
Mathematics and Visualization

Topological Methods
 in Data Analysis
 and Visualization V
Theory, Algorithms,
and Applications

Hamish Carr · Issei Fujishiro · Filip Sadlo
Shigeo Takahashi Editors

Mathematics and Visualization

Series Editors

Hans-Christian Hege, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB),
Berlin, Germany
David Hoffman, Department of Mathematics, Stanford University, Stanford, CA,
USA
Christopher R. Johnson, Scientific Computing and Imaging Institute, Salt Lake
City, UT, USA
Konrad Polthier, AG Mathematical Geometry Processing, Freie Universität Berlin,
Berlin, Germany

The series Mathematics and Visualization is intended to further the fruitful
relationship between mathematics and visualization. It covers applications of
visualization techniques in mathematics, as well as mathematical theory and
methods that are used for visualization. In particular, it emphasizes visualization in
geometry, topology, and dynamical systems; geometric algorithms; visualization
algorithms; visualization environments; computer aided geometric design;
computational geometry; image processing; information visualization; and scientific
visualization. Three types of books will appear in the series: research monographs,
graduate textbooks, and conference proceedings.

More information about this series at http://www.springer.com/series/4562

http://www.springer.com/series/4562

Hamish Carr • Issei Fujishiro • Filip Sadlo •
Shigeo Takahashi
Editors

Topological Methods in Data
Analysis and Visualization V
Theory, Algorithms, and Applications

Editors
Hamish Carr
University of Leeds
Leeds, UK

Issei Fujishiro
Keio University
Yokohama, Kanagawa, Japan

Filip Sadlo
Heidelberg University, IWR
Heidelberg, Germany

Shigeo Takahashi
University of Aizu
Aizu-Wakamatsu City, Fukushima, Japan

ISSN 1612-3786 ISSN 2197-666X (electronic)
Mathematics and Visualization
ISBN 978-3-030-43035-1 ISBN 978-3-030-43036-8 (eBook)
https://doi.org/10.1007/978-3-030-43036-8

Mathematics Subject Classification: 76M24, 53A45, 62-07, 62H35, 65D18, 65U05, 68U10

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-43036-8

Preface

Thirty years ago, the field of scientific visualization established the importance
of studying systematic methods for representing data on screen, in particular for
functions computed over Euclidean space. As time has passed, the data sizes have
increased to the point where it is no longer feasible to present all of the data
to a human interpreter, and scientific visualization has therefore depended ever
more heavily on analytic techniques to extract significant information for human
consideration.

One of the most successful approaches has been the application of topological
analysis to data, and the past 30 years have seen a consistent expansion in theory,
technique, algorithm, and application. Initially confined to vector field topology,
the community developed ideas in scalar field topology, persistent homology, tensor
field topology, multivariate topology, as well as specialized approaches for particular
data sources.

One of the hallmarks of this work has been the application of topological analysis
to scientific problems at scale and a focus on computationally tractable approaches.
As a result, the TopoInVis community was developed to support visualization
experts in their topological work.

Starting in 2005, biennial workshops have been held on topological visual-
ization in Budmerice (2005), Grimma (2007), Snowbird (2009), Zürich (2011),
Davis (2013), Annweiler (2015), and Tokyo (2017), where informal discussions
supplement formal presentations and knit the community together. Notably, these
workshops have consistently resulted in quality publications under the Springer
imprint which form a significant part of the working knowledge in the area.

At the 2017 workshop at Keio University in Tokyo, scalar topology was the
largest area of interest, in contrast to previous years when vector topology has often
been the dominant area. Vector topology continues to be visible, as does the recent
growth in multivariate topology. At the same time, tensor topology is an area of
continuing work, and additional types of topology also show up from time to time,
while applications continued to be of interest to all present, and the keynotes both
addressed application problems.

v

vi Preface

Of the 23 papers presented at TopoInVis 2017, 16 passed a second-round review
process for this volume. In grouping these papers, the largest number (7) related to
scalar field topology and have been divided into three papers on persistent homology
that are more theoretical plus a further four that are more applied, including one
paper dealing with pathological and test cases that straddles scalar and multivariate
problems.

In the first group, the first paper investigates new methods of defining hierarchies
from persistence pairings, to provide a better representation of complex scalar data
sets. The second paper, which received the best paper award at the workshop, gives
an innovative new approach for computing merge trees in a form amenable to
shared-memory parallel implementation. The third paper tackles the problem of
extending existing forms of persistent topology to data sets sampled from non-
manifold inputs. In all of these papers, the common concern is to extend the
theoretical frameworks which support the topological investigation of data.

The second group of papers is more oriented to practical details than to
the underlying theory. In the first paper, topological tools are extended to help
understand search spaces from optimization problems by defining a collapsed meta
landscape that represents the original space at a coarse-grained level. The second
paper explores automated methods for choosing transfer functions that highlight
topological features effectively in direct volume rendering (DVR). The third paper
also relates to a practical problem: that persistence diagrams are expensive to
compare, substituting a persistence indicator function (PIF) that is more amenable
to data analysis. Finally, this group includes a paper on a part of topological
computation that is rarely addressed in papers due to space limitations: effective
methods and test sets for debugging topological code, including paper models for
small practical Reeb spaces for instructional purposes.

In the third group of papers, the authors consider the question of topological
variation over time. Here, the first paper looks at the use of merger trees to visualize
dark matter halos in cosmological simulations. The second tackles a different
problem, the analysis of fingers in a simulation of viscous fluid by using persistent
tracking over time to identify how fingers merge, grow, and separate. Finally, the
third paper tackles the problem of tracking distinct topological regions over time,
and how local decision-making generates broken tracks, while global decision-
making provides improved tracking of features.

All three of these groups deal primarily with the simplest case for topological
analysis: that of scalar field analysis and its variants. The fourth group of papers
tackles one of the recent developments in the area: the use of topological analysis for
bivariate and multivariate data. The first of these papers considers the use of Joint
Contour Nets, a discrete topological structure, to approximate the Pareto analysis
of data. In the second paper, existing work on scalar topological user interfaces is
extended to bivariate data through the use of fiber surfaces, while the final paper
considers combinations of topological data structures, such as the contour tree and
Morse–Smale complex.

This leaves one last group, which deals with all other forms of topology. Whereas
previous years have often seen a predominance of vector field analysis, this year’s

Preface vii

workshop accepted one paper on vectors, a second on tensors, and a third on surface
topology. In the first of these, Galilean invariance is applied to provide vector
analysis that is independent of the frame of reference of the analysis. The second
paper extends previous work on tensor field analysis by proving a maximum on
the number of critical points possible in a linearly interpolated tensor field. Finally,
the last paper looks at new forms of shape analysis of surfaces based on Poincaré
duality.

Looking back at this collection of papers, we can see that, although the specific
areas of interest ebb and flow, the concern for theory, practical techniques, and
applications continues, and that as new forms of topological analysis are introduced,
they stimulate a great deal of detail work. However, once established, areas continue
due to their ongoing applicability to practical visual data analysis, showing the value
to our community of this ongoing Springer book series.

We would therefore like to thank all of the participants of TopoInVis 2017,
as well as Springer for their continued support, and anticipate future workshops
will continue the process. We would also like to thank Tateishi Science and
Technology Foundation and the Telecommunications Advancement Foundation for
their generous financial support of the workshop.

Leeds, UK Hamish Carr
Yokohama, Japan Issei Fujishiro
Heidelberg, Germany Filip Sadlo
Aizu-Wakamatsu, Japan Shigeo Takahashi
Co-Chairs, TopoInVis 2017

Contents

Part I Persistence

Hierarchies and Ranks for Persistence Pairs . 3
Bastian Rieck, Filip Sadlo, and Heike Leitte

Triplet Merge Trees . 19
Dmitriy Smirnov and Dmitriy Morozov

Persistent Intersection Homology for the Analysis of Discrete Data 37
Bastian Rieck, Markus Banagl, Filip Sadlo, and Heike Leitte

Part II Scalar Topology

Coarse-Graining Large Search Landscapes Using Massive Edge
Collapse . 55
Sebastian Volke, Martin Middendorf, and Gerik Scheuermann

Adjusting Control Parameters of Topology-Accentuated Transfer
Functions for Volume Raycasting . 71
Yuriko Takeshima, Shigeo Takahashi, and Issei Fujishiro

Topological Machine Learning with Persistence Indicator Functions 87
Bastian Rieck, Filip Sadlo, and Heike Leitte

Pathological and Test Cases for Reeb Analysis . 103
Hamish Carr, Julien Tierny, and Gunther H. Weber

Part III Time-Varying Topology

Abstracted Visualization of Halo Topologies in Dark Matter
Simulations . 123
Karsten Schatz, Jens Schneider, Christoph Müller, Michael Krone,
Guido Reina, and Thomas Ertl

ix

x Contents

Persistence Concepts for 2D Skeleton Evolution Analysis 139
Bastian Rieck, Filip Sadlo, and Heike Leitte

Fast Topology-Based Feature Tracking using a Directed Acyclic
Graph . 155
Himangshu Saikia and Tino Weinkauf

Part IV Multivariate Topology

The Approximation of Pareto Sets Using Directed Joint Contour Nets 173
Jan Bormann, Lars Huettenberger, and Christoph Garth

Flexible Fiber Surfaces: A Reeb-Free Approach . 187
Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro
Kawanabe

Topological Subdivision Graphs for Comparative and Multifield
Visualization . 203
Christian Heine and Christoph Garth

Part V Other Forms of Topology

Interpreting Galilean Invariant Vector Field Analysis via Extended
Robustness . 221
Bei Wang, Roxana Bujack, Paul Rosen, Primoz Skraba, Harsh Bhatia, and
Hans Hagen

Maximum Number of Transition Points in 3D Linear Symmetric
Tensor Fields . 237
Yue Zhang, Lawrence Roy, Ritesh Sharma, and Eugene Zhang

Discrete Poincaré Duality Angles as Shape Signatures on Simplicial
Surfaces with Boundary . 251
Konstantin Poelke and Konrad Polthier

Index . 265

Part I
Persistence

Hierarchies and Ranks for Persistence
Pairs

Bastian Rieck, Filip Sadlo, and Heike Leitte

Abstract We develop a novel hierarchy for zero-dimensional persistence pairs, i.e.,
connected components, which is capable of capturing more fine-grained spatial
relations between persistence pairs. Our work is motivated by a lack of spatial
relationships between features in persistence diagrams, leading to a limited expres-
sive power. We build upon a recently-introduced hierarchy of pairs in persistence
diagrams that augments the pairing stored in persistence diagrams with information
about which components merge. Our proposed hierarchy captures differences in
branching structure. Moreover, we show how to use our hierarchy to measure the
spatial stability of a pairing and we define a rank function for persistence pairs and
demonstrate different applications.

1 Introduction

A wide range of application domains employ the concept of persistence, i.e., a
measure of feature robustness or scale. It is particularly effective when dealing with
noisy data, permitting analysts to distinguish between “signal” and “noise”. Being
a purely topological approach, however, the information conferred by persistence
does not retain any spatial information. While this is sometimes desirable, previous
work [19, 24, 28] has shown that retaining at least a minimum of geometrical
information is often beneficial, as it increases the expressive power. In this paper,
we develop a hierarchy that relates points in a persistence diagram. Our hierarchy
makes exclusive use of topological properties of data, while still being able to
distinguish between geometrically distinct data. Moreover, the hierarchy is capable
of measuring stability properties of the pairing of critical points itself, yielding

B. Rieck (�) · H. Leitte
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: rieck@cs.uni-kl.de; leitte@cs.uni-kl.de

F. Sadlo
Heidelberg University, Heidelberg, Germany
e-mail: sadlo@uni-heidelberg.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_1&domain=pdf
mailto:rieck@cs.uni-kl.de
mailto:leitte@cs.uni-kl.de
mailto:sadlo@uni-heidelberg.de
https://doi.org/10.1007/978-3-030-43036-8_1

4 B. Rieck et al.

additional structural stability information about input data. We demonstrate the
practicality of our method by means of several datasets. Additionally, we compare it
to a state-of-the-art hierarchy, point out the improvements over said hierarchy, and
demonstrate how our novel approach differs from related hierarchical concepts such
as Reeb graphs.

2 Related Work

We refer the reader to Edelsbrunner and Harer [17] for a detailed overview of
persistence and related concepts. There are several related approaches for creating a
hierarchy of persistence information. Doraiswamy et al. [16] calculate a topological
saliency of critical points in a scalar field based on their spatial arrangement.
Critical points with low persistence that are isolated from other critical points have a
higher saliency in this concept. These calculations yield saliency curves for different
smoothing radii. While these curves permit a ranking of persistence pairs, they
do not afford a description of their nesting behavior. Consequently, in contrast to
our approach, the saliency approach is incapable of distinguishing some spatial
rearrangements that leave persistence values and relative distances largely intact,
such as moving all peaks towards each other. Bauer [1] developed what we refer to
in this paper as the regular persistence hierarchy. It is fully combinatorial and merely
requires small changes of the pairing calculation of related critical points. This
hierarchy was successfully used in determining cancellation sequences of critical
points of surfaces. However, as shown in this paper, this hierarchy cannot distinguish
between certain nesting relations.

In scalar field analysis, the calculation of graph structures such as the Reeb
graph [15] or the contour tree [11], along with merge and split trees, has a long
tradition. These graphs relate critical points with each other, but do not permit
the calculation of hierarchies of persistence pairs. We will demonstrate this on a
simple one-dimensional example in this paper. Recent work in this area is driven
by the same motivation as our work: the merge tree, for example, turns out to
be more expressive with respect to spatial differences in the domain. Thus, even
if two scalar fields have the same critical pairs, their merge trees are capable
of retaining differences in sublevel set merging behavior. This observation led
to the development of distance measures for merge trees [3], Reeb graphs [2],
and extremum graphs [22]. Since the aforementioned tree structures tend to be
unwieldy, Pascucci et al. [23] proposed a hierarchical decomposition, the branch
decomposition. This decomposition relates the different branches of a contour tree
with each other. Recently, Saikia et al. [25] used these graphs as a similarity measure
for the structural comparison of scalar data. While these works are close to our
method in spirit, they rely on a different type of structural information.

Hierarchies and Ranks for Persistence Pairs 5

3 Background and Notation

In this paper, we assume that we are working with a domain D and a scalar
function f : D → R. We make no assumptions about the connectivity of D or
its dimension. As for f , we require it to have a finite number of critical points—a
condition that is always satisfied for real-world data—and that the function values
of those critical points are different—a condition that may be satisfied by, e.g.,
symbolic perturbation [18]. Such scalar fields commonly occur in many different
applications, and their features are often described using scalar field topology. This
umbrella term refers to the analysis of how certain special sets—the level sets—
of the scalar function f change upon varying parameters. More precisely, given a
threshold c, one typically distinguishes between, e.g., level set Lc(f), and sublevel
set L −

c (f),

Lc(f) := {x ∈ D | f (x) = c} (1)

L −
c (f) := {x ∈ D | f (x) ≤ c} (2)

In this paper, we also require the interlevel set Ll,u(f),

Ll,u(f) := L −
u (f) \L −

l (f) = {x ∈ D | l ≤ f (x) ≤ u}. (3)

Interlevel sets are commonly used to describe the topology of real-valued func-
tions [9] or the robustness of homology classes [5, 6]. Scalar field topology refers
to the investigation of changes in connectivity in these sets. Such changes are
intricately connected to the critical points of f by means of Morse theory [21].
Focusing on the sublevel sets (the case for superlevel sets can be solved by
duality arguments), we find that (local) minima create new connected components
in the sublevel set, while (local) maxima—or saddles in higher dimensions—are
responsible for merging two connected components, thereby destroying one of them.
Related creators and destroyers may thus be paired with each other (using, e.g.,
the “elder rule” [17, p. 150] that merges the connected component with a higher—
younger—function value into the one with a lower—older—function value), which
permits their use in various data structures.

The persistence diagram is a generic data structure to represent such a pairing.
For every creator–destroyer pair, it contains a point in R2 according to the
corresponding function values. Persistence diagrams have many desirable stability
properties [13, 14] and permit the calculation of different metrics. Unfortunately,
they are sometimes too coarse to describe both the topology and geometry of a
scalar function. Given a point (c, d) in a persistence diagram, where c is the function
value of the creator and d is the function value of the paired destroyer, the absolute
difference |d − c| is referred to as the persistence pers(c, d) of the pair. Persistence
permits a way to define whether certain pairs are more prominent than others.
Roughly speaking, the persistence of such a pair is the magnitude of the smallest
perturbation that is able to cancel it.

6 B. Rieck et al.

4 Persistence Hierarchies

The calculation of persistence always underlies the idea of a pairing, i.e., a way of
relating different parts of a function with each other. Here, we shall only focus on
zero-dimensional persistent homology, which describes connected components in
the sublevel sets of a function, and the elder rule for pairing points. Consequently,
we have a relationship between local minima and local maxima (or saddles in higher
dimensions) of a function. We leave the treatment of other topological features
for future work. Moreover, we only cover the case of sublevel sets; superlevel set
calculations follow by analogy.

4.1 Regular Persistence Hierarchy

Bauer [1] observes that the process of merging two connected components permits
the definition of a natural hierarchy between persistence pairs. More precisely,
assume that we are given two connected components σ and σ ′, each created at
a local minimum. If σ merges into σ ′ at, e.g., a local maximum, we consider σ ′
to be the parent of σ . This relation is a necessary but not sufficient condition for
finding out which pairs of critical points of a Morse function cannot be canceled
without affecting other points. We call this hierarchy, which is equivalent to a
merge tree [11], the regular persistence hierarchy. Each of its nodes corresponds
to a creator–destroyer pair. The hierarchy forms a directed acyclic graph, i.e., a tree.
This is a consequence of the assumption that the function values at critical points
are unique. Thus, whenever a merge of two connected components takes place,
the “younger” component is uniquely defined. Moreover, a critical point cannot
both create and destroy a topological feature, so there cannot be any cycles in the
hierarchy. The regular persistence hierarchy has a natural root that corresponds to
the global minimum, as the connected component corresponding to this value is
never merged.

Example and Limitations The regular persistence hierarchy cannot distinguish
some connectivity relations: for example, Fig. 1 depicts the regular persistence
hierarchies for two simple functions. We can see that the hierarchy is equal for both
functions even though their connectivity behavior is different. More precisely, in the
red function, the two persistence pairs are connected via two different branches of
the function, i.e., it is impossible to reach both minima without traversing a third
minimum—the global one—as the threshold of the sublevel sets is increased. This
difference in connectivity results in a different stability of the pairing. A perturbation
of the critical points at z and c in the blue function, for example, is capable of
changing the complete pairing: if we move the points to f (4) = 1.9 and f (5) = 0.9,
respectively, the pairing of the critical point a at x = 1 will change, as well.
The same perturbation has no effect on the red function, though. A hierarchy of
persistence pairs should account for these differences in connectivity.

Hierarchies and Ranks for Persistence Pairs 7

0 1 2 3 4

0

1

2

3

4

b

y

a

z

c

f(
x)

(a)
0 1 2 3 4

0

1

2

3

4

(b)

(a,∞)

(b,y) (c,z)

(c)

Fig. 1 Two functions with different connectivity but equal persistence diagrams. Both functions
also share the same regular persistence hierarchy. (a) Functions. (b) Persistence diagram. (c)
Hierarchy

0 1 2 3 4

0

1

2

3

4

b

y

a

z

c

f(
x)

(a)
0 1 2 3 4

0

1

2

3

4

a

y

b

z

c
f(
x)

(b)

Fig. 2 The merge phase of the interlevel set persistence hierarchy (ISPH) makes use of the
connectivity of the interlevel set (hatched lines): to connect the critical point pairs (b, y) and (c, z)

in (a), a region belonging to a third critical point a needs to be traversed. This is not the case for
(b)

4.2 Interlevel Set Persistence Hierarchy (ISPH)

The example depicted in Fig. 1 demonstrated a lack of discriminating information in
the regular persistence hierarchy. The key observation, illustrated as running exam-
ple in Fig. 2, is that not every merge of two connected components is topologically
equal: a merge may either result in a different branching structure of the hierarchy
or it may keep the branches intact. Figure 3 depicts our proposed interlevel set
persistence hierarchy (ISPH). To measure these differences, we propose extending
the traditional union–find data structure that is used to detect the merges. Instead of
merely storing the parent node of a given connected component in the hierarchy, i.e.,
the generating critical point with lowest function value, we also store ĉ, the highest
minimum—in terms of the function value—along this branch. This will permit us
to decide whether an additional branch needs to be introduced, as is the case for
function (a) in Fig. 2. If ĉ of a connected component is identical to the value of
the parent, we call this assignment trivial. We will use ĉ interchangeably both for
the critical point as well as for its function value. Subsequently, we distinguish
between two types of merges: the first type of merge only extends a branch in

8 B. Rieck et al.

(a,∞)

(b,y) (c,z)

(a,∞) (b,y) (c,z)

Fig. 3 The ISPHs for the example functions shown in Fig. 1. In contrast to the regular persistence
hierarchy, our hierarchy is capable of discriminating between the two functions. The hierarchy on
the right has been rotated for layout reasons

the hierarchy, while the second type of merge results in two branches that need
to be unified at a third critical point. Figure 2 depicts the two cases for the example
functions shown in Fig. 1. We can see that for function (a), the pairs of critical points
are connected by an additional critical point a only. Hence, two branches of the
hierarchy merge at this point. Function (b), by contrast, merely prolongs a branch
in the hierarchy—both pairs of critical points of the function are already connected
without the inclusion of an additional critical point.

To distinguish between these two cases, we check the stored highest critical
points ĉl and ĉr of the two connected components that merge at a local extremum.
Without loss of generality, we assume that ĉl belongs to the “older” branch and
ĉr belongs to the “younger” branch. If both ĉl and ĉr are trivial, we merge their
respective branches just as for the regular persistence hierarchy. Else, we have to
check the induced connectivity to decide how the branches should be connected. To
this end, let yu refer to the value of the current critical point, i.e., the one at which
the two connected components merge. Furthermore, let yl refer to min(ĉl , ĉr), the
oldest of the two stored critical points. We now calculate the interlevel set Lyl,yu(f);
see the colored parts in Fig. 2 for an example. Following this, we check whether ĉl

and ĉr are in the same connected component with respect to Lyl,yu(f). If so, the
current branch can be prolonged and ĉl is set to ĉr . If not, two branches meet at the
current critical point and merge into one. In Fig. 2a, upon reaching y , we merge
components b and a , giving rise to the pair (b, y). We have trivial critical points,
i.e., ĉl = a and ĉr = b , so we add an edge between (b, y) and (a, ·) in the
hierarchy; we do not yet know how a will be paired, so we write “·” for its partner.
The next merge happens at z . We have ĉl = b , ĉr = c , and yu = z . This gives
rise to the interlevel set Lb,z(f). We now check whether ĉl and ĉr are connected in
Lb,z(f). As this is not the case, we add an edge between (c, z) and (a, ·), which
is the parent of the older component, to the hierarchy. In Fig. 2b, by contrast, we
have the same merges and the same interlevel set, but c and b are connected in
Lb,z(f), leading to the creation of an edge between (c, z) and (b, y). The check
with respect to the interlevel set connectivity is insufficient, however, for higher-
dimensional domains. Instead, we need to check whether a path in the neighborhood
graph of our data (or, equivalently, an integral line) connecting the two critical points
does not cross any regions that are assigned to another critical point. This presumes
that we classify our data according to ascending or descending regions, which can
be easily integrated into standard persistent homology algorithms [12].

Hierarchies and Ranks for Persistence Pairs 9

Alg. 1 Calculation of the ISPH
Require: A domain D

Require: A function f : D → R

1: U ← ∅
2: Sort the function values of f in ascending order
3: for function value y of f do
4: if y is a local minimum then
5: Create a new connected component in U
6: U.critical ← y

7: else if y is a local maximum or saddle then
8: Use U to merge the two connected components meeting at y

9: Let C′ and C be the two components meeting at y

10: if both components have a trivial critical value then
11: Create the edge (C′, C) in the hierarchy
12: else
13: Let c′ be the critical value of the older connected component
14: Let c be the critical value of the younger connected component
15: yl ← min(c, c′)
16: Create the interlevel set L := Lyl ,y(f)

17: if the shortest path connecting c, c′ in L contains no other critical points then
18: Create the edge (c′, y) in the hierarchy
19: else
20: Create the edge (C′, C) in the hierarchy (as above)
21: end if
22: end if
23: else
24: Use U to add y to the current connected component
25: end if
26: end for

Algorithm and Example The ISPH requires only an additional data structure for
storing information about the critical points we encounter. Moreover, we require
checking the connectivity of the interlevel set—an operation that requires an
additional union–find data structure—and a way to calculate (shortest) paths in
the neighborhood graph of our data. Algorithm 1 gives the pseudocode description
of our novel hierarchy based on sublevel sets. Figure 3 shows the ISPHs for the
example functions in Fig. 1, demonstrating that our hierarchy represents differences
in merging behavior in the sublevel sets.

Implementation We implemented our algorithm using Aleph,1 a library for
exploring various uses of persistent homology. Our implementation of the ISPH
is publicly available and supports processing structured grids (using the VTK file
format) as well as one-dimensional functions.

Comparisonwith Other Tree-BasedConcepts The ISPH is capable of preserving
more information than merge trees, split trees, and Reeb graphs. As a simple

1https://github.com/Submanifold/Aleph.

https://github.com/Submanifold/Aleph

10 B. Rieck et al.

x

c
z

a

y

b

x

(a)

x

a

z
c

y

b

x

(b) (c)

(a,x)

(b,y) (c,z)

(a,x) (c,z) (b,y)

(d)

Fig. 4 Comparison with Reeb graphs. The two functions yield the same Reeb graph (or,
equivalently, the merge tree of their superlevel sets), while our hierarchy is capable of telling
them apart. (a) First function. (b) Second function. (c) Reeb graph. (d) Interlevel set persistence
hierarchys (ISPHs)

example, consider the functions in Fig. 4. Both functions carry the same sub-
level/superlevel set information; their persistence diagrams and regular persistence
hierarchies coincide. Their Reeb graphs, shown in Fig. 4c with nodes whose colors
indicate the corresponding contour of the function, are also equal. Of course, this
does not imply that Reeb graphs (or merge trees) are generally unsuitable. During
our experiments, we encountered numerous functions in which Reeb graphs (or
merge trees) are able to detect differences in functions with equal persistence
diagrams. At the same time, the ISPH was able to detect differences in these cases
as well. Figure 4d shows the ISPHs of the functions in Fig. 4a, b.

The preceding example proves that the ISPH is unrelated to existing decompo-
sitions: since the Reeb graphs (and the merge trees) of the two functions are equal
but the ISPHs differ, it is not possible to derive the ISPH from, e.g., the branch
decomposition tree [23] or the extended branch decomposition graph [25].

Robustness When adding noise to a function, topological hierarchies such as the
merge (split) tree and the Reeb graph are known to contain numerous short branches,
which make identifying important features and comparing different trees more
difficult [25]. By contrast, our novel ISPH only contains as many points as there
are pairs in the persistence diagram. Moreover, low-persistence pairs do not result
in too much clutter because they tend to only create short branches. In that sense,
our hierarchy performs similarly well as the extended branch decomposition graph
by Saikia et al. [25].

Hierarchies and Ranks for Persistence Pairs 11

4.2.1 Calculating Ranks

Since the ISPH is a DAG, we can define the rank of a topological feature: given
two vertices u and v in the hierarchy H , we write u ∼ v if there is a directed path
connecting u and v. The rank of a vertex u in the hierarchy is then calculated as the
number of vertices that are reachable from it, i.e.,

rank(u) := card {v ∈ H | u∼v} , (4)

with rank(·) ∈ N. The minimum of the rank function is obtained for the last
connected component to be destroyed, i.e., the one that merges last with another
component. The rank can be easily calculated using a depth-first traversal of the tree.
It may be visualized as additional information within a persistence diagram, thereby
permitting datasets with similar persistence diagrams but different hierarchies to
be distinguished from each other without showing the hierarchy itself. It is also
invariant with respect to scaling of the function values in the data. Similar concepts,
such as the rank invariant [8] in multidimensional persistence, only use existing
information from the persistence diagram, whereas our ISPH goes beyond the
persistence diagram by including more structural information about critical points.

4.2.2 Stability Measure

Our ISPH permits assessing the stability of the location of critical points in the
pairing. This issue with persistence diagrams was already pointed out by Bendich
and Bubenik [4], who demonstrated that small changes in the critical values of a
function—while not drastically changing the persistence diagram itself—may still
change the points that are responsible for creating a certain topological feature.
The ISPH contains information that may be used to assess the stability of the
creators of topological features. To make this more precise, consider the example
in Fig. 5. Upon traversing the superlevel sets of both functions, they exhibit the
same persistence pairs, namely (a, z), (b, y), and (c, z). Refer to Fig. 4d for the
corresponding ISPHs. If we perturb the critical point y for both functions (indicated

x

c
z

a

y

b

x

(a)

x

a

z
c

y

b

x

(b)

Fig. 5 Stable and unstable function whose superlevel sets yield the same persistence diagram.
Since the ISPH is capable of distinguishing between the two cases, it assesses their respective
stability differently. (a) Stable function. (b) Unstable function

12 B. Rieck et al.

by a dashed line), we still get the pairs (b, y) and (c, z) for the stable function. For
the unstable function, however, the perturbation results in the pairs (b, z) and (c, y).
In this sense, their location is less stable.

We thus define a stability measure for each critical point based on the hierarchy.
First, we need to quantify the stability of an edge. Let e := {(σ, τ), (σ ′, τ ′)} be an
edge in the ISPH. We define the stability of e to be

stab(e) := max
{|f (σ) − f (σ ′)|, |f (τ) − f (τ ′)|} , (5)

which is the minimum amount of perturbation that is required to change the
hierarchy in the sense described above. This quantity is also equal to the L∞-
distance between two points in a persistence diagram. We may now extend the
stability measure to individual vertices by assigning each vertex v the minimum
stability value of its outgoing edges, i.e.,

stab(v) := min
{

min{stab(e) | e = (v,w) ∈ H }, pers(v)
}
, (6)

where w ranges over all direct children of v. Taking the second minimum ensures
that we use the persistence of v if v is a leaf node.

4.2.3 Dissimilarity Measure

Since the ISPH is a directed tree, a straightforward dissimilarity measure is given
by tree edit distance [7] algorithms. These algorithms attempt to transform two trees
into each other by three elementary operations: relabeling a given node, deleting
an existing node, and inserting a new node. Given two nodes with corresponding
minima–maxima (c1, d1) and (c2, d2), respectively, we define the cost for relabeling
to be

cost1 = max
(|c1 − c2|, |d1 − d2|

)
, (7)

i.e., the L∞-distance between the two points. Similarly, we define the cost for
deleting or inserting a node somewhere else in the hierarchy to be

cost2 = pers(c, d) = |d − c|, (8)

i.e., the persistence of the pair. The choice of these costs is “natural” in the sense
that they are also used, e.g., when calculating the bottleneck distance [13] between
persistence diagrams.

Complexity The tree edit distance has the advantage of being efficiently-solvable
via standard dynamic programming techniques. It is thus scalable with respect to
the size of the hierarchy—more so than the Wasserstein or bottleneck distances [20,
26] that are commonly used for comparing persistence diagrams: we have a worst

Hierarchies and Ranks for Persistence Pairs 13

case complexity of O
(
n2m log m

)
, where n is the number of pairs in the smaller

hierarchy, and m is the number of pairs in the larger hierarchy. By contrast, the
Wasserstein distance has a time complexity of O

(
n3
)

[17, p. 196], and we observed
large differences in runtime behavior (see Sect. 5).

5 Results

We exemplify some usage scenarios of the ISPH by means of several synthetic and
non-synthetic datasets.

5.1 Synthetic Data

We created two synthetic datasets on a grid with 5000 cells. Processing each
dataset takes approximately 4.5 s—regardless of whether we calculate the regular
persistence hierarchy or the ISPH. Our current implementation leaves lots of room
for performance improvements, though. Figure 6 shows the data together with the
resulting hierarchies for the two-dimensional equivalent to the data shown in Fig. 5.
We use a standard color map that uses red for large values and white for low values.
Notice that the persistence diagrams of both datasets are equal, as well as their
regular persistence hierarchies (which we do not show here). Figure 7a depicts the
persistence diagrams of the two data sets, colored by their stability values and the
ranks (mirrored along the diagonal). Even this summary information gleaned from
the ISPH is capable of yielding information to distinguish different datasets.

Figure 8 depicts a more complicated example, mixing peaks and craters. The
situation in Fig. 8b is less stable because a perturbation of the peak is capable of
changing the complete pairing. Since this peak is connected differently in Fig. 8a, it
does not decrease the stability of the global maximum. Note that the location of the
peak is allowed to move; as long as it stays on the ridge, as depicted in Fig. 8b, the
ISPH will not change. Likewise, as long as the peak moves along the plateau in the
foreground, the ISPH will remain the same as depicted in Fig. 8a.

Fig. 6 In contrast to previous
approaches, our hierarchy is
capable of distinguishing
between two peaks that are
connected via a third one that
is higher (a) and a “ridge” of
peaks (b) (a) (b)

14 B. Rieck et al.

0 1

0

1

0 1

0

1

(a)
−1 1

−1

1

−1 1

−1

1

(b)

Fig. 7 Combined persistence diagrams showing the ranks (upper part) and the stability val-
ues (lower part) as colors. Both carry sufficient information to distinguish datasets. (a) Persistence
diagrams for Fig. 6. (b) Persistence diagrams for Fig. 8

(a) (b)

Fig. 8 Depending on the position of a single peak that moves, our hierarchies are different,
because the merging behavior of critical points has been changed

Fig. 9 Climate dataset for t = 0 (a), as well as some excerpts (box) for subsequent timesteps. We
can see that the continent of Africa exhibits a temperature increase for t = 3 and t = 4. (a) t = 0.
(b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4

5.2 Climate Data

We used time-varying scalar field data (surface temperature) from the German
Climate Computing Center (DKRZ). The large size (18,432 positions) and the large
number of timesteps (1460) makes comparing these data complicated. Figure 9
shows an excerpt of the dataset. It exhibits oscillatory behavior because (global)
temperature follows a day–night pattern. At the given resolution, a full day–night
cycle comprises four timesteps. We would hence expect that the topological dis-
similarity between corresponding timesteps is somewhat equal; or, more precisely,

Hierarchies and Ranks for Persistence Pairs 15

Fig. 10 Dissimilarity
matrices comparing the
Wasserstein distance and our
proposed ISPH distance,
which is capable of detecting
the oscillatory
behavior (minor diagonals)
inherent to the data. (a)
Wasserstein distance. (b)
ISPH distance

we would expect that a pairwise distance matrix depicts the oscillatory behavior
that occurs in the data. To assess the capabilities of the dissimilarity measure from
Sect. 4.2.3, we compare it to the Wasserstein distance. We first calculate pairwise
distances between the first 36 timesteps of the data. Calculating the Wasserstein
distance takes about 2 min per pair, hence comparing all 36 pairs takes about 21 h.
Our hierarchy-based dissimilarity measure, by contrast, takes 2.3 s for calculating
each timestep and approximately 6 s to calculate the dissimilarity per pair. The
full distance matrix is thus obtained in approximately 1 h. Figure 10 depicts the
dissimilarity matrices of the first 36 timesteps. We can see that the ISPH distance
matrix contains patterns in the minor diagonals, indicating that timesteps ti and ti+4
are highly similar. These patterns appear because the corresponding ISPHs are also
highly similar, even though the persistence pairs (and thus the persistence diagrams)
change over time because the range of temperatures changes. The Wasserstein
distance does not exhibit these patterns. We note, however, that the two matrices
are highly correlated (R2 ≈ 0.95), showing that for most of the timesteps, both
measures yield similar values.

6 Conclusion and Future Work

We presented a novel hierarchy that relates persistence pairs with each other. In
contrast to earlier work, our hierarchy is better capable of distinguishing certain
nesting behaviors, which we demonstrated by means of several example datasets.
At present, it is unclear to what extent the persistence hierarchy is an invariant like
the rank invariant of multidimensional persistence [8]. Since the hierarchy changes
when the data undergoes certain transformations, it remains to be shown which
operations leave it unchanged—a trivial observation is that the hierarchy is invariant
with respect to uniform scaling in all critical points. Hence, the development
of metrics for matching hierarchies may be beneficial. We only briefly sketched
a dissimilarity measure based on labeled trees. By considering the complete
connectivity structure of the tree, though, graph kernels such as the random walk
kernel [27] could be employed. Furthermore, it would be interesting to analyze

16 B. Rieck et al.

how the hierarchy changes when different pairing schemes for critical points are
employed, such as the measures proposed by Carr et al. [10].

Acknowledgments We thank the anonymous reviewers for their helpful comments that helped us
improve and clarify this manuscript.

References

1. Bauer, U.: Persistence in discrete Morse theory. Ph.D. Thesis, University of Göttingen (2011)
2. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: Proceedings of the

Annual Symposium on Computational Geometry, pp. 464:464–464:473 (2014)
3. Beketayev, K., Yeliussizov, D., Morozov, D., Weber, G.H., Hamann, B.: Measuring the distance

between merge trees. In: Topological Methods in Data Analysis and Visualization III: Theory,
Algorithms, and Applications, pp. 151–165. Springer, Berlin (2014)

4. Bendich, P., Bubenik, P.: Stabilizing the output of persistent homology computations (2015).
arXiv:1512.01700

5. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images.
IEEE Trans. Vis. Comput. Graph. 16(6), 1251–1260 (2010)

6. Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A.: Homology and robustness of level and
interlevel sets. Homology Homotopy Appl. 15, 51–72 (2013)

7. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1),
217–239 (2005)

8. Carlsson, G., Zomorodian, A.J.: The theory of multidimensional persistence. Discret. Comput.
Geom. 42(1), 71–93 (2009)

9. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions.
In: Proceedings of the Annual Symposium on Computational Geometry, pp. 247–256 (2009)

10. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric
measures. In: IEEE Conference on Visualization, pp. 497–504 (2004)

11. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
24(2), 75–94 (2003)

12. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in Riemannian
manifolds. J. ACM 60(6), 41:1–41:38 (2013)

13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret.
Comput. Geom. 37(1), 103–120 (2007)

14. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable
persistence. Found. Comput. Math. 10(2), 127–139 (2010)

15. Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Comput.
Geom. 42(6–7), 606–616 (2009)

16. Doraiswamy, H., Shivashankar, N., Natarajan, V., Wang, Y.: Topological saliency. Comput.
Graph. 37(7), 787–799 (2013)

17. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence
(2010)

18. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

19. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional
scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271–1280 (2010)

20. Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The Gudhi library: simplicial complexes
and persistent homology. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014,
pp. 167–174. Springer, Heidelberg (2014)

21. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

Hierarchies and Ranks for Persistence Pairs 17

22. Narayanan, V., Thomas, D.M., Natarajan, V.: Distance between extremum graphs. In: IEEE
Pacific Visualization Symposium (PacificVis), pp. 263–270 (2015)

23. Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: The Toporrery: computation and presenta-
tion of multi-resolution topology. In: Mathematical Foundations of Scientific Visualization,
Computer Graphics, and Massive Data Exploration, pp. 19–40. Springer, Berlin (2009)

24. Rieck, B., Leitte, H.: Structural analysis of multivariate point clouds using simplicial chains.
Comput. Graph. Forum 33(8), 28–37 (2014)

25. Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: structural
comparison of scalar data. Comput. Graph. Forum 33(3), 41–50 (2014)

26. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology ToolKit. IEEE
Trans. Vis. Comput. Graph. 24(1), 832–842 (2018)

27. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J.
Mach. Learn. Res. 11, 1201–1242 (2010)

28. Zomorodian, A.J., Carlsson, G.: Localized homology. Comput. Geom. 41(3), 126–148 (2008)

Triplet Merge Trees

Dmitriy Smirnov and Dmitriy Morozov

Abstract Merge trees are fundamental data structures in computational topology.
They track connected components in sublevel sets of scalar functions and can be
used to compute 0-dimensional persistence diagrams, to construct contour trees on
simply connected domains, and to quickly query the relationship between connected
components in different sublevel sets. We introduce a representation of merge trees
that tracks the nesting of their branches. We present algorithms to construct and
manipulate the trees in this representation directly. We show that our algorithms are
not only fast, outperforming Kruskal’s algorithm, but they are easy to parallelize
in shared memory using double-word compare-and-swap operations. We present
experiments that illustrate the scaling of our algorithms as functions of the data size
and of the number of threads.

Disclaimer: This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents of the University of California, nor any
of their employees, makes any warranty, express or implied, or assumes any legal responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by its trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or the Regents of the University of
California.

D. Smirnov
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: smirnov@mit.edu

D. Morozov (�)
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
e-mail: dmitriy@mrzv.org

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_2&domain=pdf
mailto:smirnov@mit.edu
mailto:dmitriy@mrzv.org
https://doi.org/10.1007/978-3-030-43036-8_2

20 D. Smirnov and D. Morozov

1 Introduction

Merge trees are widely used in computational topology. These data structures track
how components appear and merge in sublevel sets of functions, as one sweeps the
threshold from negative to positive infinity. Once constructed, merge trees can be
used to generate contour trees [1] or 0-dimensional persistence diagrams [2]. They
are used in applications ranging from combustion to cosmology to materials science.

Most algorithms to compute merge trees are closely related to algorithms for
minimum spanning tree construction. Of these, the most common is Kruskal’s
algorithm [3]. Recently, Carr et al. [4] introduced an algorithm that constructs
merge trees by incrementally pruning extrema. It can be viewed as an adaptation
of Borůvka’s algorithm [5] to the merge tree problem, and, as Borůvka’s, their
algorithm is amenable to parallelization.

The algorithm of Bremer et al. [6] deserves special attention. It works by
incrementally adding edges to the domain and updating the tree by merging paths
inside it. This algorithm features several desirable properties. (1) It can process
edges in a streaming fashion, without access to the full sequence. This property
is most convenient when the domain is represented implicitly, and the number of
edges is significantly higher than the number of vertices. (2) It can be used to
combine a pair of merge trees to find the merge tree of the union of underlying
domains, in sublinear time. In other words, it does not need to access those parts of
the trees that do not change in the union. The need to combine merge trees comes
up naturally during distributed computation [7, 8]. (3) It can be easily parallelized
in shared memory, in a lock-free manner, using compare-and-swap operations for
synchronization.

The algorithm of Bremer et al. would be perfect if it was not so slow. In theory,
it can scale quadratically in the number of input vertices. In practice, it is orders
of magnitude slower than Kruskal’s algorithm. Section 3 includes this algorithm in
several experiments, where it leaves a lot to be desired.

In this paper, we introduce a different representation of merge trees. Instead
of recording the nesting of sublevel sets explicitly, the new triplet representation
records the nesting of the branches of the merge tree. We present algorithms
that construct merge trees in this representation directly by incrementally adding
edges to the domain. They possess the same desirable properties (1)–(3) as above,
and as our experiments show, the new algorithms perform better in practice than
Kruskal’s algorithm. The new algorithms are also sufficiently simple that they can
be parallelized in shared memory using double-word compare-and-swap primitives
for synchronization.

Triplet Merge Trees 21

2 Background

Given a graph G and a scalar function f : Vrt G → R on its vertices, we assume
that all vertex values are distinct, breaking ties lexicographically in practice. For
a ∈ R, the sublevel graph at a, denoted Ga , is the subgraph induced by the vertices
whose function value does not exceed a. The representative of vertex u at level
a ≥ f (u) is the vertex v with the minimum function value in the component of u in
Ga . The merge tree of function f on graph G is the tree on the vertex set of G that
has an edge (u, v), with f (u) < f (v), if the component of u in Gf (u) is a subset of
the component of v in Gf(v), and there is no vertex v′ with f (u) < f (v′) < f (v)

such that the component of u is a subset of the component of v′ in Gf (v′). Figure 1
illustrates a function on a graph and its merge tree. (If G is disconnected, a “merge
tree” is actually a forest. We abuse terminology and do not distinguish this case,
continuing to call it a tree, to not clutter the language.)

Intuitively, a merge tree keeps track of the connected components in the sublevel
graphs. If we sweep threshold a from −∞ to ∞, as we cross values of specific
vertices, they either start new components in the tree, or they are added to existing
components, possibly joining multiple such components together. Such a sweep
lies at the core of the most common algorithm for merge tree construction, which
adapts Kruskal’s algorithm, originally developed for the minimum spanning tree
construction. This algorithm processes vertices in sorted order and maintains
connected components in a disjoint set data structure that supports fast component
identification and merging. For each vertex, it queries the representatives of the
connected components of its neighbors with lower function value and unites them,
recording the changes to the connected components in the merge tree.

The problem of constructing a merge tree is related to the minimum spanning tree
construction. The latter can be reduced to the former by subdividing the edges of the
input graph; the new vertices are assigned the edge values, while the values of the
original vertices are set to −∞. The merge tree of the resulting function identifies
the minimum spanning tree of the original graph: degree-3 nodes of the merge tree
are the vertices subdividing the edges of the minimum spanning tree.

However, the two problems are distinct. In general merge trees, the values of the
minima vary, a feature important for the algorithms presented in the next section.
Furthermore, the goal is to compute the tree itself rather than to find the identity of

A

B

C
D

X
Y

Z

A

B

C
D

Z

Y
X

Fig. 1 A function on a graph and its merge tree

22 D. Smirnov and D. Morozov

the edges. As a consequence, a folklore reduction from sorting1 shows that the
lower bound for merge tree construction is �(m + n log n), where n,m are the
numbers of vertices and edges in the input graph. In contrast, a minimum spanning
tree can be built in O(m · α(m, n)) time [9], where α is the inverse Ackermann
function.

The algorithm of Bremer et al. [6], mentioned in the introduction, works as
follows. It initializes the merge tree to be a set of disjoint vertices. It then processes
all the edges one by one, in arbitrary order. Given an edge (u, v), it merges, in
sorted order, the paths from u and v to the root of the merge tree. The correctness
of the algorithm is easy to see: an edge (u, v) certifies that the two vertices
belong to the same connected components in all sublevel graphs Ga , with a ≥
max{f (u), f (v)}; the connected components of the sublevel graphs that contain
vertex u are represented by the vertices on the path from u to the root. We use this
algorithm for comparison in the next section.

3 Triplet Merge Tree

Merge trees are typically stored in a graph data structure: each node stores a pointer
to its parent, or to its children, or both. These pointers allow one to traverse the tree
and answer various queries: for example, what is the volume of the component that
contains a given vertex; or how many connected components are there at level b that
have a vertex with function value below a; etc.

We are interested in an alternative representation that records global information.
Instead of storing its immediate parent, each vertex stores the range of values for
which it remains its own representative (i.e., the deepest vertex in its connected
component), together with the reference to its representative at the end of this range.
The necessary information can be thought of as a triplet of vertices (u, s, v), such
that u represents itself at levels a ∈ [f (u), f (s)), and v becomes its representative
at level f (s). Recursively following the chain of representatives of v, we can find
the representative of u at any level, which in turn allows us to answer the queries
mentioned before. Figure 2 illustrates the triplet representation of the merge tree in
Fig. 1.

A reader familiar with persistent homology will immediately recognize pairs
(f (u), f (s)) as the birth–death pairs in the 0-dimensional persistence diagram.
Similarly, pairs (u, s) are the branches in the decomposition introduced by Pascucci
et al. [10] for contour trees. The extra information stored in the triplet—which
branch a given branch merges into—is crucial for our main goal: to construct
and manipulate the trees directly in the triplet representation. The rest of this

1Given a sequence of n values, take a star graph with n leaves and assign the input values to the
leaves; assign −∞ to the central vertex. The merge tree of this function is a path, with vertices
assigned the input values in sorted order.

Triplet Merge Trees 23

(B,X,A)

C D

Z

A
B

X

(C,Z,D)

∪
A

D

Y

(A, Y,D)

∪ ∪

(D,D,D)
D

Fig. 2 A subset of the minimal, normalized triplet representation of the merge tree in Fig. 1.
The full representation includes triplets (X,X,A), (Z,Z,D), (Y, Y,D), as well as triplets for the
unlabeled degree-2 nodes

X X
A

B
X D

Y

C
Z

Y
Y

Z

Z

Fig. 3 Directed graph induced by the triplet representation in Fig. 2, with leaves representing the
unlabeled degree-2 nodes omitted

section introduces such algorithms and structural formalism necessary to prove their
correctness.

Structure Given a graph G with a scalar function f : Vrt G → R, we define a
merge triplet to be a 3-tuple of vertices, (u, s, v), such that u and v are in the same
component of Gf(s) and f (v) < f (u) ≤ f (s), or (u, u, u) if u is the minimum
in its component of G. We define the triplet representation T to be a set of merge
triplets. (A triplet representation is not unique, for a given function. We specify
conditions to make it unique below, and we take advantage of this flexibility in our
algorithms.) A triplet representation induces a directed graph D(T), with the same
vertex set as the graph G; D(T) contains a directed edge (u, v), with label s, if and
only if (u, s, v) is a triplet in T . Figure 3 illustrates the directed graph induced by
the triplet representation in Fig. 2.

We let D(T , a) be the subgraph of D(T) that consists of all vertices u with
f (u) ≤ a and all edges (u, v) with label s such that f (s) ≤ a. The representative
of vertex u at level a in the triplet representation is vertex v with the lowest function
value in the connected component of u in D(T , a).

A representation T is equivalent to the graph G if for every vertex u and every
level a ≥ f (u), the representative of u at a in G is the same as the representative
of u at a in T . Similarly, we say that two representations T1 and T2 are equivalent,
T1 � T2, if every vertex, at every level, has the same representative in both T1 and
T2.

A triplet representation is normalized if every vertex u ∈ Vrt G appears as the
first element of exactly one triplet. It follows immediately that the digraph induced
by a normalized representation is a forest, if we ignore the self-loops at the roots.

24 D. Smirnov and D. Morozov

(We note that the internal nodes in such a forest represent extrema of the function,
while the internal nodes of the regular merge tree appear as leaves in the digraph;
see Figs. 1 and 3.) Furthermore, as the following lemma states, a normalized
representation recovers the branches of the merge tree (but not necessarily what
they merge into).

Lemma 1 If representation T is normalized, then (u, s, v) ∈ T implies that u is its
own representative for all levels a, with f (u) ≤ a < f (s). Furthermore, u is not its
own representative at level f (s). (The only exception are the triplets (u, u, u) ∈ T ,
corresponding to minima of the connected components. In this case, u represents
itself at all levels.)

Proof If T is normalized, its induced digraph D(T) is a forest (ignoring the self-
loops at the roots). The component of the subgraph D(T , a), induced by vertices
and edges below a < f (s), that contains vertex u is a subtree rooted at u (unless
u = s, in which case there is no such component). Since vertex values decrease
along the directed edges, u is the minimum of its component, and, therefore, its own
representative, by definition. At level f (s), we add the edge (u, v) to the digraph
D(T , f (s)). Since f (v) < f (u), u stops being its own representative. �

Even for normalized representations, existence of triplet (u, s, v) does not imply
that v represents u at level f (s). We say that a representation is minimal if along
every path in the digraph, the values of the edge labels are increasing. It follows
immediately that if T is normalized and minimal, then for every triplet (u, s, v) ∈ T ,
v represents u at level f (s).

Our main algorithm, Algorithm 3, relies on the following theorem to construct a
triplet representation.

Theorem 1 Suppose a representation T is equivalent to a graph G. Let G′ denote
graph G with an extra edge (u, v); assume without loss of generality that f (u) <

f (v). Then representation T ′ = T ∪ (v, v, u) is equivalent to graph G′.

Proof If representation T is equivalent to graph G, then at every level a ∈ R, there
is a bijection between the connected components of the sublevel graph Ga and those
of the subgraph D(T , a) induced by the representation. If a < f (v), then neither
vertex v nor the new edge is present in either, and so there is no change between Ga

and G′
a and D(T , a) and D(T ′, a).

Suppose a ≥ f (v). If u and v are in the same connected component of Ga ,
then they are in the same connected component of the induced subgraph D(T , a).
They remain in the same connected component after we add edges (u, v) to G and
(v, v, u) to D(T , a). If they are in different connected components, then adding edge
(u, v) to Ga merges the two connected components, but edge (v, v, u) merges the
corresponding connected components in D(T , a). Thus, there is a bijection between
the connected components of G′

a and D(T ′, a). �
Algorithms It is possible to construct a triplet representation from a graph
using Kruskal’s algorithm. Algorithm 1 spells out the details. It uses algorithm
FindDeepest(T , u), given in Algorithm 2, to find the deepest element in a connected

Triplet Merge Trees 25

Algorithm 1: ComputeMergeTree(G)

1 Sort vertices by f value;
2 foreach vertex u ∈ G do
3 T [u] ← (u, u);
4 CurDeepest[u] ← u;
5 nbrs ← {v | (u, v) ∈ G,f (v) < f (u)};
6 if #nbrs > 0 then
7 leaves ← {FindDeepest(T , v) : v ∈ nbrs};
8 v̂ ← oldest(leaves);
9 T [u] ← (u, v̂);
10 if #leaves > 1 then
11 foreach v ∈ leaves \ {v̂} do
12 T [v] ← (u, v̂)

13 return T

Algorithm 2: FindDeepest(T , u)

1 û ← CurDeepest[u]
2 (_, v) ← T [û]
3 while û �= v do
4 û ← CurDeepest[v]
5 (_, v) ← T [û]
6 d ← û

7 û ← CurDeepest[u]
8 (_, v) ← T [û]
9 while û �= v do

10 û ← CurDeepest[v]
11 CurDeepest[v] ← d

12 (_, v) ← T [û]
13 CurDeepest[u] ← d

14 return d

component, using path compression. (Because we use path compression alone, the
algorithm takes O(m log n) steps in the worse case, on a graph with n vertices and
m edges.) In the next section, we use this algorithm as a baseline for comparison.

Our main contribution is Algorithm 3 and its auxiliary Algorithms 4, 5, and 6.
Together they construct a normalized minimal triplet representation by processing
the edges of the input graph, adding them one by one into the triplet representation.
Crucially, it does not matter in what order the edges are processed; we harness this
flexibility for parallelization in the next section.

Because we maintain a normalized representation, each vertex occurs as the first
component of exactly one triplet. In the pseudo-code, we use the associative map
notation, T [u] ← (s, v), to record triplet (u, s, v) and, similarly, (s, v) ← T [u] to
access triplet (u, s, v) ∈ T .

26 D. Smirnov and D. Morozov

Algorithm 3: ComputeMergeTree2(G)

1 foreach vertex u ∈ G do
2 T [u] ← (u, u);
3 foreach edge (u, v) ∈ G do
4 if f (u) < f (v) then
5 Merge(T , v, v, u)

6 else
7 Merge(T , u, u, v)

8 foreach u ∈ T do
9 Repair(T , u)

10 return T

The first loop of Algorithm 3 initializes the vertices of representation T . The
result is trivially equivalent to graph G without any edges.

The second loop employs the main workhorse, the operation Merge(T , u, s, v),
presented in Algorithm 4. Given a normalized representation T , it finds a normalized
representation equivalent to T ∪(u, s, v). Figure 4 illustrates a single transformation
performed by the Merge algorithm.

Algorithm 4: Merge(T , u, s, v)

1 (u′, su, u′′) ← Representative(T , u, f (s));
2 (v′, sv, v′′) ← Representative(T , v, f (s));
3 if u′ = v′ then return;
4 if f (v′) < f (u′) then
5 swap((u′, su, u′′), (v′, sv, v′′))
6 T [v′] ← (s, u′);
7 Merge(T , u′, sv, v′′) ;

Because Merge(T , u, s, v) does not guarantee to preserve minimality, Algo-
rithm 3 restores this property in the third loop by calling Repair(T , u), presented
in Algorithm 6, which finds for each edge the next edge with a higher label.

One could maintain minimality on the fly by keeping back-pointers to the
branches that merge into the given branch (making the induced graph undirected),
but this would obstruct our goal of lock-free shared-memory parallelism in the next
section. So we opt to use the Repair procedure, instead.

u′u u′′

v v′ v′′

su

s

sv

< s

< s

u′u u′′

v v′ v′′

su

s

< s

< s

sv

Fig. 4 Induced graph of triplet representations before and after a single transformation in the
Merge(u, s, v) algorithm

Triplet Merge Trees 27

Algorithm 5: Representative(T , u, a)

1 (s, v) ← T [u]
2 while f (s) ≤ a and s �= v do
3 u ← v

4 (s, v) ← T [u]
5 return (u, s, v)

Algorithm 6: Repair(T , u)

1 (s, _) ← T [u]
2 v ← Representative(T , u, f (s))

3 if u �= v then
4 T [u] ← (s, v)

5 return T [u]

Correctness The core of the algorithm is in the Merge procedure, in Algo-
rithm 4. Assuming that representation T is normalized, we want to show that
after Merge(u, s, v) returns, we get a normalized representation equivalent to
T ∪ (u, s, v).

Lemma 2 Let T denote the triplet representation at the beginning of Algorithm 4,
and T ′ the representation before the recursive call in step 4. Then, T ∪ (u, s, v) �
T ′ ∪ (u′, sv, v′′).

Proof Fix a level a ∈ R. Let D1 = D(T ∪ (u, s, v), a) and D2 = D(T ′ ∪
(u′, sv, v′′), a) denote the directed graphs induced by the representations at the
beginning of the algorithm and before the recursive call; see Fig. 4. Let x and y

be any two vertices in the same connected component in D1, and let p be the (undi-
rected) path that connects them. If p does not contain edges (u, s, v) or (v′, sv, v′′),
then it exists in D2, and therefore x and y are still connected. If p goes through
edge (u, s, v), we can replace that edge by the path u . . . u′, (v′, s, u′), v′ . . . v in
D2, since all the edges in the subpaths connecting vertices u and v have values that
do not exceed f (s). If p contains edge (v′, sv, v′′), we can replace the edge by path
(v′, s, u′), (u′, sv, v′′) since f (s) < f (sv).

Similarly, in the other direction. If x and y are in the same component
of D2, then either the path connecting them does not contain edges (v′, s, u′)
or (u′, sv, v′′) and, therefore, exists in D1; or we can replace (u′, sv, v′′) by
u′ . . . u, (u, s, v), v . . . v′, (v′, sv, v′′), and (v′, s, u′) by v′ . . . v,

(u, s, v), u . . . u′.
In summary, two vertices are connected in D1 if and only if they are connected

in D2. Therefore, the two triplet representations are equivalent. �

28 D. Smirnov and D. Morozov

At every point of the Merge algorithm, the representation remains normalized.
When the exit condition is detected (u′ = v′), the extra triplet does not add any
new information, i.e., in this case T � T ∪ (u, s, v). The recursive calls are made
with vertices u′ and v′′. By definition, f (v′′) < f (v). Consequently, the algorithm
is always making progress and must eventually terminate. (The progress is most
evident in the induced digraph: the algorithm always moves up the directed paths in
D(T).) We get the following corollary.

Corollary 1 Algorithm 4 updates normalized triplet representation T , making it
equivalent to representation T ∪ (u, s, v). The representation remains normalized.

It follows that Algorithm 3 computes the correct result, as summarized in the
following theorem.

Theorem 2 Algorithm 3 computes a normalized minimal triplet representation
equivalent to the input graph G.

Proof The first for-loop in Algorithm 3 initializes representation T to be equivalent
to a graph on the same vertex set as G, but without any edges. The second for-loop
uses Algorithm 4 to update the representation, adding the edges of the graph. The
correctness of this loop follows from Theorem 1 and Corollary 1. The third for-loop
ensures that the representation is not only normalized, but also minimal by finding
the representative of every vertex at the first level where it does not represent itself;
its correctness follows from Lemma 1. �
Evaluation Throughout the paper we use three data sets to evaluate the algorithms.
The first, Z2, is a 5123 snapshot of a cosmological simulation. The second,
Vertebra, is a 5123 scan of a head aneurysm, once available online as part of
the volvis.org collection of data sets. The third, Pumice, is a 6402 × 540
signed distance function to a porous material. We use the vertices and edges of
the Freudenthal triangulations of the underlying grids as our input graphs.

All experiments were performed on a compute node with two sockets, each with
a 16-core Intel Xeon Processor E5-2698 v3 (“Haswell”) at 2.3 GHz.

Figures 5, 6, and 7 illustrate the scaling of Algorithm 1 (labeled “Kruskal’s”) and
Algorithm 3 (labeled “Triplet”) as a function of input size; the three inputs were
downsampled to the sizes specified on the x-axis. They also show two data points
each2 of the path merging algorithm of Bremer et al. (labeled “Path merging”).
The salient point in all cases is that Algorithm 3 is not only competitive with
Algorithm 1, but performs significantly better for larger domain sizes, more than
five times better for 5123 Z2 input. The path merging algorithm is slower and scales
significantly worse.

2We stopped at two data points because by the third, the jobs exhausted the 4-h wallclock request.

Triplet Merge Trees 29

323 643 1283 2563 5123
10−2

10−1

100

101

102

103

15.4

1,245.99

4.8 · 10−2

0.44

6.21

71.06

676.93

2.7 · 10−2

0.22

1.8

14.47

122.49

Domain size

Se
co

nd
s

Z2

Path merging
Kruskal’s
Triplet

Fig. 5 Running time of the three algorithms as a function of input size, on downsampled Z2 data
set

323 643 1283 2563 5123

10−1

100

101

102

103

6.02

472.11

4.4 · 10−2

0.39

4.63

55.89

469.32

2.7 · 10−2

0.23

2.15

21.98

283.23

Domain size

Se
co

nd
s

Vertebra

Path merging
Kruskal’s
Triplet

Fig. 6 Running time of the three algorithms as a function of input size, on downsampled Vertebra
data set

30 D. Smirnov and D. Morozov

402 × 33 1602 × 135 6402 × 540

10−1

100

101

102

103

6.92

535.07

7.1 · 10−2

0.67

6.84

75.52

774.64

4.2 · 10−2

0.36

2.92

24.3

219.79

Domain size

Se
co

nd
s

Pumice

Path merging
Kruskal’s
Triplet

Fig. 7 Running time of the three algorithms as a function of input size, on downsampled Pumice
data set

4 Shared Memory

We adapt our new algorithms to allow multiple threads to concurrently modify the
triplet representation in shared memory. We use compare-and-swap (CAS) primitive
for synchronization between the threads. This primitive atomically checks whether a
variable contains a givenexpected value; if it does, CAS replaces it with the given
desired value. The operation is equivalent to atomically executing Algorithm 7.

Algorithm 7: CAS(v, expected, desired)
1 if v = expected then
2 v ← desired;
3 return True
4 else
5 return False

Since the variables we need to update atomically store pairs of values, (s, v),
we use double-word compare-and-swap (DWCAS) operations. These should not
be confused with double compare-and-swap (DCAS) operations, which update two
arbitrary words in memory. DWCAS updates two contiguouswords in memory, and,
unlike DCAS, it is supported in modern hardware.3

3On x86-64 architecture, where we conducted all our experiments, DWCAS is performed by
instruction CMPXCHG16B. It is automatically emitted by the C++ compilers, when provided with
appropriate flags.

Triplet Merge Trees 31

Algorithm 8: Parallel ComputeMergeTree2(G)

1 foreach vertex u ∈ G do in parallel
2 T [u] ← (u, u);
3 foreach edge (u, v) ∈ G do in parallel
4 if f (v) < f (u) then
5 Merge(T , u, u, v)

6 else
7 Merge(T , v, v, u)

8 foreach u ∈ T do in parallel
9 Repair(T , u)

10 return T

Algorithm 9: Parallel Merge(T , u, s, v)

� equivalent to (u, su, u′) ← Representative(T , u, f (s))

1 (su, u′) ← T [u];
2 if f (su) < f (s) then
3 return Merge(T , u′, s, v)

� equivalent to (v, sv , v′) ← Representative(T , v, f (s))

4 (sv , v′) ← T [v];
5 if f (sv) < f (s) then
6 return Merge(T , u, s, v′)
7 if u = v then return;
8 if f (v) < f (u) then
9 swap((u, su, u′), (v, sv , v′))
10 if DWCAS(T [v], (sv , v′), (s, u)) then
11 Merge(T , u, sv, v

′);
12 else
13 Merge(T , u, s, v);

Algorithm 8 adapts Algorithm 3 to the parallel setting by executing its for-loops
in parallel. We assume that the triplet representation T is stored in a container that
allows concurrent insertion of elements (for example, a concurrent hash map), so
that the first for-loop can execute in parallel.

The second for-loop runs in parallel over the edges of the input graph and invokes
the Merge algorithm, Algorithm 9, adjusted to use DWCAS for synchronization.
The third for-loop performs Repair, as before.

Correctness To understand the correctness of the second for-loop and Algorithm 9,
we interpret the state of the data structure as the normalized representation T ,
together with a complete list of triplets, (u, u, v) or (v, v, u), one for each edge,
as prescribed by Theorem 1. Each invocation of Algorithm 9 is assigned one of the
outstanding triplets—the algorithm receives the triplet as the arguments u, s, v. In
a single instantiation, before or via the recursive call, it transforms the state of the
data structure:

32 D. Smirnov and D. Morozov

u

v v′

su or s′
u

sv

u

v v′

su or s′
u

sv
ss

u′ u′

Fig. 8 The effect of the DWCAS transformation in line 10 of Algorithm 9

1. by modifying its assigned triplet, from (u, s, v) to (u′, s, v) or (u, s, v′), via the
recursive calls in lines 3 or 6;

2. by modifying the triplet representation T in line 10 and replacing the triplet
(u, s, v) with (u, sv, v

′), in line 11;
3. by implicitly removing the triplet by returning in line 7.

Each such operation, when applied in isolation, keeps the state before the transfor-
mation equivalent to the state after the transformation. This follows from arguments
very similar to the proofs of Lemmas 1 and 2.

T ∪ (u1, s1, v1) ∪ . . . ∪ (u, s, v) ∪ . . . ∪ (um, sm, vm)

T ′ ∪ (u1, s1, v1) ∪ . . . ∪ (u, sv, v′) ∪ . . . ∪ (um, sm, vm)

�

We claim that if multiple invocations of the algorithm modify the state concurrently,
the transformations that they apply are linearizable, in the sense of Herlihy and
Wing [11].

To see why this is so, we identify the linearization points, at which the
transformations appear to occur atomically. In case of the first two recursive calls,
in lines 3 and 6, the preceding reads in lines 9 and 4 act as linearization points. Even
though there are no side effects—different invocations of Algorithm 9 do not see
each other’s triplets, and the triplet representation is not modified—the operation is
equivalent to atomically deciding that T ∪ (u, s, v) is equivalent to T ∪ (u′, s, v) or
T ∪ (u, s, v′).

If the condition u = v in line 7 is satisfied, then triplet (u, s, v) is redundant
and the return statement in that line is equivalent to its removal, which also appears
atomically.

What happens when we reach line 10? In this case, the function values are
ordered: f (u) < f (v) < f (s) < f (sv). When this is true, the representation
T ∪ (v, s, u) is equivalent to the representation T ′ ∪ (u, sv, v

′), where T ′ has triplet
(v, sv, v

′) replaced by the triplet (v, s, u); see Fig. 8. (The proof here is similar to
the proof of Lemma 2.) If DWCAS in line 10 succeeds, then this transformation
appears atomically. If it fails, we simply retry via the recursive call in line 13. We

Triplet Merge Trees 33

note that in this case we do not guarantee that the triplet (u, su, u
′) is not changed in

the representation T , i.e., the edge going out of the vertex u in the induced digraph
may change, so that its new label s′u is such that f (s′u) < f (s). In this case,
the transformation is still valid—the representations remain equivalent—but the
transformed representation ceases to be minimal. Since we already do not maintain
minimality during the second for-loop of Algorithm 8, but rather restore it via the
Repair procedure in the third for-loop, this situation requires no special handling.

Finally, the third for-loop of Algorithm 8 requires no special attention since
Repair procedure, Algorithm 6, can already execute in parallel. Since it only changes
the target of any edge in the diagraph, i.e., only the third component of any triplet,
the result that it obtains is the same even if other threads are simultaneously
modifying the triplets it encounters. Suppose Repair changes entry T [u] from (s, v)

to (s, v′), and suppose a different Repair procedure queries the entry T [u] as part of
its search for a representative of a vertex u′ at level a. If a < f (s), then the change
is irrelevant, since u is the desired representative. If a ≥ f (s), then the search needs
to test the entry T [v′], since if the original Repair procedure was changing T [u]
from (s, v) to (s, v′), then all the edges on the path from v to v′ have labels si , with
f (si) < f (s). It makes no difference whether the second Repair procedure goes
directly to v′ or traverses the original path.

Evaluation We perform experiments on the same datasets, Z2, Vertebra, Pumice,
as in the previous section, but now we vary the number of threads used for the
computation. We use Intel’s Thread Building Blocks library for parallelization,
using its concurrent_unordered_map to store the triplet representation.

As a baseline, we compare to Algorithm 1 and Algorithm 3. The significance of
the latter is that unlike Algorithm 8, it is implemented without atomic variables.4

Figures 9, 10, and 11 illustrate the results of our experiments. Unfortunately,
simply turning on atomics roughly doubles the running time. As the thread count
increases, the parallel algorithm outperforms the serial (when using 4 threads in all
cases). Although the scaling trails off, we believe the higher thread counts are still
worthwhile, especially, in the (common) situation where those cores would remain
idle otherwise.

4This is important because in C++, once a variable is declared std::atomic, all operations on
it are protected by atomic primitives and incur the corresponding overheads.

34 D. Smirnov and D. Morozov

1 2 4 8 16 32

102

672.66

121.59

32.91

50

76.8

108.54

154.06

265.29

Threads

Se
co

nd
s

Z2, 5123

Kruskal’s
Triplet (no atomics)

Triplet (TBB)
perfect scaling

Fig. 9 Scaling of Algorithm 9 as a function of the number of threads, on Z2 dataset

1 2 4 8 16 32

102

102.5
468.51

288.16

49.69

73.64

106.84

164.62

278.14

498.16

Threads

Se
co

nd
s

Vertebra, 5123

Kruskal’s
Triplet (no atomics)

Triplet (TBB)
perfect scaling

Fig. 10 Scaling of Algorithm 9 as a function of the number of threads, on Vertebra dataset

Triplet Merge Trees 35

1 2 4 8 16 32

102

103

775.87

219.97

64.81

93.11
119.39

182.15

245.1

440.11

Threads

Se
co

nd
s

Pumice, 6402 × 540

Kruskal’s
Triplet (no atomics)

Triplet (TBB)
perfect scaling

Fig. 11 Scaling of Algorithm 9 as a function of the number of threads, on Pumice dataset

5 Conclusion

We have described a new representation of merge trees. Instead of recording the
nesting of sublevel set components, it records the nesting of the branches of
merge trees. We have presented algorithms to construct the merge trees in this
representations directly, as well as their parallel versions, together with experimental
results demonstrating that these algorithms are efficient in practice.

Conspicuously missing from our paper is the complexity analysis of the new
algorithms. An O(mn) upper bound for Algorithm 3 is obvious: for each edge, the
algorithm touches each vertex at most once (in the amortized sense). It is also not
difficult to construct an example on which Algorithm 3 would take quadratic time.
However, all such examples that we know of require specifying not only the graph
and the function, but also the sequence in which edges must be added. This leaves
us hopeful that it is possible to show that the randomized version of Algorithm 3 is
also efficient in theory. We view this as the main open question left by our paper.

Acknowledgments This work was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, through the grant “Scalable Data-Computing Convergence and Scientic
Knowledge Discovery,” and by the use of resources of the National Energy Research Scientific
Computing Center (NERSC).

36 D. Smirnov and D. Morozov

References

1. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
Theory Appl. 24(2), 75–94 (2003)

2. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathemati-
cal Society, Providence, Rhode Island (2010)

3. Cormen, T., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction To Algorithms. MIT Press,
Cambridge (2009)

4. Carr, H., Weber, G.H., Sewell, C., Ahrens, J.: Parallel peak pruning for scalable SMP contour
tree computation. In: Proceedings of the IEEE Symposium on Large Data Analysis and
Visualization (LDAV) (2016)

5. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem:
translation of both the 1926 papers, comments, history. Discret. Math. 233, 3–36 (2001)

6. Bremer, P.-T., Weber, G.H., Tierny, J., Pascucci, V., Day, M.S., Bell, J.B.: Interactive
exploration and analysis of large scale simulations using topology-based data segmentation.
IEEE Trans. Vis. Comput. Graph. 17(9), 1307–1325 (2011)

7. Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets.
Algorithmica 38(1), 249–268 (2003)

8. Morozov, D., Weber, G.H.: Distributed merge trees. In: Proceedings of the Annual Symposium
on Principles and Practice of Parallel Programming (PPOPP), pp. 93–102 (2013)

9. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type complexity. J.
Assoc. Comput. Mach. 47, 1028–1047 (2000)

10. Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: The Toporrery: Computation and Presenta-
tion of Multi-Resolution Topology, pp. 19–40. Springer, Berlin (2009)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 463–492 (1990)

Persistent Intersection Homology
for the Analysis of Discrete Data

Bastian Rieck, Markus Banagl, Filip Sadlo, and Heike Leitte

Abstract Topological data analysis is becoming increasingly relevant to support
the analysis of unstructured data sets. A common assumption in data analysis is that
the data set is a sample—not necessarily a uniform one—of some high-dimensional
manifold. In such cases, persistent homology can be successfully employed to
extract features, remove noise, and compare data sets. The underlying problems
in some application domains, however, turn out to represent multiple manifolds
with different dimensions. Algebraic topology typically analyzes such problems
using intersection homology, an extension of homology that is capable of handling
configurations with singularities. In this paper, we describe how the persistent
variant of intersection homology can be used to assist data analysis in visualization.
We point out potential pitfalls in approximating data sets with singularities and give
strategies for resolving them.

1 Introduction

The manifold hypothesis is a traditional assumption for the analysis of multivariate
data. Briefly put, it assumes that the input data are a sample of some manifold M,
whose intrinsic dimension d is much smaller than the ambient dimension D.
Typical examples of this assumption are found in dimensionality reduction algo-
rithms [22, 25]. For certain applications, such as image analysis [10] or image
recognition [15], we already know this hypothesis to be true—at least with respect
to the models that are often used to describe such data. For other applications, there
are strategies [13, 19] for testing this hypothesis provided that a sufficient number
of samples is available.

B. Rieck (�) · H. Leitte
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: rieck@cs.uni-kl.de; bastian.rieck@iwr.uni-heidelberg.de; leitte@cs.uni-kl.de

M. Banagl · F. Sadlo
Heidelberg University, Heidelberg, Germany
e-mail: banagl@mathi.uni-heidelberg.de; sadlo@uni-heidelberg.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_3&domain=pdf
mailto:rieck@cs.uni-kl.de
mailto:bastian.rieck@iwr.uni-heidelberg.de
mailto:leitte@cs.uni-kl.de
mailto:banagl@mathi.uni-heidelberg.de
mailto:sadlo@uni-heidelberg.de
https://doi.org/10.1007/978-3-030-43036-8_3

38 B. Rieck et al.

−6 −4 −2 2

·10−2

−1

1

·10−2

(a)

0 2 4

·10−3

0

2

4

·10−3

(b)

Fig. 1 (a) The structure of a central “core” with “flares” emanating from it appears in many data
sets (here, 2-year growth rates of Standard & Poor’s 500 vs. the U.S. CPI with the core shown
in red and one example flare shown in blue). (b) The corresponding persistence diagram shows
topological features in dimension zero (red) and dimension one (blue)

The practice of multivariate data analysis seems to suggest something else,
though: Carlsson [4], for example, remarks that many real-world data sets exhibit
a central “core” structure, from which different “flares” emanate. Figure 1 illus-
trates this for a simple 2D data set, generated from 2-year growth rates of
Standard & Poor’s 500 vs. the U.S. CPI. This structure is irreconcilable with the
structure of a single manifold. Novel data analysis algorithms such as MAPPER [24]
account for this fact by not making any assumptions about manifold structures and
attempting to fit data in a local manner—a strategy that is also employed in low-
dimensional manifold learning [23].

In this paper, we argue that some real-world data sets require special tools to
assess their structure. Just as persistent homology [11, 12] was originally developed
to analyze samples from spaces that are supposed to have the structure of a
manifold, we need a special tool to analyze spaces for which this assumption
does not hold. More precisely, we will tackle the task of analyzing spaces that
are composed of different manifolds (with possibly varying dimensions) using
intersection homology [16] and persistent intersection homology [1, 2]. To make
it accessible to a wider community of researchers, we devote a large portion of this
paper to explaining the theory behind persistent intersection homology. Further-
more, we discuss implementation details and present an open-source framework
for its calculation. We also describe pitfalls in “naive” applications of persistent
intersection homology and develop strategies to resolve them.

Persistent Intersection Homology for the Analysis of Discrete Data 39

2 Background

We first explain the mathematical tools required to describe spaces that are not
composed of a single manifold, but of multiple ones. Next, we introduce (persistent)
intersection homology, give a brief algorithm for its computation, and describe how
to use it to analyze real-world data sets.

2.1 Stratifications

Stratifications are a way of describing spaces that are not a manifold per se, but
composed of multiple parts, each of which is a manifold. A common example of
such a space is the “pinched torus”, which is obtained by collapsing (i.e., pinching)
one minor ring of the torus to a single point. Figure 2a depicts an example. The
neighborhood of the pinch point is singular because it does not satisfy the conditions
of a manifold: it does not have a neighborhood that is homeomorphic to a ball. If
we remove this singular point, however, the remaining space is just a (deformed)
cylinder, i.e., a manifold. Permitting the removal of certain parts of a space may
thus be beneficial to describe the manifolds it is composed of. This intuition leads
to the concept of stratifications.

Let X ⊆ Rn be a topological space. A topological stratification of X is a filtration
of closed subspaces

∅ ⊆ X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xd−1 ⊆ Xd = X, (1)

such that for each i and every point x ∈ Xi \Xi−1 there is a neighborhood U ⊆ X of
x, a compact (n− 1− i)-dimensional stratified topological space V, and a filtration-
preserving homeomorphism U � Ri × CV , where CV denotes the open cone on
V , i.e., CV := V × [0, 1)/(V × {0}). We refer to Xi \ Xi−1 as the i-dimensional
stratum of X. Notice that it is always a (smooth) manifold, even though the original

(a) (b)

Fig. 2 (a) The “pinched torus” is a classical example of an object that is not a manifold but
composed of parts that are manifolds, provided the singular point that is caused by the “pinch”
is ignored. (b) The singular point is readily visible when calculating mean curvature estimates

40 B. Rieck et al.

space might not be a manifold. Hence, this rather abstract definition turns out to be
a powerful description for a large family of spaces. There are some stratifications
with special properties that are particularly suited for analyzing spaces. Goresky
and MacPherson [14], the inventors of intersection homology, suggest using a
stratification that satisfies Xd−1 = Xd−2 so that the (d − 1)-dimensional stratum is
empty, i.e., Xd−1 \ Xd−2 = ∅.

2.2 Homology and Persistent Homology

Prior to introducing (persistent) intersection homology, we briefly describe sim-
plicial homology and its persistent counterpart. Given a d-dimensional simplicial
complex K, the chain groups {C0, . . . , Cd} contain formal sums (simplicial chains)
of simplices of a given dimension. A boundary operator ∂p : Cp → Cp−1 satisfying
∂p−1 ◦ ∂p = 0 (i.e., a closed boundary does not have a boundary itself) then permits
us to create a chain complex from the chain groups. This results in two subgroups,
namely the cycle group Zp := ker ∂p and the boundary group Bp := im ∂p+1, from
which we obtain the pth homology group as

Hp := Zp/Bp, (2)

where the /-operator refers to the quotient group. Intuitively, elements in the cycle
group Zp constitute sets of simplicial chains that do not have a boundary, while
elements in the boundary group Bp are the boundaries of higher-dimensional
simplices. By removing these in the definition of the homology group, we obtain
a group that describes high-dimensional “holes” in K.

Homology is a powerful tool to discriminate between different triangulated
topological spaces. It is common practice to use the Betti numbers βp, i.e., the
ranks of the homology groups, to obtain a signature of a space. In practice, the Betti
numbers turn out to be highly susceptible to noise, which prompted the development
of persistent homology [11]. Its basic premise is that the simplicial complex K is
associated with a filtration,

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K, (3)

where each Ki is typically assigned a function value, such as a distance. The
filtration induces a homomorphism of the corresponding homology groups, i.e.,
f

i,j
p : Hp(Ki) → Hp(Kj), leading to the definition of the pth persistent homology

group H
i,j
p for two indices i ≤ j as

H
i,j
p := Zp (Ki) /

(
Bp

(
Kj

) ∩ Zp (Ki)
)
. (4)

Persistent Intersection Homology for the Analysis of Discrete Data 41

This group contains all the homology classes of Ki that are still present in Kj . It is
possible to keep track of all homology classes within the filtration.

The calculation of persistent homology results in a set of pairs (i, j), which
denote a homology class that was created in Ki and destroyed (vanished) in Kj .
Letting fi denote the associated function value of Ki , these pairs are commonly
visualized in a persistence diagram [6] as (fi , fj). The distance of each pair to the
diagonal, measured in the L∞-norm, is referred to as the persistence of a topological
feature. It is now common practice in topological data analysis to use persistence
to separate noise from salient features in real-world data sets [11, 12]. Figure 1b
shows the persistence diagram of an example data set. Since the data set, shown in
Fig. 1a, appears to be a “blob”, the persistence diagram, as expected, contains few
topological features of high persistence in both dimensions.

2.3 Intersection Homology and Persistent Intersection
Homology

Despite its prevalence in data analysis, persistent homology exhibits some limita-
tions. In the context of this paper, we are mostly concerned with its lack of duality
for non-manifold data sets, and with its inability to detect topological features of
data sets consisting of multiple manifolds.1 Recall that for a d-manifold, Poincaré
duality means that the Betti numbers satisfy βk = βd−k. While it is possible
to extend persistent homology to obtain something similar for manifolds [7, 9],
there is no general duality theorem yet. Additionally, persistent homology cannot
detect manifolds of varying dimensionality that are “glued together” in the manner
described in Sect. 2.1. For example, we could model the data set from Fig. 1, in
which we see a central “core” along with some “flares”, as a topological disk to
which we added multiple “whiskers”. The persistence diagram does not contain
evidence of any whiskers, so the data set will have the same persistence diagram as
a data set that only contains a topological disk. Carlsson [4] proposes to use filter
functions on the data to remedy this situation. While this helps detect the features, it
does not detect that the underlying structure does not consist of one single manifold.

Intersection homology faces these challenges by providing a homology theory
for such spaces with singularities. We follow the notation of Bendich [1, 2] here,
who provided a generic framework for calculating restricted forms of (persistent)
homology, of which intersection homology is a special case. In the following, we
require a function φ : K → {0, 1} that restricts the usage of simplices. We call

1We remark that topologically, this case can often be reduced to the computation of ordinary
homology, because a theorem of Goresky and MacPherson [14] ensures that for pseudomanifolds,
the intersection homology groups remain the same under normalization, and if they are nonsin-
gular, the intersection homology groups are ordinary homology groups. As it is not clear how to
obtain normalizations for real-world data, the calculation of persistent intersection homology is
necessary.

42 B. Rieck et al.

a simplex σ proper or allowable if φ(σ) = 1. While φ(K) is not generally a
simplicial complex, we can use it to define a restriction on the chain groups of
K by calling a simplicial chain c ∈ Cp(K) proper or allowable if both c and ∂p c

can be written as formal sums of proper simplices. We refer to the set of allowable
p-chains as IφCp(K). Since ∂p−1 ◦∂p = 0, the boundary of an allowable p-chain is
an allowable chain of dimension p − 1, so the boundary homomorphism gives rise
to a chain complex on the set of allowable chains. We write IφHp(K) to denote the
pth homology group of this complex, and refer to it as the pth intersection homology
group. There is a natural restriction of φ(·) when K is filtrated, so we can define a
set of restricted persistent homology groups IφH

i,j
p in analogy to the definition of

the persistent homology groups.

2.3.1 Persistent Intersection Homology

To obtain intersection homology from this generic framework, we require a few
additional definitions: a perversity2 is a sequence of integers

p̄ = (p1, p2, . . . , pd−1, pd) (5)

such that −1 ≤ pk ≤ k − 1 for every k. Alternatively, following the original
definition of Goresky and MacPherson [14], a perversity is a sequence of integers

p̄′ = (p′
2, p

′
3, . . . , p

′
d−1, p

′
d) (6)

such that p′
2 = 0 and either p′

k+1 = p′
k or p′

k+1 = p′
k + 1. Both definitions permit

assessing to what extent a data set deviates from being a manifold. More precisely,
the perversity measures how much deviation from full transverse intersections (i.e.,
intersections of two submanifolds that yield another submanifold) are permitted
for a given simplicial complex. Each choice of perversity will yield a different
set of restricted (persistent) homology groups. We focus only on low-dimensional
perversities in this paper, with k ≤ 3. Finally, tying all the previous definitions
together, we define a function φ(·) for a given perversity and a given stratification:
a simplex σ is considered to be proper if

dim(σ ∩ Xd−k) ≤ dim(σ) − k + pk (7)

holds for all k ∈ {1, . . . , d}. Intuitively, this inequality bounds the dimensionality of
the intersection of a simplex with a given subspace. We set dim(∅) := −∞ so that
simplices without an intersection are considered proper. Larger values for pk give
us more tolerant intersection conditions, whereas smaller values for pk make the

2See the unpublished notes by MacPherson on Intersection Homology and Perverse Sheaves,
available under http://faculty.tcu.edu/gfriedman/notes/ih.pdf, for the origin of this name.

http://faculty.tcu.edu/gfriedman/notes/ih.pdf

Persistent Intersection Homology for the Analysis of Discrete Data 43

A

(a) X0

A B

C

D

(b) X1 = K

Fig. 3 A simple example stratified space (b) for which simplicial homology is incapable of
detecting the additional “whisker”. The singular stratum (a) only consists of a single vertex, A

intersections more restrictive. This leads to persistent intersection homology groups
with a given perversity function.

2.3.2 Simple Example

Figure 3 shows a triangulation of a circle with an additional “whisker”. This
triangulation is in itself not a manifold: at vertex A, the neighborhood condition
that is required for a manifold is violated. However, the space is made up of
two manifolds, namely a circle and a line, that are joined at a single point. A
natural stratification of such a space thus puts the singular vertex A in X0 and
the full simplicial complex in X1. With ordinary simplicial homology, we obtain
β0 = 1, because there is only a single connected component. Intersection homology
permits only two different perversities here (we cannot use Goresky–MacPherson
perversities because d = 1), either p1 = −1 or p1 = 0; as we are only interested
in β0, we do not have to provide a higher-dimensional value for the perversity. For
p1 = −1, we obtain β0 = 2, because no simplex that contains A is proper. This
reflects the fact that the simplicial complex is made up of two pieces whose type is
different. For p1 = 0, we obtain again β0 = 1 because the singular point now leads
to a proper connected component: Eq. 7 becomes dim(σ ∩ X1) ≤ dim(σ), which is
satisfied by every simplex σ .

2.3.3 Implementation

The crucial part of implementing persistent intersection homology lies in an efficient
evaluation of Eq. 7: for each simplex σ , the calculating the dimension of the inter-
section on the left-hand side requires searching through some Xd−k and reporting
the intersection with the highest dimension. Large speedups can be obtained by
(1) restricting the search to l-simplices, where l := min(dim σ, d − k) is the
maximum dimension that can be achieved by the intersection, and (2) enumerating
all subsets τ ⊆ σ (in reverse lexicographical order, because we are looking for the
largest dimension) and checking whether τ ∈ Xd−k. The second step particularly
improves performance when dim σ is small, because we have to enumerate at most

44 B. Rieck et al.

2dimσ simplices and check whether they are part of Xd−k . Each check can be done in
constant or (at worst) logarithmic time in the size of Xd−k . By contrast, calculating
all intersections of σ with Xd−k takes at least linear time in the size of Xd−k .
If 2dim σ · log |Xd−k| � |Xd−k|, our method will be beneficial for performance.
We provide an implementation of persistent intersection homology in Aleph,3 a
software library for topological data analysis. We are not aware of any other open-
source implementation of persistent intersection homology at this time.

3 Using Persistent Intersection Homology

Prior to using persistent intersection homology in a topological data analysis work-
flow, we need to discuss one of its pitfalls: the Vietoris–Rips complex is commonly
used in topological data analysis to deal with multivariate data sets. For persistent
intersection homology, this construction turns out to result in triangulations that
yield unexpected results. Figure 4 depicts an example of this issue. Here we see the
one-point union, i.e., the wedge sum, of two circles, denoted by S1 ∨ S1. Formally,
this can be easily modeled as a simplicial complex K (Fig. 4a). The smallest
stratification of this space places the singular point x in its own subspace, i.e., X0 =
{x},X1 = K, and uses p̄ = (−1). The intersection homology of K results in β0 = 2,
because of the singular point at which the two circles are connected. Calculating
persistent intersection homology of a point cloud that describes this space (Fig. 4b),
by contrast, results in β0 = 1, regardless of whether we ensure that the triangulation
is flaglike [17] by performing the first barycentric subdivision (which is guaranteed
to make the calculations independent of the stratification [14]). The reason for
this is that the topological realization of the Vietoris–Rips complex seems to be
more closely tied to regular neighborhoods than to the homeomorphism type of
S1 ∨ S1. However, the regular neighborhood of a space is always a manifold. It can
be thought of as calculating a “thickened” version of the space in which isolated
singularities disappear.

As far as we know, Bendich and Harer [2], while discussing other dependencies
of persistent intersection homology, did not discuss this aspect. Yet, it is crucial
to get persistent intersection homology to “detect” those singularities if we want
to understand the manifold structure of a given data set. To circumvent this issue,
we propose obtaining additional information about the geometry of a given point
cloud in order to determine which points are supposed to be singular. Alternatively,
we could try to learn a suitable stratification of the whole space [3] at the cost of
reduced performance.

3https://github.com/Submanifold/Aleph.

https://github.com/Submanifold/Aleph

Persistent Intersection Homology for the Analysis of Discrete Data 45

x

(a) (b)

Fig. 4 Calculating the Vietoris–Rips complex of a point cloud makes it impossible to detect
singularities by homological means alone. (a) Simplicial complex. (b) Vietoris–Rips complex

3.1 Choosing a Stratification

Having seen that the utility and expressiveness of persistent intersection homology
hinge upon the choice of a stratification, we now develop several constructions.
We restrict ourselves to the detection of isolated singular points, i.e., vertices or
0-simplices, in this paper. A stratification should ideally reflect the existence of
singularities in a data set. For the example shown in Fig. 3, a singularity exists
at A because the “whisker” will remain a one-dimensional piece regardless of the
scale at which we look at the data, while the triangle is a two-dimensional object.
This observation leads to a set of stratification strategies, which we first detail before
applying them in Sect. 4.

3.1.1 Dimensionality-Based Stratifications

In order to stratify unstructured data according to the local intrinsic dimensionality,
we propose the following scheme. We first obtain the k nearest neighbors of every
data point and treat them as local patches. For each of these subsets, we perform
a principal component analysis (PCA) and obtain the respective set of eigenvalues
{λ1, . . . , λd }, where d refers to the maximum number of attributes in the point cloud.
We then calculate the largest spectral gap, i.e.,

di := arg max
j∈{2,...,d}

|λj − λj−1| − 1, (8)

and use it as an estimate of the local intrinsic dimensionality at the i th data
point. Points that can be well represented by a single eigenvalue are thus taken to
correspond to a locally one-dimensional patch in the data, for example. In practice,
as PCA is not robust against outliers, one typically requires some smoothing
iterations for the estimates. We use several iterations of smoothing based on nearest
neighbors, similar to mean shift clustering [5]. The resulting values can then be used
to stratify according to local dimensionality.

46 B. Rieck et al.

3.1.2 Density-Based Stratifications

We can also stratify unstructured data according to the behavior of a density
estimator, such as a truncated Gaussian kernel, i.e.,

f (x) :=
∑

y �=x

exp

(
− dist2(x, y)

2h

)
, (9)

where h is the bandwidth of the estimator and we define the exponential expression
to be 0 if dist(x, y) > h. The density values give rise to a distribution of values
so that we can use standard outlier detection methods. Once outliers have been
identified, they can be put into the first subset of the filtration. This approach has
the advantage of rapidly detecting interesting data points but it cannot be readily
extended to higher-dimensional simplices.

3.1.3 Curvature-Based Stratifications

The curvature of a manifold is an important property that can be used to detect
differences in local structure. Using a standard algorithm to estimate curvature
in meshes [18], we can easily identify a region around the singular point in the
“pinched torus” as having an extremely small curvature. Figure 2b depicts this.
For higher-dimensional point clouds, we propose obtaining an approximation of
curvature by using the curvature of high-dimensional spheres that are fit to local
patches of a point cloud. More precisely, we extract the k nearest neighbors of
every point in a point cloud and fit a high-dimensional sphere. Such a fit can be
accomplished using standard least squares approaches, such as the one introduced
by Pratt [20].

4 Results

In the following, we discuss the benefits of persistent intersection homology over
ordinary persistent homology by means of several data sets, containing random
samples of non-trivial topological pseudomanifolds, as well as experimental data
from image processing.

4.1 Wedge of Spheres

We extend the example depicted in Fig. 4 and sample points at random from a
wedge of 2-spheres. If no precautions are taken, the resulting data set suffers from

Persistent Intersection Homology for the Analysis of Discrete Data 47

(a) (b)

Fig. 5 A random sample of S2 ∨ S2, color-coded by two stratification strategies. Both descriptors
register either extremely high (density) or extremely low (dimensionality) values as we approach
the singular part of the data set. The corresponding points are put into X0. (a) Density. (b) Local
dimension (smoothed)

(a) (b)

Fig. 6 Excerpt of the zero-dimensional barcodes for S2 ∨ S2. With persistent homology (a), no
additional connected component appears, whereas with persistent intersection homology (b) with
the density-based stratification, the singular point/region results in splitting the data

the problem that we previously outlined. We thus use it to demonstrate the efficacy
of our stratification strategies. Figure 5 depicts the data set along with two different
descriptors. In both cases, we build a simple stratification in which X0 contains all
singular points, X1 = X0, and X2 = K, i.e., the original space. We use the default
Goresky–MacPherson perversity p̄′ = (0). This suffices to detect that the data set is
not a manifold: we obtain β0 = 2 for both stratification strategies, whereas persistent
homology only shows β0 = 1. Figure 6 depicts excerpts of the zero-dimensional
barcodes for the data set. The two topological features with infinite persistence are
clearly visible in the persistent intersection homology barcode. Since β2 = 2, this
re-establishes Poincaré duality.

48 B. Rieck et al.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

(b)

Fig. 7 (a) Persistent homology detects more one-dimensional features for the “pinched torus” data
set than (b) persistent intersection homology

4.2 Pinched Torus

We demonstrate the curvature-based stratification using the “pinched torus” data
set. Figure 2b depicts the torus along with curvature estimates. A standard outlier
test helps us detect the region around the singular point. We set up the stratification
such that X0 contains all points from the detected region, X1 = X0, and X2 = K.
Moreover, we use p̄′ = (0) because the dimensionality of the input data prevents
us from detecting any higher-dimensional features. Persistent homology shows that
the point cloud contains a persistent cycle in dimension one. Essentially, the data are
considered to be a “thickened circle”. Figure 7 depicts the persistence diagrams. We
can see that the point with infinite persistence (shown in Fig. 7a at the top border)
is missing in addition to many other points in the persistent intersection homology
diagram (Fig. 7b). The Wasserstein distance [11] between the two diagrams is thus
large, indicating the non-manifold structure of the data.

4.3 Synthetic Faces

This data set was originally used to demonstrate the effectiveness of nonlinear
dimensionality reduction algorithms [25]. Previous research demonstrated that
the data set does not exhibit uniform density [21], which makes the existence
of (isolated) singular points possible. It is known that the intrinsic dimension of
the data set is three, so we shall only take a look at low-dimensional topological
features. More precisely, using the curvature-based stratification, we want to see
how persistence diagrams in dimensions 0–2 change when we calculate intersection
homology. Note that analyzing three-dimensional features is not expedient, because
the stratification cannot detect deviations from “manifoldness” in this dimension.

Persistent Intersection Homology for the Analysis of Discrete Data 49

(a) (b)

Fig. 8 Zero-dimensional barcodes for the “Synthetic Faces” data set. Both barcodes are virtually
identical, indicating that the singular points do not influence connected components. (a) Persistent
homology. (b) Persistent intersection homology

0 5 10
0

5

10

(a)

0 5 10
0

5

10

(b)

Fig. 9 Comparison of persistent homology in dimension one (above diagonal) and two (below
diagonal) for the “Synthetic Faces” data set. The overall structure is similar, and only few features
disappear during the calculation of persistent intersection homology. (a) Persistent homology. (b)
Persistent intersection homology

Figure 8 depicts the zero-dimensional barcodes of the data set. They are virtually
identical for both methods (we find that their Wasserstein distance is extremely
small), except for some minor shifts in the destruction values, i.e., the endpoints of
every interval. This indicates that the singular points only have a very local influence
on the structure of the data set; they are not resulting in a split, for example. For
dimensions one and two, depicted by Fig. 9, we observe a similar behavior. The
overall structure of both persistence diagrams is similar, and there is only a slight
decrease in total persistence [8] for persistent intersection homology. Likewise, the
Wasserstein distance between both diagrams is extremely small.

In summary, we see that we are unable to detect significant differences in
zero-dimensional, one-dimensional, and two-dimensional topological features. This
lends credibility to the assumption that the data set is a single manifold.

50 B. Rieck et al.

5 Conclusion

We showed how to use persistent intersection homology for the analysis of data
sets that might not represent a single manifold. Moreover, we described some
pitfalls when applying this technique—namely, finding suitable stratifications, and
presented several strategies for doing so. We demonstrated the utility of persistent
intersection homology on several data sets of low intrinsic dimensionality. Future
work could focus on improving the performance of the admissibility condition
in Eq. 7 to process data sets with higher intrinsic dimensions. It would also
be interesting to extend stratification strategies to higher-dimensional strata, i.e.,
singular regions instead of singular points.

References

1. Bendich, P.: Analyzing stratified spaces using persistent versions of intersection and local
homology. Ph.D. thesis, Duke University (2009)

2. Bendich, P., Harer, J.: Persistent intersection homology. FoCM 11(3), 305–336 (2011)
3. Bendich, P., Wang, B., Mukherjee, S.: Local homology transfer and stratification learning.

In: Rabani, Y. (ed.) Symposium on Discrete Algorithms, pp. 1355–1370. SIAM, Philadelphia
(2012)

4. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numer. 23, 289–368
(2014)

5. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE TPAMI 17(8), 790–799 (1995)
6. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret.

Comput. Geom. 37(1), 103–120 (2007)
7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and

Lefschetz duality. FoCM 9(1), 79–103 (2009)
8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable

persistence. Found. Comput. Math. 10(2), 127–139 (2010)
9. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology.

Inverse Probl. 27(12), 124003 (2011)
10. Donoho, D.L., Grimes, C.: Image manifolds which are isometric to Euclidean space. J. Math.

Imaging Vision 23(1), 5–24 (2005)
11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence

(2010)
12. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European

Congress of Mathematics. EMS Publishing House, Zürich (2014)
13. Fefferman, C., Mitter, S., Narayanan, H.: Testing the manifold hypothesis. J. Am. Math. Soc.

29(4), 983–1049 (2016)
14. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)
15. Hinton, G.E., Dayan, P., Revow, M.: Modeling the manifolds of images of handwritten digits.

IEEE Trans. Neural Netw. 8(1), 65–74 (1997)
16. Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman

and Hall/CRC, Boca Raton (2006)
17. MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math.

84(2), 403–435 (1986)

Persistent Intersection Homology for the Analysis of Discrete Data 51

18. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for
triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III,
pp. 35–57. Springer, Heidelberg (2003)

19. Narayanan, H., Mitter, S.: Sample complexity of testing the manifold hypothesis. In: NIPS 23,
pp. 1786–1794. Curran Associates, Inc., Red Hook, NY (2010)

20. Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Graph.
21(4), 145–152 (1987)

21. Rieck, B., Leitte, H.: Persistent homology for the evaluation of dimensionality reduction
schemes. Comput. Graph. Forum 34(3), 431–440 (2015)

22. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

23. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional
manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

24. Singh, G., Mémoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional
data sets and 3D object recognition. In: Eurographics Symposium on Point-Based Graphics.
Eurographics Association, Prague (2007)

25. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

Part II
Scalar Topology

Coarse-Graining Large Search
Landscapes Using Massive Edge Collapse

Sebastian Volke, Martin Middendorf, and Gerik Scheuermann

Abstract A thorough understanding of discrete optimization problem instances is
the foundation for the development of successful solving strategies. For this, the
analysis of search spaces is a valuable tool. In particular, networks of solutions—
referred to as search landscapes—are used in research. Because of the large
number of solutions, topological analysis methods are typically restricted to much
smaller problem instances than instances that occur in practical applications. In
this paper we present a coarse-grained abstraction of search landscapes—the meta
landscape—that is accessible for a complete analysis, can be computed easily
and preserves relevant properties of the original search landscapes. Thus, detailed
topological analysis and visualization become available for problem instances of
realistic sizes. We demonstrate the use of our method for search spaces of more
than 1050 solutions.

Keywords Combinatorial optimization · Fitness landscapes · Topological
analysis · Barrier trees

1 Introduction

Combinatorial optimization is a challenging task. One reason is the large search
space of typical optimization problems. Therefore, a better understanding of large
search spaces is of high interest, but difficult to obtain. It would be helpful if humans
could use their visual pattern detection abilities to derive structural properties of
search spaces. The knowledge about such properties can then be used to design
good (meta-)heuristics for the problem. However, such a visual inspection requires a
visualization of the search space. Obviously, any direct visualization of all solutions

S. Volke (�) · M. Middendorf · G. Scheuermann
Institut für Informatik, Leipzig University, Leipzig, Germany
e-mail: volke@informatik.uni-leipzig.de; middendorf@informatik.uni-leipzig.de;
scheuermann@informatik.uni-leipzig.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_4&domain=pdf
mailto:volke@informatik.uni-leipzig.de
mailto:middendorf@informatik.uni-leipzig.de
mailto:scheuermann@informatik.uni-leipzig.de
https://doi.org/10.1007/978-3-030-43036-8_4

56 S. Volke et al.

is usually impossible since even small problems, e.g., the Traveling Salesman
Problem with n ≥ 13 cities, have more solutions than there are pixels on any screen.

Research has found ways of obtaining a structure-preserving, coarse representa-
tion of the search space. In this paper we present a novel approach that relies on
a massive and implicit collapse of parts of the search space. The method exploits
structural properties of the solution set and the chosen search operator, but is
independent of the cost function of the optimization problem. The solutions are
partitioned into a manageable number of well-describable subsets. On top of them,
the coarse-grained meta landscape is constructed that approximates the original
search space. The meta landscape is small enough such that complete (topological)
analyses are feasible. This enables the use of established visualization techniques
like dPSO-Vis [18] for the investigation of the search space.

We present a precise mathematical definition of the meta landscape and discuss to
what extent topological properties of the meta landscape correspond to topological
properties of the original search space. We further discuss how approximate
meta landscapes can be constructed for problem instances that are too large
for an exhaustive search. Finally, we present and discuss different heuristics for
constructing approximate meta landscapes that reveal different aspects of the search
space. For the examples of the Traveling Salesman Problem (TSP) and the Quadratic
Assignment Problem (QAP), we show how the proposed method can be used in
practice to analyze optimization problem instances.

2 Foundations and Related Work

In this section, the mathematical foundations of this work are introduced and related
work is reviewed.

2.1 Discrete Optimization Problems

A discrete optimization problem (also called combinatorial optimization problem)
is to find the best solution out of a finite set of solutions X where the quality of a
solution is determined by a cost function f : X → R, so that x ∈ X is better than
y ∈ X if f (x) < f (y). Thus, solving a discrete optimization problem is equivalent
to finding the global minimum of f . For many discrete optimization problems the
set of solutions can be characterized easily, but its size is so large that a complete
enumeration is infeasible even for small problem sizes. Many practically relevant
discrete optimization problems are NP-hard [5].

Common types of discrete optimization problems are subset problems and per-
mutation problems. Subset problems, like the maximum binary variable saturation

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 57

problem (MAXSAT), are defined on the power set X over the finite set {1, . . . , n}, or
equivalently over the set of all binary strings of length n, i.e., |X| = 2n. Permutation
problems are defined on the set X of permutations of size n, i.e., |X| = n!. Examples
are the Traveling Salesman Problem (TSP) and related vehicle routing problems, job
scheduling problems and the Quadratic Assignment Problem (QAP) [5].

The techniques that are proposed in this paper are, in principle, applicable to
any type of discrete optimization problem. However, we restrict our presentation to
permutation problems and use the TSP and the QAP as particular examples.

The symmetric TSP is: Given a set of n cities and distances dij = dji between
cities 1 ≤ i, j ≤ n, the task is to find the shortest round-trip that visits all cities
exactly once. A round-trip can be modeled as a permutation π , where π(i) is the
city at the i-th position of the round-trip. Then, fT SP (π) = ∑n−1

i=1 dπ(i),π(i+1) +
dπ(n),π(1) is the length of a tour. There is no distinguished “first” city, and since
dij is symmetric, the direction of the round-trip is not important. Thus, there are
(n − 1)!/2 equivalence classes of solutions.

The QAP is: given are n facilities with a flow Fij between facilities i and j and n

locations with distances dij , 1 ≤ i, j ≤ n. Then, a mapping π of the facilities to the
cities is to be found, such that fQAP (π) =∑n

i=1
∑n

j=1 Fij · dπ(i)π(j) is minimized.
The QAP does not exhibit any symmetries in general, so that n! equivalence classes
of permutations are needed to represent all possible solutions.

2.2 Search Landscapes

The notion of landscapes was first presented in 1932 by Sewall Wright [21] as fitness
landscapes to model evolutionary processes. The concept has been used many times
to study optimization [1, 6, 12, 16, 18, 19]. A (fitness) landscape L(X,N, f) consists
of a finite set X, a neighborhood relation N ⊂ X × X, and a function f : X → R

[12]. Depending on the context, f is called fitness function, energy function, or
cost function. N induces a graph structure on the set of nodes X. Thus, landscapes
can also be defined by a pair (GX,N , f) for a function f : X → R and graph
GX,N = (X,N) with vertex set X and edge set N [3]. Landscapes are a valuable tool
for the study of local search algorithms [12] where the neighborhood of the local
search algorithm defines the edge set of the graph. In practice, the neighborhood
is often modeled by means of a search operator Δ, that is a collection of operator
functions δ : X → X [15]. Then, (x, y) ∈ N ⇐⇒ ∃δ ∈ Δ such that δ(x) = y.

For a combinatorial optimization problem with set of solutions X, cost function
f , and a local search algorithm with neighbourhood N the corresponding search
landscape is L(X,N, f) = (GX,N, f). In this paper we assume without loss of
generality that the graph is connected and consider only symmetric neighbourhoods.

58 S. Volke et al.

2.3 Landscape Analysis

Landscape analysis is used in different fields of research and various analysis
methods have been developed (see [12] for a comprehensive survey). Of particular
interest is the investigation of barriers between local minima. Together with the
concept of basins of attraction, barriers can be used to structure a landscape
topologically. This gives rise to the barrier tree that was described in detail by
Flamm et al. [3]. It is a rooted tree that has the local minima and saddle points of the
landscape as its nodes and the hierarchical relations between them are represented
by the edges. A major drawback of the barrier tree is that it can only be applied if
all local minima and all barriers are known. To find them it is often necessary to
completely enumerate at least the part of the landscape below a particular barrier.
Thus, the barrier tree is often limited to the analysis of smaller problem instances,
e.g., TSP instances with up to 13 cities (2.4 · 108 solutions).

A different approach for the analysis of search landscapes is the computation
of the auto-correlation of random walks, as done in [16], and the investigation of
distances between local minima, as done in [4, 13]. Both approaches indirectly
reveal some structural properties of the search landscape of TSP instances. While
not requiring a complete enumeration of all solutions, these approaches have the
drawback that no comprehensive topological structure of the search landscape
is determined. Only indications about the shape of the search landscape can be
obtained. The methods have been applied to problems instances up to approximately
400 cities [4, 16].

Local Optima Networks (LON) [8, 10, 11] have been introduced to investigate
search methods. The idea is to reduce the search space to a (sampled) selection
of local minima. The connectivity is defined through means of a so called escape
perturbation operator that mutates a local optimum in an attempt to escape from
its basin of attraction. Being defined on minima, LONs do not provide context for
arbitrary solutions in the search space. Although topological analyses are possible
on LONs [7], the results only describe the behavior of the escape operator on the set
of local optima in the search landscape with respect to the search operator.

In this work, we propose a method that allows to approximate the topological
structure for search landscapes that cannot be enumerated completely. It applies to
single-operator landscapes and incorporates all solutions of the search space.

2.4 Landscape Visualization

There exist direct visualization approaches that place individual landscape nodes
in the Euclidean plane by using multidimensional scaling techniques. This can be
based, e.g., on the probability of transitions between solutions [9], or on distances
within the landscape [20]. Potential disadvantages of these approaches comprise the
error inherent to projection techniques as well as the reliance on samples of the
landscape.

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 59

There exist also topological visualization approaches. A graph layout of the bar-
rier tree is used, e.g., by Hallam and Prügel-Bennet [6]. In this work, we build upon
the visualization tool dPSO-Vis by Volke et al. [18, 19]. In the latter approach, a 1D
height function is computed that has the same barrier tree as the original landscape.
The focus of that work was the study of folding landscapes of RNA molecules, but
the idea has also been applied to study search operators for the TSP [1].

3 Coarse-Grained Search Landscapes: TheMeta Landscape

A main problem with search landscapes of combinatorial optimization is the
exponential number of landscape nodes. This makes a topological analysis
infeasible even for problem instances of small size. We tackle this problem by
creating a coarse-grained abstraction of the search landscape that is amenable to
complete computational analysis. In the following, we define the meta landscape
that is the foundation for the coarse-graining. Then, some properties of meta
landscapes and how their topology relates to the topology of the original search
landscape are discussed.

3.1 Definition

Given a search landscape L(X,N, f), we introduce the meta landscape
L(X̃, Ñ , f̃). Basically, the approach can be regarded as a simplification of the
search landscape by means of collapsing edges. Formally, a meta solution X̃ ⊂ X

is defined as a set of solutions where the subgraph G[X̃] of the neighborhood graph
with vertex set X̃ is connected. A set of meta solutions X̃ ⊂ 2X represents X if X̃ is
a partition of X, i.e., the meta solutions are pairwise disjoint and together cover X:⋃

X̃∈X̃ X̃ = X.

We define a neighborhood relation Ñ between meta solutions by (X̃, Ỹ) ∈
Ñ ⇐⇒ ∃x ∈ X̃, y ∈ Ỹ : (x, y) ∈ N . The cost function f is transferred to the
meta solutions by constructing the function f̃ : X̃ → R, X̃ �→ min{f (x) | x ∈ X̃}.
Thus, every meta solution is represented by the local optimum that it contains.
Now, L(X̃, Ñ, f̃) = (GX̃,Ñ

, f̃) is called meta landscape. Observe, that the meta
landscape is itself a search landscape, so that topological analysis approaches for
search landscapes can be applied to meta landscapes as well.

3.2 Properties

Meta landscapes have some useful properties which indicate that meta landscapes
can be considered a valid topological compression method for search landscapes.
First, we note that for a maximal partition of X, i.e., ∀X̃ : |X̃| = 1, the meta

60 S. Volke et al.

landscape is equivalent to the original search landscape and thus possesses the
same barrier tree. Hence, the approximation through the meta landscape converges
towards exactness with the degree of its granularity. If the partition is coarse-
grained, the meta landscape conceals topological features of the search landscape.
The following theorem shows a relation between the local minima of a meta
landscape and the local minima of its underlying landscape.

Theorem 1 Every local minimum of the meta landscape contains at least one local
minimum of the original search landscape and this local minimum is the minimal
solution contained in the meta solution.

Proof Consider a local minimum M̃ from the meta landscape and let m ∈ M̃ be the
solution from M̃ that has the smallest value of f . Hence, f̃ (M̃) = f (m). Suppose
that m is not a local minimum in L(X,N, f). Then, a solution s ∈ X exists with
f (s) < f (m) and (m, s) ∈ N . By the construction s �∈ M̃ . Hence, there exists a
meta solution S̃ �= M̃ with s ∈ S̃. From (m, s) ∈ N follows (M̃, S̃) ∈ Ñ , and from
f (s) < f (m) we have f̃ (S̃) ≤ f (s) < f (m) = f̃ (M̃). Thus, M̃ is not a local
minimum in the meta landscape, which is a contradiction and the result follows.

Note that there is no guarantee that all local minima of the original search
landscape are contained in different meta solutions. Thus, a meta landscape can
contain significantly fewer local minima than the original search landscape.

The barrier tree is defined with the concept of saddle height [3]. The saddle height
between two minima m1 and m2 is the minimal cost h(m1,m2), such that m1 and m2
are still in the same connected component of the subgraph of the search landscape
consisting only of the solutions {x ∈ X | f (x) ≤ h(m1,m2)}. The following
theorem shows how saddle height in the meta landscape is related to saddle height
in the original landscape:

Theorem 2 The saddle height in the meta landscape is a lower bound for the saddle
height in the original search landscape.

Proof Consider two local minima m1 and m2 in the search landscape. If there exists
a single meta solution M̃ that contains both m1 and m2 then the saddle height
h̃(M̃, M̃) is bounded by min{f (m1), f (m2)} and thus, h̃(M̃, M̃) ≤ h(m1,m2).
Now consider the case that there exist two meta solutions M̃1 and M̃2 with m1 ∈ M̃1
and m2 ∈ M̃2. Consider a path p between m1 and m2 in the original search
landscape with maxs∈p(f (s)) = h(m1,m2). Path p induces a path p̃′ in the meta
landscape by replacing every solution in p with the meta solution that contains it
(and by contracting subpaths where all nodes are equal to a same single node).
By construction of the meta landscape, the maximal value of f along path p̃′ is less
than or equal to h(m1,m2). Then, h̃(M̃1, M̃2) ≤ maxs̃∈p̃′(f̃ (s̃)) ≤ maxs∈p(f (s)) =
h(m1,m2).

For investigators of search landscapes, this is important as it allows to draw
conclusions about the non-existence of connections below a fixed cost value. The
meta landscape might suffer from false positives, i.e., it may show connections when

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 61

there are none. But there are no false negatives, so that statements about separation
in the meta landscape are also valid in the original search landscape.

3.3 Relaxation

In practice, the cost function f̃ cannot be determined exactly without solving the
optimization problem. But then an approximation of f̃ might help. We formalize
the approximation by allowing for a maximal deviation from the exact values.
The relaxed cost function rf̃ : X̃ ∈ X̃ → R is required to satisfy ∀X̃ ∈ X̃ :∣
∣∣f̃ (X̃) − rf̃ (X̃)

∣
∣∣ < ε/2 for some ε > 0.

Relaxed cost functions correspond to so-called ε-approximate solutions [5],
which are available for many optimization problems. The relaxation makes it much
harder to draw reliable conclusions from the meta landscape. For the discussion, we
introduce the notion of persistence of a minimum as the strength of a perturbation
of the cost function that is needed to eliminate the local minimum. This roughly
corresponds to the cost difference between the local minimum and a saddle that
connects a local minimum with lower costs.

Every minimum of the relaxed meta landscape with a persistence of at least ε

is still guaranteed to contain a minimum of the original search landscape. Also, the
saddle heights can only be interpreted with an additional uncertainty of ε. Thus, two
solutions m1 and m2 are guaranteed to have no connection below a cost value c in
the search landscape, if they have no connection below a cost value of c + ε in the
meta landscape.

4 Meta Landscapes for Permutation Problems

The use of the meta landscape approach to analyze a search space requires
addressing two problem-specific tasks. First, the meta solutions have to be defined
in a way that allows to compute the neighborhood relation and the optimal cost
value within each meta solution efficiently. Clearly, this depends on the specific
optimization problem and the used search operators. Second, the approximation
quality of the meta landscape depends on the particular partition of the solutions into
meta solutions. In a sense, the quality improves with the granularity of the partition.
Thus, the number of meta solutions should be chosen as large as possible while still
retaining computational feasibility for both the generation of the meta landscape and
its analysis. Further, the partition has to preserve important topological features of
the search landscape. Consequently, structures with particularly important features
should be placed into different meta solutions. This is a very important property for
analysis applications, although it is difficult to guarantee in the individual case and
requires profound domain knowledge.

62 S. Volke et al.

For solving the first task we introduce in the following the permutation tree that
allows to easily generate meta solutions for permutation problems. To address the
second task, we demonstrate how to control the generation of meta solutions in a
way that can be tailored towards specific analysis goals by domain experts, e.g., by
applying a heuristic.

4.1 Permutation Trees

For the convenient generation of partitions of the set of permutations of size n,
we organize the permutations into a tree structure PT (n) with a height of n (cf.
Fig. 1). The tree is called permutation tree for further reference. It is a decision tree
where at each level one position in the permutation is set. Thus, each leaf of the tree
represents one permutation of size n. In practice, this tree is pruned so that in case of
symmetries in the cost function of the permutation problem every equivalence class
is only present once in the tree.

Every subtree of the permutation tree represents the set of permutations that
match in the positions that have been fixed further up in the permutation tree, and
differ in the remaining positions. In the following, we characterize each such set
of permutations by its fixed, or equivalently by its variable positions. Every set
of mutually disjoint subtrees that together include all leaves of the permutation
tree, represents a partition of the set of permutations. Thus, we can identify meta
solutions with subtrees of the permutation tree.

If we remove a set of k edges from PT (n), the tree is decomposed into k + 1
connected components, each of which possibly contains some leaf nodes of PT (n).
Components without leaf nodes are discarded. Thus, each such edge set defines a
partition of permutations. Likewise, every partition of permutations can be identified
with a set of edges that would decompose PT (n) into the corresponding subtrees.

To obtain sets of permutations that are well-suited for use in meta landscapes,
we require that for every level i of the permutation tree the variable positions of the

/0

1 2 . . . n

. . . 1 3 . . . n . . .

.

5

position 1

position 2

position 3

position n

set of permutations
1 ? ? ? ?

permutation
2 3 4 1 5

Fig. 1 Permutation tree PT (n). At every level of the tree, one position in the permutations is fixed
to the specified element. Every leaf of the tree represents one permutation. A subtree corresponds
to a set of permutation that agree at the fixed positions and differ at the remaining ones

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 63

permutations form a consecutive range of indices pi+1, . . . , pn. Given a solution x

that belongs to the meta solutions X̃, we consider its set of neighbors Nx = {y ∈ X |
(x, y) ∈ N} and investigate the cardinality of Nin

x = Nx ∩ X̃ and Nout
x = Nx \ X̃.

We want Nin
x to be maximal, so that connectivity within a meta solution is as strong

as possible. At the same time, we want Nout
x to be minimal, so that meta solutions

are as separated from each other as possible.
Consider a meta solution X̃ with i fixed positions and k = (n − i) consecutive

variable positions. For three common operators on permutations—consecutive
swaps, interchange of two positions, 2opt (for details see Schiavinotto et al. [15])—
we obtain the following quantities:

Operator |Nin
x | |Nout

x |
Consecutive swap k − 1 n − k

Interchange, 2opt (k · (k − 1))/2 (n · (n − 1) − k · (k − 1))/2

These numbers are optimal for sets of permutations with i fixed positions. When
changing the partitioning scheme and allowing non-consecutive variable positions in
the permutations, we end up with much worse ratios in particular for the consecutive
swap and the 2opt operators.

4.2 Heuristic Generation of Partitions by Branching

The generation of a partition by cutting a number of edges in the permutation tree
facilitates a branching approach to define and refine such partitions. Initially, we
select the out edges of the root node for cutting (cf. Fig. 2). Then, we iteratively
select one of these edges and branch it, i.e., we replace it by the out edges of its
target node. This is repeated until a partition of sufficient resolution is generated,
such that the number of meta solutions stays manageable and at the same time the
size of the meta solutions is small enough to provide a meaningful approximation

=⇒

Fig. 2 Branching step in a permutation tree. Initially (left side), some edges (dashed) are selected
for cutting. Among these, a branching candidate is determined (circled edge). In the branching step
(right side), this candidate is replaced by the outgoing edges of its target

64 S. Volke et al.

of the original landscape. The process of selecting edges for further refinement can
be steered heuristically with respect to the needs of the expert.

For a general analysis of the search landscape, we propose the following
branching criteria:

• Branch evenly: Branching is performed so that the resulting meta solutions have
nearly equal size.

• Branch by cost: For every meta solution a lower bound for the optimal solution
in the meta solution is computed. The meta solution with the lowest bound is
branched.

• Branch by cost range: For every meta solution we compute a lower bound and
an upper bound. The meta solution with the largest difference between upper and
lower bound is branched.

Branching criteria can also be combined, e.g., a smaller size of a meta solution can
be weighted against lower costs of a meta solution. However, it seems reasonable
to restrict the branching to meta solutions that have a certain minimum size, so that
too small meta solutions are avoided.

Furthermore, for an analysis of a landscape it might be interesting to incorporate
the global optimum into the branching. In that case the optimum needs to be
known or determined beforehand by using an exact solving method. Then, the
global optimum can be pre-branched by iteratively branching the meta solution that
contains the global optimum until the meta solution falls under a certain size.

5 Results

In this section, we investigate of the proposed meta landscape experimentally and
show how it can be applied to TSP and QAP instances. We present the results
by using a topological visualization tool for meta landscapes that is a variant of
the tool dPSO-Vis [18] with the visual modifications of Bin et al. [1]. dPSO-Vis
computes a one-dimensional landscape outline that has the same barrier tree as the
meta landscape. We compensate for the differing sizes of the meta solutions by
introducing a width for every solution into the visualization (dPSO-Vis considers
only individual solutions that naturally are of equal size). As every solution is laid
out in an individual horizontal interval, this can be easily achieved by scaling these
intervals so their size is proportional to the size of the meta solution. This makes
the layout of the topological landscape more robust against changes of the applied
branching. It also allows the visual comparison of the visual sizes of different
landscape parts—particularly of topological substructures—even if the sizes of the
individual meta solutions differ.

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 65

5.1 Validation of the Approach

Though we have some theoretical results pertaining to the correctness of the
topological approximation with the meta landscape, the quality and amount of
detail can only be verified experimentally. For that purpose, we considered small
TSP instances with at most 12 cities, so that the complete search landscape was
available as a ground truth. The results are demonstrated with the example of a 10-
city problem that was generated by randomly placing cities in the plane (cf. Fig. 3).
A general drop in the overall landscape height can be observed when using large
meta solutions. This is an effect of using the local optimum within a meta solution
as the reference cost value for the whole meta solution. However, even when using a
meta landscape with only few meta solutions the most persistent topological features
are preserved.

5.2 Branching Strategies

We show the results of different branching strategies (cf. Sect. 4.2) for the example
of the 52 city TSP instance berlin52 from the TSPLIB [14]. We expect a complex
topology, because of the huge magnitude of the search space for this instance.
Extrapolating experiences with smaller problem instances, we also expect that no
branches in the barrier tree occur outside a small percentage of the best solutions.
To estimate the minimal costs within each meta solution, we used the branch-and-
bound scheme of Volgenant and Jonker [17].

Figure 4 shows the meta landscapes for the different branching strategies. The
meta landscapes differ in the number of branches and the resolution within the
interesting parts of the landscape. From the visual size of the meta solutions and

Fig. 3 Interchange operator landscapes of a randomly generated TSP instance with 10 cities
(181 440 solutions). Only the lower part of the search landscape is shown as higher parts are
topologically not so interesting. The meta landscape were constructed by cutting the permutation
tree at the 7-th and 5-th level, respectively, resulting in 30,240 and 1512 meta solutions. (a)
Ground truth from complete enumeration. (b) 7 levels of the permutation tree. (c) 5 levels of the
permutation tree

66 S. Volke et al.

Fig. 4 Swap operator landscapes of the berlin52 instance from the TSPLIB [14] that have been
generated with different branching strategies (cf. Sect. 4.2). The complete landscape contains 7.76·
1065 solutions. All meta landscapes consist of 50,000 meta solutions with at least 3 and at most 17
fixed permutation positions. Only the topologically relevant part is shown here

their cost values, it can be seen that some branching strategies generate too many
meta solutions in parts of the landscape that can be considered as less interesting,
i.e., parts with solutions of high costs. This is particularly visible for the strategies
branching by cost values and branching evenly. Branching by cost, however, is able
to detect a high number of local minima, so that it appears reasonable to include
some cost-related metric into the branching. A combined branching strategy that
allows level differences between different parts of the permutation tree in relation
to the corresponding cost differences (depth/cost combination in Fig. 4) results in
the more balanced images and also tends to reveal most branches around the global
optimum when compared to other branching strategies. A minimization of the cost
intervals for each meta solution appears reasonable from a theoretical point of view
(we gain a well-defined persistence per meta solution). However, it does not perform
as well as the depth/cost combination. We tested pre-branching the global optimum
for the cost/depth combination and the cost range strategy. In both cases, a slightly
better focus on the near-optimal part of the landscape can be noticed, but the effect
is not very strong.

While the figure shows results for only one example instance, it should be noted
that similar differences between the branching strategies have also been found for
other TSP instances. Therefore, we suggest to use branching strategies that combine
different criteria, e.g., the depth/cost combination, or a branching by cost ranges,
and to omit pre-branching.

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 67

Fig. 5 Landscapes of the problem instances tai30a and tai30b from the QAPLIB [2]. The
landscapes have been created with the same parameter set, using branching by a combination of
cost and depth with a size of 50,000 meta solutions

5.3 Comparison of QAP Instances

Ongoing research tries to categorize QAP instances in order to identify structural
properties of them [7], as there can be huge differences between instances. There
exist small, but still not optimally solved problem instances, e.g., instance tai30a
of Taillard (included in the QAPLIB [2]). However, for the similar instances tai30b
which is the sibling instance in the QAPLIB, the global optimum is known. We
computed and compared meta landscapes for these two instances. As no well-
performing branch-and-bound algorithm for QAP is available, we used probing with
multiple local searches to estimate the cost minimum within each meta solution.

Figure 5 contrasts the meta landscapes of both instances. Instance tai30a
possesses a much more complicated barrier tree than tai30b. There are many local
minima with nearly equal persistence. There also appears a plateau-like structure
in the landscape which is indicated by the almost horizontal part of the landscape
in the center and the right of the landscape visualization. All this indicates that a
bad performance of local search is to be expected. Differently, tai30b contains only
few local minima, which also branch away at well-separated cost values. Further,
the shape of the fitness landscape might be an indicator for individual structural
properties that could be exploited for a well-performing search algorithm.

6 Conclusion

In this paper the concept of meta landscapes was proposed as a well-defined coarse-
grained representation of search landscapes. Some properties were shown that allow
an interpretation of meta landscapes and to transfer the results back to the original
search landscape. Some advice for the computation and usage of meta landscapes
was given. In particular, we demonstrated how a heuristically controlled branching
scheme could be used to define an application-specific meta landscape.

Since meta landscapes are completely enumerable, topological methods like the
barrier tree can be applied to it. Then, topological visualization methods, like dPSO-
Vis [18, 19] that build upon the barrier tree, can be used to visually analyse the
search landscape. The approach makes permutation problem instances with sizes

68 S. Volke et al.

over 50 accessible for a (visual) analysis of the topological structure of their search
landscapes. Thus, the sizes of analyzable search landscapes are increased by several
orders of magnitude in comparison to completely enumerable landscapes. This was
demonstrated for the example of the TSP and the QAP.

In future work, we want to focus on improved branching strategies for parti-
tioning the search landscape since the branching strategy has a strong influence on
the quality of the meta landscape. One possibility would be to pre-sample local
minima and to incorporate their distribution within the search landscape into the
branching. Also, theoretical results about the quality of the branching are missing.
In this paper we focused on permutation problems. However, for subset (or bitstring)
problems like MAXSAT, a decision tree can be defined that is similar in structure
to the permutation tree. The branching strategies are not dependent on the solutions
being permutations, so that the approach should be applicable to subset problems
with minimal adaptation. Here, we expect to be able to analyze problems of a size
up to 225 variables as these possess similar landscape sizes.

Acknowledgments This work was partly supported by the German Federal Ministry of Education
and Research (BMBF) within the project Competence Center of Scalable Data Services and
Solutions (ScaDS) Dresden/Leipzig (BMBF grant 01IS14014B).

References

1. Bin, S., Volke, S., Scheuermann, G., Middendorf, M.: Comparing the optimization behaviour
of heuristics with topology based visualization. In: Theory and Practice of Natural Computing.
Lecture Notes in Computer Science, vol. 8890, pp. 47–58. Springer, Heidelberg (2014)

2. Burkard, R., Karisch, S., Rendl, F.: QAPLIB – a quadratic assignment problem library. J. Glob.
Optim. 10(4), 391–403 (1997)

3. Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier trees of degenerate land-
scapes. Z. Phys. Chem. 216, 1–19 (2002)

4. Fonlupt, C., Robilliard, D., Preux, P., Talbi, E.G.: Fitness landscapes and performance of
meta-heuristics. In: Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pp. 257–268. Kluwer Academic Publishers, Berlin (1999)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York (1979)

6. Hallam, J., Prügel-Bennett, A.: Large barrier trees for studying search. IEEE Trans. Evol.
Comput. 9(4), 385–397 (2005)

7. Herrmann, S., Ochoa, G., Rothlauf, F.: Coarse-grained barrier trees of fitness landscapes. In:
International Conference on Parallel Problem Solving from Nature, pp. 901–910. Springer,
Heidelberg (2016)

8. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network characterization
of QAPLIB instances. In: Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 453–460. ACM, New York (2014)

9. McCandlish, D.M.: Visualizing fitness landscapes. Evolution 65(6), 1544–1558 (2011)
10. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local

optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, pp. 555–562. ACM, New York (2008)

Coarse-Graining Large Search Landscapes Using Massive Edge Collapse 69

11. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of
combinatorial fitness landscapes. In: Recent Advances in the Theory and Application of Fitness
Landscapes, pp. 233–262. Springer, Berlin (2014)

12. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Recent
Advances in Intelligent Engineering Systems, pp. 161–191. Springer, Heidelberg (2012)

13. Preux, P., Robilliard, D., Fonlupt, C., Karp, R., Steele, J.: Fitness Landscapes of Combinatorial
Problems and the Performance of Search Algorithms (1997)

14. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384
(1991)

15. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis.
Comput. Oper. Res. 34(10), 3143–3153 (2007)

16. Stadler, P.F., Schnabl, W.: The landscape of the traveling salesman problem. Phys. Lett. A
161(4), 337–344 (1992)

17. Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric traveling salesman
problem based on the 1-tree relaxation. Eur. J. Oper. Res. 9(1), 83–89 (1982)

18. Volke, S., Middendorf, M., Hlawitschka, M., Kasten, J., Zeckzer, D., Scheuermann, G.: dPSO-
Vis: topology-based visualization of discrete particle swarm optimization. Comput. Graph.
Forum 32(3), 351–360 (2013)

19. Volke, S., Bin, S., Zeckzer, D., Middendorf, M., Scheuermann, G.: Visual analysis of discrete
particle swarm optimization using fitness landscapes. In: Recent Advances in the Theory and
Application of Fitness Landscapes. Emergence, Complexity and Computation, vol. 6, pp. 487–
507. Springer, Berlin (2014)

20. Volke, S., Zeckzer, D., Scheuermann, G., Middendorf, M.: A visual method for analysis and
comparison of search landscapes. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pp. 497–504. ACM, New York (2015)

21. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In:
Proceedings of the Sixth International Congress of Genetics, pp. 356–366 (1932)

Adjusting Control Parameters
of Topology-Accentuated Transfer
Functions for Volume Raycasting

Yuriko Takeshima, Shigeo Takahashi, and Issei Fujishiro

Abstract The design of automatic transfer functions for volume rendering is a
perennial problem in volume visualization. Over the last three decades, a variety
of design methodologies have been proposed. However, sensitive adjustment of
related control parameters remains entrusted to users, because rendering conditions,
such as the thickness of emphasized subvolumes in the ray direction and the size
of a target dataset, differ on a case-by-case basis. Our group previously proposed
one-dimensional transfer functions to accentuate topological changes in the scalar
field of the target dataset. However, the method forces us to determine the actual
control parameter values for the transfer functions in an empirical manner. In this
paper, we propose a supplementary mechanism with which to judiciously define an
appropriate profile of the opacity values. More specifically, the height and width of
the hat opacity transfer functions that accentuate feature isosurfaces are determined
according to the number of voxels belonging to the relevant topologically equivalent
scalar field interval. The feasibility of the proposed method is evaluated by its
application to five kinds of volume datasets.

1 Introduction

Volume rendering is one of the traditional visualization techniques for scalar
fields. Over the last three decades, various methodologies have been proposed
for designing transfer functions [1]. Data-centric approaches, which perform a

Y. Takeshima (�)
Tokyo University of Technology, Tokyo, Japan
e-mail: takeshimayrk@stf.teu.ac.jp

S. Takahashi
University of Aizu, Fukushima, Japan
e-mail: takahashis@acm.org

I. Fujishiro
Keio University, Yokohama, Japan
e-mail: fuji@fj.ics.keio.ac.jp

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_5

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_5&domain=pdf
mailto:takeshimayrk@stf.teu.ac.jp
mailto:takahashis@acm.org
mailto:fuji@fj.ics.keio.ac.jp
https://doi.org/10.1007/978-3-030-43036-8_5

72 Y. Takeshima et al.

mathematical analysis of the dataset before pertinent rendering, have become well
established. Kindlmann and Durkin [2] defined a histogram volume consisting
of first and second partial derivatives of the volume dataset, which is used to
design transfer functions in order to emphasize the boundaries between different
materials contained in the target volume dataset. Kniss et al. [3] generalized the
histogram volume-based method in order to design three-dimensional transfer
functions. Hladůvka et al. [4] and Kindlmann et al. [5] independently proposed
multi-dimensional transfer functions based on isosurface curvatures in the target
volume dataset. Weber et al. [6] proposed a topology-based method that defines
the opacity at a sample point based on the topological characterization of a target
dataset. Zhou et al. [7] proposed an automatic transfer function design using a
residue flow model controlled by a contour tree [8]. Shape-based transfer functions,
proposed by Praßni et al. [9], are based on the shape of the surfaces to be visualized.
Xiang et al. [10] proposed a graph cut segmentation method and localized transfer
function, which is suitable for datasets with a comparatively clear boundary rather
than for simulation datasets whose values are distributed smoothly. In addition, it is
conceivable to design the transfer functions based on other structures of the target
dataset, such as representative isosurfaces [11].

Our group previously proposed yet another topology-based method [12], which
designs one-dimensional transfer functions to accentuate topological changes in the
scalar field of the target dataset. However, the method forces us to determine the
actual control parameter values for the transfer functions in an empirical manner;
the users have to adjust the control parameter values according to a target dataset.
In this paper, therefore, we propose a supplementary mechanism with which to
judiciously define an appropriate profile of opacity values. More specifically, the
height and width of the hat opacity transfer functions that accentuate the feature
isosurfaces are determined according to the number of voxels belonging to the
relevant topologically equivalent scalar field interval. We focus on a traditional
one-dimensional transfer function that assigns an opacity to a field value and a
multi-dimensional transfer function that assigns an opacity to a field value as well
as other attributes, such us inclusion level [13]. To evaluate the proposed method,
we use our transfer functions to visualize five different kinds of volume datasets.
Furthermore, we introduce an evaluation mechanism for measuring the quality of
the volume-rendered images with the designed transfer functions and also discuss
the processing speed of our method.

2 Volume Skeletonization

First, we extract the topological structure from a target dataset using the topological
volume skeletonization algorithm [12, 13].

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 73

2.1 Volume Skeleton Tree

The level-set graph, known as the volume skeleton tree (VST), allows us to evaluate
the topological attributes of each voxel by illuminating both the global and local
features of the volume dataset. A node of the VST represents a critical point that
displays a change either in the number of connected isosurface components or in
the genus of each of the isosurface components. Critical points are classified into
four groups: maxima (C3), saddles (C2, C1), and minima (C0), which represent
isosurface appearance, merging, splitting, and disappearance, respectively, as the
scalar field value decreases. A link of the VST represents a topology-preserving
connected component of interval volume (transition of isosurface) [14]. A link
is defined as solid if its isosurface component expands as the scalar field value
decreases; it is defined as hollow if it shrinks.

Both the isosurfaces merging at C2 and splitting at C1 have four topological
transition paths with different isosurface spatial configurations, as shown in Fig. 1.
In what follows, the VST uses the notation for the critical points with its own
connectivity, as indicated in Fig. 1, where the solid incident link represents a solid
isosurface and the broken link a hollow isosurface. The saddle points of Ci(i = 1, 2)

are classified into 3-Ci and 2-Ci , according to their degree (valence). For later
convenience, all the boundary voxels are assumed to be connected to the virtual
minimum having −∞ as its scalar field value [12]. Note that the link to the C0 node
is solid when the node is the virtual minimum, as shown in Fig. 1.

Fig. 1 The connectivity of critical points in the VST

74 Y. Takeshima et al.

Fig. 2 An example of a VST.
The critical field values and
the representative field values
are denoted by
ci (i = 0, · · · , 4) and
ri (i = 0, · · · , 3),
respectively. The inclusion
level of the link l3,4 is 1,
whereas those of the outer
links are 0

virtual
minimum

c0

c1

c2

c3

c4

p0

p1

p2

p3

p4

p5

r0

r1

r2

r3

l0,2
l1,2

l2,3

l3,4

l3,5

scalar field

2.2 Feature Values in the VST

In a VST, a node pi has coordinates xi and a scalar field value ci (i = 0, · · · ,m−1),
which is referred to as critical field value, denoted in the monotonically decreasing
order of the scalar field. Representative field value is also defined as the mid-value
ri = (ci+1 + ci)/2 of each interval [ci+1, ci](i = 0, . . . ,m − 2) bounded by
consecutive critical field values, as shown in Fig. 2.

A link li,j has the genus of the corresponding isosurface component, the index
of adjacent nodes pi , and pj , and its subvolume as the sweep of a connected
component of a topologically equivalent isosurface. We denote a volume ratio
belonging to the subvolume corresponding to link li,j as vi,j , calculated as ni,j /N ,
where N denotes the total number of voxels in the target volume and ni,j denotes
the number of voxels in the subvolume representing link li,j .

Because the VST is sensitive to small changes in field values, it may contain a
large number of minor critical points if the volume dataset involves high-frequency
noise. In order to capture the global features of the entire volume dataset, it is
necessary to eliminate some minor links from the VST. To control the level of detail
(LoD) of the VST, we define a persistency value of li,j as vi,j /|ci − cj |. In our
algorithm, the VST is simplified by removing links in ascending order until the
value reaches a specified threshold [12].

Furthermore, we can extract an inclusion level that represents the depth of its
associated isosurface in the nested structure at the corresponding scalar field value
and serves as an additional variable for the multi-dimensional transfer functions
that emphasize these nested structures. Figure 1 clearly illustrates that isosurface
nested structures originate only from the transition paths in 3-C2(b) and 3-C1(b).
This motivates us to locate such isosurface inclusions directly from the VST if we
can identify all the nodes that correspond to the previously mentioned transition
paths. Indeed, the inclusion level can be systematically extracted by tracing the VST
from the virtual minimum, because its incident link is known to be solid [13]. In
Fig. 2, it has a nested structure in the field interval [c4, c3] where the isosurfaces
belonging to l3,5 exist outside the isosurfaces belonging to l3,4.

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 75

3 Transfer Function Design

Next, we design a transfer function reflecting the topological structures in the VST
(Sect. 2). The basic principle is to accentuate the topological change of an isosurface
within the volumetric domain [12].

3.1 Color Transfer Function

In our previously proposed method [13], wherein the color transfer function is
defined piecewise using the range of the HSV hex-cone [0, 2/3π], so that the
function value decreases linearly over an evenly divided hue interval for each of
the field intervals [ci+1, ci]. Our transfer functions can be designed based on blue-
white-red, blue-white-yellow, heat object, as well as rainbow colormap. In every
case, we define the color transfer function based on the above principle of dividing
a given hue range. Figure 3a shows the design of our color transfer function, which
allows us to assign a steep color gradation to the regions where the consecutive
critical field values are in closer proximity to one another.

3.2 One-Dimensional Opacity Transfer Function

For opacity transfer functions, we propose two methods, accentuating critical or
representative field values. The first method assigns local hat functions centered
at the critical field values ci , whereas the second is centered at representative
field values ri . When the critical field values are emphasized, topological changes,
such as splitting and merging isosurfaces, can be visualized more clearly. On the
other hand, emphasizing the representative field values reveals the representative
topological structures. In our framework, because the outermost isosurface does not
shrink as the field value decreases, we minimize the occlusion artifacts induced by
the isosurface nested structure by decreasing the base elevation of the hat functions

color

0 255
scalar
fieldci

opacity

0 255
scalar
field

δi
− δi

+

fi fi−1fi+1

α(fi)

α(fi −)δi
−

α(fi +)δi
+

opacity

0 255
scalar
field

inclusion
level

fi

(a) (b) (c)

Fig. 3 Basic principle of designing transfer functions (TFs). (a) Color TF. (b) 1D opacity TF. (c)
2D opacity TF

76 Y. Takeshima et al.

for cm−1 through c0, or rm−2 through r0, in a stepwise fashion, as shown in Fig. 3b.
Note that in this figure, ci and ri are expressed commonly as fi .

In our previously proposed method [12], we determined the actual opacity values
empirically, because the opacity of the object projected on the screen was affected
by the rendering conditions, such as the thickness of the emphasized subvolumes in
the ray direction and the size of a target dataset.

In order to emphasize the internal structure of the volume dataset more clearly,
it is necessary to set the opacity value higher for the area closer to the center of the
dataset. In our previously proposed method [12], we assumed that the isosurfaces
whose field value is higher, exist inside the dataset; thus, a higher opacity value
is assigned to them, without any consideration of the thickness of the emphasized
subvolumes in the ray direction. If the sampling distance is larger than the thickness,
it will not be visualized regardless of the height of the corresponding opacity value.
However, if the sampling distance is small, many sampling points are generated
in unnecessary regions, which may cause a computational burden. To address this
problem, we calculate the thickness of the emphasized region in the ray direction
in a pseudo manner, and we introduce the following variable Gi into the opacity
calculation formula:

Gi =
1.0 − V

1/3
0,i

d
, (1)

where Vi,i+1 denotes the volume ratio of the subvolume belonging to the corre-
sponding interval volume at [ci+1, ci], and d the average of the number of grid
points in the x-, y-, and z-axis directions of the target dataset. Note that Vi,i+1
and vi,i+1 are different when multiple links of the VST are included in the field
interval [ci+1, ci]. For example, as Fig. 2 shows, V1,2 is calculated as the sum of the
subvolume v1,2 corresponding to link l1,2 and a part of the subvolume v0,2 whose
scalar field is included in the interval [c2, c1]. Assuming that the homeomorphic
regions are spherically distributed, V0,i is proportional to the radius of the sphere.

Moreover, because Σm−2
i=0 Vi,i+1 equals 1, 1 − V

1/3
0,i can be thought of as a pseudo

distance from the data boundary to the corresponding region. This is further divided
by d , and it is used as the thickness per grid interval.

Herein, we define the opacity value α at three control points, such as the top and
two bottoms of the hat function, using the following equations:

α(fi) = m − 1 − i

m − 1
μGi, α(fi+δ+i) = m − 1 − i

m − 1
Gi−1, α(fi−δ−i) = m − 1 − i

m − 1
Gi,

(2)

where μ denotes a coefficient for the degree of emphasis. From this setting, the
opacity values decrease as the number of voxels corresponding to the subvolume
increases.

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 77

The opacity value of a scalar field value s other than the control points is
calculated using Eqs. (3):

α(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m − 1 − i

m − 1
Gi (fi+1 + δ+

i+1 ≤ s < fi − δ−i)

(s − fi + δ−
i

)α(fi) − (s − fi)α(fi − δ−
i

)

δ−
i

(fi − δ−
i
≤ s < fi)

(s − fi)α(fi + δ+i) − (s − fi − δ+i)α(fi)

δ+i
(fi ≤ s < fi + δ+i)

. (3)

If the field interval [−δ−i , δ+i] to be emphasized is too narrow, the sampling point
of volume rendering may not appear in the region whose scalar values belong to the
interval. Therefore, to secure a certain number of voxels there, our transfer function
controls the width of the hat functions, as follows:

• For the critical field values (fi = ci),

δ−i = η
ci − ci+1

Vi,i+1
, δ+i = η

ci−1 − ci

Vi−1,i

. (4)

• For the representative field values (fi = ri),

δ+i = δ−i = η
ri − ri+1

Vi,i+1
, (5)

where η denotes another coefficient representing the degree of emphasis. To avoid
an overlap between different hat functions, for the critical field values, if δ−i >

|ci − ri | then let δ−i = |ci − ri |, and if δ+i > |ci − ri−1| then let δ+i = |ci − ri−1|.
For the representative field values, if δ−i > |ri − ci+1| then let δ−i = |ri − ci+1|, and
if δ+i > |ri − ci | then let δ+i = |ri − ci |.

3.3 Multi-Dimensional Opacity Transfer Function

Generally, a one-dimensional transfer function is used to assign an opacity value
to a field value. However, if isosurface components with the same field value have
different meanings, it is impossible to obtain a visualization result that emphasizes
them separately. To address this problem, we proposed a design method for multi-
dimensional transfer functions based on topological attributes [13].

In this paper, we extend a two-dimensional opacity transfer function that depends
on the scalar field value and the inclusion level [13]. The inclusion level is assigned
for the isosurface component that has the same field value, with larger values for a
more inner component. The inclusion level of the outermost isosurface component
is set to 0.

78 Y. Takeshima et al.

Figure 3c shows an overview of our design of a two-dimensional transfer
function. When the inclusion level u is even, because the isosurface component
becomes outer as the scalar field value decreases, the opacity values αm(s, u) are
defined as (u + 1)α(s)/umax using a one-dimensional opacity transfer function,
where umax denotes the maximum inclusion level. When the inclusion level u is odd,
because the isosurface component becomes inner as the scalar field value decreases,
opacity values αm(s, u) are defined as follows:

αm(s, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u + 1

umax

i

m − 1
Gi (fi+1 + δ+i+1 < s ≤ fi − δ−i)

(s − fi + δ−i)αm(fi , u) − (s − fi)αm(fi − δ−i , u)

δ−i
(fi − δ−i < s < fi)

u + 1

umax

i

m − 1
μGi (s = fi)

(s − fi)αm(fi + δ+i , u) − (s − fi − δ+i)αm(fi , u)

δ+i
(fi < s < fi + δ+i)

u + 1

umax

i

m − 1
Gi−1 (s = fi + δ+i)

. (6)

4 Empirical Evaluation

From the aspects of the size of the dataset, the parameter values of a transfer
function, and the LoD of the VST, we assessed their impact on the visualization
results. All datasets were found to be affinely mapped to the range [0, 255]. The
platform used for our experiments was a standard PC (OS: Redhat ES 7.2; CPU:
Intel Xeon; Clock: 2.50 Hz; RAM: 64 GB; GPU: NVIDIA Quadro K6000).

4.1 Sensitivity to μ and η

To obtain appropriate visualization results, we can control μ and η in our transfer
function design. From the definition shown in Eqs. (2), (4), and (5), μ and η affect
the opacity of the accentuated isosurfaces and the width of the accentuated field
interval. First, we investigated the effect of μ and η, which are the parameter values
of our transfer function.

Figure 4 shows the visualization results when our method was applied to a tooth
dataset (161× 161 × 161) [15]. We used a blue-white-yellow colormap. As seen in
these images, opacity increases as a μ and η increase. However, it should also be
noted that the accentuated isosurfaces are not significantly emphasized when only
the μ value is changed. Because a region of the accentuated field interval is narrow,
it is difficult to emphasize the target isosurfaces simply by increasing the height

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 79

η = 0.03

η = 0.05

μ = 20 μ = 40 μ = 60

Fig. 4 Visualizing the tooth dataset with different values of μ and η, which affect the degree
of emphasis of the accentuated isosurfaces and the width of the accentuated field intervals,
respectively. These images show that the accentuated isosurfaces are not significantly emphasized
when only the μ value is changed

(a) (b)

Fig. 5 Visualizing the implosion dataset with our one-dimensional transfer function and two-
dimensional transfer function. These images shows our two-dimensional transfer function makes
it possible to clearly visualize the inner structures by removing unnecessary surface. (a) One-
dimensional TF. (b) Two-dimensional TF

of the hat function of the opacity transfer function. Therefore, an η value becomes
important for this type of dataset.

Next, in order to evaluate our two-dimensional transfer function, we applied it to
a laser fusion implosion dataset (225 × 225 × 225) [16], where small bubble-spike
structures evolve around a contact surface between a fuel ball and pusher during
the stagnation phase. The contact surface is occluded by the other outer component
residing in the pusher domain, which is nothing but a phantom surface created by
the action-reaction effect.

Figure 5 shows the visualization results (μ = 20, η = 0.05) of the laser fusion
implosion dataset, which emphasizes the representative field values with a rainbow

80 Y. Takeshima et al.

colormap. Figure 5a does not clearly show the inner isosurface components of
interest, because these are indeed occluded by the outer phantom surface. On the
other hand, Fig. 5b clearly illustrates that our two-dimensional transfer function
makes it possible to clearly visualize the inner structures by removing unnecessary
phantom surface.

4.2 Dataset Size Sensitivity

Next, we evaluated whether similar visualization results can be obtained from the
datasets with different sizes. In order to demonstrate the effectiveness of our method,
we applied it to two types of volume datasets.

The first is an analytical dataset [12], which is formulated as follows:

f (x, y, z) = 4c2
(
(x − R)2 + (z − R)2

)
−
(
(x − R)2 + y2 + (z − R)2 + c2 − d2

)2

+4c2
(
(x + R)2 + (z + R)2

)
−
(
(x + R)2 + y2 + (z + R)2 + c2 − d2

)2
, (7)

where 0 < d < c and c2 + d2 ≥ 6R2. This dataset has two maxima, three saddles,
and a virtual minimum. Figure 6 shows the VST of the analytical function and the
visualization results applied to three analytical datasets with different sizes: 33 ×
33×33, 65×65×65, and 129×129×129. As Fig. 6 shows, our transfer functions
to accentuate the critical field values with a blue-white-red colormap (μ = 30, η =
0.035). The volume ratio corresponding to each link differs according to the dataset
size, as shown in Table 1. It is clear that the volume ratios are nearly equal regardless
of the size of dataset. The results presented in Figs. 6b–d show that the proposed
transfer functions provide similar visualization results regardless of the size of the
dataset.

The second is a three-dimensional head dataset, which was provided courtesy of
Siemens Medical Systems, Inc. (Iselin, NJ). Figure 7 shows the visualization results
applied to two head datasets with different sizes: 65×65×65 and 129×129×129.
These images use our transfer functions to accentuate the critical field values with
a blue-white-yellow colormap (μ = 40, η = 0.05). The figure illustrates that the
visualization results obtained for a real-world dataset are similar to those obtained
for the analytical dataset, regardless of the size of the dataset.

These results demonstrate that the effectiveness of our method does not depend
on the size of datasets, even for different types of datasets.

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 81

255

247

241

virtual
minimum

p1 p2

p3 p4

p5

p6

(a)

scalar
value

100 200

1.0

0.5

opacity

scalar
value

100 200

1.0

0.5

opacity

scalar
value

100 200

1.0

0.5

opacity

(b) (c) (d)

Fig. 6 VST and visualization results for the analytical datasets with our opacity transfer functions
(μ = 30, η = 0.035). These images show that our transfer functions provide similar visualization
results regardless of the size of the dataset. (a) VST. (b) 33 × 33 × 33. (c) 65 × 65 × 65.
(d) 129 × 129 × 129

Table 1 Volume ratios
corresponding to each link of
the analytical datasets shown
in Fig. 6

Link 33 × 33 × 33 65 × 65 × 65 129 × 129 × 129

l1−3 4.67e−2 4.86e−2 4.96e−2

l2−3 4.67e−2 4.86e−2 4.96e−2

l3−4 0.0 0.0 0.0

l4−5 1.73e−1 1.82e−1 1.86e−1

l5−6 7.33e−1 7.21e−1 7.15e−1

4.3 Response to the LoD of the VST

Finally, in order to evaluate whether our method is effective even if the number of the
accentuated surfaces increases, we examined how our transfer function responds to
differences in the LoD of the VST. When the VST extracts the topological structure
from the target dataset, it may contain a large number of minor critical points.
Because they may hide the important global structure of the dataset, we need to
simplify the extracted VST by removing them.

We applied our method to a nucleon dataset (41 × 41 × 41) [17] to evaluate the
effect of the LoD of the VST. Figure 8 shows the visualization results with a heat
object colormap (μ = 20, η = 0.04); the results emphasize the representative field
values for different LoDs of the VST. Figure 8a shows a visualization result based
on the original VST, which has 1006 critical points and 21 critical field values.
Note that we cannot show the original VST because it is too complicated to draw.
Figures 8b, c show the results based on simplified VSTs that have ten and six critical

82 Y. Takeshima et al.

scalar
value

100 200

1.0

0.5

scalar
value

100 200

1.0

0.5

(a) (b)

Fig. 7 Visualization results of the head datasets with our opacity transfer functions (μ = 40, η =
0.05). These images show that our transfer functions provide similar visualization results regardless
of the size of the dataset. (a) 65 × 65 × 65. (b) 129 × 129 × 129

scalar
value

100 200

1.0

0.5

opacity
249

189

103

1
0

virtual
minimum

193

161

13

scalar
value

100 200

1.0

0.5

opacity
249

161

103

13

0
virtual

minimum
scalar
value

100 200

1.0

0.5

opacity

(a) (b) (c)

Fig. 8 Visualizing the nucleon dataset applied for different LoDs of the VST. These images show
that our transfer function can effectively visualize the topological structure even if the number of
critical points decreases. (a) Original VST (1006 critical points). (b) Simplified VST (10 critical
points). (c) Simplified VST (6 critical points)

points and six and five critical field values, respectively. These images illustrate that
our transfer function can effectively visualize the topological structure, regardless
of the number of critical points.

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 83

5 Further Controllability

In this section, we evaluate our method further from the perspective of image quality
and processing speed.

5.1 Image Quality

In order to evaluate the quality of a visualization result, we defined an evaluation
function based on a normalized Shannon information entropy as follows:

Entropy = −∑M
i=0 p(Ai) log2 p(Ai)

log2 M
, (8)

where M and p(Ai) represent the number of levels and the probability of pixels of
level i, respectively. When the value of entropy is high, there are many pixels at
various levels, which means that the information entropy of the visualized image
is large. Conversely, when there are numerous pixels with the same levels, the
information entropy is small. Therefore, we assume that the higher the entropy, the
better the quality of the image. Note that the evaluation function can also potentially
lead to misleading results in the presence of noise in the dataset. We evaluate the
quality of images in terms of their hue, saturation, and luminance values. When
the entropies of hue, saturation, and luminance are represented by Eh,Es , and El ,
respectively, our evaluation function is defined as follows:

{
E = kHEH + kSES + kLEL

kH + kS + kL = 1 (0 ≤ kH , kS, kL ≤ 1)
, (9)

where kH , kS , and kL are the weight coefficients for hue, saturation, and luminance,
respectively. Users can control these coefficients based on their preferences.

Figure 9a shows the heatmap that represents our evaluation function, where kH =
kS = kL = 1/3 of the analytical dataset (129 × 129 × 129). The value for μ was
increased by 10 increments ranging from 10 to 50. The value for η was increased by
0.005 increments, and its range was set so that the field interval that emphasizes the
critical field value does not exceed the adjacent representative field values. The cells
surrounded by the black box and the white box represent the minimum value and the
maximum value of the corresponding entropy, respectively. Figures 9b, c show the
best and worst visualization results. The values of μ and η in the best case are 30 and
0.035, respectively; in the worst case, they are 10 and 0.005. Moreover, in the best
case, the value of our evaluation function is 0.88; in the worst case, it is 0.79. In this
example, the images in the worst cases are darker than the images representing the
best cases. By introducing our evaluation mechanism, we can automatically obtain
an appropriate visualization result, which is well balanced among hue, saturation,

84 Y. Takeshima et al.

10 20 30 40 50
0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

μη

(a) (b) (c)

Fig. 9 Entropy heatmap of E and the best and worst visualization results of the analytical dataset.
We can automatically obtain an appropriate visualization result referring to the entropy heatmap.
(a) Entropy heatmap of E (kH = kS = kL = 1/3). (b) Best (μ = 30, η = 0.035). (c) Worst
(μ = 10, η = 0.005)

and luminance, from the entropy heatmap, as shown in Fig. 9a. Note that μ and η in
the best case were used to obtain Fig. 6.

5.2 Processing Speed

In our method, the time required for the transfer function design, excluding the VST
extraction, was 0.01 CPU seconds for any dataset throughout this paper. However,
the computation time required for VST extraction also increases as the dataset
size increases. Our extraction algorithm [12, 18] can adjust the accuracy of the
VST extraction with interactive operations, although it may take several minutes
to several tens of minutes of processing time in some cases. Though a discussion
of the extraction algorithm of the VST is beyond the scope of this paper, we had
to accelerate our algorithm to extract the topological structures from large-scale
datasets.

In order to shorten the processing time required for the VST extraction, it
is conceivable to use downsized datasets to obtain the VST and to reduce the
processing time. To visualize a large-scale dataset, we design the transfer function
based on the VST extracted from the downsized dataset and then visualize the
original large dataset using that function. The experiments presented in Sect. 4.2
that similar visualization results can be obtained even if the VST extracted from the
downsized dataset is used.

Figure 10 shows the VST and the visualization result of the stag beetle dataset
(832 × 832 × 494) [19], which emphasizes the critical isosurfaces. The VST was
extracted from the small stag beetle dataset (208 × 208 × 123) and simplified until
the number of the critical points became 14. As the image illustrates we can obtain
an effective visualization result even if the transfer function is designed based on
the VST extracted from the downsized dataset.

Adjusting Control Parameters of Topology-Accentuated TF for Volume Raycasting 85

virtual
minimum

158
153
138
129

83
78
55

16
15
14
11
10

0 scalar
value

100 200

1.0

0.5

(a) (b) (c)

Fig. 10 VST, visualization result, and transfer function of the stag beetle dataset. We can obtain
effective visualization results even if the transfer function is designed based on the VST extracted
from the downsized dataset. (a) VST. (b) Visualization result. (c) Transfer function

6 Conclusion

In this paper, we proposed a method to define the opacity values of topology-
accentuated transfer functions. Controlling the height and width of the hat functions
made it possible to emphasize the feature isosurfaces regardless of the kind of
dataset. According to our empirical evaluations so far, μ and η should range
from 10 to 50 and from 0.01 to 0.05, respectively, because the internal structure
becomes invisible outside of the range in many cases. Our multi-dimensional
transfer function is also able to more clearly emphasize the inner structures in
a target dataset. In addition, our empirical evaluations suggest that the proposed
transfer function design can automatically provide guaranteed results regardless of
the size of the target dataset and the LoD of the VST. Furthermore, by introducing
the evaluation function with different combinations of color components, we can
anticipate appropriate visualization results based on users’ preferences.

The present transfer function design can incorporate sampling distance as a
variable of its definition in order to determine the region to be emphasized around
accentuated isosurfaces. In order to evaluate the effects of the designed transfer
functions in more detail, we will apply them to more complicated and larger
datasets in future studies. Moreover, we should take up the challenge of considering
parameter settings for a multi-dimensional transfer function based on multi-variate
topological structures [20].

Acknowledgments This work was supported, in part, by MEXT KAKENHI under the Grant-in-
Aid for Scientific Research on Innovative Areas 25120014 and JSPS KAKENHI under the Grant-
in-Aid for Science Research (A) No. 26240015 and JP17H00737 and Scientific Research (C) No.
26330142 and JP17K00173. The authors would like to thank the anonymous reviewers for their
valuable suggestions for revising our paper.

86 Y. Takeshima et al.

References

1. Ljung, P., Krüger, J., Gröller, E., Hadwiger, M., Hansen, C.D., Ynnerman, A.: State of the art
in transfer functions for direct volume rendering. CGF 35(3), 669–691 (2016)

2. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct
volume rendering. In: Proceedings of the IEEE Symposium on Volume Visualization, pp.
79–86 (1998)

3. Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive
volume rendering. IEEE TVCG 8(3), 270–285 (2002)

4. Hladůvka, J., König, A., Gröller, E.: Curvature-based transfer functions for direct volume
rendering. In: Proceedings of the Spring Conference on Computer Graphics 2000, pp. 58–65
(2000)

5. Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer function for
direct volume rendering: methods and applications. In: Proceedings of the IEEE Vis 2003,
pp. 513–520 (2003)

6. Weber, G., Dillard, S., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume
rendering. IEEE TVCG 13(2), 330–341 (2007)

7. Zhou, J., Takatsuka, M.: Automatic transfer function generation using contour tree controlled
residue flow model and color harmonics. IEEE TVCG 15, 1481–1488 (2009)

8. Carr, H., Snoeyink, J., Panne, M.V.D.: Flexible isosurfaces: simplifying and displaying scalar
topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42–58 (2010)

9. Praßni, J.-S., Ropinski, T., Mensmann, J., Hinrichs, K.H.: Shape-based transfer functions for
volume visualization. In: Proceedings of the IEEE PacificVis 2010, pp. 9–16 (2010)

10. Xiang, D., Tian, J., Yang, F., Yang, Q., Zhang, X., Li, Q., Liu, X.: Skeleton cuts—an efficient
segmentation method for volume rendering. IEEE TVCG 17(9), 1295–1306 (2011)

11. Fernandes, O., Frey, S., Ertl, T.: Interpolation-based extraction of representative isosurfaces. In:
Advances in Visual Computing, pp. 403–413. Springer International Publishing, Cham (2016)

12. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its
application to transfer function design. Graph. Models 66(1), 24–49 (2004)

13. Takeshima, Y., Takahashi, S., Fujishiro, I., Nielson, G.M.: Introducing topological attributes
for objective-based visualization of simulated datasets. In: Proceedings of the International
Workshop on Volume Graphics, pp. 137–236 (2005)

14. Fujishiro, I., Maeda, Y., Sato, H., Takeshima, Y.: Volumetric data exploration using interval
volume. IEEE TVCG 2(2), 144–155 (1996)

15. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K.,
Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3),
16–22 (2001)

16. Sakagami, H., Murai, H., Seo, Y., Yokokawa, M.: 14.9 TFLOPS three-dimensional fluid
simulation for fusion science with HPF on the Earth Simulator. In: Proceedings of the
Supercomputing 2002 (2002)

17. Sonderforschungsbereiche 382 of the German Research Council. Nucleon.
18. Takahashi, S., Nielson, G.M., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization

using adaptive tetrahedralization. In: Proceedings of the GMP 2004, pp. 227–236 (2004)
19. Gröller, M.E., Glaeser, G., Kastner, J.: Stag beetle (2005). https://www.cg.tuwien.ac.at/

research/publications/2005/dataset-stagbeetle/.
20. Carr, H., Duke, D.: Joint contour nets. IEEE TVCG 20(8), 1077–2626 (2014)

https://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/
https://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/

Topological Machine Learning with
Persistence Indicator Functions

Bastian Rieck, Filip Sadlo, and Heike Leitte

Abstract Techniques from computational topology, in particular persistent homol-
ogy, are becoming increasingly relevant for data analysis. Their stable metrics
permit the use of many distance-based data analysis methods, such as multidimen-
sional scaling, while providing a firm theoretical ground. Many modern machine
learning algorithms, however, are based on kernels. This paper presents persistence
indicator functions (PIFs), which summarize persistence diagrams, i.e., feature
descriptors in topological data analysis. PIFs can be calculated and compared in
linear time and have many beneficial properties, such as the availability of a kernel-
based similarity measure. We demonstrate their usage in common data analysis
scenarios, such as confidence set estimation and classification of complex structured
data.

1 Introduction

Persistent homology [9–11], now over a decade old, has proven highly relevant
in data analysis. The last years showed that the usage of topological features
can lead to an increase in, e.g., classification performance of machine learning
algorithms [20]. The central element for data analysis based on persistent homology
is the persistence diagram, a data structure that essentially stores related critical
points (such as minima or maxima) of a function, while providing two stable
metrics, namely the bottleneck distance and the pth Wasserstein distance. Certain
stability theorems [7, 8] guarantee that the calculations are robust against perturba-
tions and the inevitable occurrence of noise in real-world data.

B. Rieck (�) · H. Leitte
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: rieck@cs.uni-kl.de; bastian.rieck@iwr.uni-heidelberg.de; leitte@cs.uni-kl.de

F. Sadlo
Heidelberg University, Heidelberg, Germany
e-mail: sadlo@uni-heidelberg.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_6

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_6&domain=pdf
mailto:rieck@cs.uni-kl.de
mailto:bastian.rieck@iwr.uni-heidelberg.de
mailto:leitte@cs.uni-kl.de
mailto:sadlo@uni-heidelberg.de
https://doi.org/10.1007/978-3-030-43036-8_6

88 B. Rieck et al.

This stability comes at the price of a very high runtime for distance calculations
between persistence diagrams: both metrics have a complexity of at least O

(
n2.5
)
,

or, if naively implemented, O
(
n3
)

[9, p. 196]. Using randomized algorithms, it
is possible to achieve a complexity of O (nω), where ω < 2.38 denotes the
best matrix multiplication time [18]. Further reductions in runtime complexity are
possible if approximations to the correct value of the metric are permitted [14].
Nevertheless, these algorithms are hard to implement and their performance is worse
than O

(
n2
)
, meaning that they are not necessarily suitable for comparing larger sets

of persistence diagrams.
In this paper, we describe a summarizing function for persistence diagrams,

the persistence indicator function (PIF). PIFs were informally introduced in a
previous publication [22]. Here, we give a more formal introduction, demonstrate
that PIFs can be easily and rapidly calculated, derive several properties that are
advantageous for topological data analysis as well as machine learning, and describe
example usage scenarios, such as hypothesis testing and classification. We make our
implementation, experiments, and data publicly available.1

2 Related Work

The persistence curve is a precursor to PIFs that is widely used in the analysis of
Morse–Smale complexes [4, 13, 17]. It counts the number of certain critical points,
such as minima or maxima, that either occur at a given persistence threshold or at
given point in time. The curve is then used to determine a relevant threshold, or cut-
off parameter for the simplification of the critical points of a function. To the best of
our knowledge, no standardized variant of these curves appears to exist.

Recognizing that persistence diagrams can be analyzed at multiple scales as
well in order to facilitate hierarchical comparisons, there are some approaches
that provide approximations to persistence diagrams based on, e.g., a smoothing
parameter. Among these, the stable kernel of Reininghaus et al. [20] is particularly
suited for topological machine learning. Another approach by Adams et al. [1]
transforms a persistence diagram into a finite-dimensional vector by means of a
probability distribution. Both methods require choosing a set of parameters (for
kernel computations), while PIFs are fully parameter-free. Moreover, PIFs also
permit other applications, such as mean calculations and statistical hypothesis
testing, which pure kernel methods cannot provide.

Recently, Bubenik [5] introduced persistence landscapes, a functional summary
of persistence diagrams. Within his framework, PIFs can be considered to rep-
resent a summary (or projection) of the rank function. Our definition of PIFs is
more straightforward and easier to implement, however. Since PIFs share several
properties of persistence landscapes—most importantly the existence of simple

1https://github.com/Submanifold/topological-machine-learning.

https://github.com/Submanifold/topological-machine-learning

Topological Machine Learning with Persistence Indicator Functions 89

function-space distance measures—this paper uses similar experimental setups as
Bubenik [5] and Chazal et al. [6].

3 Persistence Indicator Functions (PIFs)

Given a persistence diagram D , i.e., a descriptor of the topological activity of a
data set [9], we can summarize topological features by calculating an associated
persistence indicator function of D as

1D : R −→ N

ε �−→ ∣∣{(c, d) ∈ D | ε ∈ [c, d]}∣∣,
(1)

i.e., the number of points in the persistence diagram that, when being treated as a
closed interval, contain the given parameter ε. Equivalently, a PIF can be considered
to describe the rank of the pth homology group of a filtration of a simplicial
complex. A PIF thus measures the amount of topological activity as a function of
the threshold parameter ε. This parameter is commonly treated as the “range” of a
function defined on the given data set, e.g., a distance function [11] or an elevation
function [2]. Figure 1 demonstrates how to calculate the persistence indicator
function 1D (·) from a persistence diagram or, equivalently, from a persistence
barcode. For the latter, the calculation becomes particularly easy. In the barcode,
one only has to check the number of intervals that are intersected at any given time
by a vertical line for some value of ε.

0 2 4 6 8

0

2

4

6

8

(a)

0 2 4 6 8

0

2

4

6

8

(b)

0 2 4 6 8

0

2

4

6

8

(c)

Fig. 1 A persistence diagram (a), its persistence barcode (b), and its corresponding persistence
indicator function (c). Please note that the interpretation of the axes changes for each plot

90 B. Rieck et al.

0.2 0.4
0

10

20
C
ar
di
na
lit
y

(a)

0.2 0.4
0

10

20

C
ar
di
na
lit
y

(b)

e e

Fig. 2 Mean persistence indicator function of the one-dimensional persistence diagrams of a
sphere and of a torus. Both data sets have been sampled at random and are scaled such that their
volume is the same. (a) Sphere (r ≈ 0.63). (b) Torus (R = 0.025, r = 0.05)

3.1 Properties

We first observe that the PIF only changes at finitely many points. These are given
by the creation and destruction times, i.e., the x- and y-coordinates, of points in the
persistence diagram. The PIF may thus be written as a sum of appropriately scaled
indicator functions (hence the name) of the form 1I (·) for some interval I . Within
the interval I , the value of 1D (·) does not change. Hence, the PIF is a step function.
Since step functions are compatible with addition and scalar multiplication, PIFs
form a vector space. The addition of two PIFs corresponds to calculating the
union of their corresponding persistence diagrams, while taking multiplicities of
points into account. As a consequence, we can calculate the mean of a set of PIFs
{11

D , . . . ,1n
D } as

1D (·) := 1

n

n∑

i=1

1i
D (·), (2)

i.e., the standard pointwise mean of set of elements. In contrast to persistence
diagrams, for which a mean is not uniquely defined and hard to calculate [26],
this calculation only involves addition (union) and scalar multiplications of sets of
intervals. Figure 2 depicts mean persistence indicator functions for two randomly-
sampled data sets. We see that the resulting mean persistence indicator functions
already introduce a visual separation between the two data sets.

As a second derived property, we note that the absolute value of a step
function (and that of a PIF) always exists; one just calculates the absolute value
for every interval in which the step function does not change. The absolute value of

Topological Machine Learning with Persistence Indicator Functions 91

a step function is again a step function, so the Riemann integral of a PIF is well-
defined, giving rise to their 1-norm as

‖1D‖1 :=
∫

R

|1D (x)|dx, (3)

which is just the standard norm of an L1-space. The preceding equation requires the
use of an absolute value because linear operations on PIFs may result in negative
values. The integral of a PIF (or its absolute value) decomposes into a sum of
integrals of individual step functions, defined over some interval [a, b]. Letting the
value of the step function over this interval be l, the integral of the step function is
given as l ·|b−a|, i.e., the volume of the interval scaled by the value the step function
assumes on it. We can also extend this norm to that of an L-space, where p ∈ R. To
do so, we observe that the pth power of any step function is well-defined—we just
raise the value it takes to the pth power. Consequently, the pth power of a PIF is also
well-defined and we define

‖1D‖p :=
(∫

R

|1D (x)|pdx
) 1

p
, (4)

which is the standard norm of an L-space. Calculating this integral again involves
decomposing the range of the PIF into individual step functions and calculating
their integral. We have ‖1D‖p < ∞ for every p ∈ R because there are only finitely
many points in a persistence diagram, so the integrals of the individual step functions
involved in the norm calculation are bounded.

Hypothesis Testing Treating the norm of a PIF as a random variable, we can per-
form topology-based hypothesis testing similar to persistence landscapes [5]. Given
two different samples of persistence diagrams, {D1

1 , . . . ,D1
n } and {D2

1 , . . . ,D2
n }, we

calculate the 1-norm of their respective mean PIFs as Y1 and Y2, and the variances

σ 2
i := 1

n − 1

n∑

j=1

(∣∣1D i
j

∣∣− Yi

)2
, (5)

for i ∈ {1, 2}. We may then perform a standard two-sample z-test to check whether
the two means are likely to be the same. To this end, we calculate the z-score as

z := Y1 − Y2√
s2

1/n − s2
2/n

(6)

and determine the critical values at the desired α-level, i.e., the significance level,
from the quantiles of a normal distribution. If z is outside the interval spanned by
the critical values, we reject the null hypothesis, i.e., we consider the two means to
be different. For the example shown in Fig. 2, we obtain Y1 ≈ 2.135, s2

1 ≈ 0.074,

92 B. Rieck et al.

Y2 ≈ 2.79, and s2
2 ≈ 0.093. Using α = 0.01, the critical values are given by

z1 ≈ −2.58 and z2 ≈ 2.58. Since z ≈ −11.09, we reject the null hypothesis with
p ≈ 1.44 × 10−28 � 0.01. Hence, PIFs can be used to confidently discern random
samples of a sphere from those of a torus with the same volume.

Stability The 1-norm of a PIF is connected to the total persistence [8], i.e., the sum
of all persistence values in a persistence diagram. We have

‖1D‖1 =
∫

R

|1D (x)|dx =
∑

I∈I
cI vol(I), (7)

where I denotes a set of intervals for which the number of active persistence pairs
does not change, and cI denotes their count. We may calculate this partition from
a persistence barcode, as shown in Fig. 1b, by going over all the dotted slices, i.e.,
the intervals between pairs of start and endpoints of each interval. The sum over all
these volumes is equal to the total persistence of the set of intervals, because we can
split up the volume calculation of a single interval over many sub-interval and, in
total, the volume of every interval is only accumulated once. Hence,

‖1D‖1

∫

R

|1D (x)|dx =
∑

(c,d)∈D
|d − c| =

∑

(c,d)∈D
pers(c, d) = pers(D), (8)

where pers(D) denotes the total persistence of the persistence diagram. According
to a stability theorem by Cohen-Steiner et al. [8], the 1-norm of a PIF is thus stable
with respect to small perturbations. We leave the derivation of a similar equation for
the general L-norm of a PIF for future work.

3.2 The Bootstrap for Persistence Indicator Functions

Developed by Efron and Tibshirani [12], the bootstrap is a general statistical method
for—among other applications—computing confidence intervals. We give a quick
and cursory introduction before showing how this method applies to persistence
indicator functions; please refer to Chazal et al. [6] for more details.

Assume that we have a set of independent and identically distributed variables
X1, . . . , Xn, and we want to estimate a real-valued parameter θ that corresponds to
their distribution. Typically, we may estimate θ using a statistic θ̂ := s(X1, . . . , Xn),
i.e., some function of the data. A common example is to use θ as the population
mean, while θ̂ is the sample mean. If we want to calculate confidence intervals for
our estimate θ̂ , we require the distribution of the difference θ − θ̂ . This distribution,
however, depends on the unknown distribution of the variables, so we have to
approximate it using an empirical distribution. Let X∗

1, . . . , X∗
n be a sample of the

original variables, drawn with replacement. We can calculate θ̂∗ := s(X∗
1, . . . , X∗

n)

Topological Machine Learning with Persistence Indicator Functions 93

and approximate the unknown distribution by the empirical distribution of θ̂ − θ̂∗,
which, even though it is not computable analytically, can be approximated by
repeating the sampling procedure a sufficient number of times. The quantiles of
the approximated distribution may then be used to construct confidence intervals,
leading to the following method:

1. Calculate an estimate of θ from the input data using θ̂ := s(X1, . . . , Xn).
2. Obtain X∗

1 , . . . , X∗
n (sample with replacement) and calculate θ̂∗ :=

s(X∗
1 , . . . , X∗

n).
3. Repeat the previous step B times to obtain θ̂∗1 , . . . , θ̂∗B .
4. Given α, compute an approximate (1 − 2α) quantile interval as

[θ̂1, θ̂2] ≈ [θ̂∗(α)
B , θ̂

∗(1−α)
B], (9)

where θ̂
∗(α)
B refers to the αth empirical quantile of the bootstrap replicates from

the previous step.

This procedure yields both a lower bound and an upper bound for θ̂ . It is also
referred to as the percentile interval for bootstraps [12, pp. 168–176]. More
complicated versions—yielding “tighter” confidence intervals—of this procedure
exist, but the basic method of sampling with replacement and computing the
statistic s(·) on the bootstrap samples remains the same.

In order to apply the bootstrap to functions, we require empirical processes [16].
The goal is to find a confidence band for a function f (x), i.e., a pair of functions
l(x) and u(x) such that the probability that f (x) ∈ [l(x), u(x)] for x ∈ R is at least
1 − α. Given a function f , let Pf := ∫

f dP and Pnf := n−1∑n
i=1 f (Xi). We

obtain a bootstrap empirical process as

{Pf }f∈F := {√n
(
P ∗

n f − Pnf
)}, (10)

where P ∗
n := n−1∑n

i=1 f (X∗
i) is defined on the bootstrap samples (as introduced

above). Given the convergence of this empirical process, we may calculate

θ̂ := sup
f∈F

|Pf |, (11)

which yields a statistic to use for the bootstrap as defined above. From the
corresponding quantile, we ultimately obtain [θ̂1, θ̂2] and calculate a confidence
band

Cn(f) :=
[
Pnf − θ̂1

n
, Pnf + θ̂2

n

]
(12)

for the empirical mean of a set of PIFs. Figure 3 depicts an example of confidence
bands for the mean PIF of the sphere and torus samples. We can see that the
confidence band for the torus is extremely tight for ε ∈ [0.2, 0.3], indicating that

94 B. Rieck et al.

0.2 0.4
0

10

20

ε

C
ar
di
na
lit
y

0.2 0.4
0

10

20

ε

C
ar
di
na
lit
y

(a) (b)

Fig. 3 Confidence bands at the α = 0.05 level for the mean persistence indicator functions of a
sphere and a torus. The confidence band is somewhat tighter for ε ≥ 0.2. (a) Sphere. (b) Torus

the limit behavior of samples from a torus is different at this scale from the limit
behavior of samples from a sphere.

3.3 Distances and Kernels

Given two persistence diagrams Di and Dj , we are often interested in their
dissimilarity (or distance). Having seen that linear combinations and norms of PIFs
are well-defined, we can define a family of distances as

distp(1Di
,1Dj

) :=
(∫

R

|1Di
(x) − 1Dj

(x)|pdx
) 1

p
, (13)

with p ∈ R. Since the norm of a PIF is well-defined, this expression is a metric in
the mathematical sense. Note that its calculation requires essentially only evaluating
all individual step functions of the difference of the two PIFs once. Hence, its
complexity is linear in the number of sub-intervals.

Example Figure 4 depicts pairwise distance matrices for random samples of a
sphere and of a torus. The first matrix of each group is obtained via distp for PIFs,
while the second matrix in each group is obtained by the pth Wasserstein distance.
We observe two groups of data sets in all matrices, meaning that both classes of
distances are suitable for detecting differences.

We can also employ the distance defined above to obtain a kernel [23]. To this end,
we define

kp(Di ,Dj) := − distp(1Di
,1Dj

), (14)

Topological Machine Learning with Persistence Indicator Functions 95

(a) (b)

Fig. 4 A comparison of distance matrices obtained using the distance measure distp for PIFs, and
the corresponding pth Wasserstein distance Wp . The left matrix of each group shows distp , while
the right matrix depicts Wp. Red indicates close objects (small distances), while blue indicates far
objects (large distances). (a) p = 1. (b) p = 2

where p ∈ {1, 2} because we need to make sure that the kernel is conditionally
positive definite [23]. This kernel permits using PIFs with many modern machine
learning algorithms. As an illustrative example, we will use kernel support vector
machines [23] to separate random samples of a sphere and a torus.

Example Again, we use 100 random samples (50 per class) from a sphere and a
torus. We only use one-dimensional persistence diagrams, from which we calculate
PIFs, from which we then obtain pairwise kernel matrices using both k1 and k2.
Finally, we train a support vector machine using nested stratified 5-fold cross-
validation. With k1, we obtain an average accuracy of 0.98±0.049, whereas with k2,
we obtain an average accuracy of 0.95 ± 0.063. The decrease in accuracy is caused
by the additional smoothing introduced in this kernel.

4 Applications

In the following, we briefly discuss some potential application scenarios for PIFs.
We use only data sets that are openly available in order to make our results
comparable. For all machine learning methods, we use SCIKIT-LEARN [19].

4.1 Analysis of Random Complexes

It is often useful to know to what extent a data set exhibits random fluctuations. To
this end, we sampled 100 points from a unit cube in R3, which has the topology of
a point, i.e., no essential topological features in dimensions >0. We calculated the
Vietoris–Rips complex at a scale such that no essential topological features remain
in dimensions ≥ 1, and obtained PIFs, which are depicted in Fig. 5 along with their
corresponding mean. All functions use a common axis in order to simplify their

96 B. Rieck et al.

0 0.2 0.4 0.6

0

50

100

ε

C
ar
di
na
lit
y

0.2 0.4 0.6

0

10

20

ε

C
ar
di
na
lit
y

Fig. 5 PIFs for random complexes sampled over a unit cube in R3. Dimensions zero (red),
one (blue), and two (yellow) are shown. To show the peak in dimension two better, the right-hand
side shows a “zoomed” version of the first chart (dashed region)

0 0.5 1 1.5

0

50

100

ε

C
ar
di
na
lit
y

0 0.5 1 1.5

0

5

10

ε

C
ar
di
na
lit
y

Fig. 6 PIFs for random samples of a sphere with r = 1.0. Again, dimensions zero (red),
one (blue), and two (yellow) are shown, along with a “zoomed” version of the first chart (dashed
region)

comparison. We first comment on the dynamics of these data. Topological activity
is “shifted”, meaning that topological features with a different dimensionality are
not active at the same scale. The maximum of topological activity in dimension
one (blue curve) is only reached when there are few zero-dimensional features.
The maximum in dimension two (yellow curve) also does not coincide with the
maximum in dimension one. These results are consistent with a limit theorem of
Bobrowski and Kahle [3], who showed that (persistent) Betti numbers follow a
Poisson distribution.

By contrast, for a data set with a well-defined topological structure, such as a 2-
sphere, the PIFs exhibit a different behavior. Figure 6 depicts all PIFs of random
samples from a sphere. We did not calculate the Vietoris–Rips complex for all
possible values of ε but rather selected an ε that is sufficiently large to capture
the correct Betti numbers of the sphere. Here, we observe that the stabilization
of topological activity in dimension zero roughly coincides with the maximum

Topological Machine Learning with Persistence Indicator Functions 97

of topological activity in dimension one. Topological activity in dimension two
only starts to increase for larger scales, staying stable for a long interval. This
activity corresponds to the two-dimensional void of the 2-sphere that we detect using
persistent homology.

PIFs can thus be used to perform a test for “topological randomness” in real-
world data. This is useful for deciding whether a topological approximation is
suitable or needs to be changed (e.g., by calculating a different triangulation, using
α-shapes, etc.). Moreover, we can use a PIF to detect the presence or absence of
a shared “scale” in data sets. For the random complexes, there is no value for ε in
which stable topological activity occurs in more than one dimension, whereas for
the sphere, we observe a stabilization starting from ε ≈ 0.75.

4.2 Shakespearean Co-occurrence Networks

In a previous work, co-occurrence networks from a machine-readable corpus of
Shakespeare’s plays [21] have been extracted. Their topological structure under
various aspects has been analyzed, using, for example, their clique communities [22]
to calculate two-dimensional embeddings of the individual networks. The authors
observed that comedies form clusters in these embeddings, which indicates that they
are more similar to each other than to plays of another category. Here, we want to
show that it is possible to differentiate between comedies and non-comedies by
using the kernel induced by PIFs. Among the 37 available plays, 17 are comedies,
giving us a baseline probability of 0.46 if we merely “guess” the class label of a
play. Since the number of plays is not sufficiently large to warrant a split into test
and training data, we use various cross-validation techniques, such as leave-one-out.
The reader is referred to Kohavi [15] for more details. Table 1 reports all results; we
observe that k1 outperforms k2. Since k2 emphasizes small-scale differences, the
number of topological features in two networks that are to be compared should be
roughly equal. This is not the case for most of the comedies, though. We stress that
these results are only a demonstration of the capabilities of PIFs; the comparatively
low accuracy is partially due to the fact that networks were extracted automatically.
It is interesting to note which plays tend to be mislabeled. For k1, ALL’S WELL

THAT ENDS WELL, CYMBELINE, and THE WINTER’S TALE are mislabeled more
than all other plays. This is consistent with research by Shakespeare scholars who
suggest different categorization schemes for these (and other) problem plays.

Table 1 Classifier performance for Shakespearean co-occurrence networks

Kernel 5-fold LOO LPO (p = 2) LPO (p = 3) LPO (p = 4) Split

k1 0.84 0.83 0.83 0.80 0.79 0.80

k2 0.64 0.00 0.67 0.68 0.68 0.68

Classification based on k1 outperforms the second kernel k2

98 B. Rieck et al.

4.3 Social Networks

Yanardag and Vishwanathan [27] crawled the popular social news aggregation
website reddit.com in order to obtain a set of graphs from online discussions. In
each graph, the nodes correspond to users and an edge signifies that a certain
user responded to a another user’s comment. The graphs are partitioned into two
classes, one of them representing discussion-based forums (in which users typically
communicate freely among each other), the other representing communities based
on a question–answer format (in which users typically only respond to the creator
of a topic). The data set is fully-balanced.

Here, we want to find out whether it is possible to classify the graphs using
nothing but topological information. We use the degree, i.e., the number of
neighbors, of a node in the graph to obtain a filtration, assigning every edge
the maximum of the degrees of its endpoints. We then calculate one-dimensional
persistent homology and our kernel for p = 1 and p = 2. Figure 7 shows the
results of applying kernel principal component analysis (k-PCA) [24], which each
point in the embedding corresponding to a single graph. A small set of outliers
appears to “skew” the embedding (Fig. 7a), but an inspection of the data shows that
these graphs are extremely small (and sparse) in contrast to the remaining graphs.
After removing them, the separation between both classes is visibly better (Fig. 7b).
Progress from “left” to “right” in the embedding, graphs tend to become more dense.

As a second application on these data, we use a kernel support vector machine
to classify all graphs, without performing outlier removal. We split the data into
training (90%) and test (10%) data, and use 4-fold cross validation to find the best
hyperparameters. The average accuracy for k1 is 0.88, while the average accuracy
for k2 is 0.81. PIFs thus manage to surpass previous results by Yanardag and
Vishwanathan [27], which employed a computationally more expensive strategy,

(a) Original data (b) Cleaned data

Fig. 7 Embeddings based on k-PCA for the k1 kernel. (a) Every node represents a certain graph.
The color indicates a graph from a discussion-based forum (red) or a Q/A forum (blue). (b) We
removed some outliers to obtain a cleaner output. It is readily visible that the two classes suffer
from overlaps, which influence classification performance negatively

www.reddit.com

Topological Machine Learning with Persistence Indicator Functions 99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PR-AUC: 0.93

Recall

Pr
ec
is
io
n

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PR-AUC: 0.91

Recall

Pr
ec
is
io
n

(b)

Fig. 8 Precision–recall curves for both kernels on the social networks data set. Each curve also
includes the area-under-the-curve (AUC) value. (a) k1. (b) k2

i.e., graph kernels [25] based on learned latent sub-structures, and obtained an
average accuracy of 0.78 for these data. Figure 8 depicts precision–recall curves for
the two kernels. The kernel k1 manages to retain higher precision at higher values
of recall than k2, which is again due to its lack of smoothing.

5 Conclusion

This paper introduced persistence indicator functions (PIFs), a novel class of
summarizing functions for persistence diagrams. While being approximative by
nature, we demonstrated that they exhibit beneficial properties for data analysis,
such as the possibility to perform bootstrap experiments, calculate distances, and use
kernel-based machine learning methods. We tested the performance on various data
sets and illustrated the potential of PIFs for topological data analysis and topological
machine learning. In the future, we want to perform a more in-depth analysis of the
mathematical structure of PIFs, including detailed stability theorems, approximation
guarantees, and a description of their statistical properties.

100 B. Rieck et al.

References

1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S.,
Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of
persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

2. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. Discr.
Comput. Geom. 36(4), 553–572 (2006)

3. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey (2014). https://
arxiv.org/abs/1409.4734

4. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions
on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004). https://doi.
org/10.1109/TVCG.2004.3

5. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn.
Res. 16, 77–102 (2015)

6. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for
persistence diagrams and landscapes. Model. Anal. Inf. Syst. 20(6), 111–120 (2013)

7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr.
Comput. Geom. 37(1), 103–120 (2007)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable
persistence. Found. Comput. Math. 10(2), 127–139 (2010)

9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, New York
(2010)

10. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European
Congress of Mathematics. EMS Publishing House, Zürich (2014)

11. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification.
Discr. Comput. Geom. 28(4), 511–533 (2002)

12. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and
Applied Probability, vol. 57 . Chapman & Hall/CRC, Boca Raton, FL (1993)

13. Günther, D., Boto, R.A., Contreras-Garcia, J., Piquemal, J.P., Tierny, J.: Characterizing
molecular interactions in chemical systems. IEEE Trans. Vis. Comp. Graph. 20(12), 2476–
2485 (2014)

14. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams.
In: Goodrich, M., Mitzenmacher, M. (eds.) Proceedings of the 18th Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 103–112. SIAM, Philadelphia, PA (2016)

15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the IJCAI, vol. 2, pp. 1137–1143 (1995)

16. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer,
New York, NY (2008)

17. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure
of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph.
12(5), 1053–1060 (2006)

18. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Annual
IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, É.: SCIKIT-LEARN: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

20. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological
machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4741–4748. Curran Associates, Inc., Red Hook, NY (2015)

21. Rieck, B., Leitte, H.: Shall I compare thee to a network?—Visualizing the topological structure
of Shakespeare’s plays. In: Workshop on Visualization for the Digital Humanities at IEEE VIS.
Baltimore, MD (2016)

https://arxiv.org/abs/1409.4734
https://arxiv.org/abs/1409.4734
https://doi.org/10.1109/TVCG.2004.3
https://doi.org/10.1109/TVCG.2004.3

Topological Machine Learning with Persistence Indicator Functions 101

22. Rieck, B., Fugacci, U., Lukasczyk, J., Leitte, H.: Clique community persistence: a topological
visual analysis approach for complex networks. IEEE Trans. Vis. Comput. Graph. 22(1), 822-
831 (2018). https://doi.org/10.1109/TVCG.2017.2744321

23. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge, MA (2002)
24. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue

problem. Neural Comput. 10(5), 1299–1319 (1998)
25. Sugiyama, M., Ghisu, M.E., Llinares-López, F., Borgwardt, K.: graphkernels: R and

Python packages for graph comparison. Bioinformatics 34(3), 530–532 (2017)
26. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence

diagrams. Discr. Comput. Geom. 52(1), 44–70 (2014)
27. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, New York, NY (2015)

https://doi.org/10.1109/TVCG.2017.2744321

Pathological and Test Cases for Reeb
Analysis

Hamish Carr, Julien Tierny, and Gunther H. Weber

Abstract After two decades of computational topology, it is clearly a computation-
ally challenging area. Not only do we have the usual algorithmic and programming
difficulties with establishing correctness, we also have a class of problems that
are mathematically complex and notationally fragile. Effective development and
deployment therefore requires an additional step—construction or selection of
suitable test cases. Since we cannot test all possible inputs, our selection of test cases
expresses our understanding of the task and of the problems involved. Moreover, the
scale of the data sets we work with is such that, no matter how unlikely the behavior
mathematically, it is nearly guaranteed to occur at scale in every run. The test cases
we choose are therefore tightly coupled with mathematically pathological cases,
and need to be developed using the skills expressed most obviously in constructing
mathematical counter-examples. This paper is therefore a first attempt at reporting,
classifying and analyzing test cases previously used for algorithmic work in Reeb
analysis (contour trees and Reeb graphs), and the expression of a philosophy of how
to test topological code.

H. Carr (�)
School of Computing, University of Leeds, Leeds, UK
e-mail: h.carr@leeds.ac.uk

J. Tierny
Sorbonne Universities, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France
e-mail: julien.tierny@lib6.fr

G. H. Weber (�)
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
University of California at Davis, Davis, CA, USA
e-mail: ghweber@lbl.gov; ghweber@ucdavis.edu

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_7

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_7&domain=pdf
mailto:h.carr@leeds.ac.uk
mailto:julien.tierny@lib6.fr
mailto:ghweber@lbl.gov
mailto:ghweber@ucdavis.edu
https://doi.org/10.1007/978-3-030-43036-8_7

104 H. Carr et al.

1 Introduction

Computational topology began in the 1980s for scalar fields [13] in geographic
information systems, and for vector fields [14] for scientific visualization, with
scalar field analysis then developing for the analysis of 3D (volumetric) data.

Over time, topological analysis in scientific visualization has included techniques
based on Reeb Analysis, Morse-Smale Analysis, Persistent Homology, Vector
Field Analysis, and Tensor Field Analysis. While articles commonly describe new
algorithms, they rarely describe testing strategies, although tools exist that could
be applied, particularly for vector fields [20, 25]. We will, however, restrict our
attention to Reeb Analysis, where we have prior experience. Similarly, while the
strategies for debugging visualization described by Laramee [17] can be applied,
we focus primarily on the test cases we use for topological algorithms.

While these techniques are powerful for understanding data, they are con-
ceptually complex. They are also particularly difficult to implement, as they are
susceptible to a wide range of errors during program construction. Thus, in addition
to the normal struggle to frame an algorithm accurately, robustly and efficiently, we
have to contend with problems due to the difficulty of the underlying mathematics.

Between us, we have accumulated over 40 years of experience in working
with topological code. As a result, we have developed and employed a variety
of strategies for constructing, testing and debugging programs. These strategies,
however, rarely form part of publications, since there is usually barely room for
all the technical details. Since these strategies are of value to other researchers or
programmers attempting to grapple with complex algorithms, we therefore aim to
start the discussion of test cases and testing strategies.

We do not have space for the details of all the algorithmic work, so we start
with a quick overview instead in Sect. 2. We then sketch a number of conceptual
approaches to test cases in Sect. 3 and introduce two types of pathological cases,
flat regions in Sect. 4 and the W-structure in Sect. 5. Section 6 then gives some
concrete examples of test sets that we have used, and Sect. 7 discusses some of
the techniques that we use for visualizing intermediate results during debugging.
Then Sect. 8 summarizes our experience and presents some conclusions.

2 Reeb Analysis

Reeb Analysis studies the relationships between isocontours to extract knowledge
from a mathematical function or data set. Consider a scalar field, i.e. a function of
the form f : Rd → R. Since the data we wish to analyze is normally spatial in
nature, we shall assume d ∈ {2, 3, 4}. A level set or inverse image of f is defined by
choosing an isovalue h ∈ R, then extracting all points in the domain of the function
with function value h, i.e. f−1(h) = {x ∈ Rd : f (x) = h ∈ R}. These level

Pathological and Test Cases for Reeb Analysis 105

sets are often referred to as isocontours (isolines where d = 2, isosurfaces where
d = 3).

Any given isocontour may have multiple connected components, which are
ambiguously referred to as isolines and isosurfaces. We therefore use isocontour
components to refer to the individual surfaces, in line with the literature.

If we contract each isocontour component to a single point, we construct the
contour tree [2]. For more general functions, where the domain is a general manifold
M , the same construction gives the Reeb graph [18]. Although a special case of the
Reeb graph, the contour tree is easier to compute [4], and the fastest Reeb graph
algorithm reduces the input to a simple domain, computes the contour tree over that
domain, then reconnects the domain (and the tree) to build the Reeb graph [22].

More recently, Reeb Analysis has been extended to functions of the form f :
M → Rr , where r > 1. These cases are covered by the mathematics of fiber
topology, and we replace isocontours with fibers representing inverse images of the
form f−1(h) = {x ∈ Rd : f (x) = h ∈ Rr }. Continuous contraction of these fibers
then results in the Reeb space [11]. This can be constructed approximately [3] for
the general case, or precisely [21] for the case f : R3 → R2.

Rather than recapitulate all of these algorithms, we refer the reader to the original
papers, and assume some degree of familiarity with the details, as we are presently
interested in describing debugging practice and test cases for them.

3 Approaches

Generally speaking, debugging complex code depends on testing representative
types of data, since exhaustive testing of all possible inputs is combinatorially
impossible. Within this, test sets may be analytic, stochastic, empirical, or synthetic,
but the choice normally depends on the specific problem domain.

Analytic Frequently, computation replicates an existing mathematical method, and
as a result, test cases can be constructed from known mathematical examples, which
were generally developed during mathematical debugging of an idea. Since these are
likely to display interesting or challenging behavior, they are commonly used as test
functions for which the ground truth result is already well understood.

For our work in computational topology, this ideal approach has been less
useful than it might seem. This occurs because mathematical development generally
considers smooth infinitely differentiable functions. Since most code assumes
simplicial or cubic meshes with linear, trilinear or ad hoc interpolation, the sampled
data rarely captures the original mathematical function exactly unless sampled at
high resolution. This is of particular concern when debugging, as manual validation
of intermediate stages for anything over 103 is time-consuming and wearisome.

Moreover, mathematical reasoning is reductive, and attempts to deal with a small
number of simple cases, in order to stay within the reasoning abilities of a human
being. As a result, analytic examples tend to have simple topology—i.e. relatively

106 H. Carr et al.

small numbers of topological events. However, the sampling necessary to capture
this causes them to be medium scale in terms of data, which makes them unattractive
for early stage testing. Later on, simple topology has typically already been tested,
and medium scale examples are used to test combinations of simple topology. At
this point, analytic functions are rarely complex enough to provide good medium
scale tests. We therefore tend to avoid analytic functions except at the conceptual
stage.

Stochastic A second approach is to generate data sets stochastically—i.e. to choose
randomly from all possible data sets. While this has the merit that it does not prefer
any particular data sets, it fails to guarantee that challenging topology will be tested
early, or indeed ever. As a result, we tend to avoid stochastic approaches.

Curiously, however, as the data scales up, stochastic effects mean that every
pathological mathematical case will occur multiple times, leading to the problem
that we refer to as too much topology. In practice, 1 GB of data means that there
may be tens of millions of topological events. If the isovalues at which they occur
are independent, then even for double precision floating point, it is highly likely
that multiple topological events will happen at the same isovalue, which means
that robust handling of complex topology is always required. This has also driven
much of the work on topological simplification, so paradoxically, while avoiding
stochastic approaches in the abstract, we rely heavily on them in practice.

Empirical Since the goal of computation is to process data, the third approach
therefore looks to existing data, either from prior experience or from a current data
problem. While it is generally simple to obtain data from a variety of sources, there
are at least four problems with empirical data:

1. Scale: as with mathematical test data, empirical data is often at too large a scale
to be useful in the early stages of development, although we commonly use
empirical data for testing at the medium to large scale.

2. Noise: many acquired data sets, particularly medical data, are noisy due to
the original acquisition process, and this tends to result in large numbers of
topological events, which are undesirable for small scale testing. Noisy data types
therefore tend to be of more use at the medium to large scale.

3. Blandness: clean empirical data can suffer the opposite problem: that the number
of topological events is much smaller than the data set, again hampering manual
validation. Clean simulation data is particularly prone to this.

4. Clumping: some types of empirical data, such as medical, tend to have heavily
clumped values, as for example where isovalues correspond to different tissue
types. This tends to result in many topological events over a narrow range of
values, again hampering manual validation.

Having said that, empirical data becomes particularly useful at medium to large
scales, since many data types naturally result in large numbers of topological events,
providing a useful test of the scalability of the underlying approach. Moreover, we

Pathological and Test Cases for Reeb Analysis 107

have found that terrain data, which is self-similar at different scales, is often useful
for debugging, as discussed below.

Synthetic Since neither analytic nor empirical approaches give good test sets for
early stages, we find that early stage testing relies heavily on synthetic examples
for algorithm development and debugging. We aim to keep input sizes small, and to
exhibit a rich topological behavior. We depend in particular on pathological cases
and counter-example construction. Scalable examples are then built algorithmically
for data construction, by copying a known pathology, by working backwards from
the desired output structure, or by replicating copies of smaller-scale features.

Although mathematical functions would seem to be the best strategy, these are
most commonly C∞, and are a poor fit to the demands of algorithmic development.
We therefore tend to start with small synthetic examples, then scale by judicious
selection of empirical data, usually starting either with small terrain examples or
clean simulation data, and progressing to large complex data sets.

As we have noted, we tend to rely on experience with previous problems to
choose data sets that have previously caused algorithmic, theoretical or interpre-
tational difficulties. While not exclusive, there are two major types of data which
we know routinely present these difficulties even at small to medium scales: flat
regions and W-structures.

4 Flat Regions

Morse Theory assumes that critical points occur at unique values, and that there
are no flat regions—i.e. regions with gradient of 0 but dimensionality >0. While
this considerably simplifies the mathematics, it tends to have the reverse effect in
practical data. And, although perturbation through simulation of simplicity [10]
allows us to reduce the problem to the mathematically tractable, it imposes both
algorithmic and interpretational costs.

To make matters worse, flat regions are frequently observed in quantized data
sets. Many types of data have a narrow range of interesting values, with multiple
topological events clustering tightly together. Even a small amount of quantization
tends to result in flat regions. Moreover, for algorithmic purposes, flat regions are
often broken up by symbolic perturbation [10], which adds a different mathematical
ε to each value to guarantee unique values throughout the data. This induces
additional ε-persistent edges, which must then be suppressed in user interfaces
and/or accounted for through simplification.

The converse of this is that these data sets are often valuable test cases of whether
symbolic perturbation is implemented correctly and consistently. A good example
of this occurs in the “nucleon” data set from VolVis. It contains small to moderately
sized regions of constant value that can be resolved using symbolic perturbation.

Equally, the hydrogen data set [19] has extremely large constant regions that
stress test symbolic perturbation implementations. For instance, most of the region

108 H. Carr et al.

Fig. 1 Flat region in the hydrogen data set that is likely a quantization artifact and should be
removed by simulation of simplicity. In the continuous function the hole would likely be filled
smoothly until it disappears at a critical point

Fig. 2 Flat region in the hydrogen data set that probably corresponds to a feature of interest and
should be characterized in its entirety. The ring-structure likely has a correspondence in the smooth,
real-valued function (but sampling on a grid without quantization would break it apart)

around the hydrogen atom has a constant value, as shown in Fig. 1. Here, the
flat region is likely spurious and should be removed by symbolic perturbation. In
the quantized data, a whole “cap” like structure forms around a flat region and
subsequently closes an isosurface component. In this case, symbolic perturbation
leads to the “correct” behavior: the component closes off smoothly.

However, not all flat regions are unimportant or spurious: they can be the
regions of most interest in the data. Again considering the hydrogen data set, Fig. 2
shows a flat region of particular interest where two protons interact. Here, even a
continuous function would likely contain a region of constant value, i.e. the circle
around which the ring forms. Since this behavior is intrinsic to the underlying
phenomenon, suppressing the region to ensure mathematically clean behavior may
actually mislead interpretation of results.

Ideally, we would be able to distinguish between “spurious” and real features,
and to define stability for them in a mathematically sound framework. This
may involve consideration of the difference between persistent simplification and
geometric simplification [6], but is broadly speaking beyond the scope of the current
discussion.

Phenomena like these have also led to approaches that aim at avoiding symbolic
perturbation and identify critical regions directly [1, 9, 16, 24]. For example, in

Pathological and Test Cases for Reeb Analysis 109

the hydrogen atom, the “ring structure” shown in Fig. 2 appears around a region
of constant function value. Symbolic perturbation breaks the ring up into at least
a maximum (around which the ring starts to form in the perturbed version) and a
saddle (where the ring closes in the perturbed version). One may argue that in this
instance it is desirable to detect the entire ring structure as a critical entity, i.e. a
circle around which the ring forms.

5 W Structures

While flat regions test our ability to reconcile quantized data with mathematical
formalisms, our other pathological case, the W structure can be constructed either
mathematically or by observation in data.

This structure was first shown as an illustration of a potential case by
Carr et al. [5] (as Figure 2). However, the implications of this structure were
not fleshed out, and the illustration was omitted from the later journal paper [6]
for reasons of space. Since then, it has caused difficulties both in proofs (L. Arge,
Personal communication to H. Carr), and in algorithmic analysis of recent parallel
approaches [8].

We refer to this as a W structure since it consists of a horizontal zigzag of edges
(or paths) in the contour tree. In 2D, these can be constructed as a sequence of
nested volcanic caldera. Similarly, in 3D, nested shells alternating between minima
and maxima will also display this behavior. However, once boundary conditions are
taken into account, an alternating sequence of ridges and valleys stretching across
the data set will also result in a W structure.

Once we realize the impact of boundary conditions, it is easy to construct W
structures with any desired complexity, as illustrated in Fig. 3. Here, we start with
alternating ridges and valleys. Next, we insert saddle points in each ridge and valley
to divide them into multiple extrema each. Finally, we assign values to each location,
making sure we stay consistent with the assignment of saddle points. As a result, we
see a horizontal zigzag emerge in the contour tree, and is clear that we can use this
construction to make arbitrarily complex W structures.

We note that there are many variations possible. For example, we have chosen
to make all downwards saddles lower than all upwards saddles. While this is not
necessary, it is easy to enforce. Similarly, the exact ordering along the ridges and
valleys can be altered: in larger examples, we can have multiple extrema for each.
We have also chosen to place the saddles in the middle—there are boundary effects
when they are at the edge of the data. Moreover, in practice we tend to use diagonal
ridges and valleys, in order to pack more features into a small space. But the basic
strategy is clear: alternate ridges and valleys generate W-structures, and this gives
us useful test cases at any desired scale.

110 H. Carr et al.

Step I: Alternating
Ridges (+) & Valleys (-)

Step II: Insertion of
Up (v) & Down (^)

Saddle Points

Step III: Assign
Values

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

-

-

^

-

-

^

-

-

+

v

+

+

+

+

v

+

0

1

7

2 5

6

3

4

16

9

14

17 18

11

10

15

Step IV: W-Structure
in Contour Tree

+

+

+

+

+

+

v

+

0

1

7

2

5

6

3

4

16

9

14

17

11

18

10

15

13

19

8

12

12

8

13

19

Fig. 3 An example of a “W structure” in a contour tree, with construction

6 Concrete Examples

In addition to the specific examples of flat regions and W structures, we have histor-
ically used a range of data sets for testing. While the following list is not exhaustive,
it covers a range of data sets we have found useful in practice for test purposes.

The 5b Dataset This dataset was built around 2000 for testing contour tree
construction. The intent was to pack the maximum number of topological features
into the smallest possible space. As a result, it has shown up in a number of papers.
It was constructed by electing to have two minima, one interior and one exterior,
and four maxima arranged in pairs with toroidal isosurfaces nested around them.
Initially, this data set was constructed as a 3 × 3 × 3 grid, but was embedded in a
layer of 0s—as a result, it is a 5 × 5 × 5 grid, as shown in Fig. 4.

Volvis Data We also use the volvis data repository for testing, in particular the fuel
dataset, which has around 100 critical points in a 64 × 64 × 64 data set, although
with more maxima than minima. The hydrogen dataset has also proved useful, as
several of the features of interest form flat regions in the data, which is a useful test
of the simulation of simplicity used to guarantee topological properties.

Pathological and Test Cases for Reeb Analysis 111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

95

85

0

85

95

99

0

90

80

95

0

0

0

0

0

0

0

0

0

75

55

60

0

65

45

70

0

50

15

40

0

0

0

0

0

0

0

0

0

97

92

82

0

82

92

97

0

87

77

87

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 00 000 00 00 0 00 00 0 00 00 0 00 00

Colours:
Branch Decomposition
(Hierarchy of Features)

Hierarchy Induced by
Persistence

(isovalue range)

Plane z=0 Plane z=1 Plane z=2 Plane z=3 Plane z=4

Fig. 4 5b: a synthetic 5 × 5 × 5 dataset, constructed to have four maxima, two minima, three
connectivity-critical points and five additional Morse critical points in the central 3 × 3 × 3 block

Protein Data Base Another source of test data is the PDB protein data base (www.
wwpdb.org). One of the utilities from this project generates sampled electrostatic
potential fields at any desired resolution, and these tend to have many topological
events occurring at bonds between atoms. One dataset from this source was
therefore instrumental in trapping a typographical error in a lookup table that caused
the same surface to be extracted over a hundred times instead of once.

GTOPO30 Data We have found terrain data to be valuable for testing for several
reasons. First, terrain data is defined in two dimensions, not three, and therefore
tends to be more useful for small scale testing. Secondly, it is naturally self-similar,
so interesting topology occurs throughout much of the world. Thirdly, thanks to
US government policy, it is freely available from the US Geographical Survey, in
particular the 30 arc-s GTOPO30 dataset (https://lta.cr.usgs.gov/GTOPO30).

We have found that a small section of terrain around Vancouver captures 40 odd
topological events in about 400 data values, which is still feasible to verify manually.
For scaling studies, sections of the Canadian Rockies proved exceptionally useful:
they naturally give rise to W structures due to the parallel nature of mountain
ranges. Finally, a section of low-relief terrain from the Canadian Shield tests both
the handling of W structures and of clumped data values. This is not to say that these
are ideal choices: merely that they have been good tests in the past.

Nasty W During the development of the most recent contour tree algorithm, W
structures caused particular problems, and we therefore built a number of small
examples, which led us to the construction described above. These were crucial

www.wwpdb.org
www.wwpdb.org
https://lta.cr.usgs.gov/GTOPO30

112 H. Carr et al.

in constructing valid parallel algorithms, and had the side effect of developing our
understanding of this pathological case. Eventually, we constructed an extreme case
to track down a particularly nasty bug, simplifying the construction to a single
triangle strip for ease of manual debugging. We show a developed version of this,
called the “nasty W” in Fig. 5, in which every vertex of the mesh is a supernode in
the contour tree.

One of the particular values of this example is that the W structure ensures that
only two branches are candidates for simplification at any given time, with the lower
priority one chosen for removal. Here, our priority measure is the “height” of the
branch, which is not in fact the persistence of the extremum [15]. The right-hand
branch (80− 60) in the illustration has a priority of 20, lower than the priority (110)
of the left-hand branch (230−120), and is removed first, revealing branch (20−160)
with priority 140. The decomposition then proceeds left to right since none of the

80

170
180

190

230

250

20

60

0

120

40

80

90

160

130

70

110

140
150

120

Branch: Vertices: Priority Blocking Edge
I 80 60 20 230 120 (110)
II 230 120 110 20 160 (140)
III 0 130 130 20 160 (140)
IV 190 110 80 20 160 (140)
V 90 140 50 20 160 (140)
VI 250 120 130 20 160 (140)
VII 80 150 70 20 160 (140)
VIII 170 70 130 40 160 (140)
IX 180 20 160 None - Master Branch

230

III

II

I

IV

V

VI

VII

VIII

IX
X

Superarc:

Branch, with pruning order: IV

230

0

120 130

190 90

110

250

140 120 150 70 160 60

80 170 40 180 20 80

Triangulation:

Contour Tree & Branch Decomposition:

Fig. 5 The Nasty W test example. The contour tree was constructed first, then the saddles arranged
along one row of the mesh, the extrema along the other row

Pathological and Test Cases for Reeb Analysis 113

remaining branches have height greater than 140. In the result, the master branch is
(180 − 20).

The Nasty W has several interesting properties. First, the master branch includes
neither the global minimum nor the global maximum. Second, the global minimum
and global maximum do not pair with each other, indirectly demonstrating that
branch decomposition and contour tree simplification are not equivalent to persis-
tence. And third, the master branch isn’t even the longest monotone path in the tree!
As a result, this (and several other W structures) are now part of our standard test
suite for working on contour tree algorithms (Fig. 6).

One Cube and One Cube Forking While less work has been done on Reeb spaces
than on contour trees and Reeb graphs, the same pattern of test case construction was
visible. Real data sets were too complex, while the existing mathematical examples
were difficult to construct in practical data. As a result, we constructed three small
examples of volumetric bivariate meshes, all employing six tetrahedra packed into
a single cube with a shared major diagonal (i.e. a Freudenthal subdivision).

Here, the goal was not to maximize the complexity (at least for our first example),
but rather to develop a small example with non-trivial Reeb space in order to assist
in our own understanding of fiber topology. After several years of limited progress
based on combinations of polynomial functions, this example was developed with
a small test harness and immediately led to fiber surfaces, then played a role in
algorithm development for Reeb spaces [7, 21]. It is therefore recommended both
as a first tiny data set for testing correctness, but also as an example for the process
of learning and reasoning about Reeb spaces and fiber topology.

Figure 6 shows an example following a standard approach in fiber topology, by
using a linear ramp for one of the functions, and choosing a second so that the
contour tree on one face is an upwards fork, while the contour tree on the opposite
face is a downwards fork. In its earliest incarnation in 2002, it was used by the first
author to reason about time-varying contour trees. It then became an example used
to explain Reeb Spaces to students: when the time came to construct a small data
set for Reeb Space computation, it was natural to embody it as a small tetrahedral
mesh.

Due to the tetrahedralization chosen, the result is slightly different. However, the
downward fork is recognizable as two flaps (the white regions on the left), while
the upward fork became another two (the white regions on the right). In the middle
gray region, only one fiber exists, represented by gluing the two partial Reeb spaces
together. We constructed paper models of this (and our other examples), and it was
these models that led us to construct fiber surfaces [7].

We then constructed the second example, in Fig. 7, by replacing the linear ramp
with a rotated copy of the first function. Here there are up to three fiber components
for any given value. Moreover, two “vertices” of the central square are not vertices
of the mesh, but intersections of the projections of the mesh edges. This property
showed us that certain algorithmic lines of attack would be unfruitful.

114 H. Carr et al.

v3

v1

v2

v2

GLUE
REAR

v7v5
v6

GLUE
REAR

v1

v0

GLUE
FRONT

v4v5
v6

GLUE
FRONT

ONE CUBE:
This started c. 2002 to represent a
time-varying contour tree that
started as a downward fork at t=0
(the left end) and morphed to an
upward fork at t=1.

As a Reeb Space, a second function

over time. The pair of functions was
then embodied as six tetrahedra
packed into a single cube of data

Time-Varying Tree Reeb Space

Vertex Position Values
v0 (0,0,0) 0, 0
v1 (0,0,1) 4, 1
v2 (0,1,0) 6, 0
v3 (0,1,1) 0, 0
v4 (1,0,0) 10, 10
v5 (1,0,1) 4, 10
v6 (1,1,0) 6, 9
v7 (1,1,1) 10, 10

Tetrahedra:
v0 v1 v2 v5
v0 v2 v4 v5
v2 v4 v5 v6
v2 v5 v6 v7
v2 v3 v5 v7
v1 v2 v3 v5

Fig. 6 A small Reeb space constructed from six tetrahedra packed into a single cube in the domain
with shared edge v2v5

Pathological and Test Cases for Reeb Analysis 115

GLUE
REAR
Face 251

Cell 4
(2573)

v0

v1

Cell 0
(2510)

v2

v4
v5

Cell 1
(2504)

GLUE REAR
Face 254

v4

v6

v2

Cell 2
(2546)

GLUE FRONT
Face 245

GLUE
REAR
Face 256

v7

v5

v6
v2

Cell 3
(2567)

GLUE FRONT
Face 256

v3

GLUE
FRONT
Face 253

v1

v3

v5

Cell 5
(1256)

GLUE REAR
Face 253

GLUE
FRONT

Face 251

ONE CUBE BOTH FORKING
function from One Cube.

Dark region glues on both sides.

Vertex Position Values
v0 (0,0,0) 0, 0
v1 (0,0,1) 2, 5
v2 (0,1,0) 3, 3
v3 (0,1,1) 0, 3
v4 (1,0,0) 5, 2
v5 (1,0,1) 2, 2
v6 (1,1,0) 3, 0
v7 (1,1,1) 5, 5

Tetrahedra:
v0 v1 v2 v5
v0 v2 v4 v5
v2 v4 v5 v6
v2 v5 v6 v7
v2 v3 v5 v7
v1 v2 v3 v5

Fig. 7 A second Reeb space constructed from six tetrahedra packed into a single cube. Here, the
first field is the same as in Fig. 6, while the second as a copy of the first field, rotated by 90◦

116 H. Carr et al.

Finally, since all of the fibers in these examples were open at the boundary, we
constructed a third to have closed loop fibers around the main diagonal of the cube.
This was less useful than we had hoped, but still helped us to think about vertices
and tetrahedra that overlapped in projection. We therefore omit this example.

These examples are small enough to print out and assemble manually, and we
have found them very useful for comprehension and for debugging.

7 Debug Tricks

Once suitable test data is available, development and debugging can proceed.
And here, too, experience indicates that a general debug procedure needs some
modification to accommodate the demands of topological computation. We have
noticed three basic tricks that we tend to repeat in different contexts:

Text Output As with all code, text output is particularly useful. Part of this is
because the internal structures are rarely intuitive. As a result, having a consistent
well-formatted text output is priceless for tracking down bugs. Moreover, when
improving an existing algorithm, we have found that sharing a common output
format between versions makes it easier to identify where bugs occur, simply by
using the command line tool ‘diff’ on the outputs of the versions. This technique
is particularly valuable in practice as data scales: for example, this allowed us to
validate new parallel algorithms [8] against old serial code [6].

Visual Output Since our target is to visualize data, we normally operate in an
environment where visual output is feasible. One approach is to export meshes at
various stages of an algorithm, then use an external program such as paraview or
TTK to inspect them. Another approach is to build a custom application, either to
support the debug process, to play with particular ideas, or to illustrate the process
for others. One example of this with two-dimensional data is to render a terrain with
the contour tree superimposed: since the (x, y) and h coordinates are known, this
means that visual inspection of relationships is straightforward at smaller scales,
although difficult when many topological events occur.

Over time, the desire to have intermediate visual output was part of the
motivation for the development of the Topology Tool Kit (TTK) by the second
author [23], and readers may find its features valuable.

Graph Output Since scalar Reeb analysis results in graph-like structures, one of
the most useful debug tricks is to export the internal data structures to a graph format
such as graphviz [12], then to invoke external programs such as dot to generate
PDFs and display them. This is a variant of the stepping method described by
Laramee [17] which we have found useful, especially for small test sets.

At one stage of developing a new parallel algorithm [8], debug involved manual
cross-checking of a contour tree with over 1000 nodes, shown in Fig. 8, which
involved using a GUI-based graph editor on the dot format output. Most recently,
improvements to internal data structures have been simplified considerably by graph

Pathological and Test Cases for Reeb Analysis 117

-

660

760364

462

761

955

856

206

404

63

163

3288

3285

1610

1511

863

763

503

1614

1612

401

302

918

917

604

504300

301

2326

2328

1016

1410

1411

112

15

1521

1718

2307

2505

2625

2526

1503

1404

1412

152

51

2921

2919

1405

1291

1092

896

452

353

254

881

882

585

586

16

290

292587

3017

2917

1114

1312

1934

1933

508

507

1314

1413

1581

1282

1717

3510

3410

1318

1417

2329

94

1998

1900

1531

1530

66

65

1128

1227

50

2006

2005

2577

2578

2331

2330

2104

1727

1726

1702

1603

1380

1126

87

187

2916

1825

4175

4076

889

790

2032

2030

2028

2227

1186

988

3068

3365

2777

2677

826

923

783

784

2334

2432

2220

1923

791

1484

1583

922

921

2803

2704

2706

2707

3273

3173

3023

2923

2183

2283

1982

2180

1600

1601

728

727

479

578

385

286

23

24

4452

4551

2604

2537

2536

1094

1093

25

1296

1294

3212

3073

2987

2988

2177

2175

2174

2579

2166

2265

932

1031

99

1

311

310

2462

2463

2779

2778

4549

3075

3174

778

89

88

3484

3585

3376

3475

1476

1477

2417

2318

3662

3760

2364

2301

2302

2474

2375

2313

2214

2377

2376

3702

3705

2215

3586

3370

3371

1304

1305

2402

1072

1074

3903

3804

3620

3618

2535

3557

3659

3574

1880

1979

1187

989

4250

4051

3759

3031

2933

4467

4565

4193

4293

4024

4023

4007

4107

3588

3587

3408

3409

3184

3084

2989

2874

2875

2575

2284

2279

2278

2171

2172

2125

2126

1584

1585

1535

1436

315

312

3977

3418

3415

2785

2884

1738

1837

2673

2674

3000

3001

3927

4026

2983

1174

1175

3071

3072

2118

2119

1457

1356

4524

4523

3728

3826

2906

2905

2499

2400

4622

3805

4209

4208

3811

3810

3671

3672

3607

3608

2337

2436

4066

3967

2608

4822

4821

1437

4052

4022

1414

1513

3466

3469

2790

2889

92

4767

4668

630

629

2477

2476

2520

2620

3200

3101

386

487

4720

4621

4256

4255

4569

4497

4498

4317

4219

4297

42964294

4206

4068

3868

4011

4010

4009

3914

4012

3867

3578

3678

2981

2882

1473

1474

1316

1415

1334

1333

1215

1214

197

98

110

11

4753

4754

4716

4717

4692

4789

4506

4705

199

100

4599

1579

1480

2574

1831

1930

4400

4499

4120

3860

3761

2934

4350

4351

3490

3489

4749

4748

2277

1339

1338

395

296

3098

2999

4760

4563

2826

2825

3731

3730

4458

4556

2699

2799

4129

4228 4455

4456

2011

2110

910

1009

4655 2886

2985

4804

4788

4389

4390

3862

3864

3169

31702976

2974

2738

2737

2423

2523

2479

2478

1683

4553

4454

1285

1385

2274

2275

2010

2009

4327

4326

4820

4395

4378

4377

3964

3965

2482

2481792

693

1780

1682

4724

4723

4564

4484

4385

3888

3887

3472

3571

788

787

4816

1287

1188

2074

2073

3275

3374

4764

4765

3829

3828

2438

2437

4386

2614

2515

2013

2012

1587

1387 413

411

3801

3802

1857

1758

2501

2502

984

885876

976

3912

3911

689

2472

2373

3307

3308

3420

3519

4848

4847

3187

3186

4111

4110

4654

4555

590

593

4414

4315

812

811

4653

2720

2820

3714

3813

4127

4126

3435

3434

2892

2991

2772

2773

775

875

4401

4500

4082

4080

3389

3488 3089

2637

2735

2829

2729

2198

2199

2136

2133

1918

2014

1733

1832

1730

1828 1731

1198

1199

1022

1119

912

1010

998

2719

2698

2599

2296

2297

4280

4379

983

4299

4398

2421

2322

74

73

80

82

4850

1277

1081

4320

4321

4492

4490

2584

2782

4493

4030

4029

4694

4594

4685

4586

3292

3390

4516

4417

1774

1776

3437

3436

1672

1772

1275

71

70

4763

47624664

4472

4471

4262

4162

3168

3267

3028

2929 2519

2420

1888

1887

1722

1821

1636

1634

1497

1496

828

927

3318

3317

3496

3397

72

1625

1723

3340

3339

3713

3711

3615

3614

41

142

3853

3854

4303

43021526

2140

2139

175

76

4062

4059

2640

2639

4502

4403

3223

3222

1768

1669

2970

1468

1369

4799

4700

1440

1538

652

653

4796

4676

4577

3817

3816

3235

3333

3324

3323

2809

2808

1329

1428

1201

1300

730

829

319

318

849

751

43

4781

4783

2670

2671

1005

1103

4613

4514

2488

2489

3137

3236 4774

4675

2289

2189

4168

4169

3664

3665

771

671

2388

1566

1467

1766

1767

2963

3063

4265

4266

2492

2491

2143

2242

534

633

2716

2617

632

731

4180

4179 3580

3380

2711

2611

2694

2593

1343

1441

1035

1134

1037

1036

712

711

616

614

136

39

1066

1067

4658

4560

2713

2714

3762

3722

3723

4757

4313

4312 4116

41154018

4017 3920

3919 3821

4639

4442

238

237

4710

4810 4610

4182

4181

3009

281136

37

3107

3008

519

518

2996

3096

3744

3546

3446

3247

3204

3205

3147

2896

2794

421

420 3682

3681

2897

1563

1562

425

423

2861

2862 3501

3303

3395

329537823500

1962

1862

4773

4772 4674

426

2159

2160

4678

46774382

4381

3991

3989

4088

3984

3893

3892 3794

331

329

335

233

437

337

44434435

4434

3045

3044 2554

2455 1647

1646 339

240

140

154

1324

1807

19

3114

4352

779

2117

2304

2534

2986

2280

2705

4470 4295

3908

4121

2932

4307

4494

4496

4387

886

3090

1732

1299

2718

1082

4845

4587

1273

1527

3960

4511

3883

328

1015

799

58

1715

2107

2366

3570

2576

3706

1532

3771

4271

2490

3944

3499

489

2823

4058

3477

3465

3195

2124

2973

3185

3905

1506

4224

4200

33

2880

3329

1693

2212

Fig. 8 A large contour tree visualized using graphviz for debug purposes. One edge had been
mis-computed, and had to be identified manually

118 H. Carr et al.

188

239

393

420

425

436

469

492

527

558

646

655

763 765

774

799

816

906

982

1005

1029

1037

1096

1104

1208

1211

1236

1251

1260

1262 1268

1270

0 1

3

8

19

20

21

33

36

41

44

47

51

55

59

90

92

99

106

145

181 198 202

206

208

212 219

224

317

318 329

397423

443

456

482

517

620 633

742 759

840

855

10
21

1071

1086

1158

452

731

773

732

643

10341066 790

668

1028

931

1258

1256

1238

1228

1183

2

5

10

35

38

42

45

49

53

57

73

123

146102

203

209

216

220

225

467

878

520

518

424

392

387

918

808 809914900

801

687

531

498

493

489

487

460

437

333

1105

1100

1092

1077

1035

879

815

810

636

395

362

341

340

163

186

187

19
5

226

242

NULL

1131

1156 1180

12471274

1196

1141

1245

1197

1122

1111

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16 17

18

19

20

21

22

23 2425

26

27

31

32

33

35

36

38

39

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62 63

64

65

66 67

68

69

70 71

7273

74

75

76

77

78 79

80 81

82

83

84

85

86

87

88

90

91

92

93

94

95

96

97

98

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16 17

18

19

20

21

22

23

2425

26

27

31

32

33

35

36

37 38

39

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62 63

64

65

66 67

68

69

70 71

7273

74

75

76

77

78
79

80
81

82

83

84

85

86

87

88

90

91

92

93

94

28

29 30

3440

89 99

100

101

145

28

29 30

34

89

95

96

97

98

99

100

101102

103

104

105

106

107

108

109

37

Fig. 9 Contour tree of a subset from Fig. 8, with additional pointers, and colour-coding for the
iterations of an algorithm

Pathological and Test Cases for Reeb Analysis 119

outputs that show all of the internal cross-linked pointers (Fig. 9), using colour-
coding to show which vertices are processed in which iteration.

None of these techniques is unprecedented in general algorithmic procedure.
However, simple inspection of data structures in memory is particularly difficult
with topological code, so secondary routines such as those described are strongly
recommended to accelerate the debug process, and we now ask at an early stage
what debug visualizations we will need.

8 Conclusions

In this paper, we have attempted to report on a crucial phase in algorithmic
development for computational topology: selection of suitable test cases and debug
procedure. As is apparent above, we have found that the skills of counter-example
construction, and the consideration of pathological cases, have given the greatest
insight into the mathematics, into our algorithms, and into the debug process.

We have already started work on the theoretical implications of the W-structure,
and intend to report on in due course [15]. In the ideal case, we would also use this
understanding to resolve the algorithmic implications, but these are non-trivial, and
must wait until the current parallel work is fully reported.

Equally, we would encourage our colleagues to report on their test data and
strategies, as these are crucial to developing modern topological algorithms, but are
currently communicated by word of mouth, if at all. We note that, with the possible
exception of the 5b data set, no standard benchmarks yet exist for topological
algorithms, and suggest that this may be a fruitful direction for the community.

Acknowledgments In the UK, this work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) project EP/J013072/1. In the US, this work was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration and by the Director,
Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE- 392 AC02-05CH11231. In France, this work was supported
by the BPI grant “AVIDO” (Programme 393 d’Investissements d’Avenir, reference P112017-
2661376/DOS0021427).

References

1. Allili, M., Corriveau, D., Derivière, S., Kaczynski, T., Trahan, A.: Discrete dynamical system
framework for construction of connections between critical regions in lattice height data. J.
Math. Imaging Vis. 28(2), 99–111 (2007)

2. Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. In: IEEE 1963 Fall
Joint Computer Conference, pp. 445–458 (1963)

3. Carr, H., Duke, D.: Joint contour nets. IEEE Trans. Vis. Comput. Graph. 20(8), 1100–1113
(2014)

120 H. Carr et al.

4. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
Theory Appl. 24(2), 75–94 (2003)

5. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces with local geometric
measures. In: IEEE Visualization, pp. 497–504 (2004)

6. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: simplifying and displaying
scalar topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42–58 (2010)

7. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: generalizing
isosurfaces to bivariate data. Comput. Graph. Forum 34(3), 241–250 (2015)

8. Carr, H., Weber, G., Sewell, C., Ahrens, J.: Parallel peak pruning for scalable SMP contour
tree computation. In: IEEE Large Data Analysis and Visualization (LDAV) (2016)

9. Cox, J., Karron, D., Ferdous, N.: Topological zone organization of scalar volume data. J. Math.
Imaging Vis. 18(2), 95–117 (2003)

10. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)

11. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: ACM
Symposium on Computational Geometry, pp. 242–250 (2008)

12. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz – open source
graph drawing tools. In: International Symposium on Graph Drawing, pp. 483–484. Springer,
Berlin (2001)

13. Gold, C., Cormack, S.: Spatially ordered networks and topographic reconstruction. In: ACM
Symposium on Spatial Data Handling, pp. 74–85 (1986)

14. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow
data sets. Computer 1, 27–36 (1989)

15. Hristov, P., Carr, H.: W-Structures in contour trees. Accepted for publication in Topological
Methods in Data Analysis and Visualization VI, Springer (2021)

16. Kaczynski, T.: Multivalued maps as a tool in modeling and rigorous numerics. J. Fixed Point
Theory Appl. 4(2), 151–176 (2008)

17. Laramee, R.: Using visualization to debug visualization software. IEEE Comput. Graph. Appl.
6, 67–73 (2009)

18. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une
fonction numérique. C. R. Acad. Sci. Paris 222, 847–849 (1946)

19. SFB 382 of the German Research Council (DFG): Hydrogen atom. Available at http://schorsch.
efi.fh-nuernberg.de/data/volume/

20. Theisel, H.: Designing 2D vector fields of arbitrary topology. Comput. Graph. Forum 21(3),
595–604 (2002)

21. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans.
Vis. Comput. Graph. 1, 960–969 (2017)

22. Tierny, J., Gyulassy, A., Simon, E., Pascucci, V.: Loop surgery for volumetric meshes: Reeb
graphs reduced to contour trees. IEEE Trans. Vis. Comput. Graph. 15(6), 1177–1184 (2010)

23. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology toolkit. IEEE
Trans. Vis. Comput. Graph. 24(1), 832–842 (2018)

24. Weber, G.H., Scheuermann, G., Hamann, B.: Detecting critical regions in scalar fields. In
Visualization Symposium (VisSym), EUROGRAPHICS and IEEE TCVG (2003)

25. Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Trans. Graph.
25(4), 1294–1326 (2006)

http://schorsch.efi.fh-nuernberg.de/data/volume/
http://schorsch.efi.fh-nuernberg.de/data/volume/

Part III
Time-Varying Topology

Abstracted Visualization of Halo
Topologies in Dark Matter Simulations

Karsten Schatz, Jens Schneider, Christoph Müller, Michael Krone,
Guido Reina, and Thomas Ertl

Abstract This work focuses on particle-based ΛCDM (cold dark matter) sim-
ulations. The features of interest are clusters of dark matter particles, called
halos. Halos are governed by the laws of motion and gravitation, and they may,
consequently, merge over time. In this paper, we present visualization methods for
the topology of the resulting tree-like accumulation history of the halos, as well as
for the underlying halo data. We combine direct visualization methods of merger
trees, in which trajectories over time are depicted in 3D space, with novel visual
topological abstracts that are obtained by mapping time to one spatial axis while
projecting halo positions on the remaining two axes. The user can explore and
analyze both halos and merger trees through our unified visualization interface,
which uses linked views complementing each other. All of our methods pay special
attention to the periodic boundary conditions that are typically used during the
underlying physical simulation.

1 Introduction

In cosmology, large-scale particle-based ΛCDM (cold dark matter) simulations
are a popular way to gain knowledge about the structure formation in the early
universe. The simulated dark matter movements allow the scientists to understand
the formation of galaxies and other major stellar structures [31]. To deduce galaxy

K. Schatz (�) · C. Müller · G. Reina · T. Ertl
Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
e-mail: karsten.schatz@visus.uni-stuttgart.de; christoph.mueller@visus.uni-stuttgart.de;
guido.reina@visus.uni-stuttgart.de; thomas.ertl@visus.uni-stuttgart.de

J. Schneider
College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
e-mail: jeschneider@hbku.edu.qa

M. Krone
Big Data Visual Analytics (BDVA), University of Tübingen, Tübingen, Germany
e-mail: michael.krone@uni-tuebingen.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_8

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_8&domain=pdf
mailto:karsten.schatz@visus.uni-stuttgart.de
mailto:christoph.mueller@visus.uni-stuttgart.de
mailto:guido.reina@visus.uni-stuttgart.de
mailto:thomas.ertl@visus.uni-stuttgart.de
mailto:jeschneider@hbku.edu.qa
mailto:michael.krone@uni-tuebingen.de
https://doi.org/10.1007/978-3-030-43036-8_8

124 K. Schatz et al.

formation models from these simulations, it is necessary to comprehend how the
simulated dark matter particles attract each other and form clusters, called halos.
These halos, again, exert gravitational forces on each other and merge to even larger
structures. Using the history of these merging processes it is possible to build so-
called merger trees that describe the mass assembly of the halos in a topological
manner [10].

Visualization of the halos and their assembly histories can be a useful tool for
understanding the simulated phenomena. To this end, visualizing merger trees and
the accompanying halos were the subject of the IEEE SciVis Contest in 2015 [8].
The data published for the contest originate from the Dark Sky simulations [27],
which are a series of some of the largest cosmological N-body simulations ever
performed.

Contributions We present visualization methods both for dark matter halos as well
as merger trees. In particular, we present a direct visualization of the halo positions
in the merger trees. This visualization highlights each halo’s trajectory and the
individual merge events. To better understand the history of the halo trajectories
in the merger tree, we furthermore present a novel method to generate visual
topological abstracts. Inspired by the clarity of two-dimensional graph drawings,
the topological abstracts map the time axis to one of the three spatial dimensions.
In contrast to 2D drawings, however, our method is able to communicate the spatial
relationship between a primary halo trajectory and secondary trajectories that merge
with the primary. This is achieved by projecting the 3D halo positions onto the
remaining two coordinate axes in a consistent fashion. Using the data provided for
the aforementioned contest, we demonstrate that our visual topological abstracts
highlight the mutual gravitational interactions between halo trajectories effectively.
By rendering the resulting structures as colored tubes, our method further allows
us to communicate the virial radius of halos as well as one additional attribute, for
example velocity dispersion, spin, mass, etc. All of our methods specifically resolve
periodic boundary conditions. Such boundary conditions are common for ΛCDM
simulations and, if unaccounted for, will result in visual artifacts as halo trajectories
leave through one face of the domain and re-enter at the opposite side.

2 Related Work

Large N-body simulations have become more and more popular over the last years.
Reasons are the ever increasing computational power of the supercomputers used to
run the simulation, coupled with algorithmic advances. As a result, the data output
has grown tremendously in size and fidelity. In 2005, the Millennium Run simulated
about ten billion particles [28], whereas the Dark Sky simulations of 2014 comprise
around one trillion particles in the largest run [27]. This amounts to an increase of
two orders of magnitude in less than 9 years.

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 125

The resulting data can be visualized showing the raw particles [7, 11, 23].
Rendering large point-based data sets is a well-known problem in scientific visu-
alization and has been addressed many times, for example by Hopf and Ertl [9]
or Rizzi et al. [22]. More related to this specific area, Ahrens et al. [1] presented an
approach for comparative visualizations of cosmological data sets, where the results
of different simulations can be compared. For more information on visualizing data
from physical sciences, we would like to refer to the survey by Lipşa et al. [13].

Alternatively or to support the visualization of the raw particles, halos and other
structures can be extracted from the data to gain insight into the data’s underlying
topology. To this end, a wide variety of halo identification tools have been proposed
(e.g., Knebe et al. [12] or Onions et al. [18]). Most of these tools try to apply the
density profile proposed by Navarro et al. [17] to the particle data sets to detect the
halos. In the context of the Dark Sky simulations, halos have been extracted using
a modified version of the ROCKSTAR algorithm [3] running in largely distributed
processing environments. The modification allowed the direct generation of merger
trees, which are normally computed separately using other algorithms [10, 31].
Especially the so-called major mergers, which are merge events of halos of similar
size, are of interest to the community [4].

While the visualization of raw particles is rather common, visualizations of
halo data or their merger trees are rare [29, 30], although the assembly history
of dark matter halos is of keen interest, as stated by Wechsler et al. [33], for
example. These may have been the main motivations for the task of the 2015 IEEE
SciVis Contest [8], which actively requested the visualization of the merger trees.
Scherzinger et al. [24], who won the contest, addressed this topic with a direct
graph drawing of the merger tree graph. Merger trees of the accumulation topology
can also be understood as a special case of contour trees, which themselves are
special cases of Reeb graphs [20]. In contrast to merger trees, the construction [5]
and visualization [19, 32] of contour trees is well-studied. Unlike contour trees,
however, merger trees typically allow joining of nodes only, as splitting would
indicate erroneous cluster assignment of a given halo.

3 Visualization Methods

Our data was released during the 2015 IEEE SciVis Contest. It comprises 89
time steps of raw dark matter particles (1283), halos (∼550,000), and spatio-
temporal halo merger trees (∼7500). In this work, we deliberately ignore the
raw particle data and focus on the halos. Each halo comprises a wide variety of
physical quantities, including position, radius, angular momentum, and other, more
specialized variables. As depicted in Fig. 1, merger trees are constructed bottom-up,
starting with the oldest halos. A halo is assigned a new ID for each time step, and
old halos store the ID of the younger halo they evolve into. If halos merge, each
of the older halos stores the ID of the younger, merged halo. Furthermore, halos
store their virial radius and, additionally, eccentricity. The virial radius Rvir of a

126 K. Schatz et al.

Fig. 1 (a) Possible merger tree in two-dimensional representation, with the youngest halo as root
node at the top. (b) Merger tree with halo positions, colored according to merging relationships.
Direct temporal predecessors of the selected halo (red) are green, temporal successors are blue

Fig. 2 Halos rendered as spheres (a–b) or ellipsoids (c). (a) and (b) Colored according to velocity
dispersion (blue=low, red=high). Cutouts in (b) allow exploring sub-halos. In (c), depth darkening
depicts a large distance between the shadowing and the shadowed object

halo is the radius where the dark matter density inside the described sphere exceeds
a certain threshold that depends on the chosen properties of the simulated universe
(analogously, Mvir is the mass of dark matter inside the sphere).

The spatial locations of the halos and their size can be directly visualized in the
3D view (see Fig. 2a) of our application, which combines different linked views
on the halo data. In this view, the user can also select a halo for inspecting its
history (see Fig. 1b). This adds the predecessors and successors of the selected halo,
showing the merger tree while preserving spatial positions and sizes of the halos.
Furthermore, a line representation of the merger trees (see Fig. 3) can be selected
to counter occlusion caused by large halos. However, halos can have thousands of
predecessors, which still results in a very complex visual representation of limited
utility. We therefore propose an additional view showing a topological abstract of
the merger tree, which enables the user to explore the development of the selected
halo over time while preserving the virial radii of the halos involved as well as
limited information about the spatial relations between them.

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 127

Fig. 3 Tree visualization behavior at bounding box borders. Positions of early time steps are green,
positions of late time steps are red. In (a), the periodic boundary condition hints are depicted in
magenta. In (b), the missing part (desaturated) is shown directly at the side of the available part.
The desaturation is best visible with dark backgrounds (c)

3.1 Direct Halo Visualization

Our direct visualisation of the halo data is based on ellipsoids, which are tessellated
and scaled on the GPU from an icosahedron created for each halo. Using geometry
instead of impostors allows for displaying sub-halos by cutting out occluding
geometry in a shader program (see Fig. 2b). Sub-halos are halos which are already
bound by gravitation to a bigger host halo, but which have not yet merged. As a
consequence, sub-halos typically lie inside their corresponding host halo. In addition
to Blinn-Phong shading, we also use depth darkening by Luft et al. [15] to add an
ambient occlusion-like shadow effect behind every object. The effect increases with
the distance between the front objects and objects behind them (see Fig. 2c). The
resulting additional depth cue eases depth perception of overlapping halos, while
maintaining the overall appearance of non-occluded objects in the background.

The ellipsoidal representation of the halos can be used to construct a spatial
representation of a merger tree by just showing the predecessors and successors
of a selected halo (see Fig. 1b). Using color coding, we can, on the one hand, show
the temporal relation of the elements in the tree to the selected halo. On the other
hand, the user may also choose any of the halo properties from the simulation and
map them to the color of both, merger tree and halos.

Besides preserving important 3D spatial relationships, this representation also
allows for showing the virial radius in a natural way, namely as size of the ellipsoids.
However, as can be seen in Fig. 1b, halos with a large virial radius may hide merge
events when using solid ellipsoids. Sacrificing the size as attribute for mapping
data, a line representation can solve this issue. It can be used to obtain an image
containing the trajectories of all halos of the entire simulation run. To improve
the perception of line orientation, we applied the line lighting technique by Mallo
et al. [16] (see also Fig. 3).

This line representation nevertheless suffers from artifacts induced by periodic
boundary conditions, which are common in cosmological simulations. The periodic
boundary conditions result in one half of a tree appearing on one side of the
bounding box of the simulation domain, while the other half appears on the opposite

128 K. Schatz et al.

side. We provide two ways to remedy this situation. First, the user can enable a
visual cue of where straight edges leaving or entering the bounding box appear
also on the other side (see Fig. 3). This allows for a quick diagnosis of boundary
effects. Second, to fully eliminate this kind of distraction, we also offer the option
to duplicate the part of the tree that crosses the boundary. The duplicated part of the
tree is shifted such that the merger tree is rendered as a whole. This shifted part of
the tree, which is outside the simulation bounding box, is rendered with desaturated
colors to indicate the duplication. Consequently, this allows the user to explore the
tree as a whole, that is, as if there was no boundary between the two halves. The
rendering of the duplicated version of the trees is performed in a geometry shader.
For each tree that has to be duplicated, a second instance of each rendered line is
spawned on the other side of the bounding box.

While rendering merger trees directly as depicted in Fig. 1 conveys the spatial
geometry of each trajectory well, it is not free of problems. Firstly, since this is
essentially a projection along the time axis, the history of each trajectory is hard to
grasp. Secondly, additional visual clutter may be produced by instancing a primitive
per halo and per time step, given that some merger trees comprise more than 4000
halos. While the first issue can be resolved by color-coding time, this solution may
be inadequate if additional attributes are to be visualized on top of the geometry.

3.2 Topological Abstracts of Merger Trees

For the aforementioned reasons, we also propose visual topological abstracts of
merger trees. The key idea of these visual abstracts is similar to the tx transform
video technique popularized by Reinhart [21]. In essence, we map time to one of
the spatial axes while projecting 3D positions to the remaining two spatial axes.

Given a primary trajectory P consisting of samples pi in space-time R3 × R
+
0 ,

P = {pi}Ni=1 , pi ∈ R
3 × R

+
0 , N ∈ N, (1)

we would like to project samples of a second trajectory

S = {si}Mi=1 , si ∈ R
3 × R

+
0 , M ∈ N (2)

onto the XY plane. For this, we postulate the following goals:

(1) Convey the 3D distance
∥
∥si − pj

∥
∥

2, where pj is the sample on P closest in time
to si .

(2) Preserve the altitudinal angle between si and the primary trajectory P.
(3) Show both the virial radius of the halo at samples si ,pj and one additional,

user-selectable attribute.

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 129

In addition, we want to straighten P such that we can map time onto the remaining
Z axis. Goal (1) ensures that the user can judge the relative distance between P and
S, while goal (2) provides visual information on the relative orientation of S with
respect to P. Finally, goal (3) provides the user with a sense of the relative scale of
each halo and conveys additional attributes like velocity dispersion, spin, mass, etc.

To achieve these goals, we begin by computing the orthonormal Frenet-Serret
frame using only the three spatial components of each point pi :

Ti = ∂

∂t
P

∣
∣∣
∣
pi

, Ni = T⊥
i

(
∂2

∂t2 P

∣
∣∣
∣
pi

)

, Bi = Ti ⊗ Ni ,

followed by normalization,

Ti ← Ti

‖Ti‖2
, Ni ← Ni

‖Ni‖2
, Bi ← Bi

‖Bi‖2
. (3)

Here, T⊥
i denotes projection into the orthogonal complement of Ti and ⊗ denotes

the cross-product. Ti ,Ni ,Bi denote, respectively, tangent, normal, and binormal at
sample pi of the trajectory P with respect to time t (also see Fig. 4, left).

We then proceed by projecting the samples of the secondary trajectory. For each
sample si , we first find two samples pj ,pj+1 such that the time of pj is smaller
and the time of pj+1 is greater or equal to the time of si . Using linear interpolation,
we then compute the point p′ on P that is closest in time to si . We also use linear
interpolation followed by re-orthonormalization to compute a Frenet-Serret frame
T,N,B at p′. Using this fame, we project the spatial part of si along T onto the NB

N

T

B

tim
e p

j+1
p

j+1
p

p
j

p´

N

s
i

s´
s´´

B

Fig. 4 Quantities arising in the projection of samples si onto the primary halo trajectory. Left:
Frenet-Serret frame along a trajectory, parametrized by time. Right: Projecting a sample si onto
s′′, on the NB plane through position p′ of the primary trajectory (blue quantities on the NB plane)

130 K. Schatz et al.

plane. To simplify the following exposition, we again consider only the three spatial
components of the involved vectors (refer also to Fig. 4, right).

s′ := p′ + T⊥ (si − p′
)
, (4)

where T⊥ again denotes projection into the orthogonal complement of T. While this
ensures that goal (2) is achieved, a re-normalization establishes goal (1):

s′′ := p′ + s′ − p′

‖s′ − p′‖2

∥
∥si − p′

∥
∥

2 . (5)

This allows us to express s′′ solely in terms of N and B. Straightening the trajectories
P,S after this projection thus becomes a simple matter of mapping the local
coordinate axes: B �→ X, N �→ Y and T �→ Z. For samples of the primary and
secondary trajectories, 3D positions are thus obtained as

pj �→
⎡

⎣
0
0

time
(
pj

)

⎤

⎦ , si �→
⎡

⎣
〈s′′,B〉
〈s′′,N〉

time (si)

⎤

⎦ . (6)

Finally, to achieve goal (3), we extrude the trajectories obtained by the above
embedding using a logarithmic mapping of the virial radius. The logarithmic
mapping is necessary in order to cope with the high dynamic range of this attribute.
We first assign radii to samples using a homeomorphic mapping,

r = α
log (1 + Rvir)

log (1 + max Rvir)
, (7)

which results in r ∈ [0, α]. Rvir is the so-called virial radius of a halo, whereas
α ∈ R

+ is a user-defined parameter to control the overall thickness. To compute the
final geometry, we use a transfinite generalization of the Power Diagram [2]. Power
Diagrams are a generalization of Voronoi diagrams, in which the Euclidean distance
is replaced with the power of a point with respect to a sphere. Given a point p and a
sphere with center c and radius r , the power is defined as ‖p− c‖2

2 − r2. The power
vanishes if p is on the sphere, it is positive for p outside the sphere and negative
for p inside the sphere. Assigning to each sample on P and S a radius allows us to
compute the minimum power value on a regular 3D grid. The 0-isocontour, which
can be obtained by contouring algorithms such as Marching Cubes [14], is then
the desired surface fulfilling all of our goals. In our case, the generalization to the
transfinite case is achieved by considering linear interpolations between two circles.
Figure 5 depicts selected iso-contours of a single segment in 2D.

In addition to the actual scalar power field, we also keep track of the nearest site
on the trajectories for each 3D grid position. This allows us to propagate attributes
from the trajectory to the actual surface. Since time and virial radius are already

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 131

C1 C2

Fig. 5 Power isocontours of two circles C1 at (0, 0) with radius 0.5, and C2 at (5, 0) with radius
1. We plot isocontours at −0.5,−0.25, 0, 1, 2, 3. Blue hues correspond to positive values, whereas
red hues correspond to negative values

Fig. 6 A topological abstract with six selected, color-coded attributes (units in brackets). (a) Virial
density (Msun/h). (b) Virial mass (Msun/h). (c) Spin. (d) Scale radius (kpc/h). (e) Angular momentum
magnitude ((Msun ·Mpc·km)/(h2·s)). (f) Velocity magnitude (km/s)

encoded in the geometry, an additional attribute can then be mapped to a color to
satisfy the second half of goal (3) as depicted in Fig. 6.

3.3 Implementation Details

To ensure that the Frenet-Serret frame is smooth, we first compute Ti using
central differences, followed by a smoothing step and then re-normalization prior
to computing Ni ,Bi as described in Eq. (3). In order to obtain smooth trajectories,
we subdivide segments pi ,pi+1 and si , si+1. Due to the scaling of Eq. (5), which

132 K. Schatz et al.

preserves 3D distances, simple linear interpolation between the end-points of line
segments results in curved arcs in the final surface.

We implemented the Power Diagram using a variation of a parallel vector
propagation [25, 26]. However, instead of storing the vector to the closest point as
in the aforementioned references, we store the ID of the site and compute the power
of a point with respect to the line segment analytically. We compute the Power
Diagrams on a 1 0243 regular grid and we set the maximum radius α to about 15
voxel lengths.

In order to obtain consistent topological abstracts, we resolve periodic boundary
conditions as follows: We choose the first sample of the primary trajectory as
anchor point. For every remaining sample of the primary trajectory, we consider
the Euclidean distance between the previous sample and the current sample. Of the
six wrap-around cases, we choose the one resulting in the minimum distance. The
periodicity is resolved analogously for the secondary trajectories, except for the first
sample of each trajectory where we minimize the distance to the anchor point.

4 Discussion

The visualization methods described in Sect. 3 are combined in an interactive,
unified visualization framework (see also Fig. 7). Our framework uses linked views
in which selections are propagated across all different visualization methods. This
allows users to quickly move between halo and merger tree visualizations. In the
halo view, the user has the option to select any of the visualizations depicted in
Fig. 2. In particular, cutouts of tessellated host halo clusters allows to explore the
interior of halos (Fig. 2b). Cutouts were chosen over transparency since they do not
require depth sorting, which can quickly become prohibitive for large simulation
data. Furthermore, depth darkening provides the user with additional depth cues
(Fig. 2c). Unlike using fogging to provide depth cues, depth darkening does not
change the appearance of non-occluded objects.

For visualizing halo trees, we provide two visualization approaches. The first
approach is the direct visualization of halos and merger trees, explained in Sect. 3.1.
To provide users with intuitive illustrations, special attention has been paid to
the periodic boundary conditions commonly used in ΛCDM simulations. In our
framework, edges of the trajectory crossing boundaries can either be highlighted
(Fig. 3a) or be desaturated (Fig. 3c) to aid the user in understanding the domain
extent. Alternatively, they can be fully resolved to help in understanding the
underlying spatial structure (Fig. 3b). Our direct visualization approach provides
a good spatial overview, but it may be difficult to assess a single halo trajectory’s
history. To address this issue, we provide as second visualization approach, namely
our novel visual topological abstracts explained detailed in Sect. 3.2. While our
topological abstracts maintain some spatial information (distance and altitudinal
angle), they do not match the spatial clarity of the direct method. In contrast
to the direct method, our topological abstracts provide the user with clear cues

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 133

Fig. 7 Overview of our unified visualization framework. Left: Halo view with slider to select
timestep. The user can pick a halo to display the corresponding merger tree’s topology in the
linked views to the right. Right, top: Topological abstract. Right, bottom: Direct merger tree
visualization using spheres (left) and lines (right). Periodic boundary conditions are fully resolved.
All topology visualizations show the color-coded velocity magnitude. The color-encoded value
range is: 6.59 km/s 2009.36 km/s

about the history of each trajectory, mutual gravitational interactions, and geometric
deformations of the halos. This is illustrated in Fig. 8, which shows three different
visual topological abstracts generated with our method. The straight line in the
center represents the primary halo trajectory with multiple secondary trajectories
projected into the primary’s Frenet-Serret space. As can be seen, merging secondary
halos enter the first halo’s gravitational field. The mutual gravitational pull coupled
with the inertia of the involved halos frequently results in oscillations prior to halos
merging that can be clearly seen in the visualization. Furthermore, as halos are
absorbed in the primary halo, their virial radius commonly expands, which is also
obvious from our visual abstract. For these reasons, our visualization framework
combines complementing visualization methods using linked views. While the
camera is freely movable in the halo visualization (Fig. 7 left), the two direct merger
tree views (Fig. 7 bottom right) allow a linked rotation around the center. The
rendering of the topological abstract (Fig. 7 top right) can be rotated around the main
axis, that is, around the straightened primary halo trajectory. Panning and zooming
is supported by all views.

134 K. Schatz et al.

Fig. 8 Topological abstracts of three merger trees. Top: A halo merger tree comprising a total of
4175 halo samples. The primary halo trajectory (green arrow) is aligned in the center, with time
increasing from left to right and mapped to the following color scale: min max.
Mutual gravitational pull between primary and secondary trajectories coupled with the inertia of
the halos result in clearly visible oscillations in the altitudinal angle (blue arrow). As secondary
halos merge with the primary halo, their radius increases (red arrow) as a result of the gravitational
pull of the primary trajectory. This can also be seen in the inset showing the velocity dispersion
in this area, using the same coloring scheme in the value range [0.0, 1069.9] km/s. The part of
the halo closer to the future host halo is accelerated faster than the part further away, resulting in
an increase of the dispersion. Middle: The primary halo (green arrow) is the result of two large
secondary halos merging (blue arrow). Bottom: Multiple secondary halos approach the primary
halo trajectory (green arrow) and start oscillating (blue arrow) until they finally merge (red arrow)

5 Conclusion and Future Work

We presented a unified interactive visualization framework for rendering merger
trees and their accompanying halo data. Our framework uses linked views with
complementing visualization methods to comprehensively communicate the com-
plex topology arising in merger trees effectively and efficiently.

The richness of cosmological data sets leaves plenty of tasks for the future: We
would like to incorporate our halo topology visualization into existing visualization
frameworks geared towards the visual exploration of large particle simulations, e.g.,
[22, 23]. Our direct visualization method could be improved further by the use of
methods specialized to the rendering of dense line ensembles, such as the method of
Everts et al. [6]. Furthermore, we also want to incorporate non-spatial visualizations
of merger trees similar to the tracking graphs of Widanagamaachchi et al. [34].

While our framework is geared towards the understanding of the topology arising
in merger trees, we would further like to grow our visualization into a semi-

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 135

Fig. 9 Representative examples for visually identified topological classes, with direct rendering
of the merger tree as inset. Shown value: Max. velocity (39.09 km/s 1164.39 km/s)
Top row: Complex interactions of multiple secondary trajectories swirling around a primary
halo forming early in time. Middle row: Smaller halo merger trees result in significantly less
complex structures. Bottom row: If the primary halo forms later in time, secondary trajectories are
straightened prior to the start of the primary trajectory

automated analysis tool. In collaboration with domain scientists, we would like to
provide users with automatically extracted and scientifically significant statistics in
regions of interest around the halos. In particular, we believe that our topological
abstracts are helpful in visually classifying different types of halo formation, as
depicted in Fig. 9. However, a comparative study of such classes is left for future
work.

Acknowledgments This work was partially funded by Deutsche Forschungsgemeinschaft (DFG)
as part of SFB 716 projects D.3 and D.4. J. Schneider is funded by the College of Science and
Engineering, Hamad Bin Khalifa University, Qatar. M. Krone is funded by Carl-Zeiss-Stiftung.

References

1. Ahrens, J., Heitmann, K., Habib, S., Ankeny, L., McCormick, P., Inman, J., Armstrong, R.,
Ma, K.L.: Quantitative and comparative visualization applied to cosmological simulations. J.
Phys. Conf. Ser. 46, 526–534 (2006)

2. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput.
16(1), 78–96 (1987)

3. Behroozi, P.S., Wechsler, R.H., Wu, H.Y.: The ROCKSTAR phase-space temporal halo finder
and the velocity offsets of cluster cores. ApJ 762(2), 109–129 (2013)

136 K. Schatz et al.

4. Behroozi, P., Knebe, A., Pearce, F.R., Elahi, P., Han, J., Lux, H., Mao, Y.Y., Muldrew, S.I.,
Potter, D., Srisawat, C.: Major mergers going Notts: challenges for modern halo finders. Mon.
Not. R. Astron. Soc. 454, 3020–3029 (2015)

5. Carr, H., Snoeyink, J., Van De Panne, M.: Flexible isosurfaces: simplifying and displaying
scalar topology using the contour tree. Comput. Geom. 43, 42–58 (2010)

6. Everts, M.H., Bekker, H., Roerdink, J., Isenberg, T.: Depth-dependent halos: illustrative
rendering of dense line data. IEEE Trans. Vis. Comput. Graph. 15(6), 1299–1306 (2009)

7. Fraedrich, R., Schneider, J., Westermann, R.: Exploring the millennium run – scalable
rendering of large-scale cosmological datasets. IEEE Trans. Vis. Comput. Graph. 15(6), 1251–
1258 (2009)

8. Hentschel, B., Geveci, B., Turk, M., Skillman, S.: Scivis-contest 2015: visualize the universe
(2015). http://darksky.slac.stanford.edu/scivis2015/

9. Hopf, M., Ertl, T.: Hierarchical splatting of scattered data. In: Proceedings of the IEEE VIS,
p. 57 (2003)

10. Jiang, A.F., van den Bosch, F.C.: Generating merger trees for dark matter haloes: a comparison
of methods. Mon. Not. R. Astron. Soc. 440, 193–207 (2014)

11. Kähler, R., Hahn, O., Abel, T.: A novel approach to visualizing dark matter simulations. IEEE
Trans. Vis. Comput. Graph. 18(12), 2078–2087 (2012)

12. Knebe, A., Knollmann, S.R., Muldrew, S.I., et al.: Haloes gone mad: the halo-finder compari-
son project. Mon. Not. R. Astron. Soc. 415(3), 2293–2318 (2011)

13. Lipşa, D.R., Laramee, R.S., Cox, S.J., Roberts, J.C., Walker, R., Borkin, M.A., Pfister, H.:
Visualization for the physical sciences. In: Computer Graphics Forum, vol. 31, pp. 2317–2347
(2012)

14. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface reconstruction algo-
rithm. ACM Comput. Graph. 21(4), 163–169 (1987)

15. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer.
In: ACM Trans. Graph., pp. 1206–1213 (2006)

16. Mallo, O., Peikert, R., Sigg, C., Sadlo, F.: Illuminated lines revisited. In: Proceedings of the
IEEE VIS, pp. 19–26 (2005)

17. Navarro, J.F., Frenk, C.S., White, S.D.M.: A universal density profile from hierarchical
clustering. ApJ 490, 493–508 (1997)

18. Onions, J., Ascasibar, Y., Behroozi, P., et al.: Subhaloes gone Notts: spin across subhaloes and
finders. Mon. Not. R. Astron. Soc. 429(3), 2739–2747 (2013)

19. Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: Multi-resolution computation and presenta-
tion of contour trees. In: Proceedings of the IASTED VIIP, pp. 452–290 (2004)

20. Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une
fonction numérique. CR Acad. Sci. Paris 222, 847–849 (1946)

21. Reinhart, M.: Verfahren zur Transformation von Filmaufnahmen. Patent EP 0967572 A2
(1999)

22. Rizzi, S., Hereld, M., Insley, J., Papka, M.E., Uram, T., Vishwanath, V.: Large-scale parallel
visualization of particle-based simulations using point sprites and level-of-detail. In: Proceed-
ing of the EGPGV (2015). https://doi.org/10.2312/pgv.20151149

23. Schatz, K., Müller, C., Krone, M., Schneider, J., Reina, G., Ertl, T.: Interactive visual
exploration of a trillion particles. In: Proceedings of the LDAV (2016). https://doi.org/10.
1109/LDAV.2016.7874310

24. Scherzinger, A., Brix, T., Drees, D., Völker, A., Radkov, K., Santalidis, N., Fieguth, A.,
Hinrichs, K.H.: Interactive exploration of cosmological dark-matter simulation data. IEEE
Comput. Graph. Appl. 37(2), 80–89 (2017)

25. Schneider, J., Kraus, M., Westermann, R.: GPU-based real-time discrete Euclidean distance
transforms with precise error bounds. In: Proceedings of the VISAPP, pp. 435–442 (2009)

26. Schneider, J., Kraus, M., Westermann, R.: GPU-based Euclidean distance transforms and their
application to volume rendering. In: CCIS, pp. 215–228. Springer, New York (2010)

27. Skillman, S.W., Warren, M.S., Turk, M.J., Wechsler, R.H., Holz, D.E., Sutter, P.M.: Dark sky
simulations: early data release (2014). arXiv:1407.2600

http://darksky.slac.stanford.edu/scivis2015/
https://doi.org/10.2312/pgv.20151149
https://doi.org/10.1109/LDAV.2016.7874310
https://doi.org/10.1109/LDAV.2016.7874310

Abstracted Visualization of Halo Topologies in Dark Matter Simulations 137

28. Springel, V., Evrard, A., Thomas, P., et al.: Simulating the joint evolution of quasars, galaxies
and their large-scale distribution. Nature 435(7042), 629–636 (2005)

29. Takle, J., Silver, D., Heitmann, K.: A case study: tracking and visualizing the evolution of dark
matter halos and groups of satellite halos in cosmology simulations. In: Proceedings of the
VAST, pp. 243–244 (2012)

30. Takle, J., Silver, D., Kovacs, E., Heitmann, K.: Visualization of multivariate dark matter halos
in cosmology simulations. In: Proceedings of the LDAV, pp. 131–132 (2013)

31. Tweed, D., Devriendt, J., Blaizot, J., et al.: Building merger trees from cosmological n-body
simulations. Astron. Astrophys. 506, 647–660 (2009)

32. Weber, G.H., Bremer, P.T., Pascucci, V.: Topological cacti: visualizing contour-based statistics.
In: Topological Methods in Data Analysis and Visualization, pp. 63–76. Springer, Cham (2012)

33. Wechsler, R.H., Bullock, J.S., Primack, J.R., Kravtsov, A.V., Dekel, A.: Concentrations of dark
halos from their assembly histories. ApJ 568, 52–70 (2002)

34. Widanagamaachchi, W., Christensen, C., Pascucci, V., Bremer, P.T.: Interactive exploration of
large-scale time-varying data using dynamic tracking graphs. In: Proceedings of the LDAV,
pp. 9 –17 (2012)

Persistence Concepts for 2D Skeleton
Evolution Analysis

Bastian Rieck, Filip Sadlo, and Heike Leitte

Abstract In this work, we present concepts for the analysis of the evolution of
two-dimensional skeletons. By introducing novel persistence concepts, we are able
to reduce typical temporal incoherence, and provide insight in skeleton dynamics.
We exemplify our approach by means of a simulation of viscous fingering—a highly
dynamic process whose analysis is a hot topic in porous media research.

1 Introduction

There are many research problems that express themselves more in terms of
topological structure than morphology. Typical examples of such processes include
electrical discharge, the growth of crystals, and signal transport in networks. In
this paper, we address viscous fingering, where the interface between two fluids
is unstable and develops highly-dynamic “finger-like” structures. A prominent
cause for such structures are setups where a fluid with lower viscosity (Fig. 1a–
c, left) is injected into a fluid with higher viscosity (Fig. 1a–c, right). To analyze
these processes, a straightforward approach employs traditional skeletonization
techniques for extracting the topology of each time step independently. Here, we
employ iterative thinning [11]. However, like all skeletonization techniques, the
resulting skeletons tend to be to temporally incoherent because the extraction is
susceptible to small variations and noise. We present persistence concepts to address
these issues and provide insight into the underlying processes.

B. Rieck (�) · H. Leitte (�)
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: rieck@cs.uni-kl.de; leitte@cs.uni-kl.de

F. Sadlo
Heidelberg University, Heidelberg, Germany
e-mail: sadlo@uni-heidelberg.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_9

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_9&domain=pdf
mailto:rieck@cs.uni-kl.de
mailto:leitte@cs.uni-kl.de
mailto:sadlo@uni-heidelberg.de
https://doi.org/10.1007/978-3-030-43036-8_9

140 B. Rieck et al.

Fig. 1 Selected time steps (a)–(c) of a 2D viscous fingering simulation [15], with extracted
skeleton (overlay). We used a conservative threshold for segmentation to suppress dark-red parts.
(a) t = 8. (b) t = 30. (c) t = 70

2 Viscous Fingering

Even though the methods described in this paper are generically applicable to
time-varying skeletons, we focus our analysis on skeletons that we extracted from
viscous fingering processes. The term viscous fingering refers to the formation of
structural patterns that appear when liquids of different viscosity are mixed. Under
the right conditions, e.g., when water is being injected into glycerine, branch-like
structures—the eponymous viscous fingers—begin to appear and permeate through
the liquid of higher viscosity. Understanding the formation of these patterns is a
prerequisite for the description of many natural processes, such as groundwater
flows. Consequently, researchers are interested in setting up simulations that closely
match the observations of their experiments.

Since each simulation uses a different set of parameters, summary statistics and
comparative visualizations are required in order to assess how well a simulation
describes an experiment. As a first step towards analyzing these highly-complex
dynamics, we extract skeletons for each time step of a simulation or an experiment.
In this paper, we introduce several concepts for assessing the inherent dynamics of
these skeletons, permitting a comparative analysis.

2.1 Other Methods

In the context of analyzing viscous fingering, several other techniques exist.
An approach by Lukasczyk et al. [12], for example, uses tracking graphs to
visualize the spatio-temporal behavior of such processes. In a more general context,
discrete Morse theory could be applied to detect persistent structures in gray-
scale images [5]. The applicability of these approaches hinges on the data quality,
however. Our experimental data suffers from a high noise level in which many
smaller fingers cannot be easily identified by the other approaches. This is why
we decided to focus on conceptually simpler skeletonization techniques for now.

Persistence Concepts for 2D Skeleton Evolution Analysis 141

Skeleton extraction Time propagation Persistence calculation Analysis

Fig. 2 The basic pipeline of our approach. The first step, i.e., skeleton extraction, strongly depends
on the desired application. Likewise, the analysis step can comprise different diagrams, summary
statistics, and goals. Individual parts of the pipeline are replaceable, making our approach highly
generic. Our current implementation uses an algorithm by Zhang and Suen [16] for skeleton
extraction (Sect. 3.1.3). The subsequent propagation of creation times between time steps along
all branches of the skeleton uses the methods described in the same section. From this extended
skeleton, Sect. 3.3 describes how to derive numerous persistence diagrams. Following this, we
define multiple activity indicators based on these diagrams in Sect. 3.4. Finally, Sect. 4 presents an
analysis of different data sets under different aspects

3 Overview and Methods

In this paper, we implement a pipeline that comprises the whole range of the
analysis process of a series of time-varying skeletons. Figure 2 shows a schematic
illustration and points to the corresponding sections in which individual parts are
described. We provide an open-source implementation (in Python) of the pipeline
on GitHub.1 The repository includes all examples, data, and instructions on how
to reproduce our experiments. For the analysis of our persistence diagrams, we
implemented tools that build upon Aleph,2 an open-source library for persistent
homology calculations. We stress that our implementation is a proof of concept.
Its computational bottleneck is the brute-force matching (which could be improved
by using an approximate matching algorithm) that is required as a precursor to
creation time propagation. More precisely, calculating all matches over all time
steps takes between 2 h and 6 h, while the subsequent propagation of creation times
takes 82 s (example data, 839 px × 396 px, 84 time steps), 384 s (measured data,
722 px × 1304 px, 58 time steps), and 524 s (simulation data, 1500 px × 1000 px,
37 time steps). Finally, persistence diagram creation requires 100 s (example data),
183 s (simulation data), and 926 s (measured data), respectively. The time for
calculating activity indicators (Sect. 3.4), e.g., total persistence, is negligible, as the
persistence diagrams only contain a few hundred points. Please refer to Sect. 4 for
more information about the individual data sets.

Subsequently, we will first briefly discuss skeleton extraction—both in terms of
sets of pixels as well as in terms of graphs. Next, we explain the necessary steps for
obtaining information about the “creation time” of pixels and how to propagate said

1https://github.com/Submanifold/Skeleton_Persistence.
2https://github.com/Submanifold/Aleph.

https://github.com/Submanifold/Skeleton_Persistence
https://github.com/Submanifold/Aleph

142 B. Rieck et al.

information over all time steps in order to obtain evolution information. Based on
this, we derive and exemplify several concepts motivated by topological persistence.

3.1 Skeleton Extraction and Propagation of Pixel Creation
Time

Iterative thinning provides skeletons from binary images in a pixel-based format.
A sequence of skeletons thus gives rise to a sequence of pixel sets P0,P1, . . . ,
Pk , each corresponding to a time step t0, t1, . . . , tk . We employ 8-neighborhood
connectivity around each pixel, i.e., the set of all neighbors including the diagonal
ones, to convert each pixel set Pi into a graph Gi . Depending on the degree d of
each vertex in Gi , we can classify each pixel as being either a regular point (d = 2),
a start/end point (d = 1), or a branch point (d ≥ 3). This also permits us to define
segments formed by connected subsets of regular pixels.

3.1.1 Pixel Matching

Since the skeleton changes over time, we need to characterize the creation time of
each pixel, i.e., the time step ti in which it initially appears. Moreover, we want to
permit that a pixel “moves” slightly between two consecutive time steps in order
to ensure that drifts of the skeleton can be compensated. Our experiments indicate
that it is possible to obtain consistent creation times for the pixels based on their
nearest neighbors, regardless of whether the simulation suffers from a coarse time
resolution or not. Given two time steps ti , ti+1, we assign every pixel p ∈ Pi the
pixel p′ ∈ Pi+1 that satisfies

p′ := arg min
q∈Pi+1

dist(p, q), (1)

where dist(·) is the Euclidean distance. Likewise, we assign every pixel in Pi+1 its
nearest neighbor in Pi , which represents a match from Pi+1 to Pi . This yields a
set of directed matches between Pi and Pi+1. Each pixel is guaranteed to occur
at least once in the set. We refer to matches from Pi to Pi+1 as forward matches,
while we refer to matches in the other direction as backward matches. A match is
unique if the forward and backward match connect the same pair of pixels. Figure 3
depicts matches for selected time steps and illustrates the movement of pixels.

3.1.2 Pixel Classification

We now classify each pixel in time step ti+1 according to the forward matches
between Pi and Pi+1, as well as the backward matches between Pi and Pi+1.

Persistence Concepts for 2D Skeleton Evolution Analysis 143

(a) (b) (c)

Fig. 3 An excerpt demonstrating matches between two time steps. Some of the pixels of the
current time step (blue circles) overlap with pixels from the previous time step (red crosses). We
use arrows to indicate forward and backward matches. (a) t = 72. (b) t = 73. (c) t = 74

Fig. 4 Classification of all pixels into growth pixels (red filled circle), decay pixels (blue filled
circle), known pixels (gray filled circle), and irregular pixels (yellow filled circle). The abrupt
appearance (b) or disappearance (c) of segments is a challenge for skeleton extraction and tracking.
(a) t = 68. (b) t = 69. (c) t = 70

We call a pixel known if their match is unique, i.e., there is exactly one forward
and one backward match that relate the same pixels with each other. Known pixels
are pixels that are already present in a previous time step with a unique counterpart
in time step ti+1. Similarly, we refer to a pixel in Pi+1 as a growth pixel if there
is a unique match in Pi and at most one forward match from some other pixel in
Pi . Growth pixels indicate that new structures have been created in time step ti+1,
or that existing structures have been subject to a deformation. The counterpart to a
growth pixel is a decay pixel in Pi+1, which is defined by a unique match in Pi and
at most one backward match to the same pixel in Pi from another pixel in Pi+1.
Decay pixels indicate that a skeleton region has been lost in time step ti+1. We refer
to all other pixels as irregular. In our experiments, irregular pixels, which are caused
by small shifts between consecutive time steps, comprise about 60% of all pixels. As
we subsequently demonstrate, we are able to assign consistent creation times despite
the prevalence of irregular pixels. Figure 4 depicts classified pixels for consecutive
time steps. It also demonstrates that skeletons may be temporally incoherent: pixels
in region (i) only exist for a single time step, forming long but short-lived segments.
Pixels in region (ii), by contrast, form short but long-lived segments. We want to
filter out segments in region (i), while keeping segments in region (ii) intact. This
requires knowledge about pixel creation times.

144 B. Rieck et al.

Fig. 5 Propagated age per pixel, using a white–red color map. The skeleton inconsistencies in
region (i) impede the temporal coherence of neighboring pixels. (a) t = 68. (b) t = 69. (c) t = 70

3.1.3 Propagating Creation Times

Initially, each pixel in P0 is assigned a creation time of 0. Next, we classify the
pixels in each pair of consecutive time steps ti and ti+1 as described above. For
known pixels, we re-use the creation time of ti . For growth pixels, we distinguish
two different cases: (1) If a growth pixel in time step ti+1 is not the target of a
forward match from time step ti , we consider it to be a new pixel and hence assign it
a creation time of ti+1. (2) Else, we re-use the creation time just as for known pixels.
This procedure ensures that we are conservative with assigning “new” creation
times; it turns out that a small number of growth pixels with increased creation
times is sufficient for propagating time information throughout the data. For all
other types of pixels, we assign them the minimum of all creation times of their
respective matches from Pi , ignoring the direction of the matching. Again, this is a
conservative choice that reduces the impact of noise in the data.

Thus, every pixel in every time step has been assigned a creation time. This time
refers to the first time step in which the pixel was unambiguously identified and
appeared. By propagating the creation time, we ensure that skeletons are allowed
to exhibit some movement between consecutive time steps. Figure 5 depicts the
creation times for several time steps. For temporally coherent skeletons, recent
creation times (shown in red) should only appear at the end of new “fingers”. We
can see that the brief appearance of segments causes inconsistencies. Ideally, the
creation time of pixels should vary continuously among a segment.

3.2 Improving Temporal Coherence

To improve temporal coherence, i.e, creation times of adjacent pixels, we observe
that inconsistencies are mainly caused by a small number of growth pixels along
a segment. These are a consequence of a “drift” in pixel positions over subsequent
time steps, which our naive matching algorithm cannot compensate for. A simple
neighborhood-based strategy is capable of increasing coherence, though: for each
growth pixel, we evaluate the creation times in its 8-neighborhood. If more than 50%
of the neighbors have a different creation time than the current pixel, we replace its
creation time by the mode of its neighbors’ creation times. This strategy is remi-

Persistence Concepts for 2D Skeleton Evolution Analysis 145

Fig. 6 Pixel creation times at two selected time steps. Recent creation times are shown in shades
of red. We can see that the “front” of the fingers is always recent, while the oldest structures have
been created at the very beginning. This example also demonstrates how the temporal coherence
of creation times can be improved. (a) t = 42 (no coherence). (b) t = 84 (no coherence). (c)
t = 42 (coherence). (d) t = 84 (coherence)

niscent of mean shift smoothing [4]. Figure 6 compares the original and improved
creation times for two time steps. Ideally, all segments should exhibit a gradient-
like behavior, indicating that their structures have been expanded continuously. We
see that this is only true for the longest segments. Erroneous creation times are an
inevitable byproduct of instabilities in skeleton extraction, which can be mitigated
through persistence-based concepts.

3.3 Persistence Concepts

Persistence is a concept introduced by Edelsbrunner et al. [6–8]. It yields a measure
of the range (or scale) at which topological features occur in data and is commonly
employed to filter or simplify complex multivariate data sets [14]. For skeletons,
i.e., graphs, the standard topological features are well known, comprising connected
components and cycles. While these features are useful in classifying complex
networks [2], for example, they do not provide sufficient information about skeleton
evolution processes because they cannot capture the growth of segments. Hence,
instead of adopting this viewpoint, we derive several concepts that are inspired by

146 B. Rieck et al.

the notion of persistence. A crucial ingredient for this purpose is the availability of
creation times for every pixel in every time step.

3.3.1 Branch Inconsistency

Using the graph Gi for a time step ti , we know which pixels are branch points,
i.e., points where multiple segments meet. Let cb be the creation time of such
a branch point, and let c1, c2, . . . refer to the creation times of the first adjacent
point along each of the segments meeting at the branch point. We define the branch
inconsistency for each branch–segment pair as |ci −cb|, and we refer to the diagram
formed by the points (cb, ci) as the branch persistence diagram. The number of
points in the branch inconsistency diagram indicates how many new branches are
being created in one time step. Moreover, it can be used to prune away undesired
segments in a skeleton: if the branch inconsistency of a given segment is large,
the segment is likely an artifact of the skeletonization process—thinning algorithms
often create segments that only exist for a single time step. Overall, those segments
thus have a late creation time. In contrast to the persistence diagrams in topological
data analysis, where closeness to the diagonal indicates noise, here, points that are
away from the diagonal correspond to erroneous segments in the data. Points below
the diagonal are the result of inconsistent creation times for some segments—a
branch cannot be created before its branch point.

Figure 7 shows the branch inconsistency diagram and colored skeletons for t =
69. It also depicts how to filter segments with a large branch inconsistency, which
already decreases the number of noisy segments. Please refer to the accompanying
video for all branch inconsistency values.

0
10
20
30

40

50
60
70

80

 0 10 20 30 40 50 60 70 80
(a) (b) (c)

Fig. 7 Branch inconsistency diagram and branch inconsistency values on the skeleton for t = 69.
The diagram indicates that most branches are temporally coherent. Some of them are removed
from the diagonal (or below the diagonal), which may either indicate inconsistencies in skeleton
tracking or cycles. Removing segments with a branch inconsistency ≥5 (red dots in the diagram,
dark red segments in the skeleton) can be used to filter the skeleton. (a) Branch inconsistency. (b)
Skeleton. (c) Skeleton, filtered

Persistence Concepts for 2D Skeleton Evolution Analysis 147

0

10

20

30

40

50

60

70

80

 0 10 20 30 40 50 60 70 80

(a) (b) (c)

Fig. 8 Age persistence diagram and age persistence values on the skeleton for t = 69. Numerous
segments towards the “front” of the fingers appear to be active here. Removing all segments whose
age persistence is ≤5 (red points in the diagram) leaves us with the most active segments. (a) Age
persistence. (b) Skeleton. (c) Skeleton, filtered

3.3.2 Age Persistence

Analogously to branch inconsistency, we obtain an age persistence diagram for each
branch–segment pair when we use the maximum creation time of points along each
segment. Age persistence is capable of measuring whether a segment is young or old
with respect to its branch point. Here, the “persistence” of each point is an indicator
of how much the skeleton grows over multiple time steps: if segments stagnate, their
points remain at the same distance from the diagonal. If segments continue to grow,
however, their points will move away from the diagonal.

Figure 8 shows the age persistence diagram and the age persistence values
on the skeleton for t = 69. The filtered skeleton only contains the most active
segments, which facilitates tracking. We can combine branch inconsistency and age
persistence to remove fewer segments than in Fig. 7c. For example, we could remove
segments that correspond to points below the diagonal of the branch inconsistency
diagram and keep those for which both branch inconsistency and age persistence
are high. These segments commonly correspond to cycles that were formed during
the evolution of the skeleton. An isolated analysis of branch inconsistency is unable
to detect them. Figure 9 depicts the results of such a combined filtering operation.

3.3.3 Growth Persistence

We define the growth persistence of a segment in Gi as the difference between the
maximum creation time tmax of its pixels and the current time step ti . Intuitively,
this can be thought of performing “time filtration” of a simplicial complex, in
which simplices may be created and destroyed (notice that such a description would
require zigzag persistence for general simplicial complexes). A small value in this
quantity indicates that the segment is still growing, while larger values refer to
segments that stagnate. Growth persistence is useful to highlight segments that are
relevant for tracking in viscous fingering processes. In contrast to the previously-

148 B. Rieck et al.

Fig. 9 (a) Filtering segments using branch inconsistency may destroy longer segments. (b) If we
combine both branch inconsistency and age persistence, keeping only those segments whose age
persistence is high or whose branch inconsistency is low, we can improve the filter results by
removing noisy segments while keeping more cycles intact

Fig. 10 Growth persistence values. Red segments are highly active in the evolution of the skeleton.
In this example, red segments are mostly those that are at the tips of individual “fingers”. (a) t = 21.
(b) t = 42. (c) t = 84

defined persistence concepts, growth persistence is only defined per segment and
does not afford a description in terms of a persistence diagram. Figure 10 depicts
the growth persistence of several time steps. Red segments are growing fast or have
undergone recent changes, such as the creation of cycles. A low branch persistence
in segments, coupled with a low growth persistence corresponds to features that are
“active” during skeleton evolution. Please refer to the accompanying video for the
evolution of growth persistence.

3.4 Activity Indicators

In order to capture the dynamics of skeleton evolution, we require a set of activity
indicators. They are based on the previously-defined concepts and can be used to
quickly summarize a time series of evolving skeletons.

Persistence Concepts for 2D Skeleton Evolution Analysis 149

3.4.1 Total Persistence

There are already various summary statistics for persistence diagrams. The second-
order total persistence pers(D) [3] of a persistence diagram D is defined as

pers(D)2 :=
⎛

⎝
∑

(c,d)∈D
pers2(c, d)

⎞

⎠

1
2

, (2)

i.e., the sum of powers of the individual persistence values (i.e. coordinate differ-
ences) of the diagram. Total persistence was already successfully used to assess
topological activity in multivariate clustering algorithms [13].

Here, the interpretation of total persistence depends on the diagram for which
we compute it. Recall that in a branch inconsistency diagram, points of high
“persistence” indicate inconsistencies in branching behavior. Total persistence thus
helps detect anomalies in the data; see Fig. 12 for a comparison of total branch
persistence in different data sets. For age persistence, by contrast, high persistence
values show that a skeleton segment is still actively changing. The total age
persistence hence characterizes the dynamics of the data, e.g., whether many or
few segments are active at each time step. Figure 14 depicts a comparison of total
age persistence in different data sets.

3.4.2 Vivacity

We also want to measure the “vivacity” of a viscous fingering process. To this end,
we employ the growth persistence values. Given a growth threshold tG, we count all
growth pixels with persG ≤ tG and divide them by the total number of pixels in the
given time step. This yields a measure of how much “mass” is being created at every
time step of the process. Similarly, we can calculate vivacity based on segments in
the data. However, we found that this does not have a significant effect on the results,
so we refrain from showing the resulting curves. Figure 15 depicts vivacity curves
for different data sets with tG = 10.

4 Analysis

Having defined a variety of persistence-based concepts, we now briefly discuss
their utility in analyzing time-varying skeleton evolution. In the following, we
analyze three different data sets: (1) the example data set that we used to illustrate
all concepts, (2) a measured data set, corresponding to a slowly-evolving viscous
fingering process, (3) and a simulation of the example data set. Figure 11 depicts
individual frames of the latter two data sets. The measured data set is characterized

150 B. Rieck et al.

Fig. 11 Selected still images from the two remaining data sets. The measured data in (a) exhibits
artifacts (parallel lines) that are caused by the experimental setup. The simulation data (b), by
contrast, does not contain any noise. (a) Measured data set, t = 33. (b) Simulation data set, t = 26

0 20 40 60 80

0

20

40

t
(a)

0 20 40 60

0

20

40

60

t
(b)

0 10 20 30 40

0

20

40

60

t
(c)

Fig. 12 A comparison of total persistence of the branch inconsistency diagram for three different
data sets. The first data set (a) exhibits more anomalies; these are indicated by “jumps” in the total
persistence curve. (a) Example. (b) Measured. (c) Simulation

by a viscous fingering process whose fingers evolve rather slowly over time.
Moreover, this experiment, which was performed over several days, does not exhibit
many fingers. The simulation data, by contrast, aims to reproduce the dynamics
found in the example data set; hence, it contains numerous fast-growing fingers.
Please refer to the accompanying videos for more details.

4.1 Anomaly Detection

To detect anomalies in skeleton extraction and tracking, we calculate the total
persistence of the branch inconsistency diagram. Figure 12 compares the values for
all data sets. We observe that the example data set, Fig. 12a, exhibits many “jumps”
in branch inconsistency. These are time steps at which the skeleton (briefly) becomes
inconsistent, e.g., because a large number of segments disappears, or many small
cycles are created. At t = 43 and t = 72 (both local maxima in the diagram), for

Persistence Concepts for 2D Skeleton Evolution Analysis 151

Fig. 13 Comparing the previous (gray) and the current time step (red) based on total persistence
of the branch inconsistency diagram helps uncover problems with skeleton extraction. (a) t = 43.
(b) t = 72

example, we observe changes in the number of cycles as well as the appearance of
numerous segments of various lengths, which makes it harder to assign consistent
creation times according to Sect. 3.1. Figure 13 depicts the changes in skeleton
topology at these time steps. The other two data sets contain fewer anomalies. For
the measured data, this is caused by lower propagation velocities and fewer “fingers”
in the data. For the simulation data, this is due to a better separation of individual
fingers, caused by the synthetic origin of the data.

4.2 Active Branches

We use total age persistence to assess the rate at which existing branches move.
Figure 14 compares the data sets, showing both the original total age persistence
values as well as a smooth estimate, obtained by fitting Bézier curves [9] to the
sample points. In Fig. 14c, the simulated origin of the data is evident: while the
other data sets exhibit changes in the growth rate of total age persistence, the
simulation data clearly exhibits almost constant growth. Moreover, we observe that
the measured data in Fig. 14b has a period of constant growth for t ∈ [20, 40], while
the example data displays a slightly diminished growth rate for t ∈ [25, 65], only to
pick up at the end. Age persistence may thus be used to compare the characteristics
of different skeleton evolution processes.

4.3 Quantifying Dissimilarity

To quickly quantify the dissimilarity between different curves, e.g., the vivacity
curves that we defined in Sect. 3.4.2, we can use dynamic time warping [1], a

152 B. Rieck et al.

0 20 40 60 80

0

50

100

t
(a)

0 20 40 60

0

25

50

75

t
(b)

0 10 20 30 40

0

25

50

75

t
(c)

Fig. 14 A comparison of total age persistence for the three different data sets, along with a smooth
estimate for showing trends. (a) Example. (b) Measured. (c) Simulation

0 20 40 60 80
0

0.5

1

t
(a)

0 20 40

0

0.5

1

t
(b)

0 10 20 30

0.4

0.6

0.8

1

t
(c)

Fig. 15 Vivacity curves (pixel-based) for the three different data sets. At a glance, the curves per-
mit comparing the dynamics of each process. The sampling frequencies are different, necessitating
the use of dynamic time warping. (a) Example. (b) Measured. (c) Simulation

technique from dynamic programming that is able to compensate for different
sampling frequencies and different simulation lengths. Figure 15 depicts the vivacity
curves of the data sets. We can see that the measured data in Fig. 15b is characterized
by a slower process in which new mass is continuously being injected to the
system. Hence, its vivacity does not decrease steeply as that of the example data
in Fig. 15a. The vivacity curve for the simulation, shown in Fig. 15c, appears to
differ from the remaining curves. As a consequence, we can use these curves in
visual comparison tasks and distinguish between different (measured) experiments
and simulations. The dynamic time warping distance helps quantify this assumption.
We have dist(a, b) ≈ 442, dist(a, c) ≈ 1135, and dist(b, c) ≈ 173. This indicates
that the characteristics of the simulation in Fig. 15c differ from those found in a real-
world viscous fingering process, shown in Fig. 15a, while being reasonably close
to another measured experiment, which is depicted by Fig. 15b. Vivacity curves
may thus be used for parameter tuning of simulations in order to obtain better
approximations to measured data.

Persistence Concepts for 2D Skeleton Evolution Analysis 153

5 Conclusion

Driven by the need for a coherent analysis of time-varying skeletons, we developed
different concepts inspired by topological persistence in this paper. We showed
how to improve the consistency of tracking algorithms between consecutive time
steps. Moreover, we demonstrated the utility of our novel concepts for different
purposes, including the persistence-based filtering of skeletons, anomaly detection,
and characterization of dynamic processes.

Nonetheless, we envision numerous other avenues for future research. For
example, the propagation velocity of structures in the data may be of interest in
many applications. We also plan to provide a detailed analysis of viscous fingering,
including domain expert feedback, and extend persistence to physical concepts
within this context. More generally, our novel persistence-inspired concepts can also
be used in other domains, such as the analysis of motion capture data (which heavily
relies on skeletonization techniques) or time-varying point geometrical point clouds,
for which novel skeletonization techniques were recently developed [10].

References

1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. Technical
Report WS-94-03, AAAI (1994)

2. Carstens, C., Horadam, K.: Persistent homology of collaboration networks. Math. Prob. Eng.
2013, 815,035:1–815,035:7 (2013)

3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable
persistence. Found. Comput. Math. 10(2), 127–139 (2010)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

5. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital
images using discrete Morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666
(2015)

6. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence
(2010)

7. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification.
Discrete Comput. Geom. 28(4), 511–533 (2002)

8. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification of functions
on 2-manifolds. In: Proceedings of the 22nd Annual Symposium on Computational Geometry,
pp. 127–134. ACM Press, New York (2006)

9. Farin, G.: Curves and Surfaces for Computer-aided Geometric Design: A Practical Guide, 3rd
edn. Elsevier, New York (1993)

10. Kurlin, V.: A one-dimensional homologically persistent skeleton of an unstructured point cloud
in any metric space. Comput. Graph. Forum 34(5), 253–262 (2015)

11. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies – a comprehensive survey. IEEE
Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

12. Lukasczyk, J., Aldrich, G., Steptoe, M., Favelier, G., Gueunet, C., Tierny, J., Maciejewski, R.,
Hamann, B., Leitte, H.: Viscous fingering: a topological visual analytic approach. In: Physical
Modeling for Virtual Manufacturing Systems and Processes. Applied Mechanics and Materials,
vol. 869, pp. 9–19 (2017)

154 B. Rieck et al.

13. Rieck, B., Leitte, H.: Exploring and comparing clusterings of multivariate data sets using
persistent homology. Comput. Graph. Forum 35(3), 81–90 (2016)

14. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and
topological signatures. IEEE Trans. Vis. Comput. Graph. 18(12), 2382–2391 (2012)

15. Viscous fingering displacement. https://www.youtube.com/watch?v=NZEB8tQ3eOM
16. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM

27(3), 236–239 (1984)

https://www.youtube.com/watch?v=NZEB8tQ3eOM

Fast Topology-Based Feature Tracking
using a Directed Acyclic Graph

Himangshu Saikia and Tino Weinkauf

Abstract We present a method for tracking regions defined by Merge trees in time-
dependent scalar fields. We build upon a recently published method that computes
a directed acyclic graph (DAG) from local tracking information such as overlap and
similarity, and tracks a single region by solving a shortest path problem in the DAG.
However, the existing method is only able to track one selected region. Tracking all
regions is not straightforward: the naïve version, tracking regions one by one, is very
slow. We present a fast method here that tracks all regions at once. We showcase
speedups of up to two orders of magnitude.

1 Introduction

We are concerned with the tracking of regions defined by merge trees. In [12],
we devised a method that tracks the superlevel or sublevel sets of a scalar field
as defined by the subtrees of the merge tree. However, once these regions have been
extracted in each time step, we neglect their origin 1 and record tracking information
such as overlap and histogram similarity in a directed acyclic graph (DAG). Its nodes
are the regions (Figs. 1 and 2). Overlapping and similar regions in consecutive time
steps are connected by an edge, weighted by the amount of overlap and similarity.
We solve a shortest path problem to track a region over time. This global approach
to tracking prevents the issue with only local decisions as shown in Fig. 1.

In [12], we present, among other things, a method for tracking a single region
using the DAG.This is done by computing shortest paths to all reachable sources
and sinks from a given node and combining those two paths. This however, is not
how one might define a shortest path via a node. In this paper, we define a shortest
path as the path with the least objective function value out of all paths starting at a
source, going through the given node and ending at a sink. An objective function can

H. Saikia (�) · T. Weinkauf
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: saikia@kth.se; weinkauf@kth.se

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_10

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_10&domain=pdf
mailto:saikia@kth.se
mailto:weinkauf@kth.se
https://doi.org/10.1007/978-3-030-43036-8_10

156 H. Saikia and T. Weinkauf

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

Fig. 1 Tracking regions solely based on local decisions leads to broken tracks. In this simple
example, a small fluctuation between time steps t3 and t5 causes the creation of a region C that
has significant overlap and similarity with region A. Assigning the locally best match neglects
that there can be more than one suitable track between two time steps (e.g., between t5 and t6),
and causes tracks to break. A graph structure as illustrated in Fig. 3a and b helps circumvent this
problem

A B

C D E

F G

2

3

2

3

2

4

4

Fig. 2 Illustration of an objective function that does not satisfy the condition expressed in Eq. (4).
If f signifies the standard deviation of the weights along a path, f (CABD) < f (CFGD) but
f (CABD ∪ DE) > f (CFGD ∪ DE)

be any function which assigns a score to a path based on how well it represents the
evolution of a particular feature along that path. Using this definition of a shortest
path, the previous method of combining backward and forward shortest paths may
not work.

In this work, we extend the previous work and present a non-trivial solution
to tracking all regions from all time steps, i.e., a method for extracting all feature
tracks. The trivial solution is to iterate over all nodes of the DAG and execute the
single region tracking algorithm from [12]. However, we will show in this paper how
this leads to very long running times. Our approach is up to two orders of magnitude
faster. Our method employs a shortest path algorithm but is quite different from the
standard Djikstra’s algorithm or Floyd-Warshall’s algorithm to compute all pairs
shortest paths. Our DAG being structured in a way that only temporal edges—edges
between nodes of two successive time steps—exist, facilitates better runtime bounds
than standard algorithms.

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 157

2 Related Work

The sheer size of time-dependent data sets often necessitates a data reduction step
before an efficient analysis can take place. It is therefore a common approach to
extract and track features.

Many methods track topological structures. Tricoche et al. [23] track critical
points and other topological structures in 2D flows by exploiting the linearity of
the underlying triangle grid. Garth et al. [4] extend this to 3D flows. Theisel and
Weinkauf [18, 26] developed feature flow fields as a general concept to track many
different features independent of the underlying grid. Reinighaus et al. [11] extended
this idea to the discrete setting.

In the area of time-dependent scalar fields several methods exist to track and
visualize topological changes over time. Samtaney et al. [15] provides one of the
first algorithms to track regions in 3D data over time using overlap. Kettner et al.
[7] presents a geometric basis for visualization of time-varying volume data of one
or several variables. Szymczak [17] provides a method to query different attributes
of contours as they merge and split over a certain time interval. Sohn and Bajaj [16]
presents a tracking graph of contour components of the contour tree and use it to
detect significant topological and geometric evolutions. Bremer et al. [2] provide an
interactive framework to visualize temporal evolution of topological features.

Other methods for tracking the evolution of merge trees such as the method due
to Oesterling [8] track changes to the hierarchy of the tree. This comes at the price
of a very high computation time. Its runtime complexity is polynomial in the data
size, more precisely, it is O(n3) with n being the number of voxels. However, the
method tracks the unaugmented (full) merge tree instead of just critical points or
super-arcs.

Vortex structures are another important class of features that can be tracked in
time-dependent flows. Reinders et al. [10] track them by solving a correspondence
problem between time steps based on the attributes of the vortices. Bauer and Peikert
[1] and Theisel et al. [19] provide different methods for tracking vortices defined by
swirling stream lines. This notion was extended later to include swirling path lines
[25], swirling streak and time lines [27], swirling trajectories of inertial particles [5]
and rotation invariant vortices [6].

Pattern matching has been originally developed in the computer vision commu-
nity. A number of visualization methods have been inspired by that. Examples are
pattern matching methods for vector fields based on moment invariants as proposed
by Bujack et al.[3], or pattern matching for multi-fields based on the SIFT descriptor
as proposed by Wang et al. [24].

A similar line of research, but technologically rather different, is the analysis
of structural similarity in scalar fields, which gained popularity recently. Thomas
and Natarajan detect symmetric structures in a scalar field using either the contour
tree [20], the extremum graph [21], or by clustering contours [22]. Saikia et al.
compared merge trees by means of their branch decompositions [13] or by means of
histogram over parts of the merge tree [14]. Our method outputs a set of best tracks

158 H. Saikia and T. Weinkauf

of topologically segmented structures in a spatio-temporal setting, and enables an
all-to-all temporal pattern matching scheme using techniques like dynamic time
warping.

3 Method

In the following, we will first briefly recapitulate the tracking method for single
regions of [12], and then present our new and fast approach for tracking all regions.

3.1 Tracking Merge Tree Regions using a Directed Acyclic
Graph

Given is a time-dependent scalar field. It could have any number of spatial
dimensions, our implementation supports 2D and 3D. A merge tree is computed
from each time step independently. After an optional simplification, all subtrees (as
defined in [13]) are converted into a set of nodes to be used within the Directed
Acyclic Graph (DAG). They represent the components of the superlevel or sublevel
sets of the scalar field and are continuous regions in the domain.

All overlapping nodes from consecutive time steps are connected via edges in the
DAG. Their weights represent local tracking information in the sense that a lower
edge weight indicates a higher likelihood for the two connected regions to be part
of the same track. We use a linear combination of volume overlap and a histogram
difference to compute these weights.The volume overlap distance do between two
non-empty regions Sa and Sb is determined from the number of voxels they have in
common and the total number of voxels covered by both regions:

do(Sa,Sb) = 1 − |Sa ∩ Sb|
|Sa ∪ Sb| . (1)

The Chi-Squared histogram distance (see e.g. [9]) between two regions is defined as

ds(Sa,Sb) = χ2(ha,hb) = 1

2

∑

i

(ha,i − hb,i)
2

ha,i + hb,i

, (2)

where ha,i and hb,i denote the bins of the histograms ha and hb, respectively.
Here the histograms represent the number of vertices encapsulated by a region as
described in [14].

Our combined distance measure for an edge is given by d = λds + (1 − λ)do

where λ ∈ [0, 1] is a tunable parameter. It is now possible to use this DAG for
the next step as is, or it can be further thresholded to weed out extremely large

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 159

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

(a)

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

(b)

Fig. 3 Several nodes in the graph can have the same shortest path. Hence, running Djikstra’s
algorithm for every node independently will be expensive and redundant. (a) Dijkstra’s algorithm
to find the shortest path through the DAG represents the track of this region. Several regions may
have the same source and sink, and result in the same shortest path. In this example, the shortest
path starting from source A1 and sink A7, is common to all the nodes in bold outline. The path
is shown as a blue band. (b) The shortest path through the green bold outlined nodes also has the
same source-sink pair (A1, A7) as in (a). It is given by the green band. The shortest path through
the red bold outlined nodes is given by the magenta band

weighted edges (For instance in Fig. 3a the edges between the green and pink nodes
are removed).

We track a region by solving a shortest path problem with Dijkstra’s algorithm on
the DAG. The method in [12] does this for one region at a time. From the selected
region, a shortest path is found to a source in an earlier time step, and another
shortest path is found to a sink in a later time step. Combining these paths yields the
track of the region. We describe a path to be a set of successive directed edges in the
graph. Since there exists only a single directed edge between any two nodes in the
graph, a path can also be described by all successive nodes that connect these edges.
Source and sink refer in this context to nodes that have no incoming or outgoing
edges, respectively. We discuss this in more detail in the next section.

160 H. Saikia and T. Weinkauf

3.2 Objective Function and Its Validity with Dijkstra’s
Algorithm

The classic Dijkstra algorithm finds the shortest path by summing up the edge
weights along the path. Applying this directly to our setting would yield unsuitable
tracks: instead of following a long path with many likely edges, the tracking would
rather choose an unlikely edge to an immediate sink.

Hence, we use a measure assessing the average edge weight along a path. The
goal is to find the path through a given node that has the smallest normalized squared
sum of edge weights di :

f (P) =
√∑

i∈P d2
i

|P| (3)

The purpose of this section is to demonstrate that the Dijkstra algorithm can be used
to solve for this objective. To do so, let us define an objective function f which
assigns a non-negative score to a path satisfying the following condition:

Condition 1 Consider two paths P1 and P2 with f (P1) ≤ f (P2). We require the
objective function to maintain this relationship after adding an edge e:

f (P1 ∪ e) ≤ f (P2 ∪ e) (4)

Dijkstra’s algorithm can only be used to solve for an objective if this condition
is fulfilled, since it allows to incrementally build a solution, which is the essential
cornerstone of Dijkstra’s algorithm.

The objective function used in the classic Dijkstra’s shortest path algorithm is
the sum of weights of all edges in a path

∑
i∈P di . This function trivially satisfies

the above condition. A non-satisfying objective function is the standard deviation of
the weights as shown in Fig. 2. Thus we can see that not all objective functions that
determine the quality of a path can be used with Dijkstra’s algorithm.

Regarding the objective function (3) we note that it can be solved with Dijkstra’s
algorithm if |P1| = |P2| holds, i.e., the two paths are of equal length. This keeps
the denominator of (3) equal, and the numerators are just a sum of values consistent
with Condition 1. The condition |P1| = |P2| always holds true in our setting, since
edges connect two consecutive time steps only and we start Dijkstra’s algorithm at a
particular source, which keeps all considered paths at equal length. Hence, Dijkstra’s
algorithm can be used to solve (3).

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 161

3.3 Algorithm for Finding All Paths

Tracking of a single node in the DAG is done by finding the shortest path Pmin
through that node from any source to any sink of the DAG. It may be that the shortest
path through other nodes coincides with Pmin. This is illustrated in Fig. 3. Hence,
to find the shortest paths through all nodes, running a naïve Dijkstra for every node
independently will be expensive and redundant.

Instead, we run Dijkstra’s algorithm for every source and sink (in a joint fashion
in two passes, see below), record the gathered information at every node, and stitch
this information together to obtain the shortest path for every node.

To facilitate this, we define a function to incrementally compute the objective
function in (3). We denote this new function by the symbol ⊕ and call it
the incremental path operator. The incremental path operator takes as input the
objective value for path P and a connecting node n and computes the global measure
for path P ∪ n. If the weight of the connecting edge between P and n is given by d ,
⊕ is defined as follows

f (P ∪ n) = f (P) ⊕ d =
√

f (P)2 · |P| + d2

|P| + 1
(5)

Furthermore, all nodes are topologically sorted. That is, for a node np,i at
timestep t = p and another node nq,j at timestep t = q , node np,i occurs before
node nq,j in the sorted order if p < q .

Our algorithm works as follows. We make two passes through this list of sorted
nodes. One in the sorted order (past time steps to future time steps) and one in
the reverse sorted order. During the first pass, at every node, the best path from
every reachable source to that given node is recorded. This is done by checking
all incoming edges to that node and incrementally calculating the best path from
all incoming edges from a single source. This becomes possible because all nodes
connected to the incoming edges have already been processed earlier (they live at
the previous time step). Consider a node ni with some incoming edges as illustrated
in Fig. 4. The best score from any given source to ni is calculated using:

f (Psrc→i) = min
nj∈Ii∧bestSourcej=src

(f (Psrc→j) ⊕ dj,i). (6)

Algorithm 1 shows the pseudo-code for the first pass described above. The
second pass is equivalent to the first, but operates on the DAG with edges reversed.
We record the best path to every reachable sink now. This is done by checking for
outgoing edges and the sinks that they lead to. The best score to any given sink from
ni is calculated using:

f (Pi→sink) = min
nj∈Oi∧bestSinkj=sink

(f (Pj→sink) ⊕ di,j) (7)

162 H. Saikia and T. Weinkauf

. . . ni−1,1 ni+1,1 k1

s1 . . . ni−1,2 ni ni+1,2 . . . k2

s2 ni−1,3 ni+1,3 . . .

Si[s1] = ni−1,1
Si[s2] = ni−1,3

Ki[k1] = ni+1,1
Ki[k2] = ni+1,2

Fig. 4 Illustration of Algorithm 1. For every node ni in the DAG, the lowest cost (and the
corresponding best neighbor) to every reachable source is computed iteratively and stored in the
associative map Si . In this figure, for example, the best path from ni to source s1 is via its neighbor
ni−1,1. Similarly lowest costs to all reachable sinks are stored in the map Ki . After these values are
computed, the best source-sink pair (s, k) is computed with the lowest cost using Eq. (8) and the
best path Pmin from s to k passing through ni is traced out. All nodes lying on Pmin which have
the same best source-sink pair (s, k) need not be processed as the best path through any such node
is Pmin itself. The final output is the set of all paths passing through every node in the DAG

Let the set of all reachable sources to node ni be Si and the set of all reachable
sinks be called Ki . After the two passes are complete, the combined best path for
every node is calculated by choosing the paths (P− ∈ Si ,P+ ∈ Ki) from the
source-sink pair which minimizes the objective function on the combined path P−∪
P+ as follows:

Pmin = arg min
P−∈Si ,P+∈Ki

√
|P−| · f (P−)2 + |P+| · f (P+)2

|P−| + |P+| . (8)

Algorithm 2 shows the pseudo-code to obtain all best paths. It can be observed
that, if for any given node ni , the best source-sink pair is given by (si ,ki) and the
extracted best path is Pi , all nodes lying on this path, having the same best source-
sink pair (si ,ki), will trace out the exact same path. Hence, while determining
unique paths in our solution, we can avoid tracing paths from all such nodes. See
Fig. 4 for an illustration.

After all nodes have been examined, we are left with the set of best paths passing
through every single node in the DAG. An illustration of the output is shown in
Fig. 5.

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 163

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

Fig. 5 The shortest paths through all nodes in the DAG combined represent our track graph
structure. Our algorithm avoids computing the three shortest paths (given by the blue, green and
magenta bands) for every single node naively, but instead traces a single shortest path only once.
Nodes which lie on a shortest path and has the same source-sink pair, trivially trace the same path

Data: Set of all nodes N = {n1,n2, . . . ,nm} sorted topologically. Incoming nodes to ni

given by Ii . The weight of an edge between nodes ni and nj is given by di,j .
Result: Set of associations of all reachable sources and the best path to them from every

node ni given by Si .
1 begin
2 for ∀ni ∈ N do
3 for ∀nj ∈ N do
4 if |Ij | = 0 then
5 if ni = nj then
6 Si [j] ← nj

7 Si,cost [j] ← 0
8 else
9 Si [j] ← −1

10 Si,cost [j] ← ∞
11 for ∀ni ∈ N do
12 for ∀nj ∈ Ii do
13 for ∀source ∈ Sj do
14 costnew ← Sj,cost [source] ⊕ di,j

15 if costnew < Si,cost [source] then
16 Si [source] ← nj

17 Si,cost [source] ← costnew

Algorithm 1: Algorithm to find the associations for the best routes to any node
from all reachable sources. The best routes to all reachable sinks are determined
by running the same algorithm with the nodes sorted in reverse order

3.4 Complexity Analysis

Let us assume, without loss of generality, that the average number of features in
every timestep is n. For t timesteps, we would then have a total of tn nodes in the
entire DAG. The number of edges is bounded by n2 between every pair of successive
timesteps, so the total number of edges would be bounded by tn2. The naïve version
of the algorithm is a combination of two simple Dijkstra runs from any given node
to all reachable sources and sinks. As we know the runtime of this algorithm is
O(V + E), for V vertices and E edges in a graph, the runtime in the naïve case

164 H. Saikia and T. Weinkauf

Data: The sets of associated maps Si and Ki for every node ni as obtained from
Algorithm 1. The function traceP ath(ni , s, k) traces the path to source s and sink k

from node ni using the information present in Si and Ki .
Result: Set of all unique shortest paths P where there exists at least one path passing

through every node ni .
1 begin
2 P ← ∅
3 for ∀ni ∈ N do
4 bestScore ← ∞
5 bestSourcei ← −1
6 bestSinki ← −1
7 donei ← f alse

8 for ∀ni ∈ N do
9 for ∀s ∈ Si do

10 for ∀k ∈ Ki do
11 score ← scost ⊕ kcost

12 if score < best then
13 bestScore ← score

14 bestSourcei ← s

15 bestSinki ← k

16 for ∀ni ∈ N do
17 if donei �= true then
18 P ← traceP ath(ni , bestSourcei , bestSinki)

19 donei ← true

20 P ← P ∪ P
21 for ∀nj ∈ P do
22 if bestSourcej = bestSourcei ∧ bestSinkj = bestSinki then
23 donej ← true

Algorithm 2: Algorithm to find shortest paths via every node

will be O(tn + tn2) or O(tn2) for every node. Hence, if we were to run the naïve
algorithm for all nodes, the runtime would be given by O(t2n3) in the worst case.

Now for our improved algorithm, assuming the number of sources/sinks is given
by p, we can safely say that p << tn. The runtime of Algorithm 1 is then given
by O(tnp + tn2p) or O(tn2p). For Algorithm 2, it is O(tnp2 + t2n). So the total
runtime of our algorithm would be given by O(tn2p+ tnp2+ t2n) which in practice
(as seen in Table 1) is far less than O(t2n3).

The memory footprint for the naïve version is bounded by the normal Dijkstra
runtime of O(N) for N nodes. Thus, in our scenario, it is given by O(tn) as
the shortest path via every node is computed independently. For the improved
algorithm however, we need to store the mappings of shortest paths from all
incoming/outgoing edges to all reachable sources/sinks and hence the memory
footprint is given by O(tnp).

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 165

3.5 Filtering Similar Paths for Visualization

For visualization purposes we need to choose the best candidate paths which best
represent a feature track at some spatio-temporal region.

In most cases, due to slight perturbations in the DAG, two unique paths may
differ only at very few node positions with most of their nodes being identical. An
example of this can be observed in Fig. 5, where the blue and green paths show in
essence the same structure with only a slight perturbation.

We aim to show the path with the best objective score, while other similar paths
falling within a specified threshold are filtered out. The similarity g between two
paths is estimated using

g(P1,P2) = |P1 ∩ P2|
max(|P1|, |P2|) (9)

where |P1 ∩P2| represent the number of matching edges. The function g estimates
the fraction of edges that are identical in both paths. The filtration using function
g is applied as follows. All paths obtained by solving Eq. (8) for every node are
sorted according to the best objective function score given by Eq. (3). Paths are then
processed in this sorted order, from lowest score to highest. If a path falls above the
similarity threshold with any other path encountered before, it is filtered out. All
other paths are retained.

If the filter node is set to be 100%, we are left with the complete set of unique
paths. In our experiments, a filter rate of 70% shows best results.

4 Results

The timing and memory consumption for our method are given in Table 1.
Regarding the computation times, note how our algorithm improves over the naïve
version by up to two orders of magnitude. Regarding the memory consumption, the
naïve method has lower memory usage as it only processes one node at once, while
our algorithm processes all nodes together. Hence, considering the number of nodes
in each data set, our algorithm is quite efficient with regards to memory usage as
well.

Figure 6 shows a rotating and translating benzene data set. Since the data is not
truly time-dependent, but just transformed rigidly, this serves as a test case to show
that we capture all expected tracks and that our method is invariant against rotations
and translations.

Figure 7 shows the 2D time-dependent Streak Line Curvature dataset.
Figure 8 shows the tracks for the smallest super/sub level set regions in a 2D

Checkerboard dataset. The checkerboard pattern starts off smoothly and becomes
increasingly noisy with time.

166 H. Saikia and T. Weinkauf

Table 1 Computation runtimes and memory requirements of our algorithm versus the naïve
one for several data sets

2D Checker- 2D Streak line 3D Square

Dataset Benzene board curvature cylinder

Dimensions 127 × 127 × 255 128 × 128 × 1 750 × 136 × 1 192 × 64 × 48

Time steps 101 128 429 134

DAG nodes 2239 3413 18035 15818

DAG edges 2121 3198 85262 76739

Time to extract 10 ms 16 ms 1767 ms 3200 ms

Time to filter 5 ms 10 ms 80 ms 96 ms

Time naïve alg. 507 ms 936 ms 442050 ms 283448 ms

Memory 427 KB 758 KB 26322 KB 70814 KB

Memory naïve alg. 23 KB 12 KB 523 KB 372 KB

All our experiments were performed on a machine with a 2.3 GHz Intel i7 processor and
16 GB main memory. Timings are totaled over the entire dataset. The timings do not include
computation and simplification of the merge trees. It is to be noted that runtimes and memory
usage depend only on the size of the DAG and not on the size of the dataset

Fig. 6 Our method applied to the Benzene dataset. The paths indicate tracking of centers of mass
of the regions signified by nodes in our DAG. (a) Paths of all lengths at filter rate 100%. (b) Paths
of length 100 and above at filter rate 100%. (c) Paths of length 100 and above at filter rate 70%

Fig. 7 (a) The 2D Streak Line Curvature dataset at filter rate 100% and showing paths of all
lengths. (b) At 100% filter rate and full length paths only. (c) At 70% filter rate and full length
paths only

Figure 9 shows all the tracks in a flow around a 3D Square Cylinder. The location
of the center of mass of a region is used to visualize the paths in all result images.

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 167

Fig. 8 Rotating 2D Checkerboard dataset. Tracks for the centers of mass of the smallest super/sub
level sets are shown. (a) Filter rate 100% and paths of all lengths. (b) Filter rate 100% and long
(100 length or more) paths only. (c) Filter rate 70% and long paths only. (d) Filter rate 70% with
long paths obtained from the naive version of the algorithm

Fig. 9 Flow around a Square Cylinder dataset. (a) Paths of all lengths extracted at filter rate of
100%. (b) Paths of all lengths at filter rate 90%. (c) Paths of all lengths at filter rate 70%

5 Conclusion

We presented an extension of the method in [12] which was used to extract the best
track through a chosen region at any given timestep in a time-dependent scalar field.
These regions are based on topological segmentations in the spatial domain using
merge trees and form the nodes in a Directed Acyclic Graph (DAG) structure in the
spatio-temporal domain. Using the method in [12] to extract the best tracks through
all nodes naïvely results in tracing the same paths multiple times. The algorithm
presented in this paper makes use of the structure in the DAG to iteratively compute
the best paths to every node from all reachable sources and sinks. This in turn
allows us to compute the best paths through all nodes at orders of magnitude faster
than the naïve approach. We also presented a filtering algorithm to filter out very
similar paths for visualizing all paths together. Further work may include clustering
these paths according to their similarity by using temporal similarity estimation
techniques like dynamic time warping.

168 H. Saikia and T. Weinkauf

References

1. Bauer, D., Peikert, R.: Vortex tracking in scale-space. In: Proceedings of the Symposium on
Data Visualisation 2002 (VISSYM ’02), pp. 233–ff. Eurographics Association, Switzerland
(2002)

2. Bremer, P.T., Weber, G., Tierny, J., Pascucci, V., Day, M., Bell, J.: Interactive exploration and
analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis.
Comput. Graph. 17(9), 1307–1324 (2011)

3. Bujack, R., Hotz, I., Scheuermann, G., Hitzer, E.: Moment invariants for 2d flow fields using
normalization. In: Proceedings of 2014 IEEE Pacific Visualization Symposium, pp. 41–48
(2014)

4. Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured
3d time-dependent datasets. In: Proceedings of the Conference on Visualization ’04 (VIS ’04),
pp. 329–336. IEEE Computer Society, Washington, (2004)

5. Günther, T., Theisel, H.: Vortex cores of inertial particles. IEEE Trans. Vis. Comput. Graph.
20(12), 2535–2544 (2014)

6. Günther, T., Schulze, M., Theisel, H.: Rotation invariant vortices for flow visualization. IEEE
Trans. Vis. Comput. Graph. 22(1), 817–826 (2016)

7. Kettner, L., Rossignac, J., Snoeyink, J.: The safari interface for visualizing time-dependent
volume data using iso-surfaces and contour spectra. Comput. Geom. 25(1), 97–116 (2003).
European Workshop on Computational Geometry—CG01

8. Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G.: Computing and
visualizing time-varying merge trees for high-dimensional data. In: Carr, H., Garth, C.,
Weinkauf, T. (eds.) Topological Methods in Data Analysis and Visualization IV, pp. 87–101.
Springer, Cham (2017)

9. Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: Daniilidis, K.,
Maragos, P., Paragios, N. (eds.) Computer Vision—ECCV 2010, pp. 749–762. Springer, Berlin
(2010)

10. Reinders, F., Sadarjoen, I.A., Vrolijk, B., Post, F.H.: Vortex tracking and visualisation in a flow
past a tapered cylinder. Comput. Graphics Forum 21(4), 675–682 (2002)

11. Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Efficient computation of Combinatorial
Feature Flow Fields. IEEE Trans. Vis. Comput. Graph. 18(9), 1563–1573 (2012)

12. Saikia, H., Weinkauf, T.: Global feature tracking and similarity estimation in time-dependent
scalar fields. Comput. Graphics Forum 36(3), 1–11 (2017)

13. Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: structural
comparison of scalar data. Comput. Graphics Forum (Proc. EuroVis) 33(3), 41–50 (2014)

14. Saikia, H., Seidel, H.P., Weinkauf, T.: Fast similarity search in scalar fields using merging
histograms. In: Carr, H., Garth, C., Weinkauf, T. (eds.) TopoInVis, pp. 1–14. Annweiler,
Germany (2015)

15. Samtaney, R., Silver, D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution.
Computer 27(7), 20–27 (1994)

16. Sohn, B.S., Bajaj, C.: Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12(1),
14–25 (2006)

17. Szymczak, A.: Subdomain aware contour trees and contour evolution in time-dependent scalar
fields. In: International Conference on Shape Modeling and Applications 2005 (SMI’ 05), pp.
136–144 (2005)

18. Theisel, H., Seidel, H.P.: Feature flow fields. In: Proceedings of the Symposium on Data
Visualisation 2003 (VISSYM ’03), pp. 141–148. Eurographics Association, Switzerland,
(2003)

19. Theisel, H., Sahner, J., Weinkauf, T., Hege, H., Seidel, H..: Extraction of parallel vector
surfaces in 3d time-dependent fields and application to vortex core line tracking. In: IEEE
Visualization, 2005 (VIS 05), pp. 631–638 (2005)

Fast Topology-Based Feature Tracking using a Directed Acyclic Graph 169

20. Thomas, D.M., Natarajan, V.: Symmetry in scalar field topology. IEEE Trans. Vis. Comput.
Graph. 17(12), 2035–2044 (2011)

21. Thomas, D.M., Natarajan, V.: Detecting symmetry in scalar fields using augmented extremum
graphs. IEEE Trans. Vis. Comput. Graph. 19(12), 2663–2672 (2013)

22. Thomas, D., Natarajan, V.: Multiscale symmetry detection in scalar fields by clustering
contours. IEEE Trans. Vis. Comput. Graph. 20(12), 2427–2436 (2014)

23. Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topology tracking for the visualiza-
tion of time-dependent two-dimensional flows. Comput. Graph. 26(2), 249–257 (2002)

24. Wang, Z., Seidel, H.P., Weinkauf, T.: Multi-field pattern matching based on sparse feature
sampling. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE VIS) 22(1), 807–816 (2016)

25. Weinkauf, T., Sahner, J., Theisel, H., Hege, H.C.: Cores of swirling particle motion in unsteady
flows. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Visualization) 13(6), 1759–1766 (2007)

26. Weinkauf, T., Theisel, H., Gelder, A.V., Pang, A.: Stable feature flow fields. IEEE Trans. Vis.
Comput. Graph. 17(6), 770–780 (2011)

27. Weinkauf, T., Hege, H.C., Theisel, H.: Advected tangent curves: a general scheme for
characteristic curves of flow fields. Comput. Graph. Forum (Proc. Eurographics) 31(2), 825–
834 (2012). Eurographics 2012, Cagliari, Italy, May 13–18

Part IV
Multivariate Topology

The Approximation of Pareto Sets Using
Directed Joint Contour Nets

Jan Bormann, Lars Huettenberger, and Christoph Garth

Abstract This paper presents the theoretical foundation to approximate the Pareto
set and its affiliated reachability graph through the Joint Contour Net (JCN).
The theory works for multivariate scalar fields with arbitrary numbers of domain
dimensions and functions. This allows us to visualize critical regions, connected
component inside the Pareto set, and their connections using the efficient and noise
robust JCN algorithm. With visualization application in mind, we demonstrate the
feasibility of our approach on 2D examples.

1 Introduction

Recent work introduced Pareto sets [9] as a method to visualize topology-based
features in multivariate scalar fields. Together with the so-called reachability
graph [10] it is possible to provide an abstract representation of the multifield
data, critical regions and connections between those areas, with respect to common
gradient directions.

Based on the previous work, the design of a fast algorithm to calculate the
reachability graph is still an open task. One major obstacle is that the graph is based
on continuous ascending paths between the critical regions. However in contrast to
other related path-based concepts such as the Morse-Smale complex, the steepest
gradient at a point does not exist in a multifield scenario but rather, the gradient
is replaced as a range of ascending directions. Hence, instead of point-to-point
connections, it is only possible to calculate a connection between a point and a set of
points, making the reachability graph calculation exponentially more complicated.

J. Bormann (�)
EXXETA AG, Karlsruhe, Germany
e-mail: jan.bormann@exxeta.com

L. Huettenberger · C. Garth
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: l_huette@cs.uni-kl.de; garth@cs.uni-kl.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_11

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_11&domain=pdf
mailto:jan.bormann@exxeta.com
mailto:l_huette@cs.uni-kl.de
mailto:garth@cs.uni-kl.de
https://doi.org/10.1007/978-3-030-43036-8_11

174 J. Bormann et al.

In addition, the connections have to be traced for every connected component
in the Pareto set making it prone to small local structures. Note that in multifield
scenarios, local structures in each individual field are cumulative, in that they might
create large, significant structures in the combined data, but usually simply increase
the number of small, insignificant structures in the multifield drastically.

In this work, to improve the calculation of the Pareto set and its reachability
graph, we analyze the relation between this concept and an approach by Carr et
al. [2, 3], the Joint Contour Net (JCN). Those comparisons are moreover important
to place the concepts in context with each other and to improve the understanding
and significance of multivariate topology in general. The significance of the two
methods is also highlighted by the fact that different approaches and view points
lead to similar results and visualizations. Previous work [11] already visually
indicated some close relation, but want not able to prove those assumption.

The paper is structured as follows. After the related work and a brief summary
of two major concepts, Pareto sets and JCNs, in Sects. 2 and 3, respectively, the
main part of this work is the new definitions and mathematical proofs, in Sect. 4.
These prove the relation between the mentioned concepts in general. Section 5 then
analyzes these results, its implications and provides a visual proof of concept for 2D

examples. While JCNs can also be calculated for higher dimensions, recent work
also focused on efficiently building the Reeb space for those cases. We therefore
discuss the usage of the continuous space instead of the approximation through the
JCN. In the conclusion in Sect. 6, we summarize the previous sections and tasks for
future work.

2 Related Work

As part of the introduction, the Pareto set concept was compared superficially with
other multivariate approaches like Jacobi sets [6] and Joint Contour Nets [2, 3] in
terms of domain restrictions as well as advantages and drawbacks.

Thus, Huettenberger et al. presented an algorithm to calculate Jacobi sets as a
union of Pareto sets and conditions under which Pareto sets are subsets of the Jacobi
sets [8]. Both concepts and their comparison are easy to visualize since both are
defined in the domain of the data.

Chattopadhyay et al. [4] analyzed the projection of the Jacobi set in the Reeb
space, introducing the Jacobi structure of a Reeb space. This structure separates
the Reeb space into simple components which can be measured in a scale-
invariant manner. This can directly be used as a multivariate topology simplification
approach [5].

In the other direction, Tierny and Carr [14] recently used the Jacobi set to
efficiently calculate the Reeb space [7]. Both Chattopadhyay et al. and Tierny
and Carr present good examples of how the combination of two related concepts
yields advancements, both algorithmically as well as in terms of understanding
multivariate topology.

The Approximation of Pareto Sets Using Directed Joint Contour Nets 175

Fig. 1 Pareto set and dJCN for a bivariate scalar field from [11]. The field is outlined by blue and
black contours in the left image. The Pareto set is colored red and green and the locations of critical
slabs in the dJCN are indicated by red and green nodes. (a) Pareto set. (b) dJCN

To close the loop, i.e. the relation between Pareto sets and the Reeb space was
investigated using the Joint Contour Net as an intermediate step. The JCN was
proposed as an approximation of the Reeb space [2, 12] and, at least for 2D data, is
easier to calculate than the continuous Reeb space itself.

In recent work, the relation between both concepts, JCN and Pareto set, was
visually indicated in the introduction of directed JCNs (dJCN) [11]. The JCN was
extended into a directed graph based on the ascending directions in the individual
field. Slabs and their node representation in the dJCN were defined as critical based
on the number of in- and outgoing edges (Fig. 1).

In this paper we present and extend main results from the master thesis by
Jan Bormann [1] which investigated these observations mathematically. The thesis
produced necessary modifications to the definition of critical slabs to allow a
translation from dJCNs to Pareto sets. This enables us to combine the advantages
of the Pareto concept, orientation-sensitive identification of critical regions, with
the efficient calculation and noise robustness of the JCN. Also, we can use the
graph structure of the dJCN to identify relations inside the Pareto set, namely the
reachability graph, which so far was extremely costly to calculate [10].

3 Existing Concepts

For a brief summary on Pareto sets, we assume that the multivariate data is given as
a set of n fields f = (f1, . . . , fn) over a common domain such that fi : S �→ R

are continuous, piecewise-linear Morse functions with S a triangulated manifold of
dimension d , i.e. a simplicial complex.

Two points x, y ∈ S are comparable if either ∀n
i=1fi(x) ≤ fi(y) or ∀n

i=1fi(x) ≥
fi(y) holds, denoted with x) y or x * y, respectively. Otherwise, the points are
incomparable, x ≺- y. We say for x * y that x dominates y, and for x) y that x

176 J. Bormann et al.

is dominated by y. For a given open neighborhood U(x), x ∈ U(x), the ascending
set H+(x) := {y ∈ U(x) | y * x} contains all ascending directions on which all
separate fields can agree. The descending set H−(x) is defined analogously.

If H+(x) = {x}, point x is defined as Pareto maximum, if H−(x) = {x} it is a
Pareto minimum and if both sets only contain x itself, the point is a Pareto optimum.
Otherwise, x is regular. The set of all Pareto minima, maxima, and optima is called
the Pareto set P and all points in the set are generally described as Pareto extrema.

Furthermore, for two points x, y ∈ S, we say that x reaches y (x → y) if a
continuous ascending path p : [0, 1] �→ S exists such that p(0) = x, p(1) = y, and
0 ≤ i < j ≤ 1 ⇒ p(i)) p(j). Connected components X,Y ⊆ P in the Pareto set,
in terms of adjacency in the domain, are called reachable (X → Y or X reaches Y)
if x ∈ X and y ∈ Y exist such that x → y holds.

With this, each connected component in P can be associated with a node in
a graph structure and, the reachability between components can be associated to
directed edges adjacent to the corresponding nodes, thus creating the reachabil-
ity graph. More details, illustrations, and discussion can be found for example
in [9, 10].

For the JCN, we assume the same multivariate data and an interval-based
rounding function r : R �→ R with r(x) = .x/δ/ + σ , where δ denotes the interval
size and σ some offset, though, w.l.o.g. we assume σ = 0 throughout this paper.
The discretized data r ◦ f = (r ◦ f1, . . . , r ◦ fn) is separated into slabs such that
two adjacent points x, y ∈ S are in the same slab if ∀n

i=1r ◦ fi(x) = r ◦ fi(y).
Alternatively, x and y are in the same slab if there is a continuous path p : [0, 1] �→
S from x to y, i.e. p(0) = x, p(1) = y such that r ◦ f (p(i)) is constant for all
0 ≤ i ≤ 1.

To create the JCN, each slab is associated with a node and two nodes are
connected by an edge, if the corresponding slabs are adjacent. Note that in
contrast to the reachability graph, the JCN uses undirected edges. A more detailed
introduction on JCNs and their application can be found in [3, 13].

4 Calculating Pareto Sets with dJCNs

As mentioned above, the JCN does not have a notation of ascending or descending
direction between adjacent slabs, though the Pareto set definition is based on
it. Hence, it is unavoidable to introduce this concept into the JCN. Therefore,
Huettenberger et al. [11] introduced the directed Joint Contour Net (dJCN) by
replacing the undirected edges of the JCN with directed ones. In detail, for two
adjacent slabs S1, S2 with points s1 ∈ S1 and s2 ∈ S2, we have an edge from the node
corresponding to S2 to the node corresponding to S1, if ∀n

i=0r ◦ fi(s1) ≥ r ◦ fi(s2).
Thus, a notion of direction is introduced into the approximation of the Reeb space
and we use this effect to compute an approximation of Pareto Sets. Note that the
structure of the dJCNs depends strongly on the rounding function. By refining this
function, i.e. decreasing the interval size, the size of the slabs decrease as well. We

The Approximation of Pareto Sets Using Directed Joint Contour Nets 177

therefore define a series of rounding function with the identity function as limit,
which leads to a series of dJCNs with a directed version of the Reeb space as limit.
We will call such a series refinement series of dJCN.

4.1 The Limit of Refinement

A Pareto maximum is a point x with a neighborhood U(x) around x such that each
point y ∈ U(x) is either x ≺- y or x * y. This implies, that x cannot reach any
other point y ∈ S, i.e. no monotone increasing path p to a dominating point y with
y * x exists. Otherwise, the path has to intersect U(x) somewhere, w.l.o.g. at point
p[i], 0 ≤ i ≤ 1, and for each point p[i] along the path x = p[0]) p[i] has to hold.
Hence, either x = p[i] or f (x) = f (p[i]) holds. This implies that either x is on
the border of U(x) or that f (x) = f (p[j]) for all 0 < j ≤ i, a contradiction to the
assumption that f is a Morse function.

Analogously, Pareto minimum can therefore be redefined as points which cannot
be reached via a monotone path from a dominated point y with y) x. In both cases,
y is not restricted to any neighborhood. Finally Pareto optimal points are surrounded
by incomparable points, thus Pareto minimal and maximal simultaneously.

Obviously we can extend this notion to slabs quite easily. A slab is called Pareto
maximal (minimal) if it cannot reach (not be reached from) dominating (dominated)
slab. For dJCNs this simplifies to: A Pareto maximum slab has no outgoing edges
and a minimum has no ingoing edges. As a reminder, in a dJCN there is only an
edge if at least one of the rounded scalar field changes.

Theorem 1 In the limit of a refinement series of dJCNs the union of all Pareto
extremal slabs is equivalent to the Pareto set.

Proof The limit of the series of the rounding functions is the identity. Therefore the
limit of the slabs are just single points or areas with the same scalar value and the
applied definitions are equivalent.

4.2 Recognition of Pareto Maxima and Minima

In coarse refinements, connected components of Pareto maxima and minima can be
merged into one slab. This raises the question at which step in the refinement series
all Pareto features are present in separated slabs in the dJCN. In order to decide when
all connected components of Pareto maxima and minima are finally represented in
their own critical slabs, we apply the concept of persistence, i.e. the scalar value
difference between points.

Lemma 1 After finite many refinement steps all Pareto maxima and minima slabs
correspond to exactly one connected component of Pareto extrema.

178 J. Bormann et al.

Proof A merge of two connected components of Pareto maxima or minima into the
same slab is only possible if the refinement interval is larger enough. Namely, larger
than the difference between any two points of these components with respect to any
of the scalar fields. Otherwise, the slabs containing them would be separated by at
least on edge. Hence, if the interval size is smaller than the minimal persistence over
all scalar fields, all components of Pareto maxima and minima are separated from
each other.

Note that, after this step is reached and under the assumption of a monotone
refinement series, further refinement cannot merge existing slabs and thus undo this
separation.

4.3 Recognition of Pareto Optima

Pareto optimal regions are maximal and minimal at the same time. By definition,
there are no connection allowed to adjacent slabs. Hence at any slab border one
scalar field has to be on the exact upper and one on the lower exact bound of the
rounding function. In practical cases, this is only true in the limit of the refinement.

For example, assume a triangulation of a 2-manifold with three functions and
three vertices: A, B and C. The values are f (A) = (0.5, 0, 0), f (B) = (0, 0.5, 0)

and f (C) = (0, 0, 1). Notice that all points in the triangle are incomparable to each
other. Each function only increases in the direction of one vertex and decreases if
we move towards the other two. So, all points in the triangle are Pareto optimal.
But, as we show in Fig. 2, for all rounding functions the slabs have connections and
therefore do not fulfill the condition for Pareto optimal slabs.

The above examples shows a general pattern. Scalar fields may divide the
simplices at different points. As a consequence slabs will have connections although
they contain only incomparable points. This can be avoided by generalizing the
notion of Pareto extrema and define the changing rate.

Fig. 2 An example with
Pareto optimal points in slabs
which are not marked as such.
Pareto maximal slabs are
marked in green hatch, the
minimal in red, and regular
slabs in white. (a) With one
level of refinement. (b) With
two levels of refinement A B

C

(a) (b)

The Approximation of Pareto Sets Using Directed Joint Contour Nets 179

4.4 ε-Pareto Extrema

We call a point ε-Pareto maximum iff it cannot reach a point with Chebyshev (L1)
distance of more than ε via a monotone increasing path. Analogously, we define
ε-Pareto minimum and optimum and again, extend this notion to ε-Pareto extremal
slabs. By definition this notion is an over approximation of the Pareto set and if we
chose ε = 0 we get the original definition.

The idea is the Chebyshev distance creates a neighborhood around points x where
ascending paths are allowed which otherwise would prohibit the classification of x

as Pareto maxima. Hence, if no ascending path escapes this neighborhood, x is
identified as such, i.e. a ε-Pareto maximum.

In addition, with the help of the gradient, we can identify the most increasing and
most decreasing scalar field around each point. For each Pareto optimum x and each
direction v, we call the quotient of the absolute values of the most increasing and
most decreasing directional derivative over all separate fields fi the changing rate
of x towards v.

cv(x) := |maxi∇vfi(x)|
|mini∇vfi(x)|

We denote the maximal changing rate with chmax. Note that a maximum chmax
actually exists, since we assume that f is piece-wise linear, thus the gradients are
piece-wise constant, and since otherwise, i.e. if no increasing or no decreasing
gradient exist, x is not a Pareto optimum.

Lemma 2 Let the interval size of the rounding function be smaller than the quotient
of ε and chmax, then all Pareto optimal points are in ε-Pareto optimal slabs.

Proof Given a Pareto optimal point x ∈ S, some path p starting at x in direction
v, the slab containing x can only be classified as ε-Pareto optimum, if along the
path p at least one field increases and one field decreases, both with a value
change of more than δ, the interval size of r . Then, the corresponding path in the
dJCN could neither be classified as ascending nor descending path. Furthermore,
these value changes need to appear within a Chebyshev distance of ε with respect
of f around x. Otherwise, the ascending or descending subpath of p within the
Chebyshev distance is sufficient to make x either not a ε-Pareto maximum or ε-
Pareto minimum, respectively.

Hence, we approximate, from below, the number increasing and decreasing value
changes along p within Chebyshev distance of ε that would result in slab changes
along the corresponding path in the dJCN. If both numbers are equal or larger than
1, path p cannot be used to disqualify x as a ε-Pareto optimum.

Therefore, let y be the first point along p for which maxi (|fi(x) − fi(y)|) ≥ ε.
W.l.o.g. we can assume that the maximal argument of this Chebyshev distance is
i = 1 such that f1(x) − f1(y) = ε. For all other arguments, i �= 1, it holds that
fi(x)− fi(y) < ε. Furthermore, since x is Pareto optimal, we find a minimal point
y ′ between x and y and an arguments j , w.l.o.g. j = 2, with f2(x)− f2(y

′) < 0.

180 J. Bormann et al.

Otherwise, an ascending path from x to y exists such that x cannot be Pareto
maximal and, therefore, neither Pareto optimal.

The number of slab changes c1 based on f1 is therefore approximated from below
f1(x)−f1(y)

δ
= ε

δ
. For an approximation of c2, the slab changes based on f2, we

can assume that both f1 and f2 have the flattest ascend and descend, respectively,
possible and, w.l.o.g. have f1(x) = f2(x) = 0. In other words, f1(t) = a · t with
a = f1(y)

y
and f2(t) = b · t with b = f2(y

′)
y

.
With this assumption we can define the location of y through ε and the gradient

of f1:

f1(y) = ε = a · y ⇒ y = ε

a
,

and calculate the number of slab changes c2 based on f2:

|f2(y)

δ
| = c2 ⇒ c2 = |ε · b

a · δ | = ε|b
a
| · 1

δ
.

Since we assumed that i = 1 is the maximal argument for a point y with
Chebyshev distance equals ε, we know that |f1(x) − f1(y)| ≥ |f2(x) − f2(y)|
and thus, | b

a
| ≤ 1. Therefore, c2 ≤ c1 is the lower boundary for direction v.

This argument, illustrated in Fig. 3, can be done analogously for every path
originating from x to conclude the proof.

Since we have a lower bound for the interval size, the following theorem is a
direct result.

Theorem 2 Except for a bound interval, all refinement steps all connected compo-
nents of Pareto extrema are contained in ε-Pareto extremal slabs.

Note that by decreasing ε to zero we can reduce the over approximation for the
price of more slabs to compute. On the other hand by choosing a rounding accuracy
we can calculate a limit of the approximation rate of Pareto slabs.

Fig. 3 Illustration of the
number of slab changes
between point x and y for two
fields f1, f2

The Approximation of Pareto Sets Using Directed Joint Contour Nets 181

5 Discussion

We have shown that the error limit between the critical slabs and the Pareto set is
reached after a finite amount of refinement steps. However, so far it is not possible to
efficiently calculate chmax and thus the necessary resolution of the rounding function
beforehand. Note that a naive calculation requires roughly the same computational
effort as the calculation of the Pareto set itself, thus providing no faster runtime.

5.1 Implementation of JCN over Constant 2D-Grid

To support the changing of ε and the interval size, we use an alternative implementa-
tion of the slabs in contrast to existing literature [3, 13]. Assuming the grid is evenly
triangulated, each triangle is recursively separated in equally sized subtriangles
based on the interval size and the corresponding rounding function r . Each triangle
is recursively subdivided until the distances to its adjacent triangles with respect
to r is smaller than 1, i.e. ∀i |r(fi(x)) − r(fi(y))| ≤ 1 with x, y the centroids
of the adjacent triangles. In a second step, if for any neighboring triangles their
centroids are inside the same interval, i.e. r(fi(x)) = r(fi(y)) for all fields i, they
are iteratively merged into triangle clusters representing the slabs.

This allows for fast refinement of the slabs if the interval size is changed.

5.2 Example

An simple example showing all types of ε-Pareto extrema is based on three shifted
Gaussian functions, similar to the two used for Fig. 1. Figure 4 shows how the
connected components of the Pareto set are over-approximated by ε-Pareto extremal
slabs. Note how the shape of the extremal slabs in Fig. 4b is similar to the Pareto
extrema in Fig. 4a as well as the correct classification into Pareto minimal, maximal,
and optimal slabs. This effect can be improved with increased refinement at the cost
of a higher number of slabs. The implementation is not restricted by the number of
fields or the complexity of the data, see Fig. 5.

For the fields in Fig. 5, we used Gauss functions with slightly translated extrema.
The movement was done parallel to the horizontal and vertical axis such that the
components of the Pareto set are in cubic shapes. As in previous work for Pareto
sets [9], we notice some irregularities (marked with blue circles) which we attribute
to the coarseness of the data triangulation. Note how those irregularities start to
show up in the critical slabs (Fig. 5a) depending on the interval size of the rounding
function.

182 J. Bormann et al.

Fig. 4 Pareto extremal points and slabs colored green, red, and yellow depending on their type.
In (b) the three individual fields are indicated by a selection of contour lines. (a) Critical slabs. (b)
Pareto set

Fig. 5 Pareto extremal points and slabs colored as in Fig. 4 but with an increased number of fields
and univariate extrema within each field. (a) Critical slabs. (b) Pareto set

Furthermore, to our knowledge neither dJCNs nor any other approach can
indicate where critical slabs appear after further refinement of the rounding function.
This prohibits stepwise, local refinement, i.e. refinement only around critical slabs.

5.3 Reachability Graph

To visualize additional information about the Pareto set, a connected component
in the Pareto set reaches another, if a monotone ascending path between any two
points of those components exist. Obviously, this also implies that a path between

The Approximation of Pareto Sets Using Directed Joint Contour Nets 183

Fig. 6 Two 1D fields, a dJCN for a 2D extension of the fields, and the corresponding reachability
graph

the slabs containing those points exist in the dJCN. Furthermore, since the ε-Pareto
optimality is also defined through reachability, we can apply the same ideas to prove
similar properties for the reachability graph, especially regarding its approximation
by a dJCN.

The next example shows two 1D scalar fields fi : [0, 10] �→ R in the upper
part of Fig. 6, each with a distinct, obvious maximum in the center. The fields are
extended to 2D with fi(x, y) = f (x) for y ∈ [0, 1] and i ∈ {0, 1}. The grid is
triangulated, the resulting slabs are shown in the middle part of the figure. Colors
indicate the slab status while purple lines connect neighboring triangles if their
centroids are comparable, i.e. dominating or dominated.

Using a Union-Find-algorithm to combine neighboring Pareto extremal slabs of
the same type provides the nodes for the reachability graph. Edges are created by
running a path-finding, for examples breadth-first-search, algorithm on the dJCN.

With this, we have the following algorithm.

• Create the dJCN
• Calculate the ε-Pareto set
• Identify clusters of Pareto extremal slabs through Union-Find
• Build the reachability graph through Breadth-First-Search on the dJCN

5.4 Reeb Space

The JCN is an approximation of the Reeb space, a generalization of the Reeb
graph for multifield data. More precisely, given the equivalent class x ∼ y iff both
points belong to the same path connected component of the preimage f−1(f (x)) =
f−1(f (y)), the Reeb space is the space of all equivalent classes with the quotient
topology inherited from S. Thus it is reasonable to discuss the Reeb space as a means
to calculate the Pareto sets and the reachability graph.

The Reeb space has the advantage that it is continuous and not an approximation
as the JCN. Thus, we can apply the original definition of Pareto sets instead of the
detour of ε-Pareto set. Assume that for two points x, y ∈ S, x → y holds, i.e. a
continuous ascending path from x to y exists. Then, there is also an ascending path

184 J. Bormann et al.

Fig. 7 The Reeb space for a
disk with functions
f1(x, y) = x and
f2(x, y) = y. The red and
green lines indicate Pareto
maxima and Pareto minima,
respectively, and the arrows
show one possible ascending
path that connects the two
Pareto extremal components

in the Reeb space from the equivalent class containing x to the class containing
y. Therefore, corresponding to the definitions in Sect. 4.1, we can define points
in the Reeb space as Pareto minimal, Pareto maximal, or Pareto optimal. Like
Jacobi structures we could extract the Pareto set from the Reeb space, see [4]. The
extraction might be improved by the fact that the Pareto set can be considered a
subset of the border of the Reeb space, see Fig. 7.

However, the main advantage from the dJCN, namely the graph structure which
allows a fast approximation of the reachability graph, is not given anymore. We
hypothesize that the calculation of the ascending and descending paths is equally
expensive in the domain S as well as in a triangulated Reeb space.

6 Conclusion

In contrast to previous work, we are not only able to show the connection between
JCNs and Pareto set visually but prove and quantify the relation. In detail, we
provide the following contributions to the study of multivariate topology-based
analysis techniques:

• We disproved that the previous, naive definition of critical slabs is a correct
approximation of the Pareto set.

• We therefore introduced the ε-based definition of Pareto extrema, both in context
of simplicial complexes and the dJCN.

• We also proved that under the ε parameter and after a finite number of refinement
steps, critical slabs are equivalent to Pareto extrema such that the dJCN can be
used as an approximation of the Pareto set and its related structures.

• Furthermore, through the intermediate definition of ε-Pareto minima and max-
ima, we can limit the error between Pareto sets and dJCNs and the resolution of
the rounding interval.

In summary, we can approximate the Pareto set through the dJCN and can limit
its error to some degree. Furthermore, the dJCN can be used to approximate the
reachability graph using simple path finding algorithms for graph structures in

The Approximation of Pareto Sets Using Directed Joint Contour Nets 185

contrast to the existing, computationally expensive approaches on the piece-wise
linear structure.

We implemented and applied the results on a set of artificial data sets with multi-
ple fields and discussed the implications of our work for the relations between Pareto
sets and the Reeb space. While the latter could provide a error-less identification of
the Pareto set, we do not see a fast method to construct the reachability graph out of
the Reeb space. With this, future work aims at utilizing simplification approaches
based on JCN or the Reeb space to efficiently remove local structures from our
multivariate visualization.

References

1. Bormann, J.: Joint contour nets revisited. Master’s thesis, University of Kaiserslautern,
Kaiserslautern (2016)

2. Carr, H., Duke, D.J.: Joint contour nets: computation and properties. In: IEEE Pacific
Visualization Symposium, PacificVis 2013, February 27 2013–March 1, 2013, Sydney, NSW,
pp. 161–168 (2013)

3. Carr, H., Duke, D.J.: Joint contour nets. IEEE Trans. Vis. Comput. Graph. 20(8), 1100–1113
(2014)

4. Chattopadhyay, A., Carr, H., Duke, D., Geng, Z.: Extracting Jacobi structures in Reeb
spaces. In: Elmqvist, N., Hlawitschka, M., Kennedy, J. (eds.) EuroVis – Short Papers. The
Eurographics Association, Aire-la-Ville (2014)

5. Chattopadhyay, A., Carr, H., Duke, D., Geng, Z., Saeki, O.: Multivariate topology simplifica-
tion. Comput. Geom. Theory Appl. 58(C), 1–24 (2016)

6. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple morse functions. In: Cucker, F., DeVore,
R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics: Minneapolis, 2002,
pp. 37–57. Cambridge University Press, Cambridge (2004)

7. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In:
Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD,
June 9–11, 2008, pp. 242–250 (2008)

8. Huettenberger, L., Garth, C.: A Comparison of Pareto Sets and Jacobi Sets, pp. 125–141.
Springer, Berlin (2015)

9. Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar
topology based on pareto optimality. Comput. Graph. Forum 32(3), 341–350 (2013)

10. Huettenberger, L., Heine, C., Garth, C.: Decomposition and simplification of multivariate data
using pareto sets. IEEE Vis. 20(12), 2684–2693 (2014)

11. Huettenberger, L., Heine, C., Garth, C.: A comparison of joint contour nets and pareto
sets. In: Carr, H., Garth, C., Weinkauf, T. (eds.) Topological Methods in Data Analysis and
Visualization IV, pp. 51–65. Springer International Publishing, New York (2017)

12. Munch, E., Wang, B.: Convergence between categorical representations of Reeb space and
mapper. In: 32nd International Symposium on Computational Geometry, pp. 53:1–53:16
(2016)

13. Nam, H.A., Staszczak, A., Schunck, N., Knoll, A., Carr, H., Duke, D.: Visualizing nuclear
scission through a multifield extension of topological analysis. IEEE Trans. Vis. Comput.
Graph. 18(12), 2033–2040 (2012)

14. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans.
Vis. Comput. Graph. 23(1), 960–969 (2017)

Flexible Fiber Surfaces: A Reeb-Free
Approach

Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka,
and Tomohiro Kawanabe

Abstract The fiber surface generalizes the popular isosurface to multi-fields, so
that pre-images can be visualized as surfaces. As with the isosurface, however, the
fiber surface suffers from visual occlusion. We propose to avoid such occlusion by
restricting the components to only the relevant ones with a new component-wise
flexing algorithm. The approach, flexible fiber surface, generalizes the manipulation
idea found in the flexible isosurface for the fiber surface. The flexible isosurface
in the original form, however, relies on the contour tree. For the fiber surface, this
corresponds to the Reeb space, which is challenging for both the computation and
user interaction. We thus take a Reeb-free approach, in which one does not compute
the Reeb space. Under this constraint, we generalize a few selected interactions in
the flexible isosurface and discuss the implication of the restriction.

1 Introduction

An isosurface is defined as the inverse image f−1(s) of some scalar value s in the
scalar field f : M(n) → R, where M(n) is an n-manifold. Though visualizing
isosurfaces [19] is a routine task for scalar field analysis, it is often required to
understand correlations between multiple quantities (e.g. temperature and pressure).

D. Sakurai (�)
Pan-Omics Data-Driven Research Innovation Center Kyushu University, Fukuoka, Japan
e-mail: d.sakurai@computer.org

K. Ono
Research Institute for Information Technology, Kyushu University, Fukuoka, Japan

RIKEN Center for Computational Science, Kobe, Japan

H. Carr
School of Computing, University of Leeds, Leeds, UK

J. Nonaka · T. Kawanabe
RIKEN Center for Computational Science, Kobe, Japan

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_12

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_12&domain=pdf
mailto:d.sakurai@computer.org
https://doi.org/10.1007/978-3-030-43036-8_12

188 D. Sakurai et al.

In fact, scalar data analysis itself can be assisted by multi-field analysis when
considering the gradient magnitude as the second field [17].

For 3-D multi-fields of the form f : M(3) → R
m, the range is extended to

data tuples (x1, .., xm) ∈ R
m. In particular, the fiber surface [8] generalizes the

isosurface for f : M(3) → R
2, which is useful for extracting pre-images in the

domain as a surface mesh. The fiber surface is the pre-image f−1(P) of a control
polygon P , which is a polyline composed by l linear segments each having the
endpoints (xi, yi) and (xi+1, yi+1) (1 ≤ i ≤ l + 1; i, l ∈ N). Each vertex (xi, yi) is
called a control point. The user can specify the fiber surface by drawing the control
polygon in the 2D range. The control point shall be dragged to see how the shape
of the fiber surface changes. This allows fiber surfaces to be simple to compute,
compact in size, and quantitative as isosurfaces in scalar fields. Since the fiber of
a point in an R

2 range is a 1-D structure almost everywhere in the 3-D domain,
the fiber surfaces are indeed surfaces in general. We call a connected component
of a fiber surface a fiber surface component. (A component refers to a fiber surface
component unless specified otherwise.) However, interacting with the components
remains still a challenging task. As with the isosurface, the fiber surface suffers from
overlaps and may have too many features for the user to comprehend. In case of the
isosurface, one has been able to utilize the flexible isosurface [7] to distinguish the
components, hide irrelevant ones such as noise or uninteresting phenomena, and
even vary the isovalue per component. Such interactions were shown to be useful
for visualizing different objects in a CT scan dataset separately, for example.

We thus adapt the component-wise manipulation of the isovalue, as found in the
flexible isosurface for multi-fields, as the flexible fiber surface (Fig. 1). Where an
isosurface component is contracted as a point in the contour tree [5], a component
of a fiber f−1(p) of some value p = (x, y) is contracted as a point in the Reeb
space [13]. Hence, each component of a fiber surface f−1(P) finds its contraction
in the Reeb space as a connected component.

We generalize the flexible isosurface, or to be more precise, its concept of
component-wise manipulation. Our flexible isosurface interface, as implemented
[7], pre-computes the contour tree in order to obtain the seed of isosurface

Fig. 1 Our flexible fiber surface generalizes the flexible isosurface to multi-fields without pre-
computing the topology of pre-images. The domain is shown on the left and the range on the right

Flexible Fiber Surfaces: A Reeb-Free Approach 189

components and the connectivity of these components across different isovalues.
While the contour tree is generalized into the Reeb space for multi-fields, in
this work we avoid computating the Reeb space (we call such an approach to
be Reeb-free), and for the following reasons. Firstly, the scalability of analysis
is limited by the scale at which the Reeb space can be computed. Secondly, the
current standard implementation [27, 28] of the Reeb space computation requires
the user to subdivide the domain to a sufficiently fine resolution such that at least
one tetrahedron is completely contained in each 3-sheet (which is challenging to
achieve). Finally, the Reeb space is hard to be shown to, and to be utilized by, the
user when the Reeb space is complicated [24], which is usual in real-world data.
Interactions relying on the contour tree are not generalized in our approach (3 and 6)
as we avoid obtaining the Reeb space.

Our contributions include (1) varying the input control polygon per fiber surface
component, (2) freeing the operations of the flexible fiber surface from precom-
puting the Reeb space. For contribution (1), we devise a new flexing algorithm.
Contribution (2) means that the flexible iso-surface also becomes Reeb-free as a
special case. Our algorithm works for any 3-D tetrahedral grid, regardless of the
homology of the domain. Our key idea is to follow the pre-image on-demand.

The remainder of this article is organized as follows. We introduce the related
work in Sect. 2, and generalize the semantics of the original flexible isosurface to
our Reeb-free flexible fiber surface in Sect. 3. We then revisit the existing algorithms
of extracting a fiber surface in Sect. 4 with their implication to our computation.
Section 4 explains how our algorithm identifies the connected components of fiber
surfaces extracted with the algorithm by Klacansky et al., and further deform the
fiber surface. Section 5 demonstrates the outcomes of our proof-of-concept imple-
mentation. Section 6 discusses the indication of generalizing flexible-isosurface to
multi-fields in a Reeb-free manner including the limitations. Finally, Sect. 7 gives
the conclusion and future work.

2 Related Work

The flexible fiber surface extends topological operations that are defined for
isosurface. We thus introduce relevant work in the topological analysis for scalar
fields and multi-fields.

2.1 Work in Scalar Field Analysis

Isosurface An isosurface can be visualized effectively with marching cubes [19].
Its basic idea is to rotate pre-defined cubes with triangular patches inside to recon-
struct the isosurface. Since the original marching cubes algorithm had ambiguities
of its topology, topological algorithms often tessellate the cubes into tetrahedra and

190 D. Sakurai et al.

apply marching tetrahedra [3]. In contrast to the marching cubes, the continuation
method [14, 31] starts from seeds and proceeds to adjacent cells. This enables
component-wise tracking of a pre-image, on which our algorithm is based.

Topological Analysis The Reeb graph [23] is a quotient space defined by con-
tracting each of the connected components of isosurfaces to a point. For simple
domains, their Reeb graph is guaranteed to be a tree—hence it has the special
name contour tree. Reeb graphs and contour trees are useful for displaying the
global configuration of the connected components of isosurfaces [2], simplifying
the data [7, 10], indexing isosurfaces [16], extracting the topological changes in an
isosurface [21, 25] and designing transfer functions [25, 30]. The standard algorithm
for the contour tree [5] uses as input the isosurface topology along the edges of the
simplicial mesh. On the other hand, van Kreveld et al. [29] tracked the pre-image
explicitly, which is in fact the approach of our pre-image tracking as well. More
generally, the Reeb graph must be computed [22] instead.

Parallelization of these algorithms has been, and is still, a challenge [11, 21]
especially for distributed systems [9]. The dependency to pre-computed topology
thus restricts the scalability of component-wise manipulations we aim to achieve.
The manipulation, however, is in fact independent of the pre-computation as we
show with our Reeb-free approach.

Interface One of the attributes of the contour tree is its ability to provide seeds
for continuation. This forms the basis for the flexible isosurface [7]. This assumes
that features are represented with connected components of isosurfaces, and lets the
users analyze them while avoiding irrelevant surface components.

The original flexible isosurface interface (Fig. 1) consists of two views, one for
the domain and another for the range. The interface shows the connected compo-
nents in the domain. The components are assigned distinct colors so that the user
can visually identify the connected components. These colors are simultaneously
projected in the range view as color labels in order to indicate the component’s
isovalue. The user can see the pre-computed contour tree optionally in the 2D view
on the right. This view shows the 1D range with an auxiliary dimension so that one
can see the tree structure. In fact, labels are overlayed at the contraction points in
the tree to indicate the position of the components. Though the contour tree was
mandatory in this particular work, this was not necessary for data exploration as the
user still could explore the global context by seeing the cumulative distribution.

We summarize several characteristic operations of the flexible isosurface
below:

• Initialization: the user can initialize a flexible isosurface, i.e. show the entire pre-
image or the largest contour segmentations [20].

• Selection: the user selects the components of interest in order to apply further
operations. The user clicks on the components or on their labels mapped to the
contour tree. Components can also be deselected with the mouse.

Flexible Fiber Surfaces: A Reeb-Free Approach 191

• Evolution: the user varies the isovalue for a subset of visible components by
dragging the corresponding projection in the contour tree or all at once by
manipulating the isovalue slider.

• Deletion: the user can delete selected components. Those are components such
as artifacts and objects irrelevant to the analysis.

• Addition: the user adds a hidden surface component to the domain by clicking
on its point contraction in the contour tree.

• Simplification: if the abundance of surface components makes navigating in the
contour tree difficult, the user can simplify (i.e. hide) or unsimplify (show) the
isosurface by thresholding surface statistics. This is achieved by cutting away or
putting back the arcs of the contour tree, respectively.

2.2 Work in Multi-Fields Analysis

In multi-fields, the isosurface in scalar fields we have seen above generalizes as the
fiber surface.

Fiber Surface Carr et al. [8] approximated the fiber surface as the isosurface of
a scalar field, where the scalar value was the distance to the control polygon in
the range. Later, Klacansky et al. [18] proposed an algorithm to compute the fiber
surface without this approximation. We use the latter algorithm when extracting the
fiber surface.

Topological Analysis Edelsbrunner et al. [13] generalized the Reeb graph to multi-
fields as the Reeb space by contracting each connected component of the fiber
f−1 to a point. The connectivity of connected components was not computed
in their algorithm. This was later achieved by quantizing the range [4] into
rectangular regions and connecting their pre-image in the domain. This approach
found application to visualizing nuclear scission [12] and fiber topology [24].

Eventually, Tierny and Carr [27] computed the Reeb space without the quantiza-
tion. The algorithm partitions the domain with singular fibers, at which topological
events (such as mergers, splits, birth and death of the pre-image) happen. They
estimate the steps of the algorithm to be O(nj ×nT). nj is the number of tetrahedral
edges E; nT is the number of tetrahedra. Though some optimization is possible [27],
the fact remains that irrelevant topological events in the data may heavily increase
the running time. As with the topological analysis for scalar fields, this can restrict
the scalability of the analysis. Our Reeb-free computation, on the other hand scales
linearly with the size of the feature that is actually of interest to the user. Last but not
least, Pareto optimality gives an alternative generalization of scalar topology [15].

192 D. Sakurai et al.

3 Generalizing the Semantics

Our flexible fiber surface generalizes the iso-surface evolution to multi-fields. The
advantages and disadvantages of our generalization will be discussed in Sect. 6.

3.1 Generalizing the Interface

Figure 1 shows our fiber surfacing interface on the right. In the interface, the domain
view on the left shows the fiber surface as the flexible isosurface interface does
for the isosurface. In contrast, our range view on the right replaces the topological
information with a scatterplot to navigate the user in the range. The prototype
focuses on proving the concept.

3.2 Generalizing the Component-Wise Operations

Initialization When the user initializes the fiber surface of a control polygon,
the domain view shows the user all the surface components to understand their
distribution in the domain.

Selection and Deselection (De)selection can be achieved in the domain view. In
contrast, the component-wise selection and deselection cannot be done in the range,
since all the components of a fiber surface overlap in the view.

Evolution The user reshapes the control polygon for selected group of components
by dragging the control points.

Deletion Selected components can be removed from the domain view.

Addition and Simplification As we free the flexible fiber surface from the Reeb
space, these operations become infeasible. Indeed, addition requires displaying the
components to the user, which is the Reeb space itself. Simplification, too, requires
access to the global topology.

4 The Algorithm

We assume a tetrahedral grid and the barycentric interpolation. First we extract the
fiber surface using the algorithm by Klacansky et al. [18]. In each segment of the
control polygon, this algorithm first extracts a base fiber surface, which is the pre-
image of the line that covers the segment (see Fig. 2). The surface is the set of
triangular patches obtained by applying the marching tetrahedra to the scalar field

Flexible Fiber Surfaces: A Reeb-Free Approach 193

Control Points

Range Domain

Base Patch Clipped

Segment
Covering Line

Control Polygon

Fig. 2 Fiber surface extraction [18]. The white/grey/black color indicates the position in the
covering line. A base fiber surface patch is clipped at the pre-image (blue and red) of control
points

defined as the signed distance to the line. The pre-image of the complement of the
segment is then clipped, i.e. cut away.

Next, we identify components, and the user selects interesting ones. The user
shall then move the control point to specify the target control polygon. During the
process, the flexing algorithm proposed in this article tracks the movement of the
fiber surface components individually by tracking the active tetrahedra. (They cover
the surface components being deformed (Algorithm 1).)

4.1 Identifying the Connected Components

Once the surface has been approximated, we can check its connectivity with the
union-find algorithm [26]. The elements of union-find are the points in the mesh, and
we connect the pairs of such points if they lie in adjacent patches. In the traditional
marching tetrahedra, a point shared by adjacent mesh triangles resides in the same
tetrahedral edge. Identifying the points is solved by identifying the edge [3] since
no two different points reside in a single edge. However, a vertex may not lie in the
edge for our fiber surface computation since the patches are clipped (Fig. 2).

A naive approach is to glue the triangular patch corner points when they have
close coordinate values. However, a fiber surface can have intersecting patches, and
thus two points in disconnected patches can share close coordinates. We instead find
the connection between a base fiber’s patches and clipped patch corners separately.

4.1.1 Patch Corners in Base Fiber Surface

To compute the location of corners in the base fiber surface is to extract the
isosurface of the signed distance to a control polygon segment. The connectivity
between the points can be obtained by recording the point ID at the tetrahedral
edge. As a tetrahedral edge intersects with a base fiber surface only once at most,
we keep record of the point IDs for each control polygon segment separately. By

194 D. Sakurai et al.

Range DomainRangeDomain

Intra-Segment Inter-Segment

Fig. 3 Intra-segment connections and inter-segment connections (both in red) between clipped
patches induced by the control polygons in the range

using these point IDs as the elements of the union-find data structure, we connect
the patch corners in a base fiber surface as long as they are actually connected to
each other.

4.1.2 Patch Corners Due to Clipping

As we can see in Fig. 3, two connected patches can belong to the same segment
(intra-segment connection) or two neighboring ones (inter-segment connection).

Finding Intra-Segment Connections Figure 3 shows that an intra-segment con-
nection can have a connection of corner points inside a single tetrahedron and across
two tetrahedra adjacent to each other. To connect the points in the former manner,
our algorithm joins two points with the union-find if they are from the same base
fiber surface and inside the same tetrahedron. In addition, two points that are from
the same base fiber surface and clipped by the identical control point are given the
same point ID when they touch each other at a tetrahedral face. To do so, we record
the point ID at the face for each control point separately just as we did for base fiber
surfaces in Sect. 4.1.1. Notice that clipped patch corners are given a unique ID only
when touching a tetrahedral face.

Finding Inter-Segment Connections Two clipped patches which are pre-image of
different but adjacent segments belong to the same connected component as long as
they are inside the same tetrahedron and were clipped due to the same control point.
We loop through the segments, clip the patches, and connect every neighboring
pairs. If the control polygon is closed, i.e. (x1, y1) = (xl+1, yl+1), we clip the first
segment’s patches but defer connecting them until the end of the loop.

4.2 Following the Connected Components

While the user drags a control point, the control polygon sweeps the range.
As illustrated in Fig. 4, this starts from the source segments and ends at the

Flexible Fiber Surfaces: A Reeb-Free Approach 195

Fig. 4 When the user drags a control point, the segments sweep the range, starting from the source
position and ending at the target position. Our algorithm walks through the active tetrahedra, which
contain the pre-image of a moving segment

target segments. We model the control point to move along the sweep border, which
is a line segment connecting the start and target positions. We follow the surface
components being continuously deformed in the domain. If we observe a moving
component from inside a tetrahedron, the component starts its motion from the
original location and moves towards its destination. As the sweep proceeds, the
pre-image penetrates into adjacent tetrahedra, and moves out from our example
tetrahedron if the destination is outside.

We detail this procedure in Algorithm 1. We start by gathering the active
tetrahedra, i.e. the tetrahedra holding the user-selected fiber surface patches. We
pair each tetrahedron with the segments that define the component, and put all such
pairs in a queue. If a tetrahedron overlaps with multiple segments, every segment
gets its own pair.

We pop a pair (seg, tet) from queue and operate on it (lines 3–13). In order to
avoid processing the same pair twice, we mark the pair as visited. This visit flag is
implemented as an array of tetrahedron IDs for each segment. If the points of tet

have both positive and negative distance to the seg, tet may intersect with a surface
component of seg. The pair then joins the output pairs Pt .

As we have checked the evolution inside tet for seg, we push adjacent tetrahedra
teta’s in queue for visiting it later as long as the component continues teta (lines 14–
18). This continuation happens when tet and teta’s touching face intersects seg in
the range.

Finally, we pass tet to its neighbors segn’s (lines 19–23). If a control point
between seg and segn does not move during a drag, the evolution of component
is independent of segn. We do not process such segn (line 20). Otherwise, we
check whether the component of (seg, tet) continues to segn (line 20). If so, we
put (segn, tet) in queue.

After we visited all the (seg, tet) pairs, we extract the fiber surface components
in them using the method by Klacakanski et al.

196 D. Sakurai et al.

Algorithm 1 Follow the deformation of surface components
Input: Source control polygon Ps , target control polygon Pt , Pairs (segment, active tetrahedron)

tetss of Ps

Output: Pairs (segment, active tetrahedron) tetst of Pt

1: queue ← tetss
2: while queue is not empty do
3: pop (seg, tet) from queue
4: if (seg, tet) is visited then
5: continue
6: end if
7: mark (seg, tet) as visited
8: if seg is not dragged then
9: continue

10: end if
11: if (seg, tet) has base fiber surface of target segment then
12: put (seg, tet) in tetst
13: end if
14: for tetrahedron teta adjacent to tet do
15: if (seg, teta) is not visited and shared_f ace(tet, teta) intersects segment sweep in

range then
16: put (seg, teta) in queue
17: end if
18: end for
19: for segment segn neighboring seg do
20: if control point between seg and segn moved and (segn, tet) is not visited and tet

intersects sweep border in range then
21: put (segn, tet) in queue
22: end if
23: end for
24: end while

5 Outcomes

We build a proof-of-concept interface with C++. We use VT for the data structure
and Qt for the GUI. The interface lets us display a pre-computed scatterplot or
continuous scatterplot [1]. We selected a few typical, simple, datasets to evaluate our
Reeb-free approach. We show that one can in fact achieve component-wise flexing
of fiber surfaces. Our serial implementation is run on a PC with Intel Xeon CPU
(3.20 GHz, 20 MB Cache) and 64 GB RAM. Each dragging completes in several
seconds.

5.1 The Analysis of the Algorithm

As expected, the computation time scales linearly with the number of active
tetrahedra the algorithm, Algorithm 1, visits (Fig. 5). This demonstrates the fact
that the size of the features the user is interested determines the response time. If the

Flexible Fiber Surfaces: A Reeb-Free Approach 197

Number of Tetrahedra maxmin
min

max

Time

Fig. 5 The duration of dragging scale linearly with the number of tetrahedra we process. The
examples share the same control polygon: it is defined as the diagonal line from the point (0, 0)

to (1, 1) in the normalized range, and is dragged towards (0.6, 0.4) to produce 10 samples evenly
along the trace

Fig. 6 Tooth dataset. The two fields are CT value and its gradient magnitude. (a) The domain and
(b) the range. We start by drawing two control polygons that contain either only the crown or root.
We then move them into a region that contains both. The evolution of the crown in white (or root
in red) is restricted to the crown (root)

tetrahedra are distributed evenly in the range, the number of tetrahedra being swept
shall scale linearly with the distance the dragged control point moves away. We can
see this in the plot as the near-constant distance between two neighboring points of
each line.

5.2 A Simple Proof of Concept: The Tooth Dataset

The tooth dataset (Fig. 6) gives a simple proof of concept for our flexible fiber
surface. We subdivided each cube of the input regular grid into 6 tetrahedra with

198 D. Sakurai et al.

the Freudenthal tessellation (see [6]), so that the tetrahedral faces are consistent
across neighboring cubes.

We report that the features are simple to identify without the Reeb space since we
can identify the boundary of objects as hyperbolic curves [17], and their overlaps in
the range resolve in the high gradient regions.

5.3 Comparison with the Flexible Isosurface

We take some small head CT dataset with the resolution of 50 × 50 × 50 for
comparing our results with the flexible isosurface. In Fig. 7, we have visualized
the dataset with the flexible isosurface and with our Reeb-free interface. Due to
the overlap of features in the range, the interaction with the domain is essential for

Fig. 7 Comparing the original flexible isosurface (a, b) and our Reeb-free flexible fiber surface
(c, d) under severe overlaps of features in the range

Flexible Fiber Surfaces: A Reeb-Free Approach 199

our Reeb-free interface. The simplified contour tree is a significant advantage of the
original flexible isosurface interface since it gives hints to an experienced user about
the surface component evolution.

6 Discussion

We now discuss the consequence of our generalization of flexible isosurface to
Reeb-free multi-field analysis.

Analysis of the Algorithm The number of steps required for tracking a component
is O(nT), where nT is the number of tetrahedra to be visited in our method. nT

shall be close to the number of tetrahedra necessary to extract the fiber surface
partitioning the domain [24] with the Reeb space extraction [27]. Though our
implementation is serial, the approach can apparently extend itself to distributed
systems by locally running Algorithm 1 in each node with occasional communica-
tions between different nodes. Though this requires further research, it should be
more feasible than computing the Reeb graph of such systems.

Evolution The evolution of fiber surface components lets us understand how
multivariate values distribute, and especially how the features continue in the
domain.

Simplification We did not simplify the topology of connected components
although this was available in the flexible isosurface concept by Carr et al. thanks
to the contour tree.

Global Exploration We show a scatterplot to provide the user with a global context
to the analysis. The cruciality of this lack depends on the dataset to be analyzed.
Datasets with similar objects tend to suffer because their image overlap in the range.
The scatterplot can be peeled [27] for an effective exploration, though such an
operation assumes pre-computing the Reeb space. Even if the Reeb space were
available, navigating the user in the abundance of features is a challenge. This
is because visualizing the Reeb space becomes rapidly challenging as it grows
complex [24].

7 Conclusion and Future Work

We extended the flexible isosurface to multi-field without requiring Reeb space
analysis. In particular, we generalized the semantics of component-wise pre-image
evolution to multi-fields. Our approach does not require computing the pre-image
topology explicitly. The algorithm identifies the connected components of fiber
surfaces, and sweeps the range to track them. The lack of global pre-image topology
and simplification is a downside of this approach (although rendering the Reeb space

200 D. Sakurai et al.

is itself an unsolved challenge). Through experiments for rather simple datasets, we
demonstrated that the interaction in the domain does not necessarily require the
Reeb space.

We see a few future directions: the global navigation and simplification of data
that are affordable for non-experts of topological analysis; extension to different cell
types and interpolants.

Acknowledgments We thank Julien Tierny at Sorbonne Universities UPMC for offering some
of the datasets [28]. This work was supported by the German Federal Ministry of Education
and Research (HD(CP)2 project, grant number 01LK1501C) and the Engineering and Physical
Sciences Research Council (EPSRC) project EP/J013072/1.

References

1. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Trans. Vis. Comput. Graph. 14(6),
1428–1435 (2008)

2. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE
Visualization ’97, pp. 167–173 (1997)

3. Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–
355 (1988)

4. Carr, H., Duke, D.: Joint contour nets. IEEE Trans. Vis. Comput. Graph. 20(8), 1100–1113
(2014)

5. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
24(2), 75–94 (2003)

6. Carr, H., Moller, T., Snoeyink, J.: Artifacts caused by simplicial subdivision. IEEE Trans. Vis.
Comput. Graph. 12(2), 231–242 (2006)

7. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: simplifying and displaying scalar
topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42–58 (2010)

8. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: generalizing
isosurfaces to bivariate data. Comput. Graphics Forum 34(3), 241–250 (2015)

9. Carr, H.A., Weber, G.H., Sewell, C.M., Ahrens, J.P.: Parallel peak pruning for scalable SMP
contour tree computation. In: Proceedings of 2016 IEEE 6th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 75–84 (2016)

10. Chiang, Y.J., Lu, X.: Progressive simplification of tetrahedral meshes preserving all isosurface
topologies. Comput. Graphics Forum 22(3), 493–504 (2003)

11. Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE
Trans. Vis. Comput. Graph. 19(2), 249–262 (2013)

12. Duke, D., Carr, H., Knoll, A., Schunck, N., Nam, H.A., Staszczak, A.: Visualizing nuclear
scission through a multifield extension of topological analysis. IEEE Trans. Vis. Comput.
Graph. 18(12), 2033–2040 (2012)

13. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In:
Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08,
pp. 242–250 (2008)

14. Howic, C., Blake, E.: The mesh propagation algorithm for isosurface construction. Comput.
Graphics Forum 13(3), 65–74 (1994)

15. Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar
topology based on pareto optimality. Comput. Graphics Forum 32(3pt3), 341–350 (2013)

16. Kettner, L., Rossignac, J., Snoeyink, J.: The Safari interface for visualizing time-dependent
volume data using isosurfaces and contour spectra. Comput. Geom. 25(1), 97–116 (2003)

Flexible Fiber Surfaces: A Reeb-Free Approach 201

17. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct
volume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization,
VVS ’98, pp. 79–86 (1998)

18. Klacansky, P., Tierny, J., Carr, H., Geng, Z.: Fast and exact fiber surfaces for tetrahedral meshes.
IEEE Trans. Vis. Comput. Graph. 23(7), 1782–1795 (2017)

19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction
algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

20. Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour
segmentation: a tool for the localization of spots in confocal images. Cytometry 23(1), 15–
21 (1996)

21. Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets.
Algorithmica 38(1), 249–268 (2003)

22. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb
graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007)

23. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une
fonction numérique. Comptes Rendus l’Acadèmie des Sciences de Paris 222, 847–849 (1946)

24. Sakurai, D., Saeki, O., Carr, H., Wu, H.Y., Yamamoto, T., Duke, D., Takahashi, S.: Interactive
visualization for singular fibers of functions f : R3 → R

2. IEEE Trans. Vis. Comput. Graph.
22(1), 945–954 (2016)

25. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its applica-
tion to transfer function design. Graph. Model. 66(1), 24–49 (2004)

26. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225
(1975)

27. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans.
Vis. Comput. Graph. 23(1), 960–969 (2017)

28. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The Topology ToolKit.
Technicl report, CNRS/UPMC. https://topology-tool-kit.github.io/

29. van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and
small seed sets for isosurface traversal. In: Proceedings of the Thirteenth Annual Symposium
on Computational Geometry, SCG ’97, pp. 212–220 (1997)

30. Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume
rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007)

31. Wyvill, B., McPheeters, C., Wyvill, G.: Animating soft objects. Vis. Comput. 2(4), 235–242
(1986)

https://topology-tool-kit.github.io/

Topological Subdivision Graphs
for Comparative and Multifield
Visualization

Christian Heine and Christoph Garth

Abstract We propose that a topological model of a real-valued function can be
employed to define a spatial subdivision of the function’s domain. When multiple
topologically-induced subdivisions for the same or different functions on the same
domain are combined, a finer spatial subdivision arises: the topological subdivision
complex. The topological subdivision graph then gives adjacency relations among
the d-cells of the subdivision complex and can be used to describe similarities
among topological models. We apply this idea to give new topological models
for multiple real-valued functions (multifields), extending contour trees and Morse-
Smale complexes to these problem settings, and we illustrate our idea for piecewise-
linear functions. We also discuss how our work relates to joint contour nets.

1 Introduction

A common approach to study the behavior of physical phenomena is to simulate
them and then analyze the results—often visually. To overcome the problem of
occlusions in 3D and the increasingly finer resolution of simulation models, the
focus has shifted to identifying specific features, e.g. spatial regions that locally
behave in a similar manner. It has been shown that certain topological structures
yield suitable candidates of such features. Since some phenomena cannot be cap-
tured by criteria addressing spatiotemporal variation of just one physical quantity,
feature detection needs to consider characteristic patterns in and relationships
between multiple physical quantities. For a general overview of such multifield
visualizations we refer the interested reader to the surveys by Fuchs and Hauser [13]
and Heine et al. [16].

C. Heine (�)
Image and Signal Processing Group, University of Leipzig, Leipzig, Germany
e-mail: cheine@informatik.uni-leipzig.de

C. Garth
AG Computational Topology, University of Kaiserslautern, Kaiserslautern, Germany
e-mail: garth@cs.uni-kl.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_13

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_13&domain=pdf
mailto:cheine@informatik.uni-leipzig.de
mailto:garth@cs.uni-kl.de
https://doi.org/10.1007/978-3-030-43036-8_13

204 C. Heine and C. Garth

This paper introduces the idea, that the well-understood topological models
for single real-valued functions can be trivially extended to multiple real-valued
functions on a common domain, since each topological model for single functions
gives rise to a subdivision of the domain and that these subdivisions can be
combined to give a fine subdivision encompassing all information present in its
constituents. Thus, unlike methods that extract features directly from multifields,
our method possibly omits some information spread across multiple fields. But the
combination of information extracted from single fields allows further applications:
It can be applied to compare or combine different topological models for the same
function.

2 Related Work

There have been multiple approaches to extend topological models of single real-
valued fields to multifields. Edelsbrunner and Harer [9] defined Jacobi sets as
the critical points of one function restricted to all preimages of the remaining
functions. This extends the notion of critical points to multiple functions, but can
be applied only when the number of functions does not exceed the dimension of
the domain. Huettenberger et al. [17] use techniques from multicriteria optimization
to define Pareto sets—an extension of critical points to multifields, but preserving
the signedness of the single fields. While the number of input functions is not
constrained as in the Jacobi set case, the more functions there are, the more likely a
point becomes Pareto. Pareto sets get less informative and detailed the bigger they
become. In contrast, our method always increases in detail the more functions the
input comprises.

Edelsbrunner et al. [12] defined the Reeb space of a set of functions fi as the
quotient space for the equivalence relation induced by the connected components
of all of fis’ preimages, thereby extending the concept of Reeb graphs to mul-
tifields. However, while for single functions, the preimages’ components can be
differentiated based on their topological properties, this does not happen for multiple
functions. Without such built-in differentiation, preimage components need to be
organized differently. Chattopadhyay et al. [6] proposed Jacobi structures, which
map Jacobi sets into the Reeb space, integrating information of both models.

Carr and Duke [4] proposed joint contour nets (JCNs): a JCN is the quotient
space induced by the connected components of all of f̃is’ preimages, where f̃i

denotes a range-quantized version of fi . Similarly, Singh et al. [22]’s Mapper algo-
rithm defines a set of overlapping regions in the functions’ range space, covering it,
and stores spatial relations among the regions’ preimages’ connected components.
These methods work on the basis of preimages and their connected components,
but make no direct use of topological features present in the single input functions
to point out distinct or idiosyncratic subsets of the functions. Compared to this
preimage-focused strategy, topological subdivision graphs focus on integrating

Topological Subdivision Graphs for Comparative and Multifield Visualization 205

information from topology-induced subdivisions of single fields. Still, they can be
made to yield results similar to joint contour nets as will be shown in Sect. 6.

Another approach is presented by Schneider et al. [20]. It extracts so-called
largest contours from the single functions, uses the spatial overlap between largest
contours of different functions to quantify similarity, and then uses clustering
techniques to identify groups of strongly overlapping largest contours. However,
the result does not integrate the information from these single features to multifield
features. If the input functions are sufficiently similar, one can use, e.g. Günther et
al. [15], who presented a method to compute confidence regions for critical points
and relate them by a nesting structure similar to merge trees. Wu and Zhang [25]
proposed to compute the arithmetic mean of the input functions, use single-function
topological methods on the result, and annotate it by measures of variation. Our
method is not limited to input functions that are pairwise similar.

3 Background

This section contains the topological concepts used in the remainder of this
paper. For brevity, we assume that the reader is familiar with certain topological
concepts, notably topological spaces, simplicial complexes, as well as piecewise
linear functions (see, e.g., Edelsbrunner and Harer [10]).

A critical point [1] p of a function f : M → R defined on a d-manifold is a
point where ∇f = 0, i.e., where f ’s gradient vanishes. We assume f to be a Morse
function, meaning that critical points are isolated and have distinct function values.

A level set f−1(v) of a function f for a value v is simply the preimage of v with
respect to f , i.e., the set of all points p where f (p) = v. Each level set may consist
of multiple connected components. An equivalence relation can then be defined for
points of the domain: p and q are equivalent, if they belong to the same component
of some level set, called contour. We will refer to this equivalence relation as ∼C in
the remainder of this paper. The Reeb graph [19] is defined as the quotient topology
on M with respect to ∼C . Informally, this process can be thought of as representing
each contour as a point and contour adjacency as point adjacency. If the domain is
simply connected, i.e. each closed curve can be smoothly contracted to a point, the
Reeb graph contains no loops and is called the contour tree [2]. A superlevel set of
f for the value v is defined as f ’s preimage of the interval [v,∞) and a sublevel
set is defined analogously as f ’s preimage of the interval (−∞, v]. Similar to level
sets, superlevel and sublevel sets may consist of multiple connected components,
and we may define an equivalence relation among points with function value v,
based on whether they lie in the same superlevel or sublevel set for v, respectively.
The quotient topology using this equivalence relation gives the merge tree.

An integral line of a smooth function f is a curve of maximal length along
which the tangent is collinear to the function’s gradient. For each critical point, its
descending cell comprises the integral lines that converge on it, and the ascending
cell comprises the integral lines that originate from it. When ascending and

206 C. Heine and C. Garth

descending cells intersect only transversally, the domain subdivision induced by
this equivalence relation (two points are equivalent if each lies on an integral line
that in the limit connects the same pair of critical points) is a CW complex called
the Morse-Smale complex.

A subdivision of a set Ω is a collection of sets S such that (1) the union over all
sets in S is Ω , and (2) the members of S are pairwise disjoint. We will only consider
subdivisions where each set of S is connected. Subdivisions of a set arise naturally
as the equivalence classes of equivalence relations. Given two subdivisions of Ω , S1
and S2, their joint subdivision S1,2 is the subdivision of Ω where, whenever s1 ∈ S1
and s2 ∈ S2 are not disjoint, the connected components of their intersection are
members of S1,2. The definition extends naturally to the joint subdivision of more
than two subdivisions.

4 Topology-Induced Spatial Subdivision

In this section, we use contour trees and Morse-Smale complexes to illustrate how
topological models subdivide the domain and how to combine this information.

We were motivated by the question “What is the smallest structure from which
the contour tree for each function of a collection can be reconstructed?” Its answer
was inspired by joint contour nets, which can be viewed as solving the problem
for augmented contour trees of range-quantized functions. We wished to remove
these restrictions and in the process realized that joint contour nets combine the
information from a preimage-based subdivision of each function. We first noted that
the subdivision for each field can be constructed in other manners and later that
the idea generalizes to when the subdivision for each field need not result from the
same topological method for each field. Under this premise, the information from
multiple topological models of the same function can be combined.

Recall that in the contour tree case, two points are called equivalent if they belong
to the same connected component of a level set for their common function value,
formally expressed by the equivalence relation ∼C . It may now be observed that
each contour C partitions a simply-connected domain into at least two regions (M \
C generally consists of multiple connected components) and that each critical point
lies either on the contour itself or in exactly one of these regions. We can define an
equivalence relation among contours in the following way: Two contours C1, C2 are
equivalent, if any critical point p of f is either member of both C1 and C2 or it is
member of some connected component X of M\C1 and member of some connected
component Y of M \ C2 such that any critical point of f is member of X iff it is
also member of Y . Informally, two contours are equivalent if they partition the set
of critical points in the same way. Note that the definition implies that contours
that have a critical point as member can only be equivalent to themselves. We will
refer to this equivalence relation by ∼S , and we can combine it with ∼C to a new
equivalence relation ∼CT that amounts to define two points as equivalent, if they
lie on the same node or edge of the contour tree. We can use ∼CT to subdivide the
domain; the result can be stored in a CW complex.

Topological Subdivision Graphs for Comparative and Multifield Visualization 207

For the more general case of a Reeb graph in a non-simply-connected domain,
∼S is not discriminative enough. One anonymous reviewer suggested the following
criterion, which is also simpler than ours for contour trees: Two contours c1, c2 of
the preimage for f1, f2 are equivalent if they are identical or if they are both subset
of one connected component X of the preimage of [min{f1, f2}, max{f1, f2}] and
X has no critical point as member. This definition is the basis for the algorithms
presented by Doraiswamy and Natarajan [8] and Tierny and Carr [23].

For merge trees, we define two points p, q as equivalent, if the smallest super-
level/sublevel set component containing p is the same as the one for q . Just as with
level sets we can construct a coarser equivalence relation: two superlevel/sublevel
set components are equivalent, when they contain the same critical points and thus
by extension, two points are equivalent, if they are mapped to the same edge of the
merge tree. To ensure that the decomposition results in a proper CW complex, we
furthermore need to distinguish superlevel/sublevel set components that contain a
critical point on their boundary from those without.

Morse-Smale complexes are already CW complexes and their cells partition the
domain. However, we would like to point out that the Morse-Smale complex results
from combining two domain subdivisions: one that treats points as equivalent when
they have the same critical point at the terminating end of their integral line and one
similarly for the beginning of their integral line. Morse-Smale complexes already
employ the principle we suggest to use for any topological model: combine the
information from all single functions’ topologically-driven subdivision.

We were initially also considering whether, in straight analogy, the domain
subdivision arising from a contour tree is just the combined domain subdivision
induced by the superlevel and the sublevel merge tree. However, this is not the
case, as can be seen from the counterexample in Fig. 1. The resulting combination

Fig. 1 Counterexample to the hypothesis that the combined domain subdivision induced by the
merge tree for super- and sublevel sets is the same as the domain subdivision induced by the contour
tree. From left to right: input function, merge tree for superlevel sets, merge tree for sublevel
sets, contour tree. The spurious red contours arise from the merge trees’ domain subdivision. The
contour around 4 is part of the boundary of the sublevel set component for 3 and the contour
around 1 is part of the superlevel set component for 2. The pattern in the contour tree seems to be
the necessary and sufficient condition for the existence of spurious contours

208 C. Heine and C. Garth

would be too fine. However, one can define contour tree domain subdivisions via the
equivalence of upward and downward monotone paths ending at critical points [7].
This emphasizes the difference between concepts of critical points that can be
reached from a point p via monotone paths, i.e., domain paths along which the
function’s values are changing monotonously, and the set of critical points that are
contained in the smallest superlevel/sublevel set component containing the point p.

5 Topological Subdivision Complex and Graph

The topological subdivision complex is not a single mathematical concept. Rather
it is any CW complex that is derived in a fashion similarly to the examples in
the previous section from the topological models of single functions or a joint
subdivision of multiple topological subdivision complexes. Given a set of domain
subdivisions, regardless of whether they result from the topological models of
the same kind for different functions, topological models of different kinds for
the same function, or any combination thereof, we can trivially compute a joint
subdivision, or, equivalently, combine the equivalence relations giving rise to the
domain subdivisions.

The resulting subdivision can be displayed directly in two or three dimensions,
but for three or more dimensions it will be easier to view its dual, which we call
the topological subdivision graph. Its nodes are the set of d-cells of the joint
subdivision, and we connect two nodes by an edge if they have a common d-1-
face. Furthermore, we annotate each node with its cell volume (for visualization
purposes) and annotate each edge with a list of subdivisions which do not separate
the two cells, i.e., in which the union of the two cells are a subset of a common cell.

The latter annotation ensures that one can quickly compute a quotient graph that
equals the topological subdivision graph for a subset of domain subdivisions. E.g.,
imagine two subdivisions (H and V) of a square, one splitting the square horizontally
and one splitting the domain vertically. The topological subdivision graph of the
joint subdivision contains four nodes corresponding to the four 2-cells: upper-left,
upper-right, lower-left, and lower-right. There are now two H-edges connecting the
lower with the upper nodes and two V-edges connecting the left with the right nodes.
To get the topological subdivision graph for the H-subdivision one just collapses
all nodes connected by V-edges. The process of computing a quotient topological
subdivision graph thus becomes a simple graph algorithm in strict analogy to how
joint contour nets for a subset of input functions can be computed from the joint
contour net for all functions [4]. For merge trees and contour trees, edges can be
additionally annotated with a direction, based on the ordering of function values in
the connected nodes.

Our work was originally motivated by finding a small data structure that
contains all information from the individual functions’ contour trees. Note that
this annotation and the quotient graph operation on the topological subdivision
graph will not give these contour trees, because the subdivision graph retains only

Topological Subdivision Graphs for Comparative and Multifield Visualization 209

information from the complex’s d-cells and their adjacencies, but critical points
reside in 0-cells. Instead, a joint subdivision complex can be annotated as follows:
for each cell of the joint subdivision we list all cells of the base subdivision
complex’s cells that it is a subset of. Based on this information it is again simple to
perform quotient complex operations. The contour tree can be reconstructed from
the subdivision complex for one function as follows: Each cell of dimension less
than d has a critical point, and two critical points are connected, when their cells are
incident on a common d-cell.

6 Computation

A general algorithm for our method may only be sketched, because we do not
limit ourselves to particular topological methods to drive construction of the base
subdivisions. For illustration, we will give the details of our current proof-of-concept
implementation that can combine information from multiple Morse-Smale com-
plexes and contour trees. Our implementation is currently restricted to piecewise
linear functions on a common simplicial complex in 2D. Before joining the infor-
mation, we compute contour tree and Morse-Smale complex for each input function
separately. To compute the contour trees, we use the algorithm by Carr et al. [5]
and to compute Morse-Smale complexes we use the algorithm by Edelsbrunner et
al. [11]. We choose this latter algorithm purely out of convenience. One may use
instead the algorithm by Bremer et al. [3] that computes the geometry of the Morse-
Smale complex’s cells more accurately, or a combinatorial Morse-Smale complex.
Algorithms for this are present, e.g., in Shivashankar and Natarajan [21] or Tierny
et al. [24].

When using the algorithm by Edelsbrunner or a combinatorial Morse-Smale
complex, the 1-cells of the resulting Morse-Smale complex are a subset of the input
domain’s edges. Therefore combining this information is trivial: two triangles of the
domain belong to the same 2-cell in the joint subdivision complex if they share an
edge that does not belong to any 1-cell of the Morse-Smale complexes. The triangles
are further subdivided based on the functions’ contour trees.

Let S0 be the domain subdivision given by the simplicial complex and f1, . . . , fn

be the input functions, our implementation conceptually first computes the topologi-
cal subdivision complex for the subdivisions {S0, . . . , Sn} and then uses the quotient
operation defined in the previous section to remove S0. This is in strict analogy to
the algorithm by Carr and Duke [4]. This approach allows us to work on a triangle-
by-triangle basis, simplifying implementation: We never explicitly compute any Si ,
rather we compute the needed convex polygonal patches on the fly, and compute
line intersections in local triangle coordinates, which is numerically preferable.

In particular, we iterate over all triangles. For each triangle we start with a set P

of convex patches that is initially just the triangle’s geometry in local coordinates.
Then we iterate over fields. The triangle’s endpoints, by construction of the contour
tree, must lie along a monotone path in the tree. Thus, for each saddle that we pass

210 C. Heine and C. Garth

along this path, the triangle contains a part of its contour which is a line segment.
We extend this line segment to a line and split all patches it intersects, updating an
incidence graph between points, line segments, and patches. Since all line segments
from the same field are parallel withing the same triangle, we can perform the test
and split efficiently by sweeping along the incidence graph. This sweeping also
ensures consistency with the information in the contour trees. After computing all
patches in this fashion, we sweep the incidence graphs of adjacent triangles and
merge points and line segments along the shared edge. We use a simple connected
components algorithm on the patches’ adjacency graph and compute the quotient
graph to obtain the topological subdivision complex’s 2-cells and their adjacencies.

Since the patches are split iteratively with each field, one would like to manage
the numerical error. However, since each point of each patch is at the intersection
of two line segments which are parts of contours from different fields, their position
in local coordinates numerically only depends on the saddles’ function values and
the three triangle endpoints’ function values for two fields. We thus store geometry
at the edges only, namely using the coefficients αi for the linear equation α0 +
α1β1 + α2β2 = 0 (βi refer to local coordinates), and compute points’ positions by
intersecting adjacent faces of a patch. Since lines are only added, but their geometry
is never changed, the numerical error is independent of the number of input fields.

The runtime of our algorithm is dominated by patch splitting and can be bounded
from above by a function linear in the number of triangles N and linear in the
number of saddles si for each field: O(N

∏
si). Since each saddle’s contour

typically runs through few triangles and not all saddle contours of one field intersect
all saddle contours of all other fields in all triangles, the runtime is much lower
in practice. A stricter upper bound on the runtime is the number of patches.
The computation of connected components and the quotient graph to remove the
subdivision given by the triangulation are linear in the number of patches.

We use a simple straight-line graph drawing to show the topological subdivision
graph: we center nodes on the cell they represent and use their sizes to indicate
their cell’s volume. This enables comparison of topological models for different
functions. If, say, the functions yield very similar contour-tree-based domain
subdivisions, we can expect the topological subdivision graph to be mostly tree-
like as well, with only minor additional loops, but whose node volumes are
notably smaller. Note that the topological subdivision graph for each field does
not contain loops, but the topological subdivision graph for the joint subdivision
might. In our implementation, we currently use topological simplification for each
field separately, but more appropriate would be a method to simplify the graph
directly. We leave other visualizations of topological subdivision graphs and their
simplification for future work.

7 Results

We used the cross-section of a fluid flow simulation inside a cylinder. The flow
is steady and rotationally symmetric. We use a cross-section along the axis of

Topological Subdivision Graphs for Comparative and Multifield Visualization 211

pressure vorticity

q-criterion λ2

Fig. 2 Cross-section through a flow simulation inside a cylinder. Four quantities are shown. White
lines show all contours that contain a critical point (as a set-theoretic member). Black lines indicate
Morse cells (separatrices)

rotation. The data set contains 29704 triangles on 15105 points. Of particular
interest is the identification of vortical structures, which tend to occur in areas of
low pressure and high vorticity. Furthermore, the quantities q-criterion and λ2 [18]
are typically associated with vortices. Figure 2 shows color maps overlayed by
contour trees subdivision and Morse-Smale complexes for these four quantities.
Note that asymmetries arise from simulation of simplicity that is used to compute
the topological models. The computation of the single fields’ contour trees, Morse-
Smale complexes, their subdivision, and the topological subdivision graph took less
than 0.4 s. Our proof-of-concept implementation has not yet been optimized for
speed.

Figure 3 illustrates and showcases the topological subdivision graph of a cross-
section through a cylindrical flow. From the color maps alone, the fields look
similarly complex, but the depiction of the Morse-Smale complex illustrate that
pressure has fewer cells in its Morse-Smale complex. When we combine both
Morse-Smale complexes, we can see that the resulting subdivision graph closely

212 C. Heine and C. Garth

pressure

vorticity pressure and vorticity

q-criterion

λ2 q-criterion and λ2

Fig. 3 Combined topological subdivision graphs from the subdivision graphs induced by the
Morse-Smale complex of different quantities in the cross-section of a cylindrical fluid flow. Black
circles show cell centers, circle size is proportional to cell size, blue lines show cell adjacency

resembles the subdivision graph for vorticity, so vorticity already contained most
information and pressure added little more. We can also see that the subdivision
graph for q-criterion and λ2 are highly similar, with the notable exception that the
Morse-Smale complex for λ2 contains many spurious cells at the boundary. We
suppose this is because our λ2 computation has less data near the boundary to
compute smooth gradients. A next step would be to identify and remove such small
features meaningfully (c.f. Sect. 8). We leave such considerations for future work.

Topological Subdivision Graphs for Comparative and Multifield Visualization 213

Fig. 4 Cross-section through a flow simulation inside a cylinder. Topological subdivision graph
for four quantities are shown

The joint subdivision graph also demonstrates that both subdivision are very similar,
but we noticed the fan-like structures in the upper outer parts of the image. These
result from the 1-cells of the two Morse-Smale complexes not being fully congruent.
This could be an artifact of using the algorithm by Edelsbrunner et al. [11], where
the gradient path can switch from one mesh edge to another for minute changes
in function value at the mesh nodes. The problem could be alleviated by using a
different algorithm. However, the graphs allow to study the systematic difference
of these two models, most easily visible in the middle and lower middle part of the
image. The joint subdivision graph integrates the information from both effectively.
Figure 4 shows the topological subdivision graph for all four quantities. Apart
from the mentioned spurious cells, the cells are roughly the same size and shape,
indicating that the information from the different functions could be integrated quite
well.

Figure 5 gives an example for the topological subdivision graph of the contour
tree, the Morse-Smale complex, and their combination for the pressure field of
the same dataset. Since gradient paths are always perpendicular to contours, the
information of a contour tree and a Morse-Smale complex typically integrates well.

214 C. Heine and C. Garth

MS complex

contour tree MS complex and contour tree

Fig. 5 Topological subdivision graph for the MS complex, contour tree, and their combination, of
the pressure field of a flow inside a cylinder

8 Discussion

The presented method was largely inspired by joint contour nets [4]. One may
view our method as a generalization: the domain subdivisions implicit in joint
contour nets are based on a simple equivalence relation: connected components of
the preimages f−1

i ([kΔi, (k + 1)Δi)) for all k ∈ Z. We basically replaced this by
preimages of topological cells from a topological model for each field, removing the
parameters Δi in the process. Although not fully equivalent, topological subdivision
models can be used to compute joint contour nets. For each input function’s range
define the following intervals: [kΔi], (kΔi, (k + 1)Δi), for all k ∈ Z, and define
two points equivalent, if their functions’ values fall all inside the same interval. This
slightly different construction is necessary to ensure the topological subdivision
complex is indeed a complex. Similarly, the Mapper algorithm [22] uses a set of
overlapping intervals (kΔi − ε, (k + 1)Δi + ε) for each function. When ε > 0
approaches 0, the above variation of our method can be considered equivalent.
However, we would like to stress that such methods that only consider the functions’
range, fail to integrate important topological information present in the single
functions.

The method currently can only be considered to be a building block. Although
it uses all information present in the topological models of single functions, it only
generates a set of possible feature candidates. Which of these correspond to features
meaningful to a particular application depends both on the distribution of function
values inside the regions, and ultimately also on the goal of the application. An open
challenge here is to find typical patterns of value distributions.

Topological Subdivision Graphs for Comparative and Multifield Visualization 215

The biggest challenge for the method is to find a suitable method of topological
simplification. One option is to simplify the joint topological subdivision complex,
but this can only consider the size of cells and may not always be consistent: it
is not clear whether there are still subdivision complexes that will result in the
joint complex when combined. Of course, one can always simplify the topological
models for each field separately. But this will not help in a situation like in Fig. 3,
where the 1-cells of two Morse-Smale complexes ran close but were not exactly
identical. Also, when simplifying different topological models of the same field, it is
not clear which simplification should take precedence when it comes to updating the
underlying real-valued function, since the changes needed to make one topological
model of a function simpler might conflict with the requirements of making a
different topological model of the same function simpler. In particular if one wants
the resulting function to be geometrically simple as well (c.f. Günther et al. [14]).

9 Conclusion

We presented a new method suitable for integrating the information from different
topological models of the same scalar function, topological models of different
scalar functions, and combinations thereof. The basic idea is to use domain sub-
divisions, which can serve as a “common language”, and integrate the information
from all subdivisions in a finer subdivision. Our initial experiments on a real-world
simulation dataset of a fluid flow inside a cylinder showed the feasibility of the
approach. The proposed method needs an algorithm for removing small features
that arise from noise or are insignificant. But it is challenging to find a method that
is general enough to work with any kind and combination of topological model.

By construction, the topological subdivision complex for a set of contour trees
contains information from them; the single contour trees can be extracted using a
suitable quotient space operation. Can we prove that this is the smallest structure
with this property? Finally, although we illustrated topological subdivision graphs
only for Morse-Smale complexes and contour trees, the method can easily be
adapted to other topological models—not necessarily models for single fields. For
instance, Pareto sets [17] can also be interpreted as a domain subdivision. Under
certain circumstances Jacobi sets [9] can also subdivide a domain. It would be
interesting to apply our approach to these methods and extend it to vector and tensor
field topology as well. We leave such considerations for the future.

Acknowledgments We would like to thank the anonymous reviewers for in-depth and helpful
remarks and suggestions to improve the paper, in particular the reviewer that pointed out the
equivalence relation for contours of Reeb graphs.

216 C. Heine and C. Garth

References

1. Banchoff, T.F.: Critical points and curvature for embedded polyhedral surfaces. Am. Math.
Mon. 77(5), 475–485 (1970)

2. Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. In: Proceedings of
the Fall Joint Computer Conference (AFIPS ’63) (Fall), pp. 445–458. ACM, New York (1963)

3. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions
on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

4. Carr, H., Duke, D.: Joint contour nets: computation and properties. In: Proceedings of the IEEE
Pacific Visualization Symposium (PacificVis), pp. 161–168 (2013)

5. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
24(2), 75–94 (2003)

6. Chattopadhyay, A., Carr, H., Duke, D., Geng, Z.: Extracting Jacobi structures in Reeb
spaces. In: Elmqvist, N., Hlawitschka, M., Kennedy, J. (eds.) EuroVis—Short Papers. The
Eurographics Association, Switzerland (2014)

7. Chiang, Y.J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output-sensitive construction of
contour trees using monotone paths. Comput. Geom. 30(2), 165–195 (2005)

8. Doraiswamy, H., Natarajan, V.: Output-sensitive construction of Reeb graphs. IEEE Trans.
Visual. Comput. Graph. 18, 146–159 (2011)

9. Edelsbrunner, H., Harer, J.: Jacobi sets. In: Cucker, F., DeVore, R., Olver, P., Süli, E.
(eds.) Foundations of Computational Mathematics, pp. 37–57. Cambridge University Press,
Cambridge (2004)

10. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathemati-
cal Society, New York (2010)

11. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise
linear 2-manifolds. In: Proceedings of the Seventeenth Annual Symposium on Computational
Geometry (SCG ’01), pp. 70–79. ACM, New York (2001)

12. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In:
Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry (SCG ’08),
pp. 242–250. ACM, New York (2008)

13. Fuchs, R., Hauser, H.: Visualization of multi-variate scientific data. Comput. Graphics Forum
28(6), 1670–1690 (2009)

14. Günther, D., Jacobson, A., Reininghaus, J., Seidel, H.P., Sorkine-Hornung, O., Weinkauf, T.:
Fast and memory-efficienty topological denoising of 2D and 3D scalar fields. IEEE Trans. Vis.
Comput. Graph. 20(12), 2585–2594 (2014)

15. Günther, D., Salmon, J., Tierny, J.: Mandatory critical points of 2D uncertain scalar fields.
Comput. Graphics Forum 33(3), 31–40 (2014)

16. Heine, C., Leitte, H., Hlawitschka, M., Iuricich, F., De Floriani, L., Scheuermann, G., Hagen,
H., Garth, C.: A survey of topology-based methods in visualization. Comput. Graphics Forum
35(3), 643–667 (2016)

17. Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar
topology based on Pareto optimality. Comput. Graphics Forum 32(3), 341–350 (2013)

18. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)
19. Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une

fonction numérique. Comput. Rendus de L’Académie des Séances, Paris 222(847–849) (1946)
20. Schneider, D., Heine, C., Carr, H., Scheuermann, G.: Interactive comparison of multifield

scalar data based on largest contours. Comput. Aided Geom. Des. 30(6), 521–528 (2013)
21. Shivashankar, N., Natarajan, V.: Efficient software for programmable visual analysis using

Morse-Smale complexes. In: Carr, H., Garth, C., Weinkauf, T. (eds.) Topological Methods in
Data Analysis and Visualization IV, pp. 317–331. Springer, Cham (2017)

Topological Subdivision Graphs for Comparative and Multifield Visualization 217

22. Singh, G., Mèmoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional
data sets and 3D object recognition. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M.
(eds.) Eurographics Symposium on Point-Based Graphics, pp. 91–100. The Eurographics
Association, Switzerland (2007)

23. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans.
Vis. Comput. Graph. 23(1), 960–969 (2017)

24. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology toolkit. IEEE
Trans. Vis. Comput. Graph. 24(1), 832–842 (2018)

25. Wu, K., Zhang, S.: A contour tree based visualization for exploring data with uncertainty. Int.
J. Uncertain. Quantif. 3(3), 203–223 (2013)

Part V
Other Forms of Topology

Interpreting Galilean Invariant Vector
Field Analysis via Extended Robustness

Bei Wang, Roxana Bujack, Paul Rosen, Primoz Skraba, Harsh Bhatia,
and Hans Hagen

Abstract The topological notion of robustness introduces mathematically rigorous
approaches to interpret vector field data. Robustness quantifies the structural
stability of critical points with respect to perturbations and has been shown to be
useful for increasing the visual interpretability of vector fields. However, critical
points, which are essential components of vector field topology, are defined with
respect to a chosen frame of reference. The classical definition of robustness,
therefore, depends also on the chosen frame of reference. We define a new Galilean
invariant robustness framework that enables the simultaneous visualization of robust
critical points across the dominating reference frames in different regions of the
data. We also demonstrate a strong connection between such a robustness-based
framework with the one recently proposed by Bujack et al., which is based on the
determinant of the Jacobian. Our results include notable observations regarding the
definition of stable features within the vector field data.

B. Wang (�)
University of Utah, Salt Lake, Utah
e-mail: beiwang@sci.utah.edu

R. Bujack
Los Alamos National Laboratory, Nuevo México, NM, USA
e-mail: bujack@lanl.gov

P. Rosen
University of South Florida, Tampa, FL, USA
e-mail: prosen@usf.edu

P. Skraba
Jozef Stefan Institute, Ljubljana, Slovenia
e-mail: primoz.skraba@ijs.si

H. Bhatia
Lawrence Livermore National Laboratory, Livermore, CA, USA
e-mail: hbhatia@llnl.gov

H. Hagen
Technical University Kaiserlautern, Kaiserslautern, Germany
e-mail: hagen@informatik.uni-kl.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_14

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_14&domain=pdf
mailto:beiwang@sci.utah.edu
mailto:bujack@lanl.gov
mailto:prosen@usf.edu
mailto:primoz.skraba@ijs.si
mailto:hbhatia@llnl.gov
mailto:hagen@informatik.uni-kl.de
https://doi.org/10.1007/978-3-030-43036-8_14

222 B. Wang et al.

1 Introduction

Motivation Understanding vector fields is integral to many scientific applications
ranging from combustion to global oceanic eddy simulations. Critical points of a
vector field (i.e., zeros of the field) are essential features of the data and play an
important role in describing and interpreting the flow behavior. However, vector
field analysis based on critical points suffers a major drawback: the interpretation
of critical points depends upon the chosen frame of reference. Just like the velocity
field itself, they are not Galilean invariant. Figure 1 highlights this limitation, where
the critical points in a simulated flow (the von Kármán vortex street) are visible only
when the velocity of the incoming flow is subtracted.

The extraction of meaningful features in the data therefore depends on a good
choice of a reference frame. Oftentimes, there exists no single frame of reference

Fig. 1 Visualization of the flow behind a cylinder without (a) and with (b) the background flow
removed, where the colormap encodes the speed of the flow. For comparison, (c) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. which is constructed
from the extrema of the determinant of the Jacobian. The Galilean invariant critical points are
marked with red nodes for vortices/sources/sinks and with blue nodes for saddles. Image courtesy
of Bujack et al. [3]. (d) Galilean invariant vector field constructed from the extended robustness.
The local maxima of the extended robustness field are marked with red nodes

Galilean Invariant Vector Field Analysis Based on Extended Robustness 223

that enables simultaneous visualization of all relevant features. For example, it is
not possible to find one single frame that simultaneously shows the von Kármán
vortex street from Fig. 1b and the first vortex formed directly behind the obstacle in
Fig. 1a. To overcome such a drawback, a framework recently introduced by Bujack
et al. [3] considers every point as critical and locally adjusts the frame of reference
to enable simultaneous visualization of dominating frames that highlight features
of interest. Such a framework selects a subset of critical points based on Galilean
invariant criteria, and visualizes their frame of reference in their local neighborhood.
Galilean invariance refers to the principle that Newton’s laws hold in all frames
moving at a uniform relative velocity. Thus, a Galilean invariant property is one that
does not change when observed in different frames with uniform motion relative to
each other. The extrema of the determinant of the Jacobian are particular examples
of Galilean invariant critical points [3], and they simultaneously capture all relevant
features in the data, as illustrated in Fig. 1c. The intuition is that the determinant
of the Jacobian determines the type of critical point, and since the Jacobian is
Galilean invariant, its extrema (with a magnitude away from zero) correspond to
stable critical point locations where small perturbations in the field do not change
their types. Such Galilean invariant critical points, in general, do not overlap with
the classical zeros of the vector fields; however, each has a frame of reference in
which it is a zero of the field. Such a perspective is useful in revealing features
beyond those obtainable with a single frame of reference (e.g., Fig. 1c).

The topological notion of robustness, on the other hand, considers the stability of
critical points with respect to perturbations. Robustness, a concept closely related to
topological persistence [10], quantifies the stability of critical points, and, therefore,
assesses their significance with respect to perturbations to the field. Intuitively, the
robustness of a critical point is the minimum amount of perturbation necessary to
cancel it within a local neighborhood. Robustness, therefore, helps in interpreting
a vector field in terms of its structural stability. Several studies have shown it to
be useful for increasing the visual interpretability of vector fields [29] in terms of
feature extraction, tracking [24], and simplification [25–27].

Contributions In this paper, we present new and intriguing observations connect-
ing the Jacobian based and robustness based notions in quantifying stable critical
points in vector fields. In particular, we address the following questions: Can we
interpret Galilean invariant vector field analysis based on the determinant of the
Jacobian via the notion of robustness? What are the relations between these two
seemingly different notions? Our contributions are:

• We extend the definition of robustness by considering every point as a critical
point and introduce the notion of the extended robustness field by assigning each
point in the domain its robustness when it is made critical with a proper frame of
reference.

• We prove that the extended robustness satisfies the criterion of Galilean invari-
ance, where the local maxima of the extended robustness field are the Galilean
invariant critical points.

224 B. Wang et al.

• We prove, theoretically, that the determinant of the Jacobian is a lower bound for
the extended robustness at the same point.

• We demonstrate, visually, that the extended robustness helps to interpret the
Jacobian-based Galilean invariant vector field analysis, in particular, that the
extrema of the determinant of the Jacobian coincide with the local maxima of
the extended robustness (Fig. 1c–d).

2 Related Work

Vector Field Analysis and Reference Frames The analysis of vector fields
depends upon the chosen frame of reference [20–22], as the observed vector field
changes with changes in frames. In particular, for any one given point, it is always
possible to create a frame of reference where this point becomes critical. Therefore,
it is important to carefully choose a physically meaningful frame for analysis. In
this regard, uniformly moving frames are of particular importance as they preserve
many properties of interest, thus providing a Galilean invariant analysis.

Because of the physical importance of a feature descriptor to be independent
from a Galilean change of frame of reference, many popular vector field feature
detectors are Galilean invariant. In particular, a number of vortex detection tech-
niques, such as the λ2-[18], Q-[17], and Δ-[8] criterion, compute the Jacobian of
the field, which, being a spatial derivative, discards uniform motion.

Simpler solutions to guarantee Galilean invariance in vector field analysis involve
subtracting the mean vector to highlight the fluctuations in the field. In recent
literature, more advanced techniques have been presented to derive vectors for
subtraction to determine an expressive frame of reference, e.g., from the Helmholtz-
Hodge decomposition [1, 30] or the boundary-induced flow [9]. In general, Galilean
invariant frames have been employed extensively for vector field analysis [3, 7, 8,
19, 23].

Nevertheless, since Galilean invariance is limited to compensating for uniform
motion, there exist techniques to perform the analysis in more sophisticated frames.
For example, Haller [15] extracted vortices using time-dependent translations and
time-dependent rotations; Günther et al. [14] described computation of vortices in
rotational frames; Fuchs et al. [13] used time-varying frames built upon the notion
of “unsteadiness”; and Bhatia et al. [1] proposed using new frames to represent
harmonic background flows.

In this work, we consider Galilean invariance to be the key property for defining
robustness for critical points across reference frames and extend the framework by
Bujack et al. [3].

Robustness The topological notion of robustness is closely related to the topolog-
ical persistence [10]. Unlike persistence, which is used extensively for the analysis
and visualization of scalar field data, robustness, first introduced by Edelsbrunner
et al. [11], can be employed for vector field data [6, 12]. Recent work by Wang et

Galilean Invariant Vector Field Analysis Based on Extended Robustness 225

al. [29] assigned robustness to critical points in both stationary and time-varying
vector fields and obtained a hierarchical structural description of the data. Such a
hierarchical description implies simplification strategies that perform critical point
cancellations in both 2D [25, 26] and 3D [27]. The robustness framework also gives
a fresh interpretation of the notion of feature tracking, in particular, critical point
tracking, where robust critical points could provably be tracked more easily and
more accurately in the time-varying setting [24].

Since robustness of critical points is not invariant to reference frames, in our
work, we aim to define a new robustness framework that addresses such a challenge
and enables the simultaneous visualization of robustness across local, dominating
reference frames.

3 Technical Background

We revisit some technical background before describing our results, namely, the
notions of Galilean invariance, reference frame adjustment, Jacobian-based Galilean
invariant vector fields, and robustness.

Galilean Invariance Let v : R2 → R
2 denote a 2D vector field describing the

instantaneous velocity of a flow. A Galilean transformation of a point x ∈ R
2 is

the composition of a translation b : R → R
2 with ḃ = const , and a rigid body

rotation A ∈ SO(2) [3]. A point whose position in the original frame is x, then has
the coordinate in the transformed frame [28] as

x ′ = Ax + b. (1)

A vector field v(x) is Galilean invariant (GI) if it transforms under a Galilean
transformation, according to the rule v′(x ′) = Av(x) [28]. Similarly, a scalar
field s(x) and a matrix field M(x) are called GI if s′(x ′) = s(x) and M ′(x ′) =
AM(x)A−1, respectively.

Reference Frame Adjustment Every point in a vector field can be transformed
into a critical point by the addition of a constant vector. For a vector field v : R2 →
R

2 and a point x0 ∈ R
2, we define the associated vector field vx0 : R2 → R

2 with
its frame of reference based on x0 by

vx0(x) := v(x) − v(x0). (2)

Such a vector field vx0 has a permanent critical point at x0, because vx0(x0) =
v(x0)− v(x0) = 0. For a given position x0 ∈ R

2, the vector field vx0 is GI, because

from v′(x ′) = dx ′/dt
(1)= d(Ax + b)/dt = Av(x) + ḃ follows v′

x ′0
(x ′) (2)= v′(x ′) −

v′(x ′0) = Av(x) + ḃ − Av(x0) − ḃ = A(v(x) − v(x0))
(2)= Avx0(x).

226 B. Wang et al.

Jacobian-Based Galilean Invariant Vector Fields Recall v : R
2 → R

2 is a
2D vector field, where v(x) = ẋ = dx/dt = (v1(x), v2(x))T . Let J denote the
Jacobian of a velocity field,

J = ∇v(x) =
(

∂v1(x)/∂x1 ∂v1(x)/∂x2

∂v2(x)/∂x1 ∂v2(x)/∂x2

)
.

The determinant of the Jacobian, det(J), is shown to be a GI scalar field [3], that
is, det J ′(x ′) = det J (x). Such a determinant can be used to categorize first-order
critical points, that is, a negative determinant corresponds to a saddle, whereas a
positive determinant corresponds to a source, a sink, or a vortex.

A point (x0) ∈ R
2 is a Jacobian-basedGalilean invariant critical point (GICP) of

a vector field v : R2 → R
2 if it is a critical point of the determinant of the Jacobian,

i.e., ∇ det(J) := ∇ det(∇v(x0)) = 0 [3]. Bujack et al. [3] restrict this definition to
the negative minima and the positive maxima of the determinant field. The former
form saddles, whereas the latter form sources/sinks/vortices in the velocity field in
some specific frame of reference. Each GICP comes with its own frame of reference
in which it becomes a classical critical point.

To visualize the GICPs simultaneously, Bujack et al. [3] introduced the notion
of Galilean invariant vector field (GIVF) that is applicable beyond Jacobian-based
GICPs. The basic idea is to construct a derived vector field that locally assumes
the inherent frames of references of each GICP. Such a derived vector field is
constructed by subtracting a weighted average of the velocities of the GICPs,
x1, . . . , xn, of the vector field v.

Formally, let v : R2 → R
2 be a vector field, x1, . . . , xn ∈ R

2 a set of GICPs,
and wi the weights of a linear interpolation problem

∑n
i=1 wi(x)v(xi) with weights

wi : R
2 → R (and a mapping x �→ wi(x)) that are invariant under Galilean

transformation, that is,

w′
i (x

′) = wi(x),

and the weights add up to one, ∀x ∈ R
2 : ∑n

i=1 wi(x) = 1. Then, the GIVF
v̄ : R2 → R

2 is defined by

v̄(x) := v(x) −
n∑

i=1

wi(x)v(xi).

In this paper, we use inverse distance weighting with exponent 2. Most commonly
used weights satisfy such a condition are the ones from constant, barycentric,
bilinear, and inverse distance interpolations [3].

Remark Locally the transformation in defining a GIVF is a Galilean change of
reference. However depending on the chosen interpolation scheme, the points
between the GICPs are transformed by a mixture of the transformations of their

Galilean Invariant Vector Field Analysis Based on Extended Robustness 227

neighbors. This mixture does not generally result in a Galilean transformation
globally. As a result, the Jacobian of the GIVF and the original field are not identical.

Although the suggested method does not transform the field through a Galilean
transformation itself, it does not contradict the fact that the GIVF defined above is
invariant with respect to the Galilean transformation [3]. Such a transformed vector
field is GI, because any vector field that differs from the original one through a
Galilean transformation will result in the same GIVF, which means that the GIVF
and the original field would generally not produce the same output. In a nutshell,
the method is GI, but not idempotent.

Robustness Let f, h : R2 → R
2 be two continuous 2D vector fields. We define

the distance between the two mappings as d(f, h) = supx∈R2 ||f (x)− h(x)||2. The
field h is an r-perturbation of f , if d(f, h) ≤ r . Given f : R2 → R

2, the robustness
of a critical point of f quantifies its stability with respect to perturbations of the
vector fields [29]. Intuitively, if a critical point has a robustness value of r , then an
(r+δ)-perturbation h of f exists to eliminate x (via critical point cancellation); and
any (r − δ)-perturbation is not enough to eliminate x.

Mathematically, the robustness of critical points in our setting arises from the
well group theory [12]. Given a mapping f : X → Y between two manifolds and a
point a ∈ Y, the well group theory [12] studies the robustness of the homology
of the pre-image of a, f−1(a) with respect to perturbations of the mapping f .
Roughly speaking, the homology of a topological space X, H∗(X), measures its
topological features, where the rank of the 0-, 1- and 2-dimensional homology
groups corresponds to the number of connected components, tunnels, and voids,
respectively. Let a be a point in Y, and let Ba(r) be a ball of radius r surrounding
a. Let h be an r-perturbation of f (under some metric). The inclusion map between
subspaces h−1(a) → f−1(Ba(r)) induces a linear map ih : H∗(h−1(a)) →
H∗(f−1(Ba(r))) between their homology groups. The well group Wa(r) is defined
as Wa(r) = ⋂

h image ih, whose elements belong to the image of each jh for all
r-perturbation h of f . Intuitively, its elements are stable under r-perturbations of
the map.

When a = 0, X = Y = R
2, f−1(0) are the critical points of vector fields on the

plane. Chazal et al. [6] showed that in the case of vector fields, the well group could
be computed from the merge tree of the magnitude of a vector field (i.e., f0 = ||f ||2,
which is a scalar function). We use the correspondences between critical points and
the elements in the well groups to assign robustness values to the critical points.
The merge tree of f0 is constructed by tracking the connected components of its
sublevel sets f−1(−∞, r] together with their degree information as they appear
and merge by increasing r from 0. Each leaf node in the tree is assigned the degree
of its corresponding critical point (a saddle has a degree of −1, and a source/since
has a degree of +1). Each internal node has a degree the sum of its subtree. The
robustness of a critical point is the height of its lowest degree zero ancestor in the
merge tree, see Wang et al. [29] for details.

228 B. Wang et al.

4 Theoretical Results

We extend the definition of robustness by considering every point as a critical point.
Formally, let x0 ∈ R

2 be an arbitrary point in a vector field v : R
2 → R

2 and
R(x0) be its robustness in the vector field vx0 , which is associated with the frame of
reference of x0. We define the extended robustness R : R2 → R of the point x0 as
the robustness of the critical point x0 ∈ R

2 in the vector field vx0 . For a vector field
v : R2 → R

2, we call a point a locally robust critical point (LRCP) if it is a local
maximum in the extended robustness field, i.e.,

∇R(x0) = 0, HR(x0) < 0,

with the vector ∇R denoting the first derivative and the Hessian matrix HR

consisting of the second partial derivatives.
The following two theorems are the key theoretical contributions of the paper.

Theorem 1 The extended robustness is a Galilean invariant scalar field. The
locally robust critical points defined above are Galilean invariant.

Proof We prove the theorem by showing that for the extended robustness R : R2 →
R, we have R′(x ′) = R(x). The extended robustness assigns a scalar to every point
x0 ∈ R

2. Let v′(x ′) differ from a vector field v : R2 → R
2 by the transformation

v′(x ′) = Av(x). The magnitude ‖vx0‖2 of the GI field vx0 from (2) is GI. From
A ∈ SO(2), it follows that

‖v′
x ′0

(x ′)‖2 = ‖Avx0(x)‖2 = ‖vx0(x)‖2. (3)

As a result, the merge trees of vx0(x0) and v′
x ′0

(x ′0) are isomorphic. Together

with the invariance of the degree of a critical point with respect to orthogonal
transformations, that the extended robustness is GI follows. Since the extrema of
the scalar field are GI and the extended robustness field is GI, it follows that LRCPs
are GI. �
Theorem 2 At any point x0 ∈ R

2, suppose: (i) vx0 : R2 → R
2 is generic and C2-

smooth; (ii) the directional derivative of vx0 is upper bounded by a constant μ; (iii)
the second (partial) derivative of vx0 is upper bounded by a constant δ; and (iv) the
absolute value of the determinant of the Jacobian is at least c. Then the extended

robustness at x0 is at least c2

2μ2δ
.

Proof For any point x0 ∈ R
2, let f := vx0 : R2 → R

2. Genericity from assumption
(i) of f implies that for the critical point x0 of f , there exists a small neighborhood
that contains only x0. First, we show that a lower bound on the absolute value of
the determinant of the Jacobian translates into a lower bound on the magnitude of
the directional derivative of f . Let J be the Jacobian at x0 ∈ R

2 and det(J) be the
determinant of the Jacobian. Assumption (iv) means that | det(J)| ≥ c. Let λ1 and

Galilean Invariant Vector Field Analysis Based on Extended Robustness 229

λ2 (|λ1| ≥ |λ2|) be the eigenvalues of J . We have,

| det(J)| = |λ1λ2| ≥ c.

Assumption (ii) means that the directional derivatives of f are upper bounded in
any direction by μ, i.e., || ∂f

∂u
|| ≤ μ for all directions u ∈ S

2, which implies that the
absolute values of all eigenvalues are upper bounded by μ, i.e., |λ2| ≤ |λ1| ≤ μ.
Hence, |λ2| ≥ c′ = c

μ
.

Now, we show that the upper bound on the second derivative implies a lower
bound on robustness. We consider the direction u ∈ S

2 to be along the eigenvector
associated with λ2. At x0, |f (x0)| = 0. Since the magnitude of the directional
derivative at x0 is lower bounded by c′ and there is an upper bound on the second
derivative, we can bound the neighborhood size where the directional derivative
becomes 0, i.e., how far from x0 we must go in order for ‖f ‖ to stop growing.
Let y be a point on the boundary of the isolating neighborhood of x0, such that
d(y, x0) = ε. Then the magnitude of the directional derivative is lower bounded by
c′ − εδ based on assumption (iii). The change c′ − εδ is positive for all ε ≤ c′

δ
.

We obtain a lower bound on the magnitude of the vector field on the boundary of
the ε-neighborhood at x via integration. That is, for any y on the boundary of the
isolating neighorhood of x0,

|f (y)| ≥
∫ ε

0
(c′ − xδ)dx = c′ε − δε2

2
. (4)

For ε ≤ c′
δ

, |f (ε)| is an increasing function in ε; hence x0 is the only zero
in the neighborhood. To obtain a lower bound on robustness, we lower bound
the magnitude of the function on the boundary of the ε-neighborhood (i.e. the
neighborhood where we know that x0 is an isolated zero). Substituting ε = c′

δ
= c

μδ

into Eq. (4) yields the desired lower bound, i.e.,

|f (y)| ≥ c′ε − δε2

2
= c2

μ2δ
− δc2

2μ2δ2 = c2

2μ2δ
.

�

5 Visualization Results

We demonstrate visually that the extended robustness helps to interpret the
Jacobian-based GIVF analysis. In particular, the extrema of the determinant of
the Jacobian (the Jacobian-based GICPs) often coincide with the local maxima of
the extended robustness (the LRCPs).

230 B. Wang et al.

Fig. 2 Visualization of an analytic data set (f), which is created by superimposing five analytic
fields (a)–(e). The colormap encodes the speed of the flow. For comparison, (g) shows the
corresponding Galilean invariant vector field introduced by Bujack et al. and constructed from the
extrema of the determinant of the Jacobian. The Galilean invariant critical points are marked with
red nodes for vortices/sinks/sources and with blue nodes for saddles. Image courtesy of Bujack
et al. [3]. (h) The Galilean invariant vector field introduced in this paper is constructed from the
extended robustness. The local maxima of the extended robustness field are marked with red nodes

Case Study I: An Analytic Vector Field For the first case study illustrated in
Fig. 2, we use an analytic vector field in (f) which contains four standard flow
features, sink (a), center (b), saddle (c) and spiral source (d); each showing a
different common velocity profile overlaid with a sheer flow (e) that makes it
impossible to view all the flow features simultaneously. As illustrated, the GIVF
based on the determinant of the Jacobian (g) simultaneously highlights the Jacobian-
based GICPs, which correspond to the standard flow features described in (a)–(d).
On the other hand, these flow features in (g) coincide with the features surrounding
the LRCPs of the GIVF based on the extended robustness in (h).

Case Study II: A Sequence of Double Gyre We use a formula describing a double
gyre vector field [2] with parameters A = 0.25, ω = 1/10, and an extended domain
[0, 6] × [0, 1]. Such a dataset is smooth and requires no topological simplification
(see Sect. 5.1). As shown in Fig. 3a, one vortex is visible at position (3, 0.5) within
the standard frame of reference, and the Jacobian-based GIVF highlights two
vortices within the same region in Fig. 3b, as shown previously [2]. These Jacobian-
based critical points coincide with the LRCPs obtained via extended robustness in
Fig. 3c. The separators from the robustness-based GIVF coincide with the separators
from the standard frame of reference, but those from the Jacobian-based GIVF

Galilean Invariant Vector Field Analysis Based on Extended Robustness 231

Fig. 3 Visualization of a sequence of double gyre. (a) The original flow; the colormap encodes the
speed of the flow. (b) Jacobian-based Galilean invariant vector field with highlighted critical points;
the flow is color-coded by the value of the determinant. (c) Robustness-based Galilean invariant
vector field with highlighted critical points; the flow is color-coded by extended robustness values.
(d) Robustness-based Galilean invariant vector field without contour tree pruning

do not. This observation gives an indication that the two vortices detected by
both robustness-based and Jacobian-based GIVF are likely true features, whereas
the separators detected by the Jacobian-based GIVF are not (therefore partially
addressing an open question in [2]). Furthermore, we illustrate the robustness-based
GIVFs in Fig. 3d without topological simplification (see Sect. 5.1 for details).

Case Study III: Swirly Jet Our last case study, illustrated in Fig. 4, focuses on
a flow simulation of a swirling jet entering a fluid at rest. Such a dataset has
been previously studied in the work of Bujack et al. [3]. We demonstrate visually
an interpretation of its corresponding Jacobian-based GIVF with the extended
robustness. As shown in Fig. 4c, some but not all of the LRCPs are shown to coincide
with the critical points extracted from Jacobian-based GIVF in Fig. 4b. Such a
discrepancy could be due to numerical issues in computing extended robustness,
discretization resolution and the noisy, non-smooth data domain. How to choose the
optimal parameters for topological simplification (as discussed in Sect. 5.1), remains
an open question for both Jacobian-based and robustness-based GIVFs.

232 B. Wang et al.

Fig. 4 Visualization of the swirling jet entering a fluid at rest. (a) The original flow; the colormap
encodes the speed of the flow. (b) Jacobian-based Galilean invariant vector field with highlighted
critical points; the flow is color-coded by the value of the determinant. (c) Robustness-based
Galilean invariant vector field with highlighted locally robust critical points; the flow is color-
coded by extended robustness values

5.1 Topological Simplification

In our case studies, the extended robustness fields are often noisy, resulting in
many insignificant local maxima. Analogously to Bujack et al. [3], we make use
of the topological simplification tools for scalar fields to reduce the number of
local maxima to the significant ones. For an introduction to scalar topological
simplification, we recommend the work of Carr et al. [5] and Heine et al. [4, 16].

For a scalar field, a contour is a connected component of a level set, which is the
set of points that all have the same value in the scalar field. If we increase this value,
contours can be created at local minima, join or split at saddles, and be destroyed
at local maxima of the scalar field. The contour tree is an abstraction of the scalar
field that is formed from shrinking each contour to a node in the tree, where each
branch starts and ends at an extremum or a saddle and corresponds to a connected
component in the domain. Each branch of the contour tree comes with three popular
measures: persistence, volume, and hypervolume [5, 16]. Persistence is the maximal
difference of the scalar values of the components of a branch, the volume is the
integral over its affiliated points, and the hypervolume is the integral over the scalar
values. These measures can be used to simplify the contour tree by pruning branches
that do not exceed given thresholds (see Carr et al. [5]).

We compute the contour tree of the extended robustness field and prune it with
respect to persistence. The result for case study I can be found in Fig. 5.

Remark We have demonstrated that the Jacobian-based GICPs in some smooth,
synthetic cases coincide with the LRCPs, whereas in noisy, real-world datasets,
unambiguous equivalence among these points is difficult to find due to the resolution
of the data and the different range of scalar values for topological simplification. In

Galilean Invariant Vector Field Analysis Based on Extended Robustness 233

Fig. 5 Topological simplification of case study I, where the colormap encodes the speed of the
flow. The robustness-based Galilean invariant vector fields before (a) and after (b) simplification
are illustrated, where the locations of extended robustness local maxima are marked in red

addition, we conjecture that the determinant of Jacobian could be considered as a
first-order approximation that captures the stabilities of critical points, whereas the
extended robustness captures higher order information; therefore the LRCPs do not
always coincide with the Jacobian-based GICPs.

The best way to select the pruning parameters for simultaneous visualization
of robust critical points in different regions of the data, remains an open question.
We currently use an exploratory process to choose pruning parameters so that the
LRCPs are at a level comparable to the Jacobian-based GICPs.

6 Discussion

Robustness and Jacobian The Jacobian carries important information about the
local behavior of a vector field, while robustness quantifies their global stability. In
this work, we demonstrate their relations theoretically and visually. Furthermore,
our results inspire discussions regarding different quantifiers of stable features
within the vector field data.

Extended Robustness: Degeneracies and Continuity In our current framework,
some critical points do not have any cancellation partner, and so have large
robustness values beyond the range of the maximum vector norm in the domain.
This can cause boundary effects in our visualization as some critical points are
detected on the boundary. Furthermore, robustness computation also assumes that
each critical point is isolated within its local neighborhood. Our datasets, however,
contain regions with degenerate critical points where such isolation conditions are
violated (i.e., regions where the determinant of Jacobian switches sign). For the
purpose of visualization, such degeneracies are handled separately.

Small changes to the vector field may introduce partner switches in the merge
tree, which lead to some discontinuities in the current computation of extended

234 B. Wang et al.

robustness (see Fig. 4c). However this does not impact our visualization results
significantly. Ensuring the continuity of the extended robustness remains an open
question.

Other Perturbation Metrics for Robustness The robustness framework also
allows a certain flexibility in defining perturbation metrics, in the sense that the
L∞ metric defined in Sect. 3 could be replaced by other metrics such as the L2
metric, which incorporates both the magnitude of the vectors and the area to capture
a quantity closer to the energy of a perturbation. We will investigate the effect of
different perturbation metrics on the computation of extended robustness and its
connection with the determinant of the Jacobian.

Acknowledgments This work was partially supported by NSF IIS-1513616, National Research
Agency ARRS Project TopRep N1-0058, the NNSA ASC Program and the LDRD program of Los
Alamos National Laboratory under project number 20190143ER. It is published under LA-UR-
17-28344.

References

1. Bhatia, H., Pascucci, V., Kirby, R.M., Bremer, P.: Extracting features from time-dependent
vector fields using internal reference frames. Comput. Graphics Forum 33(3), 21–30 (2014)

2. Bujack, R., Joy, K.I.: Lagrangian representations of flow fields with parameter curves. In:
Proceedings of the IEEE Symposium on Large Data Analysis and Visualization, pp. 41–48
(2015)

3. Bujack, R., Hlawitschka, M., Joy, K.I.: Topology-inspired Galilean invariant vector field
analysis. In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 72–79. IEEE, New
York (2016)

4. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom.
24(2), 75–94 (2003)

5. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric
measures. In: IEEE Visualization, pp. 497–504. IEEE, New York (2004)

6. Chazal, F., Patel, A., Skraba, P.: Computing well diagrams for vector fields on R
n. Appl. Math.

Lett. 25(11), 1725–1728 (2012)
7. Chen, G., Palke, D., Lin, Z., Yeh, H., Vincent, P., Laramee, R.S., Zhang, E.: Asymmetric tensor

field visualization for surfaces. IEEE Trans. Visual. Comput. Graph. 17(12), 1979–1988 (2011)
8. Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow

fields. Phys. Fluids A 2(5), 765–777 (1990)
9. Ebling, J., Wiebel, A., Garth, C., Scheuermann, G.: Topology based flow analysis and

superposition effects. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-based Methods in
Visualization. Mathematics and Visualization, pp. 91–103. Springer, Berlin (2007)

10. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification.
Discrete Comput. Geom. 28, 511–533 (2002)

11. Edelsbrunner, H., Morozov, D., Patel, A.: The stability of the apparent contour of an orientable
2-manifold. In: an dXavier Tricoche, V.P., Hagen, H., Tierny, J. (eds.) Topological Methods in
Data Analysis and Visualization. Mathematics and Visualization, pp. 27–42. Springer, Berlin
(2010)

12. Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robust-
ness of intersections. Found. Comput. Math. 11, 345–361 (2011)

Galilean Invariant Vector Field Analysis Based on Extended Robustness 235

13. Fuchs, R., Kemmler, J., Schindler, B., Waser, J., Sadlo, F., Hauser, H., Peikert, R.: Toward a
Lagrangian Vector Field Topology. Comput. Graphics Forum 29(3), 1163–1172 (2010)

14. Günther, T., Schulze, M., Theisel, H.: Rotation invariant vortices for flow visualization. IEEE
Trans. Visual. Comput. Graph. 22(1), 817–826 (2016)

15. Haller, G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005)
16. Heine, C., Schneider, D., Carr, H., Scheuermann, G.: Drawing contour trees in the plane. IEEE

Trans. Visual. Comput. Graph. 17(11), 1599–1611 (2011)
17. Hunt, J.C.R.: Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc. Mech.

Eng. 11(1), 21–35 (1987)
18. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)
19. Kasten, J., Reininghaus, J., Hotz, I., Hege, H.C.: Two-dimensional time-dependent vortex

regions based on the acceleration magnitude. IEEE Trans. Visual. Comput. Graph. 17(12),
2080–2087 (2011)

20. Lugt, H.J.: The dilemma of defining a vortex. In: Müller, U., Roesner, K.G., Schmidt, B.
(eds.) Recent Developments in Theoretical and Experimental Fluids Mechanics, pp. 309–321.
Springer, Berlin (1979)

21. Perry, A.E., Chong, M.S.: Topology of flow pattern in vortex motions and turbulence. Appl.
Sci. Res. 53(3–4), 357–374 (1994)

22. Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matkovic, K., Hauser,
H.: The state of the art in topology-based visualization of unsteady flow. Comput. Graphics
Forum 30(6), 1789–1811 (2011)

23. Sahner, J., Weinkauf, T., Hege, H.C.: Galilean invariant extraction and iconic representation
of vortex core lines. In: Proceedings of the IEEE VGTC Symposium on Visualization, pp.
151–160 (2005)

24. Skraba, P., Wang, B.: Interpreting feature tracking through the lens of robustness. In: Bremer,
P.T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and
Visualization III. Mathematics and Visualization, pp. 19–38. Springer, Berlin (2014)

25. Skraba, P., Wang, B., Chen, G., Rosen, P.: 2D vector field simplification based on robustness.
In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 49–56 (2014)

26. Skraba, P., Wang, B., Chen, G., Rosen, P.: Robustness-based simplification of 2D steady and
unsteady vector fields. IEEE Trans. Visual. Comput. Graph. 21(8), 930–944 (2015)

27. Skraba, P., Rosen, P., Wang, B., Chen, G., Bhatia, H., Pascucci, V.: Critical point cancellation
in 3D vector fields: Robustness and discussion. IEEE Trans. Visual. Comput. Graph. 22(6),
1683–1693 (2016)

28. Song, Y.: A note on Galilean invariants in semi-relativistic electromagnetism. arXiv:1304.6804
(2013)

29. Wang, B., Rosen, P., Skraba, P., Bhatia, H., Pascucci, V.: Visualizing robustness of critical
points for 2D time-varying vector fields. In: Computer Graphics Forum, vol. 32(3pt2), pp.
221-230. Blackwell Publishing, Oxford (2013). Computational Graphics Forum, pp. 221–230

30. Wiebel, A., Garth, C., Scheuermann, G.: Localized flow analysis of 2D and 3D vector fields.
In: Proceedings of the IEEE VGTC Symposium on Visualization, pp. 143–150 (2005)

Maximum Number of Transition Points
in 3D Linear Symmetric Tensor Fields

Yue Zhang, Lawrence Roy, Ritesh Sharma, and Eugene Zhang

Abstract Transition points are well defined topological features in 3D tensor fields,
which are important for the study of other prominent topological singularities such
as wedges and trisectors. In this paper, we study the maximum number of transition
points in a linear tensor field, which is important to process wedge and trisector
classification along degenerate curves.

1 Introduction

3D symmetric tensor field topology consists of degenerate curves and neutral
surfaces [7]. Transition points, which are degenerate points that separate wedge and
trisector segments along a degenerate curve, are important topological features that
are key to the study of 3D symmetric tensor field topology [12].

To the best of our knowledge, existing degenerate curve extraction methods do
not explicitly extract transition points. We believe that this is largely due to the fact
that it is not known how many transition points can exist in a tensor field and how
to algebraically characterize them. In this paper, we attempt to address this cause
by studying the minimum and maximum numbers of transition points in a 3D linear
symmetric tensor field.

Y. Zhang (�)
School of Electrical Engineering and Computer Science, 3117 Kelley Engineering Center, Oregon
State University, Corvallis, OR, USA
e-mail: zhangyue@eecs.oregonstate.edu; zhangyue@oregonstate.edu

L. Roy · R. Sharma
School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon
State University, Corvallis, OR, USA
e-mail: royl@eecs.oregonstate.edu; sharmrit@eecs.oregonstate.edu

E. Zhang
School of Electrical Engineering and Computer Science, 2111 Kelley Engineering Center, Oregon
State University, Corvallis, OR, USA
e-mail: zhange@eecs.oregonstate.edu

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_15

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_15&domain=pdf
mailto:zhangyue@eecs.oregonstate.edu
mailto:zhangyue@oregonstate.edu
mailto:royl@eecs.oregonstate.edu
mailto:sharmrit@eecs.oregonstate.edu
mailto:zhange@eecs.oregonstate.edu
https://doi.org/10.1007/978-3-030-43036-8_15

238 Y. Zhang et al.

2 Previous Work

There has been much work on the analysis and visualization of 2D and 3D tensor
fields. We refer the readers to the recent survey by Kratz et al. [5]. Here we only
refer to the research most relevant to this chapter.

Delmarcelle and Hesselink [1, 2] introduce the topology of 2D symmetric tensor
fields. They point out that there are two fundamental types of degenerate points in a
2D symmetric tensor field, i.e., wedges and trisectors, which have a tensor index of 1

2
and − 1

2 , respectively. Hesselink et al. later extend this work to 3D symmetric tensor
fields [4] and study triple degenerate points, i.e., all eigenvalues are the same. Zheng
et al. [11] point out that triple degeneracies are not structurally stable features. They
further show that double degeneracies, i.e., tensors with only two equal eigenvalues,
form lines in the domain. In this work and subsequent research [13], they provide
a number of degenerate curve extraction methods based on the analysis of the
discriminant function of the tensor field. Furthermore, Zheng et al. [12] point out
that near degenerate curves the tensor field exhibits 2D degenerate patterns and
define separating surfaces which are extensions of separatrices from 2D symmetric
tensor field topology. Zhang et al. [10] show that there are at least two and at most
four degenerate curves in a 3D linear symmetric tensor field under structurally
stable conditions. Palacios et al. [6] introduce a design system for 3D tensor fields
that allows the editing of the structure of degenerate curves in the field. Roy et al. [8]
describe a method to extract degenerate curves with a high quality at an interactive
speed.

However, most of the aforementioned work except [6, 12] only focuses on the
linearity and planarity of the degenerate points, but not wedges, trisectors, and
transition points. In this paper, we explore the minimum and maximum number
of transition points in a 3D linear tensor field.

3 Background on Symmetric Tensors and Tensor Fields

We review some pertinent technical concepts in this section on tensors and tensor
fields.

A K-dimensional (symmetric) tensor T has K real-valued eigenvalues: λ1 ≥
λ2 ≥ · · · ≥ λK . The largest and smallest eigenvalues are referred to as the major
eigenvalue and minor eigenvalue, respectively. When K = 3, the middle eigenvalue
is referred to as the medium eigenvalue. An eigenvector belonging to the major
eigenvalue is referred to as a major eigenvector. Medium and minor eigenvectors
can be defined similarly. Eigenvectors belonging to different eigenvalues are
mutually perpendicular. A tensor is degenerate if there are repeating eigenvalues.
In this case, there exists at least one eigenvalue whose corresponding eigenvectors
form a higher-dimensional space than a line. When K = 2, a degenerate tensor must
be a multiple of the identity matrix. When K = 3, there are two types of degenerate

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 239

tensors, corresponding to three repeating eigenvalues (triple degenerate) and two
repeating eigenvalues (double degenerate), respectively. There are two types of
double degenerate tensors: (1) linear (λ1 > λ2 = λ3) and (2) planar (λ1 = λ2 > λ3).
The trace of a tensor T = (tij) is trace(T) = ∑3

i=1 λi . T can be uniquely
decomposed as D + A where D = t race(T)

3 I (I is the three-dimensional identity
matrix) and A = T − D. The deviator A is a traceless tensor, i.e., trace(A) = 0.
Note that T is degenerate if and only if A is degenerate. Consequently, it is sufficient
to study the set of traceless tensors, which is closed under matrix addition and scalar
multiplication.

A tensor field is a tensor-valued function over some domain Ω ⊂ R
3. The

topology of a tensor field is defined as the set of degenerate points, i.e., points
in the domain where the tensor field becomes degenerate.

In a 2D tensor field, there are two fundamental types of degenerate points,
wedges and trisectors. They can be classified based on an invariant δ =∣
∣∣
∣

(a11−a22
2 a12

b11−b22
2 b12

)∣∣∣
∣, where aij = ∂tij (x,y)

∂x
and bij = ∂tij (x,y)

∂y
, i.e., the partial derivatives

of the ij -th entry of the tensor field. A degenerate point p0 is a wedge when
δ(p0) > 0 and a trisector when δ(p0) < 0. When δ(p0) = 0, p0 is a higher-order
degenerate point, which is structurally unstable.

In 3D symmetric tensor fields, a degenerate point can be classified by the
linear-planar classification and the wedge-trisector classification. In the former, a
degenerate point is either triple degenerate, linear degenerate, or planar degenerate.
While triple degeneracies can exist, they are structurally unstable, i.e., they can
disappear under arbitrarily small perturbations. In contrast, linear and planar
degenerate points are structurally stable, i.e., they persist under sufficiently small
perturbations in the tensor field. Moreover, under structurally stable conditions such
points form curves, along which the tensor field is either always linear degenerate
or always planar degenerate. While it is possible that linear and planar degenerate
points are isolated points or form surfaces and volumes, these three scenarios do not
persist under arbitrarily small perturbation in the field, i.e., are structurally unstable.

A degenerate point can also be classified based on the so-called wedge-trisector
classification. Given a degenerate point p0, let n = (α, β, γ) be the non-repeating
eigenvector at p0. The plane P that passes through p0 whose normal is n is referred
to the repeating plane at p0. When projecting the 3D tensor field onto P , one obtains
a 2D symmetric tensor field which, under structurally stable conditions, has exactly
one degenerate point, p0. In the 2D tensor field, p0 can be either a wedge, a trisector,
or a higher-order and thus structurally unstable degenerate point. In these cases, p0
will be referred to respectively as a wedge, a trisector, and a transition point in the
3D tensor field. Figure 1 provides examples of such degenerate points and their
non-repeating planes with a 3D tensor field. Here and in the remaining figures in
the paper, we use the following color scheme for degenerate points: yellow (planar
wedge), green (linear wedge), red (planar trisector), and blue (linear trisector).

Note that while a higher-order degenerate point is structurally unstable, a
transition point is structurally stable in 3D tensor fields. Moreover, a transition point

240 Y. Zhang et al.

Fig. 1 Along a degenerate curve, the projection of the tensor field onto the repeating planes can
exhibit 2D degenerate patterns such as a trisector (a) or a wedge (c). Between segments of wedges
(yellow) and trisectors (red), transition points can appear (b)

is not the same as triple degenerate points. At the transition point, the repeating plane
is tangent to the degenerate curve.

4 Transition Points in 3D Symmetric, Traceless Tensor Fields

We first note that the set of all traceless and symmetric tensors with configuration⎛

⎝
a b c

b d e

c e −a − d

⎞

⎠ form a five dimensional linear space T spanned by the basis Ta =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠, Td =
⎛

⎝
0 0 0
0 1 0
0 0 −1

⎞

⎠, Tb =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠, Tc =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠, and Te =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠.

Any tensor in this space can be expressed as taTa + tbTb + tcTc + tdTd + teTe

for some ta, tb, tc, td , te ∈ R. For convenience, it can be written in the vector form
(ta, td , tb, tc, te).

A 3D symmetric, traceless linear tensor field has the following form

LT (x, y, z) = T0 + xTx + yTy + zTz (1)

where T0 =
⎛

⎝
a0 b0 c0

b0 d0 e0

c0 e0 −a0 − d0

⎞

⎠, Tx =
⎛

⎝
ax bx cx

bx dx ex

cx ex −ax − dx

⎞

⎠, Ty =
⎛

⎝
ay by cy

by dy ey

cy ey −ay − dy

⎞

⎠, and Tz =
⎛

⎝
az bz cz

bz dz ez

cz ez −az − dz

⎞

⎠ are symmetric, traceless

matrices. Under structurally stable conditions, T0, Tx , Ty , and Tz are linearly

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 241

independent. In this section we study the number of transition points in such a
tensor field.

Zhang et al. [10] show that the degenerate points in a 3D linear tensor field satisfy
the following system of equations

h(α, β, γ) = 0 (2)

α2 + β2 + γ 2 = 1 (3)

where (α, β, γ) is a unit non-repeating eigenvector and h(α, β, γ) is a homogeneous
quadratic polynomial.

A transition point, as a degenerate point, must satisfy Eqs. (2) and (3). However,
while degenerate points form curves under structurally stable conditions, transition
points are isolated points. This indicates that one more condition is needed in terms
of α, β, and γ .

Given a linear symmetric tensor field LT (x, y, z) = T0 + xTx + yTy + zTz,
its projection onto any plane is also a 2D linear tensor field [9]. Consequently,
the discriminant function δ is constant for the plane. We define a plane to be a
wedge plane if δ > 0, a trisector plane if δ < 0, and more relevantly a transition
plane if δ = 0. A transition point must have its repeating plane as a transition
plane. Therefore, characterizing transition planes gives us the additional condition
to characterize transition points.

The following result from [9] is important to our analysis of transition planes.

Theorem 1 Given a 3D linear tensor field LT = T0+xTx+yTy+zTz and a plane
P , the discriminant function δ of the projection of LT onto P is a function of only
Tx , Ty , and Tz.

This leads to the following results:

Corollary 1 Given a 3D linear tensor field LT = T0 + xTx + yTy + zTz and two
parallel planes P1 and P2, P1 is a transition plane if and only if P2 is a transition
plane.

Corollary 2 Given two 3D linear tensor field LT = T0 + xTx + yTy + zTz and
LT ′ = T ′

0 + xTx + yTy + zTz, a plane P is a transition plane for LT if and only if
P is also a transition plane for LT ′.

Corollary 1 states that whether a plane is a transition plane depends only on the
normal of the plane. Therefore, it is sufficient to only consider planes P : αx +
βy + γ z = 0, where (α, β, γ)t is a unit vector and can be modelled by RP

2, the
two-dimensional real projective space.

Corollary 2 states that adding a constant tensor to the field will not change
whether a plane is a transition plane. We can therefore set T0 = 0 while finding
the transition planes. Under these simplification conditions, we have the following
result:

242 Y. Zhang et al.

Lemma 1 Given a linear symmetric tensor field LT (x, y, z) = xTx + yTy + zTz,
its projection onto the plane P : αx+βy+γ z = n·p = 0 has either one degenerate
point or a line of degenerate points. The former occurs when δ �= 0 while the latter
occurs when δ = 0, i.e., transition plane.

Proof Select a coordinate system (O,X′, Y ′) for the plane P where O is the origin.
Then the projection tensor field has the following form in this coordinate system:

(
a1x

′ + a2y
′ b1x

′ + b2y
′

b1x
′ + b2y

′ c1x
′ + c2y

′
)

(4)

Consequently, a degenerate point in T ′ satisfies:

a1x
′ + a2y

′ = c1x
′ + c2y

′ (5)

b1x
′ + b2y

′ = 0 (6)

The above system corresponds to the intersection of two lines in P . Either the two
lines intersect at one point, i.e., the degenerate point, or they are the same line, i.e.,
every point on the line is a degenerate point. These two cases correspond precisely
to the conditions δ �= 0 and δ = 0, respectively. �

This characterization of transition planes is essential in our analysis of the
maximum number of transition points.

We now consider Qn ⊂ T, the set of traceless, symmetric tensors whose
projection onto the plane P : n · p = 0 are 2D degenerate tensors (not necessarily
traceless). Here, n is the normal to the plane. Note that the set of 2D degenerate
tensors is a codimension-two linear subspace of the set of 2D symmetric tensors.
Therefore, since the projection is clearly surjective, Qn is also a codimension-two
linear subspace of T. That is, Qn is a three-dimensional linear subspace of T. Qn

can be parameterized by a three-dimensional linear subspace W as follows.
Let qn be the linear map from W which is isomorphic to R

3 = {r =
(u, v,w)|u, v,w ∈ R} to the set of 3 × 3 symmetric matrices defined as

qn(r) = 1

2
(n rt + r nt) − 1

3
(r · n)I (7)

Note that trace(qn(r)) = trace(1
2 (n rt + r nt) − 1

3 (r · n)I) = 1
2 (trace(n rt) +

trace(r nt)) − 1
3 r · ntrace(I) = 1

2 (trace(rt n) + trace(nt t)) − r · n = 0.
Consequently, qn is a map from R

3 to T, the set of traceless tensors.
Furthermore, we show that qn(r) ∈ Qn for any r ∈ R

3. To see this, we return
to the domain of the linear tensor field (which is not W) and consider the plane
Pn. We can choose a coordinate system X′, Y ′ for the plane. Let M = (

X′ Y ′),
which is a 3 × 2 matrix. The projection of a 3 × 3 tensor K onto the plane Pn is
therefore MtKM . In particular, Mtqn(r)M = Mt(1

2 (n rt + r nt) − 1
3 (r · n)I)M =

1
2Mtn rtM + 1

2Mtr ntM − 1
3 (r · n)MtM . Since X′ and Y ′ are both perpendicular

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 243

to n, we have Mtn = ntM = 0. Furthermore, MtM is the 2D identity matrix, i.e.,
degenerate. Consequently, qn(r) ∈ Qn for any r ∈ R

3. This means qn is a map from
R

3 to Qn.
Furthermore, the map is an injection. This can be verified by studying the kernel

of the map, i.e., for what r = (u, v,w) ∈ W , qn(r) is the zero tensor. Note

that qn(u, v,w) =
⎛

⎜
⎝

2αu−βv−γw
3

βu+αv
2

γ u+αw
2

βu+αv
2

−αu+2βv−γw
3

βw+γ v
2

γ u+αw
2

βw+γ v
2

−αu−βv+2γw
3

⎞

⎟
⎠. Given any non-zero

n = (α, β, γ), the matrix

⎛

⎜
⎜
⎜⎜
⎜
⎝

2α
3 −β

3 − γ
3

−α
3

2β
3 − γ

3
β
2

α
2 0

γ
2 0 α

2
0 γ

2
β
2

⎞

⎟
⎟
⎟⎟
⎟
⎠

is rank 3. Therefore, for the following

equations to hold,

2αu − βv − γw

3
= 0 (8)

−αu − βv + 2γw

3
= 0 (9)

βu + αv

2
= 0 (10)

γ u + αw

2
= 0 (11)

βw + γ v

2
= 0 (12)

we must have u = v = w = 0. That is, qn is an injection. This means that qn

has rank 3, which is also the dimension of Qn, so the map must be a surjection.
Therefore, qn is an isomorphism between W and Qn, i.e., W is a parameterization
of Qn.

Thus far, we have identified a parameterization for Qn, the set of symmetric,
traceless tensors whose projection onto the plane Pn is degenerate. Given the tensor
field LT (x, y, z) = xTx + yTy + zTz, it maps R3 isomorphically to U ⊂ T. When
restricted on the plane Pn, LT maps Pn (isometric to R

2) to a two-dimensional
linear subspace N ⊂ T. Under structurally stable conditions, N0 = N

⋂
Qn is a

zero-dimensional linear subspace, i.e., the zero tensor. This happens when Pn is not
a transition plane. On the other hand, when N0 is a one-dimensional linear space,
i.e., there exists a point p0 = (x0, y0, z0) ∈ Pn (p0 is not the origin in R

3) such that
x0Tx + y0Ty + z0Tz ∈ Qn, then Pn is a transition plane.

244 Y. Zhang et al.

In this case, x0Tx +y0Ty + z0Tz = qn(r0) for some non-zero r0 ∈ W . Recall that
U is a codimension-two subset of T, so there exist two linear functions such that

f0(qn(r0)) = 0 (13)

g0(qn(r0)) = 0 (14)

Note that qn is linear in terms of r0. Consequently, both f ′
0(r0) = f0(qn(r0)) and

g′0(r0) = g0(qn(r0)) are linear in terms of r0.
Furthermore, p0 is in Pn and so is perpendicular to n, i.e., (x0, y0, z0) · n = 0.

Because Tx , Ty , and Tz are linearly independent, the linear map LT : R3 → T

given by the field will have a left inverse T L : T → R
3, such that T L(LT (p)) = p,

for any p ∈ R
3 (e.g. T L could be LT ’s pseudoinverse). Since qn(r0) = LT (p0),

T L(qn(r0)) = p0. Therefore, we have

0 = n · p0 = n · T L(qn(r0)) (15)

Let d0(r0) = n · T L(qn(r0)). This function is also a linear function of r0, since both
T L and qn are linear functions with respect to their arguments. Therefore, r0 must
satisfy the following system of linear equations:

f ′
0(r0) = 0 (16)

g′0(r0) = 0 (17)

d0(r0) = 0 (18)

The above system can be rewritten as

yf · r0 = 0 (19)

yg · r0 = 0 (20)

yd · r0 = 0 (21)

where yf and yg are vector-valued linear functions of n. To understand yd , we
consider n·T L(qn(r0)) = n·T L(1

2 (n rt
0+r0 nt)− 1

3 (r0 ·n)I). This is a homogeneous
quadratic function of n and a homogeneous linear function of r0. Consequently, it
can be written as yd · r0 where yd is a vector-valued quadratic function of n.

Given our assumption that r0 �= 0, the above linear system is under-determined.
Therefore, the determinant of the matrix formed by yf , yg, and yd must be zero. This
determinant is a quartic polynomial of n, which we refer to as j (n). Consequently,
when Pn is a transition plane, we have

j (n) = 0 (22)

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 245

We now return to the characterization of a transition point p0 for LT (x, y, z) =
T0 + xTX + yTy + zTz. Its unit non-repeating eigenvector n must satisfy

h(n) = 0 (23)

j (n) = 0 (24)

on RP
2, the two-dimensional real-projective space. To study the maximum number

of solutions to the system, we borrow Bézout Theorem from Algebraic Geome-
try [3]:

Theorem 2 Let f0 and g0 be two homogeneous polynomials in three variables of
degree d and e, respectively. Let Cf and Cg be the curves defined by f0 = 0 and
g0 = 0 in the complex projective space CP2. Assume that Cf and Cg do not have
any common component, then they intersect at exactly d ∗ e points in CP

2, counted
with multiplicity.

By Bézout’s Theorem, there can be at most 8 = 2 × 4 solutions as h and j are
quadratic and quartic, respectively. This leads to the following result:

Theorem 3 Under structurally stable conditions, a 3D linear tensor field has at
most eight transition points.

In addition, we have the following result:

Theorem 4 Under structurally stable conditions, a 3D linear tensor field has an
even number of transition points, counting multiplicity.

A degenerate curve is divided into wedge segments and trisector segments by
transition points. Under structurally stable conditions, a degenerate curve extends
to infinity on both ends. Consequently, we classify a degenerate curve as either a
WW curve (the two end segments are both wedge segments), a WT curve (one end
segment is a wedge segment and the other end segment is a trisector segment), and
a TT curve (the two end segments are both trisector segments).

Along a WW or TT degenerate curve, there must be an even number of transition
points. In contrast, along a WT degenerate curve, there must be an odd number of
transition points. In particular, the following is true.

Theorem 5 Under structurally stable conditions, a WW or TT degenerate curve
can have at least zero transition points and at most eight transition points. In
addition, a WT degenerate curve can have at least one transition point and at most
seven transition points.

This leads to the following result regarding the lower-bound of the number of
transition points:

Theorem 6 Under structurally stable conditions, a 3D linear tensor field can have
as few transition points as the number of WT degenerate curves in the field.

Knowing that there are either two or four degenerate curves in a linear tensor
field, we have the following nine scenarios: (1) two WW curves, (2) two WT curves,

246 Y. Zhang et al.

Fig. 2 This figure shows that for each of the nine configurations, it is possible to have as few
transition points as the theoretical lower bound (the number of WT curves) in the field

(3) two TT curves, (4) four WW curves, (5) two WW curves and two WT curves,
(6) one WW curve, two WT curves, and one TT curve, (7) four WT curves, (8) two
WT curves and two TT curves, and (9) four TT curves.

Note that there are four scenarios which are theoretically possible but structurally
unstable: (1) one WW curve and one TT curve, (2) three WW curves and one TT
curve, (3) two WW curves and two TT curves, and (4) one WW curve and three
TT curves. To see this, we examine Fig. 2. In (a), there are two degenerate points
at ∞: one wedge (black dot) and one trisector (white dot). Notice that the wedge
∞ point is end to two degenerate curves, one with a linear wedge at the end and
one with planar wedge at the end. Similarly, the trisector ∞ point also corresponds
to a linear trisector point at the end of a degenerate curve and a planar trisector at
the end of some degenerate curve. Recall that all degenerate points including the ∞
points form an ellipse (shown in black). Consequently, the two segments divided by
the wedge ∞ point and the trisector ∞ point form two segments, both of which are
WT curves.

For four degenerate curves, there are four ∞ degenerate points (Fig. 2b–d).
Assume that there are three wedge ∞ points and one trisector ∞ point, then the
three wedges ∞ points must be consecutive along the ellipse (b), leading to two
WW curves and two WT curves. That is, it is not possible to have three WW curves
and one TT curve. Similarly, if there are three trisector ∞ points and one wedge ∞
point (not shown in the figure), they must divide the degenerate curves into two TT
types and two WT types. Consequently, it is not possible to have three TT curves
and one WW curve.

Finally, when there are two wedge ∞ points and two trisector ∞ points, there are
two scenarios. In the first case, the two wedge ∞ points are next to each other along
the ellipse, and so are the two trisector ∞ points (Fig. 2c). Consequently, there are

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 247

Fig. 3 This figure shows that for each of the nine configurations, it is possible to have eight
transition points (theoretical upper bound) in the field. From left to right, the numbers in each
triple are the number of WW curves, WT curves, and TT curves, respectively. (a) 2/0/0. (b) 0/2/0.
(c) 0/0/2. (d) 4/0/0. (e) 2/2/0. (f) 1/2/1. (g) 0/4/0. (h) 0/2/2. (i) 0/0/4

one WW curve, one TT curve, and two WT curves. In the second case, the wedge
and trisector ∞ points appear alternatingly along the ellipse, leading to four WT
curves. Consequently, it is not possible to have two WW curves and two TT curves.

Each of nine legal scenarios can be encoded as (p, q, r) where p, q and r are the
number of WW curves, WT curves, and TT curves, respectively. For example, the
scenario of two WW curves is encoded as 2/0/0.

Our experiments have shown that both the upper-bound and the lower-bound can
be reached for each of the nine scenarios (upper-bound: Fig. 3; lower-bound: Fig. 4).

248 Y. Zhang et al.

Fig. 4 This figure shows that for each of the nine configurations, it is possible to have as few
transition points as the theoretical lower bound (the number of WT curves) in the field. (a) 2/0/0.
(b) 0/2/0. (c) 0/0/2. (d) 4/0/0. (e) 2/2/0. (f) 1/2/1. (g) 0/4/0. (h) 0/2/2. (i) 0/0/4

Therefore, these bounds are not only tight in general, there are tight for each of the
nine scenarios. In particular, there can be zero transition points in the field (Fig. 4a,
c, d, and i).

We have also observed that a linear tensor field can have zero, two, four, six,
and eight transition points (respectively Figs. 4a, b, g, 5a, and 3a). Moreover, along
a single WW or TT curve, there can be zero, two, four, and six degenerate points
(respectively Figs. 4a, 3d, b a). Along a WT degenerate curve, there can be one,

Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields 249

Fig. 5 This figure shows that
a 3D linear tensor field can
have a total of six transition
points 6/0 (a) or seven
transition points along one
degenerate curve 7/1 (b)

three, five, and seven degenerate points (respectively Figs. 3e, f, b, and 5b). We
therefore conjecture that along a degenerate curve, it is not possible to have eight
degenerate points.

5 Conclusion

In this paper, we study the number of transition points in a 3D linear tensor field. We
show that under structurally stable conditions there are at most 8 transition points.
Moreover, we show that the minimum number of transition points is the same as the
number WT degenerate curves in the field. Both of these bounds are tight for the
nine scenarios in a linear tensor field.

In addition, we have established the theoretical lower-bound and upper-bound on
the number of transition points that can occur on a single degenerate curve, which
are zero (min) and eight (max) for WW and TT curves and one (min) and seven
(max) for WT curves.

In practice, we have the lower-bounds for WW, WT, and TT degenerate curves
to be tight, i.e., there are tensor fields which have degenerate curves with the given
lower-bound transition points. Furthermore, we have also identified 7 to be a tight
upper-bound for WT degenerate curves. On the other hand, the observed upper-
bound for a WW or TT degenerate curve is six, which is a conjecture that we plan
to investigate.

In the future, we plan to strive for a tight upper bound on the number of transition
points on one WW or TT degenerate curve in a 3D linear tensor field. In addition,
we plan to study the bifurcations in a 3D tensor field.

Acknowledgments We are also grateful for the constructive comments from our anonymous
reviewers. Yue Zhang was partially supported by National Science Foundation Award 1566236.
Eugene Zhang was partially supported by National Science Foundation Award 1619383.

250 Y. Zhang et al.

References

1. Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyperstream lines.
IEEE Comput. Graph. Appl. 13(4), 25–33 (1993)

2. Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In:
Proceedings IEEE Visualization ’94 (1994)

3. Fulton, W.: Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin, New York
(1974)

4. Hesselink, L., Levy, Y., Lavin, Y.: The topology of symmetric, second-order 3D tensor fields.
IEEE Trans. Vis. Comput. Graph. 3(1), 1–11 (1997)

5. Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors:
moving beyond the symmetric positive-definite case. Comput. Graph. Forum 32(1), 49–74
(2013). http://dblp.uni-trier.de/db/journals/cgf/cgf32.html#KratzASH13

6. Palacios, J., Roy, L., Kumar, P., Hsu, C.Y., Chen, W., Ma, C., Wei, L.Y., Zhang, E.: Tensor
field design in volumes. ACM Trans. Graph. 36(6), 188:1–188:15 (2017). http://doi.acm.org/
10.1145/3130800.3130844

7. Palacios, J., Yeh, H., Wang, W., Zhang, Y., Laramee, R.S., Sharma, R., Schultz, T., Zhang, E.:
Feature surfaces in symmetric tensor fields based on eigenvalue manifold. IEEE Trans. Vis.
Comput. Graph. 22(3), 1248–1260 (2016). http://dx.doi.org/10.1109/TVCG.2015.2484343

8. Roy, L., Kumar, P., Zhang, Y., Zhang, E.: Robust and fast extraction of 3d symmetric tensor
field topology. IEEE Trans. Vis. Comput. Graph. 25(1), 1102–1111 (2019). https://doi.org/10.
1109/TVCG.2018.2864768

9. Zhang, Y., Palacios, J., Zhang, E.: Topology of 3D Linear Symmetric Tensor Fields, pp. 73–91.
Springer International Publishing, Cham (2015). http://dx.doi.org/10.1007/978-3-319-15090-
1_4

10. Zhang, Y., Tzeng, Y.J., Zhang, E.: Maximum number of degenerate curves in 3d linear tensor
fields. In: Carr, H., Garth, C., Weinkauf, T. (eds.) Topological Methods in Data Analysis and
Visualization IV, pp. 221–234. Springer International Publishing, Cham (2017)

11. Zheng, X., Pang, A.: Topological lines in 3d tensor fields. In: Proceedings IEEE Visualization
2004, VIS ’04, pp. 313–320. IEEE Computer Society, Washington, DC (2004) http://dx.doi.
org/10.1109/VISUAL.2004.105

12. Zheng, X., Parlett, B., Pang, A.: Topological structures of 3D tensor fields. In: Proceedings
IEEE Visualization 2005, pp. 551–558 (2005)

13. Zheng, X., Parlett, B.N., Pang, A.: Topological lines in 3d tensor fields and discriminant hessian
factorization. IEEE Trans. Vis. Comput. Graph. 11(4), 395–407 (2005)

http://dblp.uni-trier.de/db/journals/cgf/cgf32.html#KratzASH13
http://doi.acm.org/10.1145/3130800.3130844
http://doi.acm.org/10.1145/3130800.3130844
http://dx.doi.org/10.1109/TVCG.2015.2484343
https://doi.org/10.1109/TVCG.2018.2864768
https://doi.org/10.1109/TVCG.2018.2864768
http://dx.doi.org/10.1007/978-3-319-15090-1_4
http://dx.doi.org/10.1007/978-3-319-15090-1_4
http://dx.doi.org/10.1109/VISUAL.2004.105
http://dx.doi.org/10.1109/VISUAL.2004.105

Discrete Poincaré Duality Angles as
Shape Signatures on Simplicial Surfaces
with Boundary

Konstantin Poelke and Konrad Polthier

Abstract We introduce and explore the concept of discrete Poincaré duality angles
as an intrinsic measure that quantifies the metric-topological influence of boundary
components to compact surfaces with boundary. Based on a discrete Hodge-Morrey-
Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces
with boundary, the discrete Poincaré duality angles reflect a deep linkage between
metric properties of the spaces of discrete harmonic Dirichlet and Neumann fields
and the topology of the underlying surface, and may act as a new kind of shape
signature. We provide an algorithm for the computation of these angles and discuss
them on several exemplary surface models.

1 Introduction

Hodge-type decomposition statements form an indispensable tool for the analysis
and structural understanding of vector fields and more generally differential forms
on manifolds. Dating back at least to Helmholtz’ classical result [18] on the decom-
position of a vector field into a divergence-free and a rotation-free component,
there has been a remarkable evolution of extensions and generalizations. Nowadays
there is a well-developed theory for Hodge decompositions of differential forms
of Sobolev class (see [15] for an overview), which is of central importance e.g.
for finite element Galerkin methods for problems involving vector fields such as
Maxwell’s equations or Navier-Stokes systems. A surprising property is the strong
linkage of certain spaces of harmonic forms to the topology of the underlying man-
ifold, whose first encounter is given by de Rham’s theorem, stating that on a closed
oriented Riemannian manifold the space of harmonic k-forms is isomorphic to the
k-th cohomology with real coefficients. On a surface with non-empty boundary,
the corresponding statement applies to the spaces of harmonic Dirichlet fields H 1

D

K. Poelke (�) · K. Polthier
Freie Universität Berlin, Berlin, Germany
e-mail: konstantin.poelke@fu-berlin.de; konrad.polthier@fu-berlin.de

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8_16

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43036-8_16&domain=pdf
mailto:konstantin.poelke@fu-berlin.de
mailto:konrad.polthier@fu-berlin.de
https://doi.org/10.1007/978-3-030-43036-8_16

252 K. Poelke and K. Polthier

and Neumann fields H 1
N , which are subspaces of all harmonic fields with certain

boundary conditions imposed. However, there are now two decompositions—one
including H 1

D , the other one including H 1
N —and in general there is no single L2-

orthogonal decomposition including both these spaces at the same time. A recent
result by Shonkwiler [16, 17] identifies the reason for this non-orthogonality as
the existence of non-empty subspaces representing the interior cohomology of the
manifold (in contrast to the cohomology induced by the boundary components),
which establishes another astonishing linkage between metric properties and the
topology. In particular, the principal angles between H 1

N and H 1
D seem to act as

an indicator for the influence of boundary components on the overall geometry and
therefore as a theoretical shape signature.

Contributions The main contribution of this article is the introduction of discrete
Poincaré duality angles in Sect. 4, based on a discretization of harmonic Neumann
and Dirichlet fields by piecewise constant vector fields on simplicial surfaces with
boundary. Furthermore, we provide an algorithm for their numerical computation,
using a singular value decomposition of a matrix whose size only depends on the
topological complexity of the surface. Finally, we compute these angles for a few
exemplary models and discuss their interpretation as shape signatures.

Related Work The literature on Hodge-type decomposition statements is vast and
has a long history. For a modern treatment and a good overview on smooth and
Sobolev-class Hodge-type decomposition statements see [15] and the literature
referenced therein. The recent work by Shonkwiler [16, 17] introduces the concept
of Poincaré duality angles and the splitting of Neumann and Dirichlet fields into
interior cohomology- and boundary cohomology-representing subspaces on smooth
oriented Riemannian manifolds. A general background on differential forms, Hodge
decompositions and homology theory of manifolds can be found in standard
textbooks such as [5, 9] and [10].

For the numerical treatment of vector fields there is a variety of discretization
strategies available, cf. the overview article [3]. For instance, the finite element
exterior calculus [2] by Arnold et al. introduces families of spaces of polynomial
differential forms of arbitrary degree and generalizes classical ansatz spaces such as
the Raviart-Thomas elements or Nédélec’s elements. The discrete exterior calculus
[7] by Hirani defines discrete differential forms as synonyms for simplicial cochains
and relies on a dual grid to derive metric-dependent properties. Here we focus on a
discretization by piecewise constant vector fields (PCVFs). Their usage and analysis
in geometry processing tasks goes back at least to the work by Polthier and Preuss
[13] and Wardetzky [19]. The interplay of linear Lagrange and Crouzeix-Raviart
elements as ansatz spaces for gradients and cogradients which is central to these
works can already be found in [1] for the special case of a simply-connected domain
in R

2. Since then, PCVFs have become a main ingredient for frame field modelling
[20], remeshing [6, 14] or surface parameterization [8], just to name a few examples.

A complete, structurally consistent set of Hodge-type decompositions for PCVFs
on simplicial surfaces and solids with boundary has been recently developed by

Discrete Poincaré Duality Angles 253

Poelke and Polthier [11, 12], and we refer the reader to these works for all details
concerning theory, discretization, implementation and numerical solving left out in
this article.

Outline Section 2 reviews the necessary background of smooth Hodge-type
decompositions and Poincaré duality angles on smooth manifolds. In Sect. 3 we
state the most important results from a discretization by piecewise constant vector
fields as developed in [11, 12]. Furthermore, some exemplary angles between dis-
crete harmonic Neumann and Dirichlet fields are computed, serving as a motivation
for the introduction of discrete Poincaré duality angles, which are then introduced,
computed and discussed in Sect. 4.

2 Hodge-Type Decompositions, Topology and Duality Angles

In its modern formulation, the Hodge decomposition theorem states that on a
closed oriented Riemannian manifold M the space Ωk of smooth k-forms can be
decomposed L2-orthogonally as

Ωk = dΩk−1 ⊕ δΩk+1 ⊕H k (1)

where H k is the space of harmonic k-forms satisfying dω = δω = 0. Here and in
the following, ⊕ always denotes an L2-orthogonal direct sum. A remarkable result
is de Rham’s theorem which provides an isomorphism H k ∼= Hk(M) between the
space of harmonic k-forms and the k-th cohomology with real coefficients on M ,
and therefore identifies the dimension of H k as a topological invariant.

As soon as the manifold M has a non-empty boundary ∂M �= ∅, Eq. (1) is no
longer valid. Instead, the analogous splitting is now given by two decomposition
statements known as the Hodge-Morrey-Friedrichs decomposition (see [15]):

Ωk = dΩk−1
D ⊕ δΩk+1

N ⊕ (H k ∩ dΩk−1) ⊕H k
N

= dΩk−1
D ⊕ δΩk+1

N ⊕ (H k ∩ δΩk+1) ⊕H k
D .

Here, the subscript D denotes Dirichlet boundary conditions (i.e. the tangential part
t(ω) of a differential form ω has to vanish along ∂M) and N denotes Neumann
boundary conditions (i.e. the normal part ω |∂M −t(ω) has to vanish along ∂M)
which are imposed on the corresponding spaces. Again, there are isomorphisms
H k

N
∼= Hk(M) and H k

D
∼= Hk(M, ∂M), respectively, with the latter space

Hk(M, ∂M) denoting the k-th relative cohomology of M .
With respect to the characterization of vector fields on surfaces with boundary,

a natural question is whether there is a single orthogonal decomposition including
H 1

N and H 1
D at the same time. To this end, we say that a surface M is of type

254 K. Poelke and K. Polthier

Σg,m, if M is a compact orientable surface of genus g ≥ 0 with m ≥ 0 boundary
components. We have the following result [11, Lemma 2.4.5]:

Lemma 1 Let M be a surface of type Σ0,m. Then there is an L2-orthogonal
decomposition

Ω1 = dΩ0
D ⊕ δΩ2

N ⊕ (dΩ0 ∩ δΩ2) ⊕H 1
D ⊕H 1

N .

Lemma 1 includes the common case of two-dimensional flat domains embedded
in R

2. On the other hand, if g ≥ 1 the sum H 1
D ⊕ H 1

N is not L2-orthogonal any
more. A recent result by Shonkwiler [16, 17] identifies subspaces of H 1

D and H 1
N ,

or more generally H k
D and H k

N , representing the cohomology corresponding to the
inner topology of M as the reason for this non-orthogonality. Shonkwiler introduces
the spaces

H k
N,co := H k

N ∩ δΩk+1

H k
N,∂ex := {ω ∈ H k

N : ι∗ω ∈ dΩk−1(∂M)}
H k

D,ex := H k
D ∩ dΩk−1 = �H n−k

N,co

H k
D,∂co := {ω ∈ H k

D : ι∗(�ω) ∈ dΩn−k−1(∂M)} = �H n−k
N,∂ex

(2)

of coexact Neumann, boundary-exact Neumann, exact Dirichlet and boundary-
coexact Dirichlet k-forms, respectively. Here, ι : ∂M ↪→ M denotes the inclusion,
� is the Hodge star and n is the dimension of M . It is then shown [16, Thm. 2.1.3]
that always H k

D,ex ⊥ H k
N and H k

N,co ⊥ H k
D , but in general H k

N,∂ex �⊥ H k
D,∂co.

Furthermore, the subspaces H k
D,ex and H k

N,co can be directly related to cohomology
information that is induced by the boundary components, whereas the critical
subspaces H k

N,∂ex and H k
D,∂co are related to the “interior topology” of the manifold,

and it is this presence of interior topology that causes the orthogonality to fail.
The amount of failure can be measured by the Poincaré duality angles, which
are the principal angles between H k

D and H k
N . Since the boundary-representing

subspaces are always orthogonal, the interesting, non-trivial principal angles there-
fore arise between the spaces H k

N,∂ex and H k
D,∂co. Shonkwiler computes these

angles analytically for the complex projective space with an open ball removed, and
the Grassmannian with a tubular neighbourhood of a sub-Grassmannian removed
[16, Chap. 3 & 4]. In both cases the Poincaré duality angles quantify how far the
manifolds are from being closed. In particular, shrinking the size of the boundary
component lets the angles tend to zero, whereas increasing the size lets them tend
to π/2. Furthermore, the order of convergence seems to encode the codimension of
the removed submanifold, which is posed as a conjecture [16, Conj. 3]. For general
manifolds, though, the analytic computation of these angles seems difficult or even
intractable.

Discrete Poincaré Duality Angles 255

3 Discrete Neumann and Dirichlet Fields

Now, let Mh ⊂ R
3 be a compact, orientable simplicial surface with (possibly empty)

boundary, triangulated by affine triangles, equipped with the locally Euclidean
metric. We use the subscript h to distinguish between the simplicial surface and
discrete function spaces, and their smooth counterparts. It can be thought of as
a discretization parameter and commonly refers to the maximum diameter of the
affine triangles in the triangulation of Mh.

Let Xh denote the space of PCVFs on Mh, which are given by one tangent
vector XT per affine triangle T of Mh, and let L and F denote the finite element
spaces of linear Lagrange and Crouzeix-Raviart elements on Mh. To be precise, L
denotes the space of all continuous functions on Mh that are linear when restricted
to an individual triangle T , and F is the space of all L2-functions on Mh that are
represented by a linear function when restricted to an individual triangle T such
that the values of these linear representatives agree at the edge midpoint between
any two adjacent triangles. Therefore, an element in L is uniquely defined by
its values at vertices, whereas an element in F is uniquely defined by its values
at edge midpoints. We denote by L0 ⊂ L the subspace of all linear Lagrange
functions that vanish at the boundary, and by F0 ⊂ F the subspace of all Crouzeix-
Raviart functions that vanish at all midpoints of boundary edges. Furthermore, we
denote by

∇L := {∇ϕ : ϕ ∈ L } ∇L0 := {∇ϕ : ϕ ∈ L0}
J∇F := {J∇ψ : ψ ∈ F } J∇F0 := {J∇ψ : ψ ∈ F0},

the gradient and cogradient spaces, respectively, formed by these ansatz functions.
Here, ∇ is the element-wise surface gradient and J denotes a counter-clockwise
(with respect to a fixed unit normal field) rotation by π/2 in the tangent plane of
each triangle. In other words, if XT is a vector in the tangent plane of a triangle T ,
and NT is a unit normal on T , then JXT := NT × XT acts as the cross-product
with NT .

It is not hard to prove that the spaces ∇L0 and J∇F0 are L2-orthogonal to each
other [12, Sec. 3.1], even if ∂Mh = ∅ in which case we have L0 = L andF0 = F .
Let Hh denote the space of discrete harmonic PCVFs, defined as the L2-orthogonal
complement of the sum ∇L0 ⊕ J∇F0. If ∂Mh = ∅, i.e. if Mh is a closed surface
of genus g, then there is a single, orthogonal decomposition of the space of PCVFs,
given by

Xh = ∇L ⊕ J∇F ⊕Hh (3)

256 K. Poelke and K. Polthier

and furthermore dimHh = 2g [19, Thm. 2.5.2]. On the other hand, if ∂Mh �= ∅, i.e.
m ≥ 1, there are now two discrete Hodge-Morrey-Friedrichs decompositions [12,
Cor. 3.3]:

Definition and Lemma 2 If Mh �= ∅, there are two L2-orthogonal decompositions

Xh = ∇L0 ⊕ J∇F0 ⊕ (Hh ∩ ∇L) ⊕Hh,N (4)

= ∇L0 ⊕ J∇F0 ⊕ (Hh ∩ J∇F) ⊕Hh,D (5)

where Hh,N and Hh,D are the spaces of discrete Neumann and Dirichlet fields,
defined as the L2-orthogonal complement of the sum of the first three subspaces in
Eqs. (4) and (5), respectively.

Furthermore, we have discrete de Rham isomorphisms Hh,N
∼= H 1(Mh) and

Hh,D
∼= H 1(Mh, ∂Mh), and by Poincaré-Lefschetz duality it follows dimHh,D =

dimHh,N = 2g + m − 1 for a surface of type Σg,m with m ≥ 1. Bases for the
spaces Hh,N and Hh,D are shown in Fig. 1 for a surface of type Σ0,3 and in Fig. 2
on a hand model with four boundary components, which is of type Σ1,4.

Fig. 1 Basis fields XN,1, XN,2 for Hh,N (top row) and XD,1, XD,2 for Hh,D (bottom row) on
an annulus with a hole (“AwH”), which is a surface of type Σ0,3. As in the smooth case, discrete
Dirichlet fields are characterized by having a vanishing tangential component along the boundary,
whereas discrete Neumann fields have an almost vanishing normal component (for details on
why the normal component is not necessarily strictly vanishing in this discretization, see [12,
Section 3.1]). Each discrete Neumann field is L2-orthogonal to each discrete Dirichlet field on this
model. Locally, though, these fields need not be orthogonal, as can be seen in the rightmost image,
where XN,1 and XD,2 are shown in a close-up

Discrete Poincaré Duality Angles 257

Fig. 2 Bases for the spaces Hh,N (top row) and Hh,D (bottom row) on a hand model with four
boundary components (one hole cut out at each finger tip and the fourth one at the wrist)

Table 1 Angles between the basis fields for Hh,N and Hh,D on the flat AwH-model from Fig. 1
and the TwC-model from Fig. 3 in radians. The bold values in the TwC table belong to the two
pairs in the close-up Fig. 4

AwH XD,1 XD,2

XN,1 1.57 1.57

XN,2 1.57 1.57

TwC XD,1 XD,2 XD,3

XN,1 2.30 1.57 0.74
XN,2 1.62 1.57 1.55

XN,3 2.41 1.58 2.31

As in the smooth case in Lemma 1, for simplicial surfaces of type Σ0,m both
spaces are always L2-orthogonal to each other and consequently there is a single
complete discrete decomposition [12, Lemma 3.10]

Xh = ∇L0 ⊕ J∇F0 ⊕ (J∇F ∩ ∇L) ⊕Hh,D ⊕Hh,N . (6)

The numerical angles in Table 1 confirm this result for the surface of type Σ0,3 from
Fig. 1. Each angle α = �(X, Y) is computed as usual by

cos α = 〈X,Y 〉L2

‖X‖L2 ‖Y‖L2
for X ∈ Hh,N , Y ∈ Hh,D.

Note that the orthogonality of the shown vector fields is always meant with respect
to the L2-product on Xh. Locally, these fields are in general not orthogonal, see the
rightmost image in Fig. 1.

258 K. Poelke and K. Polthier

In contrast, the example in Fig. 3 shows bases for the three-dimensional spaces
Hh,N and Hh,D on a torus with a cylinder attached, which is of type Σ1,2. Whereas
both the second Neumann and Dirichlet fields form an angle of almost π/2 to all
other fields, this is not true for the those fields, whose masses concentrate on the
toroidal region. Figure 4 shows a close-up of two pairs of fields on the toroidal
region, one forming locally acute angles, the other forming locally obtuse angles. As
their mass on the cylindrical region is negligible, the local situation here dominates
the L2-angle, and indeed the first pairing forms an acute L2-angle of 0.74 radians,

Fig. 3 Basis fields XN,1, XN,2, XN,3 for Hh,N (left column, top to bottom) and XD,1, XD,2, XD,3
for Hh,D (right column, top to bottom) on a torus with a cylinder attached (“TwC”), which is
topologically a surface of type Σ1,2. The fields in the first and third row all concentrate their mass
in the same fashion along the longitudinal and latitudinal cycles that reflect homology generated
by the torus

Fig. 4 Two pairings of Neumann and Dirichlet fields from the bases shown in Fig. 3. The left
image shows the first Neumann field XN,1 and the third Dirichlet field XD,3, forming locally acute
angles on each triangle on the torus region. The right image shows the third Neumann field XN,3
and the third Dirichlet field XD,3, forming obtuse angles

Discrete Poincaré Duality Angles 259

whereas the second pairing forms an obtuse L2-angle of 2.31 radians, see Table 1.
Consequently, the spaces Hh,N and Hh,D cannot appear simultaneously in a single
orthogonal decomposition on this model.

4 Discrete Poincaré Duality Angles as Shape Signatures

The previous examples depend on the particular choice of basis vector fields whose
pairwise angles are measured. In order to get rid of this dependence, we consider
instead the principal angles between the vector spaces Hh,N and Hh,D , which are
independent of any concrete choice of basis. In accordance with the smooth situation
we call these principal angles discrete Poincaré duality angles and define them as
follows:

Definition 3 (Discrete Poincaré Duality Angles) The discrete Poincaré duality
angles on Mh are the principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2g+m−1 ≤ π/2
between the spaces Hh,N and Hh,D , defined recursively by

θ1 := �(u1, v1) := min{�(u, v) : u ∈ Hh,N , v ∈ Hh,D}
θk := �(uk, vk) := min

{
�(u, v) : u ∈ Hh,N , v ∈ Hh,D with u ⊥ ui, v ⊥ vi

for all i = 1, . . . , k − 1

}
.

We stress again that the sequence of discrete Poincaré duality angles, being defined
as principal angles between linear subspaces of Xh, only depends on Hh,N and
Hh,D , but not on a concrete choice of vectors. In particular, whereas the sequence
θ1, θ2, . . . is uniquely determined for a given simplicial surface Mh, the vectors
uk, vk realizing an angle θk are not (cf. [4]).

A trivial consequence of Definition 3 is that if θi = π/2 for all i, then clearly
Hh,N ⊥ Hh,D . In general, though, these angles measure the deviation of the spaces
Hh,N and Hh,D from being orthogonal to each other. In this sense they can be
thought of as a quantitative value that measures how far away the two discrete
Hodge-Morrey-Friedrichs-decompositions Eqs. (4) and (5) are from being either
the single decomposition Eq. (1) on a closed surface of type Σg,0 or the complete
orthogonal decomposition Eq. (6) on a domain coming from a sphere, i.e. a surface
of type Σ0,m.

This is illustrated by the sequence in Fig. 5, which shows a torus surface of
type Σ1,2. In the beginning the boundary components are almost negligible and
start to grow until the final surface in the sequence is ultimately dominated by the
boundary components. This behaviour is numerically reflected by the sequence of
the corresponding Poincaré duality angles given in Table 2.

Figure 6 shows a similar sequence of a genus-2-surface with three boundary
components, so it is of type Σ2,3. Here, the leftmost growing boundary component
has a dramatic influence on the pair (θ3, θ4), corresponding to the left torus region.
The other duality angles remain mostly unaffected.

260 K. Poelke and K. Polthier

Fig. 5 A torus sequence (denoted “g1h2(a) – g1h2(e)”) with two growing boundary components.
Although all five models are topologically equivalent, the influence of the boundary components is
drastically increasing and turns the initially almost closed surface into a surface dominated by its
boundary. This is reflected by the numerical values in Table 2

Table 2 Poincaré duality angles for all experiments

Model Type θ1 θ2 θ3 θ4 θ5 θ6

TwC Σ1,2 1.73 · 10−4 1.76 · 10−4 1.57 – – –

Hand Σ1,4 0.03 0.03 1.57 1.57 1.57 –

g1h2(a) Σ1,2 0.08 0.09 1.57 – – –

g1h2(b) Σ1,2 0.28 0.28 1.57 – – –

g1h2(c) Σ1,2 0.62 0.62 1.57 – – –

g1h2(d) Σ1,2 0.95 0.95 1.57 – – –

g1h2(e) Σ1,2 1.32 1.32 1.57 – – –

g2h3(a) Σ2,3 0.13 0.14 0.26 0.27 1.57 1.57

g2h3(b) Σ2,3 0.14 0.15 0.70 0.70 1.57 1.57

g2h3(c) Σ2,3 0.21 0.21 1.14 1.14 1.57 1.57

A dash means that these angles do not exist for the respective surface, as there are always only
2g +m − 1 duality angles

Fig. 6 A sequence of a surface (denoted “g2h3(a) – g2h3(c)”) of type Σ2,3. The leftmost boundary
is growing and dominates the left torus component. This is reflected by the increasing angles θ3 and
θ4 in Table 2, corresponding to the left toroidal region. Note that the other toroidal region remains
mostly unaffected by the growing boundary component—the angles θ1 and θ2 merely increase
from 0.13 to 0.21

Discrete Poincaré Duality Angles 261

The small angles θ1 and θ2 on the TwC-model suggest that the torus region is
almost decoupled from the boundary components, and indeed this was the intention
behind this rather artificial model. Here, Hh,N and Hh,D almost collapse to a single
harmonic space of dimension 2 which would exist on a perfect torus. Moreover, by
comparing with the values in Table 1 we see that the vector fields XN,1, XN,3 and
XD,1, XD,3 in Fig. 3 are far from realizing the discrete Poincaré duality angles.

To a lesser extent, this situation is also prevalent for the hand model, where
the torus region formed by thumb and index finger appears more integrated in the
remaining part of the surface. Consequently, the angles θ1 and θ2, albeit small, are
of magnitudes larger than in the TwC-model.

Note that in all examples in Table 2, there exist principal angles of value 1.57.
This can be explained as follows. In analogy to the smooth case Eq. (2) there are
splittings

Hh,N,co := Hh,N ∩ J∇F

Hh,N,∂ex := (Hh,N,co)
⊥ ∩Hh,N

Hh,D,ex := Hh,D ∩ ∇L

Hh,D,∂co := (Hh,D,ex)
⊥ ∩Hh,D

of discrete coexact Neumann fields, discrete boundary-exact Neumann fields and
so on, and it holds Hh,N,co ⊥ Hh,D and Hh,D,ex ⊥ Hh,N [12, Section 3.4].
Furthermore, if Mh is of type Σg,m with m ≥ 1, then we have [12, Lemmas 3.8/3.9]

dimHh,N,co = Hh,D,ex = m − 1.

This explains the (m − 1)-many right angles in each of the experiments in Table 2.
Finally, it should be noted that there is a subtlety in the discrete theory that

may arise in pathological examples and depends only on the grid combinatorics,
i.e. the connectivity on the triangulation: whereas in the smooth case it is always
H k

N ∩H k
D = {0} [15, Thm. 3.4.4], the corresponding intersection of discrete spaces

Hh,N ∩Hh,D need not be trivial, resulting in invalid duality angles of value zero.
This may happen if the discretization of the boundary is too low in comparison to
the topological complexity (i.e. the numbers m and g of Σg,m) of the surface, or
if there are very coarsely triangulated regions that form the only connections of
the boundaries to the rest of the surface. A precise treatment as well as a criterion
that guarantees the validity of the statement Hh,N ∩ Hh,D = {0} is given in [11,
Section 3.4]. While it is important to keep this in mind, most models that arise in
practice are not affected by this pathology.

Numerical Computation of Poincaré Duality Angles The numerical computa-
tion of principal angles between subspaces of a vector space is classical [4] and
can be easily computed by means of the singular value decomposition (SVD). To
this end we first compute orthonormal bases (ONB) BN and BD for the subspaces

262 K. Poelke and K. Polthier

Hh,N andHh,D , respectively. We refer the reader to [12, Sec. 4.1] for details on how
to obtain these bases. By [4, Thm. 1] the principal angles are then the inverse cosines
of the singular values of the matrix

(〈u, v〉L2

)
u∈BN,v∈BD

, which is of dimension
(2g+m− 1)× (2g+m− 1). As 2g +m− 1 is typically small, the computation of
this SVD poses no problems in terms of memory consumption or computation time.
Listing 1 summarizes this procedure.

Listing 1 Numerical computation of discrete Poincaré duality angles
Input: Simplicial surface mesh Mh

Compute ONB BN for Hh,N

Compute ONB BD for Hh,D

Assemble the matrix M := (〈u, v〉L2
)
u∈BN ,v∈BD

Compute the SVD M = Y · Σ · Zt with Σ = diag(ζ1, . . . , ζ2g+m−1), ζi ≥ ζi+1
return {θi := arccos ζi}i=1,...,2g+m−1

5 Conclusion and Outlook

We have introduced the notion of discrete Poincaré duality angles on simplicial
surfaces with boundary as an intrinsic quantity that sets the geometry, i.e. the
metric properties of the surface, in relation to its topology, which is determined
by its boundary components and the genus of the corresponding closed surface. In
particular, these angles measure the influence of the boundary components on the
overall geometry and quantify how far the surface is from being a closed surface.
Rephrasing this fact algebraically, they quantify how far the two discrete Hodge-
Morrey-Friedrichs decompositions Eqs. (4) and (5) differ from either the single
decomposition Eq. (3) on closed surfaces of type Σg,0 or the complete orthogonal
decomposition Eq. (6) on surfaces of type Σ0,m in which both the spaces Hh,N

and Hh,D appear simultaneously as orthogonal subspaces. In this sense, the vector
(θ1, . . . , θ2g+m−1) of discrete Poincaré duality angles can be considered as a new
intrinsic shape signature for a geometric-topological classification of simplicial
surfaces with boundary.

On the other hand, it is still not clear in which way precisely the angles between
Dirichlet and Neumann fields are related to the boundary components of Mh. The
examples explicitly computed in [16] are a first starting point for the search of
a relation that could be even quantitatively described, but as mentioned in [17],
in general they still seem to be poorly understood. In this respect, the numerical
computation of discrete Poincaré duality angles complements the smooth theory and
may provide further insights. Moreover, for arbitrarily complex surfaces that arise
from CAD-modelling or 3D scanning, an analytic computation seems out of reach.

Therefore, a better understanding of this correlation is very promising with regard
to applications including metric-topological shape classification, extraction of
certain vector field components with controlled characteristics and parametrization
tasks of surfaces with boundary, and remains for future work.

Discrete Poincaré Duality Angles 263

Acknowledgments The authors thank the anonymous reviewers for their detailed and valuable
feedback. This work was supported by the Einstein Center for Mathematics Berlin. The Laurent’s
hand model on which the hand model in Fig. 2 is based on is provided courtesy of INRIA by the
AIM@SHAPE-VISIONAIR Shape Repository.

References

1. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin
plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological tech-
niques, and applications. Acta Numer. 15, 1–155 (2006)

3. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.-T.: The Helmholtz-Hodge decomposition - a
survey. IEEE Trans. Vis. Comput. Graph. 19(8), 1386–1404 (2013)

4. Björck, Å., Golub, G.H.: Numerical methods for computing angles between linear subspaces.
Math. Comput. 27(123), 579–594 (1973)

5. Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics. Springer, New York
(1993)

6. Dong, S., Kircher, S., Garland, M.: Harmonic functions for quadrilateral remeshing of arbitrary
manifolds. Comput. Aided Geom. Des. 22(5), 392–423 (2005)

7. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)
8. Kälberer, F., Nieser, M., Polthier, K.: QuadCover – surface parameterization using branched

coverings. Comput. Graph. Forum 26(3), 375–384 (2007)
9. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New

York (2003)
10. Munkres, J.R.: Elements of algebraic topology. Advanced Book Classics. Perseus Books,

Cambridge, MA (1984)
11. Poelke, K.: Hodge-Type Decompositions for Piecewise Constant Vector Fields on Simplicial

Surfaces and Solids with Boundary. PhD thesis, Freie Universität Berlin (2017)
12. Poelke, K., Polthier, K.: Boundary-aware Hodge decompositions for piecewise constant vector

fields. Comput.-Aided Des. 78, 126–136 (2016)
13. Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge

decomposition. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 113–
134. Springer, New York (2003)

14. Schall, O., Zayer, R., Seidel, H.-P.: Controlled field generation for quad-remeshing. In:
Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, SPM ’08, pp. 295–
300. ACM, New York (2008)

15. Schwarz, G.: Hodge Decomposition: A Method for Solving Boundary Value Problems. Lecture
Notes in Mathematics. Springer, Berlin, Heidelberg (1995)

16. Shonkwiler, C.: Poincaré Duality Angles on Riemannian Manifolds with Boundary. PhD
thesis, University of Pennsylvania (2009)

17. Shonkwiler, C.: Poincaré duality angles and the Dirichlet-to-Neumann operator. Inverse Prob.
29(4), 045007 (2013)

18. von Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbel-
bewegungen entsprechen. Journal für die reine und angewandte Mathematik 55, 25–55 (1858)

19. Wardetzky, M.: Discrete Differential Operators on Polyhedral Surfaces - Convergence and
Approximation. PhD thesis, Freie Universität Berlin (2006)

20. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing.
Comput. Graph. 33(3), 391–398 (2009)

Index

A
Active tetrahedra, 193, 195, 196
Activity indicators, 141, 148–149
Age persistence, 147–149, 151, 152
Allowable simplex, 42
Allowable simplicial chain, 42
Anomaly detection, 149–151, 153
Ascending path, 173, 176, 179, 180, 182–184
Ascending set, 176
Augmented contour tree, 206

B
Backward matching, 142, 143
Barcodes, 47, 49, 89, 92
Barycentric distance interpolation, 192, 226
Base fiber surface, 192–194, 196
Betti numbers, 40, 41, 96
Bézout Theorem, 245
Bilinear distance interpolation, 226
Bootstrap empirical process, 93
Boundary cohomology, 252
Boundary group, 40
Branch decomposition, 4, 10, 111, 113, 157
Branch decomposition tree, 10
Branch inconsistency, 146–151
Branch inconsistency diagram, 146, 149–151

C
Centers, 14, 35, 67, 75, 76, 130, 133, 134, 166,

167, 183, 187, 210, 212, 230
Chain complex, 40, 42
Changing rate, 178, 179
Chebyshev distance, 179, 180

Cogradient spaces, 255
Color transfer function, 75
Combinatorial Morse-Smale complex, vi, 88,

104, 173, 206, 207, 209, 211–213,
215

Combinatorial optimization, 55–57, 59
Compare-and-swap (CAS), 20, 30
Complete orthogonal decomposition, 259, 262
Complexity, 12, 13, 35, 88, 94, 109, 113, 157,

163–164, 181, 252, 261
Component-wise selection, 192
Computational topology, 20, 104, 105, 119
Conditionally positive definite (of kernel), 95
Confidence band, 93, 94
Confidence interval, 92, 93
Confidence regions, 205
Continuation method, 190
Continuous ascending path, 173, 176, 183
Continuous Reeb space, 175
Contour, vi, 4, 10, 16, 20, 22, 72, 105,

109–114, 116–118, 125, 157,
173–185, 188–191, 199, 204–211,
213–215, 231–232

Control points, 76, 77, 188, 192–197
Control polygon, 188, 189, 191–194, 196, 197
Co-occurrence network, 97
Correlations, 187, 262
Cosmological visualizations, 125
Creation time, 90, 141–147, 151
Critical entity, 109
Critical field value, 74, 75, 77, 80–83
Critical points, vii, 3–9, 11, 12, 14–16, 73,

74, 81, 82, 84, 88, 107, 108, 110,
111, 157, 204–209, 211, 222–228,
230–233

© Springer Nature Switzerland AG 2020
H. Carr et al. (eds.), Topological Methods in Data Analysis and Visualization V,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-43036-8

265

https://doi.org/10.1007/978-3-030-43036-8

266 Index

cancellation, 225, 227
Morse, 6, 111, 205

Critical regions, 108, 173, 175
Crouzeix-Raviart elements, 252, 255
C2-smooth, 228
CW complexs, 206–208
Cycle group, 40

D
Data-centric approach, 71
d-cell, 208, 209
Debugging, debug, vi, 104, 105, 107, 112,

116–119
Degeneracy, 233, 238, 239
Degenerate curve, 237, 238, 240, 245, 246,

248, 249
Degenerate point, 237–242, 246, 248, 249
Degree (of node), 227
de Rham isomorphisms, 256
de Rham’s theorem, 251, 253
Descending path, 179, 184
Descending set, 176
Deviator, 239
d-1-face, 208
Dijkstra’s algorithm, 159–161
Dimensionality reduction, 37, 48
Directed acyclic graph (DAG), 6, 11, 155–167
Directed joint contour net (dJCN), 173–185
Dirichlet boundary conditions, 253
Dirichlet field, 251–253, 255–259
Discrete coexact boundary fields, 261
Discrete coexact Neumann fields, 261
Discrete harmonic Dirichlet field, 253
Discrete harmonic Neumann field, 253
Discrete harmonic PCVFs, 255
Discrete Poincaré duality angles, 251–262
Discriminant function, 238, 241
Dissimilarity, 12–13, 15, 94, 151–152
Distance

bottleneck, 12, 87
Wasserstein, 12, 13, 15, 48, 49, 87, 94, 95

Distributed computation, 20
Double degenerate point, 246, 248
Dynamic time warping, 151, 152, 158,

167

E
(ε)-extremum, 179–181
Eigenvalue, 45, 229, 238, 239
Eigenvector, 229, 238, 239, 241, 245
Elder rule, 5, 6
Entropy heatmap, 84

(ε)-Pareto extremal slab, 179–181
(ε)-Pareto maximum, 179
(ε)-Pareto minimum, 179
(ε)-Pareto optimality, 183
(ε)-Pareto optimal point, 179
(ε)-Pareto optimal slab, 179
(ε)-Pareto optimum, 179
(ε)-Pareto set, 183
Epsilon-neighborhood, 229
Equivalence relation, 204–208, 214, 215
Extended branch decomposition graph,

10
Extended robustness, 221–234
Extended robustness field, 222, 223, 228, 230,

232
Extremal point, 182
Extremum graph, 4, 157

F
Feature tracking, 155–167, 225
Fiber, 105, 113, 188, 191, 193

component, 113
surface, vi, 113, 187–200
surface component, 188, 193, 195, 199
topology, 113, 191

Filtration, 39–41, 46, 89, 98, 147, 165
Flaglike, 44
Flat region, 104, 107–110
Flexible fiber surface, 187–200
Flexible isosurface, 188–190, 192, 198–199
Flexing algorithm, 189, 193
Forward matching, 142–144
Function

distance, 28, 89
elevation, 75, 89
range of, 89
step, 90, 91, 94, 143

G
Galilean invariance (GI), vii, 223–228
Galilean invariant criteria, 223
Galilean invariant critical point (GICP), 222,

223, 226, 229, 230, 232, 233
Galilean invariant robustness, 221–234
Galilean invariant vector field (GIVF),

221–234
Galilean transformation, 225, 227
Generic, 5, 41, 42, 141, 228
Goresky–MacPherson perversity, 42, 43, 47
Gradient path, 213
Gradient space, 252, 255
Growth persistence, 147–149

Index 267

H
Halo identification, 125
Halo occlusion, 127
Halo predecessor, 126, 127
Halo successor, 126, 127
Halo trajectory, 124, 129, 133, 134
Halo visualization, 127–128
Hat function, 75–77, 79, 84, 85
H-edge, 208
Height (of branch), 112
Hessian matrix, 228
Heuristics, 55, 56, 62–64
Histogram difference, 158
Histogram volume, 72
Hodge decomposition, 224, 251–254
Hodge-Morrey-Friedrichs decomposition, 253,

256, 259
Hollow, 73
Homology, v, vi, 5, 6, 8, 9, 22, 37–50, 87, 89,

97, 98, 104, 141, 189, 227, 251, 258
Homology group, 40–43, 89, 227
H-subdivision, 208
Hue, 75, 83, 131

I
Image quality, 83–84
Incremental path operator,

161
Incremental pruning, 20
Inner topology, 254
Integral line, 8, 205–207
Interior cohomology, 252
Interlevel set, 5, 7–9
Interlevel set persistence hierarchy (ISPH),

7–13, 15
Intersection homology, 37–50
Intersection homology group, 41, 43
Interval volume, 73, 76
Inverse distance interpolation,

226
Inverse distance weighting, 226
Isocontour, 104, 105, 130, 131
Isocontour component, 105
Isolating neighborhood, 229
Isoline, 105
Isosurface, 72–80, 84, 85, 105, 108, 110,

187–193, 198–199
Isosurface component, 73, 74, 77, 78, 80, 108,

188
Isovalue, 104, 106, 188–191
Iterative thinning, 139, 142

J
Jacobian, 222–224, 226–230, 233, 234
Jacobian-based critical point, 226, 229,

231–233
Jacobi set, 174, 204, 215
Jacobi structure, 174, 184, 204
Joint contour net (JCN), 173–185, 204–206,

208, 214
Joint subdivision, 206, 208–210

complex, 209
graph, 213

K
Karman vortex, 222, 223
Kernel, 15, 46, 88, 94–95, 97–99, 243
Kernel principal component analysis (k-PCA),

98
Kernel support vector machine, 95, 98
Kruskal’s algorithm, 20, 21, 24, 28

L
Lagrange elements, 252, 255
Landscape, fitness, 57, 67
Landscape, meta, 56, 59–68
Largest contour segmentations, 190
Leave-one-out (cross-vaidation), 97
Level of detail (LoD), 74, 78, 81, 82, 85
Level set, 5, 73, 104, 165, 167, 205–207, 232
Linear degenerate point, 239
Linearization points, 32
Locally robust critical point (LRCP), 228–233
Local optima networks (LON), 58
Luminance, 83, 84

M
Machine learning, 87–99
Major merger, 125
Manifold hypothesis, 37
Marching cubes, 130, 189, 190
Marching tetrahedra, 190, 192, 193
Matching, 15, 141, 142, 144, 157, 158, 165
Maximum, vii, 6, 9, 13, 43, 45, 56, 78, 83, 96,

98, 109, 110, 113, 132, 147, 176,
177, 179, 183, 228, 233, 237–249,
255

Maximum binary variable saturation
(MAXSAT), 56, 57, 68

Mean shift clustering, 45

268 Index

Mean shift smoothing, 145
Merger tree, vi, 124–135

graph, 125
visualization, 124, 125, 132, 133

Merge tree, vi, 4, 6, 9, 10, 19–35, 155,
157–159, 166, 167, 205, 207, 208,
227, 228

Merge tree region, 158–159
Merge triplet, 19–35
Minimal persistence, 178
Minimum, 3, 6, 7, 9, 11, 12, 20–24, 56, 60, 61,

64, 67, 73, 74, 80, 83, 113, 130, 132,
144, 176, 177, 179, 223, 237, 238,
249

Minimum spanning tree, 20–22
Monotone path, 113, 177, 208, 209
Morse function, 6, 175, 177, 205
Morse-Smale analysis, 104
Morse-Smale complex, vi, 88, 173, 206, 207,

209, 211–213, 215
Morse theory, 5, 107, 140
Multi-field, 157, 188, 189, 191, 192, 199
Multivariate topology, v, 174, 184

N
N-body simulation, 124
Neighborhood, 8, 9, 39, 43, 44, 57, 59, 61, 142,

144, 176, 177, 179, 223, 228, 229,
233

graph, 8, 9, 59
relation, 57, 59, 61

Neumann boundary conditions, 253, 254
Neumann field, 252, 253, 255, 256, 258, 261,

262
Neutral surface, 237
Noise, 3, 10, 40, 41, 74, 83, 87, 106, 139, 140,

144, 146, 150, 175, 188, 215
Normalized triplet representation, 23, 25, 28

O
Objective function, 155, 156, 160, 162, 165
1-cells, 209, 213, 215
Opacity transfer function, 72, 75–79, 81, 82

P
Pairing, vi, 3–6, 11, 13, 16, 258, 259
Pairwise kernel matrix, 95
Pareto optimality, 183, 191
Pareto set, 173–185, 204, 215
Path compression, 25
Path filtering, 165, 167

Pathological case, vi, 103–119
Periodic boundary conditions, 124, 127, 132,

133
Permutation tree, 62–63, 65, 66, 68
Persistence, vi, 3–16, 20, 22, 38, 41, 47–49,

61, 66, 67, 87–99, 112, 139–153,
177, 178, 223, 224, 232

barcode, 89, 92
curve, 88, 150
diagram, vi, 3, 5, 7, 10–15, 20, 22, 38,

41, 48, 49, 87–92, 94, 95, 99, 141,
146–149

indicator function (PIF), vi, 87–99
landscapes, 88, 91
pair, vi, 3–16, 92

Persistent homology, v, vi, 6, 8, 9, 22, 38,
40–42, 46–49, 87, 97, 98, 104

Persistent homology group, 42, 43
Persistent intersection homology, 37–50

barcode, 47
diagram, 48

Perturbation, 5, 6, 12, 13, 58, 61, 92, 107–109,
165, 223, 227, 234, 239

Perturbation metric, 234
Perversity, 42, 43, 47
Piecewise-constant vector fields (PCVF), 252,

255
Piecewise-linear, 175
Piecewise linear function, 175, 205, 209
Pinched torus, 39, 46, 48
Planar degenerate point, 239
Plateau, 13, 67
Poincar duality angles, 251–263
Poincare duality, 47, 251–263
Poincare-Lefschetz duality, 256
Power diagram, 130, 132
Primary trajectory, 128, 129, 132, 134,

135
Processing speed, 72, 83–85
Proper simplex, 42, 43
Proper simplicial chain, 42

Q
Quadratic Assigment Problem (QAP), 56, 57,

64, 67, 68
Queue, 195, 196
Quotient complex, 209
Quotient graph, 208, 210
Quotient group, 40
Quotient operation, 208, 209, 215
Quotient space operation, 215
Quotient topological subdivision graph, 208

Index 269

R
Rank function, 11, 88
Ranks, 3–16, 40, 88, 89, 227, 243
Reachability graph, 173, 175, 176, 182–185
Reeb analysis, 103–119
Reeb-free, 187–200

approach, 187–200
flexible fiber surface, 187–200

Reeb graph, 4, 9, 10, 105, 113, 125, 190, 191,
199, 204, 205, 207, 215

Reeb space, vi, 105, 113–115, 174–177,
183–185, 188, 189, 191, 192,
198–200, 204

Reference frame, 222, 224, 225
Refinement series, 177, 178
Region tracking, 156, 158–159
Regular persistence hierarchy, 4, 6–8, 10, 13
Relaxation, 61
Representative field value, 74, 75, 77, 79, 81,

83
Restricted persistent homology group, 42
Ridge, 13, 109, 110
Robustness, 3, 5, 10, 175, 221–234
Robustness-based Galilean invariant vector

field, 231–233
r-perturbation, 227

S
Saddle, 5, 6, 60, 61, 73, 80, 109, 112, 209, 210,

222, 226, 227, 230, 232
contour, 210
point, 58, 73, 109

Sampling distance, 76, 85
Saturation, 56, 83, 127
Scalar field, vi, 4, 5, 14, 72–74, 76–78, 104,

155, 157, 158, 167, 175, 177–179,
183, 187–192, 224, 226, 228, 232

Scalar field topology, v, vi, 5
Search landscape, 55–68
Search operator, 56–59, 61
Search space, vi, 55, 56, 58, 61, 65
Secondary trajectory, 124, 129, 130, 132–135
Shannon information entropy, 83
Shape signature, 251–262
Shared-memory parallelism (SMP), 26
Shortest path, 9, 155, 156, 159–161, 163,

164
Significance level (alpha level), 91
Similarity, 4, 155–157, 165, 205
Simplicial chain, 40, 42
Simplicial complex, 40, 42–45, 147, 175, 184,

209
Simplicial homology, 43

Simplification, 59, 88, 106–108, 113, 158, 166,
174, 185, 191, 192, 199, 200, 210,
215, 223, 225, 230–233, 241

Singular fibers, 191
Singular value decomposition (SVD), 252,

261, 262
Sinks, 155, 159–164, 167, 222, 226, 230
Skeletonization, 72–74, 139, 140, 146, 153
Skeletons, 73–74, 139–153
Solid, 73, 74, 127, 252
Sources, v, 38, 44, 106, 111, 141, 155,

159–163, 167, 194–196, 222, 226,
227, 230

Source segment, 194
Source-sink pair, 159, 162, 163
Space, L1, 91
Spatial subdivision, 206–208
Spiral source, 230
Split trees, 4, 9, 10
Stability, 3–6, 11–14, 87, 88, 92, 99, 108, 145,

223, 227, 233
Stability of critical point, 11, 223, 233
Stratifications, 39–40, 42–48, 50
Stratum, 39, 40, 43
Structurally (un)-stable, 239, 246
Subdivision complex, 208–210, 215
Subdivision graphs, 203–215
Subdivisions, 44, 113, 203–215
Sublevel graph, 21, 22, 24
Sublevel set, 4–6, 20, 35, 155, 158, 205, 207,

208, 227
Sublevel set component, 22, 35, 205, 207, 208
Superlevel set, 5, 6, 10, 11, 155, 158, 205, 207,

208
Superlevel set component, 22, 35, 205, 207,

208
Sweep border, 195, 196
Symmetric tensor, 237–249

T
Target control polygon, 193, 196
Target segment, 195, 196
Temporal coherence, 144–145
Test cases, vi, 104–119, 165
Tetrahedral grid, 189, 192
3D symmetric tensor field topology, 237–240
3D tensor field, 237–249
Too much topology, 106
Topological abstract, 123–135
Topological attributes, 73, 77
Topological data analysis, 41, 44, 88, 99, 146

270 Index

Topological features, vi, 6, 11, 38, 41, 47–49,
60, 61, 65, 73, 87, 89, 95–97, 110,
145, 155–167, 173, 204, 205, 227,
237

Topological persistence, 87–99, 142, 153, 223
Topological randomness, 97
Topological saliency, 4
Topological simplifications, 106, 174, 199,

210, 215, 230–233
Topological stratification, 39
Topological structures, vi, 58, 68, 72, 75, 81,

82, 84, 85, 96, 97, 139, 157, 203
Topological subdivision complex, 208–210,

215
Topological subdivision graph, 203–215
Topological volume skeletonization algorithm,

72–74
Total persistence, 49, 92, 141, 149–152
Traceless tensors, 239–249
Tracking graph, 134, 140, 155–167
Transfer functions, vi, 71–85, 190
Transition plane, 241–244
Transition point, 237–249
Traveling Salesman Problem (TSP), 56–59,

64–66, 68
Tree edit distance, 12
Triangulated manifold, 175
Triple degenerate point, 238–240
Triplet merge tree, 20–35
Triplet representation, 20, 22–28, 30–33
Trisector plane, 241
Trisectors, 237–241, 245–246
Trisector segment, 237, 245
TT curves, 245–249
2-cells, 208–210
2D tensor field, 239

V
Valleys, 109, 110
V-edges, 208
Vertex, 11, 12, 21–26, 28, 31, 33, 35, 43, 57,

59, 112, 114, 115, 142, 178, 188,
193

Vietoris-Rips complex, 44, 45, 95, 96
Virial radius, 124, 125, 127, 128, 130, 133
Virtual minimum, 73, 74, 80–82, 85
Viscous fingering, 139–141, 147, 149, 150,

152, 153
Vivacity, 149, 151, 152
Volume overlap, 158
Volume ratio, 74, 76, 80, 81
Volume rendering, vi, 71, 77
Volume skeleton tree (VST), 73–76, 78, 80–82,

84, 85
Volume visualization, 71
Vortex, 157, 222–224, 226, 230

W
Wasserstein distance, 12, 13, 15, 48, 49, 87,

94, 95
Wedge, 44, 46–48, 237–241, 245–247
Wedge plane, 241
Wedge segments, 245
Wedge-trisector classification, 239
Well group theory, 227
W-structures, 104, 107, 109, 110, 119
WT curves, 245–249
WW curves, 245–249

	Preface
	Contents
	Part I Persistence
	Hierarchies and Ranks for Persistence Pairs
	1 Introduction
	2 Related Work
	3 Background and Notation
	4 Persistence Hierarchies
	4.1 Regular Persistence Hierarchy
	4.2 Interlevel Set Persistence Hierarchy (ISPH)
	4.2.1 Calculating Ranks
	4.2.2 Stability Measure
	4.2.3 Dissimilarity Measure

	5 Results
	5.1 Synthetic Data
	5.2 Climate Data

	6 Conclusion and Future Work
	References

	Triplet Merge Trees
	1 Introduction
	2 Background
	3 Triplet Merge Tree
	4 Shared Memory
	5 Conclusion
	References

	Persistent Intersection Homology for the Analysis of Discrete Data
	1 Introduction
	2 Background
	2.1 Stratifications
	2.2 Homology and Persistent Homology
	2.3 Intersection Homology and Persistent Intersection Homology
	2.3.1 Persistent Intersection Homology
	2.3.2 Simple Example
	2.3.3 Implementation

	3 Using Persistent Intersection Homology
	3.1 Choosing a Stratification
	3.1.1 Dimensionality-Based Stratifications
	3.1.2 Density-Based Stratifications
	3.1.3 Curvature-Based Stratifications

	4 Results
	4.1 Wedge of Spheres
	4.2 Pinched Torus
	4.3 Synthetic Faces

	5 Conclusion
	References

	Part II Scalar Topology
	Coarse-Graining Large Search Landscapes Using Massive EdgeCollapse
	1 Introduction
	2 Foundations and Related Work
	2.1 Discrete Optimization Problems
	2.2 Search Landscapes
	2.3 Landscape Analysis
	2.4 Landscape Visualization

	3 Coarse-Grained Search Landscapes: The Meta Landscape
	3.1 Definition
	3.2 Properties
	3.3 Relaxation

	4 Meta Landscapes for Permutation Problems
	4.1 Permutation Trees
	4.2 Heuristic Generation of Partitions by Branching

	5 Results
	5.1 Validation of the Approach
	5.2 Branching Strategies
	5.3 Comparison of QAP Instances

	6 Conclusion
	References

	Adjusting Control Parameters of Topology-Accentuated Transfer Functions for Volume Raycasting
	1 Introduction
	2 Volume Skeletonization
	2.1 Volume Skeleton Tree
	2.2 Feature Values in the VST

	3 Transfer Function Design
	3.1 Color Transfer Function
	3.2 One-Dimensional Opacity Transfer Function
	3.3 Multi-Dimensional Opacity Transfer Function

	4 Empirical Evaluation
	4.1 Sensitivity to μ and η
	4.2 Dataset Size Sensitivity
	4.3 Response to the LoD of the VST

	5 Further Controllability
	5.1 Image Quality
	5.2 Processing Speed

	6 Conclusion
	References

	Topological Machine Learning with Persistence Indicator Functions
	1 Introduction
	2 Related Work
	3 Persistence Indicator Functions (PIFs)
	3.1 Properties
	3.2 The Bootstrap for Persistence Indicator Functions
	3.3 Distances and Kernels

	4 Applications
	4.1 Analysis of Random Complexes
	4.2 Shakespearean Co-occurrence Networks
	4.3 Social Networks

	5 Conclusion
	References

	Pathological and Test Cases for Reeb Analysis
	1 Introduction
	2 Reeb Analysis
	3 Approaches
	4 Flat Regions
	5 W Structures
	6 Concrete Examples
	7 Debug Tricks
	8 Conclusions
	References

	Part III Time-Varying Topology
	Abstracted Visualization of Halo Topologies in Dark MatterSimulations
	1 Introduction
	2 Related Work
	3 Visualization Methods
	3.1 Direct Halo Visualization
	3.2 Topological Abstracts of Merger Trees
	3.3 Implementation Details

	4 Discussion
	5 Conclusion and Future Work
	References

	Persistence Concepts for 2D Skeleton Evolution Analysis
	1 Introduction
	2 Viscous Fingering
	2.1 Other Methods

	3 Overview and Methods
	3.1 Skeleton Extraction and Propagation of Pixel Creation Time
	3.1.1 Pixel Matching
	3.1.2 Pixel Classification
	3.1.3 Propagating Creation Times

	3.2 Improving Temporal Coherence
	3.3 Persistence Concepts
	3.3.1 Branch Inconsistency
	3.3.2 Age Persistence
	3.3.3 Growth Persistence

	3.4 Activity Indicators
	3.4.1 Total Persistence
	3.4.2 Vivacity

	4 Analysis
	4.1 Anomaly Detection
	4.2 Active Branches
	4.3 Quantifying Dissimilarity

	5 Conclusion
	References

	Fast Topology-Based Feature Tracking using a Directed AcyclicGraph
	1 Introduction
	2 Related Work
	3 Method
	3.1 Tracking Merge Tree Regions using a Directed Acyclic Graph
	3.2 Objective Function and Its Validity with Dijkstra's Algorithm
	3.3 Algorithm for Finding All Paths
	3.4 Complexity Analysis
	3.5 Filtering Similar Paths for Visualization

	4 Results
	5 Conclusion
	References

	Part IV Multivariate Topology
	The Approximation of Pareto Sets Using Directed Joint Contour Nets
	1 Introduction
	2 Related Work
	3 Existing Concepts
	4 Calculating Pareto Sets with dJCNs
	4.1 The Limit of Refinement
	4.2 Recognition of Pareto Maxima and Minima
	4.3 Recognition of Pareto Optima
	4.4 ε-Pareto Extrema

	5 Discussion
	5.1 Implementation of JCN over Constant 2D-Grid
	5.2 Example
	5.3 Reachability Graph
	5.4 Reeb Space

	6 Conclusion
	References

	Flexible Fiber Surfaces: A Reeb-Free Approach
	1 Introduction
	2 Related Work
	2.1 Work in Scalar Field Analysis
	2.2 Work in Multi-Fields Analysis

	3 Generalizing the Semantics
	3.1 Generalizing the Interface
	3.2 Generalizing the Component-Wise Operations

	4 The Algorithm
	4.1 Identifying the Connected Components
	4.1.1 Patch Corners in Base Fiber Surface
	4.1.2 Patch Corners Due to Clipping

	4.2 Following the Connected Components

	5 Outcomes
	5.1 The Analysis of the Algorithm
	5.2 A Simple Proof of Concept: The Tooth Dataset
	5.3 Comparison with the Flexible Isosurface

	6 Discussion
	7 Conclusion and Future Work
	References

	Topological Subdivision Graphs for Comparative and Multifield Visualization
	1 Introduction
	2 Related Work
	3 Background
	4 Topology-Induced Spatial Subdivision
	5 Topological Subdivision Complex and Graph
	6 Computation
	7 Results
	8 Discussion
	9 Conclusion
	References

	Part V Other Forms of Topology
	Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness
	1 Introduction
	2 Related Work
	3 Technical Background
	4 Theoretical Results
	5 Visualization Results
	5.1 Topological Simplification

	6 Discussion
	References

	Maximum Number of Transition Points in 3D Linear Symmetric Tensor Fields
	1 Introduction
	2 Previous Work
	3 Background on Symmetric Tensors and Tensor Fields
	4 Transition Points in 3D Symmetric, Traceless Tensor Fields
	5 Conclusion
	References

	Discrete Poincaré Duality Angles as Shape Signatures on Simplicial Surfaces with Boundary
	1 Introduction
	2 Hodge-Type Decompositions, Topology and Duality Angles
	3 Discrete Neumann and Dirichlet Fields
	4 Discrete Poincaré Duality Angles as Shape Signatures
	5 Conclusion and Outlook
	References

	Index

