
45© Springer Nature Switzerland AG 2020 
E. S. Kleinerman, R. Gorlick (eds.), Current Advances in Osteosarcoma, Advances in Experimental 
Medicine and Biology 1257, https://doi.org/10.1007/978-3-030-43032-0_4

Radiopharmaceuticals 
for Treatment of Osteosarcoma
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Abstract

Although trace amounts of radioactivity are 
routinely used to detect osteosarcoma, the use 
of larger therapeutic amounts of radiation is 
often an unrecognized opportunity to treat 
metastatic osteosarcoma. This chapter will 
review a number of approaches to use ioniz-
ing radiation in the form of injectable radio-
pharmaceuticals. Since bone metastases are a 
common pattern of metastatic spread of can-
cer in general, a number of bone-seeking 
radiopharmaceuticals have been developed 
and FDA approved for treatment of bone 
metastases. Although osteosarcoma, a bone-
forming cancer, would seem ideally suited to 
be treated with bone seekers, patterns of 
relapse involving non-ossifying metastases 
remain a major problem to be overcome. Thus, 
this review will not only describe experience 
using a number of bone-seeking radiopharma-
ceuticals such as 153-samarium-EDTMP, 
153-samarium-DOTMP, and 223-radium 
against osteosarcoma, but also approaches to 
identify patients who may benefit as well as 

some means to the improve overall efficacy 
including combination therapy with routine 
agents and using nuclear imaging to develop 
best strategy for use. These include imaging 
with not only 99mTc-MDP standard bone 
scans, but also 99mTc-MDP bone scans with 
SPECT CT, bone-specific sodium fluoride 
PET-CT (Na18F), and 18FDG-
PET-CT.  Accurate knowledge of oligometa-
static active disease can facilitate more 
effective use of combination therapy, includ-
ing radiosensitizers and local control mea-
sures, for example, stereotactic body 
radiotherapy (SBRT) and/or cryoablation to 
reduce disease burden as well as manage and 
prevent micrometastatic disease from grow-
ing and metastasizing. Finally, a new tumor-
specific radiopharmaceutical, CLR 131, may 
also provide another radiopharmaceutical to 
treat both osteoblastic and non-ossifying 
areas of osteosarcoma.
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�Introduction

Osteosarcoma is a bone-forming tumor; alkaline 
phosphatase is a tumor marker associated with 
high osteoblastic activity. Metastatic osteosar-
coma at diagnosis with high alkaline phosphatase 
in more than two organs (e.g., bone and lung) was 
associated with significantly inferior survival [1]. 
The initial bone-seeking radiopharmaceuticals, 
89SrCl and 32P, were limited by a long half-life 
(50 days and 14 days, respectively) and nonspe-
cific uptake of 32P in other tissues. These were 
generally used for one and done palliation of 
bone pain [2]. The next era of radiopharmaceuti-
cals with bone-seeking specificity used metal 
chelates to deliver a radioactive payload which 
tightly binds bone matrix (Table  4.1). 
133-Ho-DOTMP development was halted 
because of renal toxicity which occurred when 
radiopharmaceutical that did not bind bone 
passed through the kidneys into the urine. 
186-Re-HEDP and 188-HEDP were used for 
skeletal metastases in 1997–2007 [3–6] but are 
not currently available in North America.

�Samarium

Goeckeler tested a number of chelates and ethyl-
ene diamine tetramethylene phosphonate 
(EDTMP) was shown to not only have very high 
bone specificity, but also very high retention in 
bone [7, 8]. Canine osteosarcoma studies with 
153-Sm-EDTMP showed activity excellent 
against osteoblastic osteosarcoma [9]. 
153-Sm-EDMP that does not bind bone is 
excreted into the urine unchanged [10]. Thus, 
when Anderson et  al. dose escalated 

153-Sm-EDTMP with stem cell rescue, the pro-
tocol used saline hydration, furosemide to 
increase urine output, and instructions to void 
frequently for 6 hours to reduce renal and blad-
der exposure to unbound radiopharmaceutical 
[11]. In this study, hypocalcemia from carrier 
EDTMP was found to be the dose-limiting toxic-
ity when 153-Sm-EDTMP was escalated 30-fold 
from a standard dose of 1 mCi/kg to 30 mCi/kg. 
Others have successfully used high-dose samar-
ium for osteosarcoma [12–14]. Loeb et al. also 
showed tandem dosing was possible in osteosar-
coma [15].

Use of gemcitabine as a radiosensitizer after 
the highly bone-specific binding of high-dose 
153-Sm-EDTMP resulted in improved imaging 
responses [16]. Total body measurements after 
153-Sm-EDTMP then gemcitabine were 
1.08+/−0.4 mCi (<3.6 mCi for safe infusion of 
stem cells) after 6–7 half-lives (12–14 days) [16] 
and all patients recovered hematologic function 
within 2  weeks after getting the stem cells 
(Fig. 4.1).

Standard dose 153-Sm-ETMP usefulness in 
osteosarcoma has been reviewed previously 
[17, 18]; the dose-limiting toxicity of 
153-Sm-EDTP is delayed thrombocytopenia. 
This generally occurs 3–4 weeks after adminis-
tration and resolves within 4–6 weeks. To date 
there are no reports of use of TPO agonists 
such as eltrombopag or romiplostim after 
153-Sm-EDTMP to limit duration and/or 
severity of this side effect. Although 153-Sm 
decays to stable 153-Eu by beta decay, trace 
quantities of 154-Eu are produces during syn-
thesis of 153-Sm via neutron capture. Thus, 
although not associated with any clinical 
effects, patients need a letter about prior 153-

Table 4.1  Bone-seeking radiopharmaceuticals for osteosarcoma

Radioisotope T1/2 (days) Particle Range (mm) Bone tumor-seeking ligand
89-Sr 50.6 Beta 7 Alkaline earth metal (like calcium)
32-P 14.3 Beta 9 Metabolized into hydroxyapatite
133-Ho 1.2 Beta 9 DOTMP
186-Re 3.7 Beta 5 HEDP
188-Re 0.7 Beta 10 HEDP
153-Sm 1.9 Beta 4 EDTMP or DOTMP
223-Ra 11.4 Alpha 0.001 Alkaline earth metal (like calcium)
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Sm therapy when traveling because of the 
extremely sensitive radiation detectors in air-
ports will detect emissions form 145-Eu [18]. 
Loeb also described detection of 152-Eu in 
treated patients, too [19].

One approach to the saturation effect and 
excess EDTMP at high doses of 153-Sm-EDTMP 
is to synthesize a different chelate with higher 
purity and specific activity such as 
153-Sm-DOTMP [20, 21]. This preparation has 
been termed “CycloSam”. With high doses it 
may be avoid hyopcalcemia and 153-Sm-DOTA 
may become useful for both osteosarcoma and 
total skeletal irradiation.

Even high-dose samarium patients seem to 
have only temporary benefit. Isolated limb perfu-
sion (ILP) of 153-Sm-EDTMP of dogs with 
osteosarcoma at provided some insights about 
potential reasons for osteosarcoma relapses after 
bone-seeking radiopharmaceutical administra-
tion. Autoradiography showed heterogeneous 
bone tumor distribution despite achieving a high 
dose for a short time using ILP. Lung metastases 
are often another pattern of osteosarcoma relapse 
or progression after bone-seeking radiopharma-
ceuticals because some lung metastases have 
very low amount of bone formation compared to 
bone metastases. Finally, the mass energy of a 
beta emitter is much less than alpha emitters 
which readily cause double-strand breaks.

�Radium

Alpha-emitting radiopharmaceuticals have some 
advantages compared to beta-emitting agents. 
These include not only very high linear energy 
transfer (LET) because of high mass (an alpha 
particle has 2 protons and 2 neutrons), but also 
safer handling and lower radiation exposure of 
nontarget tissues [22, 23]. 226-radium was used 
>100 years ago but the major naturally occurring 
226-radium isotope has not only an extremely 
long half-life but also long-lived radon daughters 
and thus was abandoned because of safety con-
cerns [22]. Larsen, Henriksen, Nilsson, and 
Bruland were responsible for early development 
of 223-radium as a safe and effective agent for 
bone metastases [23–28]. Preclinical and early 
clinical trials work established an extremely 
favorable safety profile including low marrow 
toxicity and few side effects [27, 28]. Phase 2 
studies showed safety, improved pain, and better 
survival in prostate cancer patients [27–30]. A 
subsequent randomized, placebo, double-blind 
phase 3 clinical trial showed improved pain and 
was stopped early because of a significantly 
improved survival benefit; this resulted in FDA 
and EMEA approval [31, 32]. Since prostate can-
cer causes osteoblastic reactive bone around the 
neoplastic cells, the 223-Ra may act to kill and 
contain the viable rim of a bone metastasis.

Administered
Radiopharmaceutical

Radiopharmaceutical 
bound to tumor  

unbound
Eliminated from blood or 

normal tissues (e.g. in urine)
[Not available for 

radiosensitization]

Gemcitabine
After distribution phase, when at “peak” in tumor, radiosensitizer given
(to radio sensitize tumor >>> normal tissue), then decay occurs

Radioactive decay (t ½)

Amount left 0.5 > 0.25>  0.125>  0.0625>  0.03125>  0.0156 

Fig. 4.1  The “Double Tap” for increased tumor-specific 
lethality. After elimination of unbound agent (e.g., 
unbound 153-Sm-EDTMP or 153-Sm-DOTMP is elimi-
nated in the urine within 3- 6  hours), only bone bound 
agent remains when a radiosensitizer (e.g., gemcitabine, 

ifosfamide, or doxorubicin liposomes) is given later. 
Specifically bound radiopharmaceutical then decays; this 
leaves ½ the amount of radioactivity in the tumor after 
each half-life. Thus, after 7 half-lives 1/128th of the initial 
radiation is present

4  Radiopharmaceuticals for Treatment of Osteosarcoma
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223-radium was first used for recurrent, pro-
gressive, metastatic osteosarcoma using the FDA 
compassionate access IND mechanism. In these 
patients not only pain but also the tumor marker, 
alkaline phosphatase, improved [22, 33]. 
Subsequently 223-radium has become part of the 
NCCN guidelines for relapsed osteosarcoma. 
Subbiah et al. showed safety of 1.5–3.0 microCi/
kg [34] and blood-brain barrier penetration of 
223-radium in osteosarcoma [35]. This group 
also demonstrated usefulness of Na18F PET for 
screening and monitoring of response [36]. The 
next step was combination therapy using radio-
therapy (RT) and stereotactic body radiotherapy 
(SBRT) with other agents as detailed in Table 4.2.

Denosumab is an agent useful in the treatment 
of giant cell tumor and osteosarcoma [37], reduc-
ing osteopenia, and preventing complications of 

skeletal metastases. Since I have observed that 
denosumab also causes increased ossification of 
osteoblastic osteosarcoma tumors, the agent can 
be used improve the therapeutic index of 
223-radium by facilitating increase 223-radium 
uptake. At Cleveland Clinic, 14 of 15 recent 
patients have also had denosumab as part of the 
223-radium treatment regimen. It is possible that 
zolendronate may also be active in this respect 
and if osteosarcoma cells are like giant cell tumor 
zolendronate may also have an antiapoptotic 
effect [38]. Since zolendronate is now generic 
and has become inexpensive future use would be 
expected to increase in the treatment of osteosar-
coma skeletal metastases, especially in combina-
tion with 223-radium. Figure 4.2 shows activity 
of combined use of continuous infusion 14-day 
ifosfamide/mesna and 223-radium.

Table 4.2  Agents that have been used with 223-radium (Cleveland Clinic)

Agent Class of agent Dose/route/frequency
Denosumab Rank ligand antibody 120 mg sc monthly
Zolendronate Bisphosphonate 4 mg iv monthly
Ifosfamide/mesna Alkylating agent 1 gm/m2/d iv (CIa) × 14 days q month
Cyclophosphamide Alkylating agent 25–50 mg po daily
Pazopanib TKIa 400–600 mg po daily
Sorafenib TKIa 400 mg po twice/day
Sirolimus mTOR inhibitor 2–4 mg po daily
Everolimus mTOR inhibitor 5 mg po daily
Nivolumab Anti-PD1 antibody 480 mg iv monthly
Doxorubicin liposomes Anthracycline 30 mg/m2 iv monthly

aTKI-tyrosine kinase inhibitor (mostly anti-VEGF)

Fig. 4.2  Ifosfamide +223-radium combination therapy. 
Heterogeneous osteoblastic activity of an osteosarcoma 
lung metastasis using 99mTc-MDP bone scan/SPECT 
CT. This patient had an excellent response to the combi-

nation of denosumab+14-day continuous infusion ifos-
famide/mesna and monthly 223-radium after two cycles. 
This allowed thoracic surgery to be done to remove the 
large mass
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Choice of cytotoxic agents to combine with 
223-radium was driven by agents and combina-
tions with low marrow toxicity so as not to delay 
monthly 223-radium infusions. For example, oral 
cyclophosphamide can be adjusted to keep 
ANC > 1000–1500, and anemia and thrombocy-
topenia are rarely problematic. Although high-
dose ifosfamide has high activity against relapsed 
osteosarcoma [39] including bone metastases 
[40], the 5-day regimen results in pancytopenia 
and would not be suitable for use with 223-radium. 
However, high-dose ifosfamide/mesna (14 gm/
cycle but given as a continuous at 1 gm/m2/day) 
has very low potential to cause thrombocytope-
nia; neutropenia can be overcome using PEG-
GCSF [41–44].

Another means to attempt to overcome the 
problem of heterogeneous biodistribution of 
223-radium is to use additional external beam 

radiation as either SBRT or RT if normal struc-
tures (e.g., trachea, carina, heart, mediastinum, 
stomach) do not permit SBRT to be safely given. 
In 15 patients treated with 223-radium treated at 
Cleveland Clinic >50 sites of osteosarcoma 
metastases have had SBRT or RT to improve both 
pain and/or durability of responses. Figure  4.3 
shows an example to SBRT to the sacrum.

Other means of improving 223-radium effi-
cacy have included use of TKI agents such as 
pazopanib, sorafenib, and regorafenib to provide 
radiosensitization and antiproliferative effects 
[45–47]. Although pazopanib, sorafenib, and 
regorafenib have activity against metastatic 
osteosarcoma [47–51], side effect profile for each 
is different. Since pazopanib seems to have fewer 
problems with rash and GI toxicity, this has been 
used in more of our 223-radium patients than 
other TKI agents at our institution. Finally, doxo-

Fig. 4.3  Scan images and SBRT plans of osteosarcoma 
involving sacrum treated with denosumab, pazopanib, and 
223-radium. Top: PET-CT showing 18FDG activity; mid-
dle: SBRT plan (8 Gy × 5 = 40Gy; bottom: CT, planar 

99mTc-MDP bone scan, and SPECT CT of lesion. This 
patient had a durable response in this location to the com-
bination therapy and was able to participate fully in activi-
ties including climbing again and attending college

4  Radiopharmaceuticals for Treatment of Osteosarcoma
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rubicin liposomes have been used with 
223-radium because this agent is outpatient and 
well tolerated (Table  4.2). The anthracycline 
liposomal formulation, unlike the parent drug, 
has very low hematologic and heart toxicity [52] 
and may also have an effect on sarcoma stem 
cells in combination with mTOR inhibition [53, 
54]. Nevertheless, relapse of metastatic osteosar-
coma after 223-radium in non-osseous sites is 
common. In our series of patients with osteosar-
coma osteoblastic metastases, 6/15 alive after 
1 year and 3/15 > 2 years.

�Another Radiopharmaceutical 
for Osteosarcoma: CLR 131

A new radiopharmaceutical with other tumor-
specific properties is CLR 131. This agent has 
specificity for tumors via [36] lipid rafts which 
are highly expressed on tumor cells but not nor-
mal tissues [55].Thus, CLR 131 can deliver a 
nuclear payload containing iodine to osteosar-
coma tumor deposits, even when these do not 
make bone. Preclinical models also show syn-
ergy with external bean radiation in  vivo [56]. 
Preclinical work with pediatric cancers including 
neuroblastoma, rhabdomyosarcoma, Ewing sar-
coma, and osteosarcoma demonstrated in  vivo 
concentration ~6× in tumors as well as antitumor 
efficacy [57, 58]. The University of Wisconsin 
has a clinical trial testing this agent in children 
and college-aged young adults with solid tumors 
including osteosarcoma (NCT03478462). 
Escalation using stem cells (like MIBG) and/or 
gemcitabine radiosensitization should also be 
possible with the CLR 131 agent.

�Patient Selection 
for Radiopharmaceuticals 
for Osteosarcoma: Practical 
Considerations

Table 4.3 reviews some aspects of how specific 
nuclear medicine scans can help make plans and/
or decide on suitability (or not) as well as follow-
ing response(s).

Although planar 99mTc-MDP bone scan can 
give a yes or no about lesion being osteoblastic 
(avid) and 223-radium suitability, combining this 
imaging with SPECT CT can help one know 
more about location and heterogeneity of uptake 
as well and to develop plans for other local con-
trol measures (e.g., brachytherapy, RT, SBRT, or 
cryoablation) [59–61]. Sodium fluoride PET is 
perhaps the most sensitive means to follow osteo-
blastic lesions after 223-radium [36].

Table 4.4 shows an example of multiple 
osteoblastic lesions responding using Na18F 
PET-CT as a means to show improvement. 
18FDG is the best means to follow non-osteo-
blastic bone or visceral lesions since these may 
not change much in size and/or be detected by 
the bone-specific 99mTc-MDP or Na18F bone 
scans. Sometimes CT done with PET scans is 
not of diagnostic quality and a dedicated chest 
CT with and without contrast is the most spe-
cific and sensitive means to follow lung metas-
tases. Instead of relying on tumor specificity of 
radiopharmaceuticals, treatment of oligometa-
static disease using SBRT or cryoablation using 
CT guidance [59–61], may offer additional 
modalities to reduce osteosarcoma disease 
burden.

Table 4.3  Scans for plans: Imaging of osteosarcoma for 
control of oligometastatic disease

Imaging 
modality Principle Comment
99mTc-
MDP 
SPECT 
CT

Three-dimensional 
imaging of bone 
formation

223-Ra or 
153-Sm-DOTMP 
screening and/or 
dosimetry 

Na18F 
PET-CT

More sensitive 
than99mTc-MDP

Follow response

18FDG 
PET-CT

Shows metabolic 
activity

Follow response
RT plans

CT Sensitive detection of 
lung metastases (lung 
and bone windows) CT 
guidance into tumors
CT guidance into 
tumors

Follow response
RT plans
Biopsy + 
cryoablation

MRI Axial (head and neck, 
spine, and pelvis)

RT plans
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�Summary and Obtaining Access 
to Radiopharmaceuticals 
for Osteosarcoma

Bone-seeking radiopharmaceuticals 153-Sm- 
EDTMP and 223-radium may improve pain and 
provide an underutilized means to treat osteo-
blastic metastases of osteosarcoma. Although 
dose escalation of 153-Sm-EDTMP and 
153-Sm-DOTA is possible, osteoblastic hetero-
geneity may limit long-term effectiveness (can-
not hit the target if there is no uptake). Because of 
low marrow toxicity and ease of administration, 
223-radium can be used in combination with 
other agents. Nevertheless, other control strate-
gies (e.g., SBRT, cryoablation) then immune 
therapy such as Cincinnati Children’s trial of 
pembrolizumab, decitabine, and SBRT (NCT 
03445858) or CLR 131 at the University of 
Wisconsin (NCT03478462) may be other options 
to consider.

Radiopharmaceuticals can provide benefit to 
osteosarcoma patients. This is an evolving field. 
The author uses virtual visits to help patients and 
caregivers understand what options are not only 
feasible but with a likelihood of benefit and also 
how to get access to these remarkable agents [62].
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