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Abstract

Network emulation is an intermediate solution for
supporting experimentation on new protocols and services
which falls between the high fidelity of fully implemented
networks and running simulation models executed.
Lightweight emulation environments emulate entire
networks on a single machine, thus enabling experiments
that are much realistic and easy to use, at a fraction
of cost and complexity when compared to real system.
Scalability of a network emulation environment is very
relevant when the experimentation scenario involves large
amounts of networking devices, services, and protocols. In
this paper we evaluate the scalability of some lightweight
and distributed emulation environments. Experiments
show the consumption of resources for each environment
including memory, number of processes created, disk
utilization, and the time required to instantiate models.
Our analysis can be useful for experimenters to decide on
which environment to use.
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77.1 Introduction

Experimentation methods for study of network technologies
usually involves emulation [1]. Network emulation meets
the advantages given by physical networks, supporting use
of real applications, without the higher cost and complexity
of the physical environment, ensuring better accuracy than
simulation [2–4].

Over time, new emulation techniques were employed.
Nowadays, commonly used solutions support full emula-
tion of complex network environments using lightweight
container-based virtualization on a single host. However,
although this type of emulation is widely used and its benefits
are well known, there are scenarios where the computational
requirements demanded from emulated network are supe-
rior to those supported by individual machine, whether the
number of emulated nodes, maximum throughput desired, or
other important parameter to experimenter [1].

This critical limitation has motivated the proposal of solu-
tions that mix emulation and simulation to improve scalabil-
ity [5,6]. However, pure container-based emulation solutions
have also evolved and now supports distributed processing.
Although they exist, these solutions have not yet had their
scalability characteristics evaluated, making it difficult to
define which technology meets specific scenarios, or which
computational resources it requires for network experimen-
tation.

In this work, we focus on evaluating the performance and
scalability of Mininet distributed technology, a lightweight
container-based emulation solution that support distributed
processing and can be used in network experimentation.
Among the highlights and most important aspects, this
work (1) preliminarily analyzes technical implementation
features of Mininet Cluster and MaxiNet to identify
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which technology allows lowest expenditure of general
computational resources; and (2) evaluates its behavior
regarding the utilization of computational resources in
scenarios with specific requirements, identifying benefits
and disadvantages of each implementation.

The relevance of this work is justified by the importance
of comparing technical aspects of lightweight and distributed
virtualization solutions for network experimentation, gener-
ating data to be used for identify which solution is indicated
in each demand, facilitating the recognition of requirements
needed by different scenarios.

This paper is organized as follows: Sect. 77.2 presents
related works and preliminary concepts that will be used as
information base for development of this work. Section 77.4
details procedure and technologies used in distributed
container-based emulation evaluation. Section 77.5 presents
and commented performance tests results; and Sect. 77.5
concludes and presents future work suggestions.

77.2 Theoretical Grounding and Related
Work

This section presents the background and related works used
in this work.

77.2.1 Lightweight Virtualization

The rise of the virtualization approach is not recent. Both
platform and software layer responsible for abstracting and
sharing hardware with necessary isolation levels between
virtualized functions evolved, starting from O.S. virtualized
over hypervisors with high function overhead, to lightweight
virtualization based on process isolation at the same
userspace (containers) [7], using concept of namespaces
to isolate functions, such file system, process tree, network,

user area, and others; and Control Groups (CGroups) limiting
resources such memory, CPU and throughput [8].

Due to its characteristics, container-based virtualization
proved feasible as a base for network experimentation,
mainly because it supports the emulation of whole
environments that support the study of diverse and complex
scenarios, with a small overall cost and good precision results
[1]. Currently, there are several tools that supports this kind
of virtualization, and some of them are well known and
widely applied in the most varied environments, like LXC,
LXD and Docker.

Besides full-featured containers solutions that implement
a large set of isolation mechanisms, there are also tools devel-
oped focused specific on emulation for network experimen-
tation, such Mininet. Mininet differentiates itself from other
implementations mainly using only the network and mount
point namespaces attached to a Linux process, conferring
less overhead on each container. It also uses CGroups for
resource control, manages SDN switches and controllers,
interconnecting all network emulated elements with virtual
interfaces (veth). It has a programmable API accessible by
command-line, allowing administration and control of all
elements in an experiment.

Even these solutions shares container-based virtualization
concept, there are implementation differences that lead to
divergent behavior regarding computational resources uti-
lization. Figure 77.1 shows the amount of memory used, the
number of Linux processes spawed, and disk space used in
scenarios where was created only 1 and 100 containers, using
Mininet, LXC, LXD and Docker solutions.

Analyzing system utilization shown in Fig. 77.1 it is pos-
sible to note that Mininet consumes about 90MB of memory
on physical host when instantiated 100 containers, while
LXC consumes 260MB, Docker 350MB and LXD 1.02GB
of memory. LXC, LXD and Docker RAM utilization is
associated to the characteristics of system image used to
create containers, since it carries all set of codes, libraries,
environment variables and configuration files needed for its

Fig. 77.1 Memory
consumption, number of
processes created and disk
utilization in light virtualization
solution
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operation. For this reason, we used the smallest and simplest
available images in official repositories, consuming as few
resources as possible in container creation with each technol-
ogy. For this, we used Linux Alpine 3.4 AMD641 image in
LXD and Linux BusyBox 1.29 AMD642 in LXC and Docker
containers.

Docker and LXD has a daemon responsible for manage all
container operations, Docker daemon uses 58MB ofmemory
while LXD uses 18MB. As for the amount of processes cre-
ated for instantiation of 100 containers, Mininet creates 101
processes, Docker 202, LXC 501, and LXD 902 processes.
Resources consumed for LXC, LXD and Docker is impacted
again by characteristics of system image used.

For disk usage, Mininet makes no use since its containers
uses same mount point common to all users on physical
host file system, while LXC and LXD consume 210MB
and 430MB of disk space each, for creation of independent
virtual file system for each container. Docker, otherwise,
consumes about 140MB of disk space for 100 containers
creation, because of copy-on-write technique.

Based on the data presented, it is possible to note that
Mininet consumes less physical host resources for creating
simple containers when compared to other technologies,
therefore, Mininet can be considered enough for network
experimentation.

77.2.2 Lightweight and Distributed
Virtualization

When the concept of lightweight virtualization is extended
to a distributed system, it is necessary to consider the
procedures for container communication between cluster
nodes and the techniques used for link bandwidth and delay
parametrization.

Mininet supported distributed processing using SSH tun-
nels between containers on cluster nodes from version 2.2.0
(named Mininet Cluster) and GRE tunnels from version
2.3.0, supporting higher throughput because GRE does not
use TCP for data transport. The creation of tunnels between
cluster nodes is done automatically when a link is solicited
between two elements in Mininet API and can connect any
kind of elements. This feature is very important when a non-
SDN network is emulated and only Mininet host element is
used in an experiment, reducing the number of containers
for not needing switches for remote element connection.
Despite this advantage, Mininet Cluster not support link
bandwidth and delay parametrization [9]. Mininet Cluster
has pre-defined algorithms for elements placement automat-
ically on cluster nodes, where SwitchBinPlacer distributes
switches and controllers in blocks of uniform size based on

1https://alpinelinux.org/.
2https://busybox.net/.

cluster size, trying to allocate host elements on same node
as switches; and RandomPlacer that does random elements
distribution through cluster nodes [10].

Another distributed Mininet implementation is MaxiNet,
which comprises an API acting as an administrative layer for
Mininet, where a central node, called Frontend, invokes com-
mands on remote nodes, called Workers, managing Mininet
elements localized on cluster by a PYthon Remote Object
(Pyro4) name server. MaxiNet uses GRE tunnels for re-
mote element connection, however, these tunnels are only
supported between switch element, an important limitation
when compared to Mininet Cluster. MaxiNet supports link
bandwidth and delay parametrization in its API and creates
automatically GRE tunnels in cluster nodes. Uses METIS3

library for topology graph partitioning, creating partitions
with equivalent weights on all cluster nodes, aggregating
most of traffic emulated in workers through minimum cut
criterion based on topology links bandwidth [11].

Due to implementation differences betweenMininet Clus-
ter and MaxiNet, there are differences in behavior between
then when looking at cluster computational resource con-
sumption. However, for the best of our knowledge, there are
no works that evaluate and compare their behavior regarding
computational resource consumption when analyzing the
scalability of these solutions.

77.3 Materials andMethods

In this section we describe the method used to evaluate
Mininet distributed emulation solutions, detailing the proce-
dure used and parameters adjustment for each technology.

77.3.1 Parameters andMeasurement
Procedure

The evaluation was based on behavior and resources con-
sumption analysis in a cluster executing Mininet Cluster and
MaxiNet technologies. To do this, we emulated datacenter
networks topologies composed by Mininet’s host element,
representing network servers; switch element, representing
switches used to interconnect servers; and link element, that
connects servers and switches. In tested scenarios we variated
the amount of each Mininet element created, the amount of
cluster nodes allocated and distributedMininet solution used.

Throughout the creation and activation process of Mininet
elements, we monitored the effect of a single factor variation,
or a set of them, in the amount of RAM used, the number
of Linux processes spawned, remote network connections
established between cluster nodes, and time spent per action
of the distributed Mininet solution setup.

3http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

https://alpinelinux.org/
https://busybox.net/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Fig. 77.2 (a) FatTree and (b)
DCell topologies used in
distributed Mininet solution
evaluation

77.3.2 Topologies and Partitioning

We emulated two datacenter topologies with different com-
putational requirements. First one is FatTree (Fig. 77.2a),
which follows the structure of a k-naria tree, being rec-
ognized for supporting high throughput capacity between
network nodes using generic switches. It consists of k groups
of switches (pods), each containing two layers with k/2
switches each (Aggregate and Edge), with k ports per switch,
and (k/2)2 servers. Each Edge switch is connected to k/2
servers and k/2 Aggregate switches. Above pods there is
another layer (Core) with (k/2)2 switches, each Core switch
is connected to k-pods via Aggregate switches [12]. As an
example, a FatTree topology k = 4 has 4 pods with 4
servers, 2 Edge switches and 2 Aggregate switches each, plus
4 Core switches, totaling 16 servers, 20 switches and 144
links throughout the topology.

DCell topology (Fig. 77.2b) contains k cells composed by
t servers each, where t = k − 1. The t servers of a cell are
interconnected through independent switches to each cell, as
well each serverk|t is connected directly to another servert+1|k
through a link [13]. As an example, a DCell topology k =
4 has 4 cells with 3 servers and 1 switch each, totaling 4
switches, 12 servers and 18 links in topology.

In order to ensure equal distribution of processing load in
cluster nodes, we used Round Robin technique to partition
the k elements of each topology between cluster nodes,
also allocating all Mininet host elements of a single pod, in
FatTree topology, and of a single cell, in DCell topology, on
the same cluster node.

Because MaxiNet supports remote connection only
between switch type Mininet elements, as shown in
Sect. 77.2.2, we included switches between the links that
connect servers in DCell topology. We identified these
switches as serverswitch in Fig. 77.2b.

77.3.3 Test Methodology

Distributed Mininet solutions evaluation depends of control
factors parameters adjustment, which are tested simultane-
ously and can assume different levels. For each combination

of possible levels, it is necessary to execute one or more test
sequences that generate results to be analyzed, but the setting
of the adjustment in each parameter is not trivial, and the
increase in the number of factors and tested levels increases
considerably the size of the experiment, and may even make
it impossible to obtain significant results.

An alternative for experimentation in environments with
this characteristic is the use of Factorial planning technique
[14]. Factorial planning makes it possible to measure the
effects, or its influences, of one or more variables on the
response of a process. This technique consists on identifica-
tion of a finite set of factors that influences the behavior of
the environment, assigning specific and valid values to the
levels of each factor, which changes the results of monitored
variables. Relationship between factors and levels is expo-
nential, (levels)f actors , and its most common occurrence is
the 2k Factorial, where a set of k factors assumes two levels
of possible values each.

Based on this principle, for the experimental analysis of
distributed Mininet solutions, a sequence of three control
factors with two variation levels each was identified, forming
the representation of a 23 Factorial experiment (Fig. 77.3a).
First factor corresponds to distributed Mininet technology
type (MininetDistributed), with levels varying between
MaxiNet (MN) and Mininet Cluster with GRE links (MC).
Second factor is topology size (T opologySize), which cor-
responds to the amount of pods, in FatTree topology, and
cells, in DCell topology, with levels varying between 4 and
12 levels. This variation aims to guarantee the experimental
analysis in topologies composed by few and many elements.
Third factor is the amount of cluster nodes, varying between
2 and 4 levels, so every environment is tested on a cluster
consisting of 2 and 4 physical nodes. Each factor receives a
denomination of x1, x2, . . ., xn, that simplifies its identifica-
tion.

In a planning of a 2k Factorial experiment, the two levels
of each factor are called low level and high level, and can
be identified with values (−1), at lower level, and (+1) at
higher level, as presented at level column of Fig. 77.3a. With
this definition it was possible to identify test combinations
of experiment (Fig. 77.3b), whose factors levels distribution
definition in the plane followed the procedure::
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Fig. 77.3 Table of factors and
planning matrix in 23 Factorial
design for distributed Mininet
solution evaluation. (a) Factor
table. (b) Planning matrix

Fig. 77.4 Memory utilization,
the number of spawned processes
and the number of remote
network connections established
between cluster nodes in
distributed Mininet solution
evaluation. (a) FatTree topology.
(b) DCell topology

• For x1, column signal of (1) alternates in groups of 20 = 1,
that is, continuously.

• For x2, column signal of (1) alternates in groups of 21 = 2,
that is, in pairs.

• For x3, column signal of (1) alternates in groups of 22 = 4,
that is, 4 times (−1) followed by 4 times (+1).

Finally, we randomized sequence to execute each exper-
iment test, minimizing possibility of interference of sources
not defined in environment. After completing these steps, we
executed the experiment.

77.3.4 Environment and Technologies

Cluster used in the experiment consists of 4 servers. Each
has 1 processor with 8 cores of 2.40GHz, 8GB of RAM and
two network interfaces of 1Gbps each. The S.O. is Ubuntu
Server 16.04.5 LTS, kernel 4.4.0-138, and the main programs
installed are Mininet 2.3.0d4, MaxiNet 1.2, Open vSwitch
2.5.5 and Pyro4.

Each server was connected in a totally isolated experiment
network, consisting of a switch with 1Gbps interfaces in star
topology. This network was used exclusively for exchanging

management messages from distributed Mininet solutions in
the life-cycle experiment. Second server network interface
was connected to a second switch with 1Gbps interfaces,
also in star topology, in a separate network for administra-
tion. Physical topology used in cluster nodes interconnection
sought to prevent not predicted external factors interference
in experiment results.

77.4 Results and Discussion

After definitions presented in Sect. 77.4, evaluation of dis-
tributed Mininet solutions were carried out following the
sequence defined in Planning matrix (Fig. 77.3b) with a total
of 10 replications for each scenario.

77.4.1 Memory, Processes and Connections

Evaluation results presented in Fig. 77.4, show aggregated
RAM utilization, number of spawned Linux processes and
number of remote network connections created between clus-
ter nodes during FatTree (Fig. 77.4a) and DCell (Fig. 77.4b)
Mininet topologies setup.
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Results showed that the total amount of used cluster mem-
ory varied considerably between all scenarios containing 4
and 12 cells or pods, starting from approximately 55MB of
memory in scenario 2, composed by a FatTree topology and
4 pods distributed over 2 cluster nodes usingMininet Cluster,
for up to 1.4GB of memory used in scenario 8, with the same
topology, and 12 pods distributed over 4 cluster nodes using
Mininet Cluster (Fig. 77.4a).

There are lower variation in results between scenarios
containing the same number of cluster nodes, and pods or
cells, varying only Mininet solution. An example of this
variation can be observed between scenarios 7 and 8 of DCell
topology (Fig. 77.4b). TheMaxiNet based scenario used only
218MB of RAM, while Mininet Cluster used 500MB of
RAM, soMaxinet uses only 42% of memory when compared
to Mininet Cluster. This is possible due to the way both
technologies manage remoteMininet elements. Maxinet uses
Pyro4 to manage remote Python objects (Sect. 77.2.2), so
new Mininet elements are requested to Pyro4 server which
sends mnexec code to be executed on remote cluster node.
Mininet Cluster creates a new SSH connection between the
master, cluster node where Mininet was called, and slave,
the node where Mininet element should be created, and this
SSH tunnel remains established throughout Mininet element
life-cycle. This procedure consumes memory, create pro-
cesses and make connections between cluster nodes involved
in it.

MaxiNet needs Pyro4 daemon running on all cluster
nodes even before any local or remote Mininet elements
are created. It justifies MaxiNet superior memory usage in
scenarios containing few Mininet elements, such as between
scenarios 1 and 2 of FatTree and DCell topologies. Pyro4
daemon consumes approximately 55MB of memory in
FrontEnd cluster node, and 25MB of memory in each
Worker node, while Mininet Cluster does not require daemon
service.

Regarding the number of spawned Linux processes and re-
mote connections established between cluster nodes in each
scenario, its variation is related to the number of Mininet el-
ements existent in topology, its distribution on cluster nodes,
and Mininet solution used. Each Mininet element creates
only one process on node where it was created, but as
previously showed, Mininet Cluster uses SSH connections
to manage remote elements, increasing four new Linux pro-
cesses and one more network connection between master
and slave cluster nodes for each Mininet element created.
MaxiNet uses only few more processes and connections for
Pyro4 objects message exchanges. This behavior explains
difference of amount processes and connections in scenarios
with same number of elements and cluster nodes, varying
only Mininet solution, as observed in scenarios 7 and 8 of
FatTree and DCell topologies (Fig. 77.4).

77.4.2 Factor Effects

Other important analysis is the effect caused by variation of
an individual factor, or a set of them. This analysis helps iden-
tify the best strategy for scaling the emulated network topol-
ogy consuming least cluster resources. Figure 77.5 shows the
effect of each independent factor, also known as main effect,
interaction effect between the factors evaluated, and a half-
normal of effects.

Main effect is analyzed observing factor memory con-
sumption variation, which corresponds to the line slope de-
gree that represents factor when passed from level (−1) to
level (+1). As result, it is possible to note the factor with
greatest effect in Fig. 77.5a, b is T opologyLength, followed
byDistributedMininet . Clusterlength has little effect on
environment memory consumption.

Angle variation between factor lines in Fig. 77.5 identify
the interaction effect between a set of factors. Results
showed that interaction between T opologylength and
DistributedMininet causes oscillation in memory con-
sumption, but this behavior is not observed inClusterlength

interaction with other factors.
To measure the factor effect, or a set of them, on

results, we used half-normal effects plot. As an example,
it is possible to observe on Fig. 77.5a that value variation
in DistributedMininet factor caused a variation of
380MB of memory consumption, while its interaction
with the T opologylength factor caused 400MB of effect,
and T opologylength factor caused 880MB of memory
consumption effect in FatTree topology. This behavior also
occurs in DCell topology (Fig. 77.5b).

77.4.3 Setup Time

Another important information to analyze is time taken to
execute each action necessary to complete experimentation
setup. Figure 77.6 presents aggregation time to complete
all experimentation setup actions on scenarios based on 4
cluster nodes, and 4 or 12 pods or cells in topology length.
Results showedMininet Cluster spent more time to complete
setup actions than MaxiNet for all scenarios. This behavior
is a consequence of time spent by Mininet Cluster to open
SSH connections between cluster nodes and send Mininet
commands responsible to manage elements and links, as
discussed previously. For an example, in FatTree topology
scenario with four pods topology length (Fig. 77.6a), Mininet
Cluster spent eight times longer thanMaxiNet to complete all
setup actions.

With the analysis of presented results, it is possible to
conclude that Mininet Cluster has inferior behavior to Max-
iNet, although the Mininet Cluster is the official imple-
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Fig. 77.5 Main effect,
interaction effect and half-normal
resulting from distributed
Mininet solution evaluation. (a)
FatTree topology. (b) DCell
topology

(a) (b)

Fig. 77.6 Time taken per setup action in distributed Mininet solution evaluation. (a) FatTree topology. (b) DCell topology

mentation of distributed Mininet solution, MaxiNet manages
remoteMininet objects life-cycle in a better way, using Pyro4
name server for it, while Mininet Cluster consumes a lot of
processing time and cluster computing resources with SSH
connections for container life-cycle management.

77.5 Conclusions and FutureWork

In this paper, we presented a comprehensive factorial analysis
comparing lightweight and distributed network emulation
solutions designed for experimentation. Our approach was

to identify key characteristics that make the container-based
virtualization lightweight and scalable, suitable for large
scale network experimentation. Thus, we perform a number
of exploratory experiments on the main distributed emulation
candidates solutions: Mininet Cluster and MaxiNet. In order
to compare resource consumption on same environment, we
implement a 2k Factorial experimental design to assess the
variables influence.

Our results shows a significant advantage ofMaxiNet over
Mininet Cluster implementation, either in terms of memory
consumption, number of spawned processes, number of re-
mote connections established between cluster nodes and time



592 E. R. A. Barea et al.

taken per setup action. Despite of that, Mininet Cluster can
be advantageous in non-SDN experiment because it allows
remote connection between any kind of element. In terms of
future work, we intend to augment the observation variables
using other varying hardware resources and also devise an
algorithm that could auto-adjust and tune the distributed
network emulation from a single machine setup to a cluster,
easing the burden for researchers to scale their experiments.
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