®

Check for
updates

Ghada Abdelmoumin and Noha Hazzazi

Abstract

In this paper, we investigate several modern distributed
operating systems (DiOSs) and their security policies and
mechanisms. We survey the various security and protec-
tion issues present in DiOSs and review strategies and
techniques used by DiOSs to control access to system
resources and protect the integrity of the information
stored in the system from accidental events and malicious
activities. Further, we distinguish between network secu-
rity and DiOSs security and explore the attack surface
of DiOSs compared to traditional operating systems. We
concentrate on a class of distributed operating systems
known as cloud operating systems (COSs).

Keywords

Attack surface - Cloud system - Distributed system -
Operating system - Security - Threats - Vulnerabilities -
Protection

20.1 Introduction

Distributed systems have been in existence since the
advent of the Internet. These systems are reliable, high-
performing, fault-tolerant, modular, and scalable computing
platforms in which various computers or nodes access shared
remote resources and perform distributed computations
collaboratively. A distributed system is an assemblage
of autonomous and heterogeneous processors that are
connected, loosely-coupled, and geographically dispersed.

G. Abdelmoumin (I<)) - N. Hazzazi

Howard University, Washington, DC, USA
e-mail: ghada.abdelmoumin @bison.howard.edu;
noha.hazzazi @howard.edu

© Springer Nature Switzerland AG 2020

These processors don’t share a memory or use a common
clock. Instead, they communicate over the network using
messages and execute asynchronously to provide services
and compute distributed tasks jointly, each with its discrete
notion of time. Each computer or node (i.e., a hardware
device or software process) in a distributed system runs
its local operating system, a network protocol stack, and
middleware that implements the distributed software [1].
Further, nodes with their separate clock can join and leave
the system, thus leading to a highly dynamic system and an
underlying network with an unceasingly changing topology
and performance [2].

Various operating system classes can run on systems
with multiple computers or processors. Kshemkalyani and
Singhal in [1] specify three classes of operating systems:
network operating system, distributed operating system, and
multiprocessor operating system. The amount of coupling,
i.e., tightly-coupled or loosely-coupled, between the software
and hardware components in a distributed system deter-
mines the class of operating system running on the system.
A system in which the hardware (processors) is loosely-
coupled and the software (middleware and distributed soft-
ware) is tightly-coupled runs a distributed operating system.
To that extent, loosely-coupled hardware is heterogeneous
(different speeds and possibly operating systems) and ge-
ographically dispersed, whereas a tightly-coupled software
is homogeneous. Conversely, systems running a network
operating system have heterogeneous software and hardware,
and those running a multiprocessor operating system have
homogeneous software and hardware. This paper focuses on
the distributed operating system class and surveys various
distributed operating systems implementations and their se-
curity implications.

The primary objective of this paper is to explore DiOSs
internal and external threats, define their attack surface, and
distinguish between the various DiOSsimplementations in

145

S. Latifi (ed.), 17th International Conference on Information Technology—New Generations

(ITNG 2020), Advances in Intelligent Systems and Computing 1134,
https://doi.org/10.1007/978-3-030-43020-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43020-7_20&domain=pdf
mailto:ghada.abdelmoumin@bison.howard.edu
mailto:noha.hazzazi@howard.edu
https://doi.org/10.1007/978-3-030-43020-7_20

146

terms of their security and protection strategies and mech-
anisms.

The organization of the rest of this paper is as follows:
In Sect. 20.2, we describe distributed systems architecture
and components and define the distributed operating system
(DiOS) and explain its functions. Next, in Sect. 20.3, we
explore various DiOS implementations. In Sect. 20.4, we
introduce cloud computing and discuss the cloud operating
system (COS) and describes its functions. Following in Sect.
20.5, we present traditional DiOSs security issues, address
security issues pertinent to COSs, and explore various DiOSs
security and protection mechanisms with a particular focus
on COSs. Finally, we present our conclusions and future work
in Sect. 20.6.

20.2 Distributed Systems
20.2.1 Definition and Characteristics

A distributed system is an assemblage of independent and
networked computers or processors, often dispersed. They
jointly collaborate over a communication network to provide
services, access to shared resources, and solve computation-
ally complex, but modular problems. Several characteris-
tics distinguish distributed systems from other networked
or centralized systems. Distributed systems are highly dy-
namic autonomous and geographically dispersed systems,
often characterized as heterogeneous, loosely-coupled, high-
performing, reliable, fault-tolerant, scalable, modular, trans-
parent, and cost-effective systems [1, 3, 4]. Other character-
istics include concurrency of nodes, lack of a global clock
and shared memory, distributed execution, and independent
failure of nodes.

Distributed systems are inherently complex systems. To
simplify their complexity, they use a layered architecture in
which the system components stack in layers. In addition
to the hardware components (i.e., processor and local mem-
ory), each node in a distributed system has three interacting
main software components: an operating system, a network

G. Abdelmoumin and N. Hazzazi

protocol stack, and middleware. Figure 20.1 [1] shows the
interaction of distributed system software components. The
middleware which drives the distributed system enables the
system to be transparent by concealing the system inde-
pendent hardware and software components from users and
applications [1, 2, 4].

Transparency is an important characteristic of distributed
systems and an essential design goal. A transparent dis-
tributed system appears to the user and application as a
“single coherent system” or “virtual uniprocessor” rather
than a collection of distinct nodes [4, 5]. It hides the sys-
tems resources and renders them autonomous. For example,
a distributed system in which access to remote resources
is transparent, users access the remote resources using the
same operations they use to access the local resources. A
transparent system, therefore, hides the location and identity
of its resources from the user.

In general, the main goal of distributed systems is to
make distribution transparent such that processes running on
multiple processors and resources residing on multiple nodes
are invisible to the users. Several aspects of a distributed
system are transparent to the users and applications. Table
20.1 shows the different transparent aspects of a distributed
system. These aspects include access, location, relocation,
migration, replication, concurrency, mobility, scaling, perfor-
mance, and failure [3—5]. Access and location transparencies,
also known as network transparency, have a direct impact on
distributed resources utilization. While transparency is a de-
sired aspect of a distributed system, there are situations where
hiding the system resources has an undesirable effect. For
example, location-based and context-aware systems require
that distributed resources be visible.

Although distributed systems offer many benefits to users
and applications, such as resource sharing and computation
speedup, their main advantage is their infrastructure. The
distributed resources and services support a view of a system
in which a resource or a service represents a utility - one of
the most important aspects of cloud computing. We discuss
cloud-based systems and COSs in Sect. 20.4.

Fig. 20.1 Distributed operating |

Distributed application | Extent of

software components (Source:

distributed

| L

Distributed Systems Principles, I
Algorithms, and Systems, p. 3)

protocols

Distributed software

(middleware libraries) s

»

8

Application layer g

Operating Transport layer s
o

system 2
(0]

z

Network layer

Data link layer

20 Distributed Operating System Security and Protection: A Short Survey 147
Table 20.1 Transparent aspects of distributed systems
Transparent aspect Description
Acess Accessing a distributed resource is the same as accessing a local resource
Location The distributed resource namespace (identifier) remains the same irrespective of location
Relocation The user is not aware of the movement of the data, processes, and or computations
Migration The user is not aware when the resource location changes
Mobility The user is not aware when the system ports resources
Concurrency The user is not aware of the concurrent access to resources by others
Scaling The user and applications are not aware when the system adds new nodes, resource, or both
Performance System configuration can improve its performance
Failure The system conceals the failure from the user and their applications and allows them to continue their tasks
Fig. 20.2 A distributed system Same interface everywhere
organized as middleware. The c - c _— c o c —
middleware layer extends over ApHISt ompater ainpuier ampriier
multiple machines and offers L1
each application the same -
. N Appl. A Application B Appl. C
interface (Source: i i s
DISTRIBUTED- | : | I
. 3 i | 1
SYSTEMS.NETS, used with
permission) Distributed-system layer (middleware)
‘ Local OS 1 ‘ | Local OS 2 ‘ ‘ Local OS 3 ‘ ‘ Local OS 4 ‘
Network

20.2.2 Distributed Operating Systems (DiOSs)

A distributed operating system manages all distributed re-
sources and services of the distributed system. In a distributed
system environment, the operating systems running on the
various nodes appear to the user and applications as a single
operating system. More importantly, the distributed nature of
the system is unknown to the processes that are running on
the various nodes. Distributed operating systems allow users
to access remote resources and request distributed services,
in the same manner, they access local resources and request
local services. Users use the same set of operations to access
remote resources, as well as local resources.

It is imperative to state that distributed operating systems
differ from network operating systems in many ways. In a
network operating system, the user is aware of the multiplic-
ity of nodes, resources, and services, and each node is aware
of the network. Conversely, a distributed operating system
hides this multiplicity of nodes, resources, and services from
the user, as well as the network. Typically, a distributed op-
erating system aggregates the distributed system resources to
produces a single-system image that hides the heterogeneous
and distributed nature of the system and gives the illusion
that a single operating system controls the network [3, 4, 6].
According to Khapre et al. [7], the extent to which the user
is aware of the multiple nodes or computers that make up a
distributed system is what distinguishes distributed operating
systems from network operating systems [7]. Figure 20.2

[8, 9] shows the general structure of a distributed operating
system in which the middleware layer provides the same
interface for the applications running on the various nodes.

Unlike a network operating system, a distributed oper-
ating system can transfer data and computation across the
various nodes while hiding the transfer details from users
and applications. A process transfer is also possible when
there is a need to balance the load in response to high-
demand computing. Although distributed systems offer many
advantages, the heterogeneous and sprawling nature of these
systems has a direct impact on their security [4, 10]. Ad-
ditionally, the distributed operating system must consider
three primary areas of transparency. These areas include
execution, file system, and protection [4]. Hence, securing
and protecting distributed systems require a pervasive, yet
transparent, approach to security and protection. In such an
approach, the distributed operating system plays a critical
role in protecting distributed resources from unauthorized
access and securing them against malicious or accidental
destruction or alteration.

20.3 DiOSs Implementations

There are several implementations of distributed operating
systems, some of which date back to the late 1970s [11].
In 1970, IBM introduced the VM distributed operating sys-
tem, which enabled administrators to create several virtual

148

machines on its System/370 mainframe [12]. Some of these
early DiOSs supported homogeneous environments, while
others supported heterogeneous environments. Some pro-
vided a varying degree of transparency, while others of-
fered full transparency. Some supported distributed appli-
cations, while others executed large distributed computa-
tions. For example, Roscoe (1970s) ran on homogeneous
processors, while Cronus (1980s) supported heterogeneous
environments. Saguaro (the mid-1980s) supported varying
degrees of transparency while MOSIX (1980s—1990s), a
UNIX based operating system, supported full transparency
and dynamic process migration for load balancing. SODA
(the mid-1980s) ran distributed applications while CONDOR
(1980s) distributed computations among several processors.

20.4 Cloud-Based Systems
20.4.1 Cloud Operating System (COS)

Advances in computing and virtualization technology, cou-
pled with the need to design a distributed operating system
that presents a single system image and consumes fewer sys-
tem resources have led to a new class of distributed operating
systems that are lightweight but yet effective. Hence, COS
is a new class of operating systems that aims at improving
resource utilization. It provides a unified view of distributed
computing resources while maintaining a transparent cloud-
based system. A cloud-based system is a collection of dis-
tributed, interconnected, and virtualized nodes dynamically
provisioned and presented as one or more unified computing
resources by a service provider [13]. Virtualization is the
main characteristic of a cloud-based system. A typical cloud-
based system consists of “compute” servers, data servers, and
workstations where the workstations, servers, networks, and
storage are virtual entities running on single physical nodes
[14, 15].

G. Abdelmoumin and N. Hazzazi

COSs are conceptually-centralized, browser-based oper-
ating systems that make use of the single system image
(SSI) paradigm approach to aggregate data and compute
resources and present a transparent but yet unified view
of the system [5, 14]. COS SSI implements a hypervisor-
level of abstraction to aggregate virtual resources to gives
an illusion that the user is interacting with a single system.
Unlike traditional OS that multiplex multiple processes or
threads, COS is fully multiplexed by the virtualization [16].
Modern DiOSs or COSs include Chromium OS, CloudLinux
OS, Azure, Amazon EC2, Eucalyptus, Qubes OS, SlapOS,
OSv, MeghaOS, and Harvey OS, to name a few. There are
several COSs currently available that enable the data and
application to exist and run on the Internet, such as Amoeba,
Glide, Kohive, Cloudo, myGoya, Zimdesk, Ghost, Mirage,
XO0S, eyeOS and OpenStack Cloud [14, 17, 18]. While some
of these COSs are proprietary, others are either open source
or experimental prototypes. In both cases, some COSs are
easily discernible as operating systems; others are difficult
to separate from the service platform, i.e., the line between
the cloud as an operating system and a cloud as a service is
scrupulously unclear.

In addition to the traditional OS features and functions,
COS specific features and functions include managing of
the network, compute and storage, management of virtual
machine (VM) life-cycle, management of VM image, man-
agement of security, management of remote cloud capacity,
pure programming abstractions, robust isolation techniques
between users and applications, robust integration with net-
work resources, dynamic placement of multitier services on
distributed infrastructure, definition of security policy on
the users, dynamic creation of and movement of VM and
associated storage, management of workload placement, and
smooth execution of VM [14, 18, 19]. Figure 20.3 [19] shows
a logical model of COS.

COSs extend the function of security and protection of
traditional OS to provide a multi-level distributed security

Application A

Application B

] Application C | User
Iml Applications

t 4

Cloud

'] cloud Library API

User Space

Cloud Libraries
a standard set

of distributed

Network Interface-— . —I— s
k.

T—F
I

$ —— —I— — —I— = = |Cloud System Calls
y A 4

systems

Cloud

(Virtual Machine Management)(Process Management)

Kernel
Cloud Processes

Kernel Space

provide cloud-wide

(Measurement

) (Authentication) (

resource abstractions
) and management

interfaces

Fig. 20.3 A logical model of Cloud OS, featuring the division between Cloud kernel/Cloud user space and the system call and library API

interfaces (Source: IEEE/IFIP, p. 339)

20 Distributed Operating System Security and Protection: A Short Survey

and protection function. Although COSs have many func-
tions and offer several benefits, the security and protection
of COSs remain a significant concern. The distributed nature
and openness of cloud-based systems, virtualization, and ex-
isting vulnerabilities at the hardware, database, applications,
and operating system levels are invariably threats to cloud-
based systems, hence COSs security.

20.5 DiOS Security Issues
20.5.1 Traditional DiOS

Typically, a secure distributed operating system is one that
secures the distributed system information and resources
from accidental and malicious activities and protects them
against unauthorized access. Therefore, a secure operating
system must employ security and protection mechanisms
to defend from internal and external attacks, control access
to information and resources, and distinguish between au-
thorized and unauthorized use [3]. Distributed systems are
conceptually centralized but physically decentralized.

Decentralization raises serious security, privacy, and trust
issues. A secure operating system must preserve user privacy
and ensure user authenticity, provide robust authorization,
and secure communication between distributed services [13].
In addition to openness, the heterogeneity of nodes in a
distributed system is another concern. The desire to have a
set of heterogeneous nodes with various degree of assurances
of their security features can lead to some security problems
[20]. In particular, it constrains the DiOS security features at
the expense of the individual nodes’ security features.

Since a distributed system is built on top of a set of single
nodes connected by a network, it is essential to distinguish
between the network and distributed operating system
security. In general, a distributed operating system supports
distributed applications by identifying and implementing
functions that are common to most distributed applications
and providing these functions to applications during runtime
as services. These runtime services are available at the
higher layers of the OSI model, typically above the transport
layer.

A common practice among software developers is to
write a covert method (trapdoor) that allows them to by-
pass authentication mechanisms. A DiOS likely has several
trapdoors. Inevitably, covert methods induce vulnerabilities
in the operating system, hence, exposing it to intentional,
as well as unintentional exploitation. Vulnerabilities are not
necessarily exclusive to operating systems; they also exist
in hardware, network, database systems, and applications
[21]. While some vulnerabilities may cause a potential for an
attack, others cause no harm. In all cases, an adversary must
not know of vulnerabilities that are unknown to the user.

149
20.5.2 Contemporary DiOS

A COS is a web-based software stack that manages virtual
resources of a cloud-based system created over physical
nodes based on service-level agreements between the user
and service provider. In a multi-tenant model, a virtual server
generates virtual resources as isolated virtual nodes for users
to use, and virtual storage enables these virtual nodes to
store their data. While virtualization is one of the essential
characteristics of a cloud-based system, it poses serious
security challenges as it can be exploited by attackers whose
goal is to compromise the virtual node [22-26]. Therefore,
a secure COS must employ security mechanisms that ensure
strong resource isolation, mediated sharing, and secure com-
munication, and further, help protect administrator creden-
tials and the virtualization layer [15, 27]. Stealing identify
and administrator credentials, launching malicious software,
and compromising the virtualization layer are some of the
most common attack vectors. Potential attack vectors include
denial of service attacks, cloud malware injection attack,
side-channel attacks, authentication attacks, and man-in-the-
middle cryptographic attacks [22]. Other attacks include
a control-flow attack on tenant OS, a virtualization-based
attack on the hypervisor, kernel rootkits attack, and cross VM
attacks [23]. The attack surface of a COS is the sum of all
attack vectors and existing vulnerabilities.

In a typical cloud-based system, there are three different
classes of participants: service instance, cloud user, and cloud
provider and six different attack surfaces: service-to user,
user-to-service, cloud-to-service, service-to-cloud, cloud-to-
user, and user-to-cloud [22, 23, 28]. In general, virtualizing
physical nodes, pooling shared resources, allowing multi-
tenancy, and enabling access to the same physical resources
by multiple services increase the attack surface. A vulnerabil-
ity exploits in a cloud-based system can cause data-leakage,
denial of service (DoS), or violation of privacy [25, 29].
Some examples of vulnerability exploits reported by Com-
mon Vulnerabilities and Exposure system (CEV) include a
KVM (kernel-based virtual machine) hypervisor flaw on how
it handles the guest machine specific registers, a vulnerability
in the Oracle VM VirtualBox component of Oracle virtual-
ization, and a memory leak in Xen 4.2 hypervisor. The former
and latter exploits can cause a denial of service attack (DoS),
while the Oracle virtualization vulnerability exploit can allow
a low privileged attacker to compromise the VM [30]. The
CVE system contains a database of the most recent cloud
vulnerabilities.

20.5.3 DiOS Security and Protection

Whether it is for enterprises or end-users, a secure COS
is one that protects the virtualization layer or fabric of the

150

cloud-based system, isolates virtual nodes running on the
same physical node, control access to physical resources
by multiple services, and secure communication between
services and virtual nodes. Also, a secure COS has well-
defined security policies on users, as well as workload or
services isolation and service-level-agreements, to control
the use of the configurable pool of cloud resources [14, 15,
19]. To minimize the attack surface and prevent possible
exploits, the COS must patch zero-day vulnerabilities, as
well as other measures used by administrators to secure on-
premise OS. According to [31], the same practices used to
secure OSs running in customers’ data centers can be used
to secure the OS running in the cloud utilizing a securely
configured templates of OS known as gold images to simplify
the process. Such practices include hardening OS, applying
the latest patches, installing endpoint-based antivirus, and
deploying IDS/IPS and firewalls.

Depending on the cloud platform developer and the spe-
cific COS, several security and protection mechanisms exist.
To ensure the security of the virtualization layer and over-
come the vulnerabilities of a VM, [25] proposes an approach
that distinguishes malicious VMs from valid ones. The mech-
anism, called security supervisor, requires each virtual node
in the virtualization environment to send requests to receive
virtual resources. It then validates each node identity to en-
sure the node is non-malicious before it grants the requested
resource.

To minimize the OS attack surface, the Google Cloud
Platform uses a minimal operating system footprint approach
by trimming unnecessary packages [32]. The container-
optimized OS running on its cloud platform has a minimal
footprint, immutable root filesystem, verified boot, stateless
configuration, security-hardened kernel, security-centric
default, and automatic updates. To manage access to VM
images, the container-optimized OS provides a mechanism
called instance access that allows for fine-grained access
control instead of user accounts.

To eliminate the hypervisor attack surface, Szefer et al.
[26] propose the elimination of the hypervisor layer by allow-
ing VMs to run directly on the underlying hardware instead
of hardening or minimizing the virtualization software. In
their proposed NoHype architecture, the VMs are allowed
to run directly on the underlying hardware without a hy-
pervisor. The ITRI COS implementation in [15] has built-
in properties to provide security protection. These built-in
properties provide multi-tenant isolation, role-based access
control, distributed protection, and DDoS mitigation, among
others. Microsoft Azure delivers integrated security policies
to control access and a Just-In-Time (JIT) VM to lockdown
in-bound traffic and to reduce the VM exposure to attacks
[33]. Additionally, It uses a machine-learning adaptive appli-
cation control mechanism to control which application can
run on the VM. Further, it provides a file integrity monitoring

G. Abdelmoumin and N. Hazzazi

(FIM) mechanism to track and identify any changes to the
virtualization environment that might indicate an attack.

The Center for Internet Security developed CIS hardened
images on shielded virtual machines; a preconfigured virtual
machine images based on the CIS benchmark security rec-
ommendations [34]. CIS images protect the VMs against ad-
vanced threats. Ensuring workloads are trusted and verifiable,
protecting secrets against exfiltration and reply, and offering
live migration and patching.

TrustZone [35], is a hardware-based solution that provides
hardware isolated execution domain. It allows the isolation
of system resources such that they are only accessible via
the trusted environment without the need to include the
hypervisor in a trusted computing base. TrustZone enables
the operation of two entirely separate threads: a secure thread
and a general thread. The secure thread has full privileges to
access all the system resources. However, the general thread
cannot access the resources accessed by the secure thread. In
addition to those mentioned above, there are other strategies
and techniques used to address security and protection at the
various levels (application, kernel, hypervisor, virtualization
layers) of a cloud-based system that we are planning to
consider in the future.

While it is intuitive to implement a secure and reliable
COS, highly secure COSs by themselves are insufficient for
securing and protecting the cloud-based system. Marinescu
[16] argues that a highly secure COS and application-specific
security are both necessary, and a better approach to security
is to implement security above the operating system.

20.6 Conclusion and Future Work

COS, a class of distributed operating systems, provides a
computing environment for dynamically creating, provision-
ing, and managing virtual resources and workload over the
web. It aggregates and pools configurable virtual resources
and presents them to multiple virtual nodes using a unified
view while maintaining transparency and efficient resource
utilization. Many nodes can run on one physical machine,
and multiple services can access a single shared resource.
Virtualization, transparency, openness, and heterogeneity are
the main characteristics of COSs.

Virtualization abstracts and controls access to the physical
resources to allow the same services to run in parallel on
multiple heterogeneous and connected but yet isolated nodes
irrespective of their affinity. Nonetheless, it introduces many
vulnerabilities and gives rise to several security threats at
the level of application, kernel, virtualization, and hypervisor
layers. Consequently, a COS must extend traditional security
and protection functions to offer a global, multi-level security
and protection strategies and mechanisms.

20 Distributed Operating System Security and Protection: A Short Survey

In this paper, we discussed distributed operating systems
and their aspects, as well as issues related to their overall
security and protection. We focused on a class of modern
distributed systems known as cloud operating systems or
COSs. Subsequently, we identified various COS implemen-
tations, discussed their functions and features, defined their
attack surfaces, and highlighted several security and pro-
tection issues. Further, we discussed several strategies and
mechanisms used by various COSs to secure and protect
cloud-based systems from unauthorized access, as well as
internal and external threats. This survey is not exhaustive
and remains a work in progress. In the future, we are planning
to expand our current review and use the framework in the
article [23] to classify, define, and evaluate current security
and protection mechanisms for COSs.

References

1. Kshemkalyani, A., Singhal, M.: Distributed Systems Principles,
Algorithms, and Systems. Cambridge University Press, New York
(2008)

2. Steen, M.V., Tanenbaum, A.S.: A brief introduction to distributed
system. Computing. 98, 967-1009 (2016)

3. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Con-
cepts, 8th edn. Wiley, Hoboken (2009)

4. The Univerity of Edinburgh: https://www.inf.ed.ac.uk/teaching/
courses/ds/slides1516/0S.pdf

5. Healy, P, Lynn, T., Barrett, E., Morrison, J.P.: Single System Image.
J. Parallel Distrib. Comput. 90-91, 35-51 (2016)

6. Puder, A., Romer, K., Pilhofer, F.: Distributed Systems Archi-
tecture: A Middleware Approach. Morgan Kaufmann, Burlington
(2006)

7. Khapre, S., Jean, J., Amudhavel, J., Chandramohan, D., Sujatha,
P., Narasimhulu, V.: Survey on distributed operating systems: a real
time approach. Int. J. Comput. Sci. Emerg. Technol. 1(2), 109-123
(2010)

8. Steen, M.V., Tanenbaum, A.S.: Distributed Systems, 3rd ed.
Maarten van Steen. Distibuted-systems.net (2017)

9. DISTRIBUTED-SYTEMS.NETS: Maarten Van Steen. https:/
www.distributed-systems.net/

10. Coulouris, G.F., Dollimore, J., Kindberg, T., Blair, G.: Distributed
Systems: Concepts and Design. Addison-Wesley, New York (2012)

11. Wichita State University: http://www.cs.wichita.edu/chang/lecture/
cs843/homework/dist-0s.html

12. IBM: https://www.ibm.com/cloud/blog/cloud-computing-history

13. Pathan, A.S.K., Pathan, M., Lee, H.Y.: Advancements in Dis-
tributed Computing and Internet Technologies. Trends and Issues.
IGI Global, Hershey (2012)

14. Kumar, O., Goel, V., Rai, D.: Cloud as an evolutionary operating
system. IJCA J. ICNICT. 6, 11-14 (2012)

15. Chiueh, T., Chang, E.J., Huang, R., Lee, H., Sung, V., Chiang,
M.H.: Security considerations in ITRI cloud OS. In: International
Carnahan Conference on Security Technology (ICCST), pp. 107—
112. IEEE, New York (2015)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

151

Marinescu, D.: Cloud Computing Theory and Practice. Morgan
Kaufmann, Waltham (2013)

Bardhan, N., Singh, P.: Operating system used in cloud computing.
Int. J. Comput. Sci. Inform. Technol. 6(1), 542-544 (2015)
Chandra, D.G., Malaya, D.B.: A study on cloud OS. In: Inter-
national Conference on Communication Systems and Network
Technologies (CSNT), pp. 692—-697. IEEE, New York (2012)
Pianese, F., Bosch, P., Duminuco, A., Janssens, N., Stathopoulos,
T., Steiner, M.: Toward a cloud operating system. In: [EEE/IFIP-
Network Operations and Management Symposium Workshops, pp.
335-342. IEEE, New York (2010)

Casey, T.A., Vinter, S.T., Weber, D.G., Varadarajan, R., Rosenthal,
D.: A secure distributed operating system. In: IEEE Symposium on
Security and Privacy, pp. 27-38. IEEE, New York (1988)
Bhargava, B., Lilien, L.: Vulnerabilities and threats in distributed
systems. In: 1st International Conference on Distributed Comput-
ing and Internet Technology, ser. ICDCIT, pp. 146—-157. Springer-
Verlag, New York (2004)

Singh, A., Shrivastava, D.M.: Overview of attacks on cloud com-
puting. Int. J. Eng. Innov. Technol. 1(4), 321-323 (2012)
Sgandurra, D., Lupu, E.: Evolution of attacks, threat models, and
solutions for virtualized systems. J. CSUR. 48(3), 1-38 (2016)
Pék, G., Buttyan, L., Bencsath, B.: A survey of security issues in
hardware virtualization. J. CSUR. 45(3), 1-34 (2013)

Uday Kumar, N.L., Siddappa, M.: Ensuring security for vir-
tualization in cloud services. In: International Conference on
Electrical, Electronics, Communication, Computer and Optimiza-
tion Techniques (ICEECCOT), pp. 248-251. IEEE, New York
(2016)

Szefer, J., Keller, E., Lee, R.B., Rexford, J.: Eliminating the hy-
pervisor attack surface for a more secure cloud. In: 18th ACM
Conference on Computer and Communications Security (CCS), pp.
401-412, New York. ACM (2011)

Microsoft: https://download.microsoft.com/download/6/7/3/
673E651E-C5B3-4C93-A69A-94042EB6DE22/Windows_
Server_2016_Security_Better_protection_begins_at_the_OS_
Whitepaper_EN_US.pdf

Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks
on cloud services. In: 3rd International Conference on Cloud Com-
puting, pp. 276-279. IEEE, New York (2010)

Gkortzis, A., Rizou, S., Spinellis, D.: An empirical analysis of
vulnerabilities in virtualization technologies. In: IEEE Interna-
tional Conference on Cloud Computing Technology and Science
(CloudCom), pp. 533-538. IEEE, New York (2016)

Common vulnerabilities and exposure. https://cve.mitre.org/
VMware and SAVVIS: https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/whitepaper/cloud/vmware-
savvis-cloud-white-paper-en.pdf

Goole Cloud: https://cloud.google.com/container-optimized-os/
docs/concepts/security

Microsoft Azure: https://docs.microsoft.com/en-us/azure/security-
center/tutorial-protect-resources

Center for Internet Security: https://www.cisecurity.org/cis-
hardened-image-list/

Pettersen, R., Johansen, H.D., Johansen, D.: Secure edge com-
puting with ARM TrustZone. In: 2nd International Confer-
ence on Internet of Things, Big Data and Security, pp. 102-
109. SCITEPRESS-Science and Technology Publications, Settbal
(2017)

https://www.inf.ed.ac.uk/teaching/courses/ds/slides1516/OS.pdf
http://distibuted-systems.net
https://www.distributed-systems.net/
http://www.cs.wichita.edu/~chang/lecture/cs843/homework/dist-os.html
https://www.ibm.com/cloud/blog/cloud-computing-history
https://download.microsoft.com/download/6/7/3/673E651E-C5B3-4C93-A69A-94042EB6DE22/Windows_Server_2016_Security_Better_protection_begins_at_the_OS_Whitepaper_EN_US.pdf
https://cve.mitre.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/cloud/vmware-savvis-cloud-white-paper-en.pdf
https://cloud.google.com/container-optimized-os/docs/concepts/security
https://docs.microsoft.com/en-us/azure/security-center/tutorial-protect-resources
https://www.cisecurity.org/cis-hardened-image-list/

	20 Distributed Operating System Security and Protection: A Short Survey
	20.1 Introduction
	20.2 Distributed Systems
	20.2.1 Definition and Characteristics
	20.2.2 Distributed Operating Systems (DiOSs)

	20.3 DiOSs Implementations
	20.4 Cloud-Based Systems
	20.4.1 Cloud Operating System (COS)

	20.5 DiOS Security Issues
	20.5.1 Traditional DiOS
	20.5.2 Contemporary DiOS
	20.5.3 DiOS Security and Protection

	20.6 Conclusion and Future Work
	References

