
95OnModel-Based Development of Embedded
Software for Evolving Automotive E/E
Architectures

Alessio Bucaioni, John Lundbäck, Mikael Sjödin, and Saad Mubeen

Abstract

Fueled by an increasing demand for computational power
and high data-rate low-latency on-board communication,
the automotive electrical and electronic architectures are
evolving from distributed to consolidated domain and
centralised architectures. Future electrical and electronic
automotive architectures are envisioned to leverage het-
erogeneous computing platforms, where several different
processing units will be embedded within electronic con-
trol units. These powerful control units are expected to be
connected by high-bandwidth and low-latency on-board
backbone networks. This paper draws on the industrial
collaboration with the Swedish automotive industry for
tackling the challenges associated to the model-based
development of predictable embedded software for con-
temporary and evolving automotive E/E architectures.

Keywords

Automotive software · Electrical and electronic
automotive architectures · Model-based development
methodologies · Embedded systems

95.1 Introduction

In the past decades, automotive software has been evolving at
a staggering pace [22]. Advanced Driver Assistance Systems

A. Bucaioni (�) · M. Sjödin · S. Mubeen
Mälardalen University, Västerås, Sweden
e-mail: alessio.bucaioni@mdh.se; mikael.sjodin@mdh.se;
saad.mubeen@mdh.se

J. Lundbäck
Arcticus Systems, Järfälla, Sweden
e-mail: john.lundback@arcticus-systems.com

(ADAS) and other advanced features in contemporary and
upcoming automotive software require high levels of com-
putational power and high data-rate low-latency on-board
communication that is well beyond the capacity of traditional
single-core Electronic Control Units (ECUs) and on-board
buses/networks respectively. One important consequence of
this trend is that traditional distributed Electrical/Electronic
(E/E) architectures are giving way to consolidated domain
and centralised E/E architectures [1, 2]. The progression
and evolution of the automotive E/E architectures is de-
picted in Fig. 95.1. While consolidated domain E/E archi-
tectures are realised by employing multi-core processors,
centralised automotive E/E architectures are envisioned to
leverage heterogeneous computing platforms, e.g., contain-
ing Central Processing Units (CPUs), Graphical Processing
Units (GPUs) and Field Programmable Gate Arrays (FP-
GAs), which are connected by high-bandwidth and low-
latency on-board backbone networks such as Time Sensitive
Networking (TSN) [22].

The introduction of heterogeneous computing platforms
has opened up several challenges including modelling of
heterogeneous hardware architectures, modelling of software
architecture, software to hardware allocation and ensuring
quality, scheduling, timing and performance analysis of the
software architectures, just to mention a few [8]. For in-
stance, the support for modelling heterogeneous hardware
architectures is a challenging task mainly because of the re-
quirement of data and memory management in a predictable
way as well as the requirement of satisfying real-time con-
straints at the design time [8]. The state-of-the-art model-
based software development methodologies for automotive
embedded systems are unable to address all these challenges,
as depicted in Fig. 95.1. One crucial step for shifting the
current model-based software development methodologies
into the new of domain and centralised E/E architectures, is to
provide modelling languages with support for describing the
software architecture, the heterogeneous execution platforms

© Springer Nature Switzerland AG 2020
S. Latifi (ed.), 17th International Conference on Information Technology–New Generations
(ITNG 2020), Advances in Intelligent Systems and Computing 1134,
https://doi.org/10.1007/978-3-030-43020-7_95

693

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43020-7_95&domain=pdf
mailto:alessio.bucaioni@mdh.se
mailto:mikael.sjodin@mdh.se
mailto:saad.mubeen@mdh.se
mailto:john.lundback@arcticus-systems.com
https://doi.org/10.1007/978-3-030-43020-7_95


694 A. Bucaioni et al.

Fig. 95.1 Evolution of automotive E/E architectures and supporting
model-based development methodologies

and the software to hardware allocation. Note that many
automotive software functions are time critical, i.e., they are
required to provide logically correct responses at right times
that conform to the specified timing constraints. Hence, the
modelling for future automotive E/E architectures should
be supported by timing analysis engines [10, 27, 29] and
predictable run-time environments [3, 8, 24].

This paper draws on the industrial collaboration with the
Swedish automotive industry for reporting on the advance-
ment of model-based methodologies for the development of
automotive software with respect to the evolution of automo-
tive E/E architectures. In particular, this paper discusses on-
going works with respect to architecture design (hardware
and software co-design), support for timing analysis of the
software architectures and provision of predictable run-time
environment for distributed and domain E/E architectures.
What is more, this paper describes a pragmatic vision on how
to tackle the challenges of hardware and software co-design
for centralised E/E architectures.

The rest of the paper is organised as follows. Section 95.2
describes a comparison between existing related approaches
documented in the literature and our solution. Section 95.3
presents an industrial approach to support model-based soft-
ware development on distributed automotive E/E architec-
tures. Moreover, it discusses the partially available support
for model-based software development on domain automo-
tive E/E architectures. This section also discusses future
plans for the software development on centralised automotive

E/E architectures. Finally Sect. 95.4 concludes the paper and
discusses the future work.

95.2 RelatedWork

In recent years, automotive software has been on the
forefront of many software engineering advances including
model-based development methodologies and real-time
techniques [22]. This section presents the related research
on modelling languages and approaches that are supported
by end-to-end timing analysis and timing predictable run-
time environments for distributed and domain automotive
E/E architectures. Note that timing predictability is a well-
known term in time-critical systems domain, where it is
defined as a system-level property. A system is considered
timing predictable under a set of assumptions if it is
possible to demonstrate or prove at the design time that
all timing requirements specified on the system are satisfied
and that the system will certainly meet its timing when
executed [17, 20, 25, 33, 34].

EAST-ADL is an architecture description language for
the specification of automotive E/E architectures. It uses a
multi-layer approach, where each layer describes the au-
tomotive architecture at a different abstraction level and
from a different perspective [7]. At higher layers, EAST-
ADL does not allow to explicitly model execution platforms
being multi-core or heterogeneous. This means, that EAST-
ADL supports modelling of software architectures for dis-
tributed automotive E/E architectures but for domain and
centralised automotive E/E architectures. There are several
works that allow timing analysis of software architectures
that aremodelledwith EAST-ADL for distributed automotive
E/E architectures [12, 13, 29]. However, there is no support
for EAST-ADL to perform timing analysis to verify tim-
ing predictability of the software architectures on domain
and centralised automotive E/E architectures. The EAST-
ADL development methodology proposes to use domain-
specific modelling languages (DSL) at the lower levels of ab-
straction, notably AUTOSAR [4], Rubus Component Model
(RCM) [18,24], and so forth. As a consequence, the work de-
scribed in this paper can be considered as complementary to
EAST-ADL.

AUTOSAR was created as an industrial initiative to pro-
vide a standardised software architecture at the implemen-
tation layer of the EAST-ADL methodology. AUTOSAR
distinguishes among three software layers namely Applica-
tion, Runtime Environment and Basic Software. In its last
definition, AUTOSAR provides limited support for automo-
tive software on multi-core platforms while it provides no-
support for automotive software on heterogeneous platforms.
This means that AUTOSAR supports modelling of software
architectures and run-time environments for distributed and



OnModel-Based Development of Embedded Software for Evolving Automotive E/E Architectures 695

domain automotive E/E architectures but not for centralised
automotive E/E architectures.

Based on AUTOSAR, APP4MC [5] is an open source
platform for engineering embedded multi- and many-core
software systems. This platform is mainly used within the
automotive domain and relies on the AMALTHEA datamod-
els which provide support for modelling, e.g., hardware, soft-
ware, mapping, stimuli, events, among others. AMALTHEA
datamodels allow to describe both multi-core and hetero-
geneous platforms. Compared to the modelling approach
leveraged in this paper, the AMALTHEA approach employs
an extensive and explicit modelling of the execution platform
(in terms of processing units, caches, memories, etc.) and of
all the components of the automotive system including, e.g.,
operating system.

Similar to APP4MC, Distributed Real-time Architecture
for Mixed criticality Systems (DREAMS) [6] is an European
project which aims at developing a cross-domain architecture
and design tools for networked complex systems supporting
application subsystems with different criticality. DREAMS
delivers metamodels implementing different views includ-
ing, e.g., logical, physical and temporal.

Several works are based on the use of general-purpose
languages such as UML as alternatives to automotive-
specific languages. CHESS and GASPARD are examples
of UML-based languages. The former allows to model
complex component-based embedded systems in terms of
their platform(s) and relevant properties, such as timing [15].
GASPARD is mostly used for the design of parallel
embedded systems [16].

AADL [30] is an architecture description language con-
ceived for the avionics domain, but it has been increasingly
used for modelling embedded systems in general.

In crux, the state-of-the-art modelling approaches, timing
analysis techniques and run-time environments provide a
good, limited and no support for distributed, domain and
centralised automotive E/E architectures respectively.

95.3 Model-Based Development of
Automotive Software

In this section, we discuss the advancement of model-based
methodologies for the development of automotive software
with respect to the evolution of automotive E/E architectures
shown in Fig. 95.1. In doing so, we draw on the industrial col-
laboration with Arcticus Systems,1 a Swedish tool provider
for international companies in the automotive industry such

1https://www.arcticus-systems.com/.

as Volvo Construction Equipment,2 BAE Systems,3 just to
mention a few. During the last decades, the research col-
laboration between Arcticus Systems and Mälardalen Uni-
versity led to the definition of a model-based development
methodology which is embodied in the Rubus Integrated
Component model development Environment (Rubus-ICE).
Rubus-ICE is based around the Rubus Component Model
(RCM) which is a modelling language for distributed real-
time embedded systems [14]. The methodology embodied in
Rubus-ICE consists of four major phases: modelling, timing
analysis, synthesis and deployment as shown in Fig. 95.1.
As all the phases are carried out within Rubus-ICE, this
methodology avoids explicit interoperability management
and reduces time and cost overheads.

95.3.1 Model-Based Development of
Automotive Software on Distributed
Automotive E/E Architectures

Rubus-ICE provides a full-fledged model-based methodol-
ogy for the development of automotive software on dis-
tributed E/E architectures. The development support includes
modelling of the automotive software architectures and tim-
ing information (timing properties, requirements and con-
straints), end-to-end timing analysis of the software archi-
tectures, automatic generation of timing verified code from
the software architectures, deployment and execution on pre-
dictable run-time environment. Figure 95.2 shows a screen-
shot of an example of a real-time system modelled and
analysed on a distributed automotive E/E architecture.

95.3.1.1 Modelling
Rubus-ICE fully supports modelling of software architec-
tures on distributed automotive E/E architectures. Within
Rubus-ICE, the automotive software architecture and its tim-
ing properties are modelled with RCM. In RCM, a Software
Circuit (SWC) is the lowest-level hierarchical element and
it represents the basic component that encapsulates one or
more software functions. For example, the yellow boxes in
Fig. 95.2, namely Logger, HMI and ACC represent three
SWCs. Two or more SWCs may be encapsulated into a soft-
ware assembly (ASM) for constructing the system at different
hierarchical levels. An SWC has the run-to-completion se-
mantics. In RCM, the interaction between SWCs is expressed
in terms of data and control flow, separately. The SWCs
communicate with each other via data ports. The compo-
nent model facilitates analysis and reuse of components in

2https://www.volvoce.com/.
3https://www.baesystems.com/en/our-companies/our-businesses/
platforms-and-services/locations/sweden.

https://www.arcticus-systems.com/
https://www.volvoce.com/
https://www.baesystems.com/en/our-companies/our-businesses/platforms-and-services/locations/sweden
https://www.baesystems.com/en/our-companies/our-businesses/platforms-and-services/locations/sweden


696 A. Bucaioni et al.

NetworkNode

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

 signalSensor signal

Trigger
terminator

ActuatorSensor

Timing constraint

(Behavior)

Timing 
Analysis
Engines

Analysis
results

Core_0 Core_1Partition_1

Partition_2

Core_2

Fig. 95.2 Example of software development for real-time embedded systems on various Automotive E/E architectures using Rubus-ICE

different contexts by separating functional code from the
infrastructure that implements the execution environment.
RCM allows modelling of single-core processing units by
means of node elements as shown by the model of two
Node1 in Fig. 95.2. The nodes can be distributed, in which
case they are connected by one or more models of networks.
This is the case of the node elements Node1 and Node2 in
Fig. 95.2 which are connected by the network element NW1.
RCM supports modelling of various types of in-vehicle net-
works, including broadcast networks like Controller Area
Network (CAN) [19] and its higher level protocols [28] and
point-to-point networks like Ethernet Audio Video Bridging
(AVB) [9] and TSN [26].

95.3.1.2 Timing Analysis
RCM allows expressing real-time requirements and proper-
ties on the software architecture of distributed automotive
E/E architectures. To this end, the designer has to express
real-time properties of SWCs, such as worst-case execution
times (WCETs), stack usage, etc. The WCETs of the SWCs
can be determined by using static WCET analysis tools such
as SWEET [21]. The plugin framework in Rubus-ICE sup-
ports integration of such tools. The SWCs that are activated
by periodic triggering sources, e.g., the Logger and ACC
components in Fig. 95.2, are statically scheduled using the
Rubus off-line scheduler. The scheduler constructs a schedule
taking into account the specified real-time constraints. For
event-triggered SWCs, response-time analysis [32] is per-
formed and the calculated response times are compared with
the specified timing requirements. The supported analysis,
among others, includes distributed end-to-end response-time
and delay analyses [27] and shared stack analysis [11].

95.3.1.3 Synthesis
While the software development using Rubus-ICE is inde-
pendent of the underlying operating system (OS), code syn-
thesizers are not. For this reason, Rubus-ICE accompanies
the Rubus Real-Time OS (RTOS) designed for predictable
execution of the software architecture. The Rubus RTOS
supports both time- and event-triggered execution of tasks.4

It optimises the run-time architecture by using the hybrid
scheduling combining the static cyclic scheduling and the
fixed-priority preemptive scheduling [23]. The Rubus RTOS
has been ported to several different commercial-off-the-shelf
processors [24].

95.3.1.4 Deployment
Within Rubus-ICE, the deployment phase involves both soft-
ware and hardware platforms. The Rubus RTOS provides for
the software platform. Although the software platform is OS
dependent, it should be noted that the software architecture
and corresponding synthesised code can be easily adapted
and deployed to any RTOS. Similarly, any processing unit
capable of running an RTOS, e.g., IBM’s PowerPC or ARM
processor can serve as the hardware platform for deployment.

95.3.2 Model-Based Development of
Automotive Software on Domain
Automotive E/E Architectures

Domain E/E architectures employ more powerful multi- and
many-core processing units for replacing the constellation

4Tasks are run-time entities, whereas SWCs are equivalent design-time
entities.



OnModel-Based Development of Embedded Software for Evolving Automotive E/E Architectures 697

of single-core units realising distributed E/E architectures.
Currently, Rubus-ICE allows modelling of software architec-
tures and specification of timing information of automotive
software systems that are deployed on these architectures.
For example, Fig. 95.2 shows an RCM model of a software
architecture of a real-time system that is deployed on a tri-
core node with multiple partitions per core (Node2). The
support for timing analysis and predictable run-time support
for real-time systems on these architectures is an ongoing
work.

95.3.2.1 Modelling
RCM fully supports modelling of software architectures on
domain automotive E/E architectures. In fact, in our previous
work, we extended RCM for modelling automotive software
on multi-core processing units [14]. The extension included
the introduction of new modelling elements for describing
multi-core processing units, software applications and their
criticality levels, and the software to hardware allocation.
Figure 95.3 shows the RCM extensions supporting multi-
core platforms. Multi-core processing units are modelled in
terms of node, core and partition elements. For instance, the
node element Node2 in Fig. 95.2 is modelled as a tri-core
processor comprising the core elements Core_0, Core_1 and
Core_2. In turns, the core element Core_0 has two partition
elements, namely Partition_1 and Partition_2. Within RCM,
partition elements isolate parts of software from each others
in both time and space. Isolation in time means that each
partition gets a reserved share of the core processing time
while isolation in space means that the memory available to
each core is divided among its partitions. The extended RCM

leverages an allocation mechanism which replaces the use of
structural containment relations in favour of more flexible
relationships among software and hardware elements. In
particular, such relationships can only be specified among
node, core, and partition elements and application, mode,
assembly, and SWC elements.

95.3.2.2 Timing Analysis
Today Rubus-ICE uses offline scheduling to schedule soft-
ware architectures on multi-core platforms. Moreover, re-
source partitioning techniques are considered for managing
the shared resources such as cache memories and system
bus. Hence, the scheduled software architecture is correct by
construction from timing perspective.

95.3.2.3 Synthesis
Generation of code from the software architectures of the
applications that are deployed on domain automotive E/E
architectures is an ongoing work.

95.3.2.4 Deployment
The isolation in time and space is supported by the run-time
layer, where the Rubus multi-core hypervisor uses resource-
isolation techniques for arbitration of intra- and inter-core
shared resources. As a result of using isolation techniques,
each core and partition becomes (virtually) independent
meaning that they can be seen as a single-core processor
equivalent with dedicated system resources. One notable
advantage of this is that the overall system becomes simpler
to model as there is no need to explicitly model memories,
I/Os and other shared resources in the software architecture.

Fig. 95.3 RCM extensions
supporting multi-core platforms



698 A. Bucaioni et al.

95.3.3 Model-Based Development of
Automotive Software on Centralised
Automotive E/E Architectures

Centralised E/E architectures are envisioned to leverage
heterogeneous hardware comprising of certified tradi-
tional processors and general-purpose high-performance
processors with accelerators. As a result, centralised
E/E architecture will require the integration of het-
erogeneous software with respect to, e.g., workloads,
activation semantics, data-flow semantics, real-time
requirements and safety requirements [31]. What is
more, they open up to several development challenges
including software architecture and quality, scheduling and
hardware [8].

Currently, RCM supports the specification of heteroge-
neous software with respect to real-time properties and re-
quirements, safety requirements and criticality levels (dif-
ferent Automotive Safety Integrity Levels (ASILs) A to D
according to the ISO 26262 functional safety standard for
road vehicles), activation semantics (time triggered, event
triggered), data-flow semantics (synchronous, independent
activation, task chains) and workloads. An on-going work is
the extension of RCM with fine-grained modelling elements
for the specification of heterogeneous hardware. This exten-
sion will include elements such as GPU, FPGA, memory,
cache, etc. Support for timing analysis, synthesis and deploy-
ment are future works. To the best of our knowledge, there is
nomodelling framework or methodology that supports all the
above mentioned development steps (shown in Fig. 95.2) for
centralised automotive E/E architectures.

95.4 Conclusion and FutureWork

This paper presents a component model, a development
methodology and an integrated development environment
that are used in the automotive industry. The tool chain,
Rubus-ICE, supports model- and component-based develop-
ment of embedded software FPR evolving automotive Elec-
trical/Electronic (E/E) architectures. The paper also demon-
strated how current industrial model-based methodologies
support modelling, timing-analysis, synthesis and deploy-
ment of embedded software on distributed automotive E/E ar-
chitectures. The paper also discussed on-going works for en-
riching industrial model-based methodologies with support
for architecture design (hardware and software co-design),
support for end-to-end timing analysis of the software ar-
chitectures and provision of predictable run-time environ-
ment for embedded software on automotive domain and
centralised E/E architectures. We identify that a full-fledged
model-based software development methodology, develop-
ment environment and run-time support for predictable au-

tomotive software on domain and centralised automotive
E/E architectures is still missing. One line of future work
encompasses provisioning of timing analysis, synthesis and
deployment of embedded software on domain automotive
E/E architectures. Another line of future work includes the
definition of a reference architecture for heterogeneous plat-
forms employed in the realisation of centralised automotive
E/E architectures.

Acknowledgments The work in this paper is supported by the Swedish
Knowledge Foundation (KKS) via the projects A-CPS, HERO and
DPAC, and by the Swedish Governmental Agency for Innovation Sys-
tems (VINNOVA) via the projects PANORAMA and DESTINE. The
authors would like to thank the industrial partners, especially Arcticus
Systems and Volvo, Sweden.

References

1. Berger, R.: Consolidation in vehicle electronic architectures.
In: Think: AACT (2015). https://www.rolandberger.com/
en/Publications/pub_consolidation_in_vehicle_electronic_
architectures.html

2. Zinner, H., Brand, J., Hopf, D.: Automotive E/E Architecture
evolution and the impact on the network. In: IEEE802 Plenary,
802.1 TSN, Continental AG (2019). Available http://ieee802.
org/1/files/public/docs2019/dg-zinner-automotive-architecture-
evolution-0319-v02.pdf

3. The AUTOSAR consortium, AUTOSAR requirements on runtime
environment, AUTOSAR CP Release 4.3.1 (2017). https://
www.autosar.org/fileadmin/user_upload/standards/classic/4-3/
AUTOSAR_SRS_RTE.pdf

4. The AUTOSAR consortium, AUTOSAR technical overview, Ver-
sion 4.3 (2016). http://autosar.org

5. AMALTHEA Project Profile (2017). http://www.amalthea-project.
org

6. DREAMS—distributed REal-time architecture for mixed critical-
ity systems (2019). http://www.dreams-project.eu

7. East-ADL domain model specification, deliverable d4.1.1 (2010).
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_
EAST-ADL2-Specification_2010-06-02.pdf

8. Andrade, H., Schroeder, J., Crnkovic, I.: Software deployment on
heterogeneous platforms: a systematic mapping study. IEEE Trans.
on Softw. Eng., 1–1 (2019)

9. Ashjaei, M., Mubeen, S., Lundbäck, J., Gålnander, M., Lundbäck,
K., Nolte, T.: Modeling and timing analysis of vehicle functions
distributed over switched ethernet. In: IECON 2017—43rd Annual
Conference of the IEEE Industrial Electronics Society, pp. 8419–
8424 (2017). https://doi.org/10.1109/IECON.2017.8217478

10. Becker, M., Dasari, D., Mubeen, S., Behnam,M., Nolte, T.: End-to-
end timing analysis of cause-effect chains in automotive embedded
systems. J. Syst. Archit. 80, 104–113 (2017). https://doi.org/10.
1016/j.sysarc.2017.09.004

11. Bohlin, M., Hänninen, K., Mäki-Turja, J., Carlson, J., Sjödin, M.:
Bounding shared-stack usage in systems with offsets and prece-
dences. In: 20th Euromicro Conference on Real-Time Systems
(2008)

12. Bucaioni, A., Addazi, L., Cicchetti, A., Ciccozzi, F., Eramo, R.,
Mubeen, S., Sjödin, M.: Moves: a model-driven methodology for
vehicular embedded systems. IEEE Access 6, 6424–6445 (2018).
https://doi.org/10.1109/ACCESS.2018.2789400

13. Bucaioni, A., Mubeen, S., Cicchetti, A., Sjödin, M.: Exploring
timingmodel extractions at east-adl design-level usingmodel trans-

https://www.rolandberger.com/en/Publications/pub_consolidation_in_vehicle_electronic_architectures.html
https://www.rolandberger.com/en/Publications/pub_consolidation_in_vehicle_electronic_architectures.html
https://www.rolandberger.com/en/Publications/pub_consolidation_in_vehicle_electronic_architectures.html
http://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
http://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
http://ieee802.org/1/files/public/docs2019/dg-zinner-automotive-architecture-evolution-0319-v02.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SRS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SRS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SRS_RTE.pdf
http://autosar.org
http://www.amalthea-project.org
http://www.amalthea-project.org
http://www.dreams-project.eu
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf
https://doi.org/10.1109/IECON.2017.8217478
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1109/ACCESS.2018.2789400


OnModel-Based Development of Embedded Software for Evolving Automotive E/E Architectures 699

formations. In: 2015 12th International Conference on Information
Technology - New Generations, pp. 595–600 (2015). https://doi.
org/10.1109/ITNG.2015.100

14. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Sjödin, M.:
Technology-preserving transition from single-core to multi-core
in modelling vehicular systems. In: Springer (ed.) 13th European
Conference on Modelling Foundations and Applications (2017).
http://www.es.mdh.se/publications/4750-

15. Cicchetti, A., Ciccozzi, F.,Mazzini, S., Puri, S., Panunzio,M., Zovi,
A., Vardanega, T.: Chess: a model-driven engineering tool environ-
ment for aiding the development of complex industrial systems. In:
Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. pp. 362–365. ACM, New York
(2012)

16. Gamatié, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, A.,
Marquet, P., Dekeyser, J.L.: A model-driven design framework
for massively parallel embedded systems. ACM Trans. Embed.
Comput. Syst. 10(4), 39:1–39:36 (2011)

17. Grund, D., Reineke, J., Wilhelm, R.: A template for predictabil-
ity definitions with supporting evidence. In: Bringing Theory to
Practice: Predictability and Performance in Embedded Systems.
OpenAccess Series in Informatics, vol. 18, pp. 22–31. Dagstuhl,
Germany (2011). https://doi.org/10.4230/OASIcs.PPES.2011.22

18. Hänninen, K., Mäki-Turja, J., Sjödin, M., Lindberg, M., Lundbäck,
J., Lundbäck, K.L.: The Rubus component model for resource con-
strained real-time systems. In: 3rd IEEE International Symposium
on Industrial Embedded Systems (2011)

19. ISO 11898-1: Road Vehicles Interchange of Digital Information
Controller Area Network (CAN) for High-speed Communication
(1993)

20. Kirner, R., Puschner, P.: Time-predictable computing. In: Software
Technologies for Embedded and Ubiquitous Systems, pp. 23–34.
Springer, Berlin (2010)

21. Lisper, B.: SWEET—a tool for WCET flow analysis. In: 6th Inter-
national Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation. pp. 482–485. Springer, Berlin
(2014)

22. Lo Bello, L., Mariani, R., Mubeen, S., Saponara, S.: Recent ad-
vances and trends in on-board embedded and networked automo-
tive systems. IEEE Trans. Ind. Inf. 15(2), (2019). https://doi.org/
10.1109/TII.2018.2879544

23. Mäki-Turja, J., Hänninen, K., Nolin, M.: Efficient development of
real-time systems using hybrid scheduling. In: 9th Real-Time in
Sweden (RTiS’07), pp. 157–163 (2007)

24. Mubeen, S., Lawson, H., Lundbäck, J., Gålnander, M., Lundbäck,
K.: Provisioning of predictable embedded software in the vehicle
industry: the rubus approach. In: 4th IEEE/ACM International
Workshop on Software Engineering Research and Industrial Prac-
tice (2017)

25. Mubeen, S., Lisova, E., Feljan, A.V.: A perspective on ensuring
predictability in time-critical and secure cooperative cyber phys-
ical systems. In: 2019 IEEE International Conference on Indus-
trial Technology (ICIT), pp. 1379–1384 (2019). https://doi.org/10.
1109/ICIT.2019.8754962

26. Mubeen, S., Ashjaei, M., Sjödin, M.: Holistic modeling of time
sensitive networking in component-based vehicular embedded sys-
tems. In: Euromicro Conference on Software Engineering and Ad-
vanced Applications (2019). http://www.es.mdh.se/publications/
5515-

27. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for end-to-end
response-time and delay analysis in the industrial tool suite: issues,
experiences and a case study. In: Computer science and information
systems, vol. 10(1), pp. 453–482 (2013)

28. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Integrating mixed trans-
mission and practical limitations with the worst-case response-
time analysis for controller area network. J. Syst. Softw. 99, 66–
84 (2015). https://doi.org/10.1016/j.jss.2014.09.005. http://www.
sciencedirect.com/science/article/pii/S0164121214001952

29. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K.L.:
Supporting timing analysis of vehicular embedded systems through
the refinement of timing constraints. Softw. Syst. Model. 18(1), 39–
69 (2019). https://doi.org/10.1007/s10270-017-0579-8

30. Peter, H.F., David, P.G., Hudak, J.: The architecture analysis and
design language (AADL): an introduction. Technical Report (2006)

31. Saidi, S., Steinhorst, S., Hamann, A., Ziegenbein, D., Wolf, M.:
Future automotive systems design: research challenges and oppor-
tunities: special session. In: Proceedings of the IEEE International
Conference on Hardware/Software Codesign and System Synthe-
sis, p. 2 (2018)

32. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T., Burns,
A., Buttazzo, G., Caccamo,M., Lehoczky, J., Mok, A.K.: Real time
scheduling theory: a historical perspective. Real-Time Syst. 28(2-
3), 101–155 (2004)

33. Stankovic, J.A., Ramamritham, K.: What is predictability for real-
time systems? Real-Time Syst. 2(4), 247–254 (1990)

34. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-
Time Syst. 28(2), 157–177 (2004). https://doi.org/10.1023/B:
TIME.0000045316.66276.6e

https://doi.org/10.1109/ITNG.2015.100
https://doi.org/10.1109/ITNG.2015.100
http://www.es.mdh.se/publications/4750-
https://doi.org/10.4230/OASIcs.PPES.2011.22
https://doi.org/10.1109/TII.2018.2879544
https://doi.org/10.1109/TII.2018.2879544
https://doi.org/10.1109/ICIT.2019.8754962
https://doi.org/10.1109/ICIT.2019.8754962
http://www.es.mdh.se/publications/5515-
http://www.es.mdh.se/publications/5515-
https://doi.org/10.1016/j.jss.2014.09.005
http://www.sciencedirect.com/science/article/pii/S0164121214001952
http://www.sciencedirect.com/science/article/pii/S0164121214001952
https://doi.org/10.1007/s10270-017-0579-8
https://doi.org/10.1023/B:TIME.0000045316.66276.6e
https://doi.org/10.1023/B:TIME.0000045316.66276.6e

	95 On Model-Based Development of Embedded Software for Evolving Automotive E/E Architectures
	95.1 Introduction
	95.2 Related Work
	95.3 Model-Based Development of Automotive Software
	95.3.1 Model-Based Development of Automotive Software on Distributed Automotive E/E Architectures
	95.3.1.1 Modelling
	95.3.1.2 Timing Analysis
	95.3.1.3 Synthesis
	95.3.1.4 Deployment

	95.3.2 Model-Based Development of Automotive Software on Domain Automotive E/E Architectures
	95.3.2.1 Modelling
	95.3.2.2 Timing Analysis
	95.3.2.3 Synthesis
	95.3.2.4 Deployment

	95.3.3 Model-Based Development of Automotive Software on Centralised Automotive E/E Architectures

	95.4 Conclusion and Future Work
	References


