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Abstract The topological notion of robustness introduces mathematically rigorous
approaches to interpret vector field data. Robustness quantifies the structural
stability of critical points with respect to perturbations and has been shown to be
useful for increasing the visual interpretability of vector fields. However, critical
points, which are essential components of vector field topology, are defined with
respect to a chosen frame of reference. The classical definition of robustness,
therefore, depends also on the chosen frame of reference. We define a new Galilean
invariant robustness framework that enables the simultaneous visualization of robust
critical points across the dominating reference frames in different regions of the
data. We also demonstrate a strong connection between such a robustness-based
framework with the one recently proposed by Bujack et al., which is based on the
determinant of the Jacobian. Our results include notable observations regarding the
definition of stable features within the vector field data.
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1 Introduction

Motivation Understanding vector fields is integral to many scientific applications
ranging from combustion to global oceanic eddy simulations. Critical points of a
vector field (i.e., zeros of the field) are essential features of the data and play an
important role in describing and interpreting the flow behavior. However, vector
field analysis based on critical points suffers a major drawback: the interpretation
of critical points depends upon the chosen frame of reference. Just like the velocity
field itself, they are not Galilean invariant. Figure 1 highlights this limitation, where
the critical points in a simulated flow (the von Kármán vortex street) are visible only
when the velocity of the incoming flow is subtracted.

The extraction of meaningful features in the data therefore depends on a good
choice of a reference frame. Oftentimes, there exists no single frame of reference

Fig. 1 Visualization of the flow behind a cylinder without (a) and with (b) the background flow
removed, where the colormap encodes the speed of the flow. For comparison, (c) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. which is constructed
from the extrema of the determinant of the Jacobian. The Galilean invariant critical points are
marked with red nodes for vortices/sources/sinks and with blue nodes for saddles. Image courtesy
of Bujack et al. [3]. (d) Galilean invariant vector field constructed from the extended robustness.
The local maxima of the extended robustness field are marked with red nodes
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that enables simultaneous visualization of all relevant features. For example, it is
not possible to find one single frame that simultaneously shows the von Kármán
vortex street from Fig. 1b and the first vortex formed directly behind the obstacle in
Fig. 1a. To overcome such a drawback, a framework recently introduced by Bujack
et al. [3] considers every point as critical and locally adjusts the frame of reference
to enable simultaneous visualization of dominating frames that highlight features
of interest. Such a framework selects a subset of critical points based on Galilean
invariant criteria, and visualizes their frame of reference in their local neighborhood.
Galilean invariance refers to the principle that Newton’s laws hold in all frames
moving at a uniform relative velocity. Thus, a Galilean invariant property is one that
does not change when observed in different frames with uniform motion relative to
each other. The extrema of the determinant of the Jacobian are particular examples
of Galilean invariant critical points [3], and they simultaneously capture all relevant
features in the data, as illustrated in Fig. 1c. The intuition is that the determinant
of the Jacobian determines the type of critical point, and since the Jacobian is
Galilean invariant, its extrema (with a magnitude away from zero) correspond to
stable critical point locations where small perturbations in the field do not change
their types. Such Galilean invariant critical points, in general, do not overlap with
the classical zeros of the vector fields; however, each has a frame of reference in
which it is a zero of the field. Such a perspective is useful in revealing features
beyond those obtainable with a single frame of reference (e.g., Fig. 1c).

The topological notion of robustness, on the other hand, considers the stability of
critical points with respect to perturbations. Robustness, a concept closely related to
topological persistence [10], quantifies the stability of critical points, and, therefore,
assesses their significance with respect to perturbations to the field. Intuitively, the
robustness of a critical point is the minimum amount of perturbation necessary to
cancel it within a local neighborhood. Robustness, therefore, helps in interpreting
a vector field in terms of its structural stability. Several studies have shown it to
be useful for increasing the visual interpretability of vector fields [29] in terms of
feature extraction, tracking [24], and simplification [25–27].

Contributions In this paper, we present new and intriguing observations connect-
ing the Jacobian based and robustness based notions in quantifying stable critical
points in vector fields. In particular, we address the following questions: Can we
interpret Galilean invariant vector field analysis based on the determinant of the
Jacobian via the notion of robustness? What are the relations between these two
seemingly different notions? Our contributions are:

• We extend the definition of robustness by considering every point as a critical
point and introduce the notion of the extended robustness field by assigning each
point in the domain its robustness when it is made critical with a proper frame of
reference.

• We prove that the extended robustness satisfies the criterion of Galilean invari-
ance, where the local maxima of the extended robustness field are the Galilean
invariant critical points.
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• We prove, theoretically, that the determinant of the Jacobian is a lower bound for
the extended robustness at the same point.

• We demonstrate, visually, that the extended robustness helps to interpret the
Jacobian-based Galilean invariant vector field analysis, in particular, that the
extrema of the determinant of the Jacobian coincide with the local maxima of
the extended robustness (Fig. 1c–d).

2 Related Work

Vector Field Analysis and Reference Frames The analysis of vector fields
depends upon the chosen frame of reference [20–22], as the observed vector field
changes with changes in frames. In particular, for any one given point, it is always
possible to create a frame of reference where this point becomes critical. Therefore,
it is important to carefully choose a physically meaningful frame for analysis. In
this regard, uniformly moving frames are of particular importance as they preserve
many properties of interest, thus providing a Galilean invariant analysis.

Because of the physical importance of a feature descriptor to be independent
from a Galilean change of frame of reference, many popular vector field feature
detectors are Galilean invariant. In particular, a number of vortex detection tech-
niques, such as the λ2-[18], Q-[17], and Δ-[8] criterion, compute the Jacobian of
the field, which, being a spatial derivative, discards uniform motion.

Simpler solutions to guarantee Galilean invariance in vector field analysis involve
subtracting the mean vector to highlight the fluctuations in the field. In recent
literature, more advanced techniques have been presented to derive vectors for
subtraction to determine an expressive frame of reference, e.g., from the Helmholtz-
Hodge decomposition [1, 30] or the boundary-induced flow [9]. In general, Galilean
invariant frames have been employed extensively for vector field analysis [3, 7, 8,
19, 23].

Nevertheless, since Galilean invariance is limited to compensating for uniform
motion, there exist techniques to perform the analysis in more sophisticated frames.
For example, Haller [15] extracted vortices using time-dependent translations and
time-dependent rotations; Günther et al. [14] described computation of vortices in
rotational frames; Fuchs et al. [13] used time-varying frames built upon the notion
of “unsteadiness”; and Bhatia et al. [1] proposed using new frames to represent
harmonic background flows.

In this work, we consider Galilean invariance to be the key property for defining
robustness for critical points across reference frames and extend the framework by
Bujack et al. [3].

Robustness The topological notion of robustness is closely related to the topolog-
ical persistence [10]. Unlike persistence, which is used extensively for the analysis
and visualization of scalar field data, robustness, first introduced by Edelsbrunner
et al. [11], can be employed for vector field data [6, 12]. Recent work by Wang et
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al. [29] assigned robustness to critical points in both stationary and time-varying
vector fields and obtained a hierarchical structural description of the data. Such a
hierarchical description implies simplification strategies that perform critical point
cancellations in both 2D [25, 26] and 3D [27]. The robustness framework also gives
a fresh interpretation of the notion of feature tracking, in particular, critical point
tracking, where robust critical points could provably be tracked more easily and
more accurately in the time-varying setting [24].

Since robustness of critical points is not invariant to reference frames, in our
work, we aim to define a new robustness framework that addresses such a challenge
and enables the simultaneous visualization of robustness across local, dominating
reference frames.

3 Technical Background

We revisit some technical background before describing our results, namely, the
notions of Galilean invariance, reference frame adjustment, Jacobian-based Galilean
invariant vector fields, and robustness.

Galilean Invariance Let v : R
2 → R

2 denote a 2D vector field describing the
instantaneous velocity of a flow. A Galilean transformation of a point x ∈ R

2 is
the composition of a translation b : R → R

2 with ḃ = const , and a rigid body
rotation A ∈ SO(2) [3]. A point whose position in the original frame is x, then has
the coordinate in the transformed frame [28] as

x′ = Ax + b. (1)

A vector field v(x) is Galilean invariant (GI) if it transforms under a Galilean
transformation, according to the rule v′(x′) = Av(x) [28]. Similarly, a scalar
field s(x) and a matrix field M(x) are called GI if s′(x′) = s(x) and M ′(x′) =
AM(x)A−1, respectively.

Reference Frame Adjustment Every point in a vector field can be transformed
into a critical point by the addition of a constant vector. For a vector field v : R2 →
R
2 and a point x0 ∈ R

2, we define the associated vector field vx0 : R2 → R
2 with

its frame of reference based on x0 by

vx0(x) := v(x) − v(x0). (2)

Such a vector field vx0 has a permanent critical point at x0, because vx0(x0) =
v(x0) − v(x0) = 0. For a given position x0 ∈ R

2, the vector field vx0 is GI, because

from v′(x′) = dx′/dt
(1)= d(Ax + b)/dt = Av(x) + ḃ follows v′

x′
0
(x′) (2)= v′(x′) −

v′(x′
0) = Av(x) + ḃ − Av(x0) − ḃ = A(v(x) − v(x0))

(2)= Avx0(x).
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Jacobian-Based Galilean Invariant Vector Fields Recall v : R
2 → R

2 is a
2D vector field, where v(x) = ẋ = dx/dt = (v1(x), v2(x))T . Let J denote the
Jacobian of a velocity field,

J = ∇v(x) =
(

∂v1(x)/∂x1 ∂v1(x)/∂x2

∂v2(x)/∂x1 ∂v2(x)/∂x2

)
.

The determinant of the Jacobian, det(J ), is shown to be a GI scalar field [3], that
is, det J ′(x′) = det J (x). Such a determinant can be used to categorize first-order
critical points, that is, a negative determinant corresponds to a saddle, whereas a
positive determinant corresponds to a source, a sink, or a vortex.

A point (x0) ∈ R
2 is a Jacobian-basedGalilean invariant critical point (GICP) of

a vector field v : R2 → R
2 if it is a critical point of the determinant of the Jacobian,

i.e., ∇ det(J ) := ∇ det(∇v(x0)) = 0 [3]. Bujack et al. [3] restrict this definition to
the negative minima and the positive maxima of the determinant field. The former
form saddles, whereas the latter form sources/sinks/vortices in the velocity field in
some specific frame of reference. Each GICP comes with its own frame of reference
in which it becomes a classical critical point.

To visualize the GICPs simultaneously, Bujack et al. [3] introduced the notion
of Galilean invariant vector field (GIVF) that is applicable beyond Jacobian-based
GICPs. The basic idea is to construct a derived vector field that locally assumes
the inherent frames of references of each GICP. Such a derived vector field is
constructed by subtracting a weighted average of the velocities of the GICPs,
x1, . . . , xn, of the vector field v.

Formally, let v : R2 → R
2 be a vector field, x1, . . . , xn ∈ R

2 a set of GICPs,
and wi the weights of a linear interpolation problem

∑n
i=1 wi(x)v(xi) with weights

wi : R
2 → R (and a mapping x �→ wi(x)) that are invariant under Galilean

transformation, that is,

w′
i (x

′) = wi(x),

and the weights add up to one, ∀x ∈ R
2 : ∑n

i=1 wi(x) = 1. Then, the GIVF
v̄ : R2 → R

2 is defined by

v̄(x) := v(x) −
n∑

i=1

wi(x)v(xi).

In this paper, we use inverse distance weighting with exponent 2. Most commonly
used weights satisfy such a condition are the ones from constant, barycentric,
bilinear, and inverse distance interpolations [3].

Remark Locally the transformation in defining a GIVF is a Galilean change of
reference. However depending on the chosen interpolation scheme, the points
between the GICPs are transformed by a mixture of the transformations of their



Galilean Invariant Vector Field Analysis Based on Extended Robustness 227

neighbors. This mixture does not generally result in a Galilean transformation
globally. As a result, the Jacobian of the GIVF and the original field are not identical.

Although the suggested method does not transform the field through a Galilean
transformation itself, it does not contradict the fact that the GIVF defined above is
invariant with respect to the Galilean transformation [3]. Such a transformed vector
field is GI, because any vector field that differs from the original one through a
Galilean transformation will result in the same GIVF, which means that the GIVF
and the original field would generally not produce the same output. In a nutshell,
the method is GI, but not idempotent.

Robustness Let f, h : R2 → R
2 be two continuous 2D vector fields. We define

the distance between the two mappings as d(f, h) = supx∈R2 ||f (x) − h(x)||2. The
field h is an r-perturbation of f , if d(f, h) ≤ r . Given f : R2 → R

2, the robustness
of a critical point of f quantifies its stability with respect to perturbations of the
vector fields [29]. Intuitively, if a critical point has a robustness value of r , then an
(r +δ)-perturbation h of f exists to eliminate x (via critical point cancellation); and
any (r − δ)-perturbation is not enough to eliminate x.

Mathematically, the robustness of critical points in our setting arises from the
well group theory [12]. Given a mapping f : X → Y between two manifolds and a
point a ∈ Y, the well group theory [12] studies the robustness of the homology
of the pre-image of a, f −1(a) with respect to perturbations of the mapping f .
Roughly speaking, the homology of a topological space X, H∗(X), measures its
topological features, where the rank of the 0-, 1- and 2-dimensional homology
groups corresponds to the number of connected components, tunnels, and voids,
respectively. Let a be a point in Y, and let Ba(r) be a ball of radius r surrounding
a. Let h be an r-perturbation of f (under some metric). The inclusion map between
subspaces h−1(a) → f −1(Ba(r)) induces a linear map ih : H∗(h−1(a)) →
H∗(f −1(Ba(r))) between their homology groups. The well group Wa(r) is defined
as Wa(r) = ⋂

h image ih, whose elements belong to the image of each jh for all
r-perturbation h of f . Intuitively, its elements are stable under r-perturbations of
the map.

When a = 0, X = Y = R
2, f −1(0) are the critical points of vector fields on the

plane. Chazal et al. [6] showed that in the case of vector fields, the well group could
be computed from themerge tree of the magnitude of a vector field (i.e., f0 = ||f ||2,
which is a scalar function). We use the correspondences between critical points and
the elements in the well groups to assign robustness values to the critical points.
The merge tree of f0 is constructed by tracking the connected components of its
sublevel sets f −1(−∞, r] together with their degree information as they appear
and merge by increasing r from 0. Each leaf node in the tree is assigned the degree
of its corresponding critical point (a saddle has a degree of −1, and a source/since
has a degree of +1). Each internal node has a degree the sum of its subtree. The
robustness of a critical point is the height of its lowest degree zero ancestor in the
merge tree, see Wang et al. [29] for details.
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4 Theoretical Results

We extend the definition of robustness by considering every point as a critical point.
Formally, let x0 ∈ R

2 be an arbitrary point in a vector field v : R
2 → R

2 and
R(x0) be its robustness in the vector field vx0 , which is associated with the frame of
reference of x0. We define the extended robustness R : R2 → R of the point x0 as
the robustness of the critical point x0 ∈ R

2 in the vector field vx0 . For a vector field
v : R2 → R

2, we call a point a locally robust critical point (LRCP) if it is a local
maximum in the extended robustness field, i.e.,

∇R(x0) = 0, HR(x0) < 0,

with the vector ∇R denoting the first derivative and the Hessian matrix HR

consisting of the second partial derivatives.
The following two theorems are the key theoretical contributions of the paper.

Theorem 1 The extended robustness is a Galilean invariant scalar field. The
locally robust critical points defined above are Galilean invariant.

Proof We prove the theorem by showing that for the extended robustnessR : R2 →
R, we have R′(x′) = R(x). The extended robustness assigns a scalar to every point
x0 ∈ R

2. Let v′(x′) differ from a vector field v : R2 → R
2 by the transformation

v′(x′) = Av(x). The magnitude ‖vx0‖2 of the GI field vx0 from (2) is GI. From
A ∈ SO(2), it follows that

‖v′
x′
0
(x′)‖2 = ‖Avx0(x)‖2 = ‖vx0(x)‖2. (3)

As a result, the merge trees of vx0(x0) and v′
x′
0
(x′

0) are isomorphic. Together

with the invariance of the degree of a critical point with respect to orthogonal
transformations, that the extended robustness is GI follows. Since the extrema of
the scalar field are GI and the extended robustness field is GI, it follows that LRCPs
are GI. �
Theorem 2 At any point x0 ∈ R

2, suppose: (i) vx0 : R2 → R
2 is generic and C2-

smooth; (ii) the directional derivative of vx0 is upper bounded by a constant μ; (iii)
the second (partial) derivative of vx0 is upper bounded by a constant δ; and (iv) the
absolute value of the determinant of the Jacobian is at least c. Then the extended

robustness at x0 is at least
c2

2μ2δ
.

Proof For any point x0 ∈ R
2, let f := vx0 : R2 → R

2. Genericity from assumption
(i) of f implies that for the critical point x0 of f , there exists a small neighborhood
that contains only x0. First, we show that a lower bound on the absolute value of
the determinant of the Jacobian translates into a lower bound on the magnitude of
the directional derivative of f . Let J be the Jacobian at x0 ∈ R

2 and det(J ) be the
determinant of the Jacobian. Assumption (iv) means that | det(J )| ≥ c. Let λ1 and
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λ2 (|λ1| ≥ |λ2|) be the eigenvalues of J . We have,

| det(J )| = |λ1λ2| ≥ c.

Assumption (ii) means that the directional derivatives of f are upper bounded in
any direction by μ, i.e., || ∂f

∂u
|| ≤ μ for all directions u ∈ S

2, which implies that the
absolute values of all eigenvalues are upper bounded by μ, i.e., |λ2| ≤ |λ1| ≤ μ.
Hence, |λ2| ≥ c′ = c

μ
.

Now, we show that the upper bound on the second derivative implies a lower
bound on robustness. We consider the direction u ∈ S

2 to be along the eigenvector
associated with λ2. At x0, |f (x0)| = 0. Since the magnitude of the directional
derivative at x0 is lower bounded by c′ and there is an upper bound on the second
derivative, we can bound the neighborhood size where the directional derivative
becomes 0, i.e., how far from x0 we must go in order for ‖f ‖ to stop growing.
Let y be a point on the boundary of the isolating neighborhood of x0, such that
d(y, x0) = ε. Then the magnitude of the directional derivative is lower bounded by
c′ − εδ based on assumption (iii). The change c′ − εδ is positive for all ε ≤ c′

δ
.

We obtain a lower bound on the magnitude of the vector field on the boundary of
the ε-neighborhood at x via integration. That is, for any y on the boundary of the
isolating neighorhood of x0,

|f (y)| ≥
∫ ε

0
(c′ − xδ)dx = c′ε − δε2

2
. (4)

For ε ≤ c′
δ
, |f (ε)| is an increasing function in ε; hence x0 is the only zero

in the neighborhood. To obtain a lower bound on robustness, we lower bound
the magnitude of the function on the boundary of the ε-neighborhood (i.e. the
neighborhood where we know that x0 is an isolated zero). Substituting ε = c′

δ
= c

μδ

into Eq. (4) yields the desired lower bound, i.e.,

|f (y)| ≥ c′ε − δε2

2
= c2

μ2δ
− δc2

2μ2δ2
= c2

2μ2δ
.

�

5 Visualization Results

We demonstrate visually that the extended robustness helps to interpret the
Jacobian-based GIVF analysis. In particular, the extrema of the determinant of
the Jacobian (the Jacobian-based GICPs) often coincide with the local maxima of
the extended robustness (the LRCPs).
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Fig. 2 Visualization of an analytic data set (f), which is created by superimposing five analytic
fields (a)–(e). The colormap encodes the speed of the flow. For comparison, (g) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. and constructed from the
extrema of the determinant of the Jacobian. The Galilean invariant critical points are marked with
red nodes for vortices/sinks/sources and with blue nodes for saddles. Image courtesy of Bujack
et al. [3]. (h) The Galilean invariant vector field introduced in this paper is constructed from the
extended robustness. The local maxima of the extended robustness field are marked with red nodes

Case Study I: An Analytic Vector Field For the first case study illustrated in
Fig. 2, we use an analytic vector field in (f) which contains four standard flow
features, sink (a), center (b), saddle (c) and spiral source (d); each showing a
different common velocity profile overlaid with a sheer flow (e) that makes it
impossible to view all the flow features simultaneously. As illustrated, the GIVF
based on the determinant of the Jacobian (g) simultaneously highlights the Jacobian-
based GICPs, which correspond to the standard flow features described in (a)–(d).
On the other hand, these flow features in (g) coincide with the features surrounding
the LRCPs of the GIVF based on the extended robustness in (h).

Case Study II: A Sequence of Double Gyre We use a formula describing a double
gyre vector field [2] with parameters A = 0.25, ω = 1/10, and an extended domain
[0, 6] × [0, 1]. Such a dataset is smooth and requires no topological simplification
(see Sect. 5.1). As shown in Fig. 3a, one vortex is visible at position (3, 0.5) within
the standard frame of reference, and the Jacobian-based GIVF highlights two
vortices within the same region in Fig. 3b, as shown previously [2]. These Jacobian-
based critical points coincide with the LRCPs obtained via extended robustness in
Fig. 3c. The separators from the robustness-based GIVF coincide with the separators
from the standard frame of reference, but those from the Jacobian-based GIVF
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Fig. 3 Visualization of a sequence of double gyre. (a) The original flow; the colormap encodes the
speed of the flow. (b) Jacobian-based Galilean invariant vector field with highlighted critical points;
the flow is color-coded by the value of the determinant. (c) Robustness-based Galilean invariant
vector field with highlighted critical points; the flow is color-coded by extended robustness values.
(d) Robustness-based Galilean invariant vector field without contour tree pruning

do not. This observation gives an indication that the two vortices detected by
both robustness-based and Jacobian-based GIVF are likely true features, whereas
the separators detected by the Jacobian-based GIVF are not (therefore partially
addressing an open question in [2]). Furthermore, we illustrate the robustness-based
GIVFs in Fig. 3d without topological simplification (see Sect. 5.1 for details).

Case Study III: Swirly Jet Our last case study, illustrated in Fig. 4, focuses on
a flow simulation of a swirling jet entering a fluid at rest. Such a dataset has
been previously studied in the work of Bujack et al. [3]. We demonstrate visually
an interpretation of its corresponding Jacobian-based GIVF with the extended
robustness. As shown in Fig. 4c, some but not all of the LRCPs are shown to coincide
with the critical points extracted from Jacobian-based GIVF in Fig. 4b. Such a
discrepancy could be due to numerical issues in computing extended robustness,
discretization resolution and the noisy, non-smooth data domain. How to choose the
optimal parameters for topological simplification (as discussed in Sect. 5.1), remains
an open question for both Jacobian-based and robustness-based GIVFs.
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Fig. 4 Visualization of the swirling jet entering a fluid at rest. (a) The original flow; the colormap
encodes the speed of the flow. (b) Jacobian-based Galilean invariant vector field with highlighted
critical points; the flow is color-coded by the value of the determinant. (c) Robustness-based
Galilean invariant vector field with highlighted locally robust critical points; the flow is color-
coded by extended robustness values

5.1 Topological Simplification

In our case studies, the extended robustness fields are often noisy, resulting in
many insignificant local maxima. Analogously to Bujack et al. [3], we make use
of the topological simplification tools for scalar fields to reduce the number of
local maxima to the significant ones. For an introduction to scalar topological
simplification, we recommend the work of Carr et al. [5] and Heine et al. [4, 16].

For a scalar field, a contour is a connected component of a level set, which is the
set of points that all have the same value in the scalar field. If we increase this value,
contours can be created at local minima, join or split at saddles, and be destroyed
at local maxima of the scalar field. The contour tree is an abstraction of the scalar
field that is formed from shrinking each contour to a node in the tree, where each
branch starts and ends at an extremum or a saddle and corresponds to a connected
component in the domain. Each branch of the contour tree comes with three popular
measures: persistence, volume, and hypervolume [5, 16]. Persistence is the maximal
difference of the scalar values of the components of a branch, the volume is the
integral over its affiliated points, and the hypervolume is the integral over the scalar
values. These measures can be used to simplify the contour tree by pruning branches
that do not exceed given thresholds (see Carr et al. [5]).

We compute the contour tree of the extended robustness field and prune it with
respect to persistence. The result for case study I can be found in Fig. 5.

Remark We have demonstrated that the Jacobian-based GICPs in some smooth,
synthetic cases coincide with the LRCPs, whereas in noisy, real-world datasets,
unambiguous equivalence among these points is difficult to find due to the resolution
of the data and the different range of scalar values for topological simplification. In
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Fig. 5 Topological simplification of case study I, where the colormap encodes the speed of the
flow. The robustness-based Galilean invariant vector fields before (a) and after (b) simplification
are illustrated, where the locations of extended robustness local maxima are marked in red

addition, we conjecture that the determinant of Jacobian could be considered as a
first-order approximation that captures the stabilities of critical points, whereas the
extended robustness captures higher order information; therefore the LRCPs do not
always coincide with the Jacobian-based GICPs.

The best way to select the pruning parameters for simultaneous visualization
of robust critical points in different regions of the data, remains an open question.
We currently use an exploratory process to choose pruning parameters so that the
LRCPs are at a level comparable to the Jacobian-based GICPs.

6 Discussion

Robustness and Jacobian The Jacobian carries important information about the
local behavior of a vector field, while robustness quantifies their global stability. In
this work, we demonstrate their relations theoretically and visually. Furthermore,
our results inspire discussions regarding different quantifiers of stable features
within the vector field data.

Extended Robustness: Degeneracies and Continuity In our current framework,
some critical points do not have any cancellation partner, and so have large
robustness values beyond the range of the maximum vector norm in the domain.
This can cause boundary effects in our visualization as some critical points are
detected on the boundary. Furthermore, robustness computation also assumes that
each critical point is isolated within its local neighborhood. Our datasets, however,
contain regions with degenerate critical points where such isolation conditions are
violated (i.e., regions where the determinant of Jacobian switches sign). For the
purpose of visualization, such degeneracies are handled separately.

Small changes to the vector field may introduce partner switches in the merge
tree, which lead to some discontinuities in the current computation of extended
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robustness (see Fig. 4c). However this does not impact our visualization results
significantly. Ensuring the continuity of the extended robustness remains an open
question.

Other Perturbation Metrics for Robustness The robustness framework also
allows a certain flexibility in defining perturbation metrics, in the sense that the
L∞ metric defined in Sect. 3 could be replaced by other metrics such as the L2
metric, which incorporates both the magnitude of the vectors and the area to capture
a quantity closer to the energy of a perturbation. We will investigate the effect of
different perturbation metrics on the computation of extended robustness and its
connection with the determinant of the Jacobian.
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