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Abstract. Anonymous password-authenticated key exchange (APAKE)
protocols allow for authenticating legitimate users via low-entropy pass-
words while keeping their actual identities private. They are important
cryptographic primitives for privacy protection, which have attracted
much attention recently and have been standardized in the interna-
tional standard ISO/IEC 20009-4. However, most of the existing APAKE
schemes (especially including all the APAKE schemes in the storage-
extra setting) are developed in the random oracle model. In this paper,
we present the first storage-extra APAKE protocol in the standard model
by combing the technique of algebraic MAC with oblivious designated-
verifier non-interactive zero-knowledge (DVNIZK) proof. Toward our
aim, we first give out a new construction of the oblivious DVNIZK proof
system, which is compatible with a new class of algebraic MAC schemes.
As a consequence, our APAKE protocol needs only 2 flows of messages
in the authentication phase, which is very efficient in terms of rounds.
Moreover, we show that this protocol enjoys stronger security guarantees
while achieves considerably computational performance.

1 Introduction

Among numerous mechanisms for user authentication, passwords are definitely
the most commonly used method of accessing modern computer networks and
information systems [1]. Password authentication, usually integrated with key
exchange simultaneously, has been proven to enjoy many advantages. For exam-
ple, it can be easily operated and deployed as it only requires users to remember
low-entropy passwords [2]; it is naturally compatible with various authentica-
tion means such as smart cards and biometric templates because passwords are
convenient to obtain [3]. As a consequence, much attention has been paid on
the fundamental security of passwords [4], the theoretical analyses and design-
ing techniques of password authenticated key exchange (PAKE) protocols [5], as
well as the standardization of password authentication schemes [6].
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Anonymous Password Authenticated Key Exchange. Along with the increased
awareness of security and privacy, there is an urgent need for strengthening the
widely deployed PAKE protocols with additional anonymity property [7]. To be
specific, it is desirable to authenticate legitimate users via low-entropy passwords
while keeping their actual identities private to outside adversaries and even to
the server.

To address this need, Viet et al. [8] proposed the first anonymous pass-
word authenticated key exchange (APAKE) protocol, through neatly blending
an oblivious transfer (OT) protocol into a traditional two-party PAKE scheme.
Since then, many research results have been put forward on the construction of
more secure and more efficient APAKE protocols, either in password-only set-
ting [9–12] or in the storage-extra setting [13–16]. Furthermore, the international
organization for standardization (ISO) has developed and published the interna-
tional standard ISO/IEC 20009-4 [17], which standardizes both the above two
types of APAKE protocols.

For password-only APAKE protocols [8,11,12], a password is the only long-
term secret that a user needs. They are very convenient from a user’s point of
view, but enjoy poor scalability since the computational complexity is in linear
proportion to the number N of possible users [13]. As an innovative solution,
APAKE protocols in the storage-extra setting were proposed by Yang et al.
[13,14], and further improved by Zhang et al. [15] and Shin et al. [16], in which
each user obtains a credential from the server, protects it by her password and
stores the password-wrapped credential on some public storage (e.g., a public
directory or an ipad). Then, in the authentication phase, the user recovers the
credential via using her password and shows the possession of a valid credential
to the server in an anonymous way, usually relying on some appropriate zero-
knowledge proof systems. Notably, the computational cost needed by the server
in the storage-extra setting is independent of the number of registered users,
thus breaking the lower bound O(N) in the password-only setting.

However, we note that most of the existing APAKE protocols are developed
in the random oracle model. Specifically, only few of APAKE protocols in the
password-only setting [12,18] and, to the best of our knowledge, no APAKE
protocols in the storage-extra setting have been proven secure in the standard
model. Note that the random oracle model is only an ideal abstraction for the
cryptographic hash functions, and there exists no random oracle definition that
a public PPT algorithm can hope to satisfy [19]. Therefore, it is urgent to design
storage-extra APAKE protocols in the standard model.

Storage-Extra APAKE in the Standard Model. Although we might be able to
adapt classic storage-extra APAKE protocols to provide security in the standard
model by adopting zero-knowledge proof schemes in the standard model (and
without pairing-based assumptions). This approach will inherently increase the
round number of the resulting APAKE protocols, since it is well known that one
zero-knowledge proof typically requires at least three moves in this scenario.

The situation seems to be changed with the introduction of designated-
verifier non-interactive zero-knowledge (DVNIZK) proof systems by Chaidos
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et al. [20], which could provide proof of knowledge for a wide variety of algebraic
statements related with some public words. One may wish to construct storage-
extra APAKE protocols in standard model by starting from the efficient APAKE
protocol [15] in the random oracle model based on algebraic message authenti-
cation codes (MACs) [21], and simply replacing the underlying zero-knowledge
proof systems by some kind of DVNIZK proof schemes. Nevertheless, it is shown
by Couteau et al.’s work [22] that constructing DVNIZK proof schemes compat-
ible with algebraic MACs is not as simple as we first thought, because that the
secret MAC keys have been re-used in the verification of the DVNIZK proofs. The
solution developed by Couteau et al. consists of not only introducing additional
random masks (i.e., ti · G in Sect. 5.2 of [22]), but also requiring the underly-
ing algebraic MAC scheme to satisfy a stronger (and cumbersome) notion of
unforgeability called extended unforgeability.

Our Contributions. In this paper, we present a new storage-extra APAKE pro-
tocol in the standard model by further exploiting the construction of DVNIZK
proof system compatible with algebraic MACs. Our main contributions can be
summarized as follows:

– We give out a new construction of the oblivious DVNIZK proof scheme
compatible with a new class of algebraic MAC schemes. Recall that Couteau
et al. constructed oblivious DVNIZK proofs only for the algebraic MAC
scheme abstracted from MACGGM, which is one of the two MAC schemes
presented in [23]. We present an oblivious DVNIZK proof system for a class
of algebraic MAC schemes generalized from MACwBB, which is based on the
weak Boneh-Boyen signature [24].

– We avoid the requirement of the cumbersome security notion of extended
unforgeability for the algebraic MAC scheme, which is quite hard to be
verified and brings additional difficulties to the security proof. Note that the
main reason for such a complicated definition is that the secret MAC key has
been reused in the verification process of the DVNIZK proof. We overcome
this obstacle by simulating verification oracles of the DVNIZK proof through
the outputs of the MAC scheme instead of the MAC key.

– We present the first storage-extra APAKE protocol in the standard model
without pairing-based assumptions, based on algebraic MACs and oblivi-
ous DVNIZK proofs. Beyond proving possession of a credential on a single
value of identity, our construction can support credentials certifying many
attributes at once and thus could handle more complex access policies such
as expiration dates and access rights. Our APAKE protocol needs only 2
flows of messages during the authentication phase, which is very efficient in
terms of round efficiency.

Organization. In Sect. 2, we briefly recall the necessary preliminaries. In Sect. 3,
our construction of an oblivious DVNIZK proof system for a new class of alge-
braic MAC scheme is presented. Then, a new storage-extra APAKE protocol in
the standard model is proposed in Sect. 4.
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2 Preliminaries

In this section, we review the main cryptographic primitives needed in our con-
struction. Throughout this paper, λ denotes the security parameter.

2.1 Algebraic Message Authentication Codes

A message authentication code (MAC) is defined by the following four PPT
algorithms M = (M.Setup, M.KeyGen,M.Mac,M.V erify) with an associated
tag space T , such that

– M.Setup(1λ) sets up the public parameters pp of the MAC, which will be
implicitly (or explicitly) passed as an argument to the algorithms below.

– M.KeyGen(pp) is a key generation algorithm which takes as input the public
parameters pp, outputs a secret key sk and public issuer parameters ipp;

– M.Mac(sk,m) is a MAC algorithm which takes as input the key sk and a
message m, generates an authentication tag σ on the message;

– M.V erify(sk,m, σ) is the verification algorithm which takes as input the
key sk, a message m and a tag σ, outputs b = 1 when σ is a valid tag with
respect to sk and m and outputs b = 0 otherwise.

We will need MAC schemes that are existentially unforgeable under chosen
message and verification attacks (UF-CMVA).

Definition 1 (UF-CMVA Security). A MAC scheme M is UF-CMVA secure if for
any PPT adversary A which has access to the public issuer parameters ipp as
well as the MAC and verification oracles, it holds that

Pr

⎡
⎢⎣

Q ← ∅, pp ← M.Setup(1λ),
(sk, ipp) ← M.KeyGen(pp),

(m,σ) ← AOsk(·)(pp, ipp)

:
M.V erify(sk,m, σ) = 1,
∧ m /∈ Q

⎤
⎥⎦ ≤ negl(λ),

where the oracle Osk(·) treats the MAC and verification queries as follows:
O.Mac(m) outputs M.Mac(sk,m) and sets Q ← Q ∪ {m}; O.V erify(m,σ)
outputs M.V erify(sk,m, σ).

For our purpose, we additionally require the MAC scheme to satisfy pseudo-
randomness property, which means that, as long as the MAC key is kept secret,
no PPT adversary could distinguish a valid MAC tag from a random one. Based
on the definitions of pseudorandom functions (PRFs) and weak pseudorandom-
ness [15], we define the pseudorandomness property as follows.

Definition 2 (Pseudorandomness). A MAC scheme M is said to satisfy
pseudorandomness property, if for any PPT adversary A, it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

pp ← M.Setup(1λ),
(sk, ipp) ← M.KeyGen(pp),

(m∗, st) ← AO.Mac(·)(ipp),
σ0 = M.Mac(sk,m∗), σ1 ← T ,

b ← {0, 1}, b′ = AO.Mac(·)(yb, st)

: b′ = b

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).
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Algebraic MACs are a special kind of MACs that consist of only group oper-
ations instead of block ciphers or hash functions, thus easily suitable for efficient
zero-knowledge proof of statements related to these MAC tags. In [23], Chase
et al. proposed the first two algebraic MACs with efficient protocols for proof of
knowledge, which are based on generic group model (GGM) and decisional Diffie-
Hellman (DDH) assumption respectively. Since then, several improved algebraic
MAC schemes have been put forward [15,25,26].

In this paper, we will use the algebraic MAC scheme MACwBB proposed in
[26], which is based on the weak Boneh-Boyen signature [24]. Denote by β a
positive integer and m = (m1,m2, · · · ,mβ) a vector of message. Let GGen(1λ)
be an efficient algorithm which generates a multiplicative group G of order p and
a generator g of this group. The scheme consists of the following algorithms.

– M.Setup(1λ) outputs pp = (G, g, p) ← GGen(1λ);
– M.KeyGen(pp) chooses randomly β + 1 elements xi ← Z

∗
p, computes Xi =

gxi for every i ∈ {0, 1, · · · , β}. Then, the secret key is sk = (x0, x1, · · · , xβ)
and the public issuer parameter is ipp = (X0,X1, · · · ,Xβ);

– M.Mac(sk,m) takes as input the key sk = (x0, x1, · · · , xβ) and a vector
of messages m = (m1,m2, · · · ,mβ), computes σ = g1/(x0+

∑β
j=1 xj ·mj) and

σj = σxj for j = 1, 2, · · · , β1, and sets the MAC tag as Σ = (σ, σ1, · · · , σβ);
– M.V erify(sk,m, (σ, σ1, · · · , σβ)) is the verification algorithm, which out-

puts b = 1 iff σ = g1/(x0+
∑β

j=1 xj ·mj) and σj = σxj for j = 1, 2, · · · , β.

With respect to the security, it has been proven by Camenisch et al. [26] that
this algebraic MAC scheme is UF-CMVA under the SCDHI assumption, which is a
computational variation of the SDDHI assumption [27]. Moreover, we can easily
prove that under the SDDHI assumption this algebraic MAC scheme satisfies
the pseudorandomness property.

Theorem 1. If the SDDHI and SCDHI assumptions hold in group G, then the
algebraic MAC scheme MACwBB satisfies the pseudorandomness property.

2.2 Additively Homomorphic Encryption Schemes

A public key encryption scheme is defined as a triple of PPT algorithms E =
(E .KeyGen, E .Enc, E .Dec) with an associated message space ZN and a random
space ZR, such that

– E .KeyGen(1λ) takes as input the security parameter 1λ and outputs a pair
of encryption and decryption keys (ek, dk);

– E .Enc(ek,m; r) takes as input a public encryption key ek, a message m ∈ ZN

and a random value r ∈ ZR, and outputs a ciphertext c;
– E .Dec(dk, c) takes as input a decryption key dk and a ciphertext c, and

outputs a message m or ⊥.
1 As pointed out by Camenisch et al. [26], the auxiliary information σj are not required

for the MAC verification, but they are useful to improve the efficiency of credential
presentation, and additionally remove the requirement of extended unforgeability.
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The IND-CPA security for a public key encryption scheme is defined as follows.

Definition 3 (IND-CPA Security). A public key encryption scheme E is IND-
CPA secure, if for any PPT adversary A, it holds that

Pr

⎡
⎢⎣

(ek, dk) ← E .KeyGen(1λ),
(m0,m1, st) ← A(ek), b ← {0, 1},

r ← ZR, c ← E .Enc(ek,mb; r), b′ = A(st, c)
: b′ = b

⎤
⎥⎦ ≤ 1

2
+ negl(λ).

In this paper, we focus on public key encryption schemes that are addi-
tively homomorphic for both the message and the random value. We say that
an encryption scheme is strongly additive, if there exists an efficient operation
⊕ such that for any key pair (ek, dk) ← E .KeyGen(1λ), any two ciphertexts
ci = E .Enc(ek,mi; ri) of messages mi ∈ ZN under the randomness ri ∈ ZR

for i ∈ {1, 2}, it holds that c1 ⊕ c2 = E .Enc(ek,m1 + m2 mod N ; r1 + r2
mod R). For an integer ρ ∈ Z, we denote by ρ 
 c the ciphetext E .Enc(ek, ρm
mod N ; ρr mod R), which can be efficiently computed using the formula of the
form E .Enc(ek,m; r) ⊕ · · · ⊕ E .Enc(ek,m; r). Moreover, given two ciphertexts
c, c′, we denote by c � c′ the operation c ⊕ ((−1) 
 c′).

A strongly additive encryption scheme E is further said to be DVNIZK-
friendly, if gcd(N,R) = 1 and for any (ek, dk) ← E .KeyGen(1λ), the value
E .Enc(ek,m; 0) is efficiently decodable to get the plaintext m mod N . For
DVNIZK-friendly encryption scheme over groups ZN of composite order of the
form N = pq, we can resort to a slight variation [20,28] of the well-known Pail-
lier encryption scheme [29]; For groups ZN of prime order N = p, we could
instantiate it with the Castagnos-Laguillaumie encryption scheme [30].

Note that the above encryption/decryption algorithms and scalar product
could be extended to vectors in a natural way. For example, given vectors m =
(m1,m2, · · · ,mβ) and r = (r1, r2, · · · , rβ) of the length β ≥ 1, we could view
E .Enc(ek,m; r) as the vector (E .Enc(ek,mi; ri))

β
i=1. Given ρ = (ρ1, ρ2, · · · , ρβ)

and c = E .Enc(ek,m; r), we let ρ
c denote the vector (E .Enc(ek, ρim; ρir))
β
i=1.

2.3 Designated-Verifier Non-interactive Zero-Knowledge Proof

A designated-verifier non-interactive zero-knowledge (DVNIZK) proof system
[20] for a family of languages {Lcrs} consists of four algorithms Π = (Π.Setup,
Π.KeyGen,Π.Prove,Π.V erify). The setup algorithm Π.Setup(1λ) outputs a
common reference string crs; The algorithm Π.KeyGen(crs) outputs a pub-
lic proving key pk and a secret verification key vk; The proving algorithm
Π.Prove(pk, x, w) takes as input the proving key pk, a word x and a witness
w for the statement x ∈ Lcrs, generates a proof π; The verification algorithm
Π.V erify(pk, vk, x, π) outputs b ∈ {0, 1} indicating either accept or reject.

However, when taking an algebraic MAC tag with respect to a user’s identity
as her credential, the original definition of DVNIZK proof system cannot be
directly used to prove knowledge of the identity. The main difficulty is that the
MAC verification cannot be carried out by the user while she does not know the
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secret MAC key. To tackle this problem, Couteau et al. [22] introduced a new
primitive called oblivious DVNIZK proof system, which can be used to prove
knowledge of a witness w corresponding to a secret relation R(sk, w, x) = 1 with
sk unknown to the prover.

In this paper, we will focus on secret relations {Rcrs(sk, ·, ·)} and languages
{Lcrs} that are defined by algebraic MAC schemes. Given a MAC scheme M
with secret MAC key sk, we will simply set sk as the secret relation key, and
take a MAC message and tag pair as a witness and word pair, in the sense that
Rcrs(sk, w, x) = 1 and x ∈ Lcrs if and only if M.V erify(sk, w, x) = 1.

Definition 4 (Oblivious DVNIZK Proof [22]). An oblivious DVNIZK proof
system for a family of languages related with secret relations {Rcrs} is defined
by the following algorithms Π = (Π.Setup,Π.RelSetup, Π.KeyGen, Π.Prove,
Π.V erify), such that

– Π.Setup(1λ) takes as input the security parameter 1λ, outputs a common
reference string crs and a trapdoor td;

– Π.RelSetup(crs) generates a secret key sk for the secret relation, together
with some public issuer parameters ipp;

– Π.KeyGen(crs) outputs a key pair (pk, vk), consisting of a public proving
key pk and a secret verification key vk;

– Π.Prove(crs, ipp, pk, (xp, xs), w) takes as input the parameters crs, ipp,
the proving key pk, a word x = (xp, xs) ∈ Lcrs consisting of a public subword
xp and a secret subword xs, and a witness for the relation Rcrs(sk, w, x) = 1,
then outputs a proof π;

– Π.V erify(crs, ipp, pk, vk, sk, xp, π) is the verification algorithm which veri-
fies whether a proof π is valid with respect to the relation Rcrs(sk, w, x) = 1.
It outputs b = 1 if the proof is valid and b = 0 otherwise.

We say that an oblivious DVNIZK proof system is secure, if it satisfies com-
pleteness, knowledge extractability (which is a strengthening of soundness) and
oblivious zero-knowledge properties defined as follows.

Definition 5 (Completeness). An oblivious DVNIZK proof system Π sat-
isfies completeness property, if for all parameters (crs, td) ← Π.Setup(1λ),
(sk, ipp) ← Π.RelSetup(crs), (pk, vk) ← Π.KeyGen(crs), and every proof
π ← Π.Prove(crs, ipp, pk, (xp, xs), w), it holds that Π.V erify(crs, ipp, pk, vk,
sk, xp, π) = 1.

Definition 6 (Knowledge Extractability). An oblivious DVNIZK proof sys-
tem Π for secret relations {Rcrs} defined by an algebraic MAC M is said to
satisfy knowledge extractability property, if for every PPT adversary A, there
exists an efficient extracting algorithm Ext such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),

(sk, ipp) ← Π.RelSetup(crs),

(pk, vk) ← Π.KeyGen(crs),

(π, xp) ← AOM.Mac,OΠ.V er (crs, ipp, pk)

(xs, w) ← Ext(crs, ipp, pk, xp, π, td)

:

Rcrs(sk, w, (xp, xs)) = 0,

Π.V erify(crs, ipp, pk,

vk, sk, xp, π) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ),
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where the oracle OM.Mac(·) denotes M.Mac(sk, ·), and the oracle OΠ.V er(·, ·)
denotes Π.V erify(crs, ipp, pk, vk, sk, ·, ·). In addition, it is required that the
oracle OΠ.V er(·, ·) should be efficiently simulated, when the secret key sk is
replaced by oracle access to M.V erify(sk, ·, ·).

Definition 7 (Oblivious Zero Knowledge). An oblivious DVNIZK proof
system Π for secret relations {Rcrs} defined by an algebraic MAC M is said
to satisfy oblivious zero knowledge property, if for every PPT adversary A, there
exists an efficient algorithm Sim such that

∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),
(pk, vk) ← Π.KeyGen(crs),
(x,w, sk, ipp, st) ← A(crs, pk, vk)
π ← Π.Prove(crs, ipp, pk, x, w)

:
Rcrs(sk, w, x) = 1,
∧ A(st, π) = 1

⎤
⎥⎥⎥⎦ −

Pr

⎡
⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),
(pk, vk) ← Π.KeyGen(crs),
(x,w, sk, ipp, st) ← A(crs, pk, vk)
π ← Sim(crs, ipp, pk, xp, vk, sk)

:
Rcrs(sk, w, x) = 1,
∧ A(st, π) = 1

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where x = (xp, xs) consists of a public subword xp and a secret subword xs.

3 A New Construction of Oblivious DVNIZK Proof

In this section, we introduce a new construction of oblivious DVNIZK proof
system for languages related to the algebraic MAC scheme MACwBB presented
in Sect. 2.1, and prove the security properties of our construction.

3.1 The Construction of Oblivious DVNIZK Proof

We will take an algebraic MAC tag on a user’s attributes as a credential for
this user, which is treated in a similar way as in [22,23]. Nevertheless, the spe-
cific property of the algebraic MAC scheme MACwBB based on weak Bonel-
Boyen signature (see definition in Sect. 2.1) will allow us to build a more effi-
cient oblivious DVNIZK proof system than before. Recall that, when the alge-
braic MAC scheme MACwBB is considered, a MAC tag on a vector of attributes
m = (m1,m2, · · · ,mβ) under the secret key sk = (x0, x1, · · · , xβ) is of the
form Σ = (σ, σ1, · · · , σβ), where σ = g1/(x0+

∑β
j=1 xj ·mj). It can be rewritten as

σ−
∑β

j=1 xj ·mj ·g = σx0 , where the first part σ−
∑β

j=1 xj ·mj ·g has exponents linear
in both attributes m = (m1,m2, · · · ,mβ) and secret keys (x1, x2, · · · , xβ). This
property would be preserved even after some re-randomize technique has been
applied on the credential σ. For example, when it is re-randomized as T = σa

for a random a, it still holds that T−
∑β

j=1 xj ·mj · ga = T x0 .
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Based on the above observation, we are now ready to present our construction
of oblivious DVNIZK proof system for secret relations defined by the algebraic
MAC scheme MACwBB. Given the algebraic MAC scheme MACwBB denoted by
MACwBB = (M.Setup, M.KeyGen,M.Mac,M.V erify) and a DVNIZK-friendly
encryption scheme E = (E .KeyGen, E .Enc, E .Dec) with message space ZN of
prime order N = p, the concrete steps of the oblivious DVNIZK proof system
Π are as follows.

– Π.Setup(1λ) takes as input the security parameter 1λ, computes (ek, dk) ←
E .KeyGen(1λ) and pp = (G, g, p) ← M.Setup(1λ), sets the common refer-
ence string as crs = (ek, pp) and the trapdoor as td = dk. Without loss of
generality, we assume that the public key ek also determines the message
space ZN , the random source ZR and a public bound B on R;

– Π.RelSetup(crs) is essentially the key generation algorithm of the underly-
ing MAC scheme MACwBB. It chooses randomly β +1 elements xi ← Z

∗
p and

computes Xi = gxi for every i ∈ {0, 1, · · · , β}. Then, the secret key is sk =
(x0, x1, · · · , xβ) and the public issuer parameter is ipp = (X0,X1, · · · ,Xβ);

– Π.KeyGen(crs) chooses at random a value e ← Zl where l = 2λ · N · B,
then sets the secret verification key as vk = e and the public proving key as
pk = E .Enc(ek, 0; e);

– Π.Prove(crs, ipp, pk, (xp, xs), w) takes as input the parameters crs, ipp,
the proving key pk, a credential x = (xp =⊥, xs = σ) and a vector of
attributes w = (m1,m2, · · · ,mβ), selects a random value a ← ZN and
computes T = σa. It then chooses at random a′ ← ZN , m′

j ← ZN for
j = 1, 2, · · · , β, and computes T ′ = Πβ

j=1σj
−a·m′

j · ga′
. Next, it chooses a

random vector r = (r0, r1, · · · , rβ) ← Z
β+1
R , sets m = (a,m1,m2, · · · ,mβ)

and m′ = (a′,m′
1,m

′
2, · · · ,m′

β), and computes X = E .Enc(ek,m; r) and
X′ = E .Enc(ek,m′;0) � (r 
 pk). At last, the proving algorithm outputs a
proof π = (T, T ′,X,X′).

– Π.V erify(crs, ipp, pk, vk, sk, xp =⊥, π) verifies the proof π as follows. It
first parses π as π = (T, T ′,X,X′), computes X′ ⊕ (e 
 X) and checks
that the values in this vector are decodable, then decodes them to a vector
d = (d0, d1, · · · , dβ). Next, it checks that T 
= 1 and

(T x0)e · T ′ = T−
∑β

j=1 xj ·dj · gd0 . (1)

Finally, it outputs b = 1 if π can be parsed correctly, X′⊕(e
X) is decodable
and the above equation holds; otherwise, it outputs b = 0.

3.2 Security Analysis

In this section, we show that our oblivious DVNIZK proof system satisfies com-
pleteness, knowledge extractability and oblivious zero-knowledge properties.

Theorem 2. If the underlying encryption scheme E is DVNIZK-friendly, then
the oblivious DVNIZK proof system Π satisfies the completeness property.
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Proof. Firstly, if a proof π = (T, T ′,X,X′) is generated honestly, one can easily
deduce that

X′ ⊕ (e 
 X) = (E .Enc(ek,m′;0) � (r 
 pk)) ⊕ (e 
 E .Enc(ek,m; r))
= E .Enc(ek,m′;−e · r) ⊕ E .Enc(ek, e · m; e · r)
= E .Enc(ek,m′ + e · m;0),

which is decodable according to the definition of DVNIZK-friendly encryption
schemes. Moreover, we can obtain that d = m′ + e · m mod N , yielding that
d0 = a′ + e · a mod N and dj = m′

j + e · mj mod N for all j = 1, 2, · · · , β.

Therefore, by combining with the equation T−
∑β

j=1 mj ·xj · ga = T x0 , we have

(T x0)e · T ′ =
(
T−

∑β
j=1 xj ·mj · ga

)e

·
(
Πβ

j=1σj
−a·m′

j · ga′)

=
(
T−

∑β
j=1 xj ·mj · ga

)e

·
(
T−

∑β
j=1 xj ·m′

j · ga′)

= T−
∑β

j=1 xj ·(m′
j+e·mj) · ga′+e·a

= T−
∑β

j=1 xj ·dj · gd0 .

Theorem 3. If the underlying encryption scheme E is DVNIZK-friendly, and
the algebraic MAC scheme MACwBB is UF-CMVA secure, then the oblivious
DVNIZK proof system Π satisfies the knowledge extractability property.

Proof. Our proof starts with the construction of an extracting algorithm Ext.
Given a proof π = (T, T ′, {T ′

j}
β
j=1,X,X′) and the trapdoor td = dk, the algo-

rithm Ext computes m = (a,m1,m2, · · · ,mβ) = E .Dec(dk,X), sets σ = T 1/a

and then outputs (xs = σ,w = (m1,m2, · · · ,mβ)).
We next turn to estimate the probability of the event Rcrs(sk, w, (xp, xs)) =

0 ∧ Π.V erify(crs, ipp, pk, vk, sk, xp, π) = 1. Recall that we only focus on
secret relations that are defined by algebraic MAC schemes in the sense that
R(sk, w, x) = 1 ⇔ M.V erify(sk, w, x) = 1. It is then sufficient to show that the
oracle OΠ.V er(·, ·) = Π.V erify(crs, ipp, pk, vk, sk, ·, ·) can be efficiently simu-
lated, with sk replaced by oracle access to M.V erify(sk, ·, ·).

We denote by OSimV er(·, ·) = SimV erify(crs, ipp, pk, vk, dk, ·, ·) the sim-
ulated verification algorithm with access to the oracle M.V erify(sk, ·, ·), and
proceed as follows. Assuming that (crs, td = dk), (sk, ipp), (pk, vk) are gener-
ated as before and (crs, ipp, pk, vk, dk) are provided to SimV erify as input.
Then, for each query (xp =⊥, π) asked by the adversary A, we can decrypt
the ciphertexts X,X′ to vectors m = (a,m1,m2, · · · ,mβ) ← E .Dec(dk,X),
m′ = (a′,m′

1,m
′
2, · · · ,m′

β) ← E .Dec(dk,X′). Finally, we compute σ = T 1/a,
and check that all the following equations are true:

−e 
 (X � E .Enc(ek,m;0)) = X′ � E .Enc(ek,m′;0), (2)
M.V erify(sk, (m1,m2, · · · ,mβ), σ) = 1, (3)

T ′ = T−
∑β

j=1 xj ·m′
j · ga′

. (4)

If all the checks succeeded, SimV erify outputs 1; otherwise, it outputs 0.
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Here we remark that, under the conditions σ = T 1/a and M.V erify(sk, (m1,
m2, · · · ,mβ), σ) = 1, the check Eq. (4) could in fact be calculated without the
knowledge of the secret key sk = (x0, x1, · · · , xβ). Alternatively, we can ask to
the MAC oracle to get (σ, σ1, · · · , σβ) = M.Mac(sk, (m1,m2, · · · ,mβ)) and then
check that

T ′ = Πβ
j=1σj

−a·m′
j · ga′

. (5)

This property is very attractive for the context of DVNIZK proof, since
it enables us to avoid resorting to a stronger notion of unforgeability (called
extended unforgeability [22]) for the underlying algebraic MAC schemes.

In the following, we will prove that the simulated oracle OSimV er(·, ·) is
indistinguishable from the real oracle OΠ.V er(·, ·). First, we show that, given
a query π, if OSimV er(⊥, π) = 1, then OΠ.V er(⊥, π) = 1. Recall that m ←
E .Dec(dk,X) and m′ ← E .Dec(dk, X′), it follows immediately that the Eq. (2)
implies X,X′ are of the form X = E .Enc(ek,m; r) and X′ = E .Enc(ek,m′;−e·r)
for some random vector r. Henceforth, the vector X′ ⊕ (e 
 X) is decodable,
and the decoded vector is d = m′ + e · m. On the other hand, if the Eq. (3)
is satisfied, it yields that σ = g1/(x0+

∑β
j=1 xj ·mj), which in turn implies that

T−
∑β

j=1 xj ·mj · ga = T x0 . Combining these facts with Eq. (4), we can easily get
the equation (T x0)e · (Πβ

j=1(T
′
j)

−xj ·T ′) = T−
∑β

j=1 xj ·dj · gd0 . This indicates that
OΠ.V er(⊥, π) = 1.

Next, we prove that, if OΠ.V er(⊥, π) = 1, then OSimV er(⊥, π) = 1. Assume
that X = E .Enc(ek,m; r) and X′ = E .Enc(ek,m′; r′) for some random vectors
r and r′. We would easily deduce from the fact X′ ⊕ (e 
 X) is decodable that
r′ = −e ·r, which thus yields that the Eq. (2) is satisfied. Furthermore, to obtain
a contradiction, we now suppose that Eq. (1) holds, while the Eqs. (3) or (4) is
rejected. Note that the Eq. (1) can be rewritten as

(
T x0/T−

∑β
j=1 xj ·mj · ga

)e

= T−
∑β

j=1 xj ·m′
j · ga′

/T ′. (6)

If the Eq. (3) does not hold, we get T x0/T−
∑β

j=1 xj ·mj · ga 
= 1; if (4) does
not hold, we have T−

∑β
j=1 xj ·m′

j · ga′
/T ′ 
= 1. Since e is randomly chosen

from some sufficiently large space, it holds with overwhelming probability that
e 
= 0 mod N . Hence, we can conclude that T x0/T−

∑β
j=1 xj ·mj · ga 
= 1 and

T−
∑β

j=1 xj ·m′
j · ga′

/T ′ 
= 1 will happen simultaneously. Using a similar technique
as in [20], we can then get from Eq. (6) the value e mod N , which is supposed
to be statistically hidden.

Now, since the simulated oracle OSimV er(·, ·) is indistinguishable from the
real oracle OΠ.V er(·, ·), and the valid of secret relation has essentially been
checked through Eq. (3), we conclude that the event R(sk, w, (xp, xs)) = 0 ∧
Π.V erify(crs, ipp, pk, vk, sk, xp, π) = 1 happens with only negligible probabil-
ity. This completes the proof.

Theorem 4. If the underlying encryption scheme E is IND-CPA secure, then the
oblivious DVNIZK proof system Π is obliviously zero-knowledge.
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Proof. The proof will be divided into two steps: constructing a simulator and
proving the indistinguishability. We first construct a simulator Sim(crs, ipp, pk,
xp, vk, sk) which producing simulated zero-knowledge proof π as follows. It first
selects randomly T ← G and d = (d0, d1, · · · , dβ) ← Z

β+1
N , and computes

T ′ = T−
∑β

j=1 xj ·dj · gd0/(T x0)e
. (7)

The simulator then chooses at random m = (a,m1,m2, · · · ,mβ) ← Z
β+1
N , m′ =

(a′,m′
1,m

′
2, · · · ,m′

β) ← Z
β+1
N and r = (r0, r1, · · · , rβ) ← Z

β+1
R , and computes

X = E .Enc(ek,m; r), (8)
X′ = E .Enc(ek,d − e · m;−e · r). (9)

We now show that, given an adversary A against the indistinguishability
of Π.Prove and Sim, we can construct an adversary AS against the IND-
CPA security of S. The IND-CPA adversary AS first obtains (x = (xp =⊥,
xs = σ), w = (m1,m2, · · · ,mβ)) from the adversary A, then it chooses ran-
domly a ← ZN , sets m = (a,m1,m2, · · · ,mβ) and T = σa, picks at ran-
dom m̃ = (ã, m̃1, m̃2, · · · , m̃β) ← Z

β+1
N , and sends the (m, m̃) to the IND-CPA

challenger to get back a challenging ciphertext X. Next, it selects randomly
d = (d0, d1, · · · , dβ) ← Z

β+1
N , computes X′ = E .Enc(ek,d;0) � (e · X), and

sets T ′ as in Eq. (7). Finally, the adversary AS sends π∗ = (T, T ′,X,X′) to the
adversary A, and takes the bit b ∈ {0, 1} outputted by A as its own output.

While the relation Rcrs(sk, w, x) = 1 holds, it is easy to check that, if the
challenging ciphertext X = E .Enc(ek,m; r), then the proof π∗ is distributed
identical to a proof in the real game; if X = E .Enc(ek, m̃; r), then the proof
π∗ is distributed exactly as that is produced by the simulator. Therefore, if the
adversary A has non-negligible probability in distinguishing Π.Prove and Sim,
then the adversary AS will win the IND-CPA game with non-negligible probability.

4 A New Storage-Extra APAKE Protocol

In this section, we first describe the construction of our new storage-extra
APAKE protocol. Then, the design rationale and detailed comparisons of our
protocols, in terms of both efficiency and security, are presented.

4.1 The Construction of the APAKE Protocol

Assume that MACwBB = (M.Setup,M.KeyGen,M.Mac,M.V erify) is the alge-
braic MAC scheme presented in Sect. 2.1, E = (E .KeyGen, E .Enc, E .Dec) is
a DVNIZK-friendly homomorphic encryption scheme as defined in Sect. 2.2,
and Π = (Π.Setup,Π.RelSetup,Π.KeyGen, Π.Prove,Π.V erify) is the obliv-
ious DVNIZK proof scheme introduced in Sect. 3.1. We also use a traditional
MAC scheme M = (KeyGen, Mac, Verify) and a traditional signature scheme
S = (S.KeyGen, S.Sign, S.V erify).
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For each user U ∈ U, denote by m = (m1,m2, · · · ,mβ) the vector of
attributes and by pw the password held by this user. The construction of the
APAKE protocol consists of the following steps.

Setup. In the setup phase, we first run Π.Setup(1λ) to obtain crs = (ek, pp) =
(ek, (G, g, p)) and the trapdoor td = dk, run Π.KeyGen(crs) to generate a
secret relation key sk = (x0, x1, · · · , xβ) and ipp = (X0,X1, · · · ,Xβ), run
S.KeyGen(1λ) to get a signing key SK and the related signature verification
key V K. Then, we select a random element h ← G, set the common reference
string of the APAKE protocol as (crs, ipp, V K, h), and provide to the server
with the secret keys (sk, SK).

Registration. In this phase, each user registers to the server to prepare for sub-
sequent anonymous authentication. The registration phase is assumed to be
executed over secure channels. To begin with, each user sends her attributes2

m = (m1,m2, · · · ,mβ) to the server. Upon receiving this registration request,
the server generates a MAC tag Σ = (σ, σ1, · · · , σβ) ← M.Mac(sk,m) and
sends it to the user as its credential3. When the credential Σ is received, the
client encrypts it with her password pw to obtain a password-wrapped credential
[Σ]pw, and puts it on some (publicly) extra-storage.

Authentication. To login the server, a user interacts with the server as follows.

1. At the beginning, the server runs Π.KeyGen(crs) to generate a proof veri-
fication key vk = e and the corresponding proving key pk = E .Enc(ek, 0; e),
picks at random γ ← Zp and computes Y = hγ , σS = S.Sign(SK, (pk, Y )).
Then, the server sends to the client the message (pk, Y, σS).

2. Upon receiving the message (pk, Y, σS) from the server, the client first checks
the validity of the signature σS . Next, she fetches back the password-wrapped
credential [Σ]pw and decrypts it with her password pw to recover the cre-
dential Σ = (σ, σ1, · · · , σβ). Then, the user generates a DVNIZK proof
π ← Π.Prove(crs, ipp, pk, (xp, xs), w), where x = (xp =⊥, xs = σ) and
w = (m1,m2, · · · ,mβ). The user also chooses randomly ξ ← Zp, computes
X = hξ, tk

(1)
U = Y ξ,tk(2)

U = Πβ
j=1σ

−a·mj

j · ga and σU = Mac(tk(2)
U , σS ||X||π).

Finally, the user sends (X,π, σU ) to the server, and computes the session
key as KU = tk

(1)
U · tk

(2)
U .

3. When the server receives (X,π, σU ), it ensures that T 
= 1, computes tk
(1)
S =

Xγ , tk
(2)
S = T x0 , checks that σU = Mac(tk(2)

S , σS ||X||π), verifies the DVNIZK

2 Beyond a single value of identity, here we consider a vector of attributes, which could
handle more complex access policies such as expiration dates and access rights.

3 Together with the credential Σ, the server perhaps, if needed, sends a zero-knowledge
proof proving that this MAC tag is honestly generated. The ZK proof could be either
a NIZK proof secure in the random oracle model, or a DVNIZK proof secure in the
standard model where the proving key is sent to the server along with the attributes.
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proof π, and aborts if any of these checks is failed. If all checks are valid, the
server computes the session key as KS = tk

(1)
S · tk

(2)
S .

4.2 Design Rationale

The core of our construction is a DVNIZK proof π to prove that the algebraic
MAC tag σ held by the user is valid, without compromising the privacy of this
credential and the user’s attributes. The privacy protection property is guaran-
teed by the zero-knowledge property of the underlying DVNIZK proof scheme;
and the soundness property of the DVNIZK proof system ensures that, the user
in communication is a legitimate member with a valid algebraic MAC tag as her
credential.

Based on these observations, we could even obtain a one-pass variant of the
above protocol for anonymous entity authentication, through sending only one
flow of message consisting of the DVNIZK proof π to the server. The result-
ing protocol guarantees privacy-preserving non-interactive authentication, as
expected by [20]. However, as a one-pass protocol, it is inherently open to replay
attacks [31]. Although it is well-known that replay attacks can be prevented
by maintaining synchronized state (via counters or timestamps) between the
sender and receiver, we emphasize that synchronized timestamps are actually
quite tedious in practical applications.

In order to prevent replay attacks and to establish a secure session key for
subsequent use, we alternatively choose to have the server send an additional
message (pk, Y, σS) to the client. In this message, the server generates and sends
a fresh proving key pk for every session, which guarantees that the DVNIZK
proof π is newly generated as well. Moreover, with the extra flow of message, we
can embed in this protocol of a Diffie-Hellman tuple (X,Y ), which offers forward
security for both participants.

4.3 Comparisons with Existing Storage-Extra APAKE Protocols

In the following, we compare our storage-extra APAKE protocol with similar
anonymous authentication protocols, in terms of both security and efficiency.

Security Comparisons. First, recall that our main purpose is to design a storage-
extra APAKE protocol secure in the standard model, instead of in the random
oracle model. As indicated in Table 1, our storage-extra APAKE protocol is
the only one with proven security in the standard model, while all the existing
protocols [14–16] are analyzed in the random oracle model. However, the random
oracle model is arguably “unnatural” and differs from real-world constructions
significantly [19]. We thus have reasons to believe that an APAKE protocol with
provable security in the standard model would provide a stronger guarantee of
security than those only proven secure in the random oracle model. In addition,
our protocol not only satisfies the same mutual authentication property as the
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existed protocols, but also permits more flexibility in terms of identity type, as
our protocol allows users to prove a vector of personal attributes rather than a
single value of identity.

Efficiency Comparisons. With respect to efficiency, we compare our protocol
with the existing storage-extra APAKE protocols in terms of rounds, communi-
cation and computational cost. The details are illustrated in Table 2. We stress
that our protocol requires only two flows of messages during the authentication
phase, which is very efficient for a protocol with explicitly mutual authentication.
Although our protocol is less efficient, which is similar to those protocols with
provable security in the standard model, than its counterpart proven secure in
the random oracle, it is still considerably efficient. In particular, when the length
of attributes is set to β = 1, we get a protocol that is even more efficient than
Yang et al.’s scheme [14], which is right the storage-extra APAKE protocol con-
tained in the standard ISO/IEC 20009-4 [17].

Table 1. Security comparisons among storage-extra APAKE protocols

Protocols Model Mutu-Auth Identity-Type

Yang et al.’s [14] Random oracle Yes Single value

Zhang et al.’s [15] Random oracle Yes Single value

Shin et al.’s [16] Random oracle Yes Single value

Our protocol Standard model Yes Attribute vector

Legend: Mutu-Auth represents explicitly mutual authentication,
Identity-Type denotes the type of user’s identity which the proto-
col supports.

Table 2. Efficiency comparisons among storage-extra APAKE protocols

Protocols Rounds Comm. Computational cost

User side Server side

Yang et al.’s [14] 3 7|G1| + |GT |
+6|p|

9EG1 + 1E2
G1

+1E5
GT

+ 2P

EG1 + 3E2
G1

+1E6
GT

+ 4P

Zhang et al.’s [15] 2 4|G| + 4|p| 3EG + 2E2
G

3EG + 1E2
G

Shin et al.’s [16] 3 3|G| + 2|H| 5EG 3EG

Our protocol 2 10|G| + 1|T | 3EG + 2Eβ+1
G

+2βEnc

(β + 3)EG

+2E2
G

Legend: |G1| denotes the bit size of an element from the group G1, |p|
represents the size of an element from Zp, |H| and |T | denote the size

of an output of a hash function and a MAC scheme, respectively; EG

represents one exponentiation in G, En
G

denotes a multi-exponentiation of

n values in G, P represents a bilinear pairing operation, Enc denotes a

homomorphic encryption operation.
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4.4 Security Analysis of the APAKE Protocol

By utilizing a security model for storage-extra APAKE protocol formalized by
Zhang et al. in [15], we could prove that the APAKE protocol presented above
guarantees AKE security of session keys and achieves user anonymity with
respect to the honest-but-curious server. However, the detailed security model
and rigorous proofs are omitted here due to the page limit. We refer the reader
to our full paper for more details.

5 Conclusions

In this paper, we first give out a new construction of the oblivious DVNIZK proof
system compatible with a new class of algebraic MAC schemes, which avoids the
requirement of the cumbersome security notion called extended unforgeability.
Then, we present a new APAKE protocol in the standard model by combing the
technique of algebraic MAC with oblivious designated-verifier non-interactive
zero-knowledge (DVNIZK) proof. Comparisons show that our protocol enjoys
stronger security guarantees as well as achieves considerably communication and
computation performance.
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