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Abstract

We review important algorithmic results for the coverage
of 1.5D terrain by point guards. Finding the minimum
number of point guards for covering 1.5D terrain is known
to be NP-hard. We propose an approximation algorithm
for covering 1.5D terrain by a few number of point guards.
The algorithm which we call Greedy Ranking Algorithm
is based on ranking vertices in term of number of visible
edges from them. We also present an improvement of the
Greedy Ranking Algorithm by making use of visibility
graph of the input terrain.
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75.1 Introduction

Problems related to visibility on terrain surface have numer-
ous applications such as (1) geographic data frameworks,
(2) route management for aerial vehicles, (3) transportation
systems, (4) crisis reaction arranging, and (5) remote com-
munications system (Wired and Wireless).

Terrain visibility problems can be viewed as a restricted
instance of the well-known Art Gallery Problem [1] in com-
putational geometry. In the art gallery problem, the domain
is a simple polygon and it is required to find the set S of
a minimum number of point guards inside the polygon so
that any point inside it is visible from some point in S. It is
remarked that two points pi and pj inside a polygon are visible
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to each other if the line segment having pi and pj as endpoints
does not intersect with the exterior of the polygon. The
standard art gallery problem is known as NP-hard [1]. This
intractability result has motivated many researchers to look
for approximation algorithms for art gallery problem [1].
Some variation of the standard art gallery problem has been
considered. Such variations include an alternative notion of
visibility and having input polygon restricted to monotone
polygons and orthogonal polygons. In visibility variations,
the notion of staircase visibility [2, 3]. In the staircase vis-
ibility model, two points pi and pj inside the polygon are
visible if there is a staircase path connecting pi and pj that lies
completely inside the polygon. It is noted that in a staircase
path the edges are parallel to x-axis and y-axis and the path
itself is monotone.

In this paper, we use the standard notion of visibility
and restrict the polygonal domain as a monotone polygon
in which one chain is a monotone chain and the other chain
is a line segment. A monotone polygon with one chain as
line segment is precisely a 1.5D terrain. The standard terrain
is a 2.5D structure which means that a terrain is a structure
which is between two dimensions and three dimensions. This
view can be further elaborated in term of the cross-section
of terrain with a horizontal plane. If we consider the cross-
section of a terrain with a horizontal plane then the cross-
section area become progressively smaller as the height of
the horizontal plane increases.

The paper is organized as follows. In Sect. 75.2, we re-
view important existing algorithms dealing with the visibility
property of simple polygon and 1.5D terrains. In particular,
we examine existing algorithmic results for placing guards
to cover 1.5D terrains. We also review intractability results
and approximation algorithms for placing point guards in a
monotone polygon and 1.5D terrain. In Sect. 75.3, we present
the main algorithmic result. We design, describe and sketch
an approximation algorithm for finding a reduced number
of point guards to cover (or illuminate) a 1.5D terrain. The
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algorithm which we call “Greedy Ranking” is based on the
ranking of vertices on visibility measures. The nodes are then
processed in a greedy manner by placing the first point guard
at the node with the largest visibility and other guards are
progressively placed by re-ranking the uncovered nodes. The
time complexity of the algorithm is 0(|E|log|V|) where |E| is
the number of edges and |V| is the number of vertices in vis-
ibility graph induced by the terrain. Finally, in Sect. 75.4, we
discuss (1) possible extension of the proposed algorithms and
(2) interesting variations of the terrain illumination problem
for future research.

75.2 Preliminaries

Problems dealing with visibility in the presence of poly-
gons has been investigated by several researchers since last
40 years [4, 5]. In defining the notion of the visibility, the
boundary of a polygon is considered as an opaque object.
Two points inside the polygon are visible if the line segment
connecting them do not intersect with the boundary. One
of the widely investigated visibility problems on the simple
polygon is to illuminate the entire interior of the polygon
by placing a minimum number of point guards inside the
polygon boundary. This is often known as the Art Gallery
problem. Interested readers can find such problem in [4, 5].

The problem of placing the minimum number of guards
inside a simple polygon is known to be intractable [6]. This
problem remains NP-hard even for some restricted classes
of polygons. One of the widely studied restricted class of
simple polygons are monotone polygons. A simple polygon
is called monotone if its boundary can be partitioned into
two chains, each of which are monotone with respect to a
given direction. Monotone polygons are used to model two
dimensional terrain. Finding the minimum number of point
guards to cover terrain has applications in telecommunication
tower placement and geographic information system. An
instance of the placement of point guards on a 1.5D terrain
is shown in Fig. 75.1. In this problem instance, five point
guards are needed. The point guards are drawn as small
circles. Readers can easily verify that the terrain cannot be
illuminated (or covered) with less than five point guards. The
problem of finding the minimum number of point guards in
terrain was a long standing open problem, which was settled
by James King and Erik Krohn in 2009. They proved [7] this
problem to be NP-hard.

Fig. 75.1 An instance of terrain illumination

They reduced an instance of PLANAR 3-SAT problem
to an instance of minimum guard placement problem in the
monotone polygon. PLANAR 3-SAT problem is a restricted
version of the standard 3-SAT problem [8]. In a planar 3-SAT,
the graph implied by the satisfiability expression has to be
a planar graph. Both standard 3-SAT and PLANAR 3-SAT
problem are known to be NP-Hard [8]. A related problem on
tower placement is reported in [9].

75.2.1 One-Sided Versus Two-Sided Guarding

The standard terrain or terrain guarding problem is the one-
sided guarding problem. In the definition of one-sided guard-
ing problem, a point pi in the domain is said to be guarded if
pi is visible from any guard.

Very recently [10] the notion of two-sided guarding prob-
lem has been introduced in the context of guarding 1.5D
terrain. In this definition, a point pi in the terrain is said to be
two-sided guarded if pi is visible to at least one guard in the
left and at least one guard in the right. The distinction of one-
sided guarding and two sided guarding is shown in Fig. 75.2

Distinguishing one-sided and two-sided guarding
An examination of the terrain in Fig. 75.2 shows that it

needs 5 guards (X) to cover it under two-sided notion of
visibility. This terrain can be guarded by two guards (shown
by o) under normal (one-sided) notion of visibility. While
finding the minimum number of guards to cover 1.5D terrain
is NP-Hard [7], the problem can be solved in linear time [10]
under the notion of two-sided visibility.

75.2.2 Approximation Algorithms

The intractability of the art gallery problem has motivated
many authors to develop approximation algorithms. One of
the first such algorithm was proposed by S.K Ghosh [11].
This paper contains approximation algorithms for both sim-
ple polygons and polygon with holes. It is established in
[11] that a simple polygon with n vertices can be guarded
with numbers of guards m such that m is no more than
O(log n) time the optimal solution. Their algorithm is based
on partitioning the polygon into convex components. The
convex components are views as sets and approximation set
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Fig. 75.2 Distinguishing one-sided and two-sided guarding



75 Fast Heuristics for Covering 1.5D Terrain 573

Fig. 75.3 Formation of pockets

covering algorithm is used to obtain approximation solution
for art gallery problem. The time complexity of the algorithm
is O(n4) for the simple polygon and O(n5) for the polygon
with holes.

Ben-Moshe et al. [12] have reported an approximation
algorithm for guarding 1.5D terrain by point guards. The idea
is to process pockets of the terrain separately by evaluating
the visibility of convex vertices in each packet. The pockets
are formed when 1.5D terrain is enclosed by the convex hull
boundary as shown in the Fig. 75.3.

In the figure, convex hull boundary (shown by dashed
edges) and 1.5D terrain induce three pockets. The authors
[12] made complicated case analysis to develop an approxi-
mation algorithm of constant factor for covering the terrain.
The time complexity of the algorithm is O(n2) where n is the
number of vertices in the terrain. In this algorithm it is not
clear what is the exact value or bound of the constant factor.

75.3 Fast Heuristic for Covering 1.5D
Terrain

75.3.1 Visibility Properties of 1.5D Terrain

We start with the description of the properties and character-
ization of 1.5D terrain needed for developing fast heuristics.
Since the problem of placing a minimum number of point
guards in 1.5D terrain is NP-Hard [7] it is motivating to come
up with good heuristic methods that execute relatively fast in
practical applications. Due to simpler structural properties of
1.5D terrain, guard placement is relatively easier compared
to guard placement in a simple polygon.

Observation 75.1
For simple polygons, it is known that visibility of all vertices
does not imply that all of the boundary is visible [1] This fact
applies to 1.5D terrain as shown in Fig. 75.4.

In the figure, two guards are placed at v1 and v5 shown by
the solid circles. All the remaining vertices v2, v3, v4, v6 and
v7 are visible from these two guards but the edge <v3, v4> is
not visible.

Observation 75.2
A guard placed at a non-convex vertex can be moved to the
adjacent convex vertex without losing any coverage.
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Fig. 75.4 Illustrating Observation 75.1

i−1

v i

v i+1

Ri

v

Fig. 75.5 Illustrating proof of Lemma 75.1

Definition 75.1 (Zig-Zag Terrain) A 1.5D terrain in which
no two consecutive vertices are convex.

Lemma 75.1 In a Zig-Zag 1.5D terrain, covering all ver-
tices implies the covering of all boundary points.

Proof Suppose there is an edge ei = (vi-1, vi) which is not
completely visible. If a point guard is at vi-1, vi, or vi+1 then
ei is clearly visible. If vi is visible from vertex vj (other than
vi-1 vi , vi+1) then vj must be in the sector Rj formed by vi-1,
vi, vi+1 as shown by dashed rays in Fig. 75.5. Consequently,
points of ei are visible from that guard due to the convexity
of the sector Ri.

75.3.2 Greedy Ranking Algorithm

This algorithm works in two stages: (i) greedy placement
stage and (ii) redundancy removal stage. In the first stage,
the next point guard is placed on the vertex that covers the
maximum number of non-illuminated edges.

The location of vertex guards is determined based on their
rank. The rank of a node vi is the number of non-covered
edges that can be covered by placing a point guard at vi.
Initially all edges are not covered, and the rank of each node
is the number of edges visible from them. The initial rank of
nodes is illustrated in Fig. 75.6a.

We describe the working of the algorithm with this run-
ning example. Since vertex v10, v13, v16, v19 have the highest
rank (5), we pick the vertex v16 arbitrarily and place the first
guard at v16 (shown by a triangle symbol). Note that if more
than one vertex has the same rank then we pick the vertex
arbitrarily.
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Fig. 75.6 Illustration of Greedy
Ranking Algorithm. (a)
Illustrating Initial Node Ranking.
(b) Illumination state after
placing the first guard. (c)
Ranking of vertices after placing
first guard. (d) Guard placement
after completing first stage
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After the placement of the guard at v16, all the edges visible
from v16 are determined (visible vertices are drawnwith filled
circle and visible edges are drawn with thick line in Fig.
75.6b). Based on this placement, the ranking of the nodes
is recomputed. In recomputing the rank, only the uncovered
edges are considered. The new ranks are shown in Fig. 75.6c.

It is noted that for the vertices where guards are already
placed, the rank is not needed and not shown in Fig. 75.6c.
In the second round of the ranking, vertex v10 has the highest
rank and a guard is placed there. The process of re-ranking
and guard placement is continued until all edges are covered.
In our running example, the first stage is completed after 6
rounds of ranking. The placement of guards after completion
of the first stage (greedy ranking) is shown in Fig. 75.6.

The greedy ranking algorithm places guards incremen-
tally (one at a time) by identifying the vertex with highest

rank. After each guard placement, the rank of the vertices
are recomputed (updated) so that edges already covered are
excluded in the ranking accumulation. The algorithm stops
when all the edges are covered. A formal sketch of “Greedy
Ranking Algorithm” is shown in Algorithm 1.

A straight forward implementation of the Algorithm 1 can
takes O(n3) time in the worst case. Step 4 (ranking step)
can be implemented by checking the intersection of possible
edges with terrain edges which can take O(n2) time in the
worst case. To implement Step 7 (marking covered edges),
we can similarly check the intersection of candidate visibility
edges with edges of terrain, which again takes O(n2) time. If
the while loop repeats n times, then the total time complexity
of the algorithm isO(n3). This time complexity is rather high.
An improved implementation of Algorithm 1 based on the
visibility graph is described next.
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Algorithm 1 Greedy Ranking Algorithm

1. Input : Terrain chain Ch1 {vo, v1, . . . . . . . . . vn-1 }
2. Output: Subset Sg of Ch1 where guards are placed
3. while all edges are not covered do
4. RankVertices (Ch1 {vo, v1, . . . . . . . . . vn-1 })
5. u = getHighestRankedVertex (Ch1)
6. u.guard = True
7. Mark edges covered by u
8. Sg = {v | v.guard = True}
9. Output Sg

function RankVertices (chain Ch1 {vo, v1, . . . . . . . . . vn-1 })
for all v in Ch1 do

if v is convex and no guard placed at v then
v.rank = Number of newly covered edges

The visibility graph in the presence of a polygonal object
is defined by considering the polygonal boundary as obsta-
cles.

The visibility graph in the presence of 1.5D terrain can be
defined similarly and an example is shown in Fig. 75.7a. A
visibility graph can be computed in time proportional to its
size by using an algorithm given in [13] When the visibility
graph is computed in [13] visibility edges emanating from a
vertex are available in angularly sorted order around it. This
structure of the output of the algorithm in [13] can be used to
implement the Greedy Ranking Algorithm efficiently. Initial
ranking of vertices can be obtained by simply reading off
the number of visibility edges emanating from each vertex.
When a guard is placed at a vertex, we can define the notion
of Uncovered Visibility Graph (UVG) by considering only
those visibility edges that are connected to the uncover edges
of the terrain. When the first guard is placed (indicated by
filled triangle sign above the terrain vertex), the resulting
visibility graph is shown in Fig. 75.7b.

The efficient version of Algorithm 1 is based on updating
UVG as guards are placed. Initially, UVG is given by the
standard visibility graph. When a guard is placed at vertex vi,
visibility edges emanating from vi and its incident vertices are
deleted to update UVG. The updated rank of vertices are the
counts of visibility edges corresponding to the updated UVG.
In order to retrieve and update the ranks of nodes, the vertices
of UVG are maintained in a priority queue Q, using the
priority of the number of visibility edges emanating vertices.
A formal sketch of the algorithm is listed as Algorithm 2.

The time complexity of Algorithm 2 can be done as
follows. Step 3 takes O(|E|+|V|) [13]. One delete operation
and decrease key operation can be done in O(log|V|) time.
Each execution of while loop removes at least one visibility
edge to update UVG. Hence the whole loop executes at most
O|E| time. Thus, the total time complexity is O(|E|log|V|)

Algorithm 2 Improved Greedy Ranking Algorithm

1. Input: Ordered list of vertices chain V {vo, v1, . . . . . . . . .

vn-1 } of terrain T
2. Output: Subset Sg of Ch1 where guards are placed
3. Compute Visibility Graph (VG) for T
4. Store Vertices of VG in max priority Queue Q in the

priority of vertex degree
5. Set uncovered visibility graph UVG to VG
6. Sg = �

7. while UVG contains edges do
8. v = Q.getMax()
9. Sg = Sg U {v}
10. Q.deleteMax()
11. for all vertices u adj to v
12. decrease key of u by 1
13. remove edge (u,v) from UVG
14. Output Sg

75.4 Conclusion

We presented a brief review of existing algorithms for plac-
ing point guards in 1.5D terrains and simple polygons. We
presented a heuristic algorithm for covering 1.5D terrain
by point guards. We have also developed another heuristic
called “Greedy Forward Marching Algorithm”. Experimen-
tal results of both heuristics are available in the full version
of the paper. The second heuristic and the results of the
experimental performance of both heuristics will be reported
in the near future in appropriate outlets. Our experimental
results show that the performance of the Greedy Ranking
Algorithm is better than the performance of the Greedy
Forward Marching Algorithm. We observed this result on
several terrain input sizes 10, 25, 50, 75,...,7000. For all
these input sizes, the data shows that the performance of
Greedy Ranking is consistently better. One of the additional
contributions of investigation (in full version of the paper)
is the generation of 1.5D terrain data of various sizes. The
generation is done randomly by using a guiding strip. At
present, an implementation by the guiding strip is taken as
a shape with zig-zag structure. To make it more realistic it
would be interesting to have strips of other structures. This
can be an interesting future work. The performance of both
heuristics can be improved. One approach for improvement
would be to look forward beyond the Next Candidate Node
while placing the next guard. This is expected to improve
the performance of the algorithm at the expense of time
complexity. Recently, some authors have proposed the notion
of two-sided guard placement [10]. It would be interesting
to convert our proposed heuristics to a two-sided version of
visibility.
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Fig. 75.7 Illustration of
visibility graph. (a) Illustration of
visibility graph. (b) Illustration of
visibility graph for uncovered
edge after placing first guard. (c)
Illustration of visibility graph for
uncovered edge after placing
second guard. (d) Illustration of
visibility graph for uncovered
edge after placing all guards
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There is ample scope to developing better algorithms for
identifying redundant guards. In the method proposed to
identify redundant guards (described in the full version of the
paper) at vi we only look for the pair of guards (one to the left
and one to the right of vi). A generalization of this technique
is to look for coverage by more than two guards (say three).
This should improve the spotting of redundant guards at the
expense of time complexity.

A better approach for generating realistic 1.5D terrain
would be to sample points on the horizon of a real terrain
and connect them. This approach is certainly feasible and
would be a good avenue for further research. We have taken
an unlimited visibility model for defining visible vertices:
two vertices are visible as long as the line segment con-
necting them does not intersect with the terrain, no matter
how far apart they are located. A more realistic model is
to incorporate the notion of limited visibility. Under this
model, two vertices vi and vj are visible if (i) the line segment
connecting them does not intersect with the terrain, and (ii)
they are not farther apart than a certain distance d. It would be
an interesting research exercise to develop guard placement
algorithms under limited visibility.
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