount of failure can be measured by the Poincaré duality angles, which
are the principal angles between H k

D and H k
N . Since the boundary-representing

subspaces are always orthogonal, the interesting, non-trivial principal angles there-
fore arise between the spaces H k

N,∂ex and H k
D,∂co. Shonkwiler computes these

angles analytically for the complex projective space with an open ball removed, and
the Grassmannian with a tubular neighbourhood of a sub-Grassmannian removed
[16, Chap. 3 & 4]. In both cases the Poincaré duality angles quantify how far the
manifolds are from being closed. In particular, shrinking the size of the boundary
component lets the angles tend to zero, whereas increasing the size lets them tend
to π/2. Furthermore, the order of convergence seems to encode the codimension of
the removed submanifold, which is posed as a conjecture [16, Conj. 3]. For general
manifolds, though, the analytic computation of these angles seems difficult or even
intractable.
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3 Discrete Neumann and Dirichlet Fields

Now, letMh ⊂ R
3 be a compact, orientable simplicial surface with (possibly empty)

boundary, triangulated by affine triangles, equipped with the locally Euclidean
metric. We use the subscript h to distinguish between the simplicial surface and
discrete function spaces, and their smooth counterparts. It can be thought of as
a discretization parameter and commonly refers to the maximum diameter of the
affine triangles in the triangulation of Mh.

Let Xh denote the space of PCVFs on Mh, which are given by one tangent
vector XT per affine triangle T of Mh, and let L and F denote the finite element
spaces of linear Lagrange and Crouzeix-Raviart elements on Mh. To be precise, L
denotes the space of all continuous functions on Mh that are linear when restricted
to an individual triangle T , and F is the space of all L2-functions on Mh that are
represented by a linear function when restricted to an individual triangle T such
that the values of these linear representatives agree at the edge midpoint between
any two adjacent triangles. Therefore, an element in L is uniquely defined by
its values at vertices, whereas an element in F is uniquely defined by its values
at edge midpoints. We denote by L0 ⊂ L the subspace of all linear Lagrange
functions that vanish at the boundary, and byF0 ⊂ F the subspace of all Crouzeix-
Raviart functions that vanish at all midpoints of boundary edges. Furthermore, we
denote by

∇L := {∇ϕ : ϕ ∈ L } ∇L0 := {∇ϕ : ϕ ∈ L0}
J∇F := {J∇ψ : ψ ∈ F } J∇F0 := {J∇ψ : ψ ∈ F0},

the gradient and cogradient spaces, respectively, formed by these ansatz functions.
Here, ∇ is the element-wise surface gradient and J denotes a counter-clockwise
(with respect to a fixed unit normal field) rotation by π/2 in the tangent plane of
each triangle. In other words, if XT is a vector in the tangent plane of a triangle T ,
and NT is a unit normal on T , then JXT := NT × XT acts as the cross-product
with NT .

It is not hard to prove that the spaces ∇L0 and J∇F0 are L2-orthogonal to each
other [12, Sec. 3.1], even if ∂Mh = ∅ in which case we haveL0 = L andF0 = F .
LetHh denote the space of discrete harmonic PCVFs, defined as the L2-orthogonal
complement of the sum ∇L0 ⊕ J∇F0. If ∂Mh = ∅, i.e. if Mh is a closed surface
of genus g, then there is a single, orthogonal decomposition of the space of PCVFs,
given by

Xh = ∇L ⊕ J∇F ⊕ Hh (3)
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and furthermore dimHh = 2g [19, Thm. 2.5.2]. On the other hand, if ∂Mh �= ∅, i.e.
m ≥ 1, there are now two discrete Hodge-Morrey-Friedrichs decompositions [12,
Cor. 3.3]:

Definition and Lemma 2 If Mh �= ∅, there are two L2-orthogonal decompositions

Xh = ∇L0 ⊕ J∇F0 ⊕ (Hh ∩ ∇L ) ⊕ Hh,N (4)

= ∇L0 ⊕ J∇F0 ⊕ (Hh ∩ J∇F ) ⊕ Hh,D (5)

where Hh,N and Hh,D are the spaces of discrete Neumann and Dirichlet fields,
defined as the L2-orthogonal complement of the sum of the first three subspaces in
Eqs. (4) and (5), respectively.

Furthermore, we have discrete de Rham isomorphisms Hh,N
∼= H 1(Mh) and

Hh,D
∼= H 1(Mh, ∂Mh), and by Poincaré-Lefschetz duality it follows dimHh,D =

dimHh,N = 2g + m − 1 for a surface of type Σg,m with m ≥ 1. Bases for the
spaces Hh,N and Hh,D are shown in Fig. 1 for a surface of type Σ0,3 and in Fig. 2
on a hand model with four boundary components, which is of type Σ1,4.

Fig. 1 Basis fields XN,1, XN,2 for Hh,N (top row) and XD,1, XD,2 for Hh,D (bottom row) on
an annulus with a hole (“AwH”), which is a surface of type Σ0,3. As in the smooth case, discrete
Dirichlet fields are characterized by having a vanishing tangential component along the boundary,
whereas discrete Neumann fields have an almost vanishing normal component (for details on
why the normal component is not necessarily strictly vanishing in this discretization, see [12,
Section 3.1]). Each discrete Neumann field is L2-orthogonal to each discrete Dirichlet field on this
model. Locally, though, these fields need not be orthogonal, as can be seen in the rightmost image,
where XN,1 and XD,2 are shown in a close-up
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Fig. 2 Bases for the spaces Hh,N (top row) and Hh,D (bottom row) on a hand model with four
boundary components (one hole cut out at each finger tip and the fourth one at the wrist)

Table 1 Angles between the basis fields for Hh,N and Hh,D on the flat AwH-model from Fig. 1
and the TwC-model from Fig. 3 in radians. The bold values in the TwC table belong to the two
pairs in the close-up Fig. 4

AwH XD,1 XD,2

XN,1 1.57 1.57

XN,2 1.57 1.57

TwC XD,1 XD,2 XD,3

XN,1 2.30 1.57 0.74
XN,2 1.62 1.57 1.55

XN,3 2.41 1.58 2.31

As in the smooth case in Lemma 1, for simplicial surfaces of type Σ0,m both
spaces are always L2-orthogonal to each other and consequently there is a single
complete discrete decomposition [12, Lemma 3.10]

Xh = ∇L0 ⊕ J∇F0 ⊕ (J∇F ∩ ∇L ) ⊕ Hh,D ⊕ Hh,N . (6)

The numerical angles in Table 1 confirm this result for the surface of type Σ0,3 from
Fig. 1. Each angle α = �(X, Y ) is computed as usual by

cosα = 〈X, Y 〉L2

‖X‖L2 ‖Y‖L2
for X ∈ Hh,N , Y ∈ Hh,D.

Note that the orthogonality of the shown vector fields is always meant with respect
to the L2-product onXh. Locally, these fields are in general not orthogonal, see the
rightmost image in Fig. 1.
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In contrast, the example in Fig. 3 shows bases for the three-dimensional spaces
Hh,N andHh,D on a torus with a cylinder attached, which is of type Σ1,2. Whereas
both the second Neumann and Dirichlet fields form an angle of almost π/2 to all
other fields, this is not true for the those fields, whose masses concentrate on the
toroidal region. Figure 4 shows a close-up of two pairs of fields on the toroidal
region, one forming locally acute angles, the other forming locally obtuse angles. As
their mass on the cylindrical region is negligible, the local situation here dominates
the L2-angle, and indeed the first pairing forms an acute L2-angle of 0.74 radians,

Fig. 3 Basis fieldsXN,1, XN,2, XN,3 forHh,N (left column, top to bottom) andXD,1, XD,2, XD,3
for Hh,D (right column, top to bottom) on a torus with a cylinder attached (“TwC”), which is
topologically a surface of type Σ1,2. The fields in the first and third row all concentrate their mass
in the same fashion along the longitudinal and latitudinal cycles that reflect homology generated
by the torus

Fig. 4 Two pairings of Neumann and Dirichlet fields from the bases shown in Fig. 3. The left
image shows the first Neumann field XN,1 and the third Dirichlet field XD,3, forming locally acute
angles on each triangle on the torus region. The right image shows the third Neumann field XN,3
and the third Dirichlet field XD,3, forming obtuse angles
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whereas the second pairing forms an obtuse L2-angle of 2.31 radians, see Table 1.
Consequently, the spacesHh,N andHh,D cannot appear simultaneously in a single
orthogonal decomposition on this model.

4 Discrete Poincaré Duality Angles as Shape Signatures

The previous examples depend on the particular choice of basis vector fields whose
pairwise angles are measured. In order to get rid of this dependence, we consider
instead the principal angles between the vector spaces Hh,N and Hh,D , which are
independent of any concrete choice of basis. In accordance with the smooth situation
we call these principal angles discrete Poincaré duality angles and define them as
follows:

Definition 3 (Discrete Poincaré Duality Angles) The discrete Poincaré duality
angles on Mh are the principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2g+m−1 ≤ π/2
between the spaces Hh,N and Hh,D , defined recursively by

θ1 := �(u1, v1) := min{�(u, v) : u ∈ Hh,N , v ∈ Hh,D}
θk := �(uk, vk) := min

{
�(u, v) : u ∈ Hh,N , v ∈ Hh,D with u ⊥ ui, v ⊥ vi

for all i = 1, . . . , k − 1

}
.

We stress again that the sequence of discrete Poincaré duality angles, being defined
as principal angles between linear subspaces of Xh, only depends on Hh,N and
Hh,D , but not on a concrete choice of vectors. In particular, whereas the sequence
θ1, θ2, . . . is uniquely determined for a given simplicial surface Mh, the vectors
uk, vk realizing an angle θk are not (cf. [4]).

A trivial consequence of Definition 3 is that if θi = π/2 for all i, then clearly
Hh,N ⊥ Hh,D . In general, though, these angles measure the deviation of the spaces
Hh,N and Hh,D from being orthogonal to each other. In this sense they can be
thought of as a quantitative value that measures how far away the two discrete
Hodge-Morrey-Friedrichs-decompositions Eqs. (4) and (5) are from being either
the single decomposition Eq. (1) on a closed surface of type Σg,0 or the complete
orthogonal decomposition Eq. (6) on a domain coming from a sphere, i.e. a surface
of type Σ0,m.

This is illustrated by the sequence in Fig. 5, which shows a torus surface of
type Σ1,2. In the beginning the boundary components are almost negligible and
start to grow until the final surface in the sequence is ultimately dominated by the
boundary components. This behaviour is numerically reflected by the sequence of
the corresponding Poincaré duality angles given in Table 2.

Figure 6 shows a similar sequence of a genus-2-surface with three boundary
components, so it is of type Σ2,3. Here, the leftmost growing boundary component
has a dramatic influence on the pair (θ3, θ4), corresponding to the left torus region.
The other duality angles remain mostly unaffected.
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Fig. 5 A torus sequence (denoted “g1h2(a) – g1h2(e)”) with two growing boundary components.
Although all five models are topologically equivalent, the influence of the boundary components is
drastically increasing and turns the initially almost closed surface into a surface dominated by its
boundary. This is reflected by the numerical values in Table 2

Table 2 Poincaré duality angles for all experiments

Model Type θ1 θ2 θ3 θ4 θ5 θ6

TwC Σ1,2 1.73 · 10−4 1.76 · 10−4 1.57 – – –

Hand Σ1,4 0.03 0.03 1.57 1.57 1.57 –

g1h2(a) Σ1,2 0.08 0.09 1.57 – – –

g1h2(b) Σ1,2 0.28 0.28 1.57 – – –

g1h2(c) Σ1,2 0.62 0.62 1.57 – – –

g1h2(d) Σ1,2 0.95 0.95 1.57 – – –

g1h2(e) Σ1,2 1.32 1.32 1.57 – – –

g2h3(a) Σ2,3 0.13 0.14 0.26 0.27 1.57 1.57

g2h3(b) Σ2,3 0.14 0.15 0.70 0.70 1.57 1.57

g2h3(c) Σ2,3 0.21 0.21 1.14 1.14 1.57 1.57

A dash means that these angles do not exist for the respective surface, as there are always only
2g + m − 1 duality angles

Fig. 6 A sequence of a surface (denoted “g2h3(a) – g2h3(c)”) of typeΣ2,3. The leftmost boundary
is growing and dominates the left torus component. This is reflected by the increasing angles θ3 and
θ4 in Table 2, corresponding to the left toroidal region. Note that the other toroidal region remains
mostly unaffected by the growing boundary component—the angles θ1 and θ2 merely increase
from 0.13 to 0.21
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The small angles θ1 and θ2 on the TwC-model suggest that the torus region is
almost decoupled from the boundary components, and indeed this was the intention
behind this rather artificial model. Here,Hh,N andHh,D almost collapse to a single
harmonic space of dimension 2 which would exist on a perfect torus. Moreover, by
comparing with the values in Table 1 we see that the vector fields XN,1, XN,3 and
XD,1, XD,3 in Fig. 3 are far from realizing the discrete Poincaré duality angles.

To a lesser extent, this situation is also prevalent for the hand model, where
the torus region formed by thumb and index finger appears more integrated in the
remaining part of the surface. Consequently, the angles θ1 and θ2, albeit small, are
of magnitudes larger than in the TwC-model.

Note that in all examples in Table 2, there exist principal angles of value 1.57.
This can be explained as follows. In analogy to the smooth case Eq. (2) there are
splittings

Hh,N,co := Hh,N ∩ J∇F

Hh,N,∂ex := (Hh,N,co)
⊥ ∩ Hh,N

Hh,D,ex := Hh,D ∩ ∇L

Hh,D,∂co := (Hh,D,ex)
⊥ ∩ Hh,D

of discrete coexact Neumann fields, discrete boundary-exact Neumann fields and
so on, and it holds Hh,N,co ⊥ Hh,D and Hh,D,ex ⊥ Hh,N [12, Section 3.4].
Furthermore, if Mh is of type Σg,m with m ≥ 1, then we have [12, Lemmas 3.8/3.9]

dimHh,N,co = Hh,D,ex = m − 1.

This explains the (m − 1)-many right angles in each of the experiments in Table 2.
Finally, it should be noted that there is a subtlety in the discrete theory that

may arise in pathological examples and depends only on the grid combinatorics,
i.e. the connectivity on the triangulation: whereas in the smooth case it is always
H k

N ∩H k
D = {0} [15, Thm. 3.4.4], the corresponding intersection of discrete spaces

Hh,N ∩ Hh,D need not be trivial, resulting in invalid duality angles of value zero.
This may happen if the discretization of the boundary is too low in comparison to
the topological complexity (i.e. the numbers m and g of Σg,m) of the surface, or
if there are very coarsely triangulated regions that form the only connections of
the boundaries to the rest of the surface. A precise treatment as well as a criterion
that guarantees the validity of the statement Hh,N ∩ Hh,D = {0} is given in [11,
Section 3.4]. While it is important to keep this in mind, most models that arise in
practice are not affected by this pathology.

Numerical Computation of Poincaré Duality Angles The numerical computa-
tion of principal angles between subspaces of a vector space is classical [4] and
can be easily computed by means of the singular value decomposition (SVD). To
this end we first compute orthonormal bases (ONB) BN and BD for the subspaces
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Hh,N andHh,D , respectively. We refer the reader to [12, Sec. 4.1] for details on how
to obtain these bases. By [4, Thm. 1] the principal angles are then the inverse cosines
of the singular values of the matrix

(〈u, v〉L2

)
u∈BN ,v∈BD

, which is of dimension
(2g + m − 1) × (2g + m − 1). As 2g + m − 1 is typically small, the computation of
this SVD poses no problems in terms of memory consumption or computation time.
Listing 1 summarizes this procedure.

Listing 1 Numerical computation of discrete Poincaré duality angles
Input: Simplicial surface mesh Mh

Compute ONB BN for Hh,N

Compute ONB BD for Hh,D

Assemble the matrix M := (〈u, v〉L2

)
u∈BN ,v∈BD

Compute the SVD M = Y · Σ · Zt with Σ = diag(ζ1, . . . , ζ2g+m−1), ζi ≥ ζi+1
return {θi := arccos ζi}i=1,...,2g+m−1

5 Conclusion and Outlook

We have introduced the notion of discrete Poincaré duality angles on simplicial
surfaces with boundary as an intrinsic quantity that sets the geometry, i.e. the
metric properties of the surface, in relation to its topology, which is determined
by its boundary components and the genus of the corresponding closed surface. In
particular, these angles measure the influence of the boundary components on the
overall geometry and quantify how far the surface is from being a closed surface.
Rephrasing this fact algebraically, they quantify how far the two discrete Hodge-
Morrey-Friedrichs decompositions Eqs. (4) and (5) differ from either the single
decomposition Eq. (3) on closed surfaces of type Σg,0 or the complete orthogonal
decomposition Eq. (6) on surfaces of type Σ0,m in which both the spaces Hh,N

and Hh,D appear simultaneously as orthogonal subspaces. In this sense, the vector
(θ1, . . . , θ2g+m−1) of discrete Poincaré duality angles can be considered as a new
intrinsic shape signature for a geometric-topological classification of simplicial
surfaces with boundary.

On the other hand, it is still not clear in which way precisely the angles between
Dirichlet and Neumann fields are related to the boundary components of Mh. The
examples explicitly computed in [16] are a first starting point for the search of
a relation that could be even quantitatively described, but as mentioned in [17],
in general they still seem to be poorly understood. In this respect, the numerical
computation of discrete Poincaré duality angles complements the smooth theory and
may provide further insights. Moreover, for arbitrarily complex surfaces that arise
from CAD-modelling or 3D scanning, an analytic computation seems out of reach.

Therefore, a better understanding of this correlation is very promising with regard
to applications including metric-topological shape classification, extraction of
certain vector field components with controlled characteristics and parametrization
tasks of surfaces with boundary, and remains for future work.
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